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Preface

Issues of matching and searching on elementary discrete structures arise
pervasively in Computer Science as well as in many of its applications.
Their relevance may be expected to grow even further in the near future as
information is amassed, disseminated and shared at an increasing pace. A
number of algorithms have been discovered in recent years in response to
these needs. Along the way, a number of combinatorial structures and tools
have been exposed that often carry intrinsic value and interest. The main
ideas that developed in this process concurred to distill the scope and flavor
of Pattern Matching, now an established specialty of Algorithmics.

The lineage of Pattern Matching may be traced back for more than two
decades, to a handful of papers such as "Rapid identification of repeated
patterns in strings, trees, and arrays", by R.M. Karp, R.E. Miller and
A.L. Rosenberg, "Automata theory can be useful", by D.E. Knuth and V.R.
Pratt, and, in a less direct way, S.A. Cook's "Linear time simulation of de-
terministic two-way pushdown automata". The outgrowth of these powerful
seeds is impressive: I. Simon lists over 350 titles in the current version
of his bibliography on string algorithms; A. V. Aho references over 140 pa-
pers in his recent survey of string-searching algorithms alone; and advanced
workshops and schools, books and special issues of major journals have been
already dedicated to the subject and more are planned for the future.

This book attempts a snapshot of the current state of the art in Pattern
Matching as seen by specialists who have devoted several years of their study
to the field. Without pretending to be exhaustive, the book does cover most
basic principles and presents material advanced enough to portray faithfully
the current frontier of research in the field. Our intention was to combine
a textbook suitable for a graduate or advanced level course with an in-depth
source for the specialist as well as the neophyte.

The appearance of this book marks, somewhat intentionally, the Tenth
anniversary since "Combinatorial Algorithms on Words". We wish it an
equally favorable reception, and possibly even more opportunities to serve,
through the forthcoming years, the growth of its useful and fascinating sub-
ject.

a.a. and z.g.
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1
Off-line Serial Exact String
Searching

String searching or string-matching is the problem of locating all occur-
rences of a string x of length m, called the pattern, in another string t
of length n, called the text. The algorithmic complexity of the problem
is analyzed by means of standard measures: running time and amount
of memory space required by the computations. This chapter deals with
solutions in which the pattern only is preprocessed. There are mainly
three kinds of methods to solve the problem: sequential methods simulat-
ing a finite automaton, practically fast methods, and time-space optimal
methods. Alternative solutions based on a preprocessing of the text are
described in Chapter 3. Parallel algorithms for the problem, presented in
Chapter 2, sometimes also generate new serial algorithms. Finally, meth-
ods that search for approximate occurrences of a pattern are the subject
of Chapters 4, 5, and 6.

1.1 Searching for strings in texts

The problem is of main importance for several reasons. From a theoret-
ical point of view, it is a paradigm for the design of efficient algorithms,
in the same way as are, for instance, sorting methods. From a practical
point of view, the algorithms developed in this chapter often serve as basic
components in text facility software.

In the whole chapter, x denotes the pattern of length m (m — \x\), and
t is the text of length n (n = \t\). To avoid trivial situations, the pattern
is assumed to be a non-empty string (x = A, m = 0). Since the problem
becomes a simple counting exercise when the alphabet reduces to only one
symbol, the reader may consider in the following that the common alphabet
E of the text and the pattern contains at least two symbols (|S| > 1).

We assume that the pattern is given first. The text is given at search
time only. This allows us to preprocess the pattern in order to accelerate
the future search in the text. An instance of the problem arises when we
try to recognize a specific pattern in various texts or streams of symbols
arriving through a communication channel. No preprocessing of the text is
possible nor allowed. This contrasts with the problem of locating words in



2 OFF-LINE SERIAL EXACT STRING SEARCHING

a dictionary, or an entire corpus of fixed texts, problem which is considered
in Chapter 3.

We mainly consider algorithms that use comparison of symbols as the
basic elementary operation. These comparisons are usually of the kind
equal-unequal. But a few algorithms also assume that the alphabet is
ordered, which is not a restriction in practice, and therefore profit from
comparisons of the kind less-equal-greater. We consider algorithms using
branching operations as well, typically used in connection with automata.

Efficient algorithms, as most of those considered in this chapter, have
a running time that is linear in the size of the input (i.e. O(n + m)). And
most algorithms require an additional amount of memory space that is
linear in the size of the pattern (i.e. 0(m)). Information stored in this
space is computed during the preprocessing phase, and later used during
the search phase. The time spent during the search phase is particularly
important. So, the number of comparisons made and the number of inspec-
tions executed have been evaluated with great care. For most algorithms,
the maximum number of comparisons (or number of inspections) made
during the execution of the search is less than 2n. The minimum number
of comparison necessary is [n/m], and some algorithms reach that bound
in some situations.

The average running time of the search phase is sometimes considered
as more significant than the worst-case time complexity. Despite the fact
that it is usually difficult to modelize the probability distribution of specific
texts, results for a few algorithms (with a hypothesis on what "average"
means) are known. Equiprobability of symbols and independence between
their occurrences in texts represent a common hypothesis used in this con-
text. It is known that, in this case, the best average time of the search phase
is 0(n logm/m). It is even rather simple to design a string searching al-
gorithm working in this time span, and this chapter contains a practical
implementation of an algorithm having this performance.

We consider three classes of string searching algorithms. In the first
class, the text is searched sequentially, one symbol at a time from the
beginning to the end. Thus all symbols of the text (except perhaps m — 1
of them at the end) are inspected. The algorithms simulate a recognition
process using a finite automaton. The second class contains algorithms that
are practically fast. The time complexity of the search phase can even be
sublinear, under the assumption that text and pattern reside in the main
memory. Algorithms of the first two classes usually require O(m) extra
memory space. Algorithms of the third class show that the additional
space can be reduced to a few integers stored in a constant amount of
memory space.

The complexity of the string searching problem is given by the following
theorem. The proof is based on space-economical methods (Section 1.4).
Linear time is however illustrated by almost all algorithms of the chapter.



SEARCHING FOR STRINGS IN TEXTS

put window at the beginning of text;
while window on text do
begin

scan: if window = pattern then report it;
shift: shift window to the right and
memorize some information for use during next scans and shifts;

end;

Fig. 1.1. The sliding window strategy: scan-and-shift mechanism

Note that in the "O" notation the coefficient is independent of the alphabet
size.

Theorem 1.1. The string searching problem, locating all occurrences of
a pattern x in a text t, can be solved in linear time, 0(\t\ + \x\), with a
constant amount of additional memory space.

The above classification can be somehow refined by considering the way
the search phases of algorithms work. It is convenient to consider that the
text is examined through a window. The window is assimilated to the
subword of the text it contains and has (usually) the length of the pattern.
It runs along the text from the beginning to the end. This scheme is called
the sliding window strategy and is described as an algorithm in Figure 1.1.

During the search, the window on the text is periodically shifted to
the right according to rules that are specific to each algorithm. When the
window is placed at a certain position on the text, the algorithms check
whether the pattern occurs there, i.e., if the pattern equals the content of
the window. This is the scan operation during which the algorithm acquires
from the text information which are often used to determine the next shift
of the window. Part of the information can also be kept in memory after
the shift operation. This information is then used for two purposes: first,
saving time during next scan operations, and, second, increasing the length
of further shifts. Thus, algorithms operate a series of alternate scans and
shifts.

The simplest implementation of the scan-and-shift scheme is given in
Figure 1.2, as a procedure called NAIVE_SEARCH. After each scan opera-
tion, the strategy consists here in sliding the window one place to the right,
which obviously generates a correct algorithm (as far as scans are correctly
implemented). In the algorithm, the value of the variable pos is the current
position of the window on the text. And variable i points successively to
symbols of the pattern (see Figure 1.8). The symbol x[i] is aligned with
the symbol of the text at position pos + i — 1.

The NAIVE_SEARCH algorithm has several advantages: it needs no pre-
processing of any kind on the pattern, and it requires only a fixed amount

3



OFF-LINE SERIAL EXACT STRING SEARCHING

procedure NAIVE_SEARCH(x, t: string; m,n: integer);
begin

{it is assumed that m = \x\ and n = \t\}
pos := 1;
while pos < n — m + 1 do begin

i := 1;
while i < m and x[i] = t\pos + i — 1] do i := i + 1;
if i = m + 1 then writeln('x; occurs in t at position ', pos);
pos := pos + 1;

end;
end;

Fig. 1.2. Naive string searching algorithm

of extra memory space (few registers). However, its maximum running
time is O(n.m) (for instance if an is searched for all occurrences of am,
a E E). On the average, if all symbols have the same probability wherever
they are in strings, it is simple to see that the number of symbol compar-
isons NAIVE_SEARCH makes, is less than 2n. This bound, while it could
look quite small, is indeed very high compared to the lower bound on ex-
pected time, 0(n logm/m), that is reached by the fastest algorithms (see
Section 1.3).

The way the algorithms scan the content of the window influence greatly
their design and performance. Five types of scans are considered here.
Scans are based on different notions, which are generally used to compare
strings and that leads, indeed, to distances between strings. The scan
operations considered in this chapter are based on these elements:

• longest common prefix,
• longest prefix of the window, subword of the pattern,
• longest common suffix,
• longest suffix of the window, prefix of the pattern,
• pattern factorization.

The first two notions lead to algorithms that operate sequential searches
(see Section 1.2). The next two notions produce the practically-fastest
known algorithms (see Section 1.3). Combining the first and third notions
produces the two-way scan scheme based on the fifth notion and yields time-
space optimal algorithms (see Section 1.4). Many other scanning strategies
are possible, and some of them are discussed at the end of the chapter or
in exercises.

For the exposition of a string searching algorithm, it is simpler to present
its preprocessing phase separately from its search phase. It is however
sometimes possible to incorporate the preprocessing phase inside the search

4



SEQUENTIAL SEARCHES

Fig. 1.3. String-matching automaton of pattern ananas

phase, getting then a lazy preprocessing of the pattern. Such implementa-
tion details are left to the reader.

1.2 Sequential searches

In the sliding window scheme for searching for x in t, it is rather natural
to scan the window from left to right. This is the way NAIVE_SEARCH
algorithm of Figure 1.2 proceeds. There are even situations in which it is
recommended to do so, such as when scanning a stream of symbols arriving
through a channel of communication. The present section describes efficient
variants of this strategy.

1.2.1 STRING-MATCHING AUTOMATON

Checking whether pattern x is a subword of text t can be equivalently
stated as a membership question: is t member of the language E*xE* ?
Or, stated differently, is there a prefix of t member of the language E*x ?
The languages E*xE* and E*x are both rational languages, so we can
expect that the problem translates into a decision procedure on automata
representing the languages. Consider, for instance, a deterministic automa-
ton recognizing E*x. Then, while reading the text through the automaton,
an occurrence of the pattern x is discovered each time a final state of the
automaton is met. The position of the occurrence can then be reported
(see Figure 1.4).

Recall that a deterministic automaton A is a sequence (Q, E, initial, T, 6)
where Q is the finite set of states, initial the initial state, T the set of ter-
minal states, and 6 is the transition function. For a state q E Q and a
symbol a E E, 8(q, a) is the state reached from q by transition of symbol a.
The transition function extends to words, and 6(q,w) denotes, if it exists,
the state reached after reading the word w in the automaton from the state
q. The automaton A recognizes the language {w E E*/6(initial,w) E T}.

The minimal (deterministic) automaton for the language E*x is denoted

5



OFF-LINE SERIAL EXACT STRING SEARCHING

procedure SEARCH(x,t: string; m, n: integer);
begin

{ (Q, E, initial, {terminal},6) is the automaton SMA(x) }
q:= initial;
if q = terminal then report an occurrence of x in t;
while not end of t do begin

a:= next symbol of t;
q:= 8(q,a);
if q = terminal then report an occurrence of x in t;

end;
end;

Fig. 1.4. String searching with automaton

function SMA(x: string): automaton;
begin

let initial be a new state;
Q := {initial}; terminal := initial;
for all a in E do 8(initial, a) := initial;
while not end of x do begin

T:= next symbol of x; r := 8(terminal, T);
add new state s to Q; 6(terminal, T) := s;
for all <T in E do 6(s, <r) := 8(r, a};
terminal := s;

end;
return (Q, E, initial, {terminal}, 6);

end;

Fig. 1.5. Construction of a string-matching automaton

by A(x), and called the String-Matching Automaton of x. Figure 1.3 shows
an example of string-matching automaton for the pattern ananas ("ananas"
is the French word for pineapple). The number of states of A(x) is m + 1.
The construction of A(x) can be done, starting with a straightforward non-
deterministic version, with the standard procedures which determinize and
minimize automata. However, it is remarkable that the direct construction
of A(x) is simple, and takes optimal time (proportional to its size). The
algorithm is given in Figure 1.5 as procedure SMA(x) that produces A(x).
The construction is on-line. At a given step, it is assumed that the string-
matching automaton A(u) for a prefix u of pattern x has already been built.
The automaton has exactly one initial state, initial, and one terminal state,

6



SEQUENTIAL SEARCHES

Fig. 1.6. Left-to-right scan: mismatch situation (a = r)

terminal Its transition function is denoted by 8, and Q is the set of states.
Let T be the next symbol of the pattern (UT is a prefix of x). The work
done during the processing of symbol T remains to "unwind" the transition
that starts from the terminal state and labeled by T. This means that,
after the operation, the target of the transition leads to a "clone" of the
former target. The new state also becomes the new unique terminal state.

The time complexity of procedure SMA is O(m|E|). This is true, in
fact, if transitions are computed in constant time. An array representation
of the function 6 can be used for this purpose. The associated search phase
(Figure 1.4) then produces a real-time algorithm that works in 0(n) time
with 0(m|E|) extra space.

The main inconvenience with the approach described in this section is
that the complexity of the algorithm we get depends on the cardinality of
the alphabet. This makes the method almost useless in practical appli-
cations. However, this is certainly the best sequential method for small
alphabets, and also when comparisons are better replaced by branchings.
Furthermore, the method is the base for several other algorithms described
in the next subsection. There, the algorithms all implicitly contain a com-
pact representation of the automaton A(x).

Finally, note that the construction of A(x) does not need to be done
before the search phase starts. It is possible and certainly is a more clever
implementation to make a lazy construction of A(x) while searching t. This
remark is also valid for all other methods based on automata, and especially
those described in the following sections.

1.2.2 FORWARD PREFIX SCAN

KMP algorithm is the classical algorithm that implements efficiently the
left-to-right scan strategy. In this section, we first describe a slightly sim-
pler version called MP algorithm. And then, after the presentation of
KMP algorithm, we describe another algorithm that we call MPS. This
latter slightly improves on KMP string searching algorithm. The three
algorithms, MP, KMP, and MPS, can be regarded as implementations by
symbol comparisons of the search based on the string-matching automaton
(algorithm in Figure 1.4).

7



OFF-LINE SERIAL EXACT STRING SEARCHING

while window on text do
begin

u := longest common prefix of window and pattern;
if u = pattern then report a match;
shift window period(u) places to right;
memorize border (u};

end;

Fig. 1.7. Scheme of MP algorithm

The important current situation for searching algorithms that imple-
ment a left-to-right scan is shown in Figure 1.6. It is when the window on
text t contains a string ury, and pattern x is equal to uaz (where u,y,z are
words on E, and r, <r are distinct symbols of E). This is the mismatch situ-
ation. An analogue situation is met when the window contains the pattern
itself. Indeed, we can also consider that this is a mismatch situation, as if
the pattern x were right-marked by a symbol not occurring in the text t.
In either case, the window is shifted to the right, and the process continues
its series of scans and shifts.

Consider a mismatch situation and a closest position of the window (to
the right) that can possibly contain pattern x. This position is at most |UT|
places to the right of the present position of the window, because no symbol
of the text to the right of symbol r has been examined so far. This implies
that, after the shift, the prefix u of x overlaps the occurrence of UT in the
text (or, at least, is adjacent to it). Thus, the distance between the present
position of the window and the next position that needs to be considered
is per iod(ut) . The period corresponds to the longest possible overlap of
UT over itself, namely the border border(ut) . Then, the length of the
smallest safe shift of the window is the smallest period of UT. Computing all
periods per iod(u t ) (for prefixes u of x and symbols T) amounts to consider
the minimal deterministic automaton recognizing the language E*x, as
described in Section 1.2.1.

There are two solutions to reduce down to O(m) the extra space used
by the algorithms. The first solution is to approximate periods of the words
UT'S. It is implemented by MP and KMP algorithms that we describe first
in the following. The second solution is to store only significant periods of
the possible UT'S. It is implemented by MPS algorithm, presented at the
end of the section.

MP algorithm The scheme of MP algorithm is given in Figure 1.7. In
a mismatch situation (see Figure 1.6), the length of the shift performed
during the search phase of MP algorithm is period(u). This is obviously
not greater than period(ut) , so that no occurrence of the pattern can be

8
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Fig. 1.8. Variables t and j used in MP algorithm (pos = j — j + 1)

procedure MP(x,t: string; m, n: integer);
begin

i := 1; j := 1;
while j < n do begin

while (i = m + 1) or (i > 0 and x[i] = t[j]) do i := MP_next[i\;
i :=i+l;j := j + 1;
if i = m + 1 then writeln('x occurs in t at position ', j — i + 1);

end;
end;

Fig. 1.9. MP search algorithm

missed. This argument proves the correctness of the search scheme. But it
is remarkable that the approximation on shifts realized by MP algorithm
still leads to a linear search for the pattern. Indeed, the entire algorithm,
including the preprocessing phase, runs in linear time, and requires only
O(m) extra space to store all periods of prefixes of x.

A detailed version of MP searching algorithm is given in Figure 1.9.
Variables of MP algorithm are shown in Figure 1.8. The algorithm uses
only two variables i and j. The former runs through positions of x, and
the latter through positions of t. The current position of the window is
not explicitly represented, as in NAIVE_SEARCH, but has value j — i + 1.
Shifting the window p places to the right remains to decrement the pointer
i on the pattern by the quantity period(u), leaving j unchanged. Indeed,
next values of i's are precomputed and stored in a table called MP_next by
the algorithm of Figure 1.11.

The precomputation of table MP_next used in MP algorithm is similar
to the computation of borders of pattern prefixes, that is presented first.
The computation of borders is based on the fact: "a border of a border of a
word w is a border of w". More precisely, it relies on the following remark:

if the border of ua is not empty (ua prefix of x with a in E), then it is of the
form va where v is a border of u.

9
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procedure COMPUTE_BORDERS(:C: string; m: integer);
begin

Border[0] := -1;
for i := 1 to m do begin

j := Border[i— 1];
while j > 0 and x[i] = x[j + 1] do j := Border[j];
Border[i] := j + 1;

end;
end;

Fig. 1.10. Computation of borders of pattern prefixes

procedure COMPUTE_MP_NEXT(a;: string; m: integer);
begin

MP_next[l] := 0; j := 0;
for i := 1 to m do begin

{ at this point, we have j = MP_next[i] }
while j > 0 and x[i] = x[j] do j := MP_next[ j];

j:=j + i;
MP_next[ i+l] := j;

end;
end;

Fig. 1.11. Computation of table MP_next

Thus, the word v is the longest border of u followed by a (i.e. such that va
is prefix of u). Procedure COMPUTE-BORDERS in Figure 1.10 implements
this rule to compute the borders of all prefixes of the pattern x. The
procedure produces the lengths of the borders in a table called Border:
the value Border[i] is the length of border(x[l : i]). For the empty prefix
that has no border, the length is set to —1 (Border[0] — —1), a convention
which is compatible with the algorithm. Prefixes are processed in order of
increasing lengths. To compute the border of a given prefix, variable j runs
through the lengths of borders of the preceding prefix in decreasing order
until the above condition is met.

The table MP_next used by MP algorithm is defined by MP_next[l] = 0,
and, for 2 < i < m + 1, by

corresponding to a shift of period(x[l : i — 1]) positions. The quantity
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i — period(x[l : i — 1]) is also Border[i — 1] + 1, and thus can be computed
after Border:

Indeed, the precomputation of table MP_next can be realized directly, with-
out first computing borders of pattern prefixes. It should be noted that the
precomputation, which is described in Figure 1.11, is designed in the same
fashion as MP searching algorithm itself. This phenomenon is specific to
string searching algorithms of the present section. The preprocessing re-
mains to search for the pattern x inside x itself starting at the second
position.

Theorem 1.2. MP string searching algorithm runs in time 0(|x| + |t|). It
executes at most 2|t| — 1 symbol comparisons during the search phase, and
at most 2|x| — 3 symbol comparisons during the preprocessing phase. MP
algorithm requires 0(\x\) extra memory space.

Proof Consider the expression 2j — i in MP algorithm (Figure 1.9). Each
symbol comparison strictly increases its value: positive comparisons in-
crease both i and j by 1, negative comparisons increase j — i, the position
of the window, leaving j unchanged. The final value of 1j — i is not greater
than 2n + 1. This is reached only when final values of i and j are 1 and
n +1 respectively. But then their previous values were 0 and n respectively,
which shows that the last incrementation has been done after no symbol
comparison. So, we can consider that the final value of 2j — i is 2n, and
since its initial value is 1, the number of symbol comparisons made during
the search phase is not greater than 2 n — 1 . This value is reached by text
am-1 T and pattern am. With the remark immediately preceding the the-
orem the preprocessing phase is equivalent to the search inside a text of
length m — 1. The number of symbol comparisons at preprocessing phase
is thus 2(m — 1) — 1 = 2m — 3. Finally, O(m) extra space is used to store
the table MP_next. D

From the precomputation phase of MP algorithm, one can easily deduce
an algorithm to compute all the periods of pattern x (recall that we assume
x = A), and not only its smallest period. These periods, in increasing order,
are quantities m— Border[m], m— Border2[m\, . . . , m— Borderk[m], where
k is the smallest integer for which borderk (x) is the empty word.

KMP algorithm KMP algorithm is a slight improvement on MP al-
gorithm. The difference only lies in the computation of shifts (see Fig-
ure 1.12). Therefore, the precomputation phase only is modified. In a
mismatch situation (see Figure 1.6), where UT is a prefix of the window,
and ua a prefix of the pattern, the length of the produced shift is inter-
rupt-period(u) in KMP algorithm, instead of period(u) in MP algorithm.
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while window on text do
begin

u := longest common prefix of window and pattern;
if u = pattern then report a match;
shift window interrupt-period(u) places to the right;
memorize strict-border ( u ) ;

end;

Fig. 1.12. Scheme of KMP algorithm

The quantity is a period of u which, in addition, is not incompatible with
the mismatch symbol T of the text. It satisfies

period(u) < interrupt-period(u) < period(ur).

The later inequality implies the correctness of the search phase of KMP
algorithm.

We explain the modification brought by KMP algorithm. Let u be the
word a;[l : i — I], and assume that

period(x[l : i — 1]) = period(x[l : i]) = p.

Then, since by definition of MP_next, the distance between i and MP_next[i]
is the period p, the same symbol a occurs at positions i and MP,next[i] in
the pattern. So, a mismatch at position i in x with a symbol of the text re-
curs at position MP_next[i]. This means that instruction "i := MP_next[i]"
in MP algorithm is not optimized. The solution proposed by KMP algo-
rithm is to consider the smallest interrupted period of u, that is, the smallest
period of u which is not a period of a;[l : i] = ua (see Figure 1.13). Note
that this may not be defined (in which case we give it value |u| + 1), and
that the notion is related only to proper prefixes of x. We additionally
define for the pattern itself interrupt_period(x) as period(x). Interrupted
periods correspond to the dual notion of strict borders. When ua is a prefix
of x, a strict border of u is any border v of u not followed by a (i.e. such
that va is not a prefix of u). We denote by strict-border (u) the longest
strict border of u. And, for the pattern x itself, we define strict-border(x)
as border(x). Note that strict-border is not defined for all prefixes of x,
simply because a given prefix can have no strict border at all.

KMP search algorithm works as MP algorithm. The only difference is
that it uses the table KMP_next instead of MP_next. The precomputation
of KMP_next is given in Figure 1.14. The algorithm relies on the following
observation. Let k = MP_next[i] for some position i in x. Then:

OFF-LINE SERIAL EXACT STRING SEARCHING
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Fig. 1.13. Interrupted period p of u, and strict border v of u (a = r)

procedure COMPUTE_KMP_NEXT(:e: string; m: integer);
begin

KMP_next[l] := 0; j := 0;
for i := 1 to m do begin

{ at this point, we have j = MP_next[i\ }
while j > 0 and x[i] = x[j] do j := KMP-next\j[\;
3 :=j + 1;
if i = m or x[i + 1] = x[j] then KMP_next[i + 1] := j
else KMP_next[i+ 1] :=

end;
end;

Fig. 1.14. Computation of table KMP_next

This recursively defines KMP_next, though the algorithm implements it
with an iterative computation. The algorithm is very similar to the pre-
computation of MP_next. An additional test in the main loop serves to
eventually find the current value of KMP_next[i].

For MP and KMP search algorithms we can define a notion of delay.
This is related to the time that elapses between the reading of two consec-
utive symbols of the text. Since the time is proportional to the number
of comparisons done on a symbol of the text (internal while loop of MP
algorithm), we define the delay as the maximum number of symbol com-
parisons made at a given position in the text. In the case of MP and KMP
algorithms, considering how the algorithms work, the delay is also one unit
more (except when an occurrence of the pattern is found) than the maxi-
mum length of border sequences used by the algorithms (ordinary borders,
or strict borders, respectively). The delay for MP algorithm is simple to
evaluate. It is less than m, and, indeed, this bound is tight. It is reached,
for instance, when searching for am inside (a m - 1 r) k (a and T different

K M P _ n e x t [ j ] ;
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symbols, n = k.m). On occurrences of symbol r of the text, MP algorithm
makes exactly m comparisons, one on each symbol of the pattern. And the
number of borders of <rm-l is exactly m—1. The delay of KMP algorithm is
logarithmic in the size of the pattern (Theorem 1.4 below). Before proving
the result, we first state an intermediate property of strict borders.

Lemma 1.3. Let w be a prefix of pattern x. Assuming that both words are
defined, let u = strict_border(w) and v = strict_border(u). Then, we have
\w\ > |u| + \v\ + 1.

Proof Since u and v are proper prefixes of x, we can consider the symbols
a = x[\u\ + 1] and r = x[\v\ + 1]. By definition of v, we have a = r. Since
u and v are borders of w, p = \w\ — |w| and q — \w\ — \v\ are both periods
of w. Assume that |w| < |w| + |v| + 1 holds. It implies p+ q — 1 < \w\. The
periodicity lemma then shows that q — p is also a period of w. But this is
obviously false because the above occurrences of different symbols a and T
are precisely at distance q — p. The conclusion follows.

Theorem 1.4. The delay of KMP string searching algorithm is bounded
by log b ( |x | + 1), where b is the golden ratio, (1 + 5)/2.

Proof Let k > 0 be the delay of KMP algorithm when searching for pattern
x. The quantity k is the length of the longest sequence associated to a prefix
w of x:

(w, strict-border (w), strict-border2(w),. . . , strict-borderk-1 (w))

assuming that strict-borderk(w) is undefined. Note that we can consider
that w is shorter than x, because the number of symbol comparisons related
to an occurrence of x in t is the same as the number of symbol comparisons
related to a mismatch just after an occurrence of border(x), which is a
proper prefix of x.

We prove, by induction on k, that if the sequence associated to w has
length k, then \w\ > Fk+2 — 2 (recall that Fk is the k-th Fibonacci number:
F0 = 0, F1 = 1, and Fk = Fk-1 + Fk-2, for k > 1).

The inequality obviously holds for k — 1 because F3 — 2 = 0. It holds for
k — 2 because both F4 — 1 = 1 and the equality is reached for w of length 1.
Assume that k > 3. Then, u = strict-border(w) and v = strict-border(u)
exist. The induction hypothesis applies to both of them. This gives |w| >
Fk+1 — 2 and \v\ > Fk — 2, respectively. The above lemma then gives

Which ends the induction.
Applying then a classic inequality on Fibonacci numbers (Fk > bk-2)

we get \w\ > bk — 2. Thus, m + 1 > bk, or, equivalently k < logb(m + 1).
D
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while window on text do
begin

u := longest common prefix of window and pattern;
if u = pattern then report a match;
let T be the symbol following u in text;
shift window period(ur) places to the right;
memorize tagged-border(u,r);

end;

Fig. 1.15. Scheme of MPS algorithm

Fig. 1.16. String v is a border of prefix u tagged by r (a = r)

As an example of words for which the maximum delay of KMP algo-
rithm is reached, we consider the prefix of length Fk+2 — 1 of the (k + 2)-th
Fibonacci word. (Fibonacci words are defined by induction: f1 = b, f2 = a,
and fk = fk-1fk-2) for k > 1.) Let us denote the prefix by Wk+2- For in-
stance, we have w8 = abaababaabaababaabab. If during the search for Wk+2
a mismatch occurs on the rightmost symbol of it with a symbol in the text
not occurring in Wk+2, then the delay at that step is exactly k, the maxi-
mum possible. On the example w8, if a mismatch occurs on the rightmost
occurrence of 6 with a symbol a distinct from both a and 6, then KMP al-
gorithm compares a with the following occurrences of underlined letters of

w8: abaababaabaababaabab_, making exactly 6 comparisons before reading
the next letter of the text.

MPS algorithm MPS algorithm can be considered as a further refine-
ment of MP algorithm. Here, the general scheme with the left-to-right
scan applies the most accurately as possible: in a mismatch situation (see
Figure 1.6), where UT is the shortest prefix of the window that is not prefix
of the pattern, MPS algorithm makes a shift of length period(ur). The
clue to avoid quadratic space, is to consider only non trivial periods of all
the ur's, and to precompute them before the search phase starts. Trivial
periods of UT'S are those that satisfy period(ur) = \ur\. Equivalently, the
period of UT is not trivial if there is a border v of u followed by symbol T
(in the sense that VT is a prefix of u). The border v is then said to be a
border tagged by symbol r (see Figure 1.16), and the longest such border is
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text a b a a b a c
a b a a b a a

a b a a b a a
a b a a b a a
a b a a b a a

(i) HP search. 4 comparisons on symbol c.

text a b a a b a c
a b a a b a a

a b a a b a a
a b a a b a a

(ii) KMP search. 3 comparisons on symbol c.

text a b a a b a c
a b a a b a a

a b a a b a a
(iii) MPS search. 2 comparisons on symbol c.

Fig. 1.17. Behaviors of MP, KMP and MPS

denoted by tagged-border(u,r). By the duality between periods and bor-
ders, we have then period(ur) = \u\ — \v\. Note that tagged-border(u,r) is
not always defined; moreover, for our purpose it is useless to define it when
UT is a prefix of x. Regarding Lemma 1.5, it is defined for at most m pairs
(u, T) (u prefix of pattern x, T E E), while the number of possible pairs
is (m + 1)|E|. Figure 1.15 describes the scheme of MPS algorithm. Fig-
ure 1.17 illustrates different behaviors of the three algorithms MP, KMP,
and MPS in a mismatch situation.

Lemma 1.5. The maximum number of tagged borders of all prefixes of x
is \x\.

Proof We show that there is a one-to-one correspondence between tagged
borders and periods of prefixes of x. Let v = tagged-border(u,T), and
w = tagged-border(r, a), for u, r prefixes of x, and T, a two symbols. By
assumption, neither UT nor ra are prefixes of x. But, by definition of tagged
borders, vr and wa are prefixes of x.

Assume that period(ur) = period(ra) = p. Then, v and w have occur-
rences that start at the same position p + 1 in x. Thus, one of them is a
prefix of the other. But, since neither UT nor ra are prefixes of x, this can
happen only if w = w. Therefore, different tagged borders correspond to
different periods of x. Thus, since periods p are integers running from 1 to
m, there are at most m distinct tagged borders for all prefixes of x.
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procedure MPS(x,t: string; m, n: integer);
begin

i :=0; j := l ;
while j < n do begin

q := head[i];
repeat

i := list-element [q]; q := q + 1;
until i = 0 or x[i] = t\j];
if i = m then writeln('x occurs in t at position ', j — m + 1);
j :=j + l;

end;
end;

Fig. 1.18. MPS algorithm - search phase

Words of the form aram-2 reach the upper bound. D

It is clear that MPS algorithm is correct, as MP and KMP algorithms
are. It also seems obvious that MPS search is faster than MP and KMP
searches. But this somehow depends on what representation of non triv-
ial periods (for the ur's) is chosen. Preprocessing time and extra space
required by MPS algorithm both relies on Lemma 1.5.

MPS algorithm may be regarded as a particularly efficient method to
implement the string-matching automaton A(x). The method is unfortu-
nately strongly dependent on the specific features of the automaton A(x),
so that it cannot be generalized easily to other kinds of automata. Tagged
borders, or equivalently non-trivial periods, correspond in the automaton
to backward arcs not arriving on the initial state. Lemma 1.5 equivalently
says that there are at most m such arcs in the automaton A(x). For exam-
ple, there are five backward edges in the automaton of Figure 1.3, namely,
the edges (1, a, 1), (3, a, 1), (5, a, 1), (6, a, 1), (5, n,4).

MPS algorithm can be implemented as follows. To each position i on
the pattern x is attached the list of tagged borders of x[1 : i — 1]. This list
contains the positions in x defined as follows: if v is a border of x[l : i— 1]
tagged by symbol T (hence, r = x[i]), then \v\ + 1 is in the list. There is
no need to put symbol T itself in the list because, by definition of tagged
borders, T — x[\v\ + 1]. In the implementation used in Figures 1.18 and
1.19 lists are stored in an array called list-element. Each list is stored in
a segment of the array. The starting position is given by the array head.
The list associated with position i starts with position i + 1 (when i < m)
and ends with 0. Doing so, the computation of transitions is realized by
comparisons of symbols, in the same model of computation as MP and
KMP algorithms. In some sense, lists considered by MPS algorithm in
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procedure COMPUTE_MPS_LISTS(a;: string; m: integer);
{ head is an array of size m + 1, list-element is an array of size 3m + 1 }
begin

head[Q] := 0; list_element[0] := 1; list-element[I] := 0;
i := 0; p := 1;
for j := 1 to m do begin

{ computation of transitions from state j }
{ i is the length of the border of x[l : j] }
head[j] :=p+ 1;
if j < m then begin

p := p + 1; list-element[p] := j + 1;
end;
q := head[i]; i := 0;
repeat

k := list-element[q]; q := q + 1;
if k = 0 and j < m and x[k] = x[j + 1] then i := k
else begin

p := p+ 1; list-element\p] := k;
end;

until k = 0;
end;

end;

Fig. 1.19. MPS algorithm - preprocessing phase

the "forward prefix scan" strategy are the shortest possible. In particular,
they are generally shorter than lists implicitly managed by MP and KMP
algorithms.

The implementation of lists of positions considered here additionally
satisfies the property: each list is in decreasing order of its positions. It
is then rather obvious to note that comparisons executed at search phase
are also comparisons executed by KMP and MP searching algorithms. We
then get the same worst-case time and space complexities as these algo-
rithms. The improvement is on the delay, which is obviously not greater
than the size of pattern alphabet. Furthermore, it can be proved that the
delay is not greater than 1 + Iog2 m, which improves on the delay of KMP
(and MP) algorithm. The preprocessing of lists of tagged borders is an
easy exercise. Since MPS implements the automaton A(x), the preprocess-
ing phase can be adapted from the construction of it (Figure 1.5). It is
presented in Figure 1.19. We sum up remarks on MPS algorithm in the
following theorem.
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Theorem 1.6. MPS algorithm runs in time 0(\x\ + \t\). The searching
algorithm makes less than 2|f| — 1 symbol comparisons. The delay of the
search is at most min(l + Iog2 |x|, |S|). In the comparison (= / =) model,
this bound is optimal for sequential searching algorithm.

When the size of the alphabet £ is 2, each list considered by MPS
algorithm has size at most 3 (because all lists end with 0). The time
between readings of two consecutive text symbols is thus bounded by a
constant (the delay is bounded by 2). The search for x in t becomes a real-
time search. Indeed, under the same assumption, KMP searching algorithm
is also a real-time algorithm (this is not true for MP algorithm). On larger
alphabets of given size, the real-time property still holds for MPS search
algorithm but no longer holds for KMP algorithm. However, there is a
general method to transform the three searching algorithms MP, KMP,
and MPS into real-time algorithms (see bibliographic notes).

1.2.3 FORWARD SUBWORD SCAN

The algorithms MP and KMP of Section 1.2.2 make use of a general method
to implement automata with a small amount of memory space. In the
present section we first describe more generally what are failure functions.
Then, we describe another efficient application of the method to string-
matching. It is based on an automaton representing all subwords of the
pattern as opposed to the string-matching automaton.

Failure functions Tables MP_next and KMP_next of the previous sec-
tion are particular implementations of what is known as failure functions.
This kind of functions is generally used to reduce the memory space re-
quired to store transition functions of automata.

Consider a deterministic automaton A = (Q,E, initial, T, 6) with the
notation of Section 1.2.1. A failure function may avoid the use of a trivial
matrix representation of 6 in 0(|Q||E|) space. In the case of the string-
matching automaton A(x), the function MP_next, for instance, serves to
reduce the space to 0(m) (instead of O(m|E|)), quantity which does not
depend on the size of the alphabet. The price of this advantage is a slower
computation of transitions of the automaton, which is reported by the delay
of algorithms. The next table summarizes the tradeoff between space and
time. Search time is everywhere proportional to the length of the text,
independently of the size of the alphabet. The main difference between
the various implementations of the string-matching automaton lies in the
delay or the branching time they realize. Preprocessing time is used to
compute the information stored in the extra space (transition matrix, or
failure function).

Note that at the second line of the table the required space is quadratic
while preprocessing time is linear. This corresponds to an implementation
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function transition(q: state; a: symbol): state;
begin

while C(q, a) undefined and s(q) defined do q := s(q);
if C((q, a) defined then return(C(q, a))
else return(initial);

end;

Fig. 1.20. Computing a transition with a failure function

of the transition matrix of the automaton A(x) for which only transitions
not going to the initial state are effectively computed. This can be done
with the general technique to represent sparse matrices without having to
initialize them.

Extra Preproces- Search Branching
space -sing time time time

computation of addresses
Matrix 0(|E||*|) O(|E||*|) O(|t|) 0(1)
Sparse matrix O(|E||x|) 0(|x|) 0(jt|) 0(1)
comparison model of computation
MP 0(|x|) 0(|x|) 0(|t|) 0(|x|)
KMP 0(|*|) 0(|*|) 0(|t|) 0(logb|x|)
MPS 0(|x|) 0(|x|) 0(|t|) 0(min(log2|x|,|E|))

Failure functions can be defined more generally as follows. We say that
a pair (C, s) represents the transition 6 of the automaton A if:

• C is a sub-transition of 6,
• s is a partial function from Q to Q,
• 8(q,a-) = 6(s(q), a), whenever C(q,a) is not defined

but 6(q, a) and s(q) are.

The function s is the failure function of the representation. Each state
s(q) is a stand-in of state q. State s(q) helps to compute transitions on q
that are not directly defined on it.

Computing a transition in A with a representation (C, s) for 6 may be
done by the function in Figure 1.20. For a particular failure function we
have to insure that the algorithm stops. This often comes from the fact
that failure functions induce a tree structure on the set of states. Each
application of the failure link s gives a state closer to the root of the tree.
The structure of the algorithm in Figure 1.20 is similar to that of MP
algorithm. The representation of A(x) implicitly used by MP algorithm
is given by the failure function border. The sub-transition associated with
this failure function defines the straightforward automaton recognizing the
prefixes of pattern x.
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while window on text do
begin

u := longest prefix of window, subword of pattern;
if u = pattern then report a match;
v := longest suffix of u, occurring in a different right context

inside the pattern;
shift window \u\ - \v\ places to the right;
memorize v;

end;

Fig. 1.21. Scheme of FS algorithm

Fig. 1.22. The suffix automaton of word ananas

Common subwords The main idea in the "Forward Subword" (FS)
algorithm is that during the scan operation of the searching algorithm we
can search for the longest prefix of the window that is a subword of the
pattern, and not only a prefix of it. During such a scan, more information
on prefixes of the window are collected at a time, and this finally leads
to a natural sequential string searching algorithm. The time between two
readings of consecutive text symbols is 0(E), which makes the search real-
time on fixed alphabets. The scheme of FS algorithm is given in Figure 1.21.

An efficient implementation of the FS scheme relies on the compact
representation of suffixes of the pattern, called the suffix automaton of the
pattern. The scheme can also be implemented with suffix trees, or analogue
data structures.

We first describe the suffix automaton features required to implement
the FS string searching algorithm. Let S(x) = (Q, S, i, T, 6) be the minimal
deterministic automaton recognizing all suffixes of pattern x. The transi-
tion function S is partially defined, in the sense that there is no sink state
in the automaton. An example of such automaton is shown in Figure 1.22.
A natural failure function that we call s, is defined on states of S(x). It
is, in fact, an important notion to design an efficient algorithm that builds
S(x). We explain how the failure function is defined. Let u be a non-empty
subword of x, and let q — S(i,u). Let v be the longest proper suffix of u
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procedure FS(x,t: string; m,n: integer);
begin

/ := 0; q := initial;
for j := 1 to n do begin

if 8(q, t[j]) defined then begin
l : = l + l ; q:=6(q,t[j]);

end else begin
while 6(q, t[j]) undefined and r(q) defined do q := r(q);
if S(q,t[j]) defined then begin

I := Length(q) + 1; q := 6(q,t[j]);
end else begin

/ ;= Q; q :— initial;
end

end;
if l = m then writeln('a; occurs in t at position ', j — m + 1);

end;
end;

Fig. 1.23. Forward subword string searching algorithm

such that 6(i, v) = q. Then we define s(q) precisely as state p = 6(i, v). It
can be shown that the definition is correct, which means that s(q) does not
depend on the choice of the word u such that q = 6(i,u). Note that s(q) is
defined on all states of S(x) except on the initial state (which corresponds
to the word u = A).

In the above definition of function s, it can be proved that the word
v is the longest word for which p = S(i, v). This property is crucial, and
FS algorithm partially relies on it. We denote by Length(p) the length
of the longest word w such that p = 6(i, w). Function Length is used in
the implementation of FS scheme to detect occurrences of the pattern in
the searched text. Contrary to the algorithm based on string-matching
automata, this detection cannot be done by terminal states only. This is
realized by a simultaneous computation of the length of the current subword
of x found in t. Function Length is precisely used to reset properly the
current length after following a failure link.

Lemma 1.7. Let u be any word such that q = 6(i, u) in the suffix au-
tomaton S(x). Let v be the longest suffix of u such that S(i,v) = q.
Then, v is the longest word w such that 6(i, w) = s(q), or equivalently
\v\ = Length(6(i,v)).

We define the sequence of lengths, {lk/0 < k < n}, related to the
pattern x and the text t by

OFF-LINE SERIAL EXACT STRING SEARCHING
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In other words, lk is the maximum length of subwords of x ending at
position k in t. Thus, whenever Ik = m, the word x itself occurs at position
k — m + 1 in the text t.

The basis of FS string searching algorithm is a sequential computation
of lengths Ik. This is realized with the automaton S(x), together with its
failure function s and its function Length, both defined on the set of states.

Indeed, instead of the failure function s, we rather use another failure
function r that optimizes the delay of the search. Its definition is based on
output transitions of states. The follow set of a state q of S(x) is

Then, r(q) is defined as follows:

The definition of r parallels the definition of KMP_next introduced after
the notion of strict borders. Note that r(q) can be left undefined with this
definition.

There is also a second remark that simplifies the computation of r.
In the suffix automaton we always have FOLLOW(q) C FOLLOW(s(q)).
The inclusion holds because s(q) corresponds to a suffix v of some word u
for which q = 6(i,u). Then, any symbol following u in x also follows v,
and the property transfers to follow sets of q and s(q) respectively. With
this remark, the definition of the failure function r can be equivalently
stated as:

Thus, computation of r has only to consider outdegrees of states of the
automaton S(x).

FS algorithm is given in Figure 1.23. The core of FS algorithm is
the computation of transitions with the failure table r, similarly as in the
general method described in Figure 1.20. The structure of FS algorithm is
analogue to that of KMP algorithm (or MP algorithm). Transitions in FS
algorithm replace symbol comparisons made in KMP algorithm. Search
time is linear for a fixed alphabet. Otherwise it depends on the branching
time in the automaton S(x). It is log E if we want to achieve linear size for
S(x). The same argument applies for the construction of S(x): it is linear
for fixed alphabets.

Theorem 1.8. FS string searching algorithm executes less than 2|t| tests
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on transitions in the automaton S(x). It requires 0(\x\) extra space.

The proof of the first point is similar to the evaluation of the time
complexity of MP algorithm. The space complexity heavily depends on a
remarkable property of suffix automata: the size of S(x) is O(m). More-
over, this is independent of the alphabet size.

Optimization from s to r in FS algorithm is similar to the improvement
of KMP on MP. The improvement is on the delay between two consecutive
readings on the text. The delay is proportional to the number of failure
links traversed during a continuous series of failures. The property of fol-
low sets mentioned above shows that the delay is O(|E|), where S can be
restricted to the alphabet of the pattern. Thus, on a fixed alphabet, the
procedure FS finds all occurrences of x inside t in real-time.

Lemma 1.9. The delay of FS string searching algorithm is bounded by the
size of the pattern alphabet.

Proof This is a consequence of the fact already mentioned: FOLLOW(q)
is strictly included in FOLLOW(r(q)). D

A straightforward adaptation of FS algorithm provides a linear time
algorithm to compute the maximum length LCF(x, t) of a common subword
of x and t, or to compute the subword distance between two strings:

1.3 Practically fast searches

In this section, we describe string searching algorithms that are considered
as the fastest in practice. The algorithms apply when text and pattern
both reside in main memory. We thus do not take into account the time
to read them. Under this assumption, some algorithms have a sublinear
behavior. The common feature of these algorithms is that they scan the
window in the reverse direction, from right to left.

1.3.1 REVERSE-SUFFIX SCAN

BM algorithm The classical string searching algorithm that scans the
window in reverse direction is BM algorithm. At a given position in the
text, the algorithm first identifies the longest common suffix u of the win-
dow and the pattern. A match is reported if it equals the pattern. After
that, the algorithm shifts the window to the right. Shifts are done in such
a way that the occurrence of u in the text remains aligned with an equal
subword of the pattern, and are often called match shifts. The length of
the shift is determined by what is called the displacement of u inside x, and
denoted by d(u). The scheme of BM algorithm is displayed in Figure 1.24.
Function d depends only on the pattern x so that it can be precomputed
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while window on text do
begin

u := longest common suffix of window and pattern;
if u = pattern then report a match;
shift window d(u) places to the right;

end;

Fig. 1.24. Scheme of BM algorithm

Fig. 1.25. Two possible z's in the definition of d(u) (a = r)

before the search starts. In BM algorithm a heuristics on mismatch sym-
bols of the text is also usually used. This yields another displacement
function used in conjunction with d. It is presented in Section 1.5, as a
general method that may improve almost all algorithms in certain practical
situations.

We now precisely define the displacement function of suffixes of x. For
the pattern x, suffix of itself, d(x) = period(x). Consider now a proper
suffix u of x. Let a the symbol preceding suffix u in x (au is also a suffix
of x). In a mismatch situation (see Figure 1.26), what is wanted is an
occurrence of a subword ru in x to align with the text. Symbol T must be
different from a to avoid another immediate mismatch. If tu is a subword
of x, its rightmost occurrence is used to define d(u) (see Figure 1.25). If tu
is not a subword of x, the displacement associated with u is defined with
the longest prefix of x that is also a suffix of u. In the latter case, d(u) is
a period of the whole pattern x. It even is the smallest period p of x such
that p + \u\ > m. This remark is used in the algorithm that computes d.
The formal definition of d(u), for a suffix u of x, is:

Note that, if z is the suffix of x of length d(u), d(u) is a period of the word
uz, simply because M is a border of this string.

In BM search algorithm a precomputed table D is used to represent
function d. It is defined by
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Fig. 1.26. Variables pos and i in BM algorithm (j = pos + t — 1)

procedure BM(x,t: string; m, n: integer);
begin

pos := 1;
while pos < n — m + 1 do begin

t := m;
while j > 0 and x[i] = t[pos + i — 1] do i := i — 1;
if i = 0 then writeln('x occurs in t at position ', pos);
pos := pos + D[i];

end;
end;

Fig. 1.27. Memoryless BM algorithm

BM search algorithm is shown in Figure 1.27. Figure 1.26 illustrates the
meaning of variables pos and i used in the algorithm. The algorithm is
memoryless in the sense that, after a shift, it starts scanning the window
from scratch. No information about previous matches is kept in memory.

The precomputation of table D is given in Figure 1.28. It is certainly
the most delicate point in the design of BM algorithm. Historically, it took
some time before its first correct computation appeared. The computa-
tion uses the notion of borders already considered in MP algorithm. It is
composed of two steps. The first step of the algorithm is devoted to the
computation of borders of pattern suffixes. The table R_next, computed
during the first step, is the exact analogue of the table MP_next adjusted
to the reverse pattern. Implementation of this part is a straightforward
adaptation of the algorithm COMPUTE_MP_NEXT of Section 1.2.2. Dur-
ing the first step (first "for" loop in Figure 1.28), the table D is partially
computed. Values D[i] are related to strict borders, and correspond to the
second part in the definition of d (u suffix of x):
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procedure COMPUTE_D(z: string; m: integer);
begin

{ R_next is the reverse version of MP_next table }
R_next[m] := m + 1; j := m + 1;
for i := m downto 1 do begin

{ at this point, we have j = R_next[i] }
while j < m and x[i] = x[j] do begin

if D[j] undefined then D[j] := j — i;
j := R_nex t [ j ] ;

end;
j := j - 1; R_next[i - 1] := j;

end;
{ values of p run through all periods of x, in increasing order }
p := R_next[0];
for j := 0 to m do begin

if D[j] undefined then D[j] := p;
if j = p then p := R_next[p];

end;
end;

Fig. 1.28. Linear computation of the displacement table D

The second step of the algorithm (second "for" loop in Figure 1.28),
computes those D[i]'s that are left undefined after the first step. Computed
values correspond to the first part of the definition of d (u suffix of x):

The values of z's are periods of the whole pattern, and table R_next is used
to run through all these periods.

The order of steps, as well as the order in which j's are considered in
the last step, are important to eventually get the correct values. The time
linearity of the algorithm COMPUTE_D is essentially a consequence of the
linearity of algorithm COMPUTE_MP_NEXT.

When algorithm BM is applied to find all occurrences of am inside an,
the search time becomes O(mn). The reason for the quadratic behavior is
that no memory is used at all. It is however very surprising that BM algo-
rithm turns out to be linear when search is limited to the first occurrence
of the pattern. By the way, the original algorithm has been designed for
that purpose. Only very periodic patterns may increase the search time to
a quadratic quantity, as shown by the next theorem. The bound it gives is
the best possible. So, only a modified version of BM algorithm can make
less than 2n symbol comparisons at search time.
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Theorem 1.10. Assume that pattern x satisfies period(x) > \x\/1. Then,
BM searching algorithm performs at most 3|t| — |t|/|x| symbol comparisons.

The theorem also suggests that only little information about configu-
rations encountered during the process has to be kept in memory in order
to get a linear time search for any kind of patterns. This is achieved, for
instance, if prefix memorization is performed each time an occurrence of
the pattern is found. But this is also achieved with a better bound by the
algorithm of the next section called TURBO_BM. This modification of BM
algorithm forgets all the history of the search, except the most recent one.
Analysis becomes simpler, and the maximum number of comparisons at
search phase becomes less than 2n.

Turbo_BM algorithm The main feature of TURBO.BM algorithm is
that it memorizes the last match (only when a match shift is applied). The
technique, storing the last matched subword, is an extension of the prefix
memorization used to improve on the worst-case behavior of BM algorithm
(see bibliographic notes). This has two advantages: first, this allows to
skip a part of the text during the next scan; second, it is used to increase
the length of the next shift. Both features are important to get the final
time complexity of the algorithm.

TURBO_BM algorithm performs two kinds of shifts: the match shifts
of BM algorithm, and, what we call turbo-shifts. A third kind of shift,
based on mismatch symbols, can be added to TURBO_BM, in the same
way as it can be added to the original BM algorithm. This is described in
Section 1.5. Turbo-shifts are defined by a simple rule that needs no extra
preprocessing of the pattern. So, TURBO_BM algorithm has exactly the
same preprocessing phase as BM algorithm.

We now precisely explain what is a turbo-shift. Consider the situation
at the end of a scan operation containing no skip, and following immedi-
ately a match shift. In such a situation the last scanned suffix of x that
matches the text is memorized, and the shift is applied. Pattern x can be
decomposed into ywvu, where w, the memory, matches the text at the new
position of the window, and u, the current match, is the longest common
suffix of the window and the pattern (Figure 1.29). Assume furthermore
that u is shorter than w. Then, the length of the turbo-shift is defined as
|w|- |u|.

The validity of turbo-shifts can be analyzed as follows. Let v be written
VOa for a E E (note that v is non-empty). Since both u is shorter than w
and w is a suffix of x, au is a suffix of w. Thus, auv0au is a suffix of x. It
is aligned with a subword of the text of the form auv1tu where a = T and
\V0\ = \v1\. Occurrences of different symbols a and r in the text show that
subwords containing the two occurrences do not have period |vu|. But, by
definition of the shift in BM algorithm, as already mentioned, d(w) = \vu\
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Fig. 1.29. Turbo-shift defined from the two previous matches w and u

procedure TURBO_BM(x, t: string; m, n: integer);
begin

pos := 1; memory := 0; shift := m;
while pos < n — m + 1 do begin

i := m;
while i > 0 and x[i] = t[pos + i — 1] do begin

i := i — 1; if i = m — shift then i := i — memory;
end;
if i = 0 then writeln('a; occurs in t at position ', pos);
match := m — i; turbo-shift :— memory — match;
shift := max(D[i],turbo-shift);
if shift < D[i] then

memory := min(m — shift, match);
else begin

shift := max(shift,match + 1); memory := 0;
end;
pos := pos + shift;

end;
end;

Fig. 1.30. Reverse-suffix string-matching with memory

is a period of wvu. So, no occurrence of wvu can include the occurrences
of a and T in the text. This shows that the turbo-shift, of length \w\ — \u\
is safe: it cannot miss an occurrence of x in t.

A somewhat similar argument shows that turbo-shifts can be made
greater than the length of the current match u. Indeed, the same rule also
applies if occurrence shifts are considered by the algorithm (see Section 1.5).

In TURBO_BM algorithm (see Figure 1.30) we use the notation:



30 OFF-LINE SERIAL EXACT STRING SEARCHING

The meaning of the variables is explained in Figure 1.29.

Theorem 1.11. The algorithm TURBO_BM (search phase) is linear. It
makes less than 1\t\ symbol comparisons.

Proof We decompose the search into stages. Each stage is itself divided
into the two operations: scan and shift. At stage k we call Sufk the suffix
of the pattern that matches the text and sufk its length. It is preceded by
a letter that does not match the aligned letter in the text (in the case Sufk

is not x itself). We also call shi f t k the length of the shift done at stage k.
Consider three types of stages according to the nature of the scan, and of
the shift:

(i) stage followed by a stage with jump,
(ii) no type (i) stage with long shift,
(iii) no type (i) stage with short shift.

We say that the shift at stage k is short if 2shiftk < sufk + 1. The idea
of the proof is to amortize comparisons with shifts. We define costk as
follows:

— if stage k is of type (i), costk = 1,
— if stage k is of type (ii) or (iii), costk = sufk + 1.

In the case of a type (i) stage, the cost corresponds to the mismatch com-
parison. Other comparisons made during the same stage are reported to
the cost of next stage. So, the total number of comparisons executed
by the algorithm is the sum of costs. We want to prove (E all costs) <
2 • (E all shifts). In the second sum, the length of the last shift is replaced
by m. Even with this assumption, we have (E all shifts) < n, and, if the
above inequality holds, we get the result (£ all costs) < 2n.

For stage k of type (i), costk is trivially less than 2shiftk, because
shiftk > 0. For stage k of type (ii), costk = sufk + 1 < 2 sh i f t k , by
definition of long shifts. We still have to consider stages of type (iii). Since
in this situation, we have shiftk < s u f k , the only possibility is that a
BM_shift is applied at stage k. This leads to a potential turbo-shift at
stage k + 1. The situation at stage k + 1 is the general situation when a
turbo-shift is possible (see Figures 1.31 and 1.32).

We first consider two cases and establish inequalities (on the cost of
stage k) that are used later.
Case (a) sufk + shiftk > m By definition of the turbo-shift, we have
su f k + 1 + shiftk + shiftk+i > m. Then,

Case (b) sufk + shiftk < m By definition of the turbo-shift, we have
sufk - sufk+1 < shif t k + 1 . Thus,
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Fig. 1.31. Cost amortized by turbo-shift: Case (a)

Fig. 1.32. Cost amortized by turbo-shift: Case (b)

We can consider that at stage k + 1 case (a) occurs, because this gives
the higher bound on costk (this is true if shiftk > 2; the case sh i f t k = 1
can be treated directly).

If stage k + 1 is of type (i), then costk+1 = 1, and then costk+costk+1 <
2shi f t k + shi f t k + 1 , an even better bound than expected.

If suf k + 1 < shift k + 1 (which includes the case where stage k + 1 is of
type (ii)), we get what expected, costk + costk+1 < 2shi f t k + 2shi f t k + 1 .

The last situation to consider is when with su f k + 1 > shif t k + 1 , which
implies that stage k+1 is of type (iii). This means, as previously mentioned,
that a BM_shift is applied at stage k + 1. Thus, the above analysis also
applies at stage k + 1, and, since only case (b) can occur then, we get
costk+1 < shi f t k + 1 + shiftk + 2 . We finally get

The last argument proves the first step of an induction: if all stages k
to k + j are of type (iii) with sufk > shiftk ..., sufk+j > shiftk+j , then

Let k' be the first stage after stage k (including k) such that
sh i f t k ' . Integer k' exists because the contrary would produce an infinite

sufk'<
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while window on text do
begin

u := longest suffix of window that is prefix of pattern;
if u = pattern then report a match;
shift window \pattern\ — \u\ places to the right;
memorize w;

end;

Fig. 1.33. Scheme of RP algorithm

Fig. 1.34. Scan for a prefix of the pattern is limited by wall inside the last
prefix found u

sequence of shifts with decreasing lengths. We then get

which shows that Ecostk < 2Eshiftk , as expected, and ends the proof of
the theorem. d

1.3.2 REVERSE-PREFIX SCAN

The algorithm described in the present section, called RP algorithm, is
the analogue counterpart of FS algorithm (Section 1.2.3). The idea of the
algorithm is to search for a prefix of the pattern by scanning the right part
of the window in the reverse direction. This approach leads to an average-
optimal string searching algorithm on fixed alphabets (within logarithmic
factor otherwise): the expected time of the search phase is O(n logm/m).

As FS algorithm, RP algorithm uses the same data structure. The
search phase is based on a fast computation of the longest suffix u of the
window that is prefix of the pattern. The rule for the shift just amounts to
align the pattern with the prefix of the pattern found in the text. This prefix
is kept in memory to save on further work. This prefix memorization avoids
a quadratic running time, but does not significantly affect the expected time
complexity. The scheme of RP is given in Figure 1.33.
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Memorization of prefix u at search phase, serves to limit the next scan of
the window. During the next scan, it is as if we put a wall in the window,
at distance \u\ — period(u) from the left end (see Figure 1.34). No scan
is done to the left of the wall. With the use of more sophisticated data
structures, it is even possible to avoid scanning twice the prefix u itself,
but we do not describe this variant here. So, only the part of the window
on the left of the wall (of size \u\ — period(u)) is not scanned again. And
just the occurrence in the text of the suffix of u of length period(u) can
be scanned twice. The time complexity of RP algorithm is thus easy to
analyze. But this somehow also depends on the implementation technique
used to search for prefixes of the pattern.

In order to rapidly find the longest suffix of the window which is prefix
of the pattern, the suffix automaton data structure is used. In fact, we
consider the automaton recognizing deterministically all prefixes of x read
from right to left. It is the suffix automaton for the reversed pattern. The
data structure contains information that can be used to compute lengths
of shifts.

The version of RP algorithm presented in Figure 1.35 conceptually uses
two elements in addition to the suffix automaton: periods of prefixes of
the pattern, and the displacement function dis of subwords of the pat-
tern. Periods of prefixes are stored in a table called Period and defined
by Period[i] = period(x[l : i]), for 0 < i < m, and by Period[0] = 0. The
algorithms of Section 1.2.2 show that the precomputation of Period takes
linear time. It is however possible to compute periods dynamically during
the search. The displacement function, dis, is similar to the one considered
for BM algorithm. It is defined only for subwords of pattern x. Let v be a
subword of x. Then,

Function dis is not implemented separately from the data structures used
by the algorithm. Its values are computed on the fly during the search
thanks to information precomputed during the first phase, and contained
in the suffix automaton.

The RP algorithm works as follows. It scans the window from right to
left until either the current suffix goes out of subwords of x, or the wall
stops the process. In the former case, the last prefix of x encountered while
scanning the window determines the shift of the window. In the latter
case, if the scanned suffix of the window is also a suffix of the pattern,
an occurrence of the pattern is found in the text, and it is reported. In
any case, the shift is computed with the help of the function dis. In the
latter situation, we have to know what is the longest prefix of x found in
the window without scanning the window at the left of the wall. The next
lemma gives a property used for that purpose, i.e. to compute the prefix
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procedure RP(x,t: string; m,n: integer);
begin

pos := 1; wall := 0;
while pos < n — m+ 1 do begin

i := m;
while i > wall and t\pos + j — 1 : pos + m — 1] subword of x do

i := i - 1;
if i = wall and dis(t[pos + i: pos + m — 1]) = 0 then

writeln('x occurs in t at position ', pos);
if i = wall then

shift := max(dis(t\pos + i : pos + m — 1]), Period[m])
else begin

u := longest prefix of x that is also
suffix of t [pos + i : pos + m — 1];

shift := m — \u\;
end;
pos := pos + shift; wall := m — shift — Period [m — shift];

end;
end;

Fig. 1.35. Reverse-prefix string searching algorithm

of x, and thus the length of the shift. The correctness of RP algorithm
readily comes after the lemma.

Lemma 1.12. (Key lemma) Let w = u1u2v with the following condi-
tions: \w\ = \x\, u1u2 is a prefix of x, u2v is a subword of x, and |u2| >
period(u1u2) . Let u be the longest prefix of x that is suffix of w. Then
|u| = \x\ — dis(u2v) , or otherwise stated, dis(u) =

Proof Since u2v is a subword of x, x can be written u3u2vv' with \v'\ =
dis(u2v). A length argument shows that «s is not longer than u1. Since
words u1u2 and u3u2 coincide on a common suffix u2 of length not smaller
than their period, one of them is a suffix of the other. Which implies that u3

is a suffix of u1. Thus, the prefix u3u2v of x is a suffix of w. The maximality
of its length is straightforward from hypothesis, and then u — u3u2v. The
conclusion follows: |u| = |x| — d is(u 2v) , or, equivalently, dis(u) = d is(u 2v) .
D

Theorem 1.13. RP searching algorithm makes at most 2\t\ inspections of
text symbols.

Proof If u is the longest prefix of x, suffix of the window, then at most
period(u) symbols of u are scanned again. This is amortized by the next

dis(u2u).
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shift that has a length not smaller than period(u) (because the shift is
compatible with the occurrence of u in the text). Therefore, the total
number of all these extra inspections is not greater than the sum of lengths
of all shifts, bounded by n. Globally, we get the 2n bound. d

We analyze the average running time of RP algorithm in the situation
where the text is random. The probability that a specified symbol occurs at
any position in the text is 1/|E|. And this does not depend on the context
of the symbol.

Theorem 1.14. Let c = |S| > 1. Under independent equiprobability con-
dition, the expected number of inspections made by RP search algorithm is
0(|t|logc\x\/\x\).

Proof We first count the expected number of symbol inspections necessary
to shift the window (of size m on the text) m/2 places to the right. We
show that 0(logc m) inspections, on the average, are sufficient to achieve
that goal. Since there are 2n/m segments of text of length m/2, we get the
expected time O(n logc m/m).

Let r = 3[logc m]. There are more than m3 possible values for the word
t[pos + m — r — 1 : pos + m — 1]. But, the number of subwords of length
r + 1 ending in the right half of the pattern is at most m/2 (provided m is
large enough). The probability that t[pos + m — r — 1 : pos + m— 1] matches
a subword of the pattern, ending in its right half, is then l/(2m2). This
is also the probability that the corresponding shift has length less than
m/2. In this case, we bound the number of inspections by m(m/2) (worst
behavior of the algorithm making shifts of length 1). In the other case, the
number of inspections is bounded by 3 logc m.

The expected number of inspections that lead to a shift of length at
least m/2 is thus less than

which is O(logc m). This achieves the proof.

1.4 Space-economical methods

This section is devoted to the presentation of a time-space optimal string-
matching algorithm, which provides a proof of Theorem 1.1. The main
interest in the two-way algorithm (TW algorithm) presented in this section
is theoretical. The additional requirement is on the memory space used by
string searching algorithms. Previous sections present several algorithms
running in time linear in the size of the input words x and t. They all
require extra memory space to store precomputed information about the
pattern. Except for the algorithm using the SMA automaton, extra space
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compute a critical factorization ( x 1 , x r ) of pattern x;
while window on text do
begin

u := longest common prefix of both xr and
the right part of the window aligned with it;

if u = xr then begin
if x1 prefix of the window then report a match;
shift window period(x) places to the right;

end else
shift window |u| + 1 places to the right;

end;

Fig. 1.36. Scheme of TW search algorithm

is proportional to the size of the pattern. It is shown in this section that
the extra space can be reduced to a constant amount of memory without
increasing the asymptotic time complexity of the overall algorithm. This
yields a time-space optimal string searching algorithm. Several proofs of the
result exist, based on different algorithmic methods. The present algorithm
has the further advantage of having an efficient search phase: the number
of symbol comparisons it makes is less than the "canonical" 2n bound.
Preprocessing phase assumes an ordering on the alphabet of the pattern.
This ordering seems to have nothing to do with the string searching prob-
lem, but its consideration strongly helps both to prove the combinatorial
property used by the algorithm, and to preprocess the pattern.

We first describe the search phase of TW algorithm, and then show how
the pattern is preprocessed. The overall is realized in linear time with only
constant extra memory space.

1.4.1 CONSTANT-SPACE SEARCHING ALGORITHM

The preprocessing phase of TW algorithm partly consists in computing
a factorization x1xr of the pattern x having a specific property described
hereafter. The search for x divides into both the search for xr first, and
then the search for x1. The search for xr is simple, due to the property of
the decomposition. The search for x1 is only done when xr is found at the
current position in the text, and leads to shifts of length period(x), due
also to the property of the decomposition. The scheme of TW searching
algorithm is displayed in Figure 1.36.

Before describing deeper the TW search phase, we first explain what
decomposition x1xr of the pattern x is considered. Let (y, z) be a factor-
ization of x (i.e. yz = x). A repetition at (y, z) is a non-empty word w such
that both conditions hold:



SPACE-ECONOMICAL METHODS 37

Fig. 1.37. Repetition w and local period p at the factorization (y, z); it is a
critical factorization if p = period(x)

(i) w is a suffix of y or conversely y is a suffix of w,
(ii) w is a prefix of z or conversely z is a prefix of w.

The case where w is both a suffix of y and a prefix of z is displayed in
Figure 1.37. The repetition w thus occurs on both sides of the cut between
y and z in x, with possible overflow on left and right ends of x. The length
of a repetition at (y, z) is called a local period at (y, z), and the length of the
shortest repetition, denoted by r(y,z), is called the local period at (y, z).

Every factorization (y, z) has at least one repetition, namely zy. This
shows that we have the inequalities 1 < r(y, z) < m. Indeed, one may
easily verify that

A factorization (y, z) of x such that r(y, z) = period(x} is called a critical
factorization of x. For instance, the word x = abaabaa has period 3. It
has three critical factorizations: (ab,aabaa), (abaa,baa), and (abaab,aa).
In other words, if (y, z) is a critical factorization of x, the local period at
(y, z) coincides with the global period of x. The TW algorithm considers
only critical factorizations that additionally satisfy \y\ < period(x). The
existence of such a factorization is known as the critical factorization the-
orem whose proof is given below, in the presentation of the preprocessing
phase of TW algorithm.

Let x\xr be a critical factorization of x computed by the preprocessing
phase of TW algorithm (|x1| < period(x)). The main step of the scan
operation during the search for x = x1xr in t consists in testing whether xr

is a suffix of the window. The window is scanned from left to right starting
at the appropriate position. If a mismatch occurs, the length of the shift
that follows is exactly equal to the number of symbol comparisons done at
this step (Figure 1.38). If an occurrence of xr is found in t at the current
position, in a second step the algorithm checks whether x1 is a prefix of the
window. The following shift slides the window period(x) places to the right
(Figure 1.39). Any strategy for scanning the second part of the window is
possible. It is usually done from right to left, in the reverse order of the
other scan. This is why the algorithm is called two-way.
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Fig. 1.38. Shift after a mismatch on the right (a = T)

Fig. 1.39. Shift after a mismatch on the left (a = r)

The detailed implementation of the two-way scheme is given in Fig-
ure 1.40. A straightforward implementation of the TW scheme leads to
a quadratic algorithm for highly periodic patterns (as for BM algorithm).
Quadratic running time is avoided by the prefix memorization technique.
In case a shift of length period(x) is applied, we keep in memory the prefix
of the pattern that matches the text (after the shift is done). This avoids
scanning it twice during the next scan. This memorization is necessary
to achieve a linear search. Variable memory in the TW search algorithm
exactly stores the length of the memorized prefix of x. Globally, the TW
algorithm obviously requires only a few registers in addition to the pattern
and the text. Among them are: the period of the pattern, and the length
of x\, the left part of a critical factorization of the pattern.

The correctness of procedure TW in Figure 1.40 relies on several prop-
erties of critical factorizations that are summarized below.

Lemma 1.15. Let (y, z) be any critical factorization of the non-empty
string x.

(a) If uy is a prefix of x, period(x) divides |u|.
(b) If w is a prefix of z, v is a suffix of w, and wu is a suffix of yw

(in this situation w overlaps the cutpoint of the factorization), period(x)



SPACE-ECONOMICAL METHODS 39

procedure TW(x,t: string; m, n: integer);
{ p = period(x), and £ = |x1| where x1xr is a critical factorization of x

that satisfies the condition £ < p }
begin

pos := 1; memory := 0;
while pos < n — m + 1 do begin

i := max(l, memory) + 1;
while t < m and x[i] = t[pos + i — 1] do i := i + 1;
if i = m + 1 then begin

j := l;
while j > memory and x[j] = t[pos + j — 1] do j := j — 1;
if j < memory then writeln('x occurs in t at position ', pos);
pos := pos + p; memory := m — p;

end else begin
pos := pos + i — l; memory := 0;

end;
end;

end;

Fig. 1.40. Constant extra space string searching algorithm

divides \v\.

The time complexity of TW search algorithm of Figure 1.40 is linear in
the length of the text. Indeed, the number of symbol comparisons made
during the search is less then 2n.

Lemma 1.16. The maximum number of symbol comparisons made during
a run of TW search algorithm is less than 2\t\.

Proof One can prove that comparisons made during the first main step of
the scan (between window and xr) strictly increase the value of pos + i.
Since values of the expression form an increasing sequence of integers from
\x1\ +1 to n in the worst case, less than n comparisons are made during all
these steps.

When comparisons are made at the second step of the scan (between
window and x1), x is afterward shifted period(x) places to the right. Since,
by assumption, the length of x\ is less than period(x), comparisons made
during all these steps are made on different occurrences of symbols of t.
Then at most n comparisons are made during all second steps of the scan.
This proves the result. D
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1.4.2 COMPUTING A CRITICAL FACTORIZATION

The Critical Factorization Theorem, stated below, is a consequence of The-
orem 1.18 that additionally provides a simple algorithm for computing crit-
ical factorizations. This latter theorem uses an ordering on the alphabet,
and reduces the computation to the determination of two lexicographically
maximum suffixes of the pattern.

Theorem 1.17. (Critical Factorization Theorem) Every non-empty
string x has at a critical factorization ( y , z ) that satisfies \y\ < period(x).

Each ordering < on the alphabet £ extends to a lexicographic ordering
(also noted <) on the set of strings E*. It is defined as usual by u < v if
either u is a prefix of v or u = f a g , v = frh with a, T two symbols such
that <T < T. Let < be a lexicographic ordering on E*. We denote by < the
lexicographic ordering obtained by reversing the ordering < on E.

The main remark about orderings < and < is that their intersection
is the prefix ordering. In other words, if u < v and u < v simultaneously
hold, then u is a prefix of v. This property is used in the proof of the next
theorem.

Theorem 1.18. Let x be a non-empty string. Let z (resp. z1) be the
maximum suffix of x according to the ordering < (resp. <). Let y and
y' be such that x = yz = y'z'. Then, if \y\ > \y'\, ( y , z ) is a critical
factorization of x. Otherwise ( y ' , z ' ) is a critical factorization of x.

In addition, we have \y\, \y'\ < period(x).

Proof We assume that |y| > |y|, and prove that (y, z) is a critical factor-
ization of x. The other case is symmetric.

First note that if x is of the form am, then any factorization, and (y, z)
in particular, is critical (in this case we have y = y' = A and z = z' = x).
So, we can consider that x contains at least two occurrences of different
symbols. The choice of z and z' then leads to z = z', and thus, \y\ > \y'\.

Let w be a the shortest repetition at (y, z) (w is a non-empty word).
We have to prove that \w\, which is the local period r(y, z), is equal to the
period of x. Note that, since |w| < period(x), we only have to prove that
\w\ is any period of x (this implies that it is then the smallest period). We
distinguish four cases according to the definition of repetitions.
Case (a) w is a suffix of y, and z is a prefix of w.

String w can be written zh (h £ E*). Since w is suffix of y, wz = zhz
is a suffix of yz = x. But then, the suffix wz of x is obviously greater than
z, which contradicts the definition of z. This case is impossible.
Case (b) w is a suffix of y, and w is a prefix of z.

String z can be written wh (h E E*). Both strings wh and wwh are
suffixes of x. By the definition of z = wh, we have wwh < wh, which
implies wh < h. But, since h is also a suffix of x we get a contradiction
with the definition of z. This case is impossible.
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function MAXlMUM_SUFFIX(x: string; m: integer): position;
begin

i : = 0 ; j :=1 ;k :=1; p:=l;
while j + k < m do begin

a := x[i + k]; r := x[j + k];
if <r < r then begin

i := ', j := j + 1; k := 1; p := 1;
end else if <r = r then begin

if k = p then k := k + 1 else begin j := j + p; k := 1; end
end else begin {a > T}

j :=j + k; k := 1; p := j - i;
end;

end;
return(i); {x[i + 1 : m] is the maximum suffix of x}

end;

Fig. 1.41. Localization of maximum suffixes

Case (c) y is a suffix of w, and z is a prefix of w.
In this situation, x is a subword of ww. So, |w| is a period of x, and,

by the remark above, this shows that (y, z) is a critical factorization of x.
Case (d) y is a suffix of w, and w is a prefix of z.

The suffix z can be written wh (h E E*). We may assume that h is
non-empty, because the situation h — A is dealt with by Case (c). We
prove that \w\ is a period of x by showing that h is a border of z. Since we
assume \y\ > \y'\, for some non-empty string s, y = y's and z' — sz. String
sh is a suffix of x because s is a suffix of w. By definition of z' = sz, we
have sh < sz, which implies h < z. But, we have also h < z by definition of
z. The two inequalities altogether imply that h is a prefix of z. Therefore,
ft is a border of z, and w is a period of z. It is also a period of x = yz
because y is a suffix of w. This proves that in this situation again (y, z) is
a critical factorization of x.

Cases (a) to (d) show that (y, z) is a critical factorization of x, under the
hypothesis \y\ > |y'|. In addition, we have \y\ < period(x), because both
|w| = period(x) and cases (a) and (b) are impossible. The same property
holds symmetrically for y'.

The critical factorization (y, z) provided by Theorem 1.18 is such that
the length of y is less than the period of x, condition that is desired for TW
searching algorithm. As an example, the theorem gives the factorization
(ab, aabaa) for the word x — abaabaa. A consequence of the theorem is
that the computation of a critical factorization reduces to the localization
of lexicographically maximum suffixes of the pattern. Several algorithms
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procedure COMPLETE_TW(x,<: string; m, n: integer);
begin

let (x1, xr) be a critical factorization of x
computed with the help of function MAXIMUM_SUFFIX;

p := period(xr) {final value of p in MAXIMUM_SUFFIX};
if (|x1| < m/2 and x1 suffix of xr[l : p]) then

{p is period(x)}
search i for x with TW algorithm

else
{ period(x) > max(|x1|, |x r |) }
search t for x with modified TW algorithm: no memory,
and p replaced by max(|x1|, |xr|) + 1;

end;

Fig. 1.42. Complete time-space optimal string searching algorithm

exist to solve this problem. But the algorithm presented in Figure 1.41
uses only constant extra memory space as required in the present section.
When the input is the non-empty string x, which decomposes into yz with
maximum suffix z, the function returns \y\. The algorithm obviously uses
only a fixed number of registers (in addition to x), and it runs in linear
time.

The correctness of the function MAXIMUM_.SUFFIX is out of the scope of
this chapter. It is related to the Lyndon factorization of strings. However,
its linearity can be proved by showing that each symbol comparison (of the
kind less-equal-greater) strictly increases the value of expression i + j + k.
And its values form an increasing sequence of integers running from 2 to
1m at most. The maximum number of symbol comparisons is thus less
than 2m.

1.4.3 COMPUTING THE PERIOD OF THE PATTERN

The computation of the period period(x) of pattern x is straightforward
with the table Border of Section 1.2.2. The overall gives a linear time
computation of period(x), but requires linear extra space though. There
is a time-space optimal algorithm to compute period(x) that can be used
to complete the preprocessing phase of TW algorithm. However, we de-
scribe here a simpler solution that still gives an overall time-space optimal
string searching algorithm, but does not always computes period(x) in all
situations.

The complete TW algorithm (Figure 1.42) distinguishes two cases ac-
cording to whether the period of the pattern is small or not. The algorithm
relies on several properties easy to check and that fit perfectly when con-
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sidered altogether in the scope of TW algorithm.
The complete TW algorithm computes the period of the pattern when

it is small, which is the important situation to consider when designing a
linear-time algorithm. The first step of the algorithm is to compute a crit-
ical factorization ( x 1 , x r ) of x. It is done, according to Theorem 1.18, by
two calls to the function MAXIMUM_SUFFIX (respectively with orderings
< and <). It must be noted that the final value of variable p in MAX-
IMUM_SUFFIX is the period of the maximum suffix of the pattern. This
value is an approximation of period(x). A simple test (third instruction in
Figure 1.42) is used to decide if p = period(x) (note that if the test fails it
is still possible that p = period(x)). If so, all precomputed information are
present to search for x in t with the TW algorithm of Figure 1.40.

If the test fails, by Lemma 1.19 below, period(x) > max(|x1|,|xr|).
The search is then done in this case with the so-modified TW searching
algorithm:

no prefix memorization is done, and shifts of length period(x) are replaced by
shifts of length max(|x1|, \xr\) + 1.

Since the latter quantity is not greater than period(x), the correctness
of the modified TW searching algorithm follows from the correctness of
the original TW algorithm. A further nice feature of the modified TW
searching algorithm is that it runs in linear time. Moreover, the number of
symbol comparisons that it makes is less than 2n. This strongly depends
on the value max(|x1|, |xr|) + l, which replaces period(x) for the shifts. The
algorithm would also be correct with a value smaller than max(|x1|, |xr|)+ 1,
but this would lead to a slower string searching algorithm.

Lemma 1.19. Lei ( x 1 , x r ) be a critical factorization of x that satisfies
\x1\ < period(x), and let p be the period of xr. If X] is not a suffix of
xr[l : p] then there is no occurrence of x1 in x other than its prefix occur-
rence, and period(x) > max(\xi\, \xr\) + 1 > |x|/2.

Proof Any occurrence of x1 in x that is not a suffix of xr [1 : p] yields
a local period at ( x 1 , x r ) not greater than |x1|. This contradicts the fact
( x 1 , xr) is a critical factorization satisfying \x1\ < period(x). D

All elements discussed in the present section proves Theorem 1.1. The
more precise result concerning the complete two-way string searching algo-
rithm is stated in the next theorem. Finally note the time complexity is
independent of the alphabet.

Theorem 1.20. The complete TW string searching algorithm runs in time
0(\x\+ \t\) with a constant amount of extra memory space. Less than 1\t\
symbol comparisons are made during the search phase.
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1.5 Heuristics for practical implementations

We discuss in this section a technique commonly used to improve several al-
gorithms of this chapter. The improvement mainly deals with the practical
aspect of string searching. It can be considered just as a useful implemen-
tation technique, although a few combinatorial properties may depend on
it. There are situations (for small alphabets, for example) in which adding
it to existing algorithms is almost of no use.

The technique is sometimes called the occurrence heuristics. It consists
in considering a displacement function (or table) defined on symbols of the
alphabet. The function is used in mismatch situations to increase lengths
of shifts. Doing so, one changes the model of computation that is no
longer based only on symbol comparison as elementary operation. It can
even happen that no comparison at all is done in some runs of searching
algorithms.

If the alphabet is binary the occurrence heuristics is likely to yield
short shifts. It becomes useful, but difficult to analyze, for large alphabets
or when the probability distribution is no longer uniform. This is typically
the situation in natural languages.

BM algorithm has been first designed with an additional displacement
table defined on the alphabet. We call it DA, and for a symbol a of the
alphabet, DA[a] is the position of the rightmost occurrence of <r counted
from the right end of the pattern.

More precisely

To incorporate table DA in BM algorithm, instruction

pos := pos + D[i]

in Figure 1.27 is replaced by

if i — 0 then pos := pos + D[i]
else pos := pos + max(D[i], DA[t[pos + i — 1]] — m + i).

In BM algorithm, it is the mismatch symbol t\pos + i — 1] of the text
that partly guides the shift. But the same table DA can also be used
differently, considering t\pos + m— 1}] the rightmost symbol of the window.
Indeed, even symbol t[pos + m]] immediately at the right of the window
is sometimes considered, because, after the shift, the symbol is inside the
window. Such applications of a displacement table on the alphabet can be
combined, not only with BM algorithm and its variants, but also with MP,
KMP, or MPS algorithms, for instance. It is clear then that the sequential
behavior of these latter algorithms drops.

There is also no problem to incorporate table DA in TURBO_BM algo-
rithm. Instruction
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is just replaced by

The proof of correctness is analogue to that of the original TURBO-BM
algorithm, because the same arguments still apply. The worst-case time
complexity is unchanged.

In TW algorithm, another displacement table, called DB, can be con-
sidered. Let ( x 1 , xr) be the critical factorization of pattern x precomputed
before the search phase. Then, for a symbol a of the alphabet, we define

This is the restriction of table DA to the prefix x\ of x. In TW algorithm
(Figure 1.40), where t stands for the length of x1, instruction

is changed into

This does not affect the correctness nor the maximum time complexity of
the algorithm.

Whenever an occurrence heuristics function is added to a string search-
ing algorithm, the time complexity of the preprocessing phase then depends
on the alphabet, or at least on pattern alphabet, and typically becomes
O(m + |S|). The extra space for such table also depends on the alphabet.

There are rather few results concerning the analysis of string searching
algorithms with occurrence heuristics. However, this has been done, con-
sidering different probability distributions of the alphabet, for a searching
algorithm called H algorithm. It can be considered as a simplified version
of BM algorithm, in which shifts are computed only with the occurrence
heuristics applied to the rightmost symbol of the window. The next result
gives the expected number of symbol comparisons done during the search.
This is to be compared with the expected time, O(n logm/m), of RP
searching algorithm in Section 1.3.2. It shows that the expected searching
time is bounded by a quantity independent of the size of the pattern.

Let C(m, n) be the average number (over all patterns of length m)
of symbol comparisons done by H search algorithm on a random text of
length n.

Theorem 1.21, Under independent equiprobability distribution on the al-
phabet of size c, the limit C(m) — limn->oo (AC(m, n)) exists and satisfies
(form> c> 2):



46 OFF-LINE SERIAL EXACT STRING SEARCHING

The limit C(m) is the average number of symbol comparisons per text
character done by H search algorithm.

1.6 Exercises

1. In automaton A(x) almost all transitions go to the initial state. Im-
plement the transition function of the automaton without considering
the above trivial transitions with the technique to implement sparse
matrices. Show that your algorithms (preprocessing and searching
phases) work in linear time.

2. Design an efficient algorithm that builds the minimal automaton rec-
ognizing the language E* xE*.

3. The exponent of a non-empty string w, denoted by exponent(w), is
the quantity \w\/period(w]. Show that exponent(ww) = 2 iff w is a
primitive word. Design an algorithm to compute the exponents of all
non-empty prefixes of x.

4. Give a linear-time algorithm to compute the longest suffix of x which
is prefix of y.

5. Show that the algorithm COMPUTE_KMP_NEXT makes almost 3m
symbol comparisons on the input string abam-2.
Design an algorithm that computes the table KMP_next with less
than 2m comparisons on any input string x of length m.

6. A square is a string of the form uu with u = A. In a squarefree
string, no subword is a square. Design a linear-time algorithm to
test whether the product uv of two squarefree strings, u and v, is
squarefree. [hint: if uv contains a square centered in v, v has a prefix
of the form fgf where g is a non-empty suffix of v].
Deduce an efficient algorithm to test squarefreeness of a string, (see
Main and Lorentz, 1984.)

7. Show that any order for elements in lists considered by MPS algo-
rithm leads to a linear-time search algorithm.
Prove that the delay of MPS searching algorithm is not larger than
1 + Iog2 m (see bibliographic notes).

8. * Assume that x starts with akT (a and T different letters, k > 0).
Consider the following variant of KMP search algorithm that uses the
same failure table for x: search the text as in KMP algorithm but
comparing only the symbols of the suffix x[k + I : m] of x (from left
to right); when an occurrence of the suffix is found in the text, check
whether it is preceded by <rk, and report a match if so.
Note that symbols of the prefix ak of x are compared with symbols
in the text only when an occurrence of x[k + 1 : m] is found. Which
means that, in some situations, parts of the text are skipped during
the search.
Design a complete string searching algorithm based on the above de-
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scription. Show that the search makes less than 1.5n comparisons.
Show that this quantity becomes An by considering interrupted pe-
riodicities, (see Colussi, 1991, or Galil and Giancarlo, 1992.)

9. Design BM algorithm with a variable j instead of pos + i— 1. Modify
the table D and its preprocessing accordingly.

10. * Prove Theorem 1.10. (see Cole, 1990.)
11. ** Table D considered in BM algorithm can be improved by con-

sidering tagged suffixes of the pattern (similarly as tagged borders
in MPS algorithm). In the comparison model, is there a computa-
tion of tagged suffixes that works in linear time independently of the
alphabet size ?

12. ** Give a complete analysis of the expected running time of BM
algorithm in a realistic probability model.

13. ** Consider a variant of BM algorithm in which all previous matches
inside the current window are memorized. Each window configuration
is a state of what is called the Boyer-Moore automaton. Is the max-
imum number of states of the automaton polynomial ? (see Knuth,
Morris, and Pratt, 1977.)

14. What is the maximum number of symbol comparisons made by Turbo-
BM algorithm ?

15. Design a variant of RP algorithm where symbols in the text are
scanned only once.

16. * Show that there is a logarithmic number of squares of primitive
words that are prefixes of a string.
Produce infinitely many words that reach the upper bound.
Design a time-space algorithm to test whether a string starts with
a k-th power of a non-empty word (k > 1). (see Crochemore and
Rytter, 1995.)

17. * Design a time-space optimal algorithm to compute all periods of a
string, (see Crochemore, 1992.)

1.7 Bibliographic notes

Historically, the first linear-time string searching algorithm, MP algorithm,
is by Morris and Pratt (1970). The improvement on MP algorithm, called
KMP algorithm is by Knuth, Morris, and Pratt (1977). Theorem 1.4 on the
delay of KMP algorithm comes from Duval (1981). Its original statement
in (Knuth, Morris, and Pratt, 1977) contains a flaw. The variant of KMP
algorithm, called MPS algorithm, is by Simon (1989). It has been published
later (Simon, 1993), and the present version is by Hancart (1992) who
proved Theorem 1.6. A variant of MPS algorithm makes no more n(2 —
1/m) comparisons, which is an optimal bound (Hancart 1992). The prefix-
matching problem, introduced by Breslauer, Colussi, and Toniolo (1992),
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independently leads to the same result.
Galil (1981) gave a criterion to transform sequential searching algorithm

into real-time algorithm. This applies to MP, KMP and MPS algorithms.
See also (Slisenko, 1983).

The general notion of failure function is implicit in the table-compression
technique for representing automata in (Aho, Sethi and Ullman, 1986,
Chapter 3). Perrin (1990) discusses questions related to such represen-
tations.

The linearity of the size of the suffix automaton has first been noticed
by Blumer et alii (1983). The average size of the data structure is analyzed
in (Blumer et alii, 1989). The linear construction may be found in (Blumer
et alii, 1985) and (Crochemore, 1986). Algorithm "Forward Subword" is
from (Crochemore, 1987). This shows that the longest common subword of
two words can be computed in linear time (independently of the alphabet,
if quadratic space is allowed) disproving a conjecture of Knuth.

BM algorithm has been designed by Boyer and Moore (1977). The first
proof on the linearity of BM algorithm (restricted to the search of the first
occurrence of the pattern, as it has been originally designed) is in (Knuth,
Morris and Pratt, 1977). It is proved, there, that the number of symbol
comparisons of BM algorithm is less than 7n. Guibas and Odlyzko (1980)
have shown that it is less than 4n, and conjectured a 2n bound at the
same time. But this was disproved by Cole (1990), who gave the "tight"
3n bound. The displacement table D is a modification introduced on the
original displacement function by (Knuth, Morris and Pratt, 1977). But,
the first correct algorithm for computing D is by Rytter (1980).

The quadratic behavior of BM algorithm (as presented in this chapter to
locate all occurrences of the pattern) gave rise to several variants. "Prefix
memorization" introduced in BM by Galil (1979) leads to a linear-time
searching algorithm. See also (Zhu and Takaoka, 1987). With 0(m) extra
space to store the whole history of the search, Apostolico and Giancarlo
(1986) got a 2n bound on the number of symbol comparisons. TURBO_BM,
from (Crochemore et alii, 1992), reaches the same bound with only constant
space in addition to BM algorithm. The algorithm of Colussi (1994) has the
same 2n bound with a modified displacement function. In this algorithm
the scanning operation is driven by the periodicities of pattern suffixes, and
is not strictly done from right to left as in BM algorithm.

"Reverse-Prefix" algorithm is from (Lecroq, 1992) and (Crochemore et
alii, 1992). A similar algorithm has been presented by Park (1992). The
article (Crochemore et alii, 1992) describes variants of the same approach.

The "time-space optimality" of string searching is by (Galil and Seiferas,
1983). Another analysis of their algorithm may be found in (Crochemore
and Rytter, 1995), where it is proved that the search phase makes less than
5n comparisons. The two-way algorithm is from (Crochemore and Perrin,
1991). Two other time-space string searching algorithms are presented
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in (Crochemore, 1992) and (Gasieniec, W. Plandowski, W. Rytter, 1995).
The first one needs no preprocessing and uses an ordering of the alphabet.
The second one is based on the fact that non periodic patterns have a long
enough non periodic prefix or suffix and packs logm bits of information
into an integer memory cell of the Random Access Machine model.

The general expected time complexity of string matching is given in
(Yao, 1979). Horspool (1980) considers the simplified version of BM al-
gorithm (called H algorithm in Section 1.5) including only a displacement
function defined on symbols. Such variants of BM algorithm have been
later studied and analyzed in several papers, among them are (Schaback,
1988), (Sunday, 1990), (Baeza-Yates, Gonnet, and Regnier, 1990), (Hume
and Sunday, 1991). Theorem 1.21 is from (Hancart, 1993). More precise
bounds may be found in (Baeza-Yates, Regnier, 1992).

It is shown in (Rivest, 1977) that any string searching algorithm working
with symbol comparisons makes at least n — m + 1 comparisons in the
worst case. The current lower bound is n + '2/m+3(n — m) (see Cole et alii,
1995). A simple variant of KMP searching algorithm can be shown to
perform less than 1.5n symbol comparisons (Apostolico and Crochemore,
1991). Colussi, Galil and Giancarlo (1990) have presented an algorithm
that makes less than n + |(n —m) comparisons at search phase. This bound
has been improved by Cole and Hariharan to n+ 3(m+1)(n — m), but with a
quadratic-time preprocessing step. A similar result has been independently
discovered by Zwick and Paterson (see Cole ei alii, 1995). With a linear-
time preprocessing step, the current upper bound is 
by Breslauer and Galil (1993).

The string searching problem can be solved by hashing. The main part
of the work thus reduces to key comparisons, and symbol are eventually
compared in case keys are equal. This has been introduced by Harrison
(1971), and later fully analyzed by Karp and Rabin (1987).

The two algorithms of (Baeza-Yates and Gonnet, 1992) and (Wu and
Manber, 1992) solve the string matching problem using shifts of memory
words as basic operations. Their solutions lead to efficient practical algo-
rithms to locate approximate patterns of small size.

The methods described in the present chapter extend to the search of
a finite set of strings in a text. Aho and Corasick (1975) gave an exten-
sion of KMP algorithm, based on an adequate use of automata, which is
implemented by the "fgrep" command under the UNIX operating system.
Commentz-Walter (1979) has designed an extension of BM algorithm to
several patterns. It is fully described in (Aho, 1990), and a variant may be
found in (Baeza-Yates and Regnier, 1990). The extension of RP algorithm
to multi-pattern matching is presented in (Crochemore et alii, 1992).

More algorithms on the string-matching problem may be found in (Cro-
chemore and Rytter, 1994) and (Stephen, 1994).



SO OFF-LINE SERIAL EXACT STRING SEARCHING

Bibliography

AHO, A.V. , Algorithms for finding patterns in strings, in (VAN LEEUWEN,
J., editor, Handbook of Theoretical Computer Science, vol A, Algo-
rithms and complexity, Elsevier, Amsterdam, 1990) 255-300.

AHO, A.V., AND M. CORASICK, Efficient string matching: an aid to bib-
liographic search, Comm. ACM 18 (1975) 333-340.

AHO, A.V., R. SETHI, J.D. ULLMAN, Compilers — Principles, Techniques
and Tools, Addison-Wesley, Reading, Mass., 1986.

APOSTOLICO, A., AND M. CROCHEMORE, Optimal canonization of all
substrings of a string, Information and Computation 95:1 (1991) 76-
95.

APOSTOLICO, A., AND R. GIANCARLO, The Boyer-Moore-Galil string
searching strategies revisited, SIAM J. Comput. 15 (1986) 98-105.

BAEZA-YATES, R.A., AND G.H. GONNET, A new approach to text search-
ing, Comm. ACM 35:10 (1992) 74-82.

BAEZA-YATES, R.A., G.H. GONNET, M. REGNIER, Analysis of Boyer-
Moore type string searching algorithms, in (Proc. of 1st ACM-SIAM
Symposium on Discrete Algorithms, American Mathematical Society,
Providence, 1990) 328-343.

BAEZA-YATES, R.A., M. REGNIER, Fast algorithms for two-dimensional
and multiple pattern matching, in (R. KARLSSON, J. GILBERT, edi-
tors, Proc. 2nd Scandinavian Workshop in Algorithmic Theory, Lec-
ture Notes in Computer Science 447, Springer-Verlag, Berlin, 1990)
332-347.

BAEZA-YATES, R.A., AND M. REGNIER, Average running time of the
Boyer-Moore-Horspool algorithm, Theoret. Comput. Sci. 92 (1992)
19-31.

BLUMER, A., J. BLUMER, A. EHRENFEUCHT, D. HAUSSLER, R. Mc-
CONNELL, Linear size finite automata for the set of all subwords of a
word: an outline of results, Bull. Europ. Assoc. Theoret. Comput.
Sci. 21 (1983) 12-20.

BLUMER, A., J. BLUMER, A. EHRENFEUCHT, D. HAUSSLER, M.T. CHEN,
J. SEIFERAS, The smallest automaton recognizing the subwords of a
text, Theoret. Comput. Sci. 40 (1985) 31-55.

BLUMER, A., A. EHRENFEUCHT, D. HAUSSLER, Average sizes of suffix
trees and DAWGS, Discrete Applied Mathematics 24 (1989) 37-45.

BOYER, R.S., AND J.S. MOORE, A fast string searching algorithm, Comm.
ACM 20 (1977) 762-772.

BRESLAUER, D., AND Z. GALIL, Efficient comparison based string match-
ing, J. Complexity 9:3 (1993) 339-365.

BRESLAUER, D., L. COLUSSI, L. TONIOLO, Tight comparison bounds for
the string prefix matching problem, Inf. Process. Lett. 47:1 (1993)
51-57.



BIBLIOGRAPHIC NOTES 51

COLE, R., Tight bounds on the complexity of the Boyer-Moore pattern
matching algorithm, in (2nd annual ACM-SIAM Symp. on Discrete
Algorithms, 1990) 224-233.

COLE, R. AND R. HARIHARAN, Tighter upper bounds on the exact com-
plexity of string matching, SIAM Journal of Computing (1995).

COLE, R., R. HARIHARAN, M.S. PATERSON, U. ZWICK, Tighter lower
bounds on the exact complexity of string matching, SIAM Journal of
Computing 24:1 (1995) 30-45.

COLUSSI, L., Correctness and efficiency of string-matching algorithms, In-
formation and Computation 95 (1991) 225-251.

COLUSSI, L., Fastest pattern matching in strings, J. Algorithms 16:2 (1994)
163-189.

COLUSSI, L., Z. GALIL, R. GIANCARLO, On the exact complexity of string
matching, in (Proc. 31st Symposium on Foundations of Computer
Science, IEEE, 1990) 135-143.

COMMENTZ-WALTER, B., A string matching algorithm fast on the average,
in (ICALP, LNCS, Springer-Verlag, Berlin, 1979) 118-132.

CROCHEMORE, M., Transducers and repetitions, Theoret. Comput. Sci.
45 (1986) 63-86.

CROCHEMORE, M., Longest common factor of two words, in (TAPSOFT'87,
Ehrig, Kowalski, Levi and Montanari, eds, vol 1, LNCS, Springer-
Verlag, Berlin, 1987) 26-36.

CROCHEMORE, M., String-Matching on Ordered Alphabets, Theoret. Com-
put. Sci. 92 (1992) 33-47.

CROCHEMORE, M., A. CZUMAJ, L. GASIENIEC, S. JAROMINEK, T. LECR-
OQ, W. PLANDOWSKI, W. RYTTER, Speeding up two string matching
algorithms, Algorithmica 12 (1994) 247-267.

CROCHEMORE, M., A. CZUMAJ, L. G4SIENIEC, S. JAROMINEK, T. LECR-
OQ, W. PLANDOWSKI, W. RYTTER, Fast multi-pattern matching,
Report IGM 93-3, University of Marne-la-Vallee, 1993.

CROCHEMORE, M., AND D. PERRIN, Two-way string- matching, J. ACM
38:3 (1991) 651-675.

CROCHEMORE, M. AND W. RYTTER, Text Algorithms, Oxford University
Press, 1994.

CROCHEMORE, M. AND W. RYTTER, Cubes, squares and time-space effi-
cient string searching, Algorithmica 13 (1995) 405-425.

DUVAL, J.-P., A remark on the Knuth-Morris-Pratt string searching algo-
rithm, 1981. Unpublished.

DUVAL, J.-P., Factorizing words over an ordered alphabet, J. Algorithms
4 (1983) 363-381.

GALIL, Z., On improving the worst case running time of the Boyer-Moore
string searching algorithm, Comm. ACM 22 (1979) 505-508.

GALIL, Z., String matching in real time, J. ACM 28 (1981) 134-149.
GALIL, Z., AND R. GIANCARLO, On the exact complexity of string match-



52 OFF-LINE SERIAL EXACT STRING SEARCHING

ing: upper bounds, SIAM J. Comput. 21:3 (1992) 407-437.
GALIL, Z., AND J. SEIFERAS, Time-space optimal string matching, J.

Comput. Syst. Sci. 26 (1983) 280-294.
GASIENIEC, L., W. PLANDOWSKI, W. RYTTER, The zooming method: a

recursive approach to time-space efficient string matching, Theoret.
Comput. Sci. 147 (1995) 19-30.

GUIBAS, L.J., AND A.M. ODLYZKO, A new proof of the linearity of the
Boyer-Moore string searching algorithm, SIAM J. Comput. 9 (1980)
672-682.

HANCART, C., On Simon's string searching algorithm, Inf. Process. Lett.
47 (1992) 95-99.

HANCART, C., Analyze exacte et en moyenne d'algorithmes de recherche
d'un motif dans un texte, Rapport IGM 93-11, Universite de Marne-
la-Vallee, 1993.

HARRISON, M.C., Implementation of the substring test by hashing, Comm.
ACM 14:12 (1971) 777-779.

HORSPOOL, R.H., Practical fast searching in strings, Software — Practice
and Experience 10 (1980) 501-506.

HUME, A. AND D.M. SUNDAY, Fast string searching, Software — Practice
and Experience 21:11 (1991) 1221-1248.

KARP, R.M., AND M.O. RABIN, Efficient randomized pattern matching
algorithms, IBM J. Res.Dev. 31 (1987) 249-260.

KNUTH, D.E., J.H. MORRIS Jr, V.R. PRATT, Fast pattern matching in
strings, SIAM J. Comput. 6 (1977) 323-350.

LECROQ, T., A variation on the Boyer-Moore algorithm, Theoret. Comput.
Sci. 92 (1992) 119-144.

MAIN, M.G., AND R.J. LORENTZ, An O(n logn) algorithm for finding all
repetitions in a string, J. Algorithms 5 (1984) 422-432.

MORRIS, J.H. JR, AND V.R. PRATT, A linear pattern-matching algo-
rithm, Report 40, University of California, Berkeley, 1970.

PARK, K., communication at the British Colloquium of Theoret. Comput.
Sci., 1992. Unpublished.

PERRIN, D., Finite automata, in (Handbook of Theoretical Computer Sci-
ence, J. van Leeuwen, ed., vol B, Formal models and semantics, Else-
vier, Amsterdam, 1990) 1-57.

RIVEST, R.L., On the worst case behavior of string searching algorithms,
SIAM J. Comput. 6:4 (1977) 669-674.

RYTTER, W., A correct preprocessing algorithm for Boyer-Moore string
searching, SIAM J. Comput. 9 (1980) 509-512.

SCHABACK, R.. On the expected sublinearity of the Boyer-Moore string
searching algorithm, SIAM J. Comput. 17 (1988) 648-658.

SIMON, I., personal communication (1989).
SIMON, I., String matching algorithms and automata, in (First American

Workshop on String Processing, Baeza-Yates and Ziviani, eds, Uni-



BIBLIOGRAPHIC NOTES 53

versidade Federal de Minas Gerais, 1993) 151-157.
SLISENKO, A.O., Detection of periodicities and string-matching in real

time, J. Sov. Math. 22:3 (1983) 1326-1387.
STEPHEN, G.A., Siring Searching Algorithms, World Scientific, 1994.
SUNDAY, D.M., A very fast substring search algorithm, Comm. ACM33:8

(1990) 132-142.
Wu, S., AND U. MANBER, Fast text searching allowing errors, Comm.

ACA 35:10 (1992) 83-91.
YAO, A.C., The complexity of pattern matching for a random string, SIAM

J. Comput. 8 (1979) 368-387.
ZHU, R.F., AND T. TAKAOKA, On improving the average case of the

Boyer-Moore string matching algorithm, J. Inf. Process. 10:3 (1987)
173-177.



This page intentionally left blank 



2
Off-line Parallel Exact String
Searching

The string matching problem is defined as follows: given a string
P0 ... Pm-1 called the pattern and a string TO .. .Tn-1 called the text find
all occurrences of the pattern in the text. The output of a string matching
algorithm is a boolean array MATCH[0..n — 1] which contains a true value
at each position where an occurrence of the pattern starts. Many sequen-
tial algorithms are known that solve this problem optimally, i.e., in a linear
O(n) number of operations, most notable of which are the algorithms by
Knuth, Morris and Pratt and by Boyer and Moore. In this chapter we limit
ourselves to parallel algorithms.

2.1 Preliminaries

All algorithms considered in this chapter are for the parallel random access
machine (PRAM) computation model.

In the design of parallel algorithms for the various PRAM models, one
tries to optimize two factors simultaneously: the number of processors used
and the time required by the algorithm. The total number of operations
performed, which is the time-processors product, is the measure of optimal-
ity. A parallel algorithm is called optimal if it needs the same number of
operations as the fastest sequential algorithm. Hence, in the string match-
ing problem, an algorithm is optimal if its time-processor product is linear
in the length of the input strings. Apart from having an optimal algorithm
the designer wishes the algorithm to be the fastest possible, where the only
limit on the number of processors is the one caused by the time-processor
product. The following fundamental lemma given by Brent is essential for
understanding the tradeoff between time and processors :

Lemma 2.1. (Brent): Any PRAM algoriihm of time t that consists of x
elementary operations can be implemented on p processors in O(x/p + t)
time.

Using Brent's lemma, any algorithm that uses a large number x of proces-
sors to run very fast can be implemented on p < x processors, with the
same total work, however with an increase in time as described.
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A basic problem in the study of parallel algorithms for strings and arrays
is finding the maximal/minimal position in an array that holds a certain
value. The best algorithm for this problem was found by Fich, Ragde and
Wigderson. It works in constant time using n processors on the CRCW-
PRAM , where n is the size of the array. We use this algorithm throughout
this chapter.

Another issue that we should consider is the operations we may perform
on the symbols in the strings. These are chosen from some set which is
called alphabet. The weakest assumption about the symbols, termed the
general alphabet assumption, is that the only operations we can perform
on them are comparisons which result in an equal or unequal answer. Most
of the algorithms we describe in this Chapter work using only this assump-
tion. However, stronger assumptions on the set of symbols may lead to
different results. One possible assumption, usually called the fixed alphabet
assumption maintains that the symbols are integers from a fixed range.
These symbols can be used as indices of an array or in another case many
of them can be packed together in one register.

Given a pattern of length m and a text of length n, we assume that
n = c • m, where c > 1 is a constant. In certain algorithms we choose a
specific constant c as we see fit for a clearer presentation. This is possible
since the text string can be broken to overlapping blocks of length c • m
and all the blocks can be searched in parallel. In some cases we describe
a parallel algorithm that has the claimed time bound using n processors
(not optimal). The optimal version, using O(n/t) processors, can be de-
rived using standard techniques. In many places in our exposition we use
quantities like logm, log log m, \/m, and m/2 as integers. It is easy to
check that any way of rounding them suffices. In the following we describe
some of fastest algorithms known for the string matching problem in the
various parallel machine models (EREW, CREW, CRCW), as well as the
lower bound proof for the general alphabet case.

In the description of the algorithms we use the following terminology: A
position in the text which is a possible start of an occurrence of the pattern
is called a candidate. Candidates are eliminated when it is proved that an
occurrence of the pattern cannot start in them. Candidates survive when
an attempt to eliminate them does not succeed (we call them survivors).
A naive check of a candidate is one where m text positions starting from
the candidate are simultaneously compared with all m corresponding pat-
tern positions. This naive check takes O(l) time and O(m) processors per
candidate. Many algorithms partition the strings to disjoint consecutive
blocks of equal size: a k-block is such a block of size k. Such a block starts
at position ik for some i. All the algorithms work in two main phases:

• A preprocessing phase in which the pattern is analyzed and useful
information is extracted from it. This information is saved in conve-



APPLICATION OF SEQUENTIAL TECHNIQUES 57

nient data structures to be used in the following phase.

• A search phase, which usually works in several rounds. In this phase
the text is searched using the data structures created in the first
phase. The set of candidates is maintained containing initially all the
text positions. The number of candidates is decreased in every round
until it permits a naive check of each one of them.

This chapter is organized as follows: In Section 2 we provide some
background by describing two techniques that are used by fast but not the
fastest parallel algorithms. In Section 3 we describe some basic properties
of strings and the concept of witnesses that is used in the recent fastest
parallel algorithms for the string matching problem. We also describe in
this section the lower bound proof for the problem. In Section 4 we de-
scribe the concept of a deterministic sample that proved crucial for the
fastest parallel search algorithms now known. Section 5 is devoted to the
fastest optimal algorithm for the CRCW-PRAM and in Section 6 we de-
scribe the optimal algorithm for the EREW-PRAM and CREW-PRAM .
In Section 7 we discuss the application of the string matching concepts
to solving parallel two-dimensional pattern matching. Section 8 contains
some conclusions and open questions that still exist.

2.2 Application of sequential techniques

Karp, Miller and Rosenberg defined an equivalence relation on the set of
positions of the input strings and use it to obtain a relatively fast sequential
algorithm for the string matching problem. Their method is also used
by other algorithms that manipulate strings and arrays. In the parallel
application of their algorithm we use the assumption that the symbols
belong to [0,.., m], i.e., it's a fixed alphabet, (m replaces all symbols in the
text that do not appear in the pattern). This assumption is required by
any optimal application of their technique, and a small modification can
handle an alphabet of polynomial size. Two positions of the input string
are k-equivalent if the substrings of length k starting at those positions
are equal. The algorithm's main task is to assign unique names to each
position in the same equivalence class. These names, in turn, represent
the substrings corresponding to the equivalence classes in the subsequent
comparisons required by the problem at hand. Consider the input as one
string of length l = n + m which is made of a text of length n concatenated
with a pattern of length m. The goal is to find all positions which are in
the same m-equivalence class as the position where the pattern starts. The
following observation is the basis for the entire algorithm:

Fact 1. For integers i,j,a,b we have: i is (a + b)-equivalent to j if and
only if i is a-equivalent to j and i + a is b-equivalent to j + a.
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This observation shows that we can combine equivalences of short sub-
strings to obtain larger ones using only the naming information we already
computed. We describe a logarithmic time implementation of the Karp,
Miller and Rosenberg method on an n-processor arbitrary CRCW-PRAM.
We denote by nj (i) the unique name assigned to the substring of length j
starting at position i of the input string; assume nj(i) is defined only for
i+j < 1 and the names are integers in the range 0 • • • m. Suppose nr(i) and
n, (i) are known for all positions i of the input string. One can combine
these names to obtain rar+s (i) for all positions i in constant time using / pro-
cessors as follows: Assume a two dimensional array of size (m+1) x (m+1)
is available; assign a processor to each position of the input string. Each
processor tries to write the position number it is assigned to in the entry at
row nr(i) and column n s(i + r) of the matrix. If more than one processor
attempts to write the same entry, an arbitrary one succeeds. Now rar+s(i)
is assigned the value written in row nr(i) and column n s(i + r) of the ma-
trix. That is, nr+s(i) is a position of the input string, not necessarily i,
which is (r + s)-equivalent to i.

The algorithm starts with n1(i) as the symbol at position i of the string.
Recall that we assume that input symbols are in [0..m]. It proceeds with
O(logm) steps computing n2(z), n4(i), • • •n2 j ( i) for j < Iog2m, by merging
names of two 2j-equivalence classes into names of 2J+1-equivalence classes.
In another 0(log m) steps it computes nm (i) by merging a subset of the
names of powers-of-two equivalence classes computed before, and reports
all positions which are in the same m-equivalence class as the starting
position of the pattern.

This algorithm requires O(m2) space which can be reduced to O(m1+E)
using a time-space tradeoff as described in the suffix tree construction al-
gorithm of Apostolico et al..

Another technique that translates into a simple parallel algorithm is
the randomized algorithm of Karp and Rabin. We describe here a parallel
version of their algorithm that works with the assumption that the alpha-
bet is binary (the set {0,1}) and translates the input symbols into 2x2
non-singular matrices. Similarly to the previous algorithm, this algorithm
computes names to all the text subtstrings which are of the same size as the
pattern and then simply compares these names to find the occurrences of
the pattern. However, here, the names are not simply symbols from some
finite set, but they correspond directly to the symbols that construct the
substrings. The name of a given substring is the product of the matrices
representing it.

The following representation is used, which assures a unique name for
any string as a product of the matrices representing it.
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Most of the work in the algorithm is performed using a well known
method for parallel prefix computation summarized in the following theo-
rem.

Theorem 2.2. (Folklore): Suppose a sequence of n elements x1, x2, • • •, xn

are drawn from a set with an associative operation *, computable in con-
stant time. Let pi = x1 * x2 * • • - x i , usually called a prefix sum. Then an
EREW-PRAM can compute all pi i = 1 • • • n, in O(logn) time using
processors.

Karp and Rabin's algorithm first multiplies the matrices representing
the pattern to get a single matrix which is the name of the pattern (they
use the term fingerprint). By Theorem 2.2 this can be done by an
processor EREW-PRAM in O(log m) time. The text string is also con-
verted to the same representation and matches can be reported based only
on comparison of two matrices; the name of the pattern and the name of
each text position. To compute the name of a text position j, which is the
product of the matrices representing the substring of size m starting from
position j, first compute all prefix products for the matrix representation of
the text and call them Ti. Then compute the inverse of each T,; the inverse
exists since each Ti is a product of invertible matrices. The name for a po-
sition j, 0 < j < n - m— 1 is given by Tj-1Tj+m-1; the name of position 0
is Tm. By Theorem 2.2 the prefix products also take optimal O(log n) time
on the EREW-PRAM. Since the remaining work can be done in constant
optimal time, the algorithm works in optimal O(logn) total time.

However, there is a problem with the algorithm described above. The
entries of those matrices may grow too large to be represented in a single
register; so the numbers are truncated modulo some random prime p. All
computations are done in the field Zp which assures that the matrices are
still invertible.

This truncated representation does not assure uniqueness, but Karp and
Rabin show that the probability of their algorithm erroneously reporting
a nonexisting occurrence is very small if p is chosen from a range which is
large enough. For a long time this algorithm was the only parallel algorithm
which worked in optimal logarithmic time on the EREW-PRAM. Only the
latest algorithm that is described in Section 2.6.1 achieves the same time
bound, but it is a deterministic algorithm.

2.3 Periodicities and Witnesses.

A string u is called a period of string w if w is a prefix of uk for some
positive integer k or equivalently if w) is a prefix of uw. The shortest period
of a string w is called the period of w. In addition, p is the length of a
period of the string if and only if all the positions i, i > p of the string
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satisfy Wi = w,-p. For example, the period of the string dobidobido is
dobi, dobidobi is also a period (but not the shortest one).

If a pattern P occurs in positions i and j of some string and 0 < j — i <
\P\ then the occurrences must overlap. This implies that P has a period
of length j — i. The following lemma provides some limitations on the
existence of periods in strings.

Lemma 2.3. ( GCD ) If w has periods of lengths p and q and \w\ > p + q
then w has a period of length gcd(p,q).

Proof: Exercise. D

Corollary 1. Let p be the length of the period of a pattern P, and let
i, j (i < j) be occurrences of this pattern in a text string T of length n.

Then p < j — i and there are no more then n/p occurrences of P in T.

As we mentioned in Section 1, the algorithms we are about to describe
attempt to reach a stage in the search phase where naive checks can be
applied to the surviving candidates. We need m processors to perform
a naive check of a single candidate hence we cannot perform more than
O(n/m) naive checks in O(l) time using O(n) processors. It is implied
by Corollary 1 that the number of candidates that might survive depends
on the period length of the pattern, and could be larger than O(n/m).
Therefore we need to identify strings with relatively small period length
and treat them differently. If the period of string w is shorter than a half
(fourth) of w, w is called periodic (4-periodic).

Two other corollaries of the GCD Lemma can be stated as follows.

Corollary 2. Let u be the period of a siring w. The prefix of w of length
2\u\ — 1 is nonperiodic.

Corollary 3. Let w be a nonperiodic string of length m. For any l, l <
m/2 there exists a nonperiodic substring of w of length l.

Proof: Consider the prefix of w of length l. If it is periodic with period u,
find the first position k in P such that Wk-\u\ = wk. This position exists
since w is nonperiodic. The substring wk—l+1,..., wk is nonperiodic and
has length l.

From now on let p be the length of the period of the pattern P. In case
P is periodic, we would first look for occurrences of its nonperiodic prefix
z of size 2p — 1. The period u of P is also the period of z. We first find
all occurrences of z. (We will show how to handle nonperiodic patterns
next.) We then check naively which of the occurrences of z extends to an
occurrence of uu. The positions starting such occurrences are the current
survivors.

Then, by counting the number of consecutive matches of u starting at
each survivor, we can locate all the occurrences of the entire pattern P.
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In the next paragraph we describe how we can perform this counting step
efficiently.

Vishkin showed how to count these matches in optimal O(log ra) time
on the EREW-PRAM using ideas which are similar to prefix computation.
Breslauer and Galil showed how it can be done in optimal constant time
on the CRCW-PRAM (and also in O(logm) time on the EREW-PRAM).
We call an occurrence of u at position i an initial occurrence if there is
no occurrence of uu at position i — p and a final occurrence if there is no
occurrence of uu at position i + p.

Assume without loss of generality that the text is of length n < 3/2m and
the pattern is ukv where u is the period of the pattern and v is a proper
prefix of u. There is at most one initial occurrence which can start an
actual occurrence of the pattern: The rightmost initial occurrence in the
first y positions. Any initial occurrence to the left of it cannot have enough
consecutive occurrences of the period following it to make an occurrence of
the full pattern. This is also the case with an initial occurrence starting in
a position greater then y (the text is not long enough). The corresponding
final occurrence is the leftmost final occurrence to the right of the initial
occurrence. By subtracting the positions of the initial and final occurrences
and verifying the occurrence of v to the right of the final occurrence, one
can compute the number of times that the period is repeated and which of
the survivors (the occurrences of uu) are actual occurrences of the pattern.
All the parts above, except for finding the occurrences of z can be easily
done in constant time on the CRCW-PRAM using n processors.

From now on we assume without loss of generality that during the text
search the pattern is not periodic, i.e., it is shorter than twice its period.
During the preprocessing phase we will find whether the pattern is periodic
or not by computing r = mm(m/2,p), where p is the length of the period
of P.

2.3.1 WITNESSES

Recall that p is the length of the period of the pattern P. For every
i, 0 < i < p there exist at least one position h, h > i in P such that
Ph = Ph-i- We call such a position a witness against i (being a period of P).
Vishkin introduced this concept and suggested that in the preprocessing of
the pattern an array of such witnesses should be prepared. Consequently,
in the preprocessing phase we compute r = min(m/2,p) and for every
i, 0 < i < r, we compute witness[i] = h, where h is a position such that
Ph + Ph-i-

Using this witness information Vishkin suggested a method which he
called a duel to eliminate at least one of two close candidates.

Suppose i and j are candidates and 0 < j—i < p. Then, h = witness[j —
i] is defined. Since Ph = Ph+i-j, at most one of them is equal to Ti+h (see
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Fig. 2.1. X = y and therefore we cannot have Z = X and Z = Y.

Figure 1) and at least one of the candidates can be eliminated. (As in a
real duel sometimes both are eliminated.)

The concept of witnesses is useful in the fastest optimal algorithms
now known. The witnesses array is used in the search phase to eliminate
many candidates concurrently. Next we describe the algorithm suggested
by Vishkin for the computation of witnesses and for the search phase.
This algorithm takes optimal O(log ra) time. The search phase can also be
implemented optimally on the CREW-PRAM .

Recall that r = min(p, m/2) where p is the period of the pattern. First
we describe the text search phase which works in stages. There are log r
stages. At stage i the text string is partitioned into consecutive ki-blocks,
where ki is 2i. The algorithm maintains that each such block contains at
most one surviving candidate. We start at stage 0 where we have 1-blocks,
and each position of the string is a candidate.

At stage i, consider a ki+1-block which consists of two ki-blocks. It
contains at most two surviving candidates, one in each ki-block. A duel
is performed between these two candidates, leaving at most one in the
ki+1-block.

At the end of log r stages, we are left with at most n/r candidates
which can be verified in constant-time using n processors. Note that the
total number of operations performed is O(n) and the time is O(logm).
By Brent's Lemma an optimal implementation is possible.

The pattern preprocessing phase is similar to the text search phase.
It takes log m stages. We use the term source for a position for which
a witness has not yet been computed. The description below outlines a
logarithmic time implementation using m processors.

The witnesses array which we used in the text processing phase is com-
puted incrementally. At stage i we first compute witnesses to all the sources
except one in a prefix of the pattern. Then we use these witnesses, per-
forming the duel described below between surviving "close" sources along
the whole pattern.

Let i and j be two positions in the pattern such that i < j < m/2.
If s = witness [j — i] is already computed then we can find at least one of

or witness[j] using a duel on the pattern as follows.witness[i]
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Fig. 2.2. X = Y and therefore we cannot have Z = X and Z = Y.

• If s + i < m then s + i is also a witness either against i or against j.

• If s + i > m then either s is a witness against j or s — j + i is a witness
against i (see Figure 2).

The pattern preprocessing proceeds as follows. At stage i the pattern is
partitioned into consecutive ki--blocks. Each block has at most one source
left. The only source in the first block is always 0. At stage i, consider the
first ki+1-block. It has at most one other source left, say position j. We
first try to compute a witness against this source by comparing all pairs of
positions that are j apart. This can be easily done in constant time on the
CRCW-PRAM with m processors. If a witness is not found, then j is the
period length of the pattern and the pattern preprocessing terminates. If a
witness was found, a duel is performed in each ki+1-block between the two
remaining sources in each such block. It results in each ki+1-block having
at most one source left. After log r stages witness[i] is computed against
every i, 0 < i < r — min(p, m/2) and the algorithm can proceed with the
text search.

The version above is not optimal because in each stage the computation
of the witness against the source in the leftmost block takes O(m) work.
This step could be also stated as the verification of the period corresponding
to that source. The optimal implementation of the pattern preprocessing
is very similar to Galil's original algorithm: instead of verifying the period
for the whole pattern, we do it only for a prefix of the pattern of size 2i+1

as described below.
We compare all pairs of positions that are j apart only in the first

ki+1-block. If a mismatch is found it can be used as a witness against the
source and we are done. If no mismatch has been found, we continue to a
periodic stage i + 1 in which we try to verify the same period length in a
block of double length. At some point either a mismatch is found or the
period length is verified for the whole string and the pattern preprocessing
is terminated. If a mismatch is found, it can be easily shown that it can
be used as a witness value for all remaining sources in the first block; and
the algorithm can catch up to stage i + 1 (with the current value of i) by
performing duels.
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2.3.2 COMPUTING AND USING WITNESSES IN O(log log M) TIME

Breslauer and Galil used the witness information to obtain an optimal
O(log log m) time algorithm for general alphabet. They observed that duels
work like maximum, i.e., that the outcome of performing a duel is that
at least one of the candidates is eliminated, and sometimes both of them.
Hence, they were able to use a method based on an algorithm for finding the
maximum suggested by Valiant for the comparison model and implemented
by Shiloach and Vishkin on the CRCW-PRAM . Next we provide a brief
description of their algorithm, which has some similarities to Vishkin's
algorithm. We start by describing the search phase. Recall that we assumed
that in the text search the pattern is nonperiodic.

Partition the text into disjoint consecutive m-blocks and consider each
one separately. In each block consider each position as a candidate. As-
suming we had m2 processors for each such block, a duel can be performed
between each pair of candidates resulting in at most one occurrence in each
block. Since we have only m processors for each block, partition the m-
blocks into /m-blocks and repeat recursively. The recursion bottoms out
with one processor per 1-block. When we are done with the recursive call
we are left with at most one candidate in each /m-b\ock, thus at most /m
candidates per m-block. Then in constant time we make all m duels. We
are left with at most a single candidate in each m-block. We can naively
check the survivors for occurrences of the full pattern.

To make the text search phase run in optimal O(log log m) time we
start with an O(log log m) time sequential algorithm which runs in paral-
lel, performing duels, in all log log m-blocks, and leaves only m/log log m
candidates in each block. Then we proceed with the above procedure start-
ing with the reduced number of candidates.

The pattern preprocessing can also be performed in optimal
O(log log m) time. We do not describe the full pattern preprocessing phase
here, since it is similar to the O(logm) algorithm described in Section 2.3.
Here, using the approach described above for the search phase, we have
only O(log log m) stages and we choose the increasing block lengths to be
of the form: ki = m 1 - 2 , k0 = 1.

Breslauer and Galil went on to show a Q(log log m) lower bound for
parallel string matching over general alphabet. We show in later sections
that this lower bound can be limited to the preprocessing phase.

2.3.3 A LOWER BOUND FOR THE CRCW-PRAM

The model Breslauer and Galil used for the lower bound proof is similar to
Valiant's parallel comparison tree model. We assume the only access the
algorithm has to the input strings is by comparisons which check whether
two symbols are equal or not. The algorithm is allowed m comparisons in
each round, after which it can proceed to the next round or terminate with



PERIODICITIES AND WITNESSES. 65

the answer. We give a lower bound on the minimum number of rounds
necessary in the worst case. On a PRAM the algorithms also have to
perform some computations for allocating processors, deciding which com-
parisons to make, etc.; these actions come free of charge in the comparison
model. Therefore, a lower bound for the number of rounds in the parallel
comparison model immediately translates into a lower bound for the time
of the CRCW-PRAM .

The lower bound of O (log log m) rounds is proved first for a closely re-
lated problem of computing the period length of a string and it is shown
how it can be translated to the original problem. However, given the wit-
nesses, we will later show that the search phase can be performed optimally
in constant time. Thus, the lower bound holds only for the preprocessing
phase. Moreover, the lower bound does not hold for CRCW-PRAM when
fixed alphabet is assumed, and it is still an open problem whether paral-
lel string pattern matching over a fixed alphabet can be done in less than
O(log log m) time. Similarly, finding the maximum in the parallel decision
tree model has exactly the same lower bound, but for small integers the
maximum can be found in constant time on the CRCW-PRAM .

Breslauer and Galil gave a strategy for an adversary to answer
1/4 log log m rounds of comparisons after which it still has the choice of fixing
the input string S in two ways: in one the resulting string has a period of
length smaller than m/2 and in the other it does not have any such period.
This implies that any algorithm which terminates in fewer rounds can be
fooled.

We say that an integer k is a possible period length if we can fix S
consistently with answers to previous comparisons in such a way that k is
a period length of S. For such k to be a period length we need each residue
class modulo k to be fixed to the same symbol, thus if l = j mod k then
S1 = Sj.

At the beginning of round i the adversary maintains an integer ki which
is a possible period length. The adversary answers the comparisons' of
round i in such a way that some ki+1 is a possible period length and few
symbols of S are fixed. Let Ki = m1-4-(i-1) . The adversary maintains the
following invariants which hold at the beginning of round number i.

1. ki satisfies 1/2K, < ki < Ki.
2. If Sl was fixed, then for every j = I mod ki, Sj was fixed to the same

symbol.
3. If a comparison was answered as equal, then both symbols compared

were fixed to the same value.
4. If a comparison was answered as unequal, then

a. it was between symbols in positions belonging to different residue
classes modulo ki;.
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b. if the symbols were already fixed then they were fixed to different
values.

5. The number of fixed symbols fi- satisfies fi- < Ki.

Note that invariants 3 and 4 imply consistency of the answers given so
far. Invariants 2, 3 and 4 imply that ki is a possible period length: if we
fix all symbols in each unfixed residue class modulo ki to a new symbol, a
different symbol for different residue classes, we obtain a string consistent
with the answers given so far that has a period length ki.

We start at round number 1 with k1 = K1 = 1, It is easy to see that
the invariants hold initially. We show how to answer the comparisons of
round i and how to choose ki+1 so that the invariants still hold. We call the
multiples of ki in the range 1/2K i+1... Ki+1 candidates for ki+1. For a choice
of ki+i, comparison S1 = Sj must be answered as equal if l = j mod ki+1.
We say that ki+1 forces this comparison. Breslauer and Galil showed, using
elementary number theory, that at every stage there exists a candidate for
ki+1 in the range 1/2K i+1 . . .-Ki+1 that forces very few (at most 4m^losm)
comparisons, thus not fixing many positions. The adversary chooses such
a ki+1. Next we show how the adversary can answer the comparisons in
round i so that the invariants also hold at the beginning of round i + 1.

For each comparison that is forced by ki+1 and is of the form Sl = Sj

where l = j mod ki+1 the adversary fixes the residue class modulo ki+1

to the same new symbol (a different symbol for different residue classes).
The adversary answers comparisons between fixed symbols based on the
value to which they are fixed. All other comparisons involve two positions
in different residue classes modulo ki+1 (and at least one unfixed symbol)
and are always answered as unequal.

Since ki+1 is a multiple of ki, the residue classes modulo ki split; each
class splits into residue classes modulo ki+1. Note that if two positions
are in different residue classes modulo ki, then they are also in different
residue classes modulo ki+1; if two positions are in the same residue class
modulo ki+1, then they are also in the same residue class modulo ki. It is
not difficult to prove that the invariants still hold.

Theorem 2.4. Any comparison-based parallel algorithm for finding the pe-
riod length of a string So • • -Sm-1 using m comparisons in each round re-
quires at least log log m rounds.

Proof: Fix an algorithm which finds the period of S and let the adver-
sary described above answer the comparisons. After i = log log m rounds

to have a period length ki+1 by fixing each remaining residue class modulo
ki+1 to the same symbol, different symbol for each class. Alternatively, the
adversary can fix all unfixed symbols to different symbols. Note that this

The adversary can still fix S
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choice is consistent with all the the comparisons answered so far by invari-
ants 3 and 4, and the string does not have any period length smaller than
m/2. Consequently, any algorithm which terminates in less than 1/4 log log m
rounds can be fooled. n

Theorem 2.5. The lower bound holds also for any comparison-based
string matching algorithm when n = O(m).

Proof: Fix a string matching algorithm. We present to the algorithm
a pattern P0 ... Pm-1 which is S0 ,.. Sm-1 and a text TO ... T2m-2 which is
S1 .. -S 2 m - 1 , where S is a string of length 2m generated by the adversary
in the way described above. (We use the same adversary that we used
in the previous proof; the adversary sees all comparisons as comparisons
between symbols in S.) After 1/4 log log 2m rounds the adversary still has
the choice of fixing S to have a period length smaller than m, in which case
we have an occurrence of P in T, or to fix all unfixed symbols to completely
different characters, which implies that there would be no such occurrence.
Thus, the lower bound holds also for any such string matching algorithm.
D

The combination of the algorithm in Section 3.2 and the lower bound
proof above provide the following tight bounds for the time complexity for
both, testing whether a given string is periodic and for string matching in
case n = 2m — 1. In both cases the bound is 0(|m/p| + Iog log1+p/m 2p).

In the lower bound proof above we can see that the limitation lies within
the pattern preprocessing phase; faster text searches were indeed achieved
as we show next.

2.4 Deterministic samples

Another useful concept is the deterministic sample, DS for short, intro-
duced by Vishkin. Let P be a nonperiodic pattern string of length m. A DS
of P for k shifts (k < m/2) is an ordered set A of positions of the pattern
and a number /, such that if the positions are verified to match a candidate
i in the text, then all other candidates in the interval [i — / + 1, i + k — /]
can be eliminated. The elimination of these candidates is possible because
a mismatch is guaranteed to exist with at least one of the DS positions
that matched i. If the DS positions, when checked, do not match a certain
candidate then this candidate can be trivially eliminated. The size of a DS
is the size of the ordered set A.

The DS is crucial for very fast string matching algorithms since a very
small DS (of size logm for m/2 shifts) can be found. Let the text string
T be partitioned to disjoint consecutive h-blocks. We say that T is h-good

67
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Fig. 2.3. A 2-size DS of x for 8 shifts: A = 2,4 and / = 6.

if all the h-blocks have at most two candidates left in them. The opti-
mal elimination of candidates using DS is best expressed by the following
lemma.

Lemma 2.6. // text T is h-good and an h-size DS for k shifts is given,
then T can be made k-good in optimal constant-time on an n-processor
CRCW-PRAM .

Proof: Let A be the ordered set of the h-size DS. For each k-block, there
are initially at most 2k/h candidates and h/2 processors are available per
candidate. For each candidate in the k-block, make h comparisons with
the positions of A. If a candidate has a mismatch, it provides a witness
against the candidate. Find the leftmost (Is) and rightmost (rs) survivors
in the k-block. By the definition of DS, every survivor i in the middle has
at least one mismatch in the DS positions aligned with Is and rs. For each
such i find a mismatch by making 2h comparisons with the DS positions
aligned with Is and rs. Only Is and rs survive. n

The current way of using the DS in the search phase was originally
called the principle of diet by Galil. It follows from Lemma 3 that if we
can make T log m-good (reduce the number of surviving candidates to at
most two per log m-block), we can apply the log m-size DS to eliminate
most of the candidates in constant time, so that we are left with at most
two surviving candidates in every m/2-block, and these can be checked
naively. Obviously we would first have to compute the log m-size DS. It
means that it suffices to look for a nonperiodic substring z of the original
pattern of length logm. In the preprocessing we can easily find such a z
and its first occurrence in the pattern (see Corollary 3). In the text search
we look for the occurrences of z in the text. We are able to eliminate all the
candidates that do not have an occurrence of z in an offset corresponding its
first occurrence in the pattern. Since z is nonperiodic, there is at most one
survivor per log m/2-block; i.e., as needed above for using DS and finishing
the search. Thus, the diet reduces the size of the pattern from m to logm
and can be repeated to reduce it even further. Having to search for z we
need a DS for z, which we also compute in the preprocessing phase and
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Fig. 2.4. Aligned copies of the pattern and a column i.

during the text search phase we have only to make T log log m-good. We
next prove the existence of DS of size log m for m/2 shifts and a method
to compute it.

Lemma 2.7. For any nonperiodic pattern of length m, a deterministic
sample of size log t for t < m/2 shifts exists.

Proof: Consider t copies of the pattern placed under each other, each
shifted ahead by one position with respect to its predecessor. Thus copy
number k is aligned at position k of copy number one. Call the symbols
of all copies aligned over position number i of the first copy column i (see
Figure 4). Since we assume that the pattern is shorter than twice its period
length and there are t < m/1 copies, for any two copies there is a witness
to their mismatch.

Take the first and last copies and a witness to their mismatch. The
column of the mismatch has at least two different symbols and thus one of
the symbols in that column, in either the first or the last copy, appears in
the column in at most half of the copies. Keep only the copies which have
the same symbol in that column to get a set of at most half the number of
original copies, which all have the same symbol at the witness column. This
procedure can be repeated at most log t times until there is a single copy
left, say copy number /. Note that all columns chosen hit copy number /.
The deterministic sample consists of the positions in copy number / of the
columns considered. There are at most log t such columns. If this sample
is verified for position i of a text string no other occurrence is possible at
positions i — f + 1 to i — f + t. D

One can find such a deterministic sample in parallel by the con-
structive proof of Lemma 2.7. This way of DS computation takes
O(log2 m/log log m) time with an optimal number of processors.
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2.4.1 FASTER TEXT SEARCH USING DS

Vishkin developed an optimal O(log* ra)1 time search phase algorithm. The
preprocessing in Vishkin's algorithm takes O(log2 m/log log m) as described
above. He uses a DS of size log m for m/2 shifts. In his algorithm Vishkin
compares simultaneously increasing subsets of the positions of the single
log m DS. Initially, he compares the first position of the DS and eliminates
at least half of the candidates, as follows from the construction of the DS.
Then he has more processors than candidates, and he can use them to
verify the next two positions of the DS concurrently, etc. The method
used, creating exponential acceleration, is called the accelerating cascade
design principle by Cole and Vishkin.

Galil gave a constant time search phase algorithm. He used the idea
of diet described above, reducing the text search to the goal of making
the text log log m-good. In the following paragraphs we use the concept
of segments which was introduced by Galil for improving the Boyer-Moore
algorithm.

Definition: Let u be the period of some periodic substring z of the pattern
P that we look for in the text T. A segment is a maximal substring of T
containing z having the same period length as z. We call an occurrence of
z at position i an initial occurrence if there is no occurrence of z at position
i— \u\ and & final occurrence if there is no occurrence of z at position i+|u|.

Fact 2. Given an occurrence of a periodic string z in T and the length of
the period of z, one can find the initial (final) z in its segment in constant
time with linear number of processors on the CRCW-PRAM .

Galil used the following technique for making the text log log m-good.
Without loss of generality, he considered a text string of size 5/4m. In this
case any occurrence of the pattern must start in the first 1/4m positions,
and since the pattern is non-periodic only one occurrence is possible. His
method was based on choosing a specific, very small substring z of size
O(log log m) from the second or third quarter of the pattern. Assuming
there is an occurrence of the pattern in the text, each occurrence of z in
the second or third quarter of the text (assumed to have five quarters)
corresponds to an occurrence of z in one of the first three quarters of the
pattern. He showed that we can find, in constant time and O(m) processors,
one occurrence of z in the second or third quarters of the text. This single
occurrence in the text, termed the found z, was used to eliminate all but
O(m/log log m) candidates.

• If z is non periodic, it is easy to see that it could appear only
O(m/log log ra) times in the pattern. The found z must correspond

1The function log* m is defined as the smallest k such that log(k) m < 2, where
g(1) m = log m and log(i+1) m = log log(i) m.
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to one of the occurrences of z in the pattern. In the preprocessing
we find all the occurrences of z in the pattern. Thus, after finding
the occurrence of z in the text we can mark as survivors only the
candidates for which the found z corresponds to an occurrence of z
in the pattern. Subsequently, there is at most one survivor in each
log log m/2-block in the text.

• If z is periodic, the same approach may not work because there can
be too many occurrences of z in the pattern. Instead we look at the
segments in which z is found both in the pattern and in the text.
Two segments of z in a string can overlap by at most , otherwise
the periodicity continues and they must be part of the same segment.
Let a be the segment of the found z in the text and let B be the
corresponding segment in the pattern. Either the initial occurrences
of z in a and B correspond to each other or the final occurrences in
a and B do . In the preprocessing we find all the segments of z in
the pattern and all their initial and final occurrences of z (see Fact 2)
and we store them in different processors. After locating the found z
in the text we find the initial and final z in its segment a. Again, we
mark as survivors all candidates for which the initial (final) z in a
corresponds to an initial (final) z in a segment in the pattern. Since
the segments cannot overlap by more than there cannot be more
than one survivor in each log log m/2-block.

The z chozen is the most frequent substring of length log log m in the
second quarter of the pattern. The actual finding of the single occurrence
of z inside the text is a bit more involved and it is divided into different
cases according to the size of the alphabet. We use a hitting set which is
a set of positions in the second and third quarters of the text such that if
there is an occurrence of the pattern in the text, at least one position in the
set must be a position of an occurrence of z. The choice of z guarantees the
existence of the hitting set. The latter is computed in the preprocessing
phase. We do not give the details here.

The preprocessing time in Galil's algorithm was dominated by
the computation of the logm size DS, which at that time required
O(log m/ log log m) time and is worse than the preprocessing time in Bres-
lauer and Galil's O(log log m) algorithm. Goldberg and Zwick first provided
a solution with O(log m) preprocessing and constant search utilizing larger
deterministic samples. However, a solution that combines the constant
time search phase with a very fast O(log log m) preprocessing is possible
and it is described in the next section.

2.5 The fastest known CRCW-PRAM algorithm

Here we describe algorithms that reach two main goals in the area of parallel
string matching.
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• An O(log log m) preprocessing phase, combined with a simple con-
stant time search phase algorithm.

• A constant expected time Las Vegas algorithm for computing the
period of the pattern and all witnesses. This suffices, as we shall
see, for solving the full string matching problem in constant expected
time.

These goals were reached mainly by providing new methods for comput-
ing DS for sufficiently long substrings of the pattern, and for computing
witness information. One idea that prompted the discovery of the new
methods is an observation following Breslauer and Galil's O(log log m) al-
gorithm: If one precomputes the witnesses, it is enough to find DS for a
nonperiodic substring of size r = m1/3 in which case ra = r3 processors
and space are available for the task. This is because one can use such DS
to decrease the number of candidates to one in every r/2-block and can
then apply a constant number of rounds of duels to obtain an m/2-good
text. Another idea was that if we find a sufficiently large substring that
is periodic with period length p < r/2 (which we call periodicity), we can
take just two elements (the end of this periodicity and a shift by p) to serve
as a deterministic sample.

2.5.1 COMPUTING DETERMINISTIC SAMPLES IN CONSTANT TIME

Let x be a nonperiodic string of length r (a substring of the pattern in our
algorithms). We first show how to construct a constant-size DS of x for
log log r shifts in constant time with r2 log log r processors. This constant-
size DS is later used as the first step in the text search phase. Recall that
our definition of DS includes a position / which defines the interval around
a candidate that survived the DS in which other candidates are eliminated.

1. If there exists a position i in x such that xi = xi+j, (or xi = xi-j) for
every 1 < j < log r, then we take A — {i} and / = log r (or A = {i}
and / — 1) as the DS for log r shifts.

2. Otherwise, every symbol in x occurs very often (with distance shorter
than log r between neighboring occurrences). So every symbol occurs
at least r/log r times in x, which implies that there are at most log r
different symbols in x. Consider all disjoint log log r-blocks in the
first half of a;. Since there are (log r)loglogr different strings of size
loglogr over log r symbols and (log r)log log r < r/(21oglogr), some
non overlapping log log r-blocks are identical in the first half of x.
Find such a block y in constant time using r2 log log r processors.
Let z be the substring between the two copies of y (z could be the
null string). The substring yzy has a period p = \yz\ < r/2, this
substring is our desired periodicity. Since x is nonperiodic, period p
has a mismatch in x. Let q be the smallest (largest) position such that
xq = Xp+q to the right (left) of the first copy of y. Then A = {q, q+p}
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and f = 1 (A = {q,q + p} and / = log log r) is the constant-size DS
for log log r shifts.

Next we show how to construct a log k-size DS of string x for k shifts,
k < r/2, in constant time using r3 processors and r2 space. Here too we
look for a periodicity by looking for a repetition of a large enough block.
This time we consider k-blocks starting at positions i for 0 < i < k.

Using k3 < r3 processors, the algorithm checks in constant time if x
has a periodicity, i.e, if a k-block appears at least twice. If we find such
a repetition, hence a periodicity, we are done. As described above for the
constant size DS, we take the two elements marking the end (start) of
the periodicity inside x and we get a constant size DS. If there is no such
periodicity, the case is somewhat more complicated, as described next.

Consider (for discussion only) the compacted prefix tree T of all the
k fc-blocks (each path from the root of T to a leaf corresponds to a block
and every internal node has a degree of at least two). Since T has k leaves,
there is at least one leaf v of depth < log k. The nodes along this path
represent log k positions by which the block corresponding to the leaf is
different from all the other fc-blocks. We show how to find this block and
the log k positions that serve as the DS.

We first compute a k x k 0-1 matrix: one row for each block. The matrix
is set initially to 0. With r processors per each pair of blocks, we find in
constant time the smallest position l such that the two blocks differ at / (a
node in T). Set to 1 entry l in the two rows i and j. Now we only have to
find a row with no more than s = log k I's and compress their positions to
an array of size s. We first replace all I's with their corresponding positions.
Then we use the deterministic polynomial approximate compaction (PAC)
of Ragde. A d-PAC is an optimal algorithm that compacts an array of size
n with at most x nonzero elements into an array of size xd (assuming that
xd < n). Ragde gave a constant-time optimal (4 + e)-PAC and Hagerup
a (1 + e)-PAC for any e > 0. (Below we will use also the latter.) Ragde
used his PAC to compress an array of length n with at most x items (—
nonzero entries) into an array of size x in time O(log x/loglog n). In case
the number of items is larger than x the algorithm fails. Note that when
log x = O(log log n) the time is 0(1). We use it here with x = log k for
each row of the matrix, so it takes constant time. This algorithm succeeds
at least in one of the rows in the matrix (at all those with < log k elements)
and yields the desired DS. Each row corresponds to a k-block in x. Let 6
be the start position of the k-block corresponding to the block we found.
We take the positions in the row to be the required DS with f = k — b. For
example, consider Figure 3. For the block B = 11010101, its start position
in x is 2 and / is 6.
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2.5.2 APPLYING DS TO OBTAIN THE FASTEST ALGORITHMS

As we have mentioned before, the computation of the DS was the dom-
inating factor in the slow preprocessing phase required for Vishkin's and
Galil's fast search phase algorithms. In Galil's algorithm, a computation
of the hitting set also took place, but it can be performed in O(log log m)
time using optimal number of processors if the substring z we look for is
short enough. However, the ability to compute DS in constant time for
large enough (size = m1/3) substrings of the pattern, combined with the
constant size DS for substrings of size < log log m solved the problem in
a uniform way. The substrings for which these DS are computed are the
first nonperiodic substrings of the required length in the pattern P. By
Corollary 3 of the GCD Lemma these nonperiodic substrings exist. Let l
be the length of one such required nonperiodic substring z. Since we have
at least l2 processors we can find z easily by first checking the periodicity
of a prefix of the pattern of size 21. We can do this in constant time using
m processors. If it is not periodic we are done, otherwise we find the end
of the periodicity (as in the DS computation) and use the substring of size
/ there as our z. The scheme of the constant-time search phase CONST-
SEARCH is given below. It still needs O(log log m) time preprocessing
phase, since it requires the witness information.

Procedure CONST-SEARCH(P,T)

1. Find the first nonperiodic substring x of P of length r = ra1/3 and
the first nonperiodic substring x' of x of length 21ogr.

2. Use the constant-size DS of x for log log r shifts to make T log log r-
good.

3. Use the loglogr-size DS of x' for logr shifts to make T logr-good.
4. Use the logr size DS of x for r/2 shifts to make T r/2-good.
5. Use a few rounds of dueling to make T m/2-good. (First to reduce

the number of candidates per block to at most one, then by squaring
the block size in each round.)

6. Check naively the surviving candidates.

2.5.3 A NEW METHOD TO COMPUTE WITNESSES : PSEUDO-PERIODS

The witnesses of a substring P' of P of size m1 - 2 - k can be computed in
O(k) time using the first k stages in the preprocessing of Breslauer and
Galil O(loglogm) algorithm. Hence, we derive the following conclusion.

Corollary 4. Using CONST-SEARCH, we get an O(k)-time n-processors
algorithm for string matching in case m — O(n1-2-k ).

The very fast search algorithm above is used in the preprocessing of a
given pattern string. The following definition and fact are required.
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Definition: If position i in text T is not an occurrence of a pattern P, a
position j such that 7} = Pj-i is called a witness to non-occurrence at i.

There is a strong correlation between witnesses to non-occurrences and
witnesses against possible periods which allows us to use our best search
algorithms in the preprocessing of the pattern. It is best described by the
following fact.

Fact 3. Let z be a substring of pattern P that occurs in position k in P.
Apply a search algorithm for occurrences of z in P and let i be a candidate
that was eliminated in this search. The witness to the non-occurrence at i
is a witness against j = i — k (being a period of P).

When we eliminate a candidate i using a duel, we immediately get a witness
to the non-occurrence at i. When we eliminate a candidate using DS we
can also get a witness to its non-occurrence in constant time: Let the DS be
of size k, we have k processors per candidate. If the candidate is eliminated
because (at least) one of the DS positions does not match then this position
can serve as a witness. If the candidate is eliminated by the first or last
surviving candidates in its block, then we can use the k processors assigned
to this candidate to check which of the DS positions, aligned with the first
or last candidates does not match.

Corollary 4 and Fact 3 can be used to derive an expected constant time
Las Vegas algorithm. The scheme is very similar to the lower bound proof
given in Section 2.3.3. There the adversary maintained a number represent-
ing the smallest possible period length. This number was replaced at each
new stage by a larger number that was divisible by its predecessor, allowing
the adversary to maintain consistency with his previous answers. The al-
gorithm here uses essentially the same method as in the lower bound proof,
only here the algorithm is the one that maintains a number representing
the smallest possible period length. We call this number a pseudo-period
and it is the smallest possible period only in the sense that the pattern
may not have a period shorter than this number. It has an operational
definition: Given a string P of length m, if we compute witnesses against
all i < m/4 except for multiples of q, we say that q is a pseudo period of
P. It follows from this definition that if P is 4-periodic, q must divide the
period p of P. In the following discussion, when we say we compute the
period of P we mean computing r = min(p, m/4) and witnesses against
positions i, i < r/4.

Using Corollary 4 with k = 1, we can compute a large pseudo-period in
constant time, and witnesses against non-multiples of it. These witnesses
are also witnesses against non-multiples of the real period of the pattern.

Procedure PSEUDO-PERIOD(P, m);
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1. Look for the first nonperiodic substring z of size 2^/m in P.
If such a z does not exist, find q - the period of P (q < \/m) and
naively compute witnesses for i < q. return (q).
If such a z exists, compute witnesses for it naively, and go to Step 2.

2. Use the optimal constant-time procedure CONST-SEARCH to find
all occurrences of z in P and witnesses to non-occurrences. Let t be
the start position of z in P. If a witness to non-occurrence was found
for position i, then it is a witness against i — t being a period of P
(Fact 3).

3. Construct the (m — |2|)-bit binary string b such that 6; = 1 if i is an
occurrence of z, bi = 0 otherwise. Compute q the period of b in case
q < rn/4 and witnesses of 6 against non-multiples of q. From these
compute witnesses of P against the same positions. This computation
exploits the special form of 6; it contains at most ^/m 1's with distance
of at least /m between them, since z is non-periodic and of length
2/m. Thus, we can compute witnesses of 6 by considering only the
1's.

(a) Divide b into /m-blocks. In each such block there is at most
one 1.

(b) Record the position of the 1 in every given block in the first
element in that block. (Now every processor can read from the
first element of a block the position of the 1 in that block.)

(c) Let t be the position of the first 1 in 6. For positions i < t, t is
a witness against t — i. If t > m/4 this substep is done.

(d) Otherwise consider i > 2t (i.e., i — t > i). If bi = 0 then i is
a witness against i — t. If bi = 1 i — t is a potential period of
b since it shifts the first 1 to 1. Use the \/m processors for the
block of i to check if i — t is a period of 6 by checking for all k
such that bk = 1 that (bk+i-t = 1 or k + i — t > m — z) and
(bk-i+t = 1 or k — i +1 < 0). If all these tests succeed i — i is a
period of 6. If the test with k failed, k + i — t or k is a witness
against i — t. Compute q the smallest period of b.

(e) From the witnesses of 6 compute witnesses of P. Let w be the
witness of 6 against j. Assume bw = 0 and bw-i — 1. (The other
case is similar.) Let j be the witness to non-occurrence of z at
w in P. One can verify that w +1 + j is a witness of P against
i.

Procedure PSEUDO-PERIOD can be performed in constant time and
O(m) processors on the CRCW-PRAM . It computes a q which satisfies:
P1. If q < /m, q is the real period of P.
P2. If q > /m, then q is a pseudo period of P.
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Given q integers, let LCM(k, q) be the minimum of k/4 and the LCM of
the q integers. Given a k x q array B of symbols and for every column c its
pseudo period qc < k/4 and witnesses against non-multiples of qc, Proce-
dure FIND-LCM computes LCM(k, q) of the pseudo periods and witnesses
against non-multiples of LCM(k, q) smaller than k/4 in constant time with
kq processors.

Procedure FIND-LCM(k,g):

1. Construct a (k/4 — 1) x q array B': in the c-th column of B', write
1 in the multiples of the pseudo period qc and 0 in other places.

2. For each row that is not all 1's, any entry 0 provides a witness against
the row number.

3. If there is a row with all entries I's, return the smallest row, otherwise
return k/4.

Recall that the main problem is to compute the period and the witnesses
of the pattern P. We describe next an O(log log m) time algorithm for the
main problem. The algorithm consists of rounds and maintains a variable
q that is increased in every round. The invariant at the end of a round is
that q is a pseudo period of P. Initially, q — 1, We describe one round
of the algorithm. A witness against j found during the round is a witness
against iq in P.

1. Divide P into q-blocks and make an array B of k = m/q rows and q
columns, where column j contains all Pi for all i = j mod q.

2. For each column c of B, find qc, its pseudo period, and witnesses
against non-multiples of qc using PSEUDO-PERIOD. If all pseudo
periods are < /k, all pseudo periods are real periods. Using FIND-
LCM, compute LCM(k, q) and witnesses against non-multiples of
LCM(k,q) smaller than k/4. The period of P that we compute is
q . L C M ( k , q ) . (Recall that by computing the period we mean com-
puting min(m/4,p).) Stop.

3. Otherwise, choose such a column c with qc > /k. Witnesses against
non-multiples of qc were computed in Step 2. q <— q • qc.

4. If q < m/4, then go to the next round; else stop.

Note that in the first round we have one column and we compute a
pseudo period of P by PSEUDO-PERIOD. In subsequent rounds q -qc is a
pseudo period because we compute witnesses for all non-multiples of q • qc.
Since the new value k is at most /k, there are at most O(loglogm) rounds.

This algorithm follows the structure of the lower bound proof. In that
proof the 'possible period length' is maintained, which is the minimum
number that can still be a period based on the results of all the comparisons
so far. The lower bound argument maintains a possible period length
q < m1-4- i in round i and forces any algorithm to have at least 1/4 log log m
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rounds. Here, the number maintained q is a pseudo period, q may not be
a period length but it must divide the period if the pattern is 4-periodic.

2.5.4 A CONSTANT EXPECTED TIME ALGORITHM

We present a constant expected time algorithm for computing witnesses,
based on the pseudo-period technique. Using CONST-SEARCH this algo-
rithm yields a constant expected time algorithm for the full parallel pattern
matching algorithm.

First we execute three rounds of the deterministic algorithm and then
execute Round 4 until it stops. At the beginning of Round 4, q is a pseudo
period and B is the k x q array, k = m/q, created by Step 1 of the deter-
ministic algorithm. We have q > m7/8 and k = m/q < m1/8.

Round 4:

1. Randomly choose s = m/k2 columns from B and find the period of
each chosen column naively with k2 processors. Using naive compar-
isons also compute witnesses against nonperiods. Using FIND-LCM,
compute h — LGM(k, s) and witnesses against non-multiples of h.

2. If h = k/4, the pattern P is not 4-periodic. Stop.
3. Otherwise, check if h is a period of each column of B. If h is a period

in all columns, qh is the period of P; Stop. Otherwise, Let C be the
set of columns where h is not a period. One can show that \C\ < m1/2

with high probability.
4. Using Hagerup's (1 + e)-PAC, try to compact C into the set C' of

size ra3/4. (If \C\ < m1/2, the compaction will succeed.) If the
compaction fails, try again Round 4 starting from Step 1.

5. If the compaction is successful, compute all periods of columns in
C' naively (we have enough processors because ra3/4k2 < m). Using
naive comparisons also compute witnesses against nonperiods. Using
FIND-LCM, compute h' = LCM(k,m3/4) of these periods and wit-
nesses against non-multiples of h'. The period of P that we compute
is min(m/4, q-LCM(h, h')).

The probability that the PAC will fail is very small, and the expected
number of rounds is smaller than 5. Thus, we presented above a constant
expected time algorithm for computing witnesses of a string and using
CONST-SEARCH also for the general parallel string matching. In fact, we
can prove a somewhat stronger property of the algorithm: it has constant
time with very high probability (probability exponentially close to 1).

2.6 Fast optimal algorithms on weaker models

The results presented in the previous sections provide the founda-
tion for fast optimal algorithms on CREW-PRAM , EREW-PRAM and

OFF-LINE PARALLEL EXACT STRING SEARCHING
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even a hypercube . There exist general simulations for any CRCW-
PRAM algorithm on the CREW or EREW models. However, these sim-
ulations suffer from a O(logp) loss in time and optimality, where p is the
maximum number of processors working in any single stage of the CRCW-
PRAM algorithm. A lower bound of O(logn) for computing a Boolean
AND of n input bits on any CREW-PRAM implies an O(log n) lower bound
for string matching in this parallel computation model, as well as the weaker
EREW-PRAM . No algorithm of those mentioned so far (except Vishkin's
O(logm) search phase) could have been translated to an optimal O(logm)
time algorithm on these models. Czumaj et al. came up with a new simple
method for computing witnesses, a method that allowed them to tackle
successfully the problems raised by these models.

Their method is a modification of the pseudo-period technique pre-
sented in Section 5. It consists of a divide and conquer approach to the
period computation problem. They observed that once we found a pseudo-
period for the pattern and divided the pattern to the 'equivalence classes'
modulo the pseudo-period, we actually have to solve the original problem
(finding the period and witnesses against non-multiples of the period) in
every equivalence class separately. Using the FIND-LCM procedure, the
various real periods that we get can be combined to form the real period of
the full pattern. This is, in fact, a recursive form of the previous algorithm
and it can be stated formally as follows.

procedure FIND-PERIOD(P, m)

1. q::=PSEUDO-PERIOD(P, m). If q < /m, Stop: q is a real period.
2. Divide pattern P into q substrings ci- = PiPi+q ... for all i = 1,... ,q.
3. For all substrings ci in parallel do:

FIND-PERIOD(ci,m/q)
4. Use FIND-LCM to collect witnesses from the recursively processed

Cj's and to find the period of the input string; A witness against j in
one of the Cj's is a witness against jq in P.

The recursion representing the time complexity of this procedure in the
CRCW-PRAM model is as follows.

The solution of this recursion is T(m) = O(loglogm).
On the CREW-PRAM (and also the EREW-PRAM ) one can perform

the nonrecursive part in O(log m) (instead of 0(1)). We get the recursion

whose solution is T"(ra) = O(logm).
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The algorithm presented above (FIND-PERIOD) is not optimal. It
can be made optimal using the following modification, which works well
on all PRAM models. The idea is to use the algorithm to compute pe-
riod and witnesses for large enough substring of P such that the total
work is still linear, and to use the obtained information with the same
technique (pseudo-period) to obtain witnesses and period for the whole
pattern. Let t be the time of the preprocessing on the relevant model (on
CRCW-PRAM t = O(loglogm) and on the other models t = O(logm)).

procedure OPTIMAL-PREP (P, ra)
1. Use FIND-PERIOD to preprocess the prefix z of size 2m/t of P.

If it is non periodic, compute all witnesses and continue to Step 2.
Otherwise, look for the end of the periodicity. If the periodicity
doesn't end, then the pattern P is periodic with the period found
for the prefix; Stop. Otherwise, use the nonperiodic substring of
size 2m/t at the end of the periodicity as z. Use FIND-PERIOD to
compute all witnesses for this z. The total work done in this stage
is O(m) and the time is O(t) (Using general simulations on CREW-
PRAM and EREW-PRAM ).

2. Use one step of PSEUDO-PERIOD with the above z (instead of a z
of length 2/m) implemented on m/t processors. For the search of z
inside P use the optimal search algorithm as described for each model.
The pseudo period q that is found is of length at least |z|/2, since z
is nonperiodic. Divide pattern p into q substrings ci = P iP i+q . . . for
all i = 1, . . . ,q . Each substring ci is of length < t.

3. Let s be the smallest number such that s • |ci| > t. Assign a processor
to each s ci's. Since s-|ci| < 2t, m/t processors suffice. Each processor
processes s ci's sequentially, computing the period and witnesses for
each ci in 0(t) time.

4. Collect witnesses from the processed Cj's: a witness against j in one
of the Cj's is a witness against jq in P.

For the text search on the CREW, we use the simple opti-
mal algorithm of Vishkin. For the preprocessing we use the above
OPTIMAL-PREP algorithm. Note that we use the algorithm for the search
phase also in Step 2 of OPTIMAL-PREP , inside PSEUDO-PERIOD, to
search for z with an optimal number of processors. We do not need DS.
The last step in PSEUDO-PERIOD which involves finding the period of a
0,1 6-string can also be performed in optimal O(log m) time on the CREW-
PRAM and EREW-PRAM .

2.6.1 OPTIMAL ALGORITHM ON THE EREW-PRAM

We assume here that log n — O(log m); i.e. n is polynomial in m. Otherwise
the search phase is dominated by O(log(n/m)) = O(logn) which is the
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minimal time it takes to spread O(n/m) copies of the pattern to all non
overlapping m-blocks in the text.

The text search has a similar scheme to the one used for the CRCW-
PRAM , but here we take care of read and write conflicts. It is constructed
from a constant number of stages each taking O(log m) time. We first
make the text T log rn-good by processing log m-blocks sequentially with
n/log m processors. Then we apply DS to surviving candidates, item by
item, avoiding read and write conflicts. The last stage includes performing
duels concurrently until naive checks are possible. This last step which
included squaring the sizes of k-blocks needs a more complex schedule in
order to avoid read conflicts. Reading by processors can be considered as
requests from memory. If the number of requests is mc for some c < 1 then
they can be answered in optimal O(log m) on the EREW-PRAM . This
is true since in this case we can use sorting in O(logm) time and O(m)
work on the EREW-PRAM . We refer to this as sparse sorting. Instead of
squaring we use an expansion step: from k-good blocks we move only to
k4/3-good blocks. This supports sparse sorting of read/write requests from
the shared memory. The number of requests (symbol testing) during every
expansion step is small (O(md) for a constant d < 1).

The scheme of the EXPANSION procedure is given below, followed by
the description of optimal O(log m)-time text searching.

procedure EXPANSION(k,4/3)
1. In every k-block we have at most one candidate. It has an offset /

in the block which we distribute into the first k1/3 positions of the
k-block.

2. Now the j-ih processor from the i-th block reads the i-th position of
the j-th block (no read/write conflicts here).

3. Every duel must get a proper witness, they are read from global
array of witnesses. Every duel sends a request for the proper witness
position. In each k4/3-block we have (k1/3)2 = k2/3 requests (duels).
There are m/k4/3 such blocks and the total number of requests is
bounded by k2/3 • m/kr4/3 = m/k2/3 which is O(md) if k = mc (where
c, d < 1). To avoid read conflicts we can use the simple EREW-
PRAM sparse sorting.

4. When all duels know their text positions they send requests to get
a text symbol from the proper text position. The scheme of getting
text symbols is the same as in Step 3. Any lost duel determines
a witness against the corresponding candidate. Again, to record the
new witness, we have to simulate a concurrent write by sparse sorting.
If all duels are won for a given k4/3-block, this candidate survives.

Expansion can be applied similarly if initially we have at most two can-
didates per k-block.
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procedure OPT-SEARCH (P,T)

1. Process duels sequentially in every logm-block in the text to make T
logm-good.

2. Use logm-size DS to make T k = (m1/3)-good.
3. call EXPANSION(k,4/3) a few times (with increasing k) to make T

m/2-good.
4. Check naively surviving candidates.

The pattern preprocessing is essentially the same as the one for the
CREW-PRAM . One needs to verify that no concurrent reads are used.

The above algorithms for the EREW-PRAM were also modified to
work on a hypercube . For this model, they show that string matching on
general alphabet requires O(logm) time and O(n log m) work. They give
an algorithm that matches these lower bounds.

2.7 Two dimensional pattern matching

The notions of witnesses and DS, developed for the one dimensional case,
are used also in solving the two dimensional (2D) pattern matching prob-
lem. Similarly to the one dimensional case, the algorithms for the 2D prob-
lem work in two main phases: a preprocessing phase and a search phase.
We use the search phase description to demonstrate the application of the
above notions in the 2D case. We do not discuss here the preprocessing
phase since it is quite involved.

We show how to find all occurrences of a 2D pattern P of size m x
m in a text T of size n x n in O(l) time and O(n2) work following the
preprocessing of the pattern. We use here the notion of h-periodiciiy (or
horizontal periodicity), which is string periodicity generalized to 2D along
the horizontal dimension.
Definitions: A period of the pattern is a vector v such that if we place
a copy of the pattern over itself shifted by this vector then no mismatches
exist in the overlapped region. A horizontal period is a horizontal such
vector. A witness against period v is a pair of positions (a, a + v) in the
pattern that the characters in them do not match. A candidate is a location
in the text which can serve as the top left corner of an occurrence of the
pattern. The range of a candidate is the area covered by an occurrence of
the pattern if it starts in this candidate. Two candidates are compatible
if the pattern occurrences assigned to them match wherever they overlap
(their difference is a period). If two candidates are not compatible then we
can eliminate at least one of the two by a duel using the witness against
their difference being a period. The pattern P is h-periodic if it has a
horizontal period vector of length /, / < m' where m' = m/2.

We assume that P is not h-periodic; as in the one dimensional case the
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algorithm can be generalized to handle the h-periodic case. The following
lemmas are crucial for the algorithm.

Lemma 2.8. Some row of P (considered as a string) has a period of length

Proof: Assume all the rows have periods with length < . The LCM
of these periods must be smaller then m/2 and it is a horizontal period of
P, a contradiction. O

The following lemma extends the notion of DS to two dimensions.

Lemma 2.9. There exist a set of at most logm positions in P and a num-
ber f (a DS) such that if they are verified to match a candidate q = (i, j)
in the text, then all other candidates in the same row as q in the horizontal
interval [j — f + 1, j + m' — /] can be eliminated, i.e., they do not start an
occurrence of the pattern.

Proof: Let P' be a one-dimensional string that is constructed by concate-
nating the columns of P. As in Vishkin's construction for a string of length
m, we put m/2 copies of P' one on top of the other, with m positions be-
tween neighboring copies, and compute DS of size logm. This DS of P'
gives a DS of P due to the obvious correspondence. n

The search phase consists of four stages, each takes O(l) time and uses
O(n2) operations. The text is divided into disjoint blocks of size m' x m',
m' = m/2. All text blocks are processed in parallel. The description that
follows is for a single text block B.

1. All the rows of B are processed in parallel. Let row r be the row of
P given by Lemma 2.8. We find all occurrences of r beginning in B
using the fast optimal one dimensional algorithm in O(l) time and
O(m' ) work. Only candidates such that r rows below them there is
an occurrence of row r survive. Since row r has a period of size at
least at most candidates survive in each row of B

2. All the rows of B are processed in parallel. At most two candidates
in every row survive this step. Consider a row r' in B.
For each surviving candidate c in r', we compare in parallel the char-
acters of the DS, properly aligned. We eliminate candidates for which
a mismatch was found. We find the first and last candidates in r' that
survived the DS matching and eliminate all other candidates in r' (ac-
cording to Lemma 2.9, similar to the one dimensional algorithms).
This takes O(l) time and O(m') work for each row r'.

3. We have at most two survivors in each row of B for a total of O(m')
following Step 2. All pairs of surviving candidates in B are dueled in
parallel in O(l) time and 0((m')2) work. Now all surviving candi-
dates in B are mutually compatible.
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4. Each text position that is in the range of at least one candidate is
assigned one such candidate. (All of these candidates expect the same
text symbol.) Comparisons are performed with the corresponding
pattern positions. For any mismatch found, we need to eliminate all
candidates such that the mismatch falls in their ranges. This is done
by assigning to each candidate one of the mismatches in its region
and eliminating those candidates to which a mismatch is assigned.
The two assignments are quite simple and we omit the details here.

The text search algorithm described above works in optimal constant
time. The computation of the DS can also be performed in optimal constant
time. The rest of the preprocessing (computation of witnesses) can be
performed in optimal O(loglogm) time.

2.8 Conclusion and open questions

We tried to demonstrate that a few basic concepts constitute the core of
the parallel string matching algorithms. The progress achieved in the study
of these algorithms resulted from a better understanding of these concepts
and the finding of better ways to compute the corresponding information.

In Section 4, we showed a tight bound of Q(\m/p] + Ioglog1+p/m 2p)
for the problems of testing whether a given string is periodic and for string
matching in case n = 2m — 1. Here we complete the analysis for the
(unrestricted) string matching problem.

Theorem 2.10. The time complexity of the string matching problem on
the CRCW-PRAM is Q(\n/p\ + Ioglog1+p/m 2p).

Proof: Upper bound: Compute witnesses in O(\m/p\ +
log Iog1+p/m 2p) , and then search in O( [n/p] ) using the algorithm described
in Section 5.

Lower bound: Assume we can do string matching in time T. Obviously
T > [n /p] . Now note that we can use string matching to test whether a
given string w is periodic as follows. Find all occurrences of the first half
of w starting at its first half. If there is only one occurrence (at 0), then
w is not periodic. If there is another one, test if the periodicity extends to
the end of w. w is periodic if and only if this test succeeds. So we have

Since the lower and upper bounds have been matched, only few ques-
tions remain open.

• String matching over a fixed alphabet. The lower bound of Section
2.3.3 assumes that the input strings are drawn from general alphabet
and the only access to them is by comparisons. The lower and upper
bounds for the string matching problem over general alphabet are
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identical to those for comparison based maximum finding algorithm
obtained by Valiant. A constant time algorithm can find the maxi-
mum of integers in a restricted range which suggests the possibility
of a faster string matching algorithm in case of constant alphabet.

• Deterministic sample computation. Finding a deterministic sample
quickly with an optimal number of processors proved crucial for the
fastest parallel string matching algorithm presented in this Chapter.
The constant-time algorithms for computing DS use a polynomial
number of processors, hence it can be applied only to a small substring
of the original pattern. The other optimal algorithm for computing
DS takes O(log2 m/ log log m) time. Are there algorithms that bridge
this gap? Computing DS for the whole pattern in O(loglogm) time
and an optimal number of processors may be still possible.

2.9 Exercises

1. Prove the GCD lemma.
2. In the proof of Corollary 3 we demonsrate how nonperiodic substrings

of (almost) any length can be found. Prove that the strings we find
are indeed nonperiodic.

3. In the periodic stage of the optimal O(logm) algorithm, show that
the mismatch found is a witness against all remaining sources in the
first block.

4. Given the following string : 1011101011111010, find a DS of size 2
for 8 shifts.

5. Write a program that computes witnesses for a given input string.
6. In the last stage of the two-dimension search we have to assign posi-

tions in the text to candidates. Show how this can be performed in
constant time with n2 processors.

2.10 Bibliographic notes

The sequential string matching problem has many optimal solutions, most
notable of which are the algorithms by Knuth, Morris and Pratt [1977]
and by Boyer and Moore [1977]. Karp, Miller and Rosenberg [1972] found
the general technique of naming that was used by Crochemore and Ryt-
ter [1990] and Kedem, Landau and Palem [1989] for solving the parallel
string matching problem. Karp and Rabin [1987] provided a randomized
algorithm that solved the parallel string matching problem on the EREW-
PRAM in O(log n) time.

Fich, Ragde and Wigderson [1984] described the algorithm for finding
the leftmost one in an array of 1's and O's, in constant time. This algorithm
is used by most of the advanced string matching algorithms.

Galil [1985] designed an optimal O(logm) time algorithm for fixed al-
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phabet. Vishkin [1985] introduced the concepts of witnesses and duels
and used them in an optimal O(logm) time algorithm for general alpha-
bet. Subsequently, Breslauer and Galil [1990] improved Vishkin's tech-
niques and obtained an optimal O(log log m) time algorithm for general
alphabet. Breslauer and Galil [1992] went on to prove the lower bound
for the problem. Vishkin [1990] introduced the concept of determinis-
tic sample and used it to obtain an O(log* m) time search phase. Galil
followed with a constant time search phase using deterministic samples.
These two very fast algorithms for the search phase required preprocessing
in O(log2 m/ log log m) time.

Goldberg and Zwick [1994] first provided a solution with 0(log m) pre-
processing and constant search time utilizing larger deterministic samples.
Cole et al. [1993] achieved two main goals in the area of parallel string
matching: an O(log log m) preprocessing phase with a constant time search,
and a constant expected time for both the preprocessing and the search.
In their algorithm they use the deterministic polynomial approximate com-
paction (PAC) of Ragde [1993] and its improvement by Hagerup [1992].
The same techinques were also used in their optimal algorithm for pattern
matching in two dimensions. Czumaj et al. [1993] recently showed how the
algorithms for preprocessing and text search in one and two dimensions
can be transformed into optimal algorithms on the CREW-PRAM and the
EREW-PRAM . They also showed how to transform them into algorithms
on the hypercube with best possible work and time.
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3
On-line String Searching

In the previous two chapters, we have examined various serial and paral-
lel methods to perform exact string searching in a number of operations
proportional to the total length of the input. Even though such a perfor-
mance is optimal, our treatment of exact searches cannot be considered
exhausted yet: in many applications, searches for different, a-priorily un-
known patterns are performed on a same text or group of texts. It seems
natural to ask whether these cases can be handled better than by plain
reiteration of the procedures studied so far. As an analogy, consider the
classical problem of searching for a given item in a table with n entries. In
general, n comparisons are both necessary and sufficient for this task. If
we wanted to perform k such searches, however, it is no longer clear that
we need kn comparisons. Our table can be sorted once and for all at a
cost of O(nlogn) comparisons, after which binary search can be used. For
sufficiently large k, this approach outperforms that of the k independent
searches.

In this chapter, we shall see that the philosophy subtending binary
search can be fruitfully applied to string searching. Specifically, the text
can be pre-processed once and for all in such a way that any query con-
cerning whether or not a pattern occurs in the text can be answered in
time proportional to the length of the pattern. It will also be possible to
locate all the occurrences of the pattern in the text at an additional cost
proportional to the total number of such occurrences. We call this type
of search on-line, to refer to the fact that as soon as we finish reading the
pattern we can decide whether or not it occurs in our text. As it turns out,
the auxiliary structures used to achieve this goal are well suited to a host
of other applications.

3.1 Subword trees

There are several, essentially equivalent digital structures supporting effi-
cient on-line string searching. Here, we base our discussion on a variant
known as suffix tree. It is instructive to discuss first a simplified version of
suffix trees, which we call expanded suffix tree. This version is not the most
efficient from the standpoint of complexity, but it serves a few pedagogical
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Fig. 3.1. An expanded suffix tree

purposes, among which that of clearly exposing the relationship between
subword trees and finite automata.

Let a; be a string of n — 1 symbols over some alphabet £ and $ an
extra character not in S. The expanded suffix tree Tx associated with x is
a digital search tree collecting all suffixes of xS. Specifically, Tx is defined
as follows.

1. Tx has n leaves, labeled from 1 to n.
2. Each arc is labeled with a symbol of £ U {$}. For any i, 1 < i < n,

the concatenation of the labels on the path from the root of Tx to
leaf i is precisely the suffix sufi — xixi+i...xn-1S.

3. For any two suffixes sufi and s u f j of xS, if W{j is the longest common
prefix that sufi and sufj have in common, then the path in Tx relative
to Wij is the same for sufi and sufj.

An example of expanded suffix tree is given in Figure 3.1.
The tree can be interpreted as the state transition diagram of a deter-

ministic finite automaton where all nodes and leaves are final states, the
root is the initial state, and the labeled arcs, which are assumed to point
downwards, represent part of the state-transition function. The state tran-
sitions not specified in the diagram lead to a unique non-final sink state.
Our automaton recognizes the (finite) language consisting of all substrings
of string x. This observation clarifies also how the tree can be used in an
on-line search: letting y be the pattern, we follow the downward path in
the tree in response to consecutive symbols of y, one symbol at a time.
Clearly, y occurs in x if and only if this process takes to a final state. In
terms of Tx, we say that the locus of a string y is the node a, if it exists,
such that the path from the root of Tx to a is labeled y.
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procedure BUILDTREE ( x , T x )
begin
T 0 <-O;
for i = 1 to n do Ti *-INSERT(sufi, Ti-1);
T — T •Tx — Tn;
end

Fig. 3.2. Building an expanded suffix tree

Fact 1. A string y occurs in x if and only if y has a locus in Tx.

The implementation of Fact 1 takes O(t • \y\) character comparisons,
where t is the time necessary to traverse a node, which is constant for a
finite alphabet. Note that this only answers whether or not y occurs in x.

Fact 2. If y has a locus a in Tx, then the occurrences of y in x are all and
only the labels of the leaves in the subtree of Tx rooted at a.

Thus, if we wanted to know where y occurs, it would suffice to visit the
subtree of Tx rooted at node a, where a is the node such that the path from
the root of Tx to a is labeled y. Such a visit requires time proportional
to the number of nodes encountered, and the latter can be 0(n2) on the
expanded suffix tree. This is as bad as running an offline search naively,
but we will see shortly that a much better bound is possible.

An algorithm for the construction of the expanded Tx is readily orga-
nized (see Figure 3.2). We start with an empty tree and add to it the
suffixes of x$ one at a time. Conceptually, the insertion of suffix sufi
(i = 1,2, ...,n) consists of two phases. In the first phase, we search for
sufi in Ti_i. Note that the presence of $ guarantees that every suffix will
end in a distinct leaf. Therefore, this search will end with failure sooner
or later. At that point, though, we will have identified the longest prefix
of sufi that has a locus in 7i_i. Let headi be this prefix and a the locus
of headi. We can write sufi = headi • taili with taili nonempty. In the
second phase, we need to add to Ti_1 a path leaving node a and labeled
taili. This achieves the transformation of Ti-i into TI.

We will assume that the first phase of INSERT is performed by a pro-
cedure FINDHEAD, which takes sufi as input and returns a pointer to
the node a. The second phase is performed by a procedure ADDPATH,
which receives such a pointer and directs a path from node a to leaf i. The
details of these procedures are left for an exercise.

Theorem 3.1. The procedure BUILDTREE takes time 6(n2) and linear
space.
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Fig. 3.3. A suffix tree in compact form

Proof: The procedure performs n calls to INSERT. The ith such call
requires time proportional to the length n — i + 1 of sufi. Hence the total
charge is proportional to En

i=1(n + 1 — i) = En
i=1 = n(n + l)/2. n

It is instructive to examine the cost of BUILDTREE in terms of the
two constituent procedures of INSERT. If the symbols of x are all different,
then Tx contains 0(n2) arcs. The procedure FINDHEAD only charges
linear time overall, and the heaviest charges come form ADDPATH. At the
other extreme, consider x — an-1. In this case, ADDPATH charges linear
time overall and the real work is done by FINDHEAD.

It is easy to reduce the work charged by ADDPATH by resorting to
a more compact representation of Tx. Specifically, we can collapse every
chain formed by nodes with only one child into a single arc, and label that
arc with a substring, rather than with a symbol of x$. Such a compact
version of Tx has at most n internal nodes, since there are n + 1 leaves
in total and every internal node is branching. The compact version of the
tree of Figure 3.1 is in Figure 3.3. Clearly, the two versions are equivalent
for our purposes, and it takes little to adapt the details of BUILDTREE
in order to fit the new format.

With the new convention, the tree for a string formed by all different
symbols only requires 1 internal node, namely, the root. Except for arc-
labeling, the construction of such a tree is performed in linear time, since
ADDPATH spends now constant time per suffix. However, there is no im-
provement in the management of the case x = an-1, in which FINDHEAD
still spends 0(n2) time.

While the topology of the tree requires now only O(n) nodes and arcs,
each arc is labeled with a substring of x$. We have seen that the lengths of
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these labels may be 0(n2) (think again of the tree for a string formed by
all different symbols). Thus, as long as this labeling policy is maintained,
Tx will require 0(n2) space in the worst case, and it is clearly impossible
to build a structure requiring quadratic space in less that quadratic worst-
case time. Fortunately, a more efficient labeling is possible which allows us
to store Tx in linear space. For this, it is sufficient to encode each arc label
into a suitable pair of pointers in the form [i, j] to a single common copy
of x. For instance, pointer i denotes the starting position of the label and
j the end. Now Tx takes linear space and it makes sense to investigate its
construction in better than quadratic time.

As already seen, the time consuming operation of INSERT is in the
auxiliary procedure FINDHEAD. For every i, this procedure starts at the
the root of Ti-i and essentially locates the longest prefix headi of sufi
that is also a prefix of sufj for some j < i. Note that headi will no longer
necessarily end at a node of Ti- 1. When it does, we say that headi has a
proper locus in Ti-I. If headi ends inside an arc leading from some node
a to some node B, we call a the contracted locus and B the extended locus
of headi • We use the word locus to refer to the proper or extended locus,
according to the case. It is trivial to upgrade FINDHEAD in such a way
that the procedure creates the proper locus of headi whenever such a locus
does not already exist. Note that this part of the procedure only requires
constant time.

3.2 McCreight's algorithm

The discussion of the previous section embodies the obvious principle that
the construction of a digital search tree for an arbitrary set of words
{w1,w2, ..., Wk} cannot be done in time better than the Ek

i=1 |wi| the
worst case. This seems to rule out a better-than-quadratic construction
for Tx, even when the tree itself is in compact form. However, the words
stored in Tx are not unrelated, since they are all suffixes of a same string.
This simple fact has the following imporant consequences.

Lemma 3.2. For any i, 1 < i < n, \head i+1\ > \headi\ — I

Proof: Assume the contrary, i.e., \headi+1| < |headi\-l. Then, headi+1 is
a substring of headi. By definition, headi is the longest prefix of sufi that
has another occurrence at some position j < i. Let xjxj+1...xj+|headj|-i
be such an occurrence. Clearly, any substring of headi has an occur-
rence in xjxj+1...xj+\headi\.-i. In particular, xi+ixj+2,...xj+\headi\.i =
xi+1xi+2—Xi+\headi\-i , hence xi+1xi+2...x;,+|headi|-1 must be a prefix of

Lemma 3.3. Let w = ay, with a € E and y E E*. If w has a proper locus
in Tx, so does y.

headi+1.
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Proof: Since every node of Tx is branching, then the fact that w has a
proper locus in Tx means that there are at least substrings of x in the form
wa and wb with a, 6 E E and a = b. But then ya and yb are also substrings
of a.

Note that the converse of Lemma 3.3 is not true. Lemmas 3.2 and 3.3
are very helpful. Assume we have just inserted sufi into Ti-1. Because
sufi = headi • taili with taili nonempty, we are guaranteed that headi has
a proper locus, say, a in Ti. Let headi = ayi- Clearly, there is a path
labeled yi in Ti. Assume that we can reach instantaneously the end of this
path. This might be at a node or in the middle of an arc. Lemma 3.2 tells
us that headi+i is not shorter than this path. Once we are at that point
we only need go further into the tree in response to the symbols of sufi+1
that follow yi, until we fall off the tree again. Let headi+1 = yizi+1, where
zi+i is possibly empty. Clearly, we only need to do work proportional to
zi+1. Having found headi+1, we can invoke the same principle and write
headi+1 = a'yi+1 so that headi+2 = yi;+1zi+2, and so on.

Lemma 3.4. En+1
i=1=|zi| = n

Proof: The Zi's are non-overlapping,

Lemma 3.4 suggests that FINDHEAD be regarded as consisting of two
stages. With reference to the insertion of sufi+1, Stage 1 consists of finding
the end of the path to yi, and Stage 2 consists of identifying Zi+1. For
reasons that will become apparent in the sequel, we refer to Stage 2 as the
scanning. Lemma 3.4 shows that all executions of scanning take amortized
linear time. Thus the main task is to perform Stage 1 with the same
amortized efficiency as Stage 2.

Let us add to the structure of Tx some new links called suffix links and
defined as follows: For every string w = ay having a proper locus in Tx,
there is a link directed from the locus of w to the locus of y. It would
be nice to have that, at the inception of every iteration of BUILDTREE,
every node of the tree produced thus far has a defined suffix link. In fact,
assume that, upon completion of the insertion of s u f i , both headi and yj
had proper loci in Ti. Following the suffix link assigned to the locus a
of headi we would reach instantaneously the locus of yi. In other words,
Stage 1 would require constant time per iteration.

Unfortunately, there are two difficulties. The first one is that lemma
3.3 tells us that yi has a proper locus in Tx, but it says nothing of Ti}. In
other words, yi is not guaranteed to have a proper locus in Ti. The second
difficulty is that, upon completion of Ti, even if yi had a proper locus in Ti,
it might be impossible to reach it immediately from the locus a of headi,
for the simple reason that a was just created as part of the ith iteration
of BUILDTREE. In conclusion, we cannot maintain as an invariant that



MCCREIGHT'S ALGORITHM 95

every node of Ti has a defined suffix link. However, we can maintain the
next best thing, namely:

Invariant 1. In Ti, every node except possibly the locus of headi has a
defined suffix link.

At the beginning, the suffix link of the root points to the root itself. As-
sume that we have just found the locus of headi. By Invariant 1, Father[a]
has a defined suffix link. Let headi = ayi- = awisi where awi is the (possi-
bly empty) prefix of yi having Father [a] as its proper locus. By following
the suffix link from Father[a], we thus reach the proper locus 7 of Wi. Once
at node j, we know that we need to go down in the tree for at least |si|
symbols, by virtue of Lemma 3.2. This phase is called rescanning, since we
have already seen the symbols of si. Before examining the mechanics of
rescanning, we point out that it may end up in one of two possible ways:

1. yi = wisi has a proper locus in Ti.
2. yi = wisi has an extended locus in Ti.

Case 1 is relatively easy. All we have to do is to set the suffix link from
a to the locus 7 of yi, and initiate the scanning from this node. Case 2
is more elaborate. Note that Invariant 1 prescribes that at the end of this
pass there be a suffix link defined from a to the proper locus of yi. Since
such a locus did not exist, we have to introduce it at this moment. But
we are in the middle of an arc, and splitting an arc with a node having
only one child might infringe our convention on the structure of Tx! The
following lemma ensures that no such infringement will take place.

Lemma 3.5. If yj does not have a proper locus in Ti, then headi+i = yi.

Proof: Exercise. D

In principle, we may design the rescanning along the same lines as the
scanning. Unlike the zi substrings involved in scanning, however, the si
substrings involved in rescanning present mutual overlaps. This is unde-
sirable, since it plays havoc with the linear time complexity. A closer look
reveals a significant difference between scanning and rescanning: in rescan-
ning, we know beforehand the length of the substring s being rescanned.
This allows us to rescan in time proportional to the number of nodes tra-
versed in rescanning, rather than to the length |s| itself. At first sight,
it is not clear how this would induce a savings, since the number of such
nodes can be O(|s|). However, we will show that the total number of nodes
involved in rescanning is linear in \x\. Before getting to that point, let us
refine the details of rescanning.
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Suppose we reached node 7, the locus of wi, and let a be the first symbol
of Si. There is precisely one arc leaving 7 with a label that starts with a.
Let 71 be the child of 7 along this arc. By comparing |Si| and the length of
the label of the arc (y,y1) we can decide in constant time whether the locus
of yi = wisi is in the middle of this arc, precisely on 71 or further below.
In the first two cases the rescanning is finished, in the third case, we move
to 71 having rescanned a prefix of si, and need still to rescan a suffix s'i of
Si. We proceed in the same way from y1, thus finding a descendant 72 of
71, and so on. The time spent at each of the nodes y , y 1 , y 2 , ••• is constant,
whence rescanning takes time linear in the number of nodes traversed.

Lemma 3.6. The number of intermediate nodes encountered in rescanning
thru all iterations of BUILDTREE is O(n).

Proof: Let resi be defined as the shortest suffix of #$ to which the
rescanning and scan operations are confined during the ith iteration of
BUILDTREE. Observe that for every intermediate node yf encountered
during the rescan of si, there will be a nonempty string which is contained
in resi but not in resi+1. Therefore, |resi+i| is at most \resi\ — inti, where
inti is the number of intermediate nodes encountered while rescanning at
iteration i. By repeated substitutions we see that En+1 inti is at most n,
since |resn+1| = 0 and \reso\ = 0. Thus, the number of nodes encountered
during the rescanning is at most n. D

In conclusion, we can formulate the following

Theorem 3.7. The suffix tree in compact form for a string of n symbols
can be built in O(t • n) time and O(n) space, where t is the time needed to
traverse a node.

3.3 Storing suffix trees

When the alphabet £ is a constant independent of n, the factor t in The-
orem 3.7 is also a constant. It is desirable to detail how the constructions
of the previous sections handle the cases where |E| is not a constant. For
this purpose, we must address the issue of the memory allocations of suffix
trees. This is done in this section.

In some applications, Tx needs only be traversed bottom-up. This oc-
curs, for instance, in connection with computations of the squares in a
string, or in computing substring statistics, etc. In all these cases, a sat-
isfactory representation of the tree is achieved by letting each node have
precisely one pointer, directed to its father. This node format does not
pose any problem in allocation irrespective of the size of E.

For problems like on-line searches, which we used as motivation in our
discussion, we need to traverse the tree downwards from the root, and thus
we need that edges be directed from each node to its children. The number
of edges leaving a node is bounded above by |E|, and |E| can be Q(n).
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In other words, even though there are O(n) arcs in Tx irrespective of the
size of E, the number of arcs leaving a specific node can assume any value
from 2 to 0(n). This poses a problem of efficiently formatting the nodes
of Tx. Before addressing this point, we recall that, in addition to the edges
leaving it, each node of Tx must also store appropriate branching labels for
all the downward edges originating from it. Such labels are needed during
the construction of Tx, and they also drive, e.g., the downward search in
Tx of any string w. Earlier in this Chapter, we stipulated that each edge
be labeled with a pair of integers pointing to a substring of x. In order
to leave a node towards one of its children, however, we need to know the
first character of such a substring. To fix the ideas, let (i, j) be the label
of an edge (a, B). We may use our knowledge of f to access the character
xi. Alternatively, we could add to the pair ( i , j ) the symbol of S that
corresponds to xi. The two approaches are different, since we need log |E|
bits to identify a symbol and logn bits to identify a position of x.

The set of branching labels leaving each internal node of Tx can be
stored using a linear list, a binary trie, or an array.

Resorting to arrays supports, say, searching for a word w in Tx in time
O(|w|), but requires space O(|E|n) or 0(n2), depending on the labeling
convention adopted, to store Tx. Note that the initialization of the overall
space allocated seems to require quadratic time. Fortunately, techniques
are available to initialize only the space which is actually used. We leave
this as an exercise. Lists or binary tries require only linear space for Tx.
However, the best time bounds for searching w under the two labeling con-
ventions become O(\w\ log |E|) and O(|w|logn), respectively. Such bounds
refer to the implementation with binary tries. For ordered alphabets, the
bound 0(|w| log |£|) extends also to the list implementation of the symbol-
based downward labels. To summarize our discussion, the multiplicative
factor t appearing in Theorem 3.7 and in on-line search is a logarithm, the
argument of which can be made to be either |£| or n. Clearly, we would
choose |E| when E is finite.

3.4 Building suffix trees in parallel

We address now the parallel construction of the suffix tree Tx associ-
ated with input string x. We adopt the concurrent-read concurrent-write
(CRCW) parallel random access machine (PRAM) model of computation
described in the first Chapter of the book. We use n processors which
can simultaneously read from and write to a common memory with 0(n2)
locations. When several processors attempt to write simultaneously to the
same memory location, one of them succeeds but we do not know in ad-
vance which. Note that an algorithm takes care in general of initializing
the memory it uses. In this particular case, however, we will show that a
memory location is read by some processor only after that processor at-
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tempted to write to it. Thus, we do not need to initialize this space. The
overall processors x time cost of our algorithm is O(nlogn), which is op-
timal when |E| is of the same order of magnitude as n. It is left as an
exercise to show that the space can be reduced to O(n1+e), for any chosen
0 < e < 1, with a corresponding slow-down proportional to 1/e.

From now on, we will assume w.l.o.g. that n — 1 is a power of 2. We
also extend x by appending to it n — 1 instances of the symbol $. We use
x# to refer to this modified string. Our idea is to start with a tree Dx

which consists simply of a root node with n children, corresponding to the
first n suffixes of x#, and then produce logn consecutive refinements of
Dx such that the last such refinement coincides with Tx up to a reversal of
the direction of all edges. The edges in Dx and each subsequent refinement
point from each node to its parent. Throughout, information is stored into
the nodes and leaves. Specifically, each leaf or internal node of a refinement
of Dx is labeled with the descriptor of some substring of x# having starting
positions in [1,n]. We adopt pairs in the form (i, /), where i is a position
and l is a length, as descriptors. Thus, the root of Dx is the locus of the
empty word. The root has n sons, each one being the locus of a distinct
suffix of x.

We use n processors p1,p2, . . . ,pn, where i is the serial number of pro-
cessor pi. At the beginning, processor pi is assigned to the i-th position of
x#, i = l , 2 , ...,n.

Our computation consists of a preprocessing phase followed by a pro-
cessing phase. They are described next.

3.4.1 PREPROCESSING

The preprocessing consists of partitioning the substrings of x# of length
2»(g = 0,1, ...,logn) into equivalence classes, in such a way that substrings
that are identical end in the same class. For this, each processor is as-
signed log n + 1 cells of the common memory. The segment assigned to pi
is called IDi. By the end of the preprocessing, IDi[q] (i = 1,2, ...n;q =
0,1, ...,logn) contains (the first component of) a descriptor for the sub-
string of x# of length 1q which starts at position i in x#, in such a way
that all the occurrences of the same substring of x get the same descriptor.
For convenience, we extend the notion of ID to all positions i > n through
the convention: IDi[q] = n + 1 for i > n. We will use a bulletin board
(BB) of n x (n + 1) locations in the common memory. According to our
convention, all processors can simultaneously attempt to write to BB and
simultaneously read from it. In the following, we call winner(i) the index
of the processor which succeeds in writing to the location of the common
memory attempted by pi.

The initializations are as follows. In parallel, all processors initialize
their ID arrays filling them with zeroes. Next, the processors partition
themselves into equivalence classes based on the symbol of E faced by



BUILDING SUFFIX TREES IN PARALLEL 99

each. Treating symbols as integers, processors that face the same symbol
attempt to write their serial number in the same location of BB. Thus,
if xi = s E E, processor pi attempts to write i in BB[1,s]. Through a
second reading from the same location, pi reads j = winner(i) and sets
IDi[0] <— j. Thus (j, 1) becomes the descriptor for every occurrence of
symbol s.

We now describe iteration q, q = 1,2, ...,logn, which is also performed
synchronously by all processors. Processor pi, i — l ,2,. . . ,n first grabs
IDi+2q[q]) and then attempts to write i in B B [ I D i [ q ] , I D i + 2 q [ q ] ] . Finally,
Pi sets: IDi[q + 1] <— winner(i) ,i = 1,2, ...,n. Note that, since no two
n-symbol substrings of x# are identical, pi (i = 1,2,..., n) must be writing
its own number into IDi[logn] at the end of the computation. Note that a
processor reads from a location of BB only immediately after attempting
to write to that location. Our discussion of preprocessing establishes the
following theorem.

Theorem 3.8. There is an algorithm to compute the ID tables in O(log n)
time and O(n2) space with n processors in a CRCW.

3.4.2 STRUCTURING Dx

We need some conventions regarding the allocation of Dx and of its subse-
quent refinements. For this purpose, we assign to each processor another
segment of the common memory, also consisting of log n + 1 cells. The
segment assigned to pi is called NODEi. Like the ID tables, NODEi is
made empty by pi at the beginning. Our final construction takes as input
the string x#, a location of the common memory called ROOT, and the
arrays IDi[q]; (i — 1,2, ...,n,q = 0,1, ...,logn), and computes the entries
of the arrays NODEi[q] (i = 1,2,...,n,q = 0,1, ...,logn). By the end of
the computation, if, for some value of q < logn, NODEi[q] is not empty,
then it represents a node u created with the kth refinement of Dx, where
k = log n — q, with the following format: the field NODEi[q].LABEL rep-
resents label(u), and the field NODEi[q].PARENT points to the NODE
location of Father[u]. The initialization consists of setting:

Hence NODEi[logn] becomes the locus of sufi.
Note that NODEi[logn] stores the leaf labeled (i,n) and thus is not

empty for i = 1,2, ...,n.
To familiarize with the NODE tables, we consider the process that

produces the first refinement of Dx. Essentially, we want to partition the
edges of Dx into equivalence classes, putting edges labeled with the the
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same first n/2 symbols in the same class. For every such class, we want
to funnel all edges in that class through a new internal node, which is
displaced n/2 symbols from the root.

We do this as follows. Assume one row known to all processors, say,
row r of BB is assigned to ROOT. Then, processors facing the same
label in ID[logn - 1] attempt to write their serial number in the same
location of this row of BB. Specifically, if /.D,-[logn — 1] = k, processor pi
attempts to write i in BB [r, k]. Through a second reading from the same
location, p, reads j = winner(i). This elects NODEj[logn — 1] to be the
locus in the new tree of strings having label (j, n/2). Processor PJ copies
this pair into NODEj [log n — 1].LABEL and sets a pointer to ROOT in
NODEj[ logn - 1}.LABEL.

For all i such that winner(z) = j, processor pi sets:

NODEi[ logn-1] .PARENT <- address(NODEj[logn - 1})
NODEi[logn-1] .LABEL <- IDi+n/2[logn-1]

We shall see shortly that some additional details need to be fixed before
this refinement of Dx can be deemed viable. For instance, nodes having
a single child must be forbidden in any of the refinements. This means
that, whenever a node u is created that has no siblings, then the pointer
from Father[u] must be removed and copied back into u. Taking care of
this problem is not difficult. A more serious problems is the following one.
Recall that we started out with the processors sitting on locations of the
NODE arrays that correspond to the leaves of Dx. As a result of the first
refinement, we have now internal nodes other than the root. In order to
proceed with our scheme, we need to equip these internal nodes each with
its own processor. Since we avoid the formation of unary nodes we will need
no more tha 2n processors at any point of our computation. However, there
is no way to predict which NODE locations will host the newly inserted
nodes, and there are 0(n log n) such locations. Thus, the main difficulty is
designing a scheme that assigns dynamically processors to nodes in such a
way that every node gets its processor.

3.4.3 REFINING Dx

We concentrate now on the task of producing log n consecutive refinements
of Dx = D(logn). The q-th such refinement is denoted by D(logn-q).. The
last refinement D(0) is identical to Tx except for the edge directions, which
are reversed.

We will define our sequence of refinements by specifying how D(log n-q)

is obtained from D(Iog n-q+1) for q — 1, 2, ...,logn. Three preliminary
notions are needed in order to proceed.
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A nest is any set formed by all children of some node in D(k). Let (i,l)
and ( j , f ) be the labels of two nodes in some nest of D(k). An integer
t, 0 < t <min[/,/], is a refiner for (i, /) and (j, /) iff x#[i, i + t — 1] =
x # [ j > j + t — 1]• A nest of D(k) is refinable if 2k-1 is a refiner for every pair
of labels of nodes in the nest.

Assume now that all refinements down to D(k), logn < k < 0, have
been already produced, and that D(k) meets the following condition(k):

(i) D(k) is a rooted tree with n leaves and no unary nodes;
(ii) Each node of D(k) is labeled with a descriptor of some substring of

x; each leaf is labeled, in addition, with a distinct position of xS;
the concatenation of the labels on the path from the root to leaf j
describes s u f j .

(iii) No pair of labels of nodes in a same nest of D(k) admits a refiner of
size 2k.

Observe that condition(logn) is met trivially by Dx. Moreover, part
(iii) of condition(0) implies that reversing the direction of all edges of D(0)

would change D(0) into a digital-search tree that stores the collection of all
suffixes of x$. Clearly, such a trie fulfills precisely the definition of Tx.

We now define D(k-) as the tree obtained by transforming D(k) as
follows. Let (i1, l1), (12, l2), • • • , (lm, lm) be the set of all labels in some nest
of D(k) Let v be the parent node of that nest. The nest is refined in two
steps.

STEP 1. Use the LABEL and ID tables to modify the nest rooted at v, as
follows. With the child node labeled ( i j , l j ) associate the contracted label
IDij [k — I], j = 1,2,..., m. Now partition the children of v into equivalence
classes, putting in the same class all nodes with the same contracted la-
bel. For each non-singleton class which results, perform the following three
operations.

(1) Create a new parent node p for the nodes in that class, and make
p a son of v.

(2) Set the LABEL of u to (i, 2 (k-1)), where i is the contracted label
of all nodes in the class.

(3) Consider each child of u For the child whose current LABEL is
( i j , l j ) , change LABEL to (ij +22k- l,l j -2

k-1).

STEP 2. If more than one class resulted from the partition, then stop.
Otherwise, let C be the unique class resulting from the partition. It follows
from assumption (i) on D(k) that C cannot be a singleton class. Thus a
new parent node u as above was created for the nodes in C during STEP 1.
Make u a child of the parent of v and set the LABEL of u to (i, I + 2 k - 1 ) ,
where (i, l) is the label of v.
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Fig. 3.4. One step in the parallel refinement

The following lemma shows that our definition of the series of refine-
ments D(k) is unambiguous.

Lemma 3.9. The synchronous application of Steps 1 and 2 to all nests of
D(k) produces a tree that meets condition(k — 1).

Proof: Properties (ii-iii) of condition(k — 1) are easily established for
D(k-1). Thus, we concentrate on property (i). Since no new leaves were
inserted in the transition from Dk to D(k-1), property (i) will hold once
we prove that D(k-1) is a tree with no unary nodes.

Since |{$}UE| > 1, then the nest of the children of the root cannot end
in a singleton class for any k > 0. Thus for any parent node v of a nest
of D(k-1) involved in STEP 2, Father[v] is defined. By condition(k), node v
has more than one child, and so does Father [v]. Let D(k-1) be the structure
resulting from application of Step 1 to D(k).

If, in D(k) the nest of Father [v] is not refinable, then v is a node of
D(k-1), and v may be the only unary node in D(k) between any child of v

in D(k) and the parent of v in D(k). Node v is removed in STEP 2, unless
v is a branching node in D(k). Hence no unary nodes result in this part of
D(k-1).

Assume now that, in D(k), both the nest of v and that of Father|V] are



BUILDING SUFFIX TREES IN PARALLEL 103

refinable. We claim that, in D(k), either the parent of v has not changed
and it is a branching node, or it has changed but still is a branching node.
Indeed, by definition of D(k), neither the nest of v nor that of Father [v]
can be refined into only one singleton equivalence class. Thus, by the end
of STEP 1, the following alternatives are left.

1. The Father of v in D(k) is identical to Father[v] in D(k). Since the
nest of Father[v] could not have been refined into only one singleton class,
then Father[f] must be a branching node in D(k-1). Thus this case reduces
to that where the nest of Father[v] is not refinable.

2. The parent of v in D(k) is not the parent of v in D(k)). Then Father[v|
in D(k) is a branching node, and also a node of D(k-1). If v is a branching
node in D(k), then there is no unary node between v and Father[V] in D(k),
and the same holds true between any node in the nest of v and v. If v
is an unary node in D(k), then the unique child of v is a branching node.
Since the current parent of v is also a branching node by hypothesis, then
removing v in STEP 2 eliminates the only unary node existing on the path
from any node in the nest of v to the closest branching ancestor of that
node. D

If the nest of D(k) rooted at v had a row r of BB all to itself, then
the transformation undergone by this nest in Step 1 can be accomplished
by m processors in constant time, m being the number of children. Each
processor handles one child node. It generates the contracted label for
that node using its LABEL field and the ID tables. Next, the proces-
sors use the row of BB assigned to the nest and the contracted labels to
partition themselves into equivalence classes: each processor in the nest
whose contracted label is i competes to write the address of its node in
the ith location of r. A representative processor is elected for each class
in this way. Singleton classes can be trivially spotted through a second
concurrent write restricted to losing processors (after this second write, a
representative processor which still reads its node address in r knows itself
to be in a singleton class). The representatives of each nonsingleton class
create now the new parent nodes, label them with their contracted label,
and make each new node accessible by all other processors in the class. To
conclude STEP 1, the processors in the same class update the labels of
their nodes.

For STEP 2, the existence of more than one equivalence class needs to
be tested. This is done through a competition of the representatives which
uses the root of the nest as a common write location, and follows the same
mechanism as in the construction of Dx. If only one equivalence class was
produced in STEP 1, then its representative performs the adjustment of
label prescribed by STEP 2.

We conclude that once each node of D(k) is assigned a distinct processor,
) can be produced in constant time. The difficulty, however, is how toD(k-1)
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assign in constant time additional processors to the nodes created anew in
D(k-1). It turn out that bringing fewer processors into the game leads to
a crisp processor (re-)assignment strategy. The basic idea is to perform the
manipulations of Steps 1-2 using m—l processors, rather than m for a nest
of m nodes. The only prerequisite for this is that all m — 1 processors have
access to the unique node which lacks a processor of its own. Before starting
STEP 1, the processors elect one of them to serve as a substitute for the
missing processor. After each elementary step, this simulator "catches-up"
with the others. This can be used also to assign the rows of BB to the
nodes of D(k): simply assign the i-th row to processor pi. Then, whenever
Pi is in charge of the simulation of the missing processor in a nest, its BB
row is used by all processors in that nest. In summary, we stipulate the
following

Invariant 2. In any refinement of Dx, if a node other than ROOT has m
children, then precisely m—l of the children have been assigned a processor.
Moreover, each one of the m—l processors knows the address of the unique
sibling without a processor.

For any given value of k, let a legal assignment of processors to the
nodes of D(k) be an assignment that enjoys Invariant 2.

Lemma 3.10. Given a legal assignment of processors for D(k), a legal
assignment of processors for D(k-1) can be produced in constant time.

Proof: We give first a constant-time policy that re-allocates the processors
in each nest of D(k) on the nodes of D(k). We show then that our policy
leads to a legal assignment for D(k-1).

Let then v be the parent of a nest of D(k). A node to which a processor
has been assigned will be called pebbled. By hypothesis, all but one of the
children of v are pebbled. Also, all children of v are nodes of D(k). In
the general case, some of the children of v in D(k) are still children of v in
D(k), while others became children of newly inserted nodes u1,u2, ..., ut
Our policy is as follows. At the end of STEP 1, for each node ur, of D(k)

such that all children of urr are pebbled, one pebble (say, the representative
processor) is chosen among the children and passed on to the parent. In
STEP 2, whenever a pebbled node v is removed, then its pebble is passed
down to the (unique) son u, of v in D(k).

Clearly, our policy can be implemented in constant time. To prove
its correctness, we need to show that it generates a legal assignment for

It is easy to see that if node v is removed in the transition from
to D(k-1), then the unique son u, of v in D(k) is unpebbled in D(k). Thus,
in STEP 2, it can never happen that two pebbles are moved onto the same
node of

D(k-1).

D(k-1).
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By definition of D(k), the nest of node v cannot give rise to a singleton
class. Thus at the end of STEP 1, either (Case 1) the nest has been refined
in only one (nonsingleton) class, or (Case 2) it has been refined in more
than one class, some of which are possibly singleton classes.

Before analyzing these two cases, define a mapping / from the children
in the nest of the generic node v of D(k) into nodes of D(k-1), as follows.
If node u is in the nest of v and also in D(k-1) then set u' = f(u) = u;
if instead u is not in D(k-1), let u' = f(u) be the (unique) son of u in

In Case 1, exactly one node u is unpebbled in D(k). All the nodes u's
are siblings in D(k-1) and, by our policy, n' is pebbled in D(k-1) iff u is
pebbled in D(k).

In Case 2, node v is in D(k-1). Any node u in the nest of v is in
At the end of STEP 2, the pebble of node p will go untouched unless u is in
a nonsingleton equivalence class. Each such class generates a new parent
node, and a class passes a pebble on to that node only if all the nodes
in the class were pebbled. Thus, in D(k-1), all the children of v except
one are pebbled by the end of STEP 1. Moreover, for each nonsingleton
equivalence class, all nodes in that class but one are pebbled. At the end
of STEP 2, for each node u which was in the nest of v in D(k-1) node u'
is pebbled iff u was pebbled at the end of STEP 1, which concludes the
proof. D

3.4.4 REVERSING THE EDGES

In order to transform D(0) into a suffix tree we need only to reverse the
direction of all edges. For simplicity, we retain the format according to
which edge labels are assigned to the child, rather than to the father node
in an edge. We must still add to each node a branching label of the kind
discussed in Section 3.3. As seen in that section, there are various ways of
implementing these labels. We will limit our description to the trie imple-
mentations of symbol-based branching labels and the array implementation
of ID-based branching labels, since all the others can be derived from one
of these two quite easily.

To implement symbol-based labels with tries, we need to replace each
original internal node of D(0) with a binary trie indexing to a suitable sub-
set of E. This transformation can be obtained in O(log |S|) time using the
legal assignment of processors that holds on D(0) at completion. We out-
line the basic mechanism and leave the details as an exercise. We simply
perform log |S| further refinements of D(0), for which the ID tables are not
needed. In fact, the best descriptor for a string of log |S| bits or less is the
string itself. Thus, we let the processors in each nest partition their associ-
ated nodes into finer and finer equivalence classes, based on the bit-by-bit
inspection of their respective symbols. Clearly, a processor occupying a
node with label (i, /) will use symbol xi in this process. Whenever a new

D(k).

D(k).
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branching node v is created, one of the processors in the current nest of v
climbs to n = Father[V] and assigns the appropriate branching label to u.
At the end, the processors assign branching labels to the ultimate fathers
of the nodes in the nest.

For the array implementation of ID-based branching labels, we assign
a vector of size n, called OUTV, to each node v of D(0). The vector OUTV

stores the branching label from v as follows. If u is a son of v and the
label of u is (i, /), a pointer to u is stored in OUTV [ID, [0]]. It as an easy
exercise to show that n processors legally assigned to D(0) and equipped
with O (n ) locations each, can construct this implementation of Tx in con-
stant time. In fact, the same can be done with any D(k) but the space
needed to accommodate OUT vectors for all refinements D(k) would be-
come 6(n2logn). Observe that, since n processors cannot initialize 0(n2)
space in O(log n) time, the final collection of OUT vectors will describe
in general a graph containing Tx plus some garbage. Tx can be separated
from the rest by letting the processors in each nest convert the OUT vector
of the parent node into a linked list. This task is accomplished trivially in
extra O(log n) time, using prefix computation.

Theorem 3.11. The suffix tree in compact form for a string of n symbols
can be built in O(logn) steps by n processors in a CRCW-PRAM, using
O(n2) auxiliary space without need for initialization.

Proof: The claim is an obvious consequence of Theorem 3.8, lemmas 3.9
and 3.10 and the discussion above. D

As we see shortly, Tx alone is not enough to carry out on-line string
searching in parallel. For this, we shall need the entire series of £)(*)'s as
implemented by OUT vectors.

3.5 Parallel on-line search

Assume that, in the course of the construction of the suffix tree associated
with string x#, we saved the following entities: (1) The logn bulletin
boards used in the construction of the ID tables. (2) All the intermediate
trees D(k), k — logn,..., 0, each implemented by the vectors OUTV, defined
the previous section. Note that this assumption presupposes O(n2logn)
space. We show, that, with this information available, m processors can
answer in O(logm) steps whether a pattern y = y1y2...ym occurs in x.
Formally, we list the following

Theorem 3.12. Let x be a string of n symbols. There is an O(nlogn)-
work preprocessing of x such that, for any subsequently specified pattern
y = y1y2...ym, m processors in a CRCW can find whether y occurs in x in
time O(log m).
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Proof: We give an explicit construction that meets the claim, assuming
conditions (1) and (2) above were satisfied during preprocessing. We per-
form our on-line search in three main steps, as follows.

Step 1. Recall that we computed IDi[q] (i = 1,..., n; q = 0,..., logn) for
the string x#. The value IDi[q] is a label for the substring x,,..., xi+2q-1,
such that IDi[q] = IDj[q] if xi, ...xi+2k_1 = x j , . . . , xj+2k-i- The first
step of the on-line search for y consists of labeling in a similar way some
of the substrings in the pattern y. For q = 0, ...,logm, the substrings we
assign labels to are all substrings whose length is 2q and starting at every
position i such that i is a multiple of 2* and t + 2q < m. These new
labels are stored in the vectors PIDi[q], so that PIDi[q] stores the label
of the substring yi,..., yi+2q-1- PID labels are assigned in such a way that
whenever two substrings of length 2q, one in y and the other in x#, are
equal then their labels are equal too. For this, we follow a paradigm similar
to that used in deriving the ID labels, but we do not compute the PID
labels from scratch. Instead, we just copy appropriate entries of the bulletin
boards (BBs) used in deriving the ID labels. Since the BB tables were
not initialized, then every time we copy an entry of a BB table, we need
to check the consistency of such an entry with the corresponding entry of
an ID table. Should we find no correspondence at any step of this process,
we can conclude that there is a substring of the patterns that never occurs
in the text, whence the answer to the query is NO.

Step 2. Let PID1[log m] (that is, the name of the prefix of y whose
length is 2logm) be h. Observe that if none of IDi[log m] is equal to h then
the prefix of y whose length is 2logm does not occur in x. We conclude that
y does not occur in x whence the answer to the query is NO.

Suppose h = IDi[log m] for some 1 < i < n — 1. We check whether
NODEh[logm] appears in D(log n-1). Note that NODEh[log m] will not
appear in D(log n-1) if and only if all the substrings of x whose prefix of
length 2logm is the same as the prefix of y have also the same prefix of length
2logm+1. If NODEh[logm] appears in D(log n-1) then we are guaranteed
that it will appear also in D(log m) and we proceed to Step 3. In fact, all the
refinements D(log n-1),..., D(log m) deal only with substrings whose length
is greater than 2logm. Otherwise, i.e., NODEh [logm] does not appear in
D(log n-1), we check whether y is equal to xh,..., xk+h-1 symbol by symbol.
This can be done in log m time using m/ log m processors. The answer to
the query is YES if and only if the two strings are equal.

Step 3. We find a node v in Tx such that y is a prefix of the string having
v as its locus (if such a node exists). For this, we use the vectors P I D i [ q ] ,
of Step 1 and the D(q) trees, q = log ra— 1,..., 0, of the preprocessing. Node
v is found thru a "binary search" of log m iterations, as follows.
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Iteration q (q = logm — 1, ...,0). Let v and y' be the input parameters
of iteration q. (For iteration log m — 1, v = NODEk [logm] and y' is the
suffix of y starting at position 2logm + 1.) The invariant property satisfied
in all the iterations is that v is a node in D(q+1) and y' is a substring
whose length is less than 2q+1. Our goal is to check whether y' follows an
occurrence of W(v}. We work on D(q). There are two possibilities:

(Possibiliiyl) The node v appears in D(q). Possibility 1 has two sub-
possibilities. (Possibility 1.1) 2q is larger than the length of y'. In this case
we do nothing and the input parameters of the present iteration become
the input parameters of the next iteration. (Possibility 1.2) 2q is less than
or equal to the length of y'. Assume that y1 starts at position j of y and b
is the value stored in P I D j [ q ] , If the entry OUTv[b] is empty then y does
not occur in x. Otherwise, the input parameters of the next iteration will
be the suffix of y' starting at position 2q + 1 and the node pointed to by
OUTv[b].

(Possibility 2) The node v does not appear in D(q). This means that
v had only one son in D(q+1) and so it was omitted from D(q) (in Step 2
of refining D(q+1)). Let // be the single son of v in D(q+1). Possibility 2
has two subpossibilities. (Possibility 2.1) 2q is larger than the length of
y1. Assume that the LABEL of u in D(q) is (i, /). In this case y1 occurs in
x if and only if y' is a prefix of xi+1-2q+1,..., xi+1. We check this letter by
letter in logm time using m/logm processors. (Possibility 2.2) 1q is less
or equal to the length of y1. We compare IDi+1—2q+q[q] (the unique name
of xi+1—2q+i,..., xi+1) to the unique name of the prefix of y' whose length
is 2q. If these names are different then y does not occur in x. Otherwise,
the input parameters of the next iteration will be the suffix of y1 starting
at position 2q + 1 and the node u,.

As a final remark, observe that we did not initialize the vectors OUTV,
therefore it could be that we will get a wrong positive answer. To avoid
mistakes, every time we get a positive answer we need to explicitly check
whether y really appears in x at the position given in the answer. This can
be done in logm time using m/logm processors as a last step. D

3.6 Exhaustive on-line searches

Given Tx in compact form and Fact 2 of Section 3.1, one can find, for
any pattern y, all the occurrences of any substring w of y in x in serial
time O(\w\ + 1), I being the total number of occurrences of w; in x. This
application is a special case of the following broader problem. Assume we
are given a set of strings W upon which we want to perform many substring
queries, as follows. In each query, we specify arbitrarily a substring w'
of some string w in W (possibly, w' = w) as the pattern, ad also a set
W' = {w1, w2,. . . , Wt} of textstrings, where each w is a string from W or a
substring of one such string. The result of the query is the set of all the

ON-LINE STRING SEARCHING
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occurrences of w' in W'. The quantity 
of the query. This kind of queries arise naturally in sequence data banks,
and they have obvious (off-line) serial solution taking time linear in n. We
investigate now their efficient on-line parallel implementation.

It can be proved that the strings in a data bank can be preprocessed
once and for all in such a way that any subsequent substring query on the
bank takes constant time on a CRCW PRAM with a number of processors
linear in the size of the query. Preprocessing a string x costs O(log |x|)
CRCW-PRAM steps and O(\x\ log \x\) total work and space. Note that the
methods used in off-line parallel searches depend crucially on the specific
pattern being considered and thus do not support instantaneous substring
queries. For space limitations, we will describe only part of the method,
suitable for a restricted class of inputs. But our discussion will suffice to
display an interesting fact, namely, that assuming an arbitrary order on
the input alphabet may lead to efficient solutions to problems on strings to
which the notion of alphabet order is totally extraneous.

Let then the alphabet S be ordered according to the linear relation <.
This order induces a lexicographic order on E+, which we also denote by
<. Given two words u and v, we write u << v or v >> u to denote that
there are two symbols a and a' with a < a', and a word z £ E* such that
za is a prefix of u and za' is a prefix of v. Thus, u < v iff either u << v or
w is a prefix of v.

Fact 3. Let u << v. Then, for any w and z in A*, we have uw << vz.

If x = vwy, then the integer 1 + \v\, where \v\ is the length of v is the
(starting) position in x of the substring w of x. Let I = [i, j] be an interval
of positions of a string x. We say that a substring w of x begins in / if I
contains the starting position of w, and that it ends in 7 if 7 contains the
position of the last symbol of w.

We recall few notions from the introductory chapter. A string w is
primitive if it is not a power of another string (i.e., writing w = vk implies
k — 1). A primitive string w is a period of another string z if z = wcw'
for some integer c > 0 and w' a possibly empty prefix of w. A string z is
periodic if z has a period w such that |w| < |z|/2. It is a well known fact
of combinatorics on words that a string can be periodic in only one period.
We refer to the shortest period of a string as the period of that string. A
string w is a square if it can be put in the form vv in terms of a primitive
string v (v is the root of the square). A string is square-free if none of its
substrings is a square. Our implementation of fast substring queries will be
discussed under the very restrictive assumption that all strings we handle
are square-free. In the general method, this assumption can be waived
without any penalty in efficiency.

is the size
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Fig. 3.5. Left-, right-seeded, and balanced patterns

We can explain the basic criterion used in our construction in terms of
the standard, single-pattern string searching problem. Let then y s.t. \y\ >
4 be this pattern and x a text string, as in Figure 3.5. Consider the ordered
set S of all positioned substrings of y having length c = 2([log |y|]-2), and
let (i, s) be the one such substring such that s is a lexicographic minimum
in S and i the smallest starting position of s in y. Substring (i, s) is called
the seed of y. Pattern y is left-seeded if i < c, right-seeded if i > \y\ — 2c+ 1,
balanced in all other cases.

Let now the positions of x be also partitioned into cells of equal size
c = 2([log|y|]-2)

; and assume that there is at least one occurrence of y
in x, starting in some cell B. In principle, every position of B is equally
qualified as a candidate starting position for an occurrence of y. However,
the same is not true for the implied occurrences of the seed of y. This
seed will start in a cell B' that is either B itself or a close neighbor of B.
Consider the set of all substrings of x which start in B' and have length
|s|. It is not difficult to see then that the one such positioned substring
corresponding to (i, s) has the property of being a lexicographic minimum
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Fig. 3.6. Left stubs in a block

among all such substrings originating in B' and to its right, or originating
in B' and to its left, or both, depending on whether y is left-, right-seeded,
or balanced. Once we have a candidate position for s in B', it is possible to
check in constant time with s processors whether this actually represents
an occurrence of y, since |y| < 8|s|. The problem is thus to identify such
a candidate position. Note that, although we know that the seed of, say,
a left-seeded pattern must be lexicographically least with respect to all
substrings of equal length that begin in B' and to its right, there might be
up to \s\ = |B'| substrings with this property. Even if we were given the
starting positions of all such substrings, checking all of them simultaneously
might require |s|2 processors.

Throughout the rest of this discussion, we concentrate on the man-
agement of left-seeded patterns, but it shall be apparent that the case of
right-seeded patterns is handled by symmetric arguments.

3.6.1 LEXICOGRAPHIC LISTS

Let B = [h, h + ra], where m < n/2 and h < (n — 2m + 1), be a cell of size
TO on out string x (\x\ = n). A stub of B is any positioned substring (i, z)
of x of length \z\ = m and i 6 B, Stub (i, z) is a left stub of B if i = h + m
or, for any other stub (i',z') of B with i < i', we have z < z'. We use
L(B) = {(i1, z1), (i1, z1), . . . , (ik, zk;)} to denote the sequence of left stubs of
B, and call the ordered sequence {i1, i2, ... ik}, where (i1 < i2 < ... < i k ) ,
the left list of B.

As an example, let the substring of x in block B be

eacaccdlacdacdacdlllhf,

as in Figure 3.6, and assume for simplicity that the positions of x falling
within B be in [1,22].

We have 8 left stubs in B, beginning with the rightmost such stub
(22, z8) = f... . Since h and l are both larger than /, the next left stub
is (17, z7) = dlllhf... . We immediately have (16, z6) = cdlllhf... and
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(15, 25) = acdlllhf... . Since d and c are both larger than a, there will not
be a left stub until (12, z4) = acdacdlllhf... . We similarly have (9, z3) =
acdacdacdlllhf... . Finally, we have (4,z2) = accdlacdacdacdlllhf... and
(2, z1) = acaccdlacdacdacdlllhf... . Note that the prefix of z1 of length
2 = i2 — i1 matches the corresponding prefix of z2. Similarly, the prefix of
z3 of length 3 = i4 — i3 matches a prefix of z4, and the prefix of 24 of length
3 = i5 — i4 matches a prefix of 25. We say that z1 and z2 are in a ran,
and so are z3, z4 and z5. Obviously, there can be no runs in a square-free
string.

Lemma 3.13. Assume that x is square-free, and let (i, z) and (j, z) be two
consecutive left stubs from S(B). Then, i < j implies z' << z' , where z'
and z' are the prefixes of z and z of length \j — i\.

Proof: Straightforward. D

Let now L(B) = (i1, z1), ( i2 ,z2) , ...,(ik,zk) be the ordered sequence of
left stubs in S(B). If k = 1, then define I ( B ) as the singleton set containing
only (i1 ,z1). Assume henceforth k > 1. For f = 1,2, ...,k— 1, let If be
the prefix of Zf such that |lf| = if+1 — if. We use I(B) to denote the
ordered sequence ( i 1 , l 1 ) , ( i2 , l2 ) . - - , ( ik - ik -1 ) . With each (if,lf) E I ( B ) ,
we associate its shadow (if+1,l'f), where l'f is the prefix of zf+1 having
the same length as lf . The ordered sequence of shadows of the members of
Z(B) is denoted by I'(B). By construction, we have that If < l'f for each /
in [1, k — 1].. If, in addition, x is square-free, then Lemma 3.13 ensures that
lf< l'f for each / in [1, k - 1]. We now use the elements of I(B) U I ' ( B )
to construct the ordered sequence J(B)= (i1,1i), (i2, l2) , . . . , ( ik , lk) defined
as follows (cf. Figure 3.7).

First, we set l1 = l1 and lk = l'k-1. Next, for 1 < / < k, we set if = l'f_1

if if+1— if < if — if -1, and lj — If otherwise. Sequence I(B) plays an
important role in our constructions, due to the following lemmas.

Lemma 3.14. If x is square-free, then the word terms in I(B) form a
lexicographically strictly increasing sequence.

Proof: We prove that, for k > 1, we must have l1 << l2 << ... <<lk. This is
easily seen by induction. By Lemma 3.13, l1 = l1 << l'1. By our definition
of l2, we have |l2| > |l'1|, i.e., l'1( is a prefix of l2. By Fact 2, we get then
that l1 << l2. Assuming now that the claim holds for all values of / up to
/ = h < k, the same argument leads to establish that Ilh << lh+1.

Lemma 3.15. The sum of the lengths of the word terms in I ( B ) is bounded
above by 4|B|.

Proof: Each l derives its length either from a distinct / or from a distinct
/'. Since the I's do not mutually overlap, then their total length is bounded
by 2m, and the same is true of the l's.
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Lemmas 3.14 and 3.15 justify our interest in I(B). In fact, Lemma 3.14
states that if x is square-free, then there is at most one member (i, I) of
I(B) such that I is a prefix of seed w. Note that this is not true for the
elements of Z(B), since we may have that, for some f, lf+1 is a prefix of
lf. For example, let ...adbcadc be the last 7 symbols of x that fall in B.
Then zk, starts with c, while Zk-1 and Zk-2 start, respectively, with adc
and adbcadc. We have lk-1 = ad, which is a prefix of 4-2 = adbc. Lemma
3.15 is a handle to check all these prefixes against (i, s) simultaneously and
instantaneously, with O(|s|) processors.

Observe that given a copy of x, the set I(B) U 1'(B) is completely
specified by the ordered sequence of starting positions of the members of
I(B), which we called the left list of B. Clearly, the left list of any cell B
enumerates also the starting positions of all elements of I(B).

3.6.2 BUILDING LEXICOGRAPHIC LISTS

We show now how a generic square-free string w is preprocessed. Without
loss of generality, we assume \w\ a power of 2. The basic invariant stating
that w is square-free will be called henceforth Property 1. The prepro-
cessing consists of performing approximately [log \w\\ stages, as follows.
At the beginning of stage t (t = 1,2,...) of the preprocessing the posi-
tions of w are partitioned as earlier into |w;|/2t-1 disjoint cells each of size
2t-1. Starting with the first cell [l,2 t -1], we give now all cells consecutive
ordinal numbers. For t = 1,2,..., stage t handles simultaneously and
independently every pair (B o d , Bod+1) of cells such that od is an odd index.
The task of a stage is to build the lexicographic list relative to every cell
Bd U• Bd+1, using the lexicographic lists of Bod and Bod+1). The crucial
point is to perform each stage in constant time with |w| = n processors.

We need to make some preliminary arrangements for inter-processor
communication.

Let our n processors be p1 ,p2 , ...,pn where pi (i = 1,2, ...,n) has serial
number i. The input w is stored into an array of consecutive locations of
the common memory, and processor pi is assigned to the i-th symbol wi of
w (i = 1,2, ...,n).

The first position of each cell is called the cell head and is assigned a
few special memory locations. In our construction, cell heads are used as
bulletin boards for sharing information among processors. For example,
cell heads are used to record the starting position of the lexicographically
least among the stubs that begin in that cell. We use ls(B) to denote this
least stub of a cell B. Property 0 ensures that ls(B) is unique. Since the
partition of the positions of x into cells is rigidly defined for each stage,
then the position of any cell head can be computed by any processor in
constant time. Throughout our scheme, we need to maintain some invariant
conditions that are given next.



114 ON-LINE STRING SEARCHING

Fig. 3.7. Building a sequence I

Invariant 3. At the beginning of each stage and for every cell, the starting
position of the Is of that cell is stored in the cell head.

We also need that the processors in every cell know the organization
of the left list of that cell. The processors use this information in order to
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compute the sequence J defined earlier. This information is stored accord-
ing to the invariant properties that are given next. The processor assigned
to the starting position of a left stub is called a stub representative.

Invariant 4. // processor p is assigned to a symbol of a member (i, I) of
some sequence I then p knows the serial number of the stub representative
of I.

Invariant 5. Every stub representative knows the address of its immediate
predecessor in its left list, if the latter exists. Similarly, every stub repre-
sentative knows the address of its immediate successor in its left list, if the
latter exists.

Note that the first element of the left list of a cell is always the starting
position of the Is of that cell. Therefore, Property 3 ensures also that the
starting position of the first element in the left list of B is stored in the
cell head of B. Finally, the last element of the left list of a cell is, by
construction, always the last position in that cell.

Theorem 3.16. Let w be a square-free string, and (Bd,Bd+1) two con-
secutive cells in a partition of w. Given the left lists of Bd and Bd+1, the
left list of B - Bd U Bd+1 can be produced by a CRCW PRAM with \B\
processors in constant time, preserving invariants 3, 4 and 5.

Proof: Consider first the computation ls(B). This could be done by
straightforward lexicographic pairwise comparisons of appropriate exten-
sions of the current Is's in adjacent cells. Such extensions consist of the
substrings starting with the current Is's and having size \B\. Thus, we
compare the extended Is's of Bod and Bod+1. By Property 0, only one of
these extensions will survive in the comparison, and the winner coincides
with ls(B). Note that in order to know the result of a lexicographic com-
parison, the processors need to find the leftmost position where the two
strings being compared mismatch. A technique to achieve this in constant
time was discussed in the introductory chapter.

Our main task, however, is that of combining the two left lists of Bod

and Bod+1 into the left list for cell B = Bod U Bod+1. This is more elaborate
than the computation of ls(B), but it yields ls(B) as a by-product. The
basic observation is that, as a consequence of Property 0, the left list of
Bod+1 is a suffix of the left list of B. Thus, the issue is how to identify the
prefix of the left list of Bod to which the left list of Bod+1 is to be appended.

Let i' be the smallest element of the left list of Bod+1, and let z' be
the substring of w having length 2* and starting position i'. We use now
(i1, l1), (i2 , l2), —, (ik, Ik) to denote the sequence I(Bod). For f = 1,2,..., k,
let shadow(lj) be the prefix of z' of length |lf|. Since (cf. Lemrna 3.14)
h << l2 << ... << Ik, then precisely one of the following cases must apply.
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A) Ik << shadow(lk).
B) l1 >> shadow(l1).
C) There are two consecutive elements (ih,lh) and (ih,ih+1) of X ( B o d )

such that lh << shadow(lh) << lh+1.
D) There is precisely one element ( i h , l h ) in i(Bod) such that lh =

shadow(lh).
In case (A), the left list for the combined cell B consists of the concate-

nation of the left lists of Bod and Bod+1. If case (B) applies, then the left
list of B coincides with the left list of Bod+1.In case (C), the left list of B
is obtained by appending the left list of Bod+1 to the sequence of the first
h elements of the left list of Bo d .We are thus left with case (D). Let ih be
the starting position in w of lh, and z the substring of length 2* of w having
starting position ih. By Property 0, we must have that either z << z' or
z >> z1'. In the first case, the left list of B is obtained by appending the
left list of Bod+1 to the sequence of the first h elements in the left list of
Bod. In the second case, from lh-1 << lh and lh = shadow(lh) we derive
lh-1 << z', whence the left list of B results from appending the left list of
Bod+1 to the sequence of the first h — 1 members of the left list of Bod.

This concludes our case analysis. We have to show next that, using
the invariants, our |B| processors can perform the computation in constant
time.

The preliminary identification of I (B o d ) is easily performed by the stub
representatives: using Invariant 5, each such representative p can infer the
length of its associated word l by comparison of the absolute differences of
its own serial number to the serial numbers of its predecessor and successor
in the left list, respectively. We want now the processors to compare, in
overall constant time, every word / from 2(Bo d) to the prefix of length
|l| of l s ( B o d + 1 ) . For every l, we need |f| processors for the comparison
that involves l as one of the terms. This cannot be solved by just letting
the |/| processors assigned to the symbols of / do the work. In fact, /
may overlap with one or more of its successors in I(Bo d), in which case
these successors would simultaneously claim part of the processors of l
for comparing their own symbols. One way around this difficulty is to
arrange for each l that overlaps its successor to "borrow" at some point the
processors needed for the comparison from its own predecessor in I (Bo d) .
In fact, our construction of I (B o d ) guarantees for any / that, if If overlaps
with lf+1, then |lf-1| = |lf|. Since processors are only lent (if needed) to
an immediate right successor in the left list, this policy does not generate
conflicts. In conclusion, this part of the computation is performed in two
substeps. In the first substep, processors assigned to l's that have no overlap
with their successors perform their required lexicographic comparison in a
normal way. In the second substep, the representatives of the l's that
overlap send for help from their respective predecessors in the left list, and
such predecessors arrange for the comparisons.
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The remaining details of a comparison are as follows. Let wd be a
symbol of a word If from J(Bod), and assume that If does not overlap
with its successor. Then, If = If, where lf is the word in the f-th element
of J(Bod). Processor pd uses invariants 4 and 5 to compute |lf| and the
offset of fd of position d from the starting position of If. Combined with
the information stored in the head of cell Bod+1 (cf. Invariant 3), this
offset yields the position d1 having offset of fd from the starting position of
l s (B o d + 1 ) . Thus, pd knows that it is assigned to compare xd with wd'. If pd
detects a mismatch, it turns off a switch assigned to the starting position
of If. The case of an overlapping lf is handled similarly by the processors
borrowed from lf-1. At the end, at most one stub representative will have a
switch still in the "on" position. If this is the case, such representative will
identify itself by writing in the cell head. This concludes the description of
the combination of left lists, which takes clearly constant time with O(|B|)
processors. Propagation of the invariants to B is trivial. D

Reasoning symmetrically, it is easy to introduce right stubs and right
lists and so on in every cell partition of w. This leads to establish a dual of
Theorem 3.16. We use the term lexicographic lists refer to the collection of
left and right lists. Theorem 3.16 and its dual admit the following corollary.

Corollary 1. For any string w and integer l < \w\, a CRCW PRAM with
\w\ processors can compute the lexicographic lists relative to the first log l
stages of the preprocessing of w in O(logl) time and using linear auxiliary
space per stage.

Proof: Straightforward. D

3.6.3 STANDARD REPRESENTATIONS FOR CONSTANT-TIME QUERIES

A square-free string w together with the first (l. < [log |w|] — 2) lexico-
graphic lists is said to be in l-standard form. When t = [log |w| — 2, we
simply say that w is in standard form. We are now ready to show that
searching for a string in standard form into another string also in standard
form is done instantaneously with a linear number of processors. With
y denoting a square-free pattern and x a square-free text, we revisit the
informal discussion at the beginning of Section 3.6.

Clearly, retrieving the seed (i, s) of y from its |s|-standard form is im-
mediate. In fact, consider the partition of y into cells of size |s| and let C
be the cell of this partition which contains i.

Fact 4. Stub ( i , s ) is the first element of H(C).

Fact 4 is the handle to identify the position i of s in y. Since there
are at most 4 cells in the partition of the positions of y, and each such
cell contributes one known candidate, mutual comparison of the substrings
of length |s| starting at these candidate positions is all is needed. This is
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easily done in constant time with \y\ processors. There are of course more
direct ways of computing the seed of y within these bounds, but reasoning
uniformly in terms of standard forms has other advantages in our context.

Assume to fix the ideas that y is left-seeded, and that there is an occur-
rence of y beginning in a cell B of the partition of x into cells of size \s\. Let
B' be the cell of x where the corresponding occurrence of the seed s begins
(cf. Fig. 3.5). The identification of the position j of s within B' is quite
similar to the combination of adjacent left lists discussed earlier. In fact, j
is clearly the position of a left stub in £.(B'). Lemma 3.14 of the previous
section tells us that, if we consider the sequence, say, I (B ' ) , then we can
find at most one term If such that lf is a prefix of s. We thus search in
T(B') for a term If such that, letting S be the prefix of s of length |lf|, we
have that S = lf. Lemma 3.15 and the discussion of Theorem 3.16 tell us
that O(|B|) processors are enough to match, simultaneously, each lf-term
against a corresponding prefix s of s. The details are easily inferred from
the preceding discussion and can be omitted.

Let now y1 be a substring of y, and consider the (log[y'|] — 2)-th lexico-
graphic list for y. Clearly, y' is embedded in a set of at most 9 consecutive
cells in the associated cell partition of y. The same holds for every occur-
rence of y' in any substring x' of x such that \x'\ > |y'|. Again, assume to
fix the ideas that y' is left-seeded. Note that if y' and its seed (i', s') start
in the same cell, say, C' on y, it is no longer necessarily true that (i',s')
is the first term in the head list of C'. However, (i1, s') must still be a left
stub in C". Since the starting position / of y' in y is known, all we need
to do is to identify the leftmost left stub in L(C') that starts at / or to
the right of /. This takes constant time with the priority-write emulation
discussed in the introduction, after which we have a suitable substitute for
Fact 4. From this point on, the search for y' into x' involves only minor
variations with respect to the above description, and so does the search for
y' in any set of substrings of a given set of strings.

3.7 Exercises

1. Write detailed programs implementing the sequential procedure IN-
SERT for a suffix tree both in expanded and compact form.

2. Adapt the programs of the previous exercise to implement serial on-
line search for a pattern in a suffix tree both in expanded and compact
form. Expand your programs so that each finds now all occurrences
of the pattern.

3. Give a counterexample to the converse of Lemma 3.3.
4. Prove Lemma 3.5.
5. Design detailed space implementations for an expanded and compact

suffix tree.
6. Show that it is possible to implement the nodes of a suffix tree as
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arrays of size S that do not need initialization.
7. Design an efficient serial algorithm that transforms the suffix tree for

x into the suffix tree for x' wx" where x'x" = x and w is an arbitrary
string.

8. Design serial and parallel algorithms to find the longest common sub-
string of two gives strings. Discuss the generalization of this problem
to the case of k > 2 strings.

9. A palindrome is a string that reads the same forward and backward,
i.e., w is a palindrome iff w = WR. A palindrome substring w of a
string x is maximal if either w is a prefix or suffix of x, or extending w
with the two symbols that precede and follow it in x does not generate
a palindrome. Design an efficient sequential algorithm based on the
notion of suffix tree that finds all maximal palindromes in a string.

10. * Design an efficient algorithm that builds the smallest (i.e., with
fewest states) finite automaton recognizing all and only the substrings
of a given string x. Note that the arcs in the transition diagram of
the automaton must be labeled by a single symbol. (Hint: all nodes
which are roots of identical substrees of Tx can be collapsed into a
single node.)

11. Show that the space required in the parallel construction of a suffix
tree can be reduced to 0(n1+e), for any chosen 0 < e < 1, with a
corresponding slow-down proportional to 1/e.

12. Show that the technique used in on-line parallel search can be ex-
tended to find:
(a) the number of occurrences of z in x;
(6) in case of more than one occurrence, what is the starting position
of the first or last occurrence;
(c) what is the longest prefix of z that occurs in x.

13. Expand the discussion of Section 3.6 to handle the cases of balanced
and right-seeded patterns, respectively.

14. Assume that the input alphabet is of finite size. Show that, under this
hypothesis, the number of processors needed in both constructions of
Section 3.6 can be reduced by a factor of logn.

15. * Design a parallel algoritm based on lexicographic lists that tests
whether a string is square-free.

16. * Generalize the method used in exhaustive on-line searches to the
case of general (i.e., not necessarily square-free) strings.

3.8 Bibliographic notes

Suffix trees are a special kind of the PATRICIA trees introduced by Mor-
rison [1968]. The serial suffix tree construction presented in this chapter
is due to McCreight [1976]. An earlier construction, due to Weiner [1973]
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builds a variant of the tree known as position tree (cf. Aho, Hopcroft and
Ullmann [1974]). Weiner's construction gave, as a trivial by-product, a
linear-time method for finding the longest repeated substring in a string
over a finite alphabet. Not long before, D. Knuth had posed the prob-
lem of whether such a problem could be solved in better than O(n2) time.
Weiner's and McCreight's constructions are equivalent at the outset, but
they have notable intrinsic differences. Weiner's construction scans the in-
put string from right to left, but does not need to know all of it before it
can start. Conversely, McCreight's construction scans x from left to right,
but it needs the entire string before starting. The duality inherent to these
two constructions was exposed by Chen and Seiferas [1985].

Subsequent constructions approach the problem of building the tree on-
line or in real time (Majster and Majer [1985], Ukkonen [1992], Kosaraju
[1994]), and build several variants such as inverted textfiles (Blumer et
al., [1987]), factor transducers (Crochemore [1985], Blumer et al. [1985]),
suffix arrays (Manber and Myers [1990]), etc. A recent comparative
discussion of suffix tree algorithms and implementations is in Giegerich
and Kurtz [1995].

The parallel construction of suffix trees presented in this chapter is
adapted from Apostolico et al. [1988]. Constructions achieving linear
total work are found in Hariharan [1994] on the CREW , and Sahinalp and
Vishkin [1994] on the CRCW. It is an open problem whether a construction
can be carried out optimally in linear space an/or with n/ log n processors
when the alphabet is finite. The treatment of exhaustive on-line searches
follows Apostolico [1992].

Suffix trees and their companion structures have found applications
in many areas, including approximate string searching, data compression,
computations of substring statistics and detection of squares and other
regularities in strings. Some such applications were discussed in Apostolico
[1985], and elsewhere in Apostolico and Galil [1985]. Many more are found
in other chapters of the present volume.
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4
Serial Computations of Levenshtein
Distances

In the previous chapters, we discussed problems involving an exact match
of string patterns. We now turn to problems involving similar but not
necessarily exact pattern matches.

There are a number of similarity or distance measures, and many of
them are special cases or generalizations of the Levenshtein metric. The
problem of evaluating the measure of string similarity has numerous appli-
cations, including one arising in the study of the evolution of long molecules
such as proteins. In this chapter, we focus on the problem of evaluating a
longest common subsequence, which is expressively equivalent to the simple
form of the Levenshtein distance.

4.1 Levenshtein distance and the LCS problem

The Levenshtein distance is a metric that measures the similarity of two
strings. In its simple form, the Levenshtein distance, D(x,y), between
strings x and y is the minimum number of character insertions and/or
deletions (indels) required to transform string x into string y. A commonly
used generalization of the Levenshtein distance is the minimum cost of
transforming x into y when the allowable operations are character insertion,
deletion, and substitution, with costs 8(n, a), 8(a , A), and 8 (a1 ,a 2 ) , that are
functions of the involved character(s).

There are direct correspondences between the Levenshtein distance of
two strings, the length of the shortest edit sequence from one string to the
other, and the length of the longest common subsequence (LCS) of those
strings. If D is the simple Levenshtein distance between two strings having
lengths m and n, SES is the length of the shortest edit sequence between
the strings, and L is the length of an LCS of the strings, then SES = D
and L = (m + n — D)/2. We will focus on the problem of determining the
length of an LCS and also on the related problem of recovering an LCS.

Another related problem, which will be discussed in Chapter 6, is that of
approximate string matching, in which it is desired to locate all positions
within string y which begin an approximation to string x containing at
most D errors (insertions or deletions).
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procedure CLASSIC( x, m, y, n, C, p ):
begin

L[0:m, 0] «- 0;

for i <— 1 until m do
for j <— 1 until n do

if xi = yj then L[i,j] <— 1 + L[i — l,j — 1]
else if L[i - 1 , j ] > L[i,j - 1] then L[i,j] <— L[i - l , j ]

else L[i,j] <— L[i,j- 1];
if xi = yj then P[i, j] <— 3
else if L[i - 1, j] > L[i, j - 1] then P [ i , j ] <— 1

else P[i,j] <— 2;

while k > 0 do
if P[t, j] = 3 then

begin
C[k] <— xi;
k <— k — 1;

( i , j )^( i- l , j - l ) ;
end

else
if P[i,j]= 1 then i <— j - 1
else j <— j — 1

end

Fig. 4.1. Classic LCS algorithm

4.2 Classical algorithm

Let the two input strings be x — x1 x2...xm and y = y1y2...yn and let
L(i,j) denote the length of an LCS of x[l:i] and y[i:j]. A simple recurrence
relation exists on L:

This forms the basis for a dynamic programming algorithm that deter-
mines the length of an LCS. We fill matrix L[0:m,0:n] with the values of

P[0:m,0] <- 1;
L[0:0,n] <- 0;
P[0:0,n] <- 2;

P <- L[m,n];
(i,j) <- (m,n);
k <- p;
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the L-function. We first set the values stored in the boundary cells (L[0, •]
and L[o , 0]) to 0. By sweeping the matrix in an order calculated to visit a
cell only when its precedents (as defined by the recurrence) have already
been valuated, we iterate setting the value stored in L[i,j] to the value
of L(i,j) using the recurrence relation. (See Figure 4.1.) Storing point-
ers P[i, j] that indicate which L-entry contributed to the value of L(i,j)
(change of coordinate 1, 2, or both), enables the recovery of an LCS by
tracing these threads from (m, n) back to (0,0). A solution LCS, having
length p = L(m, n), will be placed in array C. This method requires O(mn)
time and space.

The recurrence relation on L can be revised to enable computation
of the generalized Levenshtein distance, D(i,j) between x[l:i] and y[l:j],
where insertions, deletions and substitutions have costs that are a function,
6, of the symbols involved. A similar dynamic programming algorithm will
evaluate D.

4.3 Non-parameterized algorithms

A number of algorithms developed for solving the LCS problem have exe-
cution times dependent upon either the nature of the input (beyond merely
the sizes of the two input strings) or the nature of the output. Such algo-
rithms are referred to as input- or output-sensitive. Before discussing such
algorithms, we first describe two LCS algorithms of general applicability
whose performance is not parameterized by other variables.

4.3.1 LINEAR SPACE ALGORITHM

The space complexity of determining the length of an LCS can be reduced
to O(n) by noting that each row of L depends only on the one immediately
preceding row of L. The length of an LCS of strings x[l:m] and y[l:n] will be
returned in L[n] after invoking FINDROW(x, m, y, n, L). (See Figure 4.2.)

Recovering an LCS using only linear space is not as simple. The "curve"
that recovers an LCS was obtained by following threads through the L
matrix after it was computed in its entirety. Instead, we first determine the
middle point of an LCS curve and then, applying the procedure recursively,
we determine the quartile points, etc.
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procedure FINDROW( x, m, y, n, L ):
begin

L[0 : n] <— 0;
for i «— 1 until m do

begin
for j <— 1 until n do

if xf = yj then Lnew[j] <-l + L[j- l]
else Lnew[j] <— max.{Lnew[j - l],L\j]};

for j <—1 until n do L[j] <— Lnew[j]
end

end

Fig. 4.2. FINDROW algorithm

There are several ways to determine the middle point of an LCS curve.
We outline two methods, one that is conceptually simple and the other
that is easier and more efficient to implement.

The simple method computes the middle row of L and then continues
computing additional rows L[i, •], retaining for each element (i, j) a pointer
to that element of the middle row through which the LCS curve from (0,0)
to (i, j) passes. The pointer retained by (m, n) indicates the middle point
of an LCS. (See Figure 4.3.)

A more efficient method is to use the linear space FINDROW algorithm
to compute the middle row of L and also the middle row of the solution
matrix LR for the problem of the reverses of strings x and y. It can be
shown that their sum is maximized at points where LCS curves intersect
with the middle row. It is in this manner that the middle point of an
LCS curve is determined. Applying this procedure recursively, the quartile
intersections can be recovered, etc. (See Figure 4.4.) Each iteration uses
linear space, and it can be shown that the total time used is still quadratic,
though about double what it was before.

This paradigm to recover an LCS, requiring only linear space, by using
divide-and-conquer with algorithms that only evaluate the length of an
LCS, can also be applied to many other algorithms for the LCS problem.

4.3.2 SUBQUADRATIC ALGORITHM

A sub quadratic time algorithm for this problem, that applies to the case
of a finite alphabet of size s, uses a "Four Russians" approach. Essentially,
instead of calculating the matrix L, the matrix is broken up into boxes of
some appropriate size, k. The "high" sides of a box (the 2k — 1 elements of
L on the edges of the box with largest indices) are computed from L-values
known for boxes adjacent to it on the "low" side and from the relevant
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function FINDMID( x, m, y, n ):
begin

L[0 : n] <— 0;
mid <— [m/2];
for i <— 1 until mid do

begin
for j <— 1 until n do

if xi = yj then Lnew[j] <— 1 + L[j - 1]
else Lnew[j] <— max{Lnew[j - 1], L[j]};

for j <— 1 until n do L[j] <— Lnew[j]
end;

for j <— 0 until n do P[j] <— j;
for i <— mid + 1 until m do

begin
for j <— 1 until n do

begin
if xi = yj then Lnew [j] <— 1 + L[j - 1]
else Lnew[j] <— max{Lnew[j - 1], L[j]};
if xi,- = yj then Pnew[j] <— P[j - 1]
else if Lnew[j - 1] > L[j] then

Pn e w[j]<— Pnew | j-1]
else Pnew[j] <— P[j]

end;
for j <— 1 until n do L[j] <— Lnew[j];
for j <— 1 until n do P[j] <— Pnew[j]

end;
return P[n]

end

Fig. 4.3. FINDMID algorithm

symbols of x and y by using a lookup table that was precomputed.
There are 2k+ 1 elements of L adjacent to a box on the "low" side. Two

adjacent L-elements can differ by either zero or one. There are thus 22k

possibilities in this respect. The symbols of x and y range over an alphabet
of size s for each of the 2k elements, yielding a multiplicative factor of s2k

and the total number of boxes to be precomputed is therefore 22k(1+logs).
Each such box can be precomputed in time O(k2) for a total precomputing
time of O(k222t(1+log s)).

The sides of a box can be stored as "steps" consisting of O's and 1's
indicating whether adjacent elements of the side differ by 0 or 1. A box
can therefore be looked up in time O(2k). There are (n/k)2 boxes to be
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procedure LINEARSPACE( x, m, y, n, C, p ):
begin

if n = 0 then p <— 0
else

if m = 1 then
if 3j < n with yj = x1 then

begin
p<—i;
C[1] <— x1

end
else p <— 0

else
begin

i<-[Yn/2l ;
FINDROW( x, i, y, n, L );
let XR be the reverse of string x;
let yR be the reverse of string y;
FINDROW( XR, m - i, yR, n, LR );
determine a k in the range 0 ... n

that maximizes L[k] + LR[n — k];
LINEARSPACE( x, i, y, k, C, q );
let x'[l : m — i] consist of elements x[i + 1 : m];
let y' [1 : n — k] consist of elements y[k + 1 : n];
LINEARSPACE( x', m - i, y1, n-k, C', r );
p<-q + r;
let C[q + 1 : p] consist of elements C"[l : r]

end
end

Fig. 4.4. Linear space LCS algorithm

looked up, for a total time of O(n2/k).
The total execution time will therefore be 0(p22k(1+log s) + n2/k).

If we let k = (log n)/(2 + 2log s), we see that the total execution time
will be O(n2/log n). This algorithm can be modified for the case when
the alphabet is of unrestricted size, with the resulting time complexity of
O(n2(log log n)/ log n).

We note that this method works only for the classical Levenshtein dis-
tance metric but not for generalized cost matrices.
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4.3.3 LOWER BOUNDS

The 0(n2/log n) algorithm is the asymptotically fastest known. It is an
open question as to whether this algorithm is asymptotically best possible.

If we consider algorithms for solving the LCS problem that are restricted
to making symbol comparisons of the form "a1 = a2?" then any such
algorithm must make £l(n2) comparisons for alphabets of unrestricted size
and O(ns) comparisons for alphabets of size restricted to s. In particular,
if T(n,s) is the minimum number of "equal-unequal" comparisons under
the decision tree model needed to find an LCS of two strings of length n
when the total number of distinct symbols that can appear in the strings
is s, then

If we consider algorithms that may make symbol comparisons of the
form "a1 < a2?" then any such algorithm that solves the LCS problem
must make O(n log m) symbol comparisons for alphabets of unrestricted
size. The proofs of these lower bounds generally have relied on exhibiting
a path of requisite length in decision trees that support such algorithms by
using adversary arguments. We present a sketch of the £2(n log m) lower
bound.

Let the adversary's response to a comparison p : q be as follows. If p
and q are both positions in string x (say, xi and xj) then if i < j return
"less than"; otherwise, return "greater than".

If p and q are not both positions in string x then let R be the number
of relative orderings of positions of strings x and y that are consistent
with the results of comparisons made thus far and that are consistent with
xi < x2 < ... < xm. Let R1 be the subset of R consistent with p < q and
let R2 be the subset of R consistent with p > q. If \R1\ > \R2\ then return
"less than"; otherwise, return "greater than".

Define positions p and q to be comparable with respect to a sequence of
comparisons if it can be logically deduced from the results of the compar-
isons that p < q or that p > q.

Lemma 4.1. The algorithm must perform sufficient comparisons so that
all positions in x are comparable to all positions in y.

Each yj in string y can be in any one of m + 1 distinct states:
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Thus, there are (m + 1)n possible relative orderings of the elements of
y with respect to the elements of x and it will take log(m + 1)n > n log m
comparisons to distinguish which states the elements of y are in.

There are many algorithmic techniques that are not modeled by decision
trees and for which these lower bounds would not apply. Examples of such
techniques include array indexing (as used by the subquadratic algorithm
of Section 4.3.2) and hashing.

4.4 Parameterized algorithms

In this section, we discuss several algorithms for the LCS problem whose
performance is parameterized by variables other than the sizes of the two
input strings. Before describing these algorithms, we define some notation.

Consider the (m + l ) x ( n + l) lattice of points corresponding to the
set of prefix pairs of x and y, allowing for empty prefixes. We refer to
the first coordinate of a point as its z-value and to the second coordinate
as its j-value. We say that point (i, j) dominates point (i',j') if V < i
and j1 < j. A match point is a point ( i , j ) such that x, = yj. The point
(0,0) is specially designated as also being a match point. Point ( i , j ) has
rank k if L(i,j) = k. Point (i, j) is k-dominant if it has rank k and it is
not dominated by any other point of rank k. Analagously, a point (i, j)
is k-minimal if it has rank k and it does not dominate any other point of
rank k. Note that if a point is k-dominant or k-minimal then it must be a
match point.

The dominance relation defines a partial order on the set of match
points. The LCS problem can be expressed as the problem of finding a
longest chain in the poset of match points, modified to exclude links be-
tween match points that share the same z-value or j-value. Most known
approaches to the LCS problem compute a minimal antichain decompo-
sition for this poset, where a set of match points having equal rank is an
antichain. These approaches typically either compute the antichains one at
a time, or extend partial antichains relative to all ranks already discovered.

Let r be the number of match points, excluding (0, 0), and let d be the
total number of dominant points (all ranks). Then 0 < p < d < r < mn.

4.4.1 PN ALGORITHM

We describe an algorithm that solves the LCS problem by computing the
poset antichains one at a time, iteratively determining the set of k-minimal
points for successively larger values of k. This algorithm requires time
O(pn + nlogn). If the expected length of an LCS is small, this algorithm
will be faster than the classic algorithm.

The k-minimal points, if ordered by increasing j-value, will have their j-
values in decreasing order. The algorithm detects all minimal match points
of one rank by processing the match points across rows.
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procedure PN( x, m, y, n, C, p ):
begin

Va E x, build ordered MATCHLIST(a) of y-positions containing a;
M [0, 0:m] <- 0;
first <— 0;
for k <— 1 step 1 do

begin
prev <— first;
low <— M[k — l, prev];
high <— n + 1;
for i <— prev + 1 until m do

begin
t <— min{j 6 MATCHLIST(xi) | j > low};
if t < high then

M[k, i ]<-high*- t
else M[k, i] <— 0;
if M[k, i] > 0 and first = prev then first <— i;
if M[k - 1, i] > 0 then low <— M[k - 1, i]

end;
comment M[k, 0:m] contains the set of k-minimal points;
if first = prev then goto recover

end;
recover:

for i «— m step —1 until 0 do
if M[k,i] > 0 then

begin
C[k] ^ xi;
k <— k — l

end
end

Fig. 4.5. Sketch of pn LCS algorithm

Define lowk(i) to be the minimum j-value of match points having rank
k — 1 whose i-value is less than i. Define highk(i) to be the minimum j- value
of match points having rank k whose i-value is less than i (n + 1 if there
are no such points). The following lemma is essential to the algorithm.

Lemma 4.2. (i, j) is a k-minimal point iff j is the minimum value such
that xi — yj and lowk(i) < j < highk(i).

A sketch of the O(pn) algorithm is given in Figure 4.5. The algorithm

p <- k - 1;
k <- p;
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obtains its efficiency by the use of three simple data structures. First, a col-
lection of balanced binary search trees provides a mapping of alphabet sym-
bols to the integers {1,..., |E|}. Second, for each a E x, MATCHLIST(a)
contains the ordered list of positions in y in which symbol a occurs. Third,
array M maintains the set of k-minimal points ordered by the i-values of the
points. For each value of k, an iteration of the outer loop determines the set
of k-minimal points in linear time. A crucial observation is that the eval-
uation of variable t, the minimum element in MATCHLIST(xi) satisfying
the low and high bounds, can be accomplished by iteratively decrementing
a pointer to that MATCHLIST. The total number of decrementations to
that MATCHLIST cannot exceed the size of that MATCHLIST, and the
sum of the lengths of all MATCHLISTs is n.

4.4.2 HUNT-SZYMANSKI ALGORITHM

We now describe an algorithm, due to J. Hunt and T. Szymanski, for
solving the LCS problem in O((r + n)logn) time and O(r + n) space.
(See Figure 4.6.) This algorithm is particularly efficient for applications
where most positions of one sequence match relatively few positions in the
other sequence. Examples of such applications include finding the longest
ascending subsequence of a permutation of the integers {1.. .n} and file
differencing in which a line of prose is considered atomic.

The algorithm detects dominant match points across all ranks by
processing the match points row by row. For each i, the ordered list
MATCHLIST(i) is set to contain the descending sequence of positions j
for which xi = yj. This initializing process can be performed in time
O(n log n) by stably sorting a copy of sequence y while keeping track of
each element's original position, and counting the number of elements of
each symbol value. MATCHLIST(i') can be implemented with a count of
the size and a pointer to the last of the now contiguous subset of elements
having symbol xi. Then, iteratively for each row i, the algorithm evalu-
ates the threshhold function T(i, k) defined to be the smallest j such that
Li,j > k. This function satisfies the recurrence relation

By maintaining the T values in a one-dimensional array THRESH and
considering the j in MATCHLIST(i') in descending order, the k for which
T(i, k) differs from T(i — 1, k) can be determined in O(log n) time by using
binary search on the THRESH array.

Variations of the Hunt-Szymanski algorithm have improved complexity.
The basic algorithm can be implemented with flat trees to achieve time
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procedure HUNT( x, m, y, n, C, p ):
begin

for i <— 1 until m do
begin

comment initialize THRESH values;
THRESH [i] <-n + l;
set MATCHLIST[i] to be the descending sequence

of positions j s.t. X{ — yj;
end

THRESH[0] <— 0;
LINK[0] <— A;
comment compute successive THRESH values

THRESH[k] = T(i- l,k) (initially) and T(i,k) (finally);
for i <— 1 until m do

for each j in MATCHLIST[i] do
begin

use binary search on the THRESH array to find k
such that THRESH[k - 1] < j < THRESH[k];

if j < THRESH[k] then
begin

THRESH[k] <— j;
create a list node new whose fields contain:

i, LINK[k - 1];
LINK[k] <— new

end
end

t <— largest k such that THRESH[k] = n + 1;
last <— LINK[t];
p <—0;;
while last = A do

begin
comment recover LCS in reverse order;
(i,prev) <— fields of list node last;

S[p] <- xi;
last <- prev

end;
C[l : p] <— the reverse of the sequence of elements 5[1 : p]

end

Fig. 4.6. Hunt-Szymanski LCS algorithm

p <- p+1
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complexity 0(rloglogn + nlogn) over an unbounded alphabet and O((r +
n) log log n) over a fixed-size alphabet. However, since the use of flat trees
imposes a large multiplicative constant, this improvement is of theoretical
interest only.

By concentrating attention on the d dominant points (a subset of the
r match points), the basic algorithm can be modified to have O(m\ogn +
dlog(mn/d)) time complexity and O(d + n) space complexity. The time
complexity can be theoretically further improved to O(n + dloglog(mn/d))
by application of Johnson's improvement to flat trees.

4.4.3 ND ALGORITHM

Let D be the difference in length between x and LCS(x,y); D = m —
p. We now describe an O(nD)-time LCS algorithm. (See Figure 4.7.)
This algorithm is based on evaluating the function M(k, i) defined to be
the largest j such that x[i : m] and y[j : n] have an LCS of size > k.
This function is symmetric to the threshhold function (Equation 4.3 of
Section 4.4.2) and satisfies the following recurrence relation.

The efficiency of this algorithm derives from the procedure of avoiding
calculating elements of M which cannot induce an LCS. The elements of M
are evaluated along diagonals, one diagonal at a time. The first diagonal
(diag = m) is M[l, m] through M[m, 1]; successive diagonals (smaller val-
ues of diag) are M[l,diag] through M[diag, 1}. No further elements of M
are evaluated beyond diagonal p. We know that we have encountered the
last required diagonal when the length, p, of the longest found CS equals
the diagonal number. Each diagonal requires only linear time since the y
index, j, has range at most 1 to n. Therefore the total time required is
0(n(m-p)).

The algorithm, as given, uses m2 space for the M array. However, by
using the simple mapping of M[k,i] to an element of a one-dimensional
array, it is straightforward to use space O(mD). The space-saving tech-
nique, discussed earlier, can be applied to this algorithm, resulting in an
algorithm with O(nD) time and linear space complexity.

4.4.4 MYERS ALGORITHM

Myers developed an O(nD) time algorithm that can be executed using
linear space. Under a basic stochastic model, his algorithm has expected
time complexity O(n + D2). A non-practical variation, using suffix trees,
has O(nlogn + D2) worst-case time complexity.
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procedure NAKATSU( x, m, y, n, C, p ):
begin

diag <— m;

while p < diag do
begin

len <— 1;
jmax <— n + 1;

comment evaluate M[k, i] along one diagonal;
while i = 0 and jmax = 0 do

begin
comment clear an element of M

for uniform handling;
if diag = m or len > p then M[len, i + 1] <— 0;
jmin <— max{l, M [len, i + 1] };
j <— Jmax — 1
comment calculate one M [k,i];
while j > jmin and xi = yj do j <— j - 1;
if j > jmin then jmax <— j
else jmax; <— M[len, i + 1];
M[len,i] <-jmax;

if jmax = 0 then len <— len — 1;
if len > p then p <— len;
len «— len + 1;
i <- i - 1

end;
diag <— diag — 1

end;
comment recover an LCS, the length of which is p;
if jmax = 0 then i <— i + 2
else i <— i + 1 ;
k <— p;
while k > 0 do

begin
while M[k, i] = M[k, i + 1] do

i<—i + l;
C[p+l -k]<—xi;

end
end

Fig. 4.7. nD LCS algorithm

p <- 0;

i <- diag;

i <- i + 1;
k <- k - 1;
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function MYERS( x, m, y, n ):
begin

DOMI[1] <— 0;
comment look for dominant D-deviation points;
for D <— 0 until m + n do

for k < D step 2 until D do
begin

comment diagonals are 2 apart;
if k = -D or (k = D and

DOMI|k - 1] <DOMI[k + 1]) then
i<— DOMI[k + 1]

else i <— DOMI[k - 1] + 1;
j <— i — k;
comment until non-match is found

increment both coordinates;
while i < m and j < n and x[i + 1] = y[j + 1] do

(i,j)<—(i + 1,j + 1);
comment store i-value

of diagonal k dominant D-deviation;
DOMI[k] <— i;
comment if we found minimum adequate deviation

then return length of LCS;
if i — m and j = n then

return (i + j - D)/2;
end

end

Fig. 4.8. Myers LCS algorithm

The LCS trace will not deviate from the main diagonal more than the
difference between the two input sequences. The essence of Myers' algo-
rithm is to avoid evaluating unnecessary parts of the L matrix. Associated
with each point (i, j) having rank k is its diagonal number, i — j, and its
deviation, i + j — 2 k . There is only one 0-dominant point, (0,0), and it has
deviation 0. The set of dominant 0- deviation points lie on the 0-diagonal
from (0,0) through (i — 1,i— 1), where i is the minimum index such that
xi = y[i]. The algorithm iterates calculating the set of dominant points hav-
ing successively higher deviation. Each dominant (D + l)-deviation point
can be found by starting at a dominant D-deviation point, traversing one
unit orthogonally (adding one to exactly one coordinate), and iteratively
incrementing both coordinates until just before the first non-match point
is encountered. The algorithm terminates when point (m, n) is reached.
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Implementation is made easier by the fact that there will be exactly one
dominant D-deviation point for every other diagonal (that is, half the di-
agonals) in the range — D to +D.

The code shown in Figure 4.8 returns the length of an LCS. In this code,
DOMI[k] stores the i-value of the dominant D-deviation point located on
diagonal k. Therefore, that point is (DOMI[k],DOMI[k] - k).

In order to recover an LCS, either the sequence of all encountered domi-
nant points (all successive values of array DOMI) are retained, necessitating
the usage of O(nD) space or, by using a space-saving method similar to
that used earlier, linear space will suffice at a cost of increasing the time
requirements by a factor of about two.

A linear space version is enabled by determining the midpoint of an SES
(shortest edit sequence) curve. This can be done by alternately calculating
dominant D-deviation points for the two reverse problems (x,y and xR,yR)
for iteratively larger values of D until a member of one of the two sets of
dominant deviation points meets or passes a member of the other set along
their common diagonal. A first point of meeting or passage will be an SES
midpoint.

4.5 Exercises

1. Implement the classical algorithm to recover the sequence of edit
operations (insert, delete, substitute) that will result in minimum
total cost. Assume that substituting one symbol for another incurs
cost 1.5 while insertion or deletion of a symbol incurs unit cost.

2. A string insertion (deletion) consists of inserting (deleting) a string of
any length at one location. Implement an algorithm that determines
the minimum cost sequence of character and string insertions and
deletions required to transform string x into string y under the con-
straint that no substring of an inserted string may subsequently be
deleted. Assume that single character insertions and deletions have
unit cost, and that each string insertion and deletion has cost 1 +
stringlength/2.

3. What can you say about the complexity of the above problem with-
out the constraint disallowing subsequent partial deletion of inserted
strings.

4. Show that the sum of the middle rows of L and LR is maximized at
points where LCS curves intersect with the middle row.

5. How many nested levels of iterations are required by the Linear Space
Algorithm? Show that the total time used is quadratic.

6. Implement the pn LCS algorithm.
7. Prove the recurrence relation on threshhold values.
8. Show the relation between the T function defined in Section 4.4.2, and

the M function defined in Section 4.4.3. What, if any, is the relation
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between the T function and the low and high functions defined in
Section 4.4.1?

9. Implement a linear space version of Myers algorithm that recovers an
LCS.

10. Implement a cubic-time and quadratic-space algorithm that recovers
a longest subsequence common to three strings.

4.6 Bibliographic notes

Levenshtein [1966] introduced measures of distance between strings based
on indels. Applications of the LCS and related problems are discussed
in more detail in Sankoff and Kruskal [1983]. The string-to-string edit
problem is described and solved in Wagner and Fisher [1974]. Approxi-
mate string matching is discussed in Ukkonen [1985], Galil and Giancarlo
[1988], Landau and Vishkin [1988], and Galil and Park [1990]. Chin and
Poon [1994] analyze some heuristics for computing an LCS. Gotoh [1982]
exhibits an O(mn) time algorithm to compute the edit distance between
two strings under a generalized Levenshtein distance in which indels of
substrings have cost linear in the indel length. The linear space algorithm
for the LCS problem is due to Hirschberg [1975]. The conceptually simple
linear space method of determining the middle of an LCS curve is due to
Eppstein (unpublished).

The "Four Russians" are Arlazarov, Dinic, Kronrod, and Faradzev
[1970]. Their approach is also discussed in Aho, Hopcroft, and Ullman
[1974]. The subquadratic time algorithm for restricted size alphabet is
from Masek and Paterson [1980]. A discussion for the case of unrestricted
size alphabet can be found in Hunt and Szymanski [1977].

Lower bounds for the LCS problem are proven in Aho, Hirschberg, and
Ullman [1976], Wong and Chandra [1976], and Hirschberg [1978]. The
description of LCS algorithmic approaches in terms of poset antichains
was first explicated in Apostolico, Browne, and Guerra [1992]. An LCS
algorithm with time complexity O(pn+n log n) is in Hirschberg [1977]. The
O((r + n) log n) time Hunt-Szymanski algorithm is described in Hunt and
Szymanski [1977]. Apostolico [1986] improves its worst-case performance.
The notion of flat trees is from van Emde Boas [1975]; they are improved
in Johnson [1982]. Modifications to the Hunt-Szymanski algorithm are
discussed in Hsu and Du [1984a] (but see Apostolico [1987]), Apostolico
and Guerra [1987] and Eppstein, Galil, Giancarlo, and Italiano [1990].
Other algorithms are discussed in Chin and Poon [1990] and Rick [1995].

The O(nD)-time algorithm is due to Nakatsu, Kambayashi, and Yajima
[1982]. The code in Figure 4.7 is from their paper, with changes in the
variable names. The linear space version of Nakatsu's algorithm is shown
in Kumar and Rangan [1987].

Myers algorithm is from Myers [1986]. The code in Figure 4.8 is from
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Myers [1986], with changes in the variable names. Wu, Manber, Myers,
and Miller [1990] obtain a slightly faster O(nP) algorithm, where P is the
number of deletions in the shortest edit script.

The LCS problem can be generalized to the problem of determining
a longest sequence common to N strings. Maier [1978] shows that if the
number of strings, N, is not a constant then the N-LCS problem is NP-
complete. However, for fixed values of N, the N-LCS problem can be solved
using extensions of the algorithms in this chapter for the 2-LCS problem.
Itoga [1981] shows that the extension of the classical algorithm has time
and space complexity proportional to the product of the number of strings
and the strings' lengths which, in the case of N strings each of length n, is
0(NnN). Other algorithms for the N-LCS problem are shown in Hsu and
Du [1984b] and Irving and Fraser [1992].
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5
Parallel Computations of Levensh-
tein Distances

This chapter discusses parallel solutions for the string editing problem in-
troduced in Chapter 5. The model of computation used is the synchronous,
shared - memory machine referred to as PRAM and discussed also earlier
in this book. The algorithms of this chapter are based on the CREW and
CRCW variants of the PRAM. In the CREW - PRAM model of parallel
computation concurrent reads are allowed but no two processors can si-
multaneously attempt to write in the same memory location (even if they
are trying to write the same thing). The CRCW - PRAM differs from the
CREW - PRAM in that it allows many processors to attempt simultaneous
writes in the same memory location: in any such common-write contest,
only one processor succeeds, but it is not known in advance which one.

The primary objective of PRAM algorithmic design is to devise algo-
rithms that are both fast and efficient for problems in a particular class
called NC. Problems in NC are solvable in O(logo(1) n) parallel time by
a PRAM using a polynomial number of processors. In order for an algo-
rithm to be both fast and efficient, the product of its time and processor
complexities must fall within a polylog factor of the time complexity of
the best sequential algorithm for the problem it solves. This goal has been
elusive for many simple problems, such as topological sorting of a directed
acyclic graph and finding a breadth-first search tree of a graph, which are
trivially in NC. For some other problems in NC, it seems counter-intuitive
at first that any fast and efficient algorithm may exist, due to the over-
whelming number of simultaneous subproblems that arise at some point
of the computation. Such is the case of the string-editing problem. This
chapter will show that string editing can be solved in O((logn)2) time
and O(n2/ log n) processors on the CREW-PRAM, and in O(log n loglog n)
time and O(n2/loglogn) processors on the CRCW-PRAM.

Throughout, it will be convenient to analyze our algorithms using the
time and work (i.e., number of operations) complexities. The processor
complexity is deduced from these by using Brent's theorem, which states
that any synchronous parallel algorithm taking time T that consists of a
total of W operations can be simulated by P processors in time O((W/P) +
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T). There are actually two qualifications to Brent's theorem before one can
apply it to a PRAM: (i) at the beginning of the i-th parallel step, we must
be able to compute the amount of work Wi done by that step, in time
O(Wi/P) and with P processors, and (ii) we must know how to assign
each processor to its task. Both qualifications (i) and (ii) to the theorem
will be satisfied in our algorithms.

5.1 Edit distances and shortest paths

Let x be a string of \x\ symbols on some alphabet /. We consider three edit
operations on x, namely, deletion of a symbol from x, insertion of a new
symbol in x and substitution of one of the symbols of x with another symbol
from I. We assume that each edit operation has an associated nonnegative
real number representing the cost of that operation. More precisely, the
cost of deleting from x an occurrence of symbol a is denoted by D(a), the
cost of inserting some symbol a between any two consecutive positions of
x is denoted by I(a) and the cost of substituting some occurrence of a in
x with an occurrence of 6 is denoted by S(a, 6). An edit script on x is any
consistent (i.e., all edit operations are viable) sequence <r of edit operations
on x, and the cost of <r is the sum of all costs of the edit operations in a.

Now, let x and y be two strings of respective lengths \x\ and \y\. The
string editing problem for input strings x and y consists of finding an edit
script a' of minimum cost that transforms x into y. The cost of a' is the
edit distance from x to y. As seen in Chapter 6, the problem is solved by
a serial algorithm in O(|x||y|) time and space, through dynamic program-
ming, and such a performance represents a lower bound when the queries
on symbols of the string are restricted to tests of equality. Many important
problems are special cases of string editing, including the longest common
subsequence problem and the problem of approximate matching between a
pattern string and text string. Clearly, any solution to the general string
editing problem implies similar bounds for all these special cases.

It is worthwile to review the criterion that subtends the computation
of edit distances by dynamic programming. For this, let C(i,j), (0 < i <
|x|> 0 < j < |y|) be the minimum cost of transforming the prefix of x of
length i into the prefix of y of length j. Let sk denote the kth symbol of
string s. Then C(0,0) = 0, and

for all i,j, (1 < i < |x|;l < j < \y\). Hence C(i,j) can be evaluated
row-by-row or column-by-column in 0(|x||y|) time. Observe that, of all
entries of the C-matrix, only the three entries C(i — I, j — 1), C(i — l,j},
and C(i, j — 1) are involved in the computation of the final value of C(i, j).
Such interdependencies among the entries of the C-matrix induce an (|x| +
1) x (\y\ + 1) grid directed acyclic graph (grid DAG for short) associated
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Fig. 5.1. Example of a 5 x 7 grid DAG.

with the string editing problem. We will see that in fact the string editing
problem, can be viewed as a shortest-paths problem on a grid DAG.

Definition 5.1. An l1 x /2 grid DAG is a directed acyclic graph whose
vertices are the l1l2 points of an l1\ x l2 grid, and such that the only edges
from grid point ( i , j ) are to grid points (i,j + l), (i+l,j), and (i+l,j+l).

Figure 5.1 shows an example of a grid DAG and also illustrates our
convention of drawing the points such that point (i,j) is at the ith row
from the top and jth column from the left. Note that the top-left point is
(0, 0) and has no edge entering it ( i.e., is a source), and that the bottom-
right point is (m, n) and has no edge leaving it ( i.e., is a sink).

We now review the correspondence between edit scripts and grid graphs.
We associate an (\x\ + 1) x (\y\ + 1) grid DAG G with the string editing
problem in the natural way: the (\x\ + l)(\y\ + 1) vertices of G are in one-
to-one correspondence with the (\x\ + l)(|y| + 1) entries of the C-matrix,
and the cost of an edge from vertex (k, /) to vertex (i, j) is equal to /(yj) if
k = i and l = j — 1, to D(xi) if k = i — I and / = j, to S ( x i , y j ) if k = i — 1
and / = j — I. We can restrict our attention to edit scripts which are not
wasteful in the sense that they do no obviously inefficient moves such as:
inserting then deleting the same symbol, or changing a symbol into a new
symbol which they then delete, etc. More formally, the only edit scripts
considered are those that apply at most one edit operation to a given
symbol occurrence. Such edit scripts that transform x into y or vice versa
are in one-to-one correspondence to the weighted paths of G that originate
at the source (which corresponds to C(0,0)) and end on the sink (which
corresponds to C(|a;|, |j/|)). Thus, any complexity bounds we establish for
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Fig. 5.2. Illustrating how the problem is partitioned.

the problem of finding a shortest (i.e., least-cost) source-to-sink path in an
m x n grid DAG G, extends naturally to the string editing problem. The
left boundary of G is the set of points in its leftmost column. The right,
top, and bottom boundaries are analogously defined. The boundary of G
is the union of its left, right, top, and bottom boundaries.

5.2 A monotonicity property and its use

Assume for now that m = n, i.e., G is an m x m grid DAG.
Let DISTc be a (2m) x (2m) matrix containing the lengths of all

shortest paths that begin at the top or left boundary of G, and end
at the right or bottom boundary of G. Our parallel algorithms (both
CREW-PRAM and CRCW-PRAM) work as follows: divide the m x m
grid into four (m/2) x (m/2) grids NW, SW, NE, SE, as shown in Fig.
5.2 (where N, S, E, W are mnemonics for North, South, East, West, re-
spectvely). In parallel, recursively solve the problem for each of the four
grids NW, SW, NE, SE, obtaining the four distance matrices DISTNW ,
DISTsw, DISTNE, DISTSE • Then obtain from these four matrices the
desired matrix DISTG. The main problem we face, is how to perform the
"combine" step efficiently, in parallel.

Suppose that we manage to show that DISTG can be obtained from
DISTNW, DISTsw, DISTNE, DISTSE in parallel in time O(logm) for
the CREW-PRAM, or in O(loglogm) for the CRCW-PRAM, in both cases
doing O(m2) work. Then the time and work complexities of the overall
algorithm would obey the following recurrences:

T C R E W (m) < TCrEW (m/2) + c1 log m (for CREW - PRAM),
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T C R C W ( m ) < T C R C W (m/2 ) + c2 log log m (for CRCW - PRAM),

WCREW(m) < 4WCREW(m/2) + c3m
2 (for CREW - PRAM),

W C R C W ( m ) < 4:W C R C W (m/2) + c4m
2 (for CRCW - PRAM),

with boundary conditions TCREW(4) = C5, TCRCW(4) = c6, WCREW(4) =
C7, W C R C W ( 4 ) = c8, where c1,..., c8 are constants. This would imply that
TC R E W(m) = O((logm)2), TCRCW(m) = O(logmloglogm), with both
WCREW(m) and WCRCW(m) being O(m2logm).

Therefore, we only need to concern ourselves with establishing the
"combine" bounds, that is, showing that DISTG can be obtained from
DISTNW, DISTsw, DISTNE, DISTSE in O(log m) time for the CREW-
PRAM, in O(loglogm) time for the CRCW-PRAM, with O(m2) work for
both models.

Let DISTNWUSW be the (3m/2)x(3m/2) matrix containing the lengths
of shortest paths that begin on the top or left boundary of NWUSW and
end on its right or bottom boundary. Let DISTNEUSE be analogously
defined for NE U SE. Our procedure for obtaining DISTG performs the
following three steps:

1) Use DISTNW and DISTsw to obtain DISTNWUSW •
2) Use DISTNE and DISTSE to obtain DIST N E U S E -
3) Use DISTNWUSW and DISTNEuse to obtain DISTG.

We only show how step 1 is done. The procedures for steps 2 and 3
are similar. First, note that the entries of DISTNWUSW that correspond
to shortest paths that begin and end on the boundary of NW (respec-
tively, SW) are already available in DISTNW ( respectively, DISTsw),
and therefore we need worry only about the entries of DISTNWUSW for
paths that begin on the top or left boundary of NW and end on the right
or bottom boundary of SW. For any such v-tow path, we have:

where C denotes the boundary common to NW and SW. Using the above
equation 5.1 to compute DISTNSUSW (v, w) for a given v, w pair is trivial
to do in O(log m) CREW-PRAM time or O(loglog m) CRCW-PRAM time
by using O(m) work for each such v, w pair, but that would require an
unacceptable O(m3) total work since there are O(m2) such pairs. We next
prove a property that will be useful in decreasing the amount of work done.

Definition 5.2. // X denotes a subset of the points on the left or top
boundary of NW, Y denotes a subset of the points on the bottom or right
boundary of SW, and Z denotes a subset of the points on the common
boundary of NW and SW, then for every v £ X and w € Y, we define
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point 0 X , Z , Y ( V , w) to be the leftmost p G Z which minimizes DistNW(v,p)+
DistSW(p, 'w). Equivalently, OX,Z,Y(V,W) is the leftmost point p E Z that
is traversed by a shortest v-to-w path that is constrained to go through Z.

In the case where Z is the whole boundary common to NW and SW
(i.e., Z = C), knowing OX,C,Y(V,W) is like knowing the desired quantity

(v, w), because the above definition implies that

Therefore computing this 9 function would essentially solve the problem
of obtaining the DIST^wusw matrix from the DISTNW and DISTsw
matrices. This is what we henceforth seek to achieve.

Let X, Y, Z be as in the above Definition 5.2. We also introduce a
linear ordering <x on the points in X, such that they are encountered in
increasing order of <x by a walk that starts at the leftmost point of the
lower boundary of NW and ends at the top of the right boundary of NW.
The linear orderings <y on Y and <z on Z are defined analogously. Then
the following holds.

Lemma 5.3. (Monotonicity Lemma) For any v E X and w1, w2 E Y,

For any w G Y and v1,v2 E X,

Proof: We prove the first part of the claim, by contradiction (the proof of
the second part of the claim is similar and omitted). Since X, Z, Y and v are
understood, we use 0(w1) as a shorthand for O X , Z , Y ( V , w 2 ) . Suppose that
we have w1 <y w2 and 0 (w 2 ) <z 0 (w 1 ) , as shown in Fig. 5.3. By definition
of the function 0 there is a shortest path from v to w1 going through 0(w1)
(call this path a), and one from v to wv going through 0(w2) (call it B).
Since w1 <y w2 and 0(w2) <z 0(w2), the two paths a and B must cross
at least once somewhere in the region SW: let z be such an intersection
point. See Fig. 5.3. Let prefix(a) (respectively, p r e f i x ( B ) ) be the portion
of a (respectively, B) that goes from v to z. We obtain a contradiction in
each of two possible cases:

Case 1. The length of prefix (a) differs from that of prefix(B). With-
out loss of generality, assume it is the length of p re f i x (B ) that is the
smaller of the two. But then, the v-to-w1 path obtained from a by replac-
ing prefix(a) by p re f i x (B) is shorter than a, a contradiction.

Case 2. The length of prefix(a) is same as that of pre f i x (B) . In a,
replacing p r e f i x ( a ) by p re f i x (B) yields another shortest path between v

DISTNWUSW
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Fig. 5.3. The Monotonicity Lemma

and w1, one that crosses Z at a point to the left of 0 (w 1 ) , contradicting
the definition of the function 9. O

Lemma 5.3 is the basis for the following definitions (we use the 9 sym-
bol in the notation of the definitions that follow, rather than introduce a
previously unused symbol, because this new usage of 6 is closely related to
the previous one and the context will leave no room for confusion).

Definition 5.4. For any m x n matrix A, let 0A be the m-vector such that,
for every row index r (1 < r < m), 0A(r) is the smallest column index c
that minimizes A(r,c) (that is, among all c's that minimize A(r,c), O A (r)
is the smallest). If 0 A satisfies the following sorted property:

and if for every submatrix A' of A, OA' also satisfies the sorted property,
then matrix A is said to be totally monotone. Given a totally monotone
matrix A, the problem of computing the OA array is known as that of "com-
puting the row minima of a totally monotone matrix".

Now, in equation 5.1, if we fix v and define the matrix A by the
equation A(w,p) = DIST N W ( v ,p ) + D I S T S W ( p , w ) , then Lemma 5.3
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implies that A is totally monotone. Furthermore, knowing the OA ma-
trix is like knowing row v of the desired matrix DISTN W U S W , since
D I S T N W U S W ( v , w ) = DIST N W (v ,0 A (w) ) + DIST s w(0A(w),w). Since
there are m possible choices for v, our problem amounts to m computa-
tions of row minima of totally monotone matrices (one for each possible
choice for v). Solving the problem in this way turns out not to be the best
approach, since these m row minima computations are not independent of
each other, a fact that will be exploited later on and that motivates the
following definition.

Definition 5.5. Suppose we have an n1 x n2 x n3 matrix A and we wish
to compute, for every 1 < i < n1 and 1 < j < n3, the n1 x n3 matrix
0A such that 0A(i,j) is the smallest index k that minimizes A(i,k,j) (that
is, among all k's that minimize A(i,k,j), 0A(i,j) is the smallest). If 0A
satisfies the following sorted property:

and if for every submatrix A1 of A, OA' also satisfies the above sorted prop-
erty, then we say that A is totally monotone. Given such a matrix A,
computing its OA matrix is known as the problem of "computing the tube
minima of a totally monotone matrix".

Now, in equation 5.1, if we define the matrix A by the equation

then Lemma 5.3 implies that A is totally monotone. Further-
more, knowing the OA matrix is like knowing the desired matrix
DIST N W U S W , since D I S T N W U S W ( v , w ) = DISTNW(v,0A(v,w)) +
DISTsw(0A(v ,w) ,w) . Therefore the "combine" stage of our divide and
conquer scheme amounts to a tube minima computation. To establish the
CREW-PRAM and CRCW-PRAM bounds we had claimed for the com-
putation of the DISTG matrix, it therefore suffices to give algorithms that
perform the tube minima computation in logarithmic time for the CREW-
PRAM, doubly logarithmic time for the CRCW-PRAM, and with quadratic
work in either case. This is what the rest of this chapter seeks to establish.

Throughout, we refer to the first (resp., second, third) index of an entry
of A as its row (resp., column, height) index. Thus an A that is n1 x n2 X n3

has n1 row indices, n2 column indices, and n3 height indices.

5.3 A sequential algorithm for tube minima

Both the CREW-PRAM and the CRCW-PRAM algorithms for tube min-
ima will need, as a subroutine, a sequential 0(m2) time algorithm for the

PARALLEL COMPUTATIONS OF LEVENSHTEIN DISTANCES
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tube minima of an m x m x m totally monotone matrix. (Note that a
quadratic time sequential algorithm for DISTG is not automatically ob-
tained from the quadratic time sequential algorithms for string editing,
since these deal with the computation of only one shortest path in the grid
graph — the source-to-sink one.)

Let A' be the (m/2) x (m/2) submatrix obtained from A by considering
only the odd row, column, and height indices of A. Let A" be the (m/2) x
(m/2) submatrix obtained from A by considering only the odd row indices,
the even column indices, and the odd height indices. First, we recursively
solve the problem for A' and A" , obtaining the arrays 0 A' and 0 A"- If we
could show that OA can be obtained from OA' and OA" in O(m2) time, then
the recurrence for the time complexity would be T(m) = 2T(m/2) + c1m2,
T(4) = C2, werer c1,c2 are constants. This would imply that T(m) =
O(m2), as required. Hence we next show how OA can be obtained from OA'
and OA" in O(m2) time:

1. For all odd i and all odd j, compute O A ( i , j ) - This takes 0(1) time
for each such pair i,j, because O A ( i , ] ) is either 0A'(i> j) or ^A"(i , j ) i
both of which are available.

2. For all odd i and even j, compute 0A(i, j). This takes O(m) time for
a fixed odd i and all even j, by the following analysis. For a fixed odd
row index a, let Za,1, Z a , 2 ,. . . , Za,,m/2 be the partition of the column
indices of A that is induced by the set of values

Monotonicity implies that 0A(i, j) €
1)}, and hence computing OA(I, j) can be done in 0(1 + | Zi,(j/2)+1|)
time. Summing the time (for the fixed i) over all even j, gives 0(m)
time because \Zit1| + \Zit2| + . . . + |Zi,m/2| = m. Therefore the total
time taken by this step is 0(m2).

3. For all even i and all odd j, compute 0A(i, j). This takes 0(m2) time,
by an analysis similar to the one given for previous step (interchang-
ing the roles of i and j, of rows and heights).

4. For all even i and all even j, compute O A { i , j ) . This takes 0(m2) time
(the method is essentially the same as for the previous two steps).

5.4 Optimal EREW-PRAM algorithm for tube minima

Our strategy consists of two stages: First, we attack the row minima prob-
lem, giving a logarithmic time, linear processor solution in the EREW-
PRAM model. Then we use the row minima solution to establish a loga-
rithmic time, quadratic work bound for tube minima in the EREW model.
In the last subsection of this section, we explain why these EREW-PRAM
bounds for tube minima imply similar CREW-PRAM (not EREW-PRAM)

Zi(j/2)U{0A(i,j-1),0A(i,j+
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bounds for the combining stage of the parallel divide and conquer for string
editing.

5.4.1 EREW-PRAM COMPUTATION OF ROW MINIMA

The main result of this subsection is an EREW-PRAM algorithm of time
complexity O(log n) and processor complexity O(n) for computing the row
minima of an n x n matrix A.

Theorem 5.6. The row minima (thai is, the array OA) of an m x n totally
monotone matrix A can be computed in O(logm+logn) time with O(m+n)
processors in the EREW-PRAM model.

In fact we prove a somewhat stronger result: that an implicit descrip-
tion of OA can be computed, within the same time bound as in the above
theorem, by O(n) processors. From this implicit description, a single pro-
cessor can obtain any particular 0A(r) value in O(logn) time.

Subsection 5.4.1 gives a preliminary result that is a crucial ingredient of
the scheme of Subsection 5.4.1: an O(max(n,logm)) time algorithm using
min(n,logm) processors in the EREW-PRAM model. Subsection 5.4.1,
which contains the heart of our CREW method, uses a kind of sampling
and pipelining, where samples are evenly spaced (and progressively finer)
clusters of elements and where the "help" for computing the information
at a node comes from its children and from some of its subtree's leaves.
Subsection 5.4.1 transforms the CREW algorithm of Subsection 5.4.1 into
an EREW algorithm by relying on (i) storing each leaf solution in a suitable
parallel data structure, and (ii) re-defining the nature of the information
stored at the internal nodes.

Recall that the EREW-PRAM is the parallel model where the proces-
sors operate synchronously and share a common memory, but no two of
them are allowed simultaneous access to a memory cell (whether the access
is for reading or for writing in that cell). The CREW-PRAM differs from
the EREW-PRAM in that simultaneous reading is allowed (but simula-
teous writing is still forbidden).

Preliminaries In this subsection we introduce some notation, terminol-
ogy, and conventions.

Since the matrix A is understood, we henceforth use 0 as a shorthand
for 0A- Throughout the section, R will denote the set of m row indices
of A, and C will denote its n column indices. To avoid cluttering the
exposition, we assume that m and n are powers of two (the scheme can
easily be modified for the general case).

An interval of rows or columns is a non-empty set of contiguous (row
or column) indices [i,j] = {i,j + 1, . . . , j } - We imagine row indices to lie
on a horizontal line, so that a row is to the left of another row if and only
if it has a smaller index (similarly "left of" is defined for columns). We say
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that interval I1 is to the left of interval I2, and I2 is to the right of I1, if
the largest index of I1 is smaller than the smallest index of I2. (Note: for
rows, it might seem more appropriate to say "above" rather than "to the
left of", but the latter is in fact quite appropriate because we shall later
map the rows to the leaves of a tree.)

Let I be a column interval, and let AI be the m x |I| submatrix of A
consisting of the columns of A in I. We use 0I as a shorthand for OAI.
That is, if r is a row index, then 0I(r) denotes the smallest c E I for which
A(r, c) is minimized. Note that 0I(r) usually differs from 0(r), since we are
minimizing only over I rather than C.

Throughout the section, instead of storing 0I directly, we shall instead
store a function nI which is an implicit description of OI.

Definition 5.7. For any column interval I and any column index c, nI(c)
is the row interval such that, for every row index r in that interval, we have
0I(r) = c; nI(C) is empty if no such r exists.

Note that the monotonicity of A implies that, if c1 < c2, then nI(CI) is
to the left of nI(c2).

Note that each nI(C) can be stored in O(l) space, since we need only
store the beginning and end of that row interval. Throughout the section,
we shall use nI as an implicit description of 0I. The advantage of doing so
is that we use O(|I|) storage instead of the 0(|R|) that would be needed
for explicitly storing 0I. The disadvantage is that, given a row index r, a
processor needs to binary search in the nI array for the position of row index
r in order to determine 0I(r). Had we stored directly 0I, 0 I(r) would be
readily available in constant time. From now on, we consider our problem
to be that of computing the nC array. Once we have nc, it is easy to
do a postprocessing computation that obtains (explicitly) 0 from nc with
m processors: each column c gets assigned |nc(c)| processors which set
0(r) = c for every r E nc(c). Therefore Theorem 5.6 would easily follow if
we can establish the following.

Theorem 5.8. nC can be computed in O(logm + logn) time and O(n)
processors in the EREW-PRAM model.

The rest of this section proves the above theorem.

Definition 5.9. The s-sample of the set R of row indices is obtained by
choosing every s-th element of R (i.e., every row index which is a multiple
of s). For example, the 4-sample of R is (4,8, • • •, m). For k E [0, logm],
let Rk denote the (m/2k)-sample of R.

For example, R0 = (m), R3 = (m/8, m/4,3ro/8, m/2,5m/8,
3m/4,7m/8,m), and Rlogm = (1,2, ...,m) = R. Note that \Rk\ = 2k =
2|Rk-1|.
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A logm Processor Algorithm This subsection gives an algorithm
which is needed as an important ingredient in the algorithm of the next
subsection. It has the feature that its complexity bounds depend on the
number of columns in a stronger way than on the number of rows.

Lemma 5.10. The nC array can be computed in O(max(n,logm)) time
with min(n,logm) processors in the EREW-PRAM model.

The bounds of the above lemma might look unappealing at first sight,
but their significance lies in the fact that m can be much larger than n. In
fact we shall use this lemma, in the next subsection, on problems of size
m x (logn). The rest of this subsection proves the lemma. Simple-minded
approaches like "use one processor to binary search for nc(c) in parallel for
each c E C" do not work, the difficulty being that we do not know which
nC(C)'S are empty. In fact, if we knew which nc(c)'s are empty then we
could easily achieve O(logm) time with n processors (by using the above-
mentioned straightforward binary search — e.g., binary search for the right
endpoint of nC(C) by doing log m comparisons involving the two columns c
and c' , where c' is the nearest column to the right of c having a nonempty

We shall compute the nC array by computing two arrays, LeftExtend
and RightExtend, whose significance is as follows.

Definition 5.11. For any column c, let LeftExtend(c) be the left endpoint
of row interval n[1,c](c). That is, LeftExtend(c) is the minimum row index
r such that, for any c' < c, A(r, c) < A(r,c'). Let Right Extend(c) be the
right endpoint of row interval n[c,n](c). That is, Right Extend(c) is the
maximum row index r such that, for any c' > c, A(r, c) < A(r, c').

Intuitively, LeftExtend(c) measures how far to the left (in R) column c
can "extend its influence" if the only competition to it came from columns
to its left. The intuition for Right Extend(c) is analogous, with the roles
of "left" and "right" being interchanged. Note that LeftExtend(c) (resp.,
RightExtend(c)) might be undefined, which we denote by setting it equal
to the nonexistent row m + 1 (resp., 0).

Once we have the RightExtend and LeftExtend arrays, it is easy to
obtain the nc array, as follows. If either LeftExtend(c) = m + 1 or
Right Extend(c) = 0 then obviously nC(C) is empty. Otherwise we dis-
tinguish two cases: (i) if Right Extend(c) < LeftExtend(c) then nc(c) is
empty, and (ii) if LeftExtend(c) < Right Extend(c) then interval nC(C)
is not empty and has LeftExtend(c) and Right Extend(c) as its two end-
points. Hence it suffices to compute the Right Extend and LeftExtend ar-
rays. The rest of this subsection explains how to compute the LeftExtend
array (the computation of RightExtend is symmetrical and is therefore
omitted). Furthermore, for the sake of definiteness, we shall describe the
scheme assuming n > logm (it will be easy for the reader to see that it

nc(c')).
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also works if n < log m). Thus we have min{n,logm} = logm processors
and wish to achieve O(max{n, logm}) = O(n) time performance. We shall
show how to use the logm processors to compute the LeftExtend array
in n + logm (= O(n)) time steps. To simplify the presentation we assume,
without loss of generality, that A(m, 1) > A(m, 2) > • • • > A(m, n) (one
can always add a "dummy" last row to A in order to make this hold—
obviously this does not destroy the monotonicity of A). This assumption
simplifies the presentation because it causes every LeftExtend(c) to be
< m (i.e., it is defined).

We first give a rough overview of the scheme. Imagine that the row
indices R are organized as a complete binary search tree TR: the leaves
contain R sorted by increasing order, and each internal node v contains
the row index r of the largest leaf in the subtree of v's left child (in which
case we can simply refer to v as "internal node r" rather than the more
cumbersome "the internal node that contains r"). Note that a row index
r < m appears exactly twice in TR: once at a leaf, and once at an internal
node (m appears only once, as the rightmost leaf). Having only logm
processors, we clearly cannot afford to build all of TR. Instead, we shall
build a portion of it, starting from the root and expanding downwards
along n root-to-leaf paths PI , • • •, Pn. Path Pc is in charge of computing
LeftExtend(c), and does so by performing a binary search for it as it
traces a root-to-leaf path in the binary search tree TR. If path Pc exits
at leaf r then LeftExtend(c) = r. The tracing of all the Pi's is done in
a total of n + log m time steps. Path Pc is inactive until time step c, at
which time it gets assigned one processor and begins at the root, and at
each subsequent step it makes one move down the tree, until it exits at
some leaf at step c + logm. Clearly there are at most logm paths that
are simultaneously active, so that we use log m processors. At time step
n + logm the last path (Pn) exits a leaf and the computation terminates.
If, at a certain time step, path Pc wants to go down to a node of TR not
traced earlier by a Pc' (c' < c), then its processor builds that node of TR
(we use a pointer representation for the traced portion of TR— we must
avoid indexing since we cannot afford using m space). During path Pc's
root-to-leaf trip, we shall maintain the property that, when Pc is at node r
of TR, LeftExtend(c) is guaranteed to be one of the leaves in r's subtree
(this property is obviously true when Pc is at the root, and we shall soon
show how to maintain it as Pc goes from a node to one of its children). It
is because of this property that the completion of a Pc (when it exits from
a leaf of TR) corresponds to the end of the computation of LeftExtend(c).

The above overview implies that at each time step, the lowermost nodes
of the log m active paths are "staggered" along the levels of TR in that they
are at levels 1,2, • • -,logm respectively. Hence at each time step, at most
one processor is active at each level of TR, and the computation of exactly
one LeftExtend(c) gets completed (at one of the leaves).
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We have omitted a crucial detail in the above overview: what additional
information should be stored in the traced portion of TR in order to aid the
downward tracing of each Pc (such information is needed for Pc to know
whether to branch left or right on its trip down). The idea is for each
path to leave behind it a trail of information that will help subsequent
paths. Note that LeftExtend(c) depends upon columns 1,2, • • •, c — 1 and
is independent of columns c + 1, • • •, n. Before specifying the additional
information, we need some definitions.

Definition 5.12. Let c and c' be column indices, r be a row index. We
say that c is better than c' for r (denoted by c <r c') iff one of the following
holds: (i) A(r, c) < A(r, c'), or (ii) A(r, c) = A(r, c') and c < c'.

Note that for any columns c, c' and row r, we must have either c <r c'
or c' <r c. When the algorithm compares A(r, c) to A(r, c') in order to
determine whether c <r c' or c' <r c, it is useful if the reader thinks
of such a comparison as a competition between c and c' for r: c wins the
competition over c' if the outcome is c <r c', otherwise it loses rioc'. When
a path PC is at an internal node r, it competes for r with the best column
for r among the columns in [1, c— 1] (that is, it competes with O[1,c-1](r)).
If c beats 8 [ 1 , c = 1 ] ( r ) in this competition for r, then Pc obviously branches
down to the left child of r in TR (its LeftExtend(c) is certainly not greater
than r). Otherwise it branches to the right child of r. However, the above
assumes that the O[1,c-1](r) values are available when needed. We must
now make sure that, when Pc enters node r, it can easily (i.e., in constant
time) obtain 0[1,c-1](r)• Note that we can neither maintain the needed
O[1,c-1](r) at r, nor can we carry it down with Pe on its downward trip (it
is not hard to see that either one of these two approaches runs into trouble).
Instead, we shall use a judicious combination of both: some information is
maintained locally in r, some is carried along by Pc. When Pc enters r,
Pc combines the information it is carrying, with the information in r, to
obtain in constant time 0 [ 1 , c - 1 ] ( r ) . This is made more precise below.

Each internal node r' that has been already visited by a path contains,
in a register label(r'), the best c' for r' among the subset of columns whose
path went through r' (hence lable(r') is empty if no path visited r' so far).

When PC enters internal node r of TR, it carries with it, in a register
rival(c), the largest c' such that c1 < c and LeftExtend(c') is smaller than
the leftmost leaf in the subtree of r (hence rival(c) is empty when Pc is at
the root).

Note that the current rival(c) and label(r) allow Pc to obtain 0[1,c-1](r)
in constant time, as follows. Recall that 0[1,c-1](r) is the best for r (i.e.,
smallest under the <r relationship) among the columns in [ l , c — 1]. Now,
view [ l , c— 1] as being partitioned into three subsets: the subset S1 (resp.,
S3) consisting of the columns c' whose LeftExtend(c') is smaller (resp.,
larger) than the leftmost (resp., rightmost) leaf in the subtree of r, and the
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subset S2 of the columns c' whose LeftExtend(c') is in the subtree of r.
Now, no column in 83 can be 0[1,c-1](r) (by the definition of 83). The best
for r in 52 is label(r) (by definition). The best for r in S1 is rival(c), by
the following argument. Suppose to the contrary that there is a c" E S1 ,
c" < rival(c), such that c" is better for r than rival(c). A contradiction
with the monotonicity of A is obtained by observing that we now have: (i)
c" < rival(c), (ii) LeftExtend(rival(c)) < r, and (iii) c" is better than
rival(c) for r but not for LeftExtend(rival(c)). Hence rival(c) must be
the best for r in S1. Hence 0[1,c-1](r) is one of {rival(c), label(r)}, which
can be obtained in constant time from rival(c) and label(r), both of which
are available (Pc carried rival(c) down with it when it entered r, and r
itself maintained label(r) during the previous time step).

The main problem that remains is how to update, in constant time, the
rival(c) and the label(r) registers when Pc goes from r down to one of r's
two children. We explain below how Pc updates its rival(c) register, and
how r updates its label(r) register. (We need not worry about updating
the label(r') of a row r' not currently being visited by a Pci, since such a
label(r') remains by definition unchanged.)

By its very definition, label(r) depends on all the paths Pc> (c1 < c)
that previously went through r. Since Pc has just visited r, we need to
make c compete, for row r, with the previous value of label(r): if c wins
then label(r) becomes c, otherwise it remains unchanged.

The updating of rival(c) depends upon one of the following two cases.
The first case is when c won the competition at r, i.e., Pc has moved

to the left child of r (call it r'). In that case by its very definition rival(c)
remains unchanged (since the leftmost leaf in the subtree of r' is the same
as the leftmost leaf in the subtree of r).

The second case is when c lost the competition at r, i.e., Pc has moved
to the right child of r (call it r"). In that case we claim that it suffices to
compare the old label(r) to the old rival(c): the one which is better for r" is
the new value of rival(c). We now prove the claim. Let r1 (resp., r2) be the
leftmost leaf in the subtree of r (resp., r"). Let C' (resp., C") be the set of
paths consisting of the columns B such that B < c and Lef tExtend(B) < r1

(resp., Lef tExtend(B) < r2). By definition, the old (resp., new) value of
rival(c) is the largest column index in C' (resp., C"). The claim would
follow if we can prove that the largest column index in C" — C' is the old
label(r) (by "old label(r)" we mean its value before updating, i.e., its value
when Pc first entered r). We prove this by contradiction: let c denote the
old label(r), and suppose that there is a 7 6 C" — C' such that 7 > c.
Since both 7 and c are in C" — C', their respective paths went from r to
the left child of r. However, Pr did so later than Pc (because 7 > c). This
in turn implies that 7 is better for r than c, contradicting the fact that c
is the old label(r). This proves the claim.
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Concerning the implementation of the above scheme, the assignment of
processors to their tasks is trivial: each active Pc carries with it its own
processor, and when it exits from a leaf it releases that processor which
gets assigned to Pc+log m which is just beginning at the root of TR.

The Tree-Based Algorithm This subsection builds on the algorithm of
the previous subsection and establishes the CREW version of Theorem 5.8
(the next subsection will extend it to EREW). It is useful to think of the
computation as progressing through the nodes of a tree T which we now
proceed to define.

Partition the column indices into n/ log n adjacent intervals / ! , - • • ,
In/log n of size log n each. Call each such interval 7; a fat column. Imagine
a complete binary tree T on top of these fat columns, and associate with
each node v of this tree a fat interval I ( v ) (i.e., an interval of fat columns)
in the following way: the fat interval associated with a leaf is simply the fat
column corresponding to it, and the fat interval associated with an internal
node is the union of the two fat intervals of its children. Thus a node v
at height h has a fat interval I(v) consisting o f [ I ( v ) ] = 2h fat columns.
The storage representation we use for a fat interval I ( v ) is a list containing
the indices of the fat columns in it; we also call that list I(v), in order
to avoid introducing extra notation. For example, if v is the left child of
the root, then the I(v) array contains (1,2, • • •, n/(2logn)). Observe that
EV€T [ I ( v ) ] = 0(|T|log|T|) = 0((n/logn)logn) = O(n).

The ultimate goal is to compute n C ( C ) for every c E C.
Let leaf problem /, be the problem of computing nIi(C) for all c E Ii.

Thus a leaf problem is a subproblem of size m x log n. From Lemma 5.10
it follows that a leaf problem can be solved in O(logn + logra) time by
min{logn,logm} (< logn) processors. Since there are n/logn leaf prob-
lems, they can be solved in 0(log n + log m) time by n processors. We
assume that this has already been done, i.e., that we know the nIi array
for each leaf problem Ii. The rest of this subsection shows that an addi-
tional O(logn + logm) time with O(n) processors is enough for obtaining
nC-

Definition 5.13. Let J(v) be the interval of original columns that belong
to fat intervals in 7(v) (hence \J(v)\ — \I(v)\ • logn ). For every v E T,
fat column f E I(v), and subset R' of R, let U v ( R ' , f ) be the interval in R'
such that, for every r in that interval, 0j(v)(r) is a column in fat column
f. We use "Uv(R

1,*)"as a shorthand for " U v ( R ' , f ) for all f E /(v)".

We henceforth focus on the computation of the U root(T)(R,*) array,
where root(T) is the root node of T. Once we have the array Uroot(T)(R, *)>
it is easy to compute the required nC array within the prescribed complexity
bounds: for each fat column /, we replace the Uroot(T) (R, f) row interval
by its intersection with the row intervals in the nIf array (which are already
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available at the leaf If of T). The rest of this subsection proves the following
lemma.

Lemma 5.14. U v (R ,* ) for every v 6 T can be computed by a CREW-
PRAM in time O(height(T)+log m) and O(n) processors, where height(T)
is the height of T (= O(logn)).

Proof. Since EvET([I(v)] + log n) = O(n), we have enough processors to
assign \I(v)\ + log n of them to each v € T. The computation proceeds in
log m+height(T) — 1 stages, each of which takes constant time. Each v 6 T
will compute U V (R ' ,*) for progressively larger subsets R' of R, subsets R'
that double in size from one stage to the next of the computation. We
now state precisely what these subsets are. Recall that Ri denotes the
(m/2i)-sample of R, so that |Ri| = 2i.

At the t-th stage of the algorithm, a node v of height h in T will use its
|I(v)| + log n processors to compute, in constant time, Uv(R t-h,*) if ft <
t < h + log m. It does so with the help of information from Uv(Rt-1-h, *),
U L e f t C h i i d ( v ) ( R t - h , * ) , and i>RighttChiid(v)(Rt-h,*), all of which are avail-
able from the previous stage t — 1 (note that (t — 1) — (h — 1) = t — h).
lf t<h or t>h + log m then node v does nothing during stage t. Thus
before stage h the node v lies "dormant", then at stage t = h it first "wakes
up" and computes U v > ( R o , , *), then at the next stage t = h + 1 it computes
U v (R 1 , *), etc. At stage t = h+log m it computes U v (R l o g m ,*), after which
it is done.

The details of what information v stores and how it uses its |I(v)|+logn
processors to perform stage t in constant time are given below. In the
description, tree nodes u and w are the left and right child, respectively, of
v in T.

After stage t, node v (of height h) contains Uv (Rt-h, *) and a quantity
Criticalv(Rt-h) whose significance is as follows.

Definition 5.15. Let R' be any subset of R. Criticalv(R') is the largest
r E R' that is contained in U v(R' , f) for some f 6 I(u); if there is no such
r then Criticalv (R

1) = 0.

The monotonicity of A implies that for every r' < Criticalv(R') (resp.,
r' > Criticalv(R')), r' is contained in Uv(R', f) for some f E I(u) (resp.,
f E I(w)).

We now explain how v performs stage t, i.e., how it obtains

and

using Uu(Rt-h, *), Ww(R t-h, *), and Criticalv(Rt-1-h) (all three of which
were computed in the previous stage t — 1). The fact that the | I ( v ) | +
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logn processors can do this in constant time is based on the following
observations, whose correctness follows from the definitions.

Observation 1. 1. Criticalv(Rt-h) is either the same as
Criticalv(R t-1-h), or the successor of Criticalv(Rt--1-h) in Rt-h-

2. If f E I ( u ) , then U v ( R t - h , f ) is the portion of interval Wu(Rt-h, f)
that is < Criticalv(Rt-h)-

3. If f € I(w), then W v(Rt-h, f) is the portion of interval Ww(Rt-h, f)
that is > Criticalv(R t-h).

The algorithmic implications of the above observations are discussed
next.

Computing Criticalv(Rt-h). Relationship (1) of Observation 1 implies
that, in order to compute Criticalv(Rt-h), all v has to do is determine
which of Criticalv(Rt-1-h) or its successor in Rt-h is the correct value
of Criticalv(Rt-h). This is done as follows. If Criticalv(Rt-1-h) has no
successor in Rt-h then Criticalv(Rt-1-h) = m (the last row) and hence
Criticalv(Rt-h) = Criticalv(Rt-1-h). Otherwise the updating is done in
the following two steps. For conciseness, let r denote Criticalv(Rt-1-h),
and let s denote the successor of r in Rt-h.

• The first step is to compute 0j(u)(s) and 0 j ( w ) ( s ) in constant time.
This involves a search in I(u) (resp., I(w)) for the fat column f' E
I(u) (resp., f" E I(w)) whose W u ( R t - h , f ) (resp., Ww(R t-h, f"))
contains s. These two searches in I(u) and I(w) are done in constant
time with the |I(v)| processors available. We explain how the search
for f' in I(u) is done (that for f" in I(w) is similar and omitted).
Node v assigns a processor to each f E I (u) , and that processor
tests whether s is in Wu(R t-h, /); the answer is "yes" for exactly
one of those |I(u)| processors and thus can be collected in constant
time. Next, v determines 0j(u)(s) and O j ( w ) ( s ) in constant time by
using logn processors to search for s in constant time in the leaf
solutions nIf , and nIf „ available at leaves f' and f", respectively. If
the outcome of the search for s in nIf , is that s E nIf , (c') for c' E If',
then Oj(u)(s) = c'. Similarly, 0 j ( w ) ( s ) is obtained from the outcome
of the search for s in nIf „.

• The next step consists of comparing A ( s , 0 j ( u ) ( s ) ) to A ( s , 0 j (w) ( s ) ) .
If the outcome is A(s, Oj(u)(s))>A(s, 0 j ( w ) ( s ) ) , then Criticalv(Rt-h)
is the same as Criticalv(Rt-1-h)- Otherwise Criticalv(Rt-h) is s.

We next show how the just computed Criticalv(Rt-h) value is used to
compute U v(Rt-h, *) in constant time.

Computing Wv(Rt-h, *)• Relationship (2) of Observation 1 implies the
following for each f E I(u):
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• If Wu(R t-h, f) is to the left of Criticalv(Rt-h), then U v(Rt-h, f) =
Wu(Rt-h, f ) .

• If Wu(Rt-h, f) is to the right of Criticalv(Rt-h) then W v(R t-h, f) =
0.

• If Wu(Rt-h, f) contains Criticalv(Rt-h) then Wv(Rt-h, f) consists of
the portion of Wu(Rt-h, f) up to (and including) Critical v(Rt-h) .

The above three facts immediately imply that 0(1) time is enough for
|I(u)| of the |I(v)| processors assigned to v to compute W v(Rt-h, f) for
all f E I(u) (recall that the W u (Rt-h,*) array is available in u from the
previous stage t — 1, and Criticalv(Rt-h) has already been computed).

A similar argument, using relationship (3) of Obervation 1, shows that
| I (w) | processors are enough for computing W v(Rt-k, f) for all f E I(w).
Thus W v(R4-h, *) can be computed in constant time with | I ( v ) | processors.

This completes the proof of Lemma 5.14.

Avoiding Read Conflicts The scheme of the previous subsection made
crucial use of the "concurrent read" capability of the CREW-PRAM. This
occurred in the computation of Criticalv(Rt-h) and also in the subsequent
computation of Wv(Rt-h, *). In its computation of Criticalv(Rt-h), there
are two places where the algorithm of the previous subsection uses the
"concurrent read" capability of the CREW (both of them occur during the
computation of 0j(u)(s) and 0 j (w) ( s ) in constant time). After that, the
CREW part of the computation of W v ( R t - h , *) is the common reading of
Criticalv(Rt-h). We review these three problems next, using the same
notation as in the previous subsection (i.e., u is the left child of v in T,
w is the right child of v in T, v has height h in T, s is the successor of
Criticalv(Rt-1-h) in Rt-h, etc.).

• Problem 1: This arises during the search in /(u) (resp., I(w)) for the
fat column f' E I(u) (resp., f" E I(w)) whose Wu(Rt-h, f') (resp.,
Ww(Rt-h, f")) contains s. Specifically, for finding (e.g.) f', node v
assigns a processor to each f E I(u), and that processor tests whether
s is in Wu(Rt-h, f); the answer is "yes" for exactly one of those |I(u)|
processors and thus can be collected in constant time.

• Problem 2: Having found f' and f", node v determines O j ( u ) ( s ) and
0 j ( w ) ( s ) in constant time by using logn processors to search for s, in
constant time, in the leaf solutions nIf , and nIf,, available at leaves /'
and f", respectively. There are two parts to this problem: (i) many
ancestors of a leaf If (possibly all log n of them) may simultaneously
access the same leaf solution nIf,, and (ii) each of those ancestors uses
log n processors to do a constant-time search in the leaf solution nIf

(in the EREW model, it would take n(log log n) time just to tell the
processors in which leaf to search).
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• Problem 3: During the computation of W v(R t-h, *), the common
reading of the Criticalv(Rt-h) value by the fat columns / 6 I(v).

Any solution we design for Problems 1-3 should also be such that no con-
current reading of an entry of matrix A occurs. We begin by discussing
how to handle Problem 2.
Problem 2.

To avoid the "many ancestors" part of Problem 2 (i.e., part (i)), it nat-
urally comes to mind to make log n copies of each leaf If and to dedicate
each copy to one ancestor of If, especially since we can easily create these
logn copies of // in O(logn) time and logn processors (because the space
taken by nIf is O(log n)). But we are still left with part (ii) of Problem 2,
i.e., how an ancestor can search the copy of If dedicated to it in constant
time by using its logn processors in an EREW fashion. On the one hand,
just telling all of those log n processors which If to search takes an unac-
ceptable n(log logn) time, and on the other hand a single processor seems
unable to search nIf in constant time. We resolve this by organizing the
information at (each copy of) If in such a way that we can replace the log n
processors by a single processor to do the search in constant time. Instead
of storing a leaf solution in an array nIf, , we store it in a tree structure (call
it Tree(f)) that enables us to exploit the highly structured nature of the
searches to be performed on it. The search to be done at any stage t is not
arbitrary, and is highly dependent on what happened during the previous
stage t — 1, which is why a single processor can do it in constant time (as
we shall soon see).

We now define the tree Tree(f). Let List = [1, r1], [r1 +1, r2], • • •, [rp +
l, m] be the list of (at most logn) nonempty intervals in nIf, in sorted
order. Each node of Tree(f) contains one of the intervals of List. (It is
implicitly assumed that the node of Tree(f) that contains n I f ( c ) also stores
its associated column c.) Imagine a procedure that builds Tree(f) from the
root down, in the following way (this is not how Tree(f) is actually built,
but it is a convenient way of defining it). At a typical node x, the procedure
has available a contiguous subset of List (call it L(x)), together with an
integer d(x), such that no interval of L(x) contains a multiple of m/(2d(x)).
(The procedure starts at the root of Tree(f) with L(root) = List and
d(root) = —1.) The procedure determines which interval of L(x) to store in
x by finding the smallest integer i > d(x) such that a multiple of m/(2 i) is in
an interval of L(x) (we call i the priority of that interval), together with the
interval of L(x) for which this happens (say it is interval [rk + 1, rk+1], and
note that it is unique). Interval [rk. + 1,rk+1] is then stored at x (together
with its associated column), and the subtree of x is created recursively, as
follows. Let L' (resp., L") be the portion of L(x) to the left (resp., right)
of interval [rk, + l,rk+1]. If L' = 0 then the procedure creates a left child
for x (call it y) and recursively goes to y with d(y) = i and with L(y) = L'.
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Fig. 5.4. Illustrating Tree(f).

If L" = 0 then the procedure creates a right child for x (call it z) and
recursively goes to z with d(z) = i and with L(z) = L".

Note that the root of Tree(f) has priority zero and no right child, and
that its left child w has d(w) — 0 and L(w) = (List minus the last interval
in List).

Figure 5.4 shows the Tree(f) corresponding to the case where m = 32,
logn = 8, and

In that figure, we have assumed (for convenience) that the columns in If

are numbered !,...,8, and we have shown both the columns c (circled)
and their associated intervals n I f ( c ) . For this example, the priorities of the
nonempty intervals of nIf are (respectively) 3, 2, 3, 5, 1, 3, 0. The concept
of priority will be useful for building Tree(f) and for proving various facts
about it. The following proposition is an easy consequence of the above
definition of Tree(f).

Proposition 5.16. Let X be an interval in List, of priority i. Let X'
(resp., X") be the nearest interval that is to the left (resp., right) of X in
List and that has priority smaller than i. Let i' (resp., i") be the priority
of X' (resp., X"). Then we have the following:

1. If i > 0 then at least one of {X',X"} exists.
2. If only one of {X',X"} exists, then X is its child in Tree(f) (right

child in case of X', left child in case of X").
3. If X' and X" both exist, then i1 = i". Furthermore, if i' > i" then

X is the right child of X' in Tree(f), otherwise (i.e., if i' < i") X
is the left child of X".
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Proof. The proof refers to the hypothetical procedure we used to define
Tree(f). For convenience, we denote a node x of Tree(f) by the interval
X that it contains; i.e., whereas in the description of the procedure we
used to say "the node x of Tree(f) that contains X" and "list L(x)", we
now simply say "node X" and "list L(X)" (this is somewhat of an abuse
of notation, since when the procedure first entered x it did not yet know
X).

That (1) holds is obvious.
That (2) holds follows from the following observation. Let X be a child

of X' in Tree(f). When the procedure we used to define Tree(f) was at
X', it went to node X with the list L(X) set equal to the portion of L(X')
before X' (if X is left child of X') or after X' (if X is right child of X1).
This implies that the priorities of the intervals between X' and X in List
are all larger than the priority of X. This implies that, when starting in
List at X and moving along List towards X1, X' is the first interval that
we encounter that has a lower priority than that of X. Hence (2) holds.

We now prove (3). Note that the proof we just gave for (2) also implies
that the parent of X is in {X',X"}. Hence to prove (3), it suffices to
show that one of {X1, X"} is ancestor of the other (this would imply that
they are both ancestors of X, and that the one with the larger priority
is the parent of X), We prove this by contradiction: let Z be the lowest
common ancestor of X' and X" in Tree(f), with Z $ {X',X"}. Since Z
has lower priority than both X' and X", it cannot occur between X' and
X" in List. However, the fact that X' (resp., X") is in the subtree of the
left (resp., right) child of Z implies that it is in the portion of L(Z) before
Z (resp., after Z). This implies that Z occurs between X' and X" in List,
a contradiction.

We now show that Tree(f) can be built in O(log m + log n) time with
\List\ (< logn) processors. Assign one processor to each interval of List,
and do the following in parallel for each such interval. The processor as-
signed to an interval X computes the smallest integer i such that a multiple
of m/(2z) is in that interval (recall that this integer i is the priority of in-
terval X). Following this O(logm) time computation of the priorities of
the intervals in List, the processor assigned to each interval determines its
parent in Tree(f), and whether it is left or right child of that parent, by us-
ing the above Proposition 5.16. Reading conflicts are easy to avoid during
this O(|List|) time computation (the details are trivial and omitted).
Note: Although we do not need to do so, it is in fact possible to build
Tree(f) in O(logm + logn) time by using only one processor rather than
logn processors, but the construction is somewhat more involved and we
refrain from giving it in order not to break the flow of the exposition.

As explained earlier, after Tree(f) is built, we must make logn copies
of it (one for each ancestor in T of leaf If).
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We now explain how a single processor can use a copy of Tree(f) to
perform constant time searching. From now on, if a node of Tree(f) con-
tains interval nIj(C), we refer to that node as either "node nIf(C)" or as
"node c". We use RightChild(c) and LeftChild(c) to denote the left and
right child, respectively, of c in Tree(f).

Proposition 5.17. Let r E Rk, r' be the predecessor of r in Rk. Let
r E nIf(c), and let r' E nIf (C'). Then the predecessor of r in Rk+i (call it
r") is in nIf(C") where c" 6 {c',RightChild(c'),LeftChild(c),c}.

Proof. If c" € {c', c} then there is nothing to prove, so suppose that
c" E {c, c'}. This implies that c = c' (since c = c' would imply that
c" = c). Then nIf(c'), n I f ( c " ) and nIf(c) are distinct and occur in that
order in List (not necessarily adjacent to one another in List). Note that
nIf(C') and n I f ( c ) each contains a row in Rk, that nI(C") contains a row
in Rk+i but no row in Rk, and that all the other intervals of List that are
between nIf (c') and nIf (c) do not contain any row in Rk+i- This, together
with the definition of the priority of an interval, implies that nIf(C') and
n I f ( c ) have priorities no larger than k, that nIf (c") has a priority equal to
k + 1, and that all the other intervals of List that are between nIf (c') and
n I f ( c ) have priorities greater than k + 1. This, together with proposition
5.16, implies that c" E {RightChild(c'), LeftChild(c)}.

Proposition 5.18. Let r E Rk, r' be the successor of r in Rk. Let r E
nIf (c), and let r' E nIf(C'). Then the successor of r in Rk+1 (call it r") is
in nIf(C") where c" 6 {c,RightChild(c),LeftChild(c'),c'}.

Proof. Similar to that of Proposition 5.17, and therefore omitted.
Now recall that, in the previous subsection, the searches done by a

particular v in a leaf solution at If had the feature that, if at stage t node
v E T asked which column of If contains a certain row r E Rk, then at
stage t + 1 it is asking the same question about r' where r' is either the
successor or the predecessor of r in Rk+i- This, together with Propositions
5.17 and 5.18, implies that a processor can do the search (in Tree(f)) at
stage t + 1 in constant time, so long as it maintains, in addition to the
node of Tree(f) that contains the current r, the two nodes of Tree(f) that
contain the predecessor and (respectively) successor of r in Rk. These are
clearly easy to maintain.

We next explain how Problems 1 and 3 are handled.
Problems 1 and 3.

Right after stage t — I is completed, v stores the following information
(recall that the height of v in T is h). The fat columns f E I ( v ) for which
interval Wv(Rt-1-h, f) is not empty are stored in a doubly linked list. For
each such fat column /, we store the following information: (i) the row
interval Wv(R t-1-h, f) = [a1,a2], and (ii) for row QI (resp., a2), a pointer
to the node, in v's copy of Tree(/), whose interval contains row a1 (resp.,
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ag). In addition, v stores the following. Let z be the parent of v in T,
and let s' be the successor of Critical2(Rt-i-(h+i)) in Rt-(h+i), with s'
in Wv(Rt-1-h, g) for some g E I(v). Then v has g marked as being its
distinguished fat column, and v also stores a pointer to the node, in v's
copy of Tree(g), whose interval contains s'. Of course, information similar
to the above for v is stored in every node x of T (including v's children,
u and w), with the height of x playing the role of h. In particular, in
the formulation of Problem 1, the fat columns we called f' and f" are the
distinguished fat columns of u and (respectively) w, and thus are available
at u and (respectively) w, each of which also stores a pointer to the node
containing s in its copy of Tree(/') (for u) or of Tree(f) (for w).

Assume for the time being that we are able to maintain the above
information in constant time from stage t - 1 to stage t. This would enable
us to avoid Problem 1 because instead of searching for the desired fat
column f' (resp., f"), node u (resp., w) already has it available as its
distinguished fat column. Problem 3 would also be avoided, because now
only the distinguished fat columns of u and w need to read from v the
Criticalv(Rt-h) value (whereas previously all of the fat columns in I(u) U
I(w) read that value from v). It therefore suffices to show how to maintain,
from stage t — 1 to stage t, the above information (i.e., v's linked list and
its associated pointers to the Tree(f)s of its elements, v's distinguished fat
column g, and the pointer to v's copy of Tree(g)). We explain how this is
done at v.

First, v computes its Criticalv(Rt-h)'- since we know from stage t — 1
the distinguished fat columns f' and f" of u and (respectively) w, and
their associated pointers to u's copy of Tree(f') and (respectively) w's
copy of Tree(f'), v can compare the two relevant entries of matrix A
(i.e., A ( s , 0 j ( u ) ( s ) ) and A(s, 0j(w)(s))) and it can decide, based on this
comparison, whether Criticalv(Rt-h) remains equal to Criticalv(Rt-1-h)
or becomes equal to s, its successor in Rt-h- But since this is done in
parallel by all w's, we must show that no two nodes of T (say, v and v') try
to access the same entry of matrix A. The reason this does not happen is
as follows. If none of {v, v'} is ancestor of the other then no read conflict
in A can occur between v and v' because their associated columns (that
is, J(v) and J ( v ' ) ) are disjoint. If one of v,v' is ancestor of the other,
then no read conflict in A can occur between them because the rows they
are interested in are disjoint (this is based on the observation that v is
interested in rows in Rt-h — L)Ut-1h Riand hence will have no conflict with
any of its ancestors).

As a side effect of the computation of Criticalv(Rt-h), v also
knows which fat column f E {f',f"} is such that W v ( R t - h > f ) contains
Criticalv(Rt-h)- It uses its knowledge of / to update its linked list of
nonempty fat columns (and their associated row intervals) as follows (we
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distinguish two cases):

1. / = f'. In that case v's new linked list consists of the portion of w's
old (i.e., at stage t — 1) linked list whose fat columns are < /' (the
row intervals associated with these fat columns are as in u's list at
t — 1), followed by f' with an associated interval W v(Rt-h, f) equal
to the portion of Wu(Rt-h, f) up to and including Criticalv(Rt-h),
followed by f" with an associated interval W v ( R t - h , f " ) equal to the
portion of Ww(Rt-h, f") larger than Criticalv(R t-h) if that portion
is nonempty (if it is empty then f" is not included in v's new linked
list), followed by the portion of w's old (i.e., at stage t — 1) linked list
whose fat columns are > f" (the row intervals associated with these
fat columns are as in w's list at t — 1).

2. f = f". Similar to the first case, except that Criticalv(Rt-h) is now
in the interval associated with f" rather than f'.

It should be clear that the above computation of v's new linked list and
its associated intervals can be implemented in constant time with | I ( v ) |
processors (by copying the needed information from u and w, since these
are at height h— 1 and hence at stage t — 1 already "knew" their information
relative to Rt-1--(h-1) = Rt-h).

In either one of the above two cases (1) and (2), for each endpoint a
of a W v(Rt-h, f) in v's linked list, we must compute the pointer to the
node, in v's copy of Tree(f), whose interval contains that a. We do it as
follows. If / was not in v's list at stage t—1, then we obtain the pointer
from u or w, simply by copying it (more specifically, if in u or w it points
to a node of «'s or w's copy of Tree(f), then the "copy" we make of that
pointer is to the same node but in v's own copy of Tree(/)). On the other
hand, if / was in v's list at stage t — 1, then we distinguish two cases. In
the case where a was also an endpoint of ^(-Rt-1-h, f), we already have
its pointer (to v's copy of Tree(f)) available from stage t — I. If a was
not an endpoint of Wv(Rt-1-h, f) then a is predecessor or successor of an
endpoint of Wv(R t-1-h, f) in Rt-h, and therefore the pointer for a can be
found in constant time (by using Propositions 5.16 and 5.17).

Finally, we must show how v computes its new distinguished fat column.
It does so by first obtaining, from its parent z, Critical z(R t_h+1)) that
z has just computed. The old distinguished fat column g stored at v had
its W v(Rt-i-h, g) containing the successor s' of CriticalZ(.Rt_1_(h+1)) in
Rt-(h+i)- It must be updated into a g such that Criticalv(Rt-h, g) contains
the successor s" of Criticalz(Rt_^h+1)) in .R4+1_(ft+1). We distinguish two
cases.

1. Criticalz(Rt^(h+i)) — Criticalz(.Rt-i-(fc+i)). In that case s" is the
predecessor of s' in Rt+i-(h+i), and the fat column g £ I ( v ) for which
w v ( R t - h , g ) contains s" is either the same as g or it is the predecessor
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of g in the linked list for v at stage t (which we already computed).
It is therefore easy to identify g in constant time in that case.

2. Cr i t ica l z (R t - ( h + 1 ) )
 = s'. In that case s" is the successor of s' in

Rt+1_(h+1), and the fat column g E I(v) for which W v(Rt-h, g) con-
tains s" is either the same as g or it is the successor of g in the linked
list for v at stage t (which we already computed). It is therefore easy
to identify g in constant time in that case as well.

In either one of the above two cases, we need to also compute a pointer
value to the node, in t;'s copy of Tree(g), whose interval contains s". This
is easy if g — g, because we know from stage t — 1 the pointer value for s'
into v's copy of Tree(g), and the pointer value for s" can thus be found by
using Propositions 5.17 and 5.18 (since s" is predecessor or successor of s'
in Rt-h). So suppose g = g, i.e., g is predecessor or successor of g in v's
linked list of nonempty fat columns at t. The knowledge of the pointer for
s' to v's copy of Tree(g) at t — I is of little help in that case, since we now
care about v's copy of Tree(g) rather than Tree(g). What saves us is the
following observation: s" must be an endpoint of row interval W v ( R t - h , g )
Specifically, s" is the left (i.e., beginning) endpoint of W v (R t -h ,g ) if 9 is
the successor of g in v's linked list at stage t (Case 2 above), otherwise
it is the right endpoint of W v ( R t - h , g ) (Case 1 above). Since s" is such
an endpoint, we already know the pointer for s" to v's copy of Tree(g)
(because such pointers are available, in v's linked list, for all the endpoints
of the row intervals in that linked list).

5.4.2 THE TUBE MINIMA BOUND

This subsection shows that 0(m2) work suffices for computing in O(logm)
time the tube minima of an m X m x m matrix, in the EREW-PRAM
model. Let X be the set of row indices of A, Z its set of column indices,
and Y be its set of height indices. Our task is to compute 0A(v, w) for all
v E X and all w W Y. We use S(L, k) to denote the k-sample of a list L.

In the first stage of the computation, for each v E S (X , log m), we use
the row-minima algorithm to obtain OA(V, w) for all u> E Y. This first stage
of the computation takes O(logm) time and O(m log m) work for each v,
hence a total of 0(m log m(m/logra))=:0(m2) work.

In the second stage of the computation, for each w E S(Y, log m), we
compute OA(V,W) for all v E S(X, logm). We now describe how this is
done for a particular value of w. Let X1, X2, • • •, Xm//log m be the intervals
in the partition of X induced by S(X, logm). The values {OA(V,W) \ v E
S(X, log m)}, which are known from the first stage, induce a partition of Z
into m/ logm intervals Zi, Z2, • • •, Zm/log m. For each v G S(X, log m),
the monotonicity property implies that, if v E Xk,, then OA(V , w) E Zk, and
hence can be computed in 0(log m) time and 0(1 + |J?t |) work. Since there
are logm such v's that are in Xf. n S(X, logm), the work for them is
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O( logra(l + |Zk|). Summing over all k, 1 < k < m/log m, gives the work
needed to compute OA(V, w) for that fixed w and all v E S(X, log m) :

m was used. Since there are
, the total work for stage two is

be the intervals in the partition of Y induced

1 < ziJ 5- m/ log m, be the interval of Z
Yj. Of

where the fact that E k |Zk|
 =

m/ log m such «;'s in S(Y, logm
O(m log m(m/y1og m)) = O(m2).

The third stage of the computation "fills in the blanks" by actually
computing OA(V, w) for all v £ X and w £ Y . Let Xi,X%, . . ., Xm/logmm. A m

be the intervals in the partition of X induced by S(X, logm). Similarly,
let y1,y2,....y m/ log m

by S(Y, log m). Let Zij,
that is defined by the set of OA(V,W) such that v £ Xj and w; E
course we already know the beginning and end of each such interval Zij
(from the second stage of the computation). We then solve the problem
defined by each Xi, Z i , j , Y j , as follows. If |Zy| < logm then a single
processor can solve the problem sequentially in 0 ( ( log m)2) = O(logm)
time. If \Zij\ > log m then we partition Zij into |Zij|+|/ log m pieces
Ji, j2, • • • of size log m each. We assign to each Jk one processor which
solves sequentially the sub-problem defined by X { , J k , Y j , i.e. it com-
putes for each v 6 Xi and w E Yj the smallest p € Jk that mini-
mizes A(v,p, w). This sequential computation takes O(logm) time be-
cause |Xi| == |J f . | = |Yj| = logm. The work done so far for a partic-
ular pair of intervals Xi,Yj is, of course, O((logm)(l + |/ log m))=
O(logm + |Zij log m). To finish the job for such a pair of intervals
X{,Yj we must still determine, for each v,w with v E X i and w 6 Yj,
the best answer for it among the |Zij| / log m possibilities returned by
each of the above-mentioned sequential computations. This takes logarith-
mic time and O(\Z{ j |/\/logm) work for a particular v, w pair, hence a total
(for all such v, w pairs) of O(\X{ \ \Yj \\Zfj | l o g m)=O(\Zij |\/log m) work.
Summing over all i,j gives, for this third stage, a total amount of work
equal to O(m2) because of the following:

Lemma 5.19.

Proof. First, observe that Zij and Zi+ij+i are adjacent intervals that
are disjoint except for one possible common endpoint (the rightmost point
in Zij and the leftmost point in Zi+ij+i may coincide). This observation
implies that for any given integer 6 (0 < |6| < m / l o g m), we have: (It is
understood that \Zij | = 0 if j < 1 or j > m/ log m.)
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The lemma follows from the above simply by re-writing the summation in
the lemma's statement:

This completes the description of the optimal EREW-PRAM algorithm
for tube minima.

5.4.3 IMPLICATIONS FOR STRING EDITING

The EREW-PRAM bounds for tube minima that were just established
imply similar CREW-PRAM (but not necessarily EREW-PRAM) bounds
for the combining stage of the parallel divide and conquer for string editing.
The reason for this is that the matrix A derived from the string editing
problem is only implicitly available, described by the equation A(v,p, w) =
DISTNW (v, p) + DISTsw (p, w). Thus simultaneous reading of A(vI , p, w)
by processor x and of A(v2,p, w) by processor y requires common reading
of DISTsw (p, w) by both processors a; and y, whereas the development of
the EREW-PRAM bounds for tube minima assumed that x and y would
not have such a "read conflict" (because the matrix A was assumed to be
explicitly available).

5.5 Optimal CRCW-PRAM algorithm for tube minima

The main result of this section is a CRCW-PRAM algorithm, for tube min-
ima, of time complexity O(loglogn) and O(n2/loglogn) processor com-
plexity.

Theorem 5.20. The n x n matrix OA of an n X n x n matrix A can be com-
puted in O(loglogn) time with 0(n2/loglogn) processors in the CRCW-
PRAM model.

Before going into the details fo the proof, we point out that a major
ingredient in the approach consists of the judicious use of an "aspect ratio
condition" : Intuitively, the idea is to allow the aspect ratio of the subprob-
lems solved recursively to deteriorate, but not too much, and in a controlled
fashion (this is made precise later in the section). Although aspect ratios
play a crucial role in establishing Theorem 1, once we have that theorem
we can use it to solve problems of arbitrary aspect ratios, as we later show.

In Section 5.5.1 we give a preliminary algorithm for the case where A
is t x h x t and h <l2. That algorithm runs in O(loglogl) time and does
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O((lh+l2)(logl)2 work. Section 5.5.2 uses that preliminary algorithm to
establish the above theorem. Section 5.5.3 concludes with further remarks.

5.5.1 A PRELIMINARY ALGORITHM

This section gives a preliminary algorithm that has the right time complex-
ity, but does too much work (hence uses too many processors).

The procedure is recursive, and requires that A be I x h x t with h <
I2 . We call this last condition the aspect ratio requirement; we assume
it to be true initially, and we maintain it through the recursion (doing
so without damaging the time complexity or the work complexity is, in
fact, the main difficulty in this preliminary algorithm). The preliminary
CRCW-PRAM algorithm runs in O(loglogl) time and has work (that is,
number of operations) complexity O((£h + l2)(logl)2).

Before describing the algorithm, we need a few definitions and a review
of some properties.

Let X (resp., Y) be a subset of the row (resp., height) indices of A,
and let Z be a contiguous interval of the column indices of A. The problem
induced by the triplet (X, Z, Y) is that of finding 0A, for the \X\ x \Z\ x \Y\
submatrix A' of A induced by X, Z and Y. That is, it consists of finding,
for each pair u, v with u € X and v E Y, the smallest index k <E Z such
that A(u, k, v) is minimized. This k need not equal OA(U, V) since we are
minimizing only over Z. However, the following property holds. Assume X
(resp., Y) is a contiguous interval of row (resp., height) indices of A. Let
x,z,y (resp., x',z',y') be the smallest (resp., largest) indices in X, Z, Y
respectively. If OA(x , V) = z and OA(X' , y') = z', then the solution to the
triplet (X, Y, Z) gives the correct value of OA(U, v) for all u E X and v <E Y
(this follows from the sortedness of 0 A ) •

The first stage of the computation partitions the row indices of A
into I1/3 contiguous intervals Xi, X 2 , - - - , X t l 1 / 3 of size t2/3 each. Simi-
larly, the height indices of A are partitioned into i1/3 contiguous intervals
Yi,y2, • • •, Yl1/3 of size l2/f3 each. An endpoint of an interval Xi (resp., Ys-)
is the largest or smallest index in it. For each pair v, w such that v is an
endpoint of Xi and w is an endpoint of Yj, we assign h1+(1/6) processors
which compute, in constant time, the index 0 A ( V , w). (Computing the min-
imum of h entries using h1+(1/6)) processors is easily shown to take constant
time.) The total number of processors used in this step of the algorithm is
O(l1/3l1/3/i1+(1/6)), which is O(lh) because h < I2.

Let x (resp., x') be the smallest (resp., largest) index in Xi, and let
y (resp., y') be the smallest (resp., largest) index in Yj. Let Zij be the
interval [a, b] where a = OA (X, y) and b = QA(x', y')- In the future, when we
want to define such a Zij, we shall simply say "let Zij denote the interval
of column indices of A defined by the set &A(V> w) such that v £ Xi and
w e Yj"; we do so for simplicity of expression, although it is an abuse of
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language (because Zij might include an index k that is not the OA(U, v) of
any pair u 6 Xi, v £ Yj).

After the above stage of the computation we know the beginning and
end of each such interval Z, j. As already observed, for any pair of indices
u,v where u E Xi and v E Yj, we have OA (U,V) E Zij. Thus it suffices
to solve all of the subproblems defined by triplets ( X i , Z i j , Y j ) . However,
some of these triplets might violate the aspect ratio condition because their
Zij is too large (larger than |Xj|2 = l4/3): each such troublesome triplet
(we call it a bad triplet) will be further partitioned into ki,j = [|Zi,j|/l4/'3|
smaller subproblems, by partitioning Zij into fc,-j pieces of size f4/3 each
(except that possibly the fc,-j-th piece might be smaller). Specifically, if
Zf • denotes the fc-th piece from this partition of Zij, then the fc-th sub-

problem spawned by the bad triplet (Xi, Zij,Yj) is (Xi, Z\ A Yj). Of course
such a spawned subproblem (Xi, Z\ • , Yj) no longer has the property that

O A ( U , V ) E Z{j for u £ Xi and v E Yj. However, the answer returned by

solving such an ( X i , Z \ j , Y j ) is not meaningless: we can obtain OA(U,V)
for u E Xf and v E Yj by choosing the best among the ki,j candidates
returned by the kij subproblems ( X i , Z \ j , Y j ) , 1 < k < kij. We are now
ready to give the details of the second stage of the computation.

The second stage of the computation "fills in the blanks" by doing one
parallel recursive call on a number of problems, defined as follows. In what
follows, we describe these problems one at a time, but one should keep in
mind that they are all solved in parallel. The first class of problems to be
solved recursively are the good ones, those defined by triplets (X{, Z{j,Yj)
where \Zij\ < l 4/3. The Zt-j of such a good problem is not large enough
to violate the aspect ratio constraint (because it satisfies \Zij\ < |Xj|2).
The second class of problems to be solved recursively are those spawned
by the bad triplets ( X i , Z i j , Y j ) , namely subproblems (Xi,Z\J,Yj), 1 <
k < kij. By definition, each such ( X i , Z \ j , Y j ) satisfies the aspect ratio
requirement. When these recursive calls return, we need not do further
work for the good triplets, but for the bad ones we only have the answers
for the kij subproblems they spawned. We can use these kij subanswers
to get the correct answers in constant time, however. For each bad triplet
( X i , Z i j , Y j ) , we need to compute, for every pair u E Xi and v E Yj, the
minimum among kij entries. We do so by using ki,j h1/6 processors for each
such pair u E Xi and v E Yj (this is enough, since we are then computing
the minimum of kij entries using > ktj ' ' processors). Since there are
l4/3 such u, v pairs per bad triplet, the total work done for this "bad triplet
postprocessing" is upper-bounded by l4/3/h1/6 E\ j k i j ; now, since
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this work is O(l4/3h1/6h/l) = O(ht] (where the fact that h < l2 was used).
The bottom of the recursion is as usual: we stop when l is some small

enough constant (note that, by the aspect ratio condition, a constant l
implies a constant h, since h < l2).

The above description did not address the processor allocation problem:
how processors are assigned, in constant time, to the subproblems they will
solve recursively. We postpone discussing this issue until after we analyze
the time and work complexities of the above algorithm (the machinery
developed during that analysis will be used in the solution to the processor
allocation problem).

Analysis Before we analyze the complexity of the above algorithm, we
make a sraightforward observation that is needed in the analysis. Let 6i,j

equal one if |Zi,j| > l4/3, zero otherwise. Consider the sum:

This can be rewritten as follows, by changing the summation indices from
i,j to i ,B:

Let HB be the value of the above sum for a given value of B, that is, fixing
B and summing over i (hence H = EB HB). It is not hard to see that HB

is upper-bounded by h + t, l/3. Since there are 2l1/3 — 1 possible choices
for B, H is upper-bounded by 2hl1/3 + 2l2/3. This fact will be used in the
analysis below.

The time and work complexities of the algorithm satisfy the recurrences:

where c1 and C2 are constants, and h' < l4/3. The time recurrence clearly
implies that T( l ,h) = O(log logl). We now prove, by induction on l, that
the work recurrence implies that W(l, h) < c(lh + l 2 ) ( log l ) 2 for a constant
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c. The basis of the induction is trivial. For the induction step, using the
induction hypothesis in the above recurrence gives

Using the definition of H , the above inequality can be re- written as

Using the facts that H < 2hl1/3 + 2l2/3 and that Ei,j k i , j < c'h/l for a
constant c', the above inequality implies

This clearly implies that W(l, h) < c(lh + l]2)(logl)2 for a suitably chosen
constant c.

It should be clear from the above that a somewhat better bound for
W(l, h) can be obtained with a sharper analysis, but we choose not bother
with it; in fact the rest of this section can establish Theorem 1 even if
we had a somewhat worse bound than the above one for W(l, h), namely
W(l, h) = O((lh + l 2 ) ( l o g l ) a ) is enough so long as a is constant (i.e., even
if a > 2). This will become clear in Section 5.5.2.

Processor Allocation We now turn our attention to the issue of how
the processors are allocated, in constant time, to the subproblems that
must be solved recursively. The details of how this is done mimic the
above analysis of the work complexity, and are somewhat tedious but not
particularly difficult (they do involve some subtle points, however).

Imagine partitioning the subproblems to be solved recursively into
classes, where class B consists of the subproblems of the form
(Xi, Zi,i+B. Yi+B) or (X i ,Z i , i + B ,Y i + B ) . (Hence l1/3 + 1 < B < l1/3 - 1.)
The work to be done within class B is
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Re-arranging the above and using the definition of HB gives

Therefore the number of processors we assign to class B must be at least

to within a constant factor (in fact the constant factor can be taken to be
unity, since we can trade a constant factor in the number of processors for
a corresponding one in the time complexity). Since HB < h + l1 /3 , we can
assign to class B a number of processors equal to

This is easy to do in constant time, since the number of processors we assign
to class B does not depend on B. What remains to be shown is how, within
class B, these C(l, h) processors are assigned to the various subproblems of
that class. That is, in constant time, each subproblem (Xi,Zi ti+B,Yi+B) or
(Xi ,Z ( k )

+ B ,Yi+B) must be assigned the correct number of processors.
Within a class B, there is a natural left-to-right ordering of the sub-

problems: a subproblem is to the left of another one iff either (i) its row
interval is to the left of the other's row interval, or (ii) in case they both
have same row interval, its column interval is to the left of the other's col-
umn interval. For example, subproblem ( X i , Z i , i + B , +Yi+B) is to the left of

(k')
subproblem (.Xi', Zi', i'+B, Yi'+B) iff either (i) i < i', or (ii) i = i1 and k < k'.
Two subproblems of class B are neighbours iff one of them is immediately
to the left of the other.

For a subproblem of the form (Xi,Zi,i+B,Yi+B), the number of pro-
cessors to be assigned to it can be written as f ( l ) |Z i t j | + g ( l ) where
f ( l ) = l2/3(log l)2(log log l)-1 and g ( l ) = l4/ 3 (log l)2 (log log l)-1 . For a
subproblem of the form (Xi, Z i,i+B, Yi+B), the number of processors to be

assigned to it can be written as f ( l ) | Z i , i + B | + g ( l ) . In either case, we call
the g(l) portion fixed since it is the same for every subproblem, whereas
the f ( l ) | Z i , i + B | or f ( l ) | Z i , i + B | portion is called variable.

In what follows, we first discuss how to tentatively assign the variable
portions, then we discuss the tentative assigment of the fixed portions (they
are easier to handle), and finally how to use these two tentative assignments
to obtain the final assignment. In the final assignment, we must be careful
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to make sure that the processors assigned to a particular subproblem form
a contiguous interval of processor numbers (this is necessary because it is
not enough for a set of processors to know that they are assigned to a
certain subproblem; these processors must also have contiguous numbers).

Summed over all subproblems in class B, the total variable portion for
class B is f ( f . ) H B , and hence is at most f(f)(h + l 1 / 3 ) processors (because
HB < h + l1/3). These f ( t } ( h + l1/3)processors are partitioned into two
groups, one of size f(i)h (call it group G1) and one of size l l / 3 f ( l ) (call it
group G2).

The f((-)h processors of group GI are tentatively assigned as follows.
Imagine associating, with each of the h column indices, f ( l ) processors, and
view each column index as being the leader of the f(f) processors assigned
to it. Specifically, the f(f)h processors of group GI are partitioned into h
chunks of size f ( l ) each, and each chunk is associated with a column index
(the j-th chunk with the j-th column index, which acts as its leader).
We would like to assign all of the chunks whose leaders are in a column
interval Zi,i+B or Zi,i+B to the subproblem corresponding to that interval,
but there is a difficulty with this approach, in that a conflict can arise:
a column index j might belong to two neighbouring subproblems, and we
must then arbitrarily give the j-th chunk to one of them and thus deprive
the other subproblem. Observe that the only way for such a conflict over
a column index j to arise is when, for some i, j is the right endpoint of
Zi,i+B or Z(i,i+B) , and is simultaneously the left endpoint of Zi+1,i+1+B

or Zi+1,i+1+B. In particular, no such conflict can arise between a Zi,i+B

and the neighbouring Zi, i+B, since these two column intervals are (by
definition) disjoint.

Now suppose that, whenever such a conflict occurs, we break the tie
in favor of the leftmost of the two neighbouring subproblems involved.
Each subproblem that loses a conflict thus has a deficit of f ( l ) proces-
sors. However, note that each such subproblem "with deficit" is of the
form (Xi,Zi ti+B,Yi+B) or (Xi ,Zi , i+B,Yi^ .p) , i > 1; hence there are at most
ll/3 such subproblems, with a deficit of f ( l ) processors each. We coun-
teract these deficits by giving /(l) of the processors of group G2 to each
subproblem of the form (Xi;Zi,i+B, Yi+B) or (Xi ,Z i , i+B, Y i+B), i > I (note
that some of these subproblems get the extra f ( l ) processors without even
having a deficit, i.e., even if they did not lose a conflict to their right neigh-
bour).

Note that, if a column does not belong to any column interval Zi,i+B
or Zi,i+B, then the chunk of processors associated with it simply remains
unclaimed.

It is now easy to replace the above assignments for GI and G2 with
another assignment for GI U G2 which, although also tentative, is better in
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that it assigns to each particular subproblern a variable portion consisting
of processors having consecutive numbers. First, observe that the subset
of that variable portion coming from group G1 is already contiguous, and
so is the subset coming from group G2. It clearly suffices to show that
a subproblem also knows the ranks, in each of G1 and G2, of the first
processor assigned to it. That this holds for G2 is trivial: the rank V2 for
a subproblem of the form (Xi,Zi ti+B,Yi+B) or (Xi,Zi,i+B,Yi+B), i > 1, is
simply (»' — 2)/(l) + 1. For GI, if we let j be the smallest column index in
a subproblem's column interval, then the rank is V1 = (j — l)/(l) + 1.

This completes the tentative assigment of the variable portion of the
processors needed by each subproblem. We now turn to the problem of
tentatively assigning the fixed portion, that is, assigning g ( l ) processors to
each subproblem.

Subproblems having a column interval of the form Zi,i+B or Z(k i,i+B).
are the easiest to handle, by assigning g(i) processors to every index i,
1 < i < l1/3: if ( X i , Zi,i+B, Yi+B) is a good triplet then the g(l) processors
for index i get assigned to it, otherwise (if it is a bad triplet) they get
assigned to the ki,j+B-th subproblem spawned by that bad triplet.

For subproblems having a column interval of the form Zi,i+B where k <

kiti+B, we exploit the fact that |Z i, i+B| = l 4/3, as follows. Imagine marking
every column index that is a multiple of (h/f4/3) as being "special", and
associating with each special column g ( l ) processors. Since |Z i, i+B| = l4/3,

column interval Zi, i+B contains exactly one special column. Detecting this
column is trivial to do in constant time (it is the unique multiple of l4/3

within column interval Zi, i+B).
This completes the tentative assigment of the fixed portion of the pro-

cessors needed by each subproblem.
We now discuss how the final assignment of processors is obtained from

the above two tentative ones. Let G be the group of processors assigned to
class B, and let G' (resp., G") be the total fixed (resp., variable) portion of
G (hence G = G' U G"). Since each subproblem knows, as a byproduct of
the above tentative assignments, the rank within G' (resp., G") of the first
processor assigned to it in G' (resp., G"), it can easily find out the rank of
the first processor to be assigned to it in G. Once that rank is known, the
processors that were tentatively assigned to the subproblem from G' and
G" can "mark", in constant time, a contiguous interval of processors in G
that get assigned to that subproblem. This concludes the discussion of the
processor assignment issue.

5.5.2 DECREASING THE WORK DONE

Let us go back to the original goal of computing the OA matrix for an
n x n x n matrix A, in O(log logn) time and 0(n2/log logm) processors.
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Let ALGOo denote the algorithm of the previous section (recall that it
has the right time complexity but does a factor of (logn)2 too much work).
There is more than one way to decrease the work done. The way we do it
in this section has the advantage of being self-contained (in Section 5.5.3
we sketch another way, one that uses as a subroutine the CREW-PRAM
algorithm.

Using algorithm ALGOo, we shall create an algorithm ALGO1 that
runs in O(log logn) time with O(n2(log logn)2) work. Then, using ALGO1,
we shall create an algorithm ALGO2. that runs in O(log logn) time with
0(n2(log log log log n)2) work. Finally, using ALGO2 we shall create an
algorithm ALGO3 that runs in O(log logn) time with O(n2) work.

The method for obtaining ALGOk from ALGOk-i is similar for k —
1,2, 3, and uses the following lemma.

Lemma 5.21. Let ALGO' and ALGO" be two algorithms for computing
OA, running in time (respectively) T'(n) and T"(n), and doing work (re-
spectively) W'(n) and W"(n). Then for any 1 < s < n, we can construct
a third algorithm for computing OA that runs in time O(T'(n/s) + T"(s) +
loglogs -1- loglog(n/s)) and does work O(sW'(n/s) + (n / s ) 2 W"(s ) + n2).

Proof. We give an algorithm that makes use of ALGO' and ALGO". The
row indices of A get partitioned into n/s intervals X1, • • •, Xn / s of length s
each. The height indices of A get partitioned into n/s intervals YI, • • •, Yn/3

of length s each. The column indices of A get partitioned into s intervals
Zi,---,Zs of length n/s each. Let EX (resp., Ey) be the set of 2(n/s)
endpoints of the Xi's (resp., Yi's). Then we do the following:

1. We run, in parallel, s copies of ALGO' one on each of the s triplets
( E X , Z I , E Y ) , • • • , (EX,ZS,EY). This takes time T'(n/s) and work
sW'(n/s).

2. For each u G EX and v E EY, we compute the correct O A ( u , v ) value
by taking the best among the s answers for the pair u, v returned
by the solutions to the s triplets of the previous stage. We do so
in O(loglogs) time and O(s) work for each such pair u,v. Since
there are O((n/s)2) such pairs u, v, the total work done is 0(n2/s) =
O(n2). If we let Zi,j denote the interval of column indices of A
denned by the set O A ( V , w) such that v 6 Xi and w E Yj, then after
this stage of the computation we know the beginning and end of each
such interval Zi j.

3. For every Zi,j such that |Zi,j| < s, we solve the triplet ( X i , Z i , j , Y j )
by using ALGO". However, algorithm ALGO" assumes unit aspect
ratio ("square" matrices), whereas here we might have |Zi t j | < |X,|.
We get around this problem simply by making the matrices square
(padding with dummy +00 entries that cannot alter the correctness
of the answer returned). Of course this means that we now do W"(s)
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work for each such triplet. However, since there are at most (n/s)2

such triplets, the total work for this stage is (n/s)2W"(s). The time
is, of course, T"(s).

4. For every Zi,j such that |Zi,j| > s, we partition Zi,j into ki, j =
[|Zi, j | /s] intervals Zi,j, Zi,j, • • •, Z(k i,j), of size s each (except that

Z(k i, j) might be smaller). Then we solve each triplet ( X i , Z i , j , Yj) by
using ALGO" (if k = ki, j then we might need to "pad" the matrix
in order to make it square, as in the previous stage). The time is
T"(s), and the work per subproblem is W"(s). Since there are at
most Ei, j ki,j such subproblems, and since Ei,j ki,j= O( (n / s ) 2 ) ,
the total'work for this stage is O((n/s)2W"(s)).'

5. For every Zi,j such that |Zi j | > s, we compute the right answer
for each pair u G Xi and v € Yj from among the ki,j possibilities
available from the previous stage. We do this in (^(loglogki,j) =
O(loglog(n/s)) time and O(ki,j) work for each such pair u,v. Since
there are s2 such pairs u, v for each such Zi j, the total work for this
stage is 0(s2 Ei,j ki,j) = 0(s2(n/S)2) = O(n2).

It is clear that the above procedure proves the lemma.
To obtain ALGO1, we use Lemma 5.21 with s = (logn)2 and with

ALGO' = ALGO" = ALGO0.
To obtain ALGO2, we use Lemma 5.21 with s = (loglogn)2 and with

ALGO' = ALGO" = ALGO1.
To obtain ALGO3, we use Lemma 5.21 with s = (log log logn)2, with

ALGO' = ALGO2, and using for ALGO" the quadratic time sequential
algorithm (so that both W"(s) and T"(s) are O(s2)).

Brent's theorem then implies an O(n2/log logn) processor bound for
ALGO3, thus establishing Theorem 1. We do not give the details of the pro-
cessor allocation schemes, since they are very similar to those in Section 2
— in fact here we could even afford to assign processors in O(loglogn)
time rather than in constant time, since the above scheme for obtaining
ALGOk from ALGOk-1, 1 < k < 3, did not involve any recursive calls to
ALGOk.

5.5.3 FURTHER REMARKS

Using algorithm ALGO3, we can tackle problems having different aspect
ratios from those considered so far. By way of example, suppose A is
I x h x £ where h > I2, i.e., the aspect ratio condition is violated. For that
case, we can get an O(loglogl + loglog(h/l)) time, O(lh) work algorithm
as follows. Let X (resp., Y) be the set of all row (resp., height) indices of
A. Partition the column indices of A into q = |h/l| intervals of size t each
(the q-th interval may be smaller). Let these q intervals be Z1, • • •, Zq. Use
q copies of ALGO3 to solve in parallel all the (X, Zi, Y) triplets. This takes
O(loglogl) time and O(q l 2 ) - O(lh) work. Then, for each pair u € X and



180 PARALLEL COMPUTATIONS OF LBVENSHTEIN DISTANCES

v E y, we assign q processors to compute the correct OA(U, v) in 0(loglog q)
time (this involves taking the min of q quantities). The total work for this
"postprocessing" is O(l 3q) = O(lh), and the time is O(loglog(h/l)).

We also note that, even if ALGOo had done a poly log factor more work
than the ALGOo we gave in Section 2, we would still have been able to
design an ALGOk that runs in O(loglogn) time and does only quadratic
work. We would simply have had to use Lemma 5.21 a few more times,
and end up with an ALGOk with k > 3.

An alternative method of decreasing the work done consists of using
Lemma 5.21 with ALGO' = ALGO0 and with ALGO" - the optimal
CREW-PRAM algorithm for that problem.

This completes the description of the O(loglogn) time, 0(n2/loglogn)
processor for computing the tube minima of an n x n x n totally monotone
matrix in the CRCW-PRAM model.

These bounds can easily be shown to be optimal among quadratic-work
algorithms for this model (this follows from the O(loglogn) lower bound
for computing the minimum of n entries with O(n) work).

5.6 Exercises

1. Extend the algorithm of Section 5.2 to the general case where m < n.

2. Design CREW and CRCW algorithms for the following variant of
the string editing problem: each edit operation has unit cost; given
two strings and an integer k, decide whether there is an edit script
transforming one of the strings into the other using at most k edit
operations.

3. Design a fast and efficient parallel algorithm that finds the all-pairs
longest chains for a set of points in the plane, where a chain is a
sequence of points such that each point's successor in the sequence
has larger x and y coordinates than that point.

4. ** Design a fast and efficient parallel algorithm for the problem of
finding a longest ascending subsequence in a permutation of the first
n integers.

5. Assume unit cost for all edit operations. Design parallel algorithms
for the following approximate string searching problem. Given a
textstring x, a pattern z and an integer k, find all position in x at
which substrings having a distance of at most k from z begin.

6. ** Design PRAM algorithms for the string editing problem with a
time x processors bound matching the time complexity of the best
serial algorithm for the problem.
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5.7 Bibliographic notes

For the recurrence of C in Section 5.1, see, e.g., Wagner and Fischer [74].
The asymptotically fastest serial algorithms are due to Masek and Paterson
[1980]. Lower bounds on the string editing problem were given by Aho et al.
[1976] and Wong et al. [1976]. The correspondence between edit scripts and
grid graphs is in Sankoff and Krushkal [1980]. Aggarval et al. [1987] and
Aggarwal and Park [1988] introduced the notions of "tube maxima" and
"row maxima" and are useful references for the myriad of their other ap-
plications. The exposition of this Chapter follows mainly Apostolico et al.
[1990], Atallah [1993], and Atallah and Kosaraju [1992]. Aggarwal and Park
[1988, 1989] gave an O(logmlogn) time, O(mn/ logm) processor CREW-
PRAM algorithm, and an O (log n (log log m)2) time, O(mn/(loglogm)2)
processor CRCW - PRAM algorithm; the main difference between those
algorithms and this chapter is in the use of different methods for the "com-
bine" stage of the divide and conquer (in the tube minima computation,
the cascading divide-and-conquer scheme is not used). A property similar
to Equation 5.3 was proved in Fuchs et al. [1977]. Aggarwal and Park
[1988] traced this simple observation back to G. Monge, in 1781.

Ranka and Sahni [1988] designed a hypercube algorithm for m = n
that runs in O(Vnlogn) time with n2 processors. Mathies [1988] obtained
a CRCW-PRAM algorithm for the edit distance that runs in O(log n log m)
time with O(mn) processors if the weight of every edit operation is smaller
than a given constant integer.

Many important problems are special cases of string editing, including
the longest common subsequence problem and the problem of approximate
matching between a pattern string and text string. Landau and Vishkin
[1986], Sellers [1974, 1980], and Ukkonen [1985] are some good sources for
the notion of approximate pattern matching and its connection to the string
editing problem.
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6
Approximate String Searching

Consider the string searching problem, where differences between charac-
ters of the pattern and characters of the text are allowed. Each difference
is due to either a mismatch between a character of the text and a character
of the pattern, or a superfluous character in the text, or a superfluous char-
acter in the pattern. Given a text of length n, a pattern of length m and
an integer k, serial and parallel algorithms for finding all occurrences of
the pattern in the text with at most k differences are presented. For com-
pleteness we also describe an efficient algorithm for preprocessing a rooted
tree, so that queries requesting the lowest common ancestor of every pair
of vertices in the tree can be processed quickly.

Problems:
Input form. Two arrays: A = a1., ...,am - the pattern, T = t1, ...,tn - the
text and an integer k (> 1).

In the present chapter we will be interested in finding all occurrences
of the pattern string in the text string with at most k differences.

Three types of differences are distinguished:
(a) A character of the pattern corresponds to a different character of the
text - a mismatch between the two characters. (Item 2 in Example 1,
below.)
(b) A character of the pattern corresponds to "no character" in the text.
(Item 4).
(c) A character of the text corresponds to "no character" in the pattern.
(Item 6).
Example 1. Let the text be abcde fghi , the pattern bxdyegh and k = 3.
Let us see whether there is an occurrence with < k differences that ends
at the eighth location of the text. For this the following correspondence
between bcdefgh and bxdyegh is proposed. 1. b (of the text) corresponds
to b (of the pattern). 2. c to x. 3. d to d. 4. Nothing to y. 5. e to e. 6. /
to nothing. 7. g to g. 8. h to h. The correspondence can be illustrated as
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In only three places the correspondence is between non-equal characters.
This implies that there is an occurrence of the pattern that ends at the
eighth location of the text with 3 differences as required.

So, the main problem we consider is:
String searching with k differences (the k—differences problem, for short):
Find all occurrences of the pattern in the text with at most k differences
of type (a),(b) and (c).

The case k = 0 in the both problems is the string searching problem,
which is discussed in Chapter 2. In this Chapter algorithms for the k
differences problem are given. The "k mismatches problem" is simpler than
the k differences problem (there, occurrences of the pattern in the text with
at most k differences of type (a) only are allowed); however, there are no
known algorithms for the k mismatches problem that are faster than the
algorithms for the k differences problem, on the other hand the algorithms
for the k differences problem solve the k mismatches problem as well.

The model of computation used in this chapter is the random-
access-machine (RAM) for the serial algorithms, and the concurrent-read
concurrent-write (CRCW) parallel random access machine (PRAM) for the
parallel algorithms. A PRAM employs p synchronous processors, all hav-
ing access to a common memory. A CRCW PRAM allows simultaneous
access by more than one processor to the same memory location for read
and write purposes. In case several processor seek to write simultaneously
at the same memory location, one of them succeeds and it is not known in
advance which one.

The Ar-differences problem is not only a basic theoretical problem. It
also has a strong pragmatic flavor. In practice, one often needs to analyze
situations where the data is not completely reliable. Specifically, consider
a situation where the strings that are the input for the problem contain
errors, as in reality, and one still needs to find all possible occurrences of
the pattern in the text. The errors may include a character being replaced
by another character, a character being omitted, or a superfluous charac-
ter being inserted. Assuming some bound on the number of errors would
clearly yield the ^-differences problem.

Note that the measure of the quality of a match between the pattern
and a substring of the text depends on the application. The k differences
problem defines one possible measure. In many applications in molecular
biology a penalty table is given. This table assigns a penalty value for the
deletion and insertion of each letter of the alphabet, as well as a value for
matching any pair of characters. In the simplest case the score of a match
is simply the sum of the corresponding values in the penalty matrix. In
some cases however gaps (successive insertions or deletions) get penalties
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that are different from the sum of the penalties of each insertion (deletion).
The serial algorithm is given in Section 6.1. The parallel algorithm is

described in Section 6.2. Both, the serial and parallel, algorithms use, as
a procedure, an algorithm for the LCA problem. The problem and the
algorithm are given in Section 6.3.

6.1 The serial algorithm

In this section, an efficient algorithm for the k-differences problem is pre-
sented. As a warm-up, the section starts with two serial O(mn) time algo-
rithms for this problem. The first one is a simple dynamic programming
algorithm. The second algorithm follows the same dynamic programming
computation in a slightly different way, that will help explain the efficient
algorithm. Subsection 6.1.3 gives the efficient serial algorithm.

6.1.1 THE DYNAMIC PROGRAMMING ALGORITHM.

A matrix D[o,...,m;o,...,n] is constructed, where Di,l is the minimum number
of differences between ai, ...,a; and any contiguous substring of the text
ending at tl.

If Dm,l < k then there must be an occurrence of the pattern in the text
with at most k differences that ends at it-
Example 2.

Let the text be GGGTCTA, the pattern GTTC and k = 2. The matrix
-D[o,...4;o,...,7] (Table 6.1) is computed to check whether there are occurrences
of the pattern in the text with < k differences.

G
T
T
C

0
1
2
3
4

G
0
0
1
2
3

G
0
0
1
2
3

G
0
0
1
2
3

T
0
1
0
1
2

C
0
1
1
1
1

T
0
1
1
1
2

A
0
1
2
2
2

Table 6.1.

There are occurrences of the pattern in the text with < k differences
ending at t4, t5, t6 and t7.
The following algorithm computes the matrix D[o,...,m;0,...,n]

Initialization
for all l, 0 < t < n, D0 , l := 0
for all i, 1 < i < m, Di,o := i

for i := 1 to m do
for l :— 1 to n do
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Di,l := min (Di-1,l + 1, Di,l-1 + 1,Di-l,l-1 if ai- = tl or
DDi-l,l-1 +1 otherwise)

(Di,l is the minimum of three numbers. These three numbers
are obtained from the predecessors of Di,t on its column,
row and diagonal, respectively.)

Complexity. The algorithm clearly runs in O(mn) time.

6.1.2 AN ALTERNATIVE DYNAMIC PROGRAMMING COMPUTATION

The algorithm computes the same information as in the matrix D of the
dynamic programming algorithm, using the diagonals of the matrix. A
diagonal d of the matrix consists of all A,/'s such that l. — i = d.

For a number of differences e and a diagonal d, let Ld,e denote the
largest row i such that Di,l = e and Di,l is on diagonal d. The definition of
L d,e clearly implies that e is the minimum number of differences between
a1,..., aLde and any substring of the text ending at tLd,c+d- It also implies
that aLd,e+1 = tLd.e+d+1. For the k-differences problem one needs only the
values of Ld,e's, where e satisfies e < k.
Example 2 (continued)

Let us demonstrate the Ld,e values for diagonal 3 (Table 6.2).

G
T
T
C

G G G
0

T

1

C

1

T

1

A

2

Table 6.2.

L3,0 = 0, L3,1 = 3 and L.3, 2 = 4.

If one of the L<j,e's equals m, for e < k, it means that there is an
occurrence of the pattern in the text with at most k differences that ends
at td+m •

The Ld,e's are computed by induction on e. Given d and e it will be
shown how to compute Ld, e using its definition. Suppose that for all x < e
and all diagonals y, Ly,x was already computed. Suppose Ld,e should get
the value i. That is, t is the largest row such that A,f = e, and Di,l is on
the diagonal d. The algorithm of the previous subsection reveals that Di.l

could have been assigned its value e using one (or more) of the following
data:
(a) A-M-I (which is the predecessor of Di,l on the diagonal d) is e — 1
and ai= tl. Or, Di,l-1 (the predecessor of Di,l on row i which is also on
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the diagonal "below" d) is e - I. Or, Di-1.l (the predecessor of Di,l on
column t which is also on the diagonal "above" d) is e — 1.
(b) Di-1, l-1 is also e and ai = tl.

This implies that one can start from Di,l and follow its predecessors on
diagonal d by possibility (b) till the first time possibility (a) occurs.

The following algorithm " inverts" this description in order to compute
the Ld,e's. Ld :e-1, Ld-1,e-1, and Ld+1,e-1 are used to initialize the variable
row, which is then increased by one at a time till it hits the correct value
of Ld, e.

The following algorithm computes the L'd es

Initialization
for all d, 0 < d < n, Ld,-1 :=-I

for all e, — 1 < e < k, Ln+i,e :=— 1
2. for e:= 0 to k do

for d:=-e to n do
3. row := max [Ld,e-1 +1, Ld-1,e-1, Ld+1.e-1 +1]

row; := min(row,m)
4. while row < m and row+d < n and arow+1 = tr0w+i+d

do
row :— row + 1

5. Ld, e := row
6. if Ld,e = m then

print' "THERE IS AN OCCURRENCE ENDING AT
td+m*

Remarks, (a) For every i , l , Ditt — Di-1,l-1 is either zero or one.
(b) The values of the matrix D on diagonals d, such that d > n — m+k+l
or d < — k will be useless for the solution of the k-differences problem.
(c) The Initialization step is given for completeness of this presentation.
The values entered in this step are meaningless. It is easy to check that
these values properly initialize the L d,e values on the boundary of the ma-
trix.
Correctness of the algorithm
Claim. Ld,e gets its correct value.
Proof. By induction on e. Let e = 0. Consider the computation of L d,o,
(d > 0). Instruction 3 starts by initializing row to 0. Instructions 4 and 5
find that a1, ...,aLd , 0 is equal to td+1, ...,td+Ld,0 , and aLd >0+1 =td+Ld,o+1.
Therefore, Ld,o gets its correct value. To finish the base of the induction
the reader can see that for d < 0, L d,|d|-1 and Ld,|d|-2 get correct values
in the Initialization.

Let e = t. Assume that all Ld,l-1 are correct. Consider the computation
of Ld,e, (d > —e). Following Instruction 3, row is the largest row on

for all d, -(k+1) < d -1, Ld,|d|-1 := |d| -1, Ld,|d|-2 := |d|-2
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diagonal d such that Drow, dd+row can get value e by possibility (a). Then
Instruction 4 finds L d,e.
Complexity. The L d,e 'S for n + k + 1 diagonals are evaluated. For each
diagonal the variable row can get at most m different values. Therefore,
the computation takes 0(mn) time.

6.1.3 THE EFFICIENT ALGORITHM

The efficient algorithm has two steps:
Step I. Concatenate the text and the pattern to one string t1,...,tn

a1..., am. Compute the "suffix tree" of this string.
Step II. Find all occurrences of the pattern in the text with at most k
differences.

Step I. The construction of the suffix tree is given in Section 4.
Upon construction of the suffix tree the following is required. For each

node v of the tree, a contiguous substring Ci+i, ...,Ci+f that defines it will
be stored as follows: START(v) := i and LENGTH(v] := f.
Complexity. The computation of the suffix tree is done in O(n) time when
the size of the alphabet is fixed. This is also the running time of Step I for
fixed size alphabet. If the alphabet of the pattern contains x letters then it
is easy to adapt the algorithm (and thus Step I) to run in time 0(n logx).
In both cases the space requirement of Step I is 0(n).

Step II. The matrix D and the Ld,e's are exactly as in the alternative
dynamic programming algorithm. This alternative algorithm is used with
a very substantial change. The change is in Instruction 4, where instead
of increasing variable row by one at a time until it reaches Ld,e, one finds
Ld,e in 0(1) time!

For a diagonal d, the situation following Instruction 3 is that a1,..., arow

of the pattern is matched (with e differences) with some substring of
the text that ends at t row+d. One wants to find the largest q for
which arow+1, . . . ,a r o w+q equals trow+d+i, ...,trow+d+q. Let LC Arow,d be
the lowest common ancestor (in short LCA) of the leaves of the suffixes
trow+d+i, ••• and a r o w + 1 , - - - in the suffix tree. The desired q is simply
LENGTH(LCArow, d). Thus, the problem of finding this q is reduced
to finding LCArow,d. An algorithm for the LCA problem is described in
Section 6.3.
Example 2 (continued).

Let us explain how one computes L3,1 (Table 6.3). For this, L2,0, L3,0
and L4,0 are used. Specifically L2,0 = 2, L3,0 = 0 and L4,0 = 0.
The algorithm (Instruction 3) initializes row to max(L2,o, L3,0 +1, L4,0 +1)
= 2. This is reflected in the box in which "Initially row — 2" is written.
From the suffix tree one gets that q — 1. (Since a3 = t6 = T and a4 = t7.)
Therefore, L3,1:=3.
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G
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T

C

G G G
0

(L3,0)

T
0

(L4,0)

0
(L2,0)

C

(Initially
row = 2)

T

1
(L3,1)

A

Table 6.3.

Complexity. In this section we are interested in the static lowest common
ancestors problem; where the tree is static, but queries for lowest common
ancestors of pair of vertices are given on line. That is, each query must be
answered before the next one is known. The suffix tree has O(n) nodes. In
Section 6.3 an algorithm for the LCA problem is described. It computes
LCA queries as follows. First it preprocesses the suffix tree in O(n) time.
Then, given an LCA query it responds in 0(1) time. For each of the
n + k+l diagonals, k + 1 L d ,e 'S are evaluated. Therefore, there are O(nk)
LCA Queries. It will take O(nk) time to process them. This time dominates
the running time of Step II.
Complexity of the serial algorithm. The total time for the serial algorithm
is O(nk) time for an alphabet whose size is fixed and O(n(logm + k)) time
for general input.

6.2 The parallel algorithm

The parallel algorithm described below runs in O(logn + k) time. At the
end of this section, an explanation how to modify it to run in O(logm + k)
time is given. The parallel algorithm has the same two steps as the efficient
serial algorithm. Specifically:
Step I. Concatenate the text and the pattern to one string
( t1 , ...,tnai, ...,am). Then, compute, in parallel, the suffix tree of this string
(see Chapter 4).
Step II. Find all occurrences of the pattern in the text with at most k
differences. This step is done in a similar way to Step II in the serial
algorithm.

The matrix D and the Ld,e's are exactly as in the serial algorithm. The
parallel algorithm employs n + k+l processors. Each processor is assigned
to a diagonal d, —k < d < n. The parallel treatment of the diagonals is the
source of parallelism in the algorithm.
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For a diagonal d the situation following Instruction 3 is that a1., ..., arow

of the pattern is matched (with e differences) with some substring of
the text that ends at t r o w+d. One wants to find the largest q for which
arow+1, ...,arow+q equals trow+d+1, •••,trow+d+q. As in the serial algorithm
one gets this q from the suffix tree. Let LCArow,d be the lowest com-
mon ancestor (in short LCA) of the leaves of the suffixes trow+d+1, ... and
arow+1 , • • • in the suffix tree. The desired q is simply LENGTH(LCA row, d).
Thus, the problem of finding this q is reduced to finding LC Arow,d-

The parameter d is used and the pardo command for the purpose of
guiding each processor to its instruction.
The parallel algorithm

1. Initialization (as in Subsection 6.1.2)
2. for e := 0 to k do

for d := —e to n pardo
3. row := max [(I>d,e-i + 1), (Ld-1,e-1), (Ld+1, e-1)]

row := min (row, m)
4. Ld,e, := row + LENGTH(LCA r o w , d)
5. if Ld,e — m and d + m < n then

print THERE IS AN OCCURRENCE ENDING AT
td+m*

Complexity. In Chapter 4 it is shown how one may compute the suffix tree
in O(log n) time using n processors. This suffix tree algorithm has the same
time complexity for fixed alphabet and for general alphabet. This is also the
running time of Step I. As in the serial case, one is interested in the static
lowest common ancestors problem: where the tree is static, but queries
for lowest common ancestors of pair of vertices are given on line. That
is, each query must be answered before the next one is known. The suffix
tree has O(n) nodes. The parallel version of the serial algorithm, which is
given in Section 6.3, for the LCA problem works as follows. It preprocesses
the suffix tree in O(logn) time using n/logn processors. Then, an LCA
query can be processed in O(l) time using a single processor. Therefore, x
parallel queries can be processed in O(l) time using x processors. In the
second step n + k + I processors (one per diagonal) are employed. Each
processor computes at most k + 1 Ld, e's. Computing each Ld, e takes O(l)
time. Therefore, the second step takes O(k) time using n + k + 1 processors.
Simulating the algorithm by n processors, instead of n + k + 1 still gives
O(k) time. The total time for the parallel algorithm is O(log n + k) time,
using n processors.

Lastly, an explanation how one can modify the algorithm to get
O(logm + k) time using O(n) processors is given. Instead of the above
problem [n/m] smaller problems will be solved, in parallel. The first sub-
problem will be as follows. Find all occurrences of the pattern that end
in locations t1,...,tm of the text. Subproblern i, 1 < i < [n/m] will be:



AN ALGORITHM FOR THE LCA PROBLEM 193

Find all occurrences of the pattern that end in locations t(i-1)m+1, ...,tim

of the text. The input for the first subproblem will consist of the sub-
string t1,.,.,tm of the text and the pattern. The input for subproblem i
will consist of the substring t( i -2)m-k+2, • • • t i m of the text and the pattern.
Clearly, the solution for all these subproblems give a solution for the above
problem. Finally, note that one can apply the parallel algorithm of this sec-
tion to solve each subproblem in O(logm+ k) time using O(m) processors,
and all [n/m] subproblems in O(logm + k) time using O(n) processors.
Simulating this algorithm by n processors still gives O(logm + k) time.

6.3 An algorithm for the LCA problem

The lowest-common-ancestor (LCA) problem
Suppose a rooted tree T is given for preprocessing. The preprocessing

should enable to process quickly queries of the following form. Given two
vertices u and v, find their lowest common ancestor in T.
The input to this problem is a rooted tree T = (V, E), whose root is some
vertex r. The Euler tour technique enables efficient parallel computation of
several problems on trees. We summarize only those elements of the tech-
nique which are needed for presenting the serial lowest common ancestor
algorithm below. Let H be a graph which is obtained from T as follows:
For each edge (v —> u) in T we add its anti-parallel edge (u —> v). Since the
in-degree and out-degree of each vertex in H are the same, H has an Euler
path that starts and ends in the root r of T. This path can be computed,
in linear time, into a vector of pointers D of size 2|E|, where for each edge
e of H, D(e) gives the successor edge of e in the Euler path.

Let n — 2| V| — 1. We assume that we are given a sequence of n vertices
A = [a1, . . . , an], which is a slightly different representation of the Euler
tour of T, and that we know for each vertex v its level, LEVEL(v), in the
tree.

The range-minima problem is defined as follows:
Given an array A of n real numbers, preprocess the array so that for any
interval [ai, a i + 1 , . . . , aj], the minimum over the interval can be retrieved
in constant time.

Below we give a simple reduction from the LCA problem to a restricted-
domain range-minima problem, which is an instance of the range-minima
problem where the difference between each two successive numbers for the
range-minima problem is exactly one. The reduction takes O(n) time. An
algorithm for the restricted-domain range-minima problem is given later,
implying an algorithm for the LCA problem.
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6.3.1 REDUCING THE LCA PROBLEM TO A RESTRICTED-DOMAIN
RANGE-MINIMA PROBLEM

Let v be a vertex in T. Denote by l(v) the index of the leftmost appearance
of v in A and by r(v) the index of its rightmost appearance. For each vertex
v in T, it is easy to find l(v) and r(v) in O(n) time using the following
(trivial) observation:
l(v) is where a1(v) = v and LEVEL(a1(v)-1) = LEVEL(v) - 1.
r(v) is where ar(v) = v and LEVEL(a r(v)+1) — LEVEL(v) - 1.

The claims and corollaries below provide guidelines for the reduction.
Claim 1: Vertex u is an ancestor of vertex v iff l(v) < l(v) < r(u).
Corollary 1: Given two vertices u and v, one can find in constant time

whether u is an ancestor of v.
Vertices u and v are unrelated (namely, neither u is an ancestor of v

nor v is an ancestor of u) iff either r(w) < l(v) or r(v) < l(u).
Claim 2 . Let u and v be two unrelated vertices. (By Corollary 2, we

may assume without loss of generality that r(u) < l(v)).) Then, the LCA
of u and v is the vertex whose level is minimal over the interval [r(u), l (v )]
in A.

The reduction. Let LEVEL(A) = [LEVEL(a1), LEVEL(a2),...,
LEVEL(an)]. Claim 2 shows that after performing the range-minima pre-
processing algorithm with respect to LEVEL(A), a query of the form
LCA(u, v) becomes a range minimum query. Observe that the difference
between the level of each pair of successive vertices in the Euler tour (and
thus each pair of successive entries in LEVEL(A)) is exactly one and there-
fore the reduction is to the restricted-domain range-minima problem as
required.
Remark. The observation that the problem of preprocessing an array so
that each range-minimum query can be answered in constant time is equiv-
alent to the LCA problem was known. This observation has led to a linear
time algorithm for the former problem using an algorithm for the latter.
This does not look very helpful: we know to solve the range-minima prob-
lem based on the LCA problem, and conversely, we know to solve the LCA
problem based on the range-minima problem. Nevertheless, using the re-
stricted domain properties of our range-minima problem we show that this
cyclic relationship between the two problems can be broken and thereby,
lead to a new algorithm.

6.3.2 A SIMPLE SEQUENTIAL LCA ALGORITHM

In this subsection we outline a sequential variant of the restricted-domain
range-minima problem where k, the difference between adjacent elements,
is one. Together with the reduction of Section 6.3.1, this gives a sequential
algorithm for the LCA problem.

We first describe two preprocessing procedures for the range-minima
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problem: (i) Procedure I takes O(n log n) time, for an input array of length
n. No assumptions are needed regarding the difference between adjacent
elements, (ii) Procedure II takes exponential time. Following each of these
preprocessing procedures, query retrieval takes constant-time. Second, the
sequential linear-time range-minima preprocessing algorithm is described.
Finally, we show how to retrieve a range-minimum query in constant time.
Procedure I. Build a complete binary tree whose leaves are the elements of
the input array A. Compute (and keep) for each internal node all prefix
minima and all suffix minima with respect to its leaves.

Procedure I clearly runs in O(nlogn) time. Given any range [i, j], the
range-minimum query with respect to [i, j] can be processed in constant
time, as follows. (1) Find the lowest node u of the binary tree such that
the range [i,j] falls within its leaves. This range is the union of a suffix of
the left child of u and a prefix of the right child of u. The minima over
these suffix and prefix was computed by Procedure I. (2) The answer to
the query is the minimum among these two minima.
Procedure II. We use the assumption that the difference between any two
adjacent elements of the input array A is exactly one. A table is built as
follows. We assume without loss of generality that the value of the first
element of A is zero (since, otherwise, we can subtract from every element
in A the value of the first element without affecting the answers to range-
minima queries). Then, the number of different possible input arrays A is
2n-1. The table will have a subtable for each of these 2n-1 possible arrays.
For each possible array, the subtable will store the answer to each of the
n(n — l)/2 possible range queries. The time to build the table is O(22n2)
and O(2"n2) space is needed.

The linear-time range-minima preprocessing algorithm follows.

• For each of the subsets ai logn+1, • • • a ( i + 1 ) log n for O < i < n/logn—l
find its minimum and apply Procedure I to an array of these n/ log n
minima.

• Separately for each of the subsets ai logn+1, • • •, a(i+1)log n for 0 < i <
n/ log n — 1 do the following. Partition such subset to smaller subsets
of size log log n each, and find the minimum in each smaller subset;
apply Procedure I to these log n/ log log n minima.

• Run Procedure II to build the table required for an (any) array of
size loglogn. For each of the subsets ai loglogn+1, • • •, a(i+i)loglog n
for 0 < i < n/ log log n — 1 identify its subtable.

The time (and space) for each step of the preprocessing algorithm is
0(n).

Consider a query requesting the minimum over a range [ i , j ] . We show
how to process it in constant time. The range [i, j] can easily be presented
as the union of the following (at most) five ranges: [i, x 1 ] , [x1 + 1, y1, [y1 +
1,y2], [y2 + 1,x2] and [x2 + 1, j]; where: (1) [j, x1] (and [x2 + l, j]) falls within
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a single subset of size log log n - its minimum is available in its subtable,
(2) [x1 + 1, y1] (and [y2 + 1,x2]) is the union of subsets of size loglogn and
falls within a single subset of size log n - its minimum is available from the
application of Procedure I to the subset of size logn, and (3) [y1 + 1,y2] is
the union of subsets of size log n - its minimum is available from the first
application of Procedure I. So, the minimum over range [i, j] is simply the
minimum of these five minima.

6.4 Exercises

1. Show how can you use the Knuth, Morris and Pratt algorithm to
solve the "string searching with one difference" problem.

2. Develop an algorithm for the k-mismatches problem that is based
only on the suffix tree data structure and the LCA algorithm.

3. Develop an algorithm for the k-differences problem when mismatches
are not allowed, only insertions and deletions are legal.

4. Given a text T, a pattern P, and a character c. First run the Efficient
Algorithm, for the k-differences problem, (Section 6.1.3) for T and P.
Then show how can you use the L'd es, that were computed by the
efficient algorithm for T and P, to solve the k-differences problem
twice, once for the text cT and the pattern P and then for the text
Tc and the pattern P, both with equal efficiency.

6.5 Bibliographic notes

Levenshtein [1966] was the first to define the three types of differences.
The random-access-machine (RAM)is described in Aho et al. [1974]. Sev-
eral books, AKL [1989], Gibbons and Rytter [1988], JaJa [1992], and Reif
[1992], and a few review papers, Eppstein and Galil [1988], Karp and Ra-
machandran [1990], Kruskal et al. [1990], Vishkin [1991], can be used as
references for PRAM algorithms. A discussion on gaps is given in Galil
and Giancarlo [1989] and Myers and Miller [1988].

The reader is referred to Sankoff and Kruskal [1983], a book which
is essentially devoted to various instances of the k-differences problem.
The book gives a comprehensive review of applications of the problem
in a variety of fields, including: computer science, molecular biology and
speech recognition. Quite a few problems in Molecular Biology are similar
to the k difference problem. Definitions of the problems and algorithms
that solve these problems can be found, for example, in Doolittle [1990]
and Waterman [1989].

The dynamic programming algorithm (Section 6.1.1) was given inde-
pendently by 9 different papers; a list of these papers can be found in
Sankoff and Kruskal [1983]. The algorithm given in Section 6.1.2 was pre-
sented by Ukkonen [1983]. The algorithms given in Sections 6.1.3 and 6.2
were presented in Landau and Vishkin [1989].
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The serial algorithm of Harel and Tarjan [1984] was the first to solve the
LCA problem. It preprocesses the tree in linear time and then responses
to each query in 0(1) time. The algorithms of Schieber and Vishkin [1988]
and Berkman and Vishkin [1989] compute it in parallel; these algorithms
can be used in the serial case, as well, and are simpler than the one of
Harel and Tarjan [1984]. The serial algorithm in Section 6.3 was presented
in Berkman and Vishkin [1989] where one can find the parallel version
of it. The remark in Section 6.3 was observed in Gabow et al. [1984].
A procedure similar to Procedure I in Section 6.3 was used in Alon and
Schieber [1987]. For more on the Euler tour technique see Tarjan and
Vishkin [1985] and Vishkin [1985].

Other algorithms for the k mismatches problem were given in Galil
and Giancarlo [1986], Galil and Giancarlo [1987] and Landau and Vishkin
[1986], and for the k-differences problem in Galil and Park [1990], Landau,
Myers and Schmidt [1996], Landau and Vishkin [1988], Ukkonen [1985] and
Wu and Manber [1992]. In Galil and Giancarlo [1988] a survey was given.
Algorithms for approximate multi-dimensional array matching are given in
Amir and Landau [1991].
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7
Dynamic Programming: Special
Cases

In this Chapter we present some general algorithmic techniques that have
proved to be useful in speeding up the computation of some families of dy-
namic programming recurrences which have applications in sequence align-
ment, paragraph formation and prediction of RNA secondary structure.
The material presented in this chapter is related to the computation of
Levenshtein distances and approximate string matching that have been
discussed in the previous three chapters.

7.1 Preliminaries

Dynamic programming is a general technique for solving discrete optimiza-
tion (minimization or maximization) problems that can be represented by
decision processes and for which the principle of optimality holds. We can
view a decision process as a directed graph in which nodes represent the
states of the process and edges represent decisions. The optimization prob-
lem at hand is represented as a decision process by decomposing it into a
set of subproblems of smaller size. Such recursive decomposition is con-
tinued until we get only trivial subproblems, which can be solved directly.
Each node in the graph corresponds to a subproblem and each edge (a, 6)
indicates that one way to solve subproblem a optimally is to solve first
subproblem b optimally. Then, an optimal solution, or policy, is typically
given by a path on the graph that minimizes or maximizes some objective
function. The correctness of this approach is guaranteed by the principle
of optimality which must be satisfied by the optimization problem:

Principle of Optimality: An optimal policy has the property that what-
ever the initial node (state) and initial edge (decision) are, the remaining
edges (decisions) must be an optimal policy with regard to the node (state)
resulting from the first transition.

Another consequence of the principle of optimality is that we can ex-
press the optimal cost (and solution) of a subproblem in terms of optimal
costs (and solutions) of problems of smaller size. That is, we can express
optimal costs through a recurrence relation. This is a key component of
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dynamic programming, since we can compute the optimal cost of a sub-
problem only once, store the result in a table, and look it up when needed.

It follows from the preceding discussion that dynamic programming
solutions have two features in common:

(1) a table (where we store optimal costs of subproblems);
(2) the entry dependency of the table (given by the recurrence relation).

When we are interested in the design of efficient algorithms for dynamic
programming, a third feature emerges:

(3) the order to fill in the table (the algorithm).

We notice that feature (2) can be translated into an algorithm in an
obvious way and, sometimes, the time performance of this algorithm is
optimal under some model of computation (consider, for instance, the al-
gorithm for the edit distance problem). However, some other times, one
can use some properties of the problem at hand (not accounted for in its
dynamic programming formulation) to change the order in which (2) is
computed to obtain better algorithms.

Let n be the input size of a problem. We classify dynamic programming
problems by the table size and entry dependency: A dynamic programming
problem is called a tD/eD problem if its table size is O(nt) and a table
entry depends on O(ne) other entries.

We now present the recurrences that come out from dynamic program-
ming formulations of many optimization problems on strings. We need
some notation. We use the term matrices for tables. Let A be an n x m
matrix. A[i, j] denotes the element in the ith row and the jth column. Ai
denotes the ith row of A. A' denotes the jth column of A. A[i: i', j : j'] de-
notes the submatrix of A which is the intersection of rows i',i '+1,..., i' and
columns j,j + 1, . . . , j'. A[i,j : j'] is a shorthand notation of A[i : i,j : j ' ] .
Throughout this chapter, we assume that the elements of a matrix are
distinct ( ties can be broken consistently).

Problem 1 ( I D / I D ) : Given a real-valued function w(i,j) defined for
integers 0 < i < j < n and D[0], compute

where D[i] is easily computed from E[i], i.e., in constant time.

Problem 2 (2D/0D): Given D[i, 0] and D[0,j] for 0 < i,j < n, compute
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for 1 < i , j ' < n, where xi,-, yj, and Zi, j can be obtained in constant time,
and D[i, j] is easily computed from E[i, j] (again, in constant time).

Problem 3 (2D/2D): Given w(i,j) for 0 < i < j < In, and D[i ,0] and
D[0,j] for 0 < i,j < n, compute

where D[i, j] is easily computed from E [ i , j ] .

In the applications from which Problems 1 and 3 have been distilled
off, the cost function w is either convex or concave. In the applications of
Problems 2 and 3 the problems may be sparse, i.e., we need to compute
E[i, j] only for a sparse set of points. Exploiting these conditions we can
design more efficient algorithms than the obvious ones.

7.2 Convexity and Concavity

7.2.1 MONGE CONDITIONS

Convexity or concavity is a crucial property of the cost function w that can
be exploited to design fast dynamic programming algorithms. We define it
in terms of the Monge conditions, w is convex if and only if it satisfies the
convex Monge condition:

w is concave if and only if it satisfies the concave Monge condition:

An important notion related to Monge conditiond is total monotonicity
of an m x n matrix A. A is convex totally monotone if and only if

for all a < 6 and c < d.
Similarly, A is concave totally monotone if and only if

for all a < 6 and c < d.
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It is easy to check that if w is seen as a two-dimensional matrix, the
convex (resp., concave) Monge condition implies convex (resp., concave)
total monotonicity of w. Notice that the converse is not true. Total mono-
tonicity and Monge condition of a matrix A are relevant to the design of
algorithms because of the following observations. Let rj denote the row
index such that A [ r i , j ] is the minimum value in column j. Convex total
monotonicity implies that the minimum row indices are nondecreasing, i.e.,
r1 < r2 < • • • < rm • Concave total monotonicity implies that the minimum
row indices are nonincreasing, i.e., r1 > r2 > ••• > rm . We say that an
element A[i, j] is dead if i=rJ (i.e., A[i,j] is not the minimum of column
j). A submatrix of A is dead if all of its elements are dead.

7.2.2 MATRIX SEARCHING

Let A be an m x n matrix and assume that we can compute or access each
A[i, j in constant time, for any i, j. We want to compute the row maxima
of A. We give an algorithm, nicknamed SMAWK in the literature, that
solves this problem in O(n) time when m < n and A is totally monotone
with respect to row maxima. That is, for all a < b and c < d,

A[a ,d]>A[a ,c ] => A[b,d] > A[b,c]. (7.8)

Notice that in the previous subsection we have defined convex and con-
cave total monotonicity in terms of column minima of A. However, with
minor modifications, the SMAWK algorithm can find the column minima
of an n x m convex or concave totally monotone matrix in O(n) time, when
n > m. In what follows, we refer to all those versions of the same algorithm
as SMAWK (it will be clear from the context which one we will refer to).
We give details for the one that finds row maxima.

The hearth of the algorithm is the subroutine REDUCE. It takes as
input an m x n totally monotone matrix A with m < n and returns an
m*m matrix G which is a submatrix of A such that G contains the columns
of A which have the row maxima of A.

Let k be a column index of G with initial value of 1. REDUCE main-
tains the invariant on k that G[1 : j — l, j] is dead, for all 1 < j' < k. (See
Fig. 7.1). Also, only dead columns are deleted. The invariant holds triv-
ially when k = 1. If G[k, k] > G[k, k + 1] then G[l : k, k +1] is dead by total
monotonicity. Therefore, if k < m, we increase k by 1. If k = m, column
k + 1 is dead and k is unchanged. If G[k, k] < G[k, k + 1] then G[k : m, k]
is dead by total monotonicity. Since G[l : k — l,k] was already dead by the
invariant, column k is dead; k is decreased by 1, if it was greater than 1.
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Fig. 7.1. Matrix G (the shaded region is dead)

PROCEDURE REDUCE(A)
G----A;
k ---1;
while number of columns of G larger than m do

begin
case

G[k, k] > G[k, k+l] and k < m: k <- k + 1;
G[k, k] > G[k, k + l] and k = m: delete column

t + 1;
G[k,k] < G[k, k+ 1]: delete column k; k <-

min(l, k — 1);
endcase

end
return(G);

For the time analysis of REDUCE, let a, b, and c denote, respectively,
the number of times the first, second, and third branches of the case state-
ment are executed. Since a total of n — m columns are deleted and a column
is deleted only in the last two branches, we have 6 + c — n — m. Let c' be
the number of times k decreases in the third branch. Then c' < c. Since k
starts at 1 and ends no larger than m, a — c < a — c' < m — 1. We have
time t = a + b + c< a + 2b + c < 2n - m - l.

The row maxima of an m x n totally monotone matrix A with m < n
are found as follows. We first use REDUCE to get an m x m matrix G,
and then recursively find the row maxima of the submatrix of G which is
composed of even rows of G. After having found the row maxima of even
rows, we compute the row maxima in odd rows. The procedure ROW MAX
shows the algorithm.
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PROCEDURE ROWMAX(A)
G--- REDUCE(A);
if m = 1 then output the maximum and return;
p <- (G2, G4, ..., G2[m/2]};
ROWMAX(P);
from the positions (now known) of the maxima in the
even rows of G,

find the maxima in its odd rows;

Let T(m, n) be the time taken by ROW MAX for an m x n matrix.
The call to REDUCE takes time O(n). Notice that P is an m/1 x m
totally monotone matrix, so the recursive call takes time T(m/2, m). Once
the positions of the maxima in the even rows of G have been found, the
maximum in each odd row is restricted to the interval of maximum positions
of the neighboring even rows. Thus, finding all maxima in the odd rows
can be done in O(m) time. For some constants ci and 02, the time satisfies
the following inequality

which gives the solution T(m, n) < 2(c1 + c2)m + c2n = O(n), since m < n.
The bookkeeping for maintaining row and column indices also takes linear
time.

For completeness, we remark that, when m > n, the row maxima can
be found in O(n(l + log(m/n))) time (see Exercises). In alternative, we
can do the same thing in O(m) time by extending the matrix to an m x m
matrix with — oo in the columns we have added. This matrix is totally
monotone if the original matrix is totally monotone. We can now apply
ROW MAX to the new matrix. Therefore, we can find the row maxima of
an m x n matrix in O(n + m) time.

7.3 The One-Dimensional Case ( I D / I D )

We consider algorithms for the computation of recurrence (7.1) both when
the cost function w is concave and when it is convex. We present first
algorithms that organize the list of candidates for the minimum at a given
step into a stack (concave case) or queue (convex case). Then, we describe
algorithms that use SMAWK as a subroutine. The first set of algorithms
is very simple and likely to perform quite well in practice while the other set
of algorithms display a better asymptotic time performance. We remark
that if D[i] = E[i] and w(i, i) = 0 in recurrence (7.1), then we have a
shortest path problem with a trivial solution. In what follows, we rule out
such case.

Let B[i,j] - D[i] + w(i,j) for 0 < i < j < n. We say that B[i,j] is
available if D[i] is known and therefore B[i, j] can be computed in constant
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time. That is, B[i, j] is available only when the column minima for columns
1,2 , . . . , i have been found. We say that B on-line, since its entries become
available as the computation proceed. A matrix is off-line if all of its entries
are given at the beginning.

The ID /ID problem is to find the column minima in an on-line upper
triangular matrix B. One can easily show that when w satisfies the concave
(convex) Monge condition B is totally monotone.

7.3.1 A STACK OR A QUEUE

The algorithms presented here find column minima one at a time and pro-
cess available entries so that they keep only possible candidates for future
column minima. In the concave (resp., convex) case, we use a stack (resp.,
queue) to maintain the candidates. We discuss the concave case first. The
algorithm can be sketched as follows (the discussion following it provides
the missing details and a proof of its correctness as well):

PROCEDURE concave I D / I D
initialize stack with row 0;
for j = 2 to n do

begin
find minimum at column j;
update stack with row j' — 1;

end
end

For each j, 1 < j < n, we find the minimum at column j as follows.
Assume that (i1, h 1 ) , . . . , ( i k ,h k ) are on the stack ((i1 ,h1) is at the top
of the stack). Initially, (0,n) is on the stack. The invariant on the stack
elements is that in submatrix B[0 : j — 1,j : n] row ir, for 1 < r <
k, is the best (gives the minimum) in the column interval [hr-1 + l,hr]
(assuming h0 + 1 = j). By the concave total monotonicity of B, ii,..., ik
are nonincreasing (see Fig. 7.2). Thus the minimum at column j is the
minimum of B[ i 1 , j] and B[j — l , j ] .

Now we update the stack with row j — 1 as follows.

(1) If B[i1, j] < B[j—1,j], row j—1 is dead by concave total monotonicity.
If h1 = j, we pop the top element because it will not be useful.

(2) If -B[i1, j] > B[j — 1 , j ] , we compare row j — 1 with row ir at hr

(i.e., B[ir, hr] vs. B[j — I, hr]), for r = 1,2, . . . , until row ir is better
than row j — I at hr. If row j — 1 is better than row ir at hr, row
ir cannot give the minimum for any column because row j — I is
better than row ir for column l < hr and row ir+1 is better than
row ir for column / > hr. We pop the element (ir,hr) from the
stack and continue to compare row j — 1 with row ir+I. If row ir
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Fig. 7.2. Matrix B and stack elements at column j

is better than row j — 1 at hr, we need to find the border of the
two rows j — 1 and ir, which is the largest h < hr such that row
j — 1 is better than row ir for column l < h; i.e., finding the zero z of

then h = [ z ] . If h > j + I, we push (j — 1, h) into the stack.

As for the time analysis, we notice that popping stack elements takes amor-
tized constant time (the total number of pop operations cannot be greater
than n). When one can compute the border h in constant time, we say
that w satisfies the closest zero property. For instance w(i,j) = log(j — i)
satisfies the closest zero property. For those functions, the time of the al-
gorithm is O(n). For more general w we can compute h by a binary search
in O(logn) time. Therefore, in general, the total time is O(nlogn).

The convex case is similar. We use a queue instead of a stack to main-
tain the candidates. Assume that (i1, h 1 ) , ..., (ik,hk) are in the queue at
column j ( ( » i , A 1 ) is at the front and (ik,hk) is at the rear of the queue).
The invariant on the queue elements is that in B[0 : j — 2, j : n] row ir for
1 < r < k is the best in the interval [hr, hr+1 — 1] (assuming hk,+1 — 1 = n).
By the convex total monotonicity of B, i1, . . . , ik are nondecreasing. Thus
the minimum at column j is the minimum of B [ i 1 , j ] and B[j — l , j ] . One
property satisfied by the convex case only is that if B[j — 1, j] < B [ i 1 , j ] ,
the whole queue is emptied by convex total monotonicity. This property is
crucial to design a linear time algorithm for the convex case (which will be
discussed shortly).

7.3.2 THE EFFECTS OF SMAWK

There are two problems in trying to apply the SMAWK algorithm directly
to the ID/ID problem. One is that B is not rectangular. In the convex
case, we can take care of this difficulty by putting +00 in the lower half of

f(x) = B[j-1,x] - B[i,x] = w(j-1)-w(i,x)+(D[j-1]-D[ir]),
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Fig. 7.3. Staircase matrix B'

B. The resulting matrix is totally monotone. However, this "patch" is of
no use for the concave case. However, the really serious problem is that the
matrix A on which SMAWK works is off-line, while B is on-line. That is,
B[i, j] is available only after the column minima for columns 1, • • •, i have
been found. The notion of staircase matrix (see Fig. 7.3) helps in solving
those problems. We define it in terms of columns. An n x m matrix S is
staircase if

• (1) there are integers fj for j = 1 ,2 , . . . , m associated with S such
that 1 < fi < f2 < • • • < fm < n, and

• (2) S[i,j] is a real number if and only if 1 < i < fj and 1 < j < m.
Otherwise, S[i, j] is undefined.

We say that column j a step-column if j = 1 or fj > f j_ i for j > 2, and
we say that S has t steps if it has t step-columns.

We now consider the generalization of recurrence (7.1):

where 0 < f1 < . . . < f n < n. For i = 0 , . . . , f1, D[i] is given and, for
i — f j - i + 1,..., fj (j > 1), D[i] is easily computed from E[j — I}. This
problem occurs as a subproblem in a solution of the 2D/2D problem. It
becomes recurrence (7.1), if fj,• = j — 1.

Let B[i, j] = D[i] + w(i,j) again. Now B is an on-line staircase matrix
and we need to compute its column minima. We describe first an algorithm
for the convex case.

As we compute E from E[1] to E[n], we reduce the matrix B to suc-
cessively smaller staircase matrices B'. For each staircase matrix B' we
maintain two indices r and c: r is the first row of B', c its first column.
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That is, B'[i, j] = B[i, j] if i>r and j > c, B'[i, j] is undefined for all other
cases. We use an array N[l : n] to store interim column minima before row
r; i.e., N[j] = B[i,j] for some i < r (its use will be clear shortly). At the
beginning of each stage the following invariants hold:

(a) E[j] for all 1 < j < c have been found.
(b) E[j] for j > c is min(N[J], mini>r B'[i, j]).

Invariant (a) means that D[i] is known for all 0 < i < fc- Therefore
B'[r : f c , c : n] is available. Initially, the invariants are satisfied by setting
r = 0, c = 1, and N[j] — +00 for all 1 < j < n.

Let p = min(fc + c—r+1, n). We construct a matrix G which consists of
N[c : p] as its first row and B'[r : fc,c : p] as the other rows. G is a square
matrix except when n < f c + c — r+1. G is convex totally monotone and
so we can find its column minima F[c : p] using the SMAWK algorithm.
Let c' be the first step-column after c, and H be the part of B' below G.

(1) If c' > p (i.e., H is empty), we have found column minima E[c : p]
which are F[c : p] by invariant (b).

If c' < p, column minima E[c : c' — 1] have been found. We need to process
H to obtain the other column minima. For each row in H we make two
comparisons: one with its first entry, the other with its last entry until
either case (2) or (3) occurs. Let i be the current row of H, and ji the first
column of row i. Initially, i = fc + 1. Assume inductively that the part of
H above row i is dead (B in Fig. 7.3).

(2) If B'[i, ji] < F[ji], then rows r,..., i— 1 of B' are dead (by the convex
total monotonicity of B' - it corresponds to emptying the queue in
the algorithm sketched in the previous subsection).

(3) If B'[i,ji] > F[ji] and B'[i,p] < F[p], then B'[r : i - l,p+ I : n] is
dead (a is in Fig. 7.3).
Though G is not dead, we can store F[ji : p] into N [ji : p] and remove
rows r,..., i — 1.

(4) Otherwise, B'[i,ji : p] (7 in Fig. 7.3) is dead (again by convex total
monotonicity). We move to the next row of H.

If case (4) is repeated until the last row of H, we have found column
minima E[c : p]. This case will be called (4'). Note that whenever a
new step-column starts, column minima for previous columns have been
found, so all entries involved in the computation above become available.
If either case (2) or (3) occurs, we start a new stage with r = i and c = ji.
Otherwise, we start a new stage with c = p+ 1 (r is unchanged). The two
invariants hold at the beginning of new stages.
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Let i' be the last row of B' which was involved in the computation,
(e.g., i' = fc = fp in case (1) and i' = fp in case (4')). Each stage takes
time O(i' — r). This time can be amortized against the rows or columns
that are removed, for a total of O(n).

We now briefly sketch the algorithm for the off-line concave case which
has an O(na(n)) time complexity. It can be modified to work for the on-
line problem. Consider the matrix B transposed. Then, finding column
minima in B becomes finding row minima in the transposed matrix. We
will concentrate on this latter problem.

We say that a staircase matrix has shape (t,n,m) if it has at most
t steps, at most n rows, and at most m columns. The main idea is to
reduce the number of steps of a staircase matrix to two ( the row minima
of a staircase matrix with two steps can be found in linear time using the
SMAWK algorithm). We first reduce a staircase matrix of shape (n, n, m)
to a staircase matrix of shape (n/(a(n))3, n/(a(n))2, m) in O(mot(n) + n)
time. Then we successively reduce the staircase matrix to staircase matrices
with fewer steps as follows: a staircase matrix of shape (n/L,(n), n, m) is
reduced to a set of staircase matrices G1,..., Gk in O(m + n) time, where
Gi is of shape (ni/.Ls_1(ni), n,, m,), Ek=1 ni < n, and Ek=1 mi < m + n.
It can be shown by induction on s that the processing (finding row minima)
of a staircase matrix of shape (n/Ls(n), n, m) can be done in O(sm + s2n)
time. Thus the staircase matrix of shape (n/(a(n))3, n/(a(n))2, m) can be
processed in O(ma(n) + n).

7.4 The Two-Dimensional Case

We now consider the problem of computing recurrence (7.3). We first dis-
cuss the case in which w is a general function. Then, we provide algorithms
for the case in which w is either concave or convex.

We need a few definitions. Consider the set of points {(i,j)|0 < i, j <
n}. We say that ( i ' , j ' ) precedes ( i , j ) , denoted by (i',j') < (i,j), if and
only if i' < i and j' < j. The domain d(i,j) of a point (i,j) is defined as
the set of points (i ' , j') such that (i',j'} -< ( i , j ) , and the diagonal index of
a point (i,j) is defined as i+ j. Let d k ( i , j ) be the set of points (i',j') in
d(i, j) whose diagonal index is k — i' + j'.

Recurrence (7.3) has the property that the function w depends only on
the diagonal index of its two argument points. Thus, when we compute
E[i, j] we have only to consider the minimum among the D[i ' , j ' ] entries in
d k ( i , j ) where k = i' + j'. We can use that fact to compute (7.3) in O(n3)
time without convexity and concavity assumptions as we now outline.

Then, recurrence (7.3) can be written as
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Fig. 7.4. The partition of matrix E

For each i, j, we compute H l [ k , j] from Hl l [ k , j] for all k in O(n) time.
Then, E[i,j] is computed in O(n) time. Since we need to compute O(n2)
entries, the overall time is O(n3). In the following, we assume that w is
either convex or concave and discuss how to improve the O(n3) time bound
using those assumptions.

7.4.1 A COARSE DIVIDE-AND-CONQUER

We can combine a divide-and-conquer approach with the matrix searching
technique for the computation of recurrence (7.3). The scheme consists of
partitioning E into four n/2 x n/2 submatrices E1, E2, E3, and E4, as
shown in Fig. 7.4. We recursively compute EI and then we compute the
influence (a task that is described later) of EI on E2. Then, we recursively
compute E2, taking into account the influence of E1 on E2. E3 is computed
in a way similar to E2. Finally, we compute the influence of E1, E2, E3,
respectively, on E4. Then we recursively compute E4.

Let T(n) be the time complexity of the algorithm for the problem of
size n and assume that the influence of a matrix of size n x n over a matrix
of similar size can be computed in O(n2) time. Then, the time performance
of the algorithm just outlined is given by T(n) = 4T(n/2) + O(n2) . Since
T(l) = 0(1), we get T(n) = 0(n2logn).

What is left to do is to define what is the influence of E1 on E2 and how
it is computed in O(n2) time (other influences are defined and computed
similarly). Each point (i, j + n/2) in row i of E2 has the same domain in
E1 , and thus depends on the same diagonal minima in E1 . Consequently,
consider the matrix Xi[k, j] for 1 < j < n/2 and 0 < k < i + n/2 where
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That is, Xi[k, j] contains the influence of E1 on point (i, j + n/2). Then
E[i,j + n/2] is the minimum of two things: mink X i [ k , j], and the recursive
solution of E2. The computation of the influence of E1 on E2 reduces to
compute the column minima of Xi for 1 < i < n/2. Now, Xi is (off-line)
totally monotone when w is either convex or concave. As mentioned before,
Hi[k, n/2 + 1] can be computed from H i - 1 [ k , n/2 + 1] in O(n) time, for all
k. Once this has been done, the column minima of Xi can be computed
in O(n) time using the SMAWK algorithm. Therefore, the total time for
computing the influence is O(n2).

7.4.2 A FINE DIVIDE-AND-CONQUER

The time bound of O(n2 log n) for the computation of recurrence (7.3) can
be improved to 0(n2) for the convex case and O(n2a(n)) for the concave
case. The algorithm for the two cases is the same. Indeed, the computation
of (7.3) is reduced to the computation of a set of on-line ID/ID recurrences.
Each of those recurrences is computed by using as a subroutine the best
algorithm for the corresponding case.

Without loss of generality, assume that n + 1 is a power of two. For
0 < l < Iog2(n + 1), let a square of level I be a 2' x 2' square of points
whose upper left corner is at the point (i,j) such that both i and j are
multiples of 2' . Let Sl

u,v be the square of level l whose upper left corner
is at the point (u2l , vl1). Let Sl

u,* be the set of squares of level l whose
upper left corner is in row u2'. Similarly, S'*,v is the set of squares of level
l whose upper left corner is in column v2l . Observe that each square Sl,v „
is composed of four squares of level I — I. Let S'(i,j) be the square of level
l containing (i, j). We extend the partial order < over the squares: S' -< S
if every point in S' precedes every point in 5.

For 0< l<log2(n+l), let

Note that E0[i, j] = E [ i , j ] and, for / > 0, E1[i, j] is an approximation of
E[i,j}.

Suppose that the matrix D is off-line. Let Elog2(n+i)[i, j] = +00 for all
(i,j). We compute the matrix E1 given the matrix EI+1 for l = Iog2(n +
1) - 1 to 0. Consider a point ( p , q ) , and let Sl+j = SI+1(p,q). There are
four cases depending on the position of the square S1 (p, q) in the square

(1) S'(p,q) is the upper left subsquare of S1+1(p, q). That is, Sl(p,q) =
S2u,2v.It is easy to see that E1[p, q] = El+1[p, q].

(2) S'(p, q) is the upper right subsquare of Sl+1 (p, q). That is, S'(p, q) =
The points in the squares of Sl

t 2v that precede the square

SI+1(p,q).

S2u,2v+1.
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Fig. 7.5. Sl(p,q) is the upper right subsquare of S1+1(p, q)

Sl2u,2v+i have to be considered when computing Ei[p, q] (see Fig. 7.5).
For the points (i, j) in the squares of S' *,2v+1, we define the column
recurrence

where (i',j') E S' and S'(i',j') -< S'(i,j). Then, E1[p,q] =
mm{El+1lp,q],CR'v\p,q]}.

(3) S'(p,q) is the lower left subsquare of S1 + 1(p,q). That is, S 1 ( p , q ) =
S2u+1,2v.The points in the squares of S'2u,* that precede the square
S2uv,2v have to be considered when computing E1[p, q]. For the
points ( i , j ) in the squares of S2u+1,*, we define the row recurrence

where (i',j') E S2u,* and Sl(i',j') -< Sl(i,j). Then, Er[p,q] =
min{E,1+[p, q], RR'u[p, q]}.

(4) Sl(p,q) is the lower right subsquare of Sl+1(p, q), i.e., S'(p,q) =

Using the fact that the function w depends only on the diagonal index
of the points we have the following observations:

(a) The value of E1[i, j] (also CRv[i , j] and RR!
u[i,j]) is the same for all

points in a square of level / which have the same diagonal index i + j.
(b) To compute CR'v[i,j] (or RRl

u[i,j]) it is sufficient to consider only
the minimum D[i',j'] among all points in a square of level l which
have the same diagonal index i' + j' •

S2u+1,2v+1. Now, E1[p1] = min{EI+1[p,q], CRv[p,q], RRu[p,q]}.
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By Observation (a) we keep 21+1 — 1 values for each square of level l (corre-
sponding to the diagonals). Since there are (n + l)2/22l squares at level /,
E1 has O(n2/2l) values. Thus the overall computation above takes O(n2)
time except for the row and column recurrences. To compute E1 from EI+I ,
we have to solve (n + l)/2l+1 row recurrences and (n + l)/2l+1 column re-
currences. We will show that each recurrence is solved by four instances of
Recurrence (7.10). Overall, there are O(n) instances of Recurrence (7.10),
which implies O(n2) time for convex w and 0(n2a(n)) for concave w.

Now we show how to compute CRv. The algorithm for the row re-
currences is analogous. Each square of level l will be assigned a color,
either red or black. The upper left square is red, and all squares of level
l are assigned colors in the checkerboard fashion. Consider the diagonals
that intersect the squares in S l ,2v+1- Each diagonal intersects at most two
squares in S'*,2v+1> one red square and one black square. By Observation
(a) the value of CR[[i, j] is the same for a diagonal in a square, but each
diagonal intersects two squares. Thus we divide the row recurrence into
two recurrences: the red recurrence for points in red squares and the black
recurrence for points in black squares. By Observation (b) we need to
consider only the minimum D[i',j'] for a diagonal in a square, but again
each diagonal in S'*,2v intersects two squares, one red square and one black
square. Thus we divide the red recurrence into two recurrences: the red-red
recurrence and the red-black recurrence. Similarly, the black recurrence is
divided into two recurrences. Therefore, each row or column recurrence is
solved by four instances of the ID/ID problem.

In the 2D/2D problem, however, the matrix D is on-line. It is a simple
matter to modify the off-line algorithm described above so that it computes
the entries of E = E0 row by row and uses only available entries of D
without increasing its time complexity. Therefore, it leads to an O(n2)
time algorithm for the convex case and an 0(n2a(n)) time algorithm for
the concave case.

7.5 Sparsity

In many application areas, the problems solved by dynamic programming
impose constraints on the associated recurrence that make it meaningless
(undefined) on some points of its domain. We call such recurrences sparse.
For the kind of problems we are interested in, the 2D/0D and 2D/2D
recurrences may be sparse. That is, we need to compute E only for a
sparse set S of points. Let M be the number of such points. Since the
table size is 0(n2) in the two-dimensional problems, M < n2. We assume
that S is given (usually, it can be obtained by a suitable preprocessing).
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7.5.1 THE SPARSE 2D/OD PROBLEM

We define the range R(i,j) of a point (i, j) to be the set of points (i',j ')
such that (i,j) -< (i',j'). We also define two subregions of R(i,j): the
upper range UR(i,j) and the lower range LR(i,j). UR(i,j) is the set of
points (i', j') E R(i,j) such that j' — i1 > j — i, and LR(i,j) is the set of
points (i', j') E R(i,j) such that j1 — i1 < j — i.

Consider recurrence (7.2). For constants q and u, let xi = q, yj = u,
Zi,j = 0 if (i, j) 6 5 or Zi,j = q + u otherwise , and E[i, j] = D[i, j] (i.e., the
edit distance problem when substitutions are not allowed). Then, taking
into account the fact that Zi,j = 0 for (i, j) E S, we can rewrite it as:

where i1 is the largest row index such that i1 < i and (i1, j) E S, and
j1 is the largest column index such that j1 < j and (i,j1) € 5. Moreover,
we can restrict its computation to points (i, j) E S.

The computational bottleneck in Recurrence (7.17) can be modeled as

where / is a linear function of i', j', i, and j for all points (i,j) in
R(i',j'). Since R(i',j') is a rectangular region, we refer to (7.18) as the
rectangle case. We point out that when w is a linear function in the 2D /2D
problem, it becomes a 2D/0D problem and, in case it is sparse, we are
dealing with the rectangle case.

Consider now the case of Recurrence (7.2) where xi = yi = q, Zj,j = 0
if ( i , j ) E S; Zi,j = q otherwise, and E[i,j] = D[i,j] (i.e., the unit-cost edit
distance problem and approximate string matching). Then, taking into
account the fact that Zi,j = 0 for (i, j) E S, we can rewrite it as:

for ( i , j ) E S. The main computation in Recurrence (7.19) can also be
represented by Recurrence (7.18), where / is a linear function in each of
UR(i' , j ') and LR(i',j'). This case will be called the triangle case because
UR(i',j') and LR(i',j') are triangular regions.
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The rectangle case We show how to compute recurrence (7.18) when
/ is a linear function for all points in R(i',j').

Lemma 7.1. Let P be the intersection of R(p,q) and R(r,s), and ( i , j ) be
a point in P. If D[p,q} + f(p,q,i,j) < D[r,s] + f(r,s,i,j) (i.e., (p,q) is
better than (r, s) at one point), then (p, q) is better than (r, s) at all points
in P.

Proof: Use the linearity of f.

By Lemma 7.1, whenever the range of two points intersect, one compar-
ison is enough to decide which point takes over the intersection. So, E can
be partitioned into regions such that for each region P there is a point (i, j)
that is the best for points in P. Obviously, R(i,j) includes P. We refer to
(i, j) as the owner of P. The partition of E is not known a priori, but it is
discovered as one proceed row by row. A region P is active at row i if P
intersects row i. At a particular row, active regions are column intervals of
that row, and the boundaries are the column indices of the owners of active
regions. We maintain the owners of active regions in a list ACTIVE.

Let i1,i2, • • • , ip (p < M) be the non-empty rows in the sparse set S,
and ROW[s] be the sorted list of column indices representing points of
row is in S. The algorithm consists of p steps, one for each non-empty
row. During step s, the points in ROW[s] are processed. Given ACTIVE
at step s, the processing of a point (is,j) consists of computing E[i,,j]
and updating ACTIVE with (is, j). Computing E(is,j) simply involves
looking up which region contains (is,j). Suppose that (ir,j') is the owner
of the region that contains (i,,j). Then E [ i S , j ] = D[ir,j'] + f(ir,j',is,j).
Now ACTIVE needs to be updated to possibly include (is, j) as an owner.
Since R(ir,j') contains (is,j), R(ir,j') includes R(is,j). lf (ir,j') is better
than ( i s , j ) at (i, + l,j + 1), then (is,j) will never be the owner of an
active region by Lemma 7.1. Otherwise, we must end the region of (ir,j')
at column j, and add a new region of (is,j) starting at column j + 1. In
addition, we need to test (is, j) successively against the owners with larger
column indices in ACTIVE, to see which is better in their regions. If (is, j)
is better, the old region is no longer active, and (i,, j) conquers the region.
We continue to test against other owners until (i s , j) is worse ( we have
found the end of its region). The algorithm can be outlined as follows.

PROCEDURE sparse 2D/0D
for s <— 1 to p do

begin
for each j in ROW[s] do

begin
find in ACTIVE the point (ir,j'} whose re-

gion contains ( i s , j ) ' ,
E[is,j] <- D[ir,j'] + f[ir,j',is,j);
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update ACTIVE with ( i s , j ) ;
end

end

For each point in S we perform a lookup operation and an amortized
constant number of insertion and deletion operations on the list ACTIVE
for a total of O(M) operations. The rest of the algorithm takes timeO(M).
The total time of the algorithm is O(M + T(M)) where T(M) is the time
required to perform O(M) insertion, deletion, and lookup operations on
ACTIVE. If ACTIVE is implemented as a balanced search tree, we
obtain T(M) = O(Mlogn). Column indices in ACTIVE are integers in
[0, n], but they can be relabeled to integers in [0, min(n, M)] in O(n) time.
Since ACTIVE contains integers in [0, min(n, M)], it may be implemented
by van Emde Boas's flat trees (P. van Emde Boas [1977]) to give T(M) =
O(MloglogM). Even better, by using the fact that for each non-empty
row the operations on ACTIVE may be reorganized so that we perform
all the lookups first, then all the deletions, and then all the insertions, we
can use Johnson's version of flat trees (Johnson [1982]) to obtain T(M) =
O(M log log min(M, n2/M)) as follows. When the numbers manipulated by
the data structure are integers in [1, n], Johnson's data structure supports
insertion, deletion, and lookup operations in O(loglogD)) time, where D is
the length of the interval between the nearest integers in the structure below
and above the integer that is being inserted, deleted, or looked up. With
Johnson's data structure, T(M) is obviously O(MloglogM). It remains
to show that T(M) is also bounded by O(Mloglog(n2/M)).

Lemma 7.2. A homogeneous sequence of k < n operations (i.e., all in-
sertions, all deletions, or all lookups) on Johnson's data structure requires
O(kloglog(n/k)) time.

Let m, for 1 < s < p be the number of points in row i,. By Lemma 7.2,
the total time spent on row i, is O(ms loglog(n/ms)). The overall time
is 0(Es=1 ms loglog(n/m,)). Finally, using the concavity of the log log
function we obtain the claimed bound. Note that the time to compute
recurrence (7.18) for the rectangle case is never worse than O(n2).

The triangle case We show how to compute recurrence (7.18) when /
is a linear function in each of UR(i',f) and LR(i',j'). Let fu and f1 be
the linear functions for points in UR(i',j') and LR(i',j'), respectively.

Lemma 7.3. . Let P be the intersection of UR(p, q) and UR(r, s), and
( i , j ) be a point in P. If D[p,q} +fu(p,q,i,j) < D[r,s] + fu(r,s,i,j) (i.e.,
(p, q) is better than (r, s) at one point), then (p, q) is better than (r, s) at
all points in P.
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Fig. 7.6. Regions in the matrix LI

Lemma 7.3 also holds for lower ranges. For each point in S, we divide
its range into the upper range and the lower range, and we handle the two
ranges separately. Recurrence (7.18) can be written as

where

and

E is computed row by row. The computation of Recurrence (7.21)
is as that of the rectangle case except that regions here are bounded by
forward diagonals (d — j — i) instead of columns. Recurrence (7.22) is a
little different since regions are bounded by columns and forward diagonals
when we proceed by rows (see Fig. 7.6).

Let i1, i2, • • •, ip (p < M) be the non-empty rows in the sparse set
S. At step s, we compute LI for row is. Assume that we have active
regions P 1 , . . . ,P q in sorted order of their appearance on row is. We keep
the owners of these regions in a doubly linked list OWNER. Since there
are two types of boundaries, we maintain the boundaries of active regions
by two lists CBOUND (column boundaries) and DBOUND (diagonal
boundaries). Each boundary in CBOUND and DBOUND has a pointer
to an element in OWNER. The search for the region containing a point
(is, j) is carried out by finding the rightmost boundary to the left of ( i s , j)
in each boundary list, and choosing among the two boundaries the one
that is closer to (is,j). Suppose that (ir,j'} is the owner of the region that
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contains (i,,j). Then LI[i,,j] = f1[ir,j']+f1(ir,j',is, j). Again, LR(ir,f)
includes LR(i,,j). If (i r ,j ') is better than (is,j) at (ia + l,j + 1), then
(is, j) will never be the owner of an active region by Lemma 7.3. Otherwise,
we insert (one or two) new regions into OWNER, and update CBOUND
and DBOUND.

One complication in recurrence (7.22) is the following. When we have
a region bounded on the right by a column and on the left by a diagonal,
we must remove it when the row on which these two boundaries meet is
processed (P2 in Fig. 7.6). If an active region ends at a point, we refer to
that point as a cut point. We keep lists cut[i], 1 < i < n. Cut[i] contains
the cut points of row i. To finish step s, we process all cut points in rows
ia + 1 , . . . , is+i. Assume we have processed cut points in rows i, + l,..., i—1.
We show how to process cut[i], i < is+i. If cut[i] is empty, we ignore it.
Otherwise, we sort the points in cut[i] by column indices, and process them
one by one. Let (i,j) be a cut point in cut[i]. Three active regions meet at
(i,j). Let PI, P2, and P3 be the three regions from left to right (see Fig.
7.6), and (i1, j1) and (i3,j3) be the owners of P1 and P3, respectively. Note
that j = j3 and j — i = j1 — i1. P2 is no longer active. If (i1,j1) is better
than ( i 3 , j3) at (i + 1, j + 1), P1 takes over the intersection of PI and P3.
Otherwise, P3 takes it over.

Lemma 7.4. The total number of cut points is at most 2M.

Proof: Notice that 2M boundaries are created in the matrix LI ( two for
each point in S). For each cut point, two boundaries meet and one of them
is removed. Therefore, there can be at most 2M cut points.

CBOUND and DBOUND are implemented by Johnson's data struc-
ture. To sort cut[i], we also use Johnson's data structure. The total time
is O(n + Mloglogmin(M,n2/M)). So, recurrence (7.22) and recurrence
(7.18) for the triangle case are solved in O(n + Mloglogmin(M, n2/M))
time.

7.5.2 THE SPARSE 2D/2D PROBLEM

The sparse ID/ID problem is also given by recurrence (7.18), where
f(i',j',i,j) = w(i' + j',i + j). Suppose that w is either convex or con-
cave.

We need to solve the following subproblem, referred to as dynamic
minimization: Let

where w is either convex or concave. The values of D' are initially set to
+00. We can perform the following two operations:

(a) Compute the value of E'[y] for some y.
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(b) Decrease the value of D'[x] for some x.

Note that operation (b) involving one value of D'[x] may simultaneously
change E'[y] for many y's.

Recall that the row indices giving the minima for E' are nondecreasing
when w is convex and nonincreasing when w is concave. A row x is live if
it supplies the minimum for some E'[y]. We maintain live rows and their
intervals in which rows give the minima using a data structure. Computing
E'[y] then reduces to looking up which interval contains y. Decreasing
D'[x] involves updating the interval structure: deleting some neighboring
live rows and finally performing a binary search at each end. When we
use a balanced search tree the amortized time per operation is O(logn).
The bound can be improved to O(loglogn) with van Emde Boas's data
structure for w satisfying the closest zero property.

The 2D /2D problem is solved by a divide-and-conquer recursion on the
rows of the sparse set 5. For each level of the recursion, having t points in
the subproblem of that level, we choose a row r such that the numbers of
points above r and below r are each at most t/2. Such a row always exist,
and it can be found in O(t} time. Thus we can partition the points into two
sets: those above row r, and those on and below row r. Within each level
of the recursion, we will need the points of each set to be sorted by their
column indices. To achieve that we initially sort all points, and then at
each level of the recursion perform a pass through the sorted list to divide
it into the two sets. Thus the order we need will be achieved at a linear
cost per level of the recursion. We compute all the minima as follows:

(1) recursively solve the problem above row r,
(2) compute the influence of the points above row r on the points on and

below row r, and
(3) recursively solve the problem on and below row r.

Let S1 be the set of points above row r, and 52 be the set of points on
and below row r. The influence of S1 on S2 is an instance of the dynamic
minimization problem, points in S1 and S2 are processed in order of their
column indices. Within a given column we first process the points of S2,
and then the points of S1. By proceeding along the sorted lists of points in
each set, we only spend time on columns that actually contain points. If we
use this order, then when we process a point ( i , j ) in S2, the points (i',j')
of S1 that have been processed are exactly those with j' < j. A point
(i, j) in S1 is processed by performing the operation of decreasing D'[x] to
min(D'[x],D[i,j]), where x = i + j. A point ( i , j ) in S2 is processed by
performing the operation of computing E'[y], y = i + j.

Since we consider only diagonals that contain points in S, the time per
data structure operation is O(logM) or O(loglogM) rather than O(logn)
or O (log log n).
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Thus the influence of S1 on S2 can be computed in O(MlogM) or
O(MloglogM) time depending on w. Multiplying by the number of lev-
els of recursion, the total time is O(n + M log2 M) in general or O(n +
M log M log log M) for simple cost functions. Further improvements are
possible by dividing E alternately by rows and columns at the center of
the matrix rather than the center of the sparse set (in analogy with the
coarse divide-and-conquer for the non-sparse version of the problem). With
Johnson's data structure and a special implementation of the binary search,
an O(n + M log M log min(M, n2/M)) bound can be obtained. For simple
w's, it reduces to O(n + MlogMloglogmin(M,n2/M)).

We point out, without giving details, that the fine divide-and-conquer
for the non-sparse 2D/2D problem can be extended to work for the sparse
case. Its time complexity is O(n + Mlogmin{M, n2/M}) time for convex
w, and O(n + Ma(M) logminjM, n2/M}) time for concave w.

We also point out that the techniques outlined in this section, suitably
combined with matrix searching, can be used to compute recurrence (7.20)
in O(n + Ma(M)logM or O(n + MlogM) time when w is concave or
convex, respectively.

7.6 Applications

We discuss some of the applications in which the algorithms presented so
far have proved to be useful. The list is not meant to be exaustive since
we will concentrate mainly on applications involving strings. Additional
problems can be found in the bibliographic references.

7.6.1 SEQUENCE ALIGNMENT

We present dynamic programming recurrences that can be used to solve
some sequence alignment problems arising in molecular biology. We also
point out where the algorithmic techniques introduced in the preceding
sections can be useful in obtaining fast algorithms for their computation.

Recall that sequence alignment seeks to compare two input strings, ei-
ther to compute a distance between them (similarity) or to find some com-
mon sequence (not necessarily a substring) with which each input string
shares structural characteristics. It is an important mathematical problem
since it has applications in a wide variety of scientific disciplines. For in-
stance, in molecular biology, two protein sequences are compared to identify
common functional units. Similar application arise in geology and speech
recognition. The problem is also relevant to computer science. Let the two
input strings be x = x[l, m] and y = y[l, n].

Our main focus is on fast computation of sequence alignment rather
than on establishing how meaningful a given alignment is. For this lat-
ter topic, so important for molecular biology, the reader can refer to the
excellent book by Waterman [1988] quoted in the references.
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We will skip all the discussion that relates to the computation of basic
Levenshtein distances, i.e., recurrence (7.2) in problem 2D/0D, since that
topic is dealt with in other chapters. It suffices to mention here that the
techniques of Section 7.5 are useful in that context.

We refer to the edit operations of substitution of one symbol for an-
other (point mutations), deletion of a single symbol, and insertion of a
single symbol as basic operations. Let a gap be a consecutive set of deleted
symbols in one string or inserted symbols in the other string. With the
basic set of operations, the cost of a gap is the sum of the costs of the
individual insertions or deletions which compose it. Therefore, a gap is
considered as a sequence of homogeneous elementary events (insertion or
deletion) rather than as an elementary event itself. But, in molecular bi-
ology for instance, it is much more likely that a gap was generated by one
single event (a mutation) that deleted all the symbols in the gap, rather
than by many individual mutations combined to create the gap. Similar
motivations apply to other applications of sequence alignment. Experi-
mental results by Fitch and Smith [1983] indicate that the cost of a gap
may depend on its endpoints (or location) and on its length. Therefore we
would like to allow gap insertions or deletions to combine many individual
symbol insertions or deletions, with the cost of a gap insertion or deletion
being some function of the length of the gap. The cost w(i, j) of a generic
gap x[i, j] that satisfies such experimental findings must be of the form

where f1 and f2 are the costs of breaking the string at the endpoints of
the gap and g is a function that increases with the gap length.

In molecular biology, the most likely choices for g are linear or concave
functions of the gap lengths. With such a choice of g, the cost of a long
gap is less than or equal to the sums of the costs of any partition of the gap
into smaller gaps. That is, each gap is treated as a unit. Such constraint
on g induces a constraint on the function w. Indeed, w must satisfy the
following inequality:

i.e., a restricted version of the concave Monge condition (7.5).
The gap sequence alignment problem can be solved by computing the

following dynamic programming equation (w' is a cost function analogous
to w):

where
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with initial conditions D[i, 0] = w'(0, i ) , 1 < i < m and D[0,j] = w ( 0 , j ) ,
1 < j < n.

We observe that the computation of recurrence (7.26) consists of n + m
interleaved subproblems that have the following general form: Compute

D[0] is given and for every k = 1, • • • , n, D[k] is easily computed from E[k],
That is, n + m instances of the ID/ID problem of Section 7.3.

For general cost functions, (7.26) can be computed in O(n2m) time
since each ID/ID problem of size s can be solved in O(s2) time. Assume
now that w is either concave or convex. If we compute each instance of the
ID/ID subproblem by using the algorithm of Section 7.3.1 corresponding
to the convexity of w, then (7.26) can be computed in O(nm x logn) time.
It can be reduced to O(nm) if w satisfies the closest zero property. In
many applications, w satisfies such additional condition; in particular, for
the important special case in which w is linear, i.e, w is both concave and
convex. If we compute each instance of the ID/ID subproblem by using
the algorithms of Section 7.3.2, then (7.26) can be computed in O(nm) or
O(nma(n)) time when w is convex or concave, respectively.

An important family of sequence alignment methods for molecular biol-
ogy applications is based on fragment sequence alignment. The main goal
of such methods is to achieve faster computation times giving up some ac-
curacy in the alignment of the two strings. We describe the basic version
of such methods. We start by selecting a small number of fragments, where
each fragment is a triple (i,j,k), k fixed, such that the k-tuple of symbols
at positions i and j of the two strings exactly match each other. That is,
x[i, i + k — 1] = y[j, j + k — 1]. For instance, our set of fragments can be
all pairs of matching substrings of length k of the input strings. Such set
of fragments can be computed in O((n + m) log |E| + M) time, where M
denotes the number of such occurrences, by using standard string matching
techniques. Then, we can compute an optimal alignment of x and y using
only the set of fragments.

For a formal statement of this approach to sequence alignment, we need
some definitions. An occurrence of a fragment (i',j',k') is said to be below
an occurrence of (i, j, k) if i + k < i' and j + k < j'; i.e., the substrings in
fragment (i1 , f, k') appear strictly after those of (i, j, k) in the input strings.
Equivalently, we say that (i,j, k) is above (i' , j', k'). The length of fragment
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(i, j, k) is the number k. The diagonal of a fragment (i, j, k) is the number
j — i. An alignment of fragments is defined to be a sequence of fragments
such that, if (i, j, k) and (i',j', k') are adjacent fragments in the sequence,
either (i',j', k1) is below (i, j, k) on a different diagonal (a gap), or the two
fragments are on the same diagonal with i' > i (a mismatch). The cost of
an alignment is taken to be the sum of the costs of the gaps, minus the
number of matched symbols in the fragments. The number of matched
symbols may not necessarily be the sum of the fragment lengths, because
two mismatched fragments may overlap. Nevertheless, it is easily computed
as the sum of fragment lengths minus the overlap lengths of mismatched
fragment pairs. The cost of a gap is some function of the distance between
diagonals w(\(j - i) - (j' — i')|).

When the fragments are all of length 1, and are taken to be all pairs of
matching symbols from the two strings, these definitions coincide with the
usual definitions of sequence alignments. When the fragments are fewer,
and with longer lengths, the fragment alignment will typically approximate
fairly closely the usual sequence alignments, but the cost of computing such
an alignment may be much less.

The following recurrence can be used to find an optimal alignment of x
and y, given the set of fragments:

where B = w ( | ( j — i ) — ( j ' — i ' ) | ) . The naive dynamic programming algorithm
for this computation takes time O(M2). If M is sufficiently small, this will
be faster than many other sequence alignment techniques. In fact fastp,
based on the naive computation of recurrence (7.30), is the fastest sequence
alignment program available for many biological applications. Therefore,
improvements of the algorithm on which fastp is based are of considerable
practical interest.

We remark that the naive algorithm works for general cost functions
w and does not take any advantage of the fact that w's used in practice
satisfy linearity or convexity/concavity constraints. We point out that, by
suitable transformations, the main part of the computation of recurrence
(7.30) can be reduced to the computation of recurrence (7.20). Therefore,
if w is linear and we use the techniques presented in Section 7.5.1, (7.30)
can be computed in O((n + m)log |E| + Mloglogmin(M, nm/M)) time (we
are including also the time taken to find, all pairs of matching substrings
of lenght k in the two strings). If we use the techniques presented in
Section 7.5.2, together with matrix searching, we can compute (7.30) in
O((n + m) log |S| + M log M a(M)) or O((n + m) log |E| + M log M) time
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when w is concave or convex, respectively.

7.6.2 RNA SECONDARY STRUCTURE

We consider some dynamic programming recurrences that can be used to
compute the RNA secondary structure. The presentation provided here is
very limited in scope, since our main concern is to show how the techniques
presented in the previous sections may be of help in this application area.
References to a much broader treatment of this topic are given at the end of
the chapter. We first discuss an elementary model for the RNA secondary
structure. Then, we consider the important special case of the computation
of the RNA secondary structure with no multiple loops. Finally, we discuss
the impact of sparsity on such computation.

An RNA (ribonucleic acid) is made up of ribonuclosides linked together
in a chain by covalent bonds. Each nucleoside comprises one of four differ-
ent bases. These bases are adenine (A), cytosine (B), guanine (C) or uracil
(U). The nucleosides are linked one to the other by a phosphate back-
bone and are called nucleotides once the phosphate groups are attached.
An RNA molecule is uniquely determined by a sequence of bases along the
chain. Thus, it can be represented as a string over an alphabet of four sym-
bols, corresponding to the four possible nucleic acid bases. This string or
sequence information is known as the primary structure of the RNA. Such
structure can be determined by gene sequencing experiments. Throughout
this chapter, we denote an RNA molecule by a string y = y[l,n] and we
refer to its i-th base by y[i].

The linear structure of RNA just described gives a very incomplete
picture of the molecule. In the cell, or in vitro, the molecule is folded up
in a complicated way like a ball of string. It is this three-dimensional or
ternary structure which determines the activity of the molecule. The study
of this structure is very important, since it controls enzymatic activity of
RNA molecules as well as the splicing operations that take place between
the time RNA is copied from the parent DNA molecule and the time that
it is used as a blueprint for the construction of proteins. Unfortunately, a
precise determination of the ternary structure is only possible using very
expensive X-ray diffraction methods on cristallized RNA. Further, the only
known computational techniques for determining tertiary structure from
primary structure involve simulations of molecular dynamics, which require
enormous amounts of computing power and therefore can only be applied
to very short RNA sequences.

Because of the difficulty in determining the tertiary structures, some
biologists have resorted to a simpler model for the study of RNA: The
secondary structure, which we now define. In an actual RNA molecule,
hydrogen bonding will cause further linkages to form between pairs of bases.
Adenine typically pairs with uracil, and cytosine with guanine. Other
pairings, in particular between guanine and uracil, may form, but they are
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much more rare. Each base in the RNA sequence will pair with at most one
other base. Paired bases may come from positions of the RNA molecule
that are far apart in the primary structure. The set of linkages between
bases for a given RNA molecule is known as its secondary structure.

Determination of secondary structure also has its own applications: by
comparing the secondary structures of two molecules with similar function
one can determine how the function depends on the structure. On the other
hand, a known or suspected similarity in the secondary structures of two
sequences can lead to more accurate computation of the structures them-
selves, of possible alignments between the sequences, and also of alignments
between the structures of the sequences.

We now describe an elementary mathematical model for the secondary
structure. A base pair is a pair of positions (i, j) where the bases at the
positions are adenine and uracil, cytosine and guanine, or possibly guanine
and uracil. We write the bases in order by their positions in the RNA
sequence; i.e., if (i, j) is a possible base pair, then i < j. Each pair has a
binding energy determined by the bases making up the pair.

The secondary structure of y can be thought of as a collection S of base
pairs minimizing a given cost function. S can be divided into substructures.
Si,j is a substructure of S if Sij C S and Si,j is a secondary structure of
y[i, j]. There are a few types of basic (or elementary) structures from which
larger structures can be built.

Let the loop of a base pair (»', j) be the set of bases in the sequence
between i and j. This structural unit is a basic building block for the
determination of secondary structure. In order to somewhat simplify the
computation, it is assumed that no two loops cross. That is, if (i,j) and
(i',j') are loops in the secondary structure, and some base k is contained
in both of them, then either i' and j' are also contained in loop (i, j), or
alternately i and j are both contained in loop (i',j'). This assumption is
not entirely correct for all RNA, but it works well for the majority of RNA
molecules.

A base at position k is exposed in loop ( i , j ) if k is in the loop, and k
is not in any loop (i', j') with i' and j' also in loop (i,j). Because of the
non-crossing assumption, each base can be exposed in at most one loop.
We say that ( i ' , j ' ) is a subloop of (i,j) if both i' and j' are exposed in
(i, j); if either i' or j' is exposed then by the non-crossing assumption both
must be.

Thus, S can be represented as a forest of trees. Indeed, each root of the
tree is a loop that is not a subloop of any other loop, and each interior node
of the tree is a loop that has some other subloop within it. The possible
types of loops are classified according to the subloop relation. A hairpin
is a loop with no subloops i.e., a leaf in the loop forest. A single loop or
interior loop is a loop with exactly one subloop. Any other loop is called a
multiple loop.
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Fig. 7.7. Building blocks for RNA secondary structure.

Other basic structural units are as follows. A base pair (i,j) such that
the two adjacent bases (t + 1 , j — 1) are also paired is called a stacked pair.
A single loop such that one base of the subloop is adjacent to a base of the
outer loop is called a bulge. All these units are displayed in Fig. 7.7.

Each base pair in an RNA secondary structure has a binding energy
which is a function of the bases in the pair. Also, each loop contributes
some energy to the structure, we refer to it as loop cost, which is a function
of the length of the loop. This length is simply the number of exposed
bases in the loop. The loop cost depends on the type of the loop and it
is actually different for each of them. Nevertheless, the loop costs in use
today for hairpins, bulges and single loops are logarithm-like functions.
Sometimes linear functions are also used for the mentioned cost loops.

The total energy of a structure is the sum of the base pair binding
energies and loop costs. The optimal RNA secondary structure is then
that structure minimizing the total energy.

The optimum secondary structure can be determined in O(n4) time by
computing a three-dimensional dynamic programming recurrence recently
discovered by Waterman and Smith [1986]. It is the first polynomial time
algorithm obtained for this problem.

Before such an algorithm was found, researchers made further assump-
tions about the structure in order to obtain polynomial time algorithms.
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But, since O(n4) can be quite large for typical lengths of RNA molecules,
the algorithm of Waterman and Smith is mainly of theoretical interest.
Many of the older algorithms are still appealing from the practical point of
view. In particular, an important special case of RNA secondary structure
computation is to obtain the best structure with no multiple loops. This
problem appears as a subproblem in various methods for the determination
of the RNA secondary structure. Moreover, it is of independent interest
since single loop RNA structures could be used to construct a small number
of pieces of a structure which could then be combined to find a structure
having multiple loops (in this case one sacrifices optimality of the result-
ing multiple loop structure for efficiency of the structure computation). In
what follows, we will consider only the computation of the best structure
with no multiple loops. It can be obtained by computing:

The function w is the energy cost of an internal loop between the two
base pairs and w' is the cost of a bulge. Both w and w' typically combine
terms for the loop length and for the binding energy of bases i and j.
Experimental results show that both w and w' are concave function, i.e.,
they satisfy inequality (7.25) (and therefore the concave Monge conditions).
However, for efficiency reasons, they are sometime approximated by linear
functions. The function b(i, j) contains only the base pair binding energy
term, and corresponds to the energy gain of a stacked pair.

Notice that recurrence (7.31) is composed of one instance of the 2D/0D
recurrence (7.2), 2n instances of the ID/ID recurrence (7.1) and one in-
stance of the 2D /2D recurrence (7.3). For general w and w', its computa-
tion seems to require 0(n4) time, the most time consuming part of it being
the computation of (7.34). However, it is not hard to find an algorithm
that computes (7.31) in O(n3) time (see Section 7.4). For linear w and w',
it is straightforward to obtain an O(n2) time algorithm computing it.

For concave or convex functions (we consider the convex case only for
completeness, since it is not relevant from the practical point of view),
recurrences (7.32) and (7.33) can be computed by any of the algorithms
computing recurrence (7.1) (see Section 7.3). For concave functions, the
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best time for computing each of these latter recurrences is O(na(n)) for
a total of 0(n2a(n)) time. A similar reasoning yields a total of O(n2)
time for convex functions. As for the computation of (7.34), we can use
the techniques of Section 7.4 to compute it in O(n2a(n)) or in O(n2) time
when the functions are concave or convex, respectively. These two time
bounds are the best known for the computation of (7.31).

We next discuss how some physical constraints of the RNA secondary
structure can be used to make (7.31) sparse. (Similar considerations apply
to other recurrences for the computation of RNA secondary structure that
are not discussed here.) Then, we discuss which algorithmic techniques can
be used to efficiently compute the corresponding recurrence.

In recurrence (7.31), the entries in the associated dynamic programming
matrix include a term for the binding energy of the corresponding base pair.
If the given pair of positions do not form a base pair, this term is undefined,
and the value of the cell in the matrix must be taken to be +00 so that
the minimum energies computed for the other cells of the matrix do not
depend on that value, and so that in turn no computed secondary structure
includes a forbidden base pair.

Further, for the energy functions that are typically used, the energy cost
of a loop will be more than the energy benefit of a base pair, so base pairs
will not have sufficiently negative energy to form unless they are stacked
without gaps at a height of three or more. Thus we could ignore base
pairs that cannot be so stacked, or equivalently assume that their binding
energy is again +00, without changing the optimum secondary structure.
This observation is similar to that of sparse sequence alignment, in which
we only include pairs of matching symbols when they are part of a longer
substring match.

The effect of such constraints on the computation of the secondary
structure for RNA is twofold. First, they contribute to make the output
of the algorithms using them more realistic from the biological point of
view. Second, they combine to greatly reduce the number of possible pairs,
which we denote by M, that must be considered to a value much less
than the upper bound of n2. For instance, if we required base pairs to
form even higher stacks, M would be further reduced. The computation
and minimization in this case is taken only over positions (i, j) which can
combine to form a base pair. Let S be the set of such positions. We
point out that it can be computed in O(M + nlog |E|) time using standard
string matching techniques. We now show how to compute recurrence
(7.31) only for points in S, while taking advantage of concavity or convexity
assumptions for the cost functions.

We must compute each recurrence (7.32) for each (i, j) 6 5 taking into
account only pairs (k,j — 1) E S that precede (i, j). (A similar reasoning,
which we omit, holds for recurrences (7.33).) Thus, each such recurrence
depends only on the points of S in column j — 1. Let Cj-i be the number
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of such points. If w is linear, it is straightforward to compute each such
recurrence in O(Cj-1) time for a total of O(M) time. If w is concave
or convex (again, we consider convex functions for completeness), we can
compute each of them by a simple modification of any of the algorithms
computing recurrence (7.1) (see Section 7.3). For concave functions, the
best time for computing each of these latter recurrences is 0(c,-_1a(M))
for a total of O(Ma(M)) time. A similar reasoning yields a total of 0(M)
time for convex functions.

As for recurrence (7.34), it must be computed for pairs (i,j) (E S taking
into account only pairs (k,l) E S that precede (i — 1, j — 1). Thus, it is
an instance of recurrence (7.18). If w is a linear function, we can use the
techniques of Section 7.5.1 to compute it in O(Mloglogmin(M, n2/M))
time. If w is concave or convex, we can use the techniques of Section 7.5.2
to compute it in O ( M a ( M ) log min(M, n2/M)) or O(M log min(M, n2/M))
time, respectively. Adding 0(nlog|E|) (the time for the determination
of S) to each of those time bounds, we obtain the time bound for the
computation of (7.31) when w is linear, concave or convex, respectively.

7.7 Exercises

1. Consider recurrence (7.1) of problem ID/ID and let B[i, j] = D[i] +
w(i,j). Show that B[i,j] is concave (resp., convex) Monge when w
is concave (resp., convex) Monge.

2*. Let A be an m x n matrix totally monotone with respect to row
maxima (see Section 7.2.2). Design an algorithm that finds the row
maxima of A in O(n(l + log(m/n))) time when m > n. Show that
the algorithm is optimal in the decision tree model of computation.

3. Work out the details of the algorithm for the convex case sketched in
Section 7.3.1.

4. Work out the details of the algorithm for the convex case sketched in
Section 7.3.2.

5. Show that the off-line algorithms given in Section 7.4.2 for the com-
putation of recurrence (7.3) can be modified to work on-line with no
penalty in time performance.

6. Design an algorithm that implements each operation of the dynamic
minimazation problem of Section 7.5.2 in amortized O(log n) time or
O(loglogn) time when w is simple.

7. Show that the algorithms given in Section 7.4.2 can be modified to
work for the computation of recurrence (7.18).

8*. Assume that w is concave. Design an algorithm that computes re-
currence (7.20) in time O(n + Ma(M)logM).

9**. Can the O(nma(n)) bound of the convex sequence alignment problem
be improved? Can a practical algorithm achieve this goal?
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10**. Can the space for convex or concave sequence alignment be reduced,
similarly to Hirschberg's reduction for linear sequence alignment?
The current algorithms require space O(nm), even using Hirschberg's
technique, and so new methods would be needed.

11**. Can the bounds for fragment alignment algorithms be reduced? In
particular can we achieve the optimal time bounds of O(M + n) for
linear and/or convex (concave) cost functions?

12**. Can the space of the algorithms for the computation of single loop
RNA structure be reduced below the current O(n2) bound? Can
the space for efficient computation of multiple loop RNA structure
with general (or convex or concave) cost functions be reduced below
0(n3)?

13**. Is dynamic programming strictly necessary to solve sequence align-
ment problems? Notice that algorithms based on dynamic program-
ming will take at least O(mn) time in aligning two sequences of length
m and n.

7.8 Bibliographic Notes

Dynamic programming and the principle of optimality are due to Bellman
[1957], who applied such technique to the analysis of many optimization
problems. Part of that work is joint with Dreyfus [1962]. The book by
Denardo [1982] provides an excellent reference to additional applications
of dynamic programming. Features (1) and (3) of dynamic programming
recurrences were observed in Aho et al. [1974], and feature (2) can be
found in the literature as dependency graphs (see for instance Bird [1980]
and Ukkonen [1985]).

Monge conditions were introduced by Monge [1781], and revived by
Hoffman [1961] in connection with a transportation problem. They were
rediscovered by F.F. Yao [1980], who used them to speed-up many dy-
namic programming algorithms with applications to computer science and
computational geometry. Bellman [1957] also observed that some dynamic
programming problems can be efficiently solved when they satisfy convexity
or concavity constraints.

Total monotonicity of matrices, as given by (7.8), was introduced by
Aggarwal et al. [1987] in connection with some problems in computa-
tional geometry. The matrix searching algorithm of Section 7.2.2 is also
due to them. The notion of staircase totally monotone matrices is due to
Aggarwal and Klawe [1990] who applied it to geometric algorithms. The
first connection between total monotonicity and dynamic programming is
due to Wilber [1988], who cleverly used it to obtain a linear time algorithm
for the least weight subsequence problem, improving an earlier algorithm by
Hirschberg and Larmore [1987]. Total monotonicity in higher dimensional
matrices has been studied by Aggarwal and Park [1988].
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Recurrence (7.1) is a generalization of many important subproblems in
dynamic programming, all of which satisfy convexity or concavity assump-
tions. The algorithms of Section 7.3.1 as well as the formulation of the
recurrence in the general form given by (7.1) is due to Galil and Giancarlo
[1989] ( a slightly different algorithm for the concave case, with a more
complicated proof of correctness, is due to Miller and Myers [1988]). Gen-
eralizing on earlier work by Wilber, Eppstein [1990] obtained the first linear
time algorithm for the computation of (7.1) for convex cost functions. He
also provided algorithms for mixed concave-convex cost functions. Galil
and K. Park [1990] obtained a simpler algorithm (given in Section 7.3.2)
that retains the same time bound as the one of Eppstein. Another sim-
ple algorithm for the same problem is provided by Klawe [1989]. As for
the case of convex cost functions, the best known algorithm (when the
cost function does not satisfy the closest zero property) is due to Klawe
and Kleitman [1990] and has been presented in Section 7.3.2. In Section
7.6.1 we have discussed sequence alignment with gaps. Its dynamic pro-
gramming formulation, i.e., recurrence (7.26), was obtained by Waterman
et al. [1976]. Later on, Waterman [1984] proposed the use of concave
cost functions for that kind of alignment. Moreover, Waterman and Smith
[1978] also observed that (a special case of) recurrence (7.1) is useful in
the computation of the RNA secondary structure with no multiple loops.
We notice that it also appears in recurrences used for the determination of
less restricted versions of RNA secondary structure (see for instance Zuker
and Stiegler [1981]). Additional problems where instances, or variations,
of recurrence (7.1) are used are the following (we provide both references
to a description of the problems and to the best algorithms available for
them): paragraph formation (Knuth and Plass [1981], Wilber [1988]), eco-
nomic lot sizing (Denardo [1982], Aggarwal and Park [1990], Federgruen
and Tzur [1990] ), job shop scheduling (Coffman et al. [1989]).

Recurrence (7.3) is mainly used for the computation of interior loops in
RNA folding. It has been obtained by Waterman and Smith [1978]. The
same authors [1986] showed that it can be computed in O(n3) time with-
out any assumptions on the cost function. Later on, Eppstein, Galil and
Giancarlo [1988] showed how to compute it in O(n2 log2 n) using convexity
or concavity assumptions (usually met in practice) on the weight function.
Under the same assumptions, that method was first improved by Aggarwal
and J. Park [1988] (the algorithm of Section 7.4.1) and then by Larmore
and Schieber [1991] (the algorithm of Section 7.4.2).

The effects of sparsity on the computation of the recurrences in Sec-
tion 7.5 has been studied, in a unifying framework, by Eppstein et al.
[1992a, 1992b] and the material presented in Section 7.5 covers some of
that. Earlier results, mostly confined to deal with sparsity in recurrence
(7.2) (longest common subsequence) are due to Hirschberg [1977] and Hunt
and Szymanski [1977]. Larmore and Schieber [1991] have improved one of
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the algorithms of Eppstein et al. [1992b] (see Section 7.5.2). The fragment
sequence alignment paradigm described in Section 7.6.1 has been studied
by Wilbur and Lipman [1983, 1984] . The fastp program (D.J. Lipman and
W.L. Pearson [1985]), one of the most widely used programs for protein
sequence alignment, is based on that paradigm. The description of the
RNA secondary structure given in Section 7.6.2 has been abstracted from
Sankoff et al. [1983] .
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8
Shortest Common Superstrings

Given a finite set of strings S = {s1,.. .,sm}, the shortest common super-
string of 5, is the shortest string s such that each si appears as a substring
(a consecutive block) of s.
Example. Assume we want to find the shortest common superstring of all
words in the sentence "alf ate half lethal alpha alfalfa." Our set of strings
is S = { alf, ate, half, lethal, alpha, alfalfa }. A trivial superstring of S is
"alfatehalflethalalphaalfalfa", of length 28. A shortest common superstring
is "lethalphalfalfate", of length 17, saving 11 characters.

The above example shows an application of the shortest common super-
string problem in data compression. In many programming languages, a
character string may be represented by a pointer to that string. The prob-
lem for the compiler is to arrange strings so that they may be "overlapped"
as much as possible in order to save space. For more data compression re-
lated issues, see next chapter.

Other than compressing a sentence about Alf, the shortest common
superstring problem has more important applications in DNA sequencing.
A DNA sequence may be considered as a long character string over the
alphabet of nucleotides {A, C, G, T}. Such a character string ranges from
a few thousand symbols long for a simple virus, to 2 x 108 symbols for a
fly and 3 x 109 symbols for a human being. Determining this string for
different molecules, or sequencing the molecules, is a crucial step towards
understanding the biological functions of the molecules. In fact, today,
no problem in biochemistry can be studied in isolation from its genetic
background. However, with current laboratory methods, such as Sanger's
procedure, it is quite impossible to sequence a long molecule directly as
a whole. Each time, a randomly chosen fragment of less than 500 base
pairs can be sequenced. In general, biochemists "cut", using different re-
striction enzymes, millions of such (identical) molecules into pieces each
typically containing about 200-500 nucleotides (characters). A biochemist
"samples" the fragments and Sanger's procedure is applied to sequence the
sampled fragment. From hundreds, sometimes millions, of these random
fragments, a biochemist has to assemble the superstring representing the
whole molecule. An algorithm that tries to find a shortest common super-
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string of a given set of strings (fragments) is routinely used by computers
and human being. This algorithm, called Greedy, works as follows: Repeat-
edly merge a pair of strings with maximum overlap until only one string is
left.

The algorithm Greedy, trivial though it may be, occupies a central place
in our study. Clearly, Greedy does not always find the shortest superstring.
In fact it can be two times off as the following example shows.
Example. Let 5 = {c(ab)k, (ba)k, (ab)kc}. Greedy will merge c(ab)k and
(ab)kc first, and thus output a string almost twice as long as the optimal
one, c(ab)k+1c.

A popular conjecture is that Greedy achieves linear approximation.
More precisely, it is conjectured that the above type of examples is the
worst case that can happen to Greedy, i.e., Greedy achieves two times the
optimal length. No non-trivial upper bounds on Greedy or, in fact, on any
other algorithm for shortest superstring problem have been obtained until
recently. We will proceed with our discussion in more or less the historical
order. In Section 8.1, we study the related results in the 1980's. These early
results lay down the ground work for the approximation solutions to be dis-
cussed in Sections 8.2 and 8.3. In Sections 8.2 and 8.3, we present various
approximation algorithms and analysis of their performance, including a
confirmation of the conjecture that Greedy achieves linear approximation.
We prove a negative result on the approximation of shortest superstrings
in Section 8.4: we show that the superstring problem is unlikely to have
a polynomial-time approximation scheme. Then in Section 8.5, the super-
string problem is generalized to also allow the presence of negative strings.
Such more general version of the superstring problem arises naturally in
practice and studying them may help us better analyze the performance
of some approximation algorithms when there are no negative strings. We
will present several algorithms and obtain approximation bounds under
this more general setting. In Section 8.6, we study the shortest superstring
problems from a new perspective: how to learn a string efficiently from
randomly sampled substrings. The problem has immediate applications
in DNA sequencing. Section 8.7 gives an approximation algorithm and a
linear bound for the shortest superstring problem when we allow strings to
be flipped in the superstring.

Before we start, we make a few assumptions. Set S = {s1,..., sm} will
always denote our input set, over some fixed alphabet E. Without loss of
generality, we can assume that S is substring-free, i.e., no si is a substring
of sj for any j = i.

8.1 Early results: NP-hardness and some special cases

The study of shortest common superstring problem began in the early
1980's, motivated by its applications in data compression. People soon
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realized that the problem is hard, that is, NP-hard. As NP-hardness proofs
were already a popular subject of study in the early 80's, such a proof
comes naturally. Special cases were studied, and it was found that when
strings are of length at most 2, there is a polynomial time algorithm. And
when we allow strings to have length 3, we again are back to the NP-
hardness. The approximation issue was raised in the very first paper on
this topic. Although the solution has waited for 10 years to come, some
interesting approximation bounds were obtained with respect to the so-
called compression measure.

8.1.1 NP-HARDNESS

A reduction from the directed Hamiltonian path problem gives the following
theorem.

Theorem 8.1. Given S = {s1, . . . , s m } , it is NP-hard to find a shortest
superstring of S.

Since later on in Section 8.4 we will prove a stronger result: finding a
shortest superstring is MAX SNP-hard, we for the moment omit the proof
of this theorem.

The problem remains NP-hard even if

• Each string in S is of length at most 3 with unbounded S; or
• |S| = 2. But in this case, some strings in S need to have length about

8.1.2 A SPECIAL CASE: STRINGS OF LENGTH 2

When strings are allowed to have length 3, our problem is still NP-hard,
with unbounded alphabet. Thus the follow theorem is the best we can do
in polynomial time.

Theorem 8.2. Let S = {s1, . . . , sm}. If |Si| < 2 for all i, then a shortest
superstring of S can be found in polynomial time.

Proof: We can assume that |si| = 2 for all i, since any single character is
either contained in some other string or it has no overlap with any other
string. We can also assume that no string is of the form aa, a E E, since
such strings can always be inserted later either in the place of a single a or
at the end.

We now form a directed graph G — (V, E) for the rest of the strings.
V = E. For each string ab E S, we add directed edge (a, 6) to E. Finding
the shortest superstring for S is equivalent to finding a path cover of G
with a minimum number of paths. Such a minimal path cover can be
easily found by the following strategy: Start from a node with outdegree
greater than indegree, travel randomly, deleting each edge traversed, until
a node with no outgoing edge. Add this path into the cover. Repeat this

O(logEi=1|si|).
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until no node has more outdegree, equivalently, indegree equals outdegree
for all nodes. Thus we can start from any node, walk randomly, deleting
edges along the way, and we must end at the starting node, hence a cycle.
If this cycle shares a common node with any path in the cover, then we can
open this cycle at this common node, and insert the cycle into the path at
this common node properly. Otherwise, we just open the cycle at any node
and add this path into the cover. We repeat this until E becomes empty.

8.1.3 A DETOUR: COMPRESSION MEASURE

Let s be the shortest superstring of S = {si,...,sm}. Then d =
(Ei=1|si|) — |s| is the number of bits that s has saved. While it is hard
to prove that Greedy non-trivially approximates s with respect to \s\, it
turns out that it is easier to show that Greedy approximates s with respect
to d, linearly.

Consider any step of Greedy. Assume it merges two strings x and y.
Then the overlap of x and y is the maximum among the strings left. With
this merge we could have prevented the possible merges on four ends of x
and y. But each of such merge would have been shorter than that of x
and y. Thus we at least achieves 1/4 of the compression that could have
been done by the optimal compression. Thus if the optimal compression is
d bits, Greedy at least compresses d/4 bits. In fact, a factor of 2 can be
proved, as stated in the following theorem.

Theorem 8.3. Let s be the shortest superstring of S = {s1,...,sm}.
Greedy saves at least d/2 bits, where d = (Ei=1|si|) — \s\.

8.2 An O(nlogn) approximation algorithm

DNA sequencing and learning theory have added new interest to the short-
est common superstring problem. The renewed interest resulted in solu-
tions to the old open questions. The algorithm Greedy has apparently been
used by biologists for a long time. This is after all the first algorithm one
would think of. As we will discuss in Section 8.6, provably good approxima-
tions to the shortest superstrings imply efficient learning algorithms with
few samplings.

The first algorithm achieving any non-trivial approximation bound is
Group-Merge which produces a superstring of length O(nlogn). Although
linear approximation algorithms have been subsequently found, Group-
Merge is still the best approximation when we allow negative strings to be
present (to be discussed in Section 8.5). We describe the construction of
Group-Merge in this section.

Let s be an optimal superstring of S with |s| = n. We order the strings
in 5 by the left ends of their first appearances in s, reading from left to
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right. We list them according to above ordering: s1,..., sm. In the following
we identify si with its first appearance in s.

The idea behind our algorithm is to merge large groups. Each time, we
try to determine two strings such that merging them properly would make
many others become substrings of the newly merged string.

For two strings u and u', we use the word merge to mean that we put
u and u' (and nothing else) together, possibly utilizing some overlaps that
they have in common, to construct a superstring of the two. In general there
may be more than one way to merge u and u'. There may be two optimal
ways, and many other non-optimal ways. For example, if u = 010 and u' =
00200, we can merge them with u in front optimally as m1(u, u') = 0100200
or with u' in front optimally as mi(u,u'} = 0020010; We can also merge
them non-optimally as m3(u, u') = 01000200 or m4(u, u') = 00200010. For
each way of merge m, we write m(u, u') to denote the resulting superstring.
There are at most 2 min{|u|, |w'|} ways of merging u and u'. We now present
our algorithm.
Algorithm Group-Merge

1. On input S ={si,...,sm}, let T = 0.
2. Find si,sj E S such that

is minimized where

where A is the set of strings in S that are substrings of m(sj, Sj)
3. Merge si, sj to m ( s i , s j ) as defined in Step (2). Set T = TU{m(si,sj)}

4. If \S\ > 0 then go to (2).
5. Concatenate all strings in T as the final superstring.

Theorem 8.4. Given a set of strings S, if the length of shortest super-
string is n, then algorithm Group-Merge produces a superstring of length
O(nlogn).

Proof: As discussed above, we can assume that in S no string is a
substring of another and all strings are ordered by their first appearance
in the shortest superstring. Let this order be s1 ,s2 , ••• ,sm. We separate 5
into groups: The first group G1 contains s1, . ..,si,- where i, i < m, is the
largest index such that (the first appearances of) s1 and si overlap in s;
The second group contains si+1, ..., Sj where j, i+l < j < m, is the largest
index such that Sj overlaps with Sj+i in s; And so on. In general if Sk is the

and S = S - A.
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Fig. 8.1. Grouping of strings.

last element in G1, then Gl+1 contains sk+1,..., sp where p, k + I < p < m,
is the largest index such that sk+1 overlaps with sp in s. See Figure 8.1.

Assume that there are g groups: G1,...,Gg. For G, let bi and ti be
the first (bottom) and last (top) string in Gi, according to our ordering,
respectively. That is, bi and ti sandwich the rest of strings in 'Gi and for
some optimal mi, every string in Gi is a substring of mi(bj,ti).

Lemma 8.5. Ei=1|mi(bi,ti)| < 2n, where n is the length of shortest su-
perstring s for S.

Proof: This can easily be seen geometrically: put all the groups G1,...,Gg

back to their original positions in the optimal arrangement (which gives the
shortest superstring s). Then strings in Gi overlap with nothing except
strings in Gi-1 and Gi+1 (and of course in Gi itself), for i = 2, ...,g — 1.
Thus counting the optimal solution for each Gi separately at most doubles
the length of the optimal solution.

For a set of strings A, let \\A\\ = EaeA|a|. Let Gi be the set of strings
remaining in Gi before the rth iteration. Let Sr be the set of strings
cancelled at rth iteration of Group-Merge. Let br, tr be the first and last
strings in Sr, according to our ordering, respectively. And let mr be the
merge function used in the rth iteration to combine br and tr. Let there
be a total of k iterations executed by Group-Merge.

Apparently, at rth iteration, we can properly merge the first and last
string in Gj such that the result is a superstring of all strings in GJ and a
substring of m j ( b j , t j ) . Now the length Lj we used to merge strings in Gj
can be measured as follows:
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(where k' < k indicates the first step Gk+1 becomes empty)

Hence the total length we use to merge all GI, ..., Gg is, by Lemma 8.5,

where / = maxi ||G,||. But O(logn) = O(logl) since n is only polynomially
larger than the number of strings in any Gi and the length of longest string
in any Gj. Therefore the algorithm will output a superstring of length at
most O(nlogn).
Remark. Can Group-Merge do better than O(nlogn)? The answer is no.
See Exercise 3.

8.3 Linear approximation algorithms

Greedy-style algorithms have proven to perform well with respect to the
compression measure. For example, we have seen in Section 8.1 that algo-
rithm Greedy can achieve at least half of the optimal compression. Many
people suspect that greedy algorithms also work well with respect to the
length measure. In fact, it has been conjectured that superstrings pro-
duced by Greedy have length at most 2n. In this section, we first present
two new greedy algorithms Mgreedy and Tgreedy, both are simple variants
of Greedy, and show that they produce superstrings of length 4n and 3n,
respectively. Extending the analysis technique results in an upper bound
4n for Greedy, giving a partial affirmative answer to the conjecture.

8.3.1 SOME DEFINITIONS AND SIMPLE FACTS

For two strings s and t, not necessarily distinct, let v be the longest string
such that s = uv and t = vw for some non-empty strings u and w. We

(where H(m)=
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call \v\ the (amount of) overlap between s and t, and denote it as ov(s,t).
Furthermore, u is called the prefix of s with respect to t, and is denoted
p r e f ( s , t ) . Finally, we call | p r e f ( s , t ) | = |u| the distance from s to t, and
denote it as d(s,t). The string uvw = pref(s,t)t is obtained by maximally
merging s to the left of t and is called the merge of s and t. For sj, sj E S,
we will abbreviate pref(si, sj) to simply p r e f ( i , j ) . As an example of self-
overlap, we have for the string s = alfalfa an overlap of ov(s, s) = 4. Also,
pref(s, s) = alf and d(s, s) = 3.

Two strings s and t are said to be equivalent if they are cyclic shifts
of each other, i.e., if there are strings u,v such that s = uv and t = vu.
An equivalence class [s] has periodicity k (k > 0), if s is invariant under
a rotation by k characters (i.e., s = uv = vu, where |w| = k). Obviously,
[s] has periodicity \s\. A moment's reflection shows that the minimum
periodicity of [s] must equal the number of distinct rotations of s. This is
the size of the equivalence class and denoted by card([s]) It is furthermore
easily proven that if [s] has periodicities a and 6, then it has periodicity
gcd(a, b) as well. It follows that all periodicities are a multiple of the
minimum one, in particular we have that |s| is a multiple of card([s]). For
any string s, call card([s]) the period of s, denoted period(s).

Given a list of strings s i 1 , s i 2 , . . . , s i r , we define the superstring s =
(si1,...,Sir) to be the string p r e f ( i 1 , i 2 ) • • -pref(ir-i,ir)sir. That is, s is
the shortest string such that s i 1 , s j 2 , . . . , szr appear in order in that string.
For a superstring of a substring-free set, this order is well-defined, since
substrings cannot 'start' or 'end' at the same position, and if substring
Sj starts before sk, then Sj must also end before sk. Define first(s) =
5,-j and last(s) = sir. Note that, if s and t are obtained by maximally
merging strings in S, then ov(s,t) in fact equals ov(last(s},first(t)), and
as a result, the merge of s and t is ( f i r s t ( s ) , . . . , last(s), first(t),..., last(t)).
Also note that there exists a permutation n on the set {1,..., m}, such that
Sn = (Sn(1), . . . , Sn(m)) is a shortest superstring for S and every shortest
superstring for S equals Sn for some permutation n.

We will consider a traveling salesman problem (TSP) on a weighted
directed complete graph Gs derived from S and show that one can achieve
a factor of 4 approximation for TSP on that graph, yielding a factor of 4
approximation for the shortest superstring problem. Graph Gs = (V, E, d)
has m vertices V = {1,..., m}, and m2 edges E = {(i,j) '• 1 < i,j <
m}. Here we take as weight function the distance d(,): edge ( i , j ) has
weight w(i,j) = d ( s i , s j ) , to obtain the distance graph. We will call Sj the
string associated-with vertex i, and let p r e f ( i , j ) = pref(s{, Sj) be the string
associated to edge ( i , j ) . As an example, the distance graph for the set {
ate, half, lethal, alpha, alfalfa } is given in Figure 8.2. All edges not shown
have overlap 0.

For any weighted graph G, a cycle cover of G is a set of vertex-disjoint
cycles, covering all vertices of G. The cycle cover is said to be optimal if it
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Fig. 8.2. A distance graph.

has the smallest weight. Let TSP(Gs) and CYC(Gs) denote the weight
of an optimal Hamiltonian cycle and the weight of an optimal cycle cover
of GS , respectively. It is easy to see that

CYC(GS) < TSP(GS) < OPT(S)

Also observe that, although finding an optimal Hamiltonian cycle in a
weighted graph is in general a hard problem, one can use the well-known
Hungarian algorithm to find an optimal cycle cover in polynomial-time.

We now define some notation for dealing with (directed) cycles in Gs.
If c = io, • • •, ir-i, io is a cycle in GS with r vertices, we define strings(c)
to be the equivalence class [ p r e f ( i 0 , i 1 ) • • - p r e f ( i r - 1 , i o ) ] and strings(c,ik)
the rotation starting with ik, i.e., the string pref(ik, ik+1) • • ' P r e f ( i k - 1 , i k ) ,
where subscript arithmetic is modulo r. Denote the weight of a cycle c as
w(c). The following simple facts about cycles in GS are easy to prove. Let
c = i0, • • •, ir-1, io and c' be two cycles.

Claim 1. Each string sij. in c is a substring of sk for all s G strings(c)
and sufficiently large k.

Claim 2. // each of { s j 1 , . . . , Sjk} is a substring of sk for sufficiently large
k, then strings s j 1 t . . . , sjk are contained in a cycle of weight at most |s|.
Claim 3. The superstring (si0, • • •, sir-1} is a substring of strings(c, i0)si0.
Claim 4. If strings(c') = strings(c), then there exists a third cycle c with
weight w(c) containing all vertices in c and all those in c'.
Claim 5. There exists a cycle c of weight card(string's(c)) containing all
vertices in c.

8.3.2 A SIMPLE VARIANT OF GREEDY ACHIEVES 4N

We present an algorithm Mgreedy which finds a superstring of length at
most 4n. The construction proceeds in two stages. We first show that
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an algorithm that finds an optimal cycle cover on the distance graph Gs,
then opens each cycle into a single string, and finally concatenates all such
strings together has a performance at most 4n. We then show that in fact,
for distance graphs, a greedy strategy can be used to find optimal cycle
covers.

Consider the following algorithm for finding a superstring of the strings
in S.
Algorithm Concat- Cycles

1. On input S, create graph GS and find an optimal cycle cover C =
{CI,...,CP} on Gs.

2. For each cycle ci = i1, • • •, ir , i1, let si = (si1 , . . . , szr) be the string
obtained by opening ci, where i1 is arbitrarily chosen. The string s,-
has length at most w(ci) + |Si1| by Claim 3.

3. Concatenate together the strings si and produce the resulting string
s as output.

Theorem 8.6. Algorithm Concat-Cycles produces a string of length at
most 4 • OPT(S).

Before proving Theorem 8.6, we need a lemma giving an upper bound
on the overlap between strings in different cycles of C.

Lemma 8.7. Let c and c' be two cycles in C with s € c and s' E c'. Then,
ov(s, s') < w(c) + w(c').

Proof: Let x — strings(c) and x' = strings(c'). Since C is an optimal
cycle cover, we know by Claim 4 that x = x'. In addition, by Claim 5,
w(c) < card(x).

Suppose that s and s' overlap in a string u with |w| > w(c) + w(c').
Denoting the substring of u starting at the i-th symbol and ending at the
j-th as uij, we have by Claim 1, that x = [wi,w(c)] and x' = [u1,w(c')]. From
x = x1 we conclude that w(c) = w(c'); assume without loss of generality
that w(c) > w(c'). Then

This shows that u1,w(c) has periodicity w(c') < w(c) < card(x), which
contradicts the fact that card(x) is the minimum periodicity.
Proof of Theorem 8.6. Since C = {c1, . . . , cp} is an optimal cycle
cover, CYC(GS) = Ei=1w(ci) < OPT(S). A second lower bound on
OPT(S) can be determined as follows: For each cycle ci, let wi = w(ci)
and li denote the length of the longest string in ci. By Lemma 8.7, if
we consider the longest string in each cycle and merge them together op-
timally, the total amount of overlap will be at most 2Ei=1wi. So the
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resulting string will have length at least Ei=1li - 2wi. Thus OPT(S) >
max(Ei=1wi,Ei=1li-2wi).

The output string s of algorithm Concat-Cycles has length at most
E=i=1li+ w' (Claim 3). So,

We are now ready to present the algorithm Mgreedy, and show that it
in fact mimics algorithm Concat-Cycles.

Algorithm Mgreedy

1. Let S be the input set of strings and T be empty.
2. While 5 is non-empty, do the following: Choose s, t 6 S (not necessar-

ily distinct) such that ov(s,t) is maximized, breaking ties arbitrarily.
If s = t, remove s and t from S and replace them with the merged
string (s, t). If s = t, just remove s from S and add it to T.

3. When S is empty, output the concatenation of the strings in T.

We can look at Mgreedy as choosing edges in the graph GS: When
Mgreedy chooses strings s and t as having the maximum overlap (where
t may equal s), it chooses the edge (last(s), first (t)). Thus, Mgreedy con-
structs/joins paths, and closes them into cycles, to end up with a cycle
cover M. We will call M the cycle cover created by Mgreedy. Now think of
Mgreedy as taking a list of all the edges sorted by overlap (resolving ties in
some definite way), and going down the list deciding for each edge whether
to include it or not. Let us say that an edge e dominates another edge / if e
precedes / in this list and shares its head or tail with /. Mgreedy includes
an edge / if and only if it has not yet included a dominating edge. The
following lemma gives a special property of strings and shows that Mgreedy
in fact chooses the edges following a Monge sequence. (In a minimization
problem, a listing of the edges of a graph is called a Monge sequence if it
satisfies the following property: For any nodes u, v, s, t such that u = s and
v = t, if w(u,v) + w(s,t) < w(u,t) + w(s,v), then either (u, v) or (s,t)
precede (u,t) and (s,v).) In Figure 8.3, the vertical bars surround pieces
of string that match, showing a possible overlap between s and v, giving
an upper bound on d(s, v).
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Fig. 8.3. Strings and overlaps

Lemma 8.8. Let u,v,s,t be strings, not necessarily different, such that
ov(u,t) > max{ov(u, v), ov(s,t)}. Then,

Theorem 8.9. The cycle cover created by algorithm Mgreedy is optimal.

Proof: Among the optimal cycle covers, let C be one that has the maxi-
mum number of edges in common with M. We shall show that M = C.

Suppose this is not the case, and let e be the edge of maximum overlap
in the symmetric difference of M and C, with ties broken the same way
as by Mgreedy. Suppose first that this edge is in C — M. Since Mgreedy
did not include e, it must have included another edge / that dominates e.
Edge / cannot be in C, therefore / is in M — C, contradicting our choice
of the edge e. Suppose that e = (k, j) is in M — C. The two C edges
(i, j) and ( k , l ) that share head and tail with e are not in M, and thus are
dominated by e. Replacing in C these two edges with e = ( k , j ) and (i,l)
would yield a cycle cover C' that has more edges in common with M and,
by Lemma 8.8, has no more weight than C. This would contradict our
choice of C.

Since algorithm Mgreedy finds an optimal cycle cover, the string it
produces is no longer than the string produced by algorithm Concat-Cycles.
(In fact, it could be shorter since it breaks each cycle in the optimum
position.)

8.3.3 IMPROVING TO 3N

Note that in the last step of algorithm Mgreedy, we simply concatenate all
the strings in set T without any compression. Intuitively, if we instead try
to overlap the strings in T, we might be able to achieve a bound better
than 4n. Let Tgreedy denote the algorithm that operates in the same
way as Mgreedy except that in the last step, it merges the strings in T by
running Greedy on them. We can show that Tgreedy indeed achieves a
better bound: it produces a superstring of length at most 3n.

SHORTEST COMMON SUPERSTRINGS
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Theorem 8.10. Algorithm Tgreedy produces a superstring of length at
most 3n.

Proof: Let S — {s 1 , . . . , sm} be a set of strings and s be the superstring
obtained by Tgreedy on S. We show that |s| < 3n = 3OPT(S).

Let T be the set of all "self-overlapping" strings obtained by Mgreedy
on S and M be the cycle cover created by Mgreedy. For each x E T, let
cx denote the cycle in M corresponding to string x and let wx = w(cx) be
its weight. Define w = Exetwx. Note, w < n. For each x E T, let six

be an arbitrary string in cycle cx. Let S' = {six|x E T}, n' = OPT(S'),
S" = {strings(cx , ix)s i x|x E T}, and n" = OPT(S").

By Claim 3, a superstring for S" is also a superstring for T, so nT < n",
where nT = OPT(T). For any permutation n on elements of T, we have
|S"| < |S'| + Exetwx, so n" < n' + w. Observe that S' C S implies
n' < n. Summing up, we get

By Lemma 8.7, the compression achieved in a shortest superstring of
T is less than 2w, i.e., ||T|| — nT < 2w. By the results in Section 8.1, we
know that the compression achieved by Greedy on set T is at least half the
compression achieved in any superstring of T. That is,

So, |s| < nT +w. Combined with nT < n + w, this gives |s| < n + 2w < 3n.
n

8.3.4 A 4N UPPER BOUND FOR GREEDY

One would expect that an analysis similar to that of Mgreedy would also
work for the original algorithm Greedy. This turns out not to be the case.
The analysis of Greedy is severely complicated by the fact that it continues
processing the "self-overlapping" strings. Mgreedy was especially designed
to avoid these complications, by separating such strings. With a more
complicated analysis we can nevertheless show that

Theorem 8.11. Greedy produces a superstring of length at most 4n.

Proof: Here we only sketch the basic idea behind the proof. If we want
to relate the merges done by Greedy to an optimal cycle cover, we have to
keep track of what happens when Greedy violates the maximum overlap
principle, i.e., when some self-overlap is better than the overlap in Greedy's
merge. One thing to try is to charge Greedy some extra cost that reflects
that an optimal cycle cover on the new set of strings (with Greedy's merge)
may be somewhat longer than the optimal cycle cover on the former set
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(in which the self-overlapping string would form a cycle). If we could just
bound these extra costs then we would have a bound for Greedy. Un-
fortunately, this approach fails because the self-overlapping string may be
merged by Greedy into a larger string which itself becomes self-overlapping,
and this nesting could go arbitrarily deep. Our proof concentrates on the
inner-most self-overlapping strings only. These so called culprits form a
linear order in the final superstring. We avoid the complications of higher
level self-overlaps by splitting the analysis in two parts. In one part, we
ignore all the original substrings that connect first to the right of a culprit.
In the other part, we ignore all the original substrings that connect first to
the left of a culprit. In each case, it becomes possible to bound the extra
cost. This method yields a bound of 7n. By combining the two analyses in
a clever way, we can even eliminate the effect of the extra costs and obtain
the same 4n bound that we found for Mgreedy.

8.4 A polynomial-time approximation scheme is unlikely

In this section, we prove a negative result on the approximation of shortest
superstrings; We show that the superstring problem is MAX SNP-hard,
where MAX SNP is a class of optimization problems recently introduced
by Papadimitriou and Yannakakis, including several variants of maximum
satisfiability, the node cover and independent set problem in bounded-
degree graphs, max cut, etc. This implies that if there is a polynomial-time
approximation scheme for the superstring problem, then there is one also
for every member of MAX SNP, which is considered rather unlikely. Note,
it is known that every problem in MAX SNP can be approximated within
some constant factor.

Let A, B be two optimization (maximization or minimization) prob-
lems. We say that A L-reduces (for linearly reduces) to B if there are two
polynomial time algorithms / and g and constants a and B > 0 such that:

1. Given an instance a of A, algorithm / produces an instance 6 of B
such that the cost of the optimum solution of 6, opt(b), is at most
a • opt(a), and

2. Given any solution y of 6, algorithm g produces in polynomial time
a solution a; of a such that \cost(x) — opt(a)| < 0|cost(y) — opt(b)\.

Here are some basic facts about L-reductions. First, the composition of
two L-reductions is also an L-reduction. Second, if problem A L-reduces to
problem B and B can be approximated in polynomial time with relative
error e (i.e., within a factor of 1 + e or 1 — e depending on whether B is a
minimization or maximization problem) then A can be approximated with
relative error aBe. In particular, if B has a polynomial-time approximation
scheme, then so does A. A problem is MAX SNP-hard if every problem in
MAX SNP can be L-reduced to it.
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Theorem 8.12. Finding a shortest superstring is MAX SNP-hard.

Proof: The reduction is from a special case of the TSP on directed graphs.
Let TSP(1,2) be the TSP restricted to instances where all the distances
are either 1 or 2. We can consider an instance of this problem as being
specified by a graph H; the edges of H are precisely those that have length
1 while the edges that are not in H have length 2. We need here the version
of the TSP where we seek the shortest Hamiltonian path (instead of cycle),
and, more importantly, we need the additional restriction that the graph
H be of bounded degree (the precise bound is not important). It has been
shown that this restricted version of TSP(1,2) is MAX SNP-hard.

Let H be a graph of bounded degree D specifying an instance of
TSP(1,2). Our reduction is similar to the one used by Gallant, Maier,
and Storer to show the NP-completeness of the superstring decision prob-
lem. We have to prove here that it is an L-reduction. For every vertex v of
H we have two letters v and v'. In addition there is one more letter #. Cor-
responding to each vertex v we have a string v#v', called the connector for
v. For each vertex u, enumerate the outgoing edges in an arbitrary cyclic
order as (u, W0), ... ,(v, wd-1) (*)• Corresponding to the i-th outgoing edge
( v , w i ) we have a string Pi(v) = v'wi-1v'wi, where subscript arithmetic is
modulo d. We will say that these strings are associated with v.

Let n be the number of vertices and m the number of edges of H. If
all vertices have degree at most D then m < Dn. Let k be the minimum
number of edges whose addition to H suffices to form a Hamiltonian path.
Thus, the optimal cost of the TSP instance is n — 1 + k. We shall argue
that the length of the shortest common superstring is 2m + 3n + k. It will
follow then that the reduction is linear since m is linear in n.

Let S denote the set of all the strings obtained above. We first discuss
how to map a superstring for S to a an ordering of the vertices of H and vice
versa. Consider the distance graph GS for S, and let G2 be its subgraph
with only edges of minimal weight (i.e., 2). Clearly, GI has exactly one
component for each vertex of H, which consists of a cycle of the associated
p strings, and a connector that has an edge to each of these p strings. We
need only consider 'standard' superstrings in which all strings associated
with some vertex form a subgraph of G2, so that only the last p string
has an outgoing edge of weight more than 2 (i.e., 3 or 4). Namely, if some
vertex fails this requirement, then at least two of its associated strings have
outgoing edges of weight more than 2, thus we do not increase the length
by putting all its p strings directly after its connector in a standard way.
A standard superstring naturally corresponds to an ordering of vertices
v l , v 2 , . . . , v n .

For the converse there remains a choice of which string q succeeds a
connector vi#vi. If H has an edge from vi to vi+1 and the 'next' edge out
of vi (in (*)) goes to, say vj, then choosing q = vivi+1vivj results in a weight
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of 3 on the edge from the last p string to the next connector vi+1#vi+1,
whereas this weight would otherwise be 4. If H doesn't have this edge,
then the choice of q doesn't matter. Let us call a superstring 'Standard'
if in addition to being standard, it also satisfies this latter requirement for
all vertices.

Now suppose that the addition of k edges to H gives a Hamilto-
nian path v1, v 2 , . . . , vn. Then we can construct a corresponding Stan-
dard superstring. If the out-degree of vi is di, then its length will be
Ei=i(2 + 2d< + 1) + k + 3 = 3n + 2m + k.

Conversely, suppose we are given a common superstring of length 3n +
2m + k. This can then be turned into a Standard superstring of the same
length. If v1, v2,..., vn is the corresponding order of vertices, it follows that
H cannot be missing more than k of the edges ( v i , vi+1).

8.5 Dealing with negative strings

Let us consider a more general version of the superstring problem: Given
a set of positive strings P and a set of negative strings N, find a shortest
string s such that s contains all strings in P and s does not contain any
string in N. The string s is called a shortest consistent superstring for
(P,N). For simplicity, here we allow a consistent superstring to contain
delimiters #, which can be used to prevent a negative string when plain
concatenation does not. We still use n = OPT(P, N) to denote the length
of shortest consistent superstring for (P, N).

This generalized superstring problem has applications in areas such as
string learning and DNA sequencing, as will be discussed in the next sec-
tion. It turns out that negative strings are very hard to deal with. Although
the algorithm Group-Merge described in Section 8.2 can be easily adapted
to produce a consistent superstring of length O(nlogn), no linear approx-
imation algorithm is known. It is not hard to show that the algorithm
Greedy and its variants do not achieve linear approximation any more.

Theorem 8.13. For some P and N, Greedy outputs a superstring of
length O(n1.5).

Thus, in the following we will consider a special case: we assume that
the negative strings do not contain positive strings as substrings. The case
is interesting since it corresponds to the situation when restrictions are
imposed on the merging of a pair of given strings. In practice, we may
want to forbid some 'bad merges' to happen.

8.5.1 A LINEAR APPROXIMATION ALGORITHM

In this special case, there is a polynomial-time algorithm which produces
a consistent superstring of length O(n). The algorithm works in a way
similar to the algorithm Concat-Cycles described in the previous section
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and also employs the Hungarian algorithm to find an optimal cycle cover
on the distance graph derived from the input strings. A difficulty here
is that Lemma 8.7 is no longer valid because of the presence of negative
strings. This is resolved by separately processing the periodic strings and
non-periodic strings, which are defined below.

A string s is said to be i-periodic if i < period(s) < i + 1. A string is
fully periodic if it is at least 4-periodic. A string s is prefix-periodic (or
suffix-periodic) if s has a fully periodic prefix (or suffix, respectively) of
length at least 3|s|/4. Call a string periodic if it is either prefix-periodic or
suffix-periodic. Suppose s is a prefix-periodic string and s = uv, where u
is the longest fully periodic prefix of s. Then u is called the periodic prefix
of s and v is the non-periodic suffix of s. Similarly, if s is a suffix-periodic
string and s = uv, where v is the longest periodic suffix of s, then v is called
the periodic suffix of s and u is the non-periodic prefix of s. The factor of a
string s, denoted factor(s), is the prefix of length period(s). Two prefix (or
suffix) periodic strings s and t are compatible if (i) s or t are fully periodic
and their periodic prefixes (suffixes, resp.) have equivalent factors; or (ii)
none of s and t are fully periodic, one of their periodic prefixes (suffixes,
resp.) is a suffix (prefix, resp.) of the other, and one of their non-periodic
suffixes (prefixes, resp.) is a prefix (suffix, resp.) of the other. Informally
speaking, two prefix/suffix periodic strings have a "large" overlap if and
only if they are compatible.

For example, among the four prefix-periodic strings s1 =
ababababcd,s2 = ababababa, s3 = bababababc, and s4 = babababacd,
s1 is compatible with s2,s3 but not with s4, and s2 is compatible with all
s1, s3,s4.

Let P = { s 1 , . . . , sm} and N = { t 1 , . . . , tk}- We modify the definition of
m ( s i , S j ) , o v ( s i , S j ) , p r e f ( s i , S j ) , and d(s,-,Sj), taking the negative strings
into consideration. For example, now TO(Si,SJ) is the shortest superstring
of Si and Sj (with si being in front) that does not contain any string in N
and o v ( s i , s j ) represents the maximum overlap between Sj and Sj that is
consistent with N. Note that we may need to insert a # between s, and sj
in m ( s i , s j ) , if all "true" merges of si and sj contain some negative string. A
distance graph on strings s 1 , . . . , sm can be defined as in Section 8.3.1, but
using the new distance function. We denote this graph as GP,N. Observe
that

Before we formally present our algorithm, we need to describe a simple
greedy algorithm Greedy 1, which is a straightforward extension of the
algorithm Greedy.

Algorithm Greedy 1
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1. Choose two (different) strings s and t from P such that m ( s , t ) does
not contain any string in N and ov(s,t) is maximized. Remove s and
t from P and replace them with the merged string m(s,t,}. Repeat
step 1. If such s and t cannot be found, goto step 2.

2. Concatenate the strings in P, inserting delimiters # if necessary.

Our approximation algorithm combines Greedy 1 and the Hungarian
algorithm:

1. Put the prefix-periodic strings in P into set X1, the suffix-periodic
strings into set X2, and other strings into set Y.

2. Divide X1 and X2 further into groups of compatible strings. Run
Greedy 1 on each group separately.

3. Construct the graph GY,N as described above. Find an optimal cycle
cover of GY,N- Open each cycle into a path and thus a string.

4. Concatenate the strings obtained in steps 2 and 3, inserting #'s if
necessary.

Theorem 8.14. Given (P, N), where no string in N contains a string
in P, the above algorithm produces a consistent superstring for (P, N) of
length O(n).

Proof: (Sketch) We know from the above discussion that the optimal
cycle cover found in step 3 has weight CYC(GY,N) < OPT(Y,N) <
OPT(P, N) = n. Since the strings in Y are non-periodic, it is easy to show
that their merges are at most 5-periodic. The strings that are at most
5-periodic do not have large self-overlap. More precisely, ov(s, s) < 5|s|/6
for any s that is at most 5-periodic. Thus opening a cycle into a path can
at most increase its length by a factor of 6. This shows the strings obtained
in step 3 have a total length at most 6 • CYC(Gy#) = O(n).

Now we consider the strings produced in step 2. Let U 1 , . . .,Ur be the
compatible groups for X1. (The proof for X2 is the same.) It follows from
the proof of Lemma 8.7 that for any two fully periodic strings x and y,
if x and y are incompatible, then ov(x,y) < period(x) + period(y). By
our definition of periodicity, for any ui E U i ,u j E Uj,i = j, o v ( u i , u j ) <
( |u i \ + |uj|)/4 + max{|ui|, |uj|}/4 < 3max{|w,|, |uj|})/4. Thus, informally
speaking, strings belonging to different groups do not have much overlap
with each other. It can be shown by a simple calculation that we can
afford losing such "smalloverlaps" in constructing an O(OPT(X 1 , N)) long
consistent superstring for ( X 1 , N), since replacing each such overlap with a
plain concatenation in a shortest consistent superstring for (.X1, N) will at
most increase its length by a constant factor. Hence we have the following
lemma:

Lemma 8.15. Ei=1 OPT(U1,N) = O ( O P T ( X 1 , N ) ) = O(n).
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To complete the proof, it suffices to prove that Greedy 1 produces a
consistent superstring of length O(OPT(Ui,N)) for each group Ui. A key
observation in this proof is that because the strings in Ui are compatible,
Greedy 1 performs all merges with large overlaps correctly. (We say a merge
is correct if it actually occurs in the construction of a shortest consistent
superstring). Greedy 1 ignores all small overlaps (including the correct
ones) and replaces them with concatenation. But this is fine as observed
before. .
Remark. Since the Hungarian algorithm runs in 0(m3) time on a graph
of m nodes, our algorithm can be made to run in O(m3lmax) time, where

is the maximum length of the input strings.

8.5.2 A NON-TRIVIAL BOUND FOR A GREEDY SOLUTION

The above algorithm is far more complicated and probably even impractical
compared to the greedy algorithms. Thus it would still be interesting to
study the performance of greedy algorithms. Although we know that greedy
algorithms do not perform well in general, we suspect that they can achieve
linear approximation when no negative strings contain positive strings.

In this subsection we show a greedy algorithm which produces a con-
sistent superstring of length O(n4/3) in this special case. The algorithm
combines Greedy 1 with another algorithm Mgreedy 1, which is a straight-
forward extension of the algorithm Mgreedy.

Algorithm Mgreedy 1
1. Let (P, N) be the input and T empty.
2. While P is non-empty, do the following: Choose s,t € P (not nec-

essarily distinct) such that m(s,t) does not contain any string in N
and ov(s, t) is maximized. If s = t, then remove s and t from P and
replace them with the merged string m(s, t). If s = t, then just move
s from P to T. If such s and t cannot be found, move all strings in
P to T.

3. Concatenate the strings in T, inserting delimiters # if necessary.
It is not easy to prove a non-trivial upper bound on the performance

of Greedy 1, nor is it easy for Mgreedy 1. The trouble maker again is
the periodic strings. So we will consider an algorithm which processes the
periodic and non-periodic strings separately:

1. Put the prefix-periodic strings in P into set X1, the suffix-periodic
strings into set X2, and other strings into set Y.

2. Divide X1 and X2 further into groups of compatible strings. Run
Greedy 1 on each group separately.

3. Run Mgreedy 1 on set Y.
4. Concatenate the strings obtained in steps 2 and 3, inserting #'s if

necessary.

lMax
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Theorem 8.16. Given (P, N), where no string in P is a substring of a
string in N, the above algorithm returns a consistent superstring of length
0(n4/3).

Proof: (Sketch) By the proof of Theorem 8.14, the strings produced in
step 2 have total length O(n). So it remains to analyze step 3.

The proof of the O(n) bound for Mgreedy essentially uses the fact that
Mgreedy actually selects the edges (representing merges) following a Monge
sequence on the distance graph derived from the given strings and finds an
optimal cycle cover. However, with the presence of negative strings, a
distance graph may or may not have a Monge sequence. (The negative
strings lengthen some edges.) Thus we have to use a different strategy.

Our analysis can be roughly stated as follows. Consider the dis-
tance graph GY,N and view Mgreedy 1 as choosing edges in the graph
GY,N- When Mgreedy 1 merges strings s and t, it chooses the edge
(last(s),first(t)). Initially, we fix a path cover C on GY,N such that the
total length of the paths in C is O(n). We analyze Mgreedy 1 on Y with
respect to the initial cover C. As Mgreedy 1 merges strings, we update
the cover by possibly breaking a path into two or joining two paths into
one or turning a path into a cycle. The merges performed by Mgreedy 1
are divided into several classes. A merge is correct if it chooses an edge in
some current path or cycle. Otherwise the merge is incorrect. An incorrect
merge is a jump merge if it breaks two potential correct merges simultane-
ously. Suppose in a jump merge Mgreedy 1 chooses an edge ( x , y ) . Let x'
be the current successor of x and y' the current predecessor of y, in their
respective paths/cycles. That is, the choice of edge ( x , y ) prevents us from
choosing the edges (x, x') and (y', y) in the future. Then the merge is good
if m(y',x') does not contain any negative string. Otherwise the merge is
bad. Clearly the type of a merge performed by Mgreedy 1 depends the
initial cover C and how we update paths and cycles.

We choose the initial cover C and the updating rule such that (i) Strings
in each initial path overlap "a lot"; (ii) Only bad jump merges will increase
the total length of the current paths and cycles. Then we can prove an
upper bound O(|C|3/2) on the total number of bad jump merges, implying
an upper bound O(n4/3) on the length of the superstring produced by
Mgreedy 1. A key fact used in this proof is that the strings in Y do not
have a long periodic prefix or suffix and thus, for any two strings there is a
unique way of overlapping them to achieve a large amount of overlap.

8.6 DNA Sequencing and learning of strings

Suppose that we are given a set of strings which are randomly sampled
substrings of some unknown string. We would like to infer the unknown
string. This is a frequently encountered problem in DNA sequencing. We
will formulate this problem in a proper mathematical framework and pro-
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vide solutions.

8.6.1 MODELLING DNA SEQUENCING VIA LEARNING

We make a few assumptions about DNA sequencing:

• Samples are drawn randomly;
• Each sample is approximately a few hundred base pairs long;
• We are only interested in predicting short fragments of a few hundred

base pairs of a DNA sequence, with high probability. It is not our
intention to construct the whole molecule precisely.

These assumptions are quite strong. But still the model may find some
applications. For example, in practices such as DNA finger printing, we
may want to know if some sequence of a few hundred base pairs is present
in a patient's (or criminal's) gene.

We have compromised the power of our potential theory. But we can
now appeal to Valiant learning model, which is a major learning model in
computational learning theory. Our learned DNA sequence will only be
good with high probability for short queries about several hundred char-
acters long. Although this only partially captures reality, we are able to
fully characterize the world we have captured. This is still meaningful since
certain biological functions are encoded by just a few hundred base pairs.
One purpose of DNA sequencing is to find the functionality of the genes,
there is really no need to insist on recovering the original sequence precisely,
especially when this is impossible.

We first describe the so-called probably approximately correct (pac)
learning model, introduced by L.G. Valiant. We assume that a learning
algorithm A has available a black box called EXAMPLES, with two but-
tons labeled POS and NEG. If POS (NEG) is pushed, a positive (negative)
example is generated according to some fixed but unknown probability
distribution D+ (D~). We assume nothing about the distributions D+

and D-, except that EseposD+(s) = 1 and Eseneg D - (s ) = 1 (i.e.,
EseposD-(s) = 0 and EsenegD+(s) = 0)- For discrete domains, the
pac learnability can be defined as follows.

Definition 8.17. Let C and C' be concept classes. C is polynomially learn-
able from examples by C' if there is a (randomized) algorithm A with access
to POS and NEG which, taking inputs 0 < e, 6 < 1, for any c E C and
D+ , D - , halts in polynomial(size(c), j, j) time and outputs a hypothesis
c' E C' that with probability greater than 1 — 6 satisfies

and
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where c'(s) = 1 iff s is a positive example of concept c' . We say that A is
a learning algorithm of C.

We can now model (a subset of) the DNA sequencing problem as the
string learning problem under pac learning. Notice that the pac model
allows sampling under arbitrary distribution, whereas in our case uniform
sampling is sufficient.

Definition 8.18. String Learning Problem. The concept class C is the
set of strings (DNA-molecules to be sequenced) over the 4 letter alphabet
{A, C, G, T}. The positive examples for each concept (i.e. string) c are its
substrings; The negative examples are strings that are not substrings of c.
Sampling is done at random according to some unknown distributions for
positive and negative examples, respectively.

In DNA sequencing practice, there do appear to be negative examples,
due to biological restrictions on what can be combined. We strengthen a
useful Occam's Razor theorem by replacing the previous requirement that
size(c') < namB by that of K(c'\c) < nawB . We omit the proof.

Theorem 8.19. [Occam's Razor Theorem] Let C and C' be concept classes.
Let c E C with size(c) = n. For a > I and 0 < B < 1, let A be an
algorithm that on input of m/2 positive examples of c drawn from D+ and
m/2 negative examples of c drawn from D-, outputs a hypothesis c' E C'
that is consistent with the examples and satisfies K(c'\c) < namB, where
K(c'\c) is the Kolmogorov complexity of c' conditional to c. Then A is a
learning algorithm for C by C' for

When B = 0, and n > log 1, we will use m = O ( E ) .

By the above theorem, we certainly can trivially learn, with error prob-
ability 1/n, a string of length n by sampling m = n3 examples: the output
will be a set of substrings of total length at most n2 since there are only
n2 substrings and we can merge them into only n substrings. Needless to
say, sampling 50003 fragments to sequence a DNA-molecule is simply not
acceptable. A more careful analysis can bring this down to O(nlogn/e)
by keeping all the strings as the concepts, except merging two strings if
one is a substring of another. Since there are at most nn such concepts
(although the total length may be n2), we need only O(nlogn/e) exam-
ples to learn with error probability e by Theorem 8.19. However, this is
still not good enough. For example, we still do not want to sample, say,



DNA SEQUENCING AND LEARNING OF STRINGS 259

5000 log 5000, substrings to identify a virus DNA molecule of 5000 base
pairs. A theory must agree with practice. We will show that we need only

fragments, where D+ is the Unexpected sample length.
This is much closer to the laboratory practice. Notice that the divisor /
is around 500 and hence is much more significant than a logn term for
n < 3 x 109. We conjecture that this can be improved to

Our algorithm will depend on a provably good approximation algorithm
for shortest superstrings.

8.6.2 LEARNING A STRING EFFICIENTLY

Our concept class C is the set of strings over {A, C, G, T}. For each target
concept (i.e., string) c, the positive examples are substrings of c distributed
according to D+, which may be uniform in the DNA applications. Negative
examples are strings that are not substrings of c, distributed according to
D-. Denote the D+-expected sample length by /. In the following, we
assume that the positive samples have a small deviation (i.e., < l in
length. This is consistent with real DNA sequencing practice. Let 2C be
the class containing all finite sets of strings over {A, C, G,T}. For any
concept c' E 2C, a positive example of c' is a string that is a substring of
some string in c' and a negative example is a string that is not a substring
of any string in c'.

Theorem 8.20. C is learnable by 2C, with error probability e, using only
samples.

Proof: Given positive and negative examples, if we output a

concept c' such that K(c ' \c) = , then by Theorem 8.19, we have
a learning algorithm.

We first change algorithm Group-Merge to also deal with negative ex-
amples: At step (2), we now look for a pair of s, s' such that cost(s, s') is
minimized under the condition that m(s, s') must not contain a negative
example as a substring. The learned concept is

c' = {m(s, s')|m(s, s') chosen in step (2) of Group-Merge}

So c' may contain more than one string.
In order to show that the old analysis is still good, we only need to

observe one fact: there is always a way to properly combine the first and
last strings in each group Gi at the rth step such that they contain all
strings in Gr

t as substrings and no negative examples as substrings. Hence
the analysis of Theorem 8.4 still carries through.

Now we count how many c' are possible outputs of Group-Merge, given
the fact that we draw examples using c. c' is constructed by less than

iterations since the total length of c' is n log n and each positive

about 
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example is roughly / long. Each step, two possible substrings of c are
combined in some way, and this has at most no(1) choices. So altogether
we have potential c'. Therefore

Given a new string, we can decide whether it is a positive or negative
example by testing whether it is a substring of some string in c'. By
Theorem 8.19, our error probability is at most e. D
The learning algorithm outputs a hypothesis that is in concept class 2C

(instead of C). This is necessary since it has been shown that C is not
learnable by C.

In the real life situation of DNA sequencing, there are many restrictions
on what can be combined. These conditions may be regarded as negative
examples. However, if one prefers to think that no negative examples are
given, we can still reasonably assume that negative instances are more or
less uniformly distributed. And then, we can use the linear approximation
in Section 8.3 to obtain the following.

Corollary 1. Assume a uniform distribution over the negative examples.
C is learnable by 2C, with error probability e, using only positive
samples.

Proof: By modifying the arguments of Theorem 8.19 (proof omitted) it
is easily seen that our algorithm will still guarantee

On the negative side, because the output length is at most O(nlogn), this
will make at most O((nlogn)2) negative examples positive. Since we have
assumed the uniform distribution, the error probability on the negative
side is only, for not too small e,

8.7 Superstrings with flipping

An interesting variation of the shortest common superstring problem is
to allow the strings to be flipped, that is, we want to look for a shortest
superstring s such that for every given string t, either t or the reverse of t
is a substring of s. The problem may have applications in DNA sequencing
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practice since in some cases the orientation of a fragment in the target DNA
molecule is unknown. It may also be useful in data compression since we
may intentionally allow strings to be flipped to achieve better compression.
Clearly the problem is still NP-hard. Following the ideas in section 8.3, we
can give a simple greedy algorithm achieving 4n approximation.

Denote the reverse of a string s as SR. For convenience, let SR be null
if s is a palindrome. Also define OV(S,SR) = 0 and d(s,sR) = \s\ for any
string s. Let S = {si,...,sm} and SR = {sR,..., sm}. Now a superstring
of 5 is a string s such that for each i, either sR or sR (maybe both) are
contained in s. Again denote the length of a shortest superstring of 5 as
OPT(S). We assume that SUSR is substring free. Observe now a shortest
superstring of S must be ( s i , . . . , s ' i m } for some permutation ( i 1 , . . . , im),
where sij = sij or sR . We will consider the distance digraph derived from
SUSR, still denoted Gs- Now a cycle cover of Gs is a set of vertex-disjoint
cycles such that for each 1 < i < m, exactly one of Si and SR is contained
in some cycle. Clearly the weight of an optimal cycle of GS is at most
OPT(S).

Our algorithm is actually a simple extension of Mgreedy and will be
called Mgreedy 2.

Algorithm Mgreedy 2

1. Let S be the input set of strings and T be empty.
2. While 5 is non-empty, do the following: Choose s,t 6 S (not neces-

sarily distinct) such that ov(s',t') is maximized, breaking ties arbi-
trarily, where s' — s or SR and t' = i or tR. If s — t, move s from S
to T. If ov(s',t') = 0, move all the strings in S to T. If s = t, remove
s,t from S and replace them with the merged string m(s',t').

3. Output the concatenation of the strings in T.

Again we can view Mgreedy 2 as choosing edges in graph GS •

Lemma 8.21. Mgreedy 2 creates an optimal cycle cover of GS-

Proof: We begin the analysis with an optimal cycle cover of GS- Gen-
erally, when Mgreedy 2 chooses an edge (x,y), we update the cycles to
obtain a new cycle cover without increasing the total weight. We need
only consider four cases: 1. The current cycles contain a; and y; 2. The
current cycles contain x and yR; 3. The current cycles contain XR and y;
and 4. The current cycles contain XR and yR.

Since the cases 3 and 4 are really symmetric to cases 2 and 1, respec-
tively, it suffices to consider cases 1 and 2 and show how to update the
cycles in each case. Here we discuss Case 2 and leave Case 1 as an exercise.
There are two subcases:

Subcase 2.1: x
and yR are from a same cycle a , . . . , b , x, c,..., d, yR, e,..., a. Simply
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reverse the path c,..., d, yR in the cycle. This results in a new cycle:
a,...,b,x,y,dR,...,cR,e,...,a.

Subcase 2.2: x and yR are from two cycles: a, . . . ,b ,x,a and
c, . . . , d, yR,c. Merge the two cycles into one: a , . . . , b,
x,y,dR,...,cR, a.

The total weight of the cycle cover is not increased during the above
rearrangement by Lemma 8.8. So Mgreedy 2 obtains an optimal cycle cover
at the end. D

The following is a straightforward extension of Lemma 8.7.

Lemma 8.22. Let c and d be two cycles in an optimal weight cycle cover
and s and t two strings in c and d, respectively. Then ov(s,t), ov(sR,t),
ov(s,tR), and ov(sR,tR) are less than w(c) + w(d).

Hence, by the proof of Theorem 8.6, Mgreedy 2 achieves 4 • OPT(S).

Theorem 8.23. Mgreedy 2 produces a superstring of length at most 4 •
OPT(S).

8.8 Exercises

1. Show that a linear approximation with compression factor d by
Greedy does not necessarily imply any subquadratic approximation
with respect to the length of shortest superstring.

2. Prove Theorem 8.3.
3. Show that Group-Merge produces a superstring of length O(nlogn)

for some input, where n is the length of shortest superstring.
4. (Theorem 8.13) Give a set of positive and negative strings such that

Greedy would return a consistent superstring of length O(n1.5). Do
the negative strings contain postive strings?

5. Prove that the following problem is NP-complete: Given sets P and
N of positive and negative strings over some finite alphabet S, find
a consistent superstring for (P, N) over over same alphabet S.

6. [Shortest common supersequence prolem] If we do not require a string
to appear in a superstring consecutively then we have at hand the
shortest common supersequence problem. Show the following:
(a) The shortest common supersequence problem is NP-complete.
(b) ** [Open] Can we find a polynomial time approximation algo-
rithm for the shortest common supersequence problem (independent
of alphabet size)?
(c) Given a set of positive sequences and a set of negative sequences,
show that it is NP-hard to find a consistent supersequence s such
that s is a supersequence of all positive sequences but of no negative
sequences.
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7. ** (Open) Prove or disprove that Greedy achieves 2n approximation.
8. Obtain an algorithm which can achieve better than 3n approximation.
9. ** (Open) If no positive string is a substring of any negative string,

can some greedy-style algorithm achieve linear approximation for the
shortest consistent superstring problem?

10. ** (Open) Is there a polynomial-time linear approximation algorithm
for the general shortest consistent superstring problem? Remark:
When the number of negative strings is a constant, a polynomial-
time linear approximation algorithm exists.

8.9 Bibliographic notes

The earliest comprehensive study on the superstring problem was by Gal-
lant, Maier, and Storer [1980] who also obtained the results in Sections 8.1.1
and 8.1.2 and first raised the question of approximating shortest super-
strings. See also Garey and Johnson [1979] for the NP-completeness result
and Storer [1988] and next chapter of this book for related data compres-
sion issues. Theorem 8.3 is due to Turner [1989] , and Tarhio and Ukkonen
[1988]. The question of finding good approximation algorithms for super-
string problem was raised in Gallant et al. [1980], Tarhio and Ukkonen
[1988], Timkovsky [1989], Turner [1989]. Discussion on algorithm Group-
Merge can be found in Jiang and Li [1993], Li [1990]. Proofs of O(n)
upper bounds for algorithms Mgreedy, Tgreedy, and Greedy and the MAX
SNP-completeness of the superstring problem in Section 8.3 are taken from
Blum, Jiang, Li, Tromp, and Yannakakis [1994]. We thank A. Blum, J.
Tromp, and M. Yannakakis for allowing us to include our joint work here.
Related material on approximation algorithms and the Hungarian algo-
rithm can be found in Papadimitriou and Steiglitz [1982]. Monge sequences
were first studied by Hoffman [1963] . More results on the class MAX SNP
and problem TSP(1,2) are given in Papadimitriou and Yannakakis [1988,
1993]. Approximation algorithms allowing negative strings in Section 8.5
are due to Jiang and Li [1994]. Section 8.6 is extracted from Jiang and
Li [1993], and Li [1990]. For a survey on the theory and applications of
Kolmogorov complexity, see Li and Vitanyi [1993]. Valiant's pac learning
theory was proposed in Valiant [1984]. The Occam's Razor theorem is due
to Blumer, Ehrenfeucht, Haussler, and Warmuth [1989]. More information
relating DNA sequencing and the shortest common superstring problem
can be found in Lesk [1988], peltola et al. [1983]. Section 8.7 is from Jiang
et al. [1992]. Solutions to Exercises 3 and 4 can be found in Jiang and
Li [1993, 1994]. The solution to Exercises 5 and 6(c) are in Jiang anf Li
[1993]. Solution to Exercise 6(a) is due to Maier [1978] . Solutions to Ex-
ercise 8 are given in Armen et al. [1994], Cszumaj et al. [1994], Jiang and
Jiang [1995], Kosaraju et al. [1994], Sweedyk [1995], Teng and Yao [1993]:
Teng and Yao [1993] improved the 3n bound to 2.89n; Czumaj, Gasieniec,
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Piotrow, and Rytter [1994] to 2.83n; Kosaraju, Park, and Stein [1994] to
2.79n; Armen and Stein [1994] to 2.75n; Jiang and Jiang [1995] to 2.67n;
Sweedyk [1995] to 2.5n.
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9
Two Dimensional Matching

String matching is a basic theoretical problem in computer science, but has
been useful in implementating various text editing tasks. The explosion
of multimedia requires an appropriate generalization of string matching
to higher dimensions. The first natural generalization is that of seeking
the occurrences of a pattern in a text where both pattern arid text are
rectangles.

The last few years saw a tremendous activity in two dimensional pattern
matching algorithms. We naturally had to limit the amount of information
that entered this chapter. We chose to concentrate on serial deterministic
algorithms for some of the basic issues of two dimensional matching.

Throughout this chapter we define our problems in terms of squares
rather than rectangles, however, all results presented easily generalize to
rectangles.

9.1 Exact Matching

The Exact Two Dimensional Matching Problem is defined as follows:

INPUT: Text array T[n x n] and pattern array P[m x m].
OUTPUT: All locations [i,j] in T where there is an occurrence of P, i.e.

9.1.1 LINEAR REDUCTIONS

A natural way of solving any generalized problem is by reducing it to a
special case whose solution is known. It is therefore not surprising that
most solutions to the two dimensional exact matching problem use exact
string matching algorithms in one way or another. In this section, we
present an algorithm for two dimensional matching which relies on reducing
a matrix of characters into a one dimensional array.

Let P'[1 . . .m] be a pattern which is derived from P by setting P'[i] =
P[i,l]P[i,2]---P[i,m], that is, the ith character of P' is the Ith row of
P. Let Ti[l . . .n — m + 1], for 1 < i < n, be a set of arrays such that
Ti\j\ = T[i, j ] T [ i , j + 1 ] • • • T[i, j + m-1]. Clearly, P occurs at T[i, j] iff P'
occurs at Ti[j].

T[i+k+,j+l] = P[k+1,l+1] 0 < k, l < n-1.
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We can now use any linear time string matching algorithm to find, for
each i, the occurrences of P' in Ti. We have, in fact, linearized the matrix,
that is, we have taken an inherently two dimensional problem and made it
into a set of one dimensional problems.

However, string matching algorithms assume that characters can be
compared in constant time. A straightforward implementation of the al-
gorithm suggested above would require O(m) to compare two "characters"
since the characters of P' and the Ti's are really sequences of m characters
from the input alphabet S. Thus for each i, it takes O(nm) to find oc-
currences of P' in Ti, making the total time for two dimensional matching
0(n2m). This is clearly an improvement over the naive O(n2m2) algo-
rithm, but not good enough. The obvious bottleneck involves comparing
pattern rows with length m text subrows. Below is a solution.

An Automaton Based Method Suppose that we take each pattern row
and find all its occurrences in the text rows. We now set T{[j] = k if k is the
smallest number such that the k row of P matches the subrow starting
at T[i, j]. Similarly, we set P'[i] = k if k is the smallest number such that
the ith row of P equals the kth row of P. After such a preprocessing,
we can then make constant time "comparisons" between characters of P'
and Ti. This second phase takes linear time. It takes 0(n2) time to find
occurrences of pattern rows in the text during the preprocessing. There
are m such rows, so the complexity is once again O(n2m).

Note however, that we can treat the pattern rows as a set of pattern
strings. Such a set of pattern strings is called a dictionary.

The Dictionary Matching Problem is the following:

Preprocess: D = {Pt| 1 < i < k,Pi - PM •••Pi,mi}

Input: Text T[i,...,n].

Output: For each text location i, all j E {1,...,k} such that Pj occurs at
Ti.

Let a be the number of distinct characters that occur in D, and let
d = Ei=1 |Pi|. The classical solution, which is a generalization of the
Knuth-Morris-Pratt (henceforth KMP) automaton approach, solves the
dictionary matching problem in time O(d loga) , to preprocess the dictio-
nary, and O(nlog<r + tocc) to scan the text, where tocc, which stands for
total occurrences, is the size of the output. Note that since all the patterns
in our dictionary are the same size, the size of the output is linear. That
is, no pattern is a proper prefix of another so two distinct patterns cannot
both match at some location.

The details of this algorithm are beyond the scope of this chapter, how-
ever, the interested reader is referred to this chapter's conclusion for a
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reference.
Returning to two dimensional matching, we derive the following algo-

rithm:

1. Let the set of distinct rows in the pattern be a dictionary (if some
rows are identical, include only the lowest numbered such row in the
dictionary). Construct P'. Use the algorithm for dictionary matching
to construct the Ti 's.

2. Use any linear time string matching algorithm to find the occurrences
of P' in each Ti. For any pair (i, j) such that P' occurs at Ti[j], mark
an occurrence of P at T[i, j].

Time: 1. 0(n2loga). 2. 0(n2).
Total Time: O(n2loga).

9.1.2 PERIODICITY ANALYSIS

The above two dimensional matching algorithm reduces the problem of two
dimensional matching into one dimension. While the complexity achieved
is favorable compared to the brute force method, it still contains a term de-
pendent on the alphabet size. In contrast, there are one dimensional string
matching algorithms which are linear and do not have an alphabet depen-
dent term, so there is some gap between the complexity of one dimensional
matching and two dimensional matching. This gap can be closed somewhat
by exploiting the periodicity, or lack thereof, in a two dimensional array.

The periodicity of strings has been well studied and the periodic nature
of strings has been used to generate efficient algorithms for string matching.
By analyzing the two dimensional periodicity of the pattern and using that
knowledge in the text scanning step, we not only obtain a more efficient
algorithm, but we will also see that it will prove useful in compressed
matching (see §9.3).

A string s can be said to be periodic if there exists a string w such that
s — wk for some k > 2. This notion of periodicity generalizes nicely to
two dimensions if we consider an unbounded pattern which extends in all
directions. Then we can define a parallelogram of periodicity with which we
can tile the plain to generate the (infinite) pattern. However, for bounded
patterns, the notion does not prove as useful since it has been shown that
even intuitively periodic patterns may not have such a tiling parallelogram.

In strings, we can equivalently define periodicity in terms of borders.
A border is a proper prefix of a string which is also a suffix. A string ,is
periodic iff it has a border which is at least half its length. While it is not
clear what constitutes a prefix or suffix in a two dimensional pattern, the
idea of overlapping regions of pattern can be easily generalized.

The idea of string overlap has been used to derive fast parallel string
matching algorithms (see Chapter 2). The well know notion of a witness
can also be used in the context of two dimensional matching to produce an
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efficient algorithm for exact matching. For a offset (i, j), the pair (k, /) is a
witness if P[k, /] = P[i + k, j + l]. That is, if the pattern does not overlap
with itself when offset by (i,j), then there must be some place where the
two copies of the pattern disagree. Any such position of disagreement is a
witness, so the witness of an offset need not be unique.

A witness table is an array W such that W[i, j] = (k, /) if (k, /) is a
witness for offset (i,j). If no such witness exists for (i,j), then W[i,j] is
undefined. Such a table can be constructed in time O(m2). See exercise 1
for a simple version of witness table construction. .

The witness table for the pattern provide some important understanding
of its two dimensional structure. This knowledge can be used to provide
an alphabet independent O(n2) text scanning phase.

Alphabet Independent Search Text processing is accomplished in two
stages: Candidate Consistency and Candidate Verification. A candidate is
a location in the text where the pattern may occur. We denote a candi-
date starting at text location T[r, c] by (r, c). We say that two candidates
(r,c) and ( x , y ) are consistent (denoted (r, c) = ( x , y ) ) if they expect the
same text characters in their region of overlap (two candidates with no
overlap are trivially consistent). Equivalently, two overlapping candidates
are consistent if they have no witness.

Initially, we have no information about the text and therefore all text
locations are candidates. However, not all text locations are consistent.
During the candidate consistency phase, we eliminate candidates until all
remaining candidates are pairwise consistent. During the candidate verifi-
cation phase, we check the candidates against the text to see which candi-
dates represent actual occurrences of patterns. We exploit the consistency
of the surviving candidates to rule out large sets of candidates with sin-
gle text comparisons (since all consistent candidates expect the same text
character).

Candidate Consistency As stated above, the goal of the candidate con-
sistency algorithm presented in this subsection is to produce a set of can-
didates for the given text such that the candidates are all consistent.

We begin with some transitivity lemmas for the = relation.

Lemma 9.1. For any 1 < r1 < r2 < r3 < n and for any 1 < c1 < c2 <
c3 < n, i f ( r 1 , c 1 ) = (r2,c2) and (r2,c2) = (r3,c3), then (r1,c1) = (r3,c3).

Proof: Suppose that (r1,c1) = (r3,c3). Then, there exists an x < m — r3 +
r1 and a y < m — c3 + c1 such that P[x,y] = P[x + r3 — r1, y + c3 — c1].
But r3 > r2 so x + r3 > r2 and m > x + r3 — r1 > r2 — r1. Similarly,
TO > y + c3 — c1 > c2 — c1. Since (r1, c1) = (r2, c2), we have that P[x + r3 —
r1, y + c3 — c 1 ] = P[x + r3 — r2, y + c3 — c2]. A similar argument shows that
P[x, y] = P[x + r3 — r2, y + c3 — c2] since (r3, c3) = (r2, c2). We conclude
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that P[x, y] = P[x + r3 — r1, y + C3 — c1]. This is a contradiction. Therefore
(r3,c3) = (r3,c3).

Lemma 9.2. For any 1 < r1 < r2 < r3 < n and for any 1 < c3 < c2 <
c1 < n, if(r1,c1) = (r2,c2) and (r2,c2) = (r3,c3), then (r1,c1) = (r3,c3).

A one dimensional consistency algorithm: Let c be some column of the
text. Initially, all positions in this column are candidates. We would like
to remove candidates until all candidates within the column are consistent.
Further, we would like to preserve any candidate which might actually
represent an occurrence of the pattern in the text. Thus, we will only
remove candidates when we find some specific text location with which
they mismatch. The idea of algorithm A is the following. Suppose we
have eliminated inconsistent candidates from the last i rows of column c.
The surviving candidates are placed on a list. Notice that by lemma 9.1,
if the candidate in row n — i is consistent with the top candidate on the
list, it is consistent with all of them. This check takes constant time using
the witness array. This principle is used to produce an O(n) algorithm for
column consistency.

Algorithm A. Eliminate inconsistent candidates within a column

Step A.1: Get column number, c.
Step A.2: We create a doubly linked list, S, of consistent candidates in
column c. Initialize S by adding candidate (n,c) to the top of 5.
Step A.3: For row r = n — 1 to 1 do:

Step A.3.1: Let (x,c) be the top candidate in S. Test if candidates
(r, c) and (x,c) are consistent by reference to the witness arrays:

o If (r, c) = (x, c), then add (r, c) to the top of S.

If the two candidates under consideration are consistent, then they need
not be compared with any other candidates on S. This is because, by
lemma 9.1, consistency within a single column is transitive.

o If (r, c) = (x, c) then use the witness character in the text
to eliminate one of the candidates. If (x, c) is eliminated,
remove it from S and repeat step A.3.1 with the new top
candidate in 5. If no candidates remain in S, add (r, c) to
S.

Clearly, if the two candidates are inconsistent, they can't both match the
text. Thus the inappropriate one is eliminated.

Step A.4.3: Return S.

Theorem 9.3. Algorithm A is correct and runs in time O(n).

Proof: The correctness of the algorithm follows largely from the comments
within the algorithm and from lemma 9.1.
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For the complexity bound, note that S can be initialized in constant
time. For each row r in the for loop, there is at most one successful test of
consistency. For each unsuccessful test, a candidate is eliminated, either the
candidate (r, c) or the top candidate in 5. Since the number of candidates
is bounded by n the total time is O(n).

A two dimensional consistency algorithm We use the above algorithm as
an initial "weeding out" of candidates so that we get a list for each column
of consistent candidates. In the two dimensional consistency algorithm, we
start with the rightmost column, which we know to be consistent, and add
one column at a time from right to left. We will maintain the following
loop invariant:

P(i) = the candidates remaining in columns i,..., n are all pairwise
consistent.

As noted above, by calling Algorithm A with value n we are assured
of P(n). The approach of the algorithm below is to quickly insure P(i)
once P(i + 1) is known. When P(1) holds, we are done. We use a similar
idea to that of algorithm A. We first have a phase were we make sure that
each candidate is consistent with all candidates above and to the right. A
symmetric phase makes sure that candidates below and to the right are
consistent, thus assuring P(i). To reduce the work, we note that during
the first phase, we need only compare a candidate on column i with the
leftmost surviving candidate in each row above it. To further reduce the
work, once a candidate in column i is found to be consistent with candidates
above it, all lower candidates in column i are also consistent.

Algorithm B. Candidate Consistency

Step B.1: For i <— 1 to n d <— Algo A(i)
Step B.2: For i <— 1 to n initialize Ri to be an empty list of candidates
for each row i.
Step B.3: Put the candidates on Cn onto their appropriate Ri lists.
Step B.4: For i <— n — 1 downto 1 do

Add one row at a time, making sure that it is consistent with all can-
didates added so far.

Step B.4.1: Call Bottom-Up(i')

Make sure that all candidates in column i are consistent with all can-
didates below them in columns i + 1,. . . , m.

Step B.4.2: Call Top-Down(i)

Make sure that all candidates in column i are consistent with all can-
didates above them in columns i + 1,. . . , m.
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Step B.4.3: Add surviving candidates from column i to the appro-
priate Rj lists.

We describe procedure Bottom-Up only, since procedure Top-Down is
symmetric.

Step B1. Bottom-Up(c)

Step Bl.1: Initialize: cur gets bottom value from Cc- row <— n is a
pointer to the last row
Step B1.2: While not at the top of Cc do

Step B1.2.1: If cur is consistent with leftmost item on Rrow, then
row <— row + 1

We compare the current candidate with the leftmost candidate in some
row row below it. If they are consistent, then by lemma 9.1, all candidates
above cur on Cc are also consistent with all candidates on Rrow, even if
cur is later deleted as inconsistent with another candidate. We need not
consider that row again.

Step Bl.2.2: If cur is not consistent with leftmost item on Rrow,
then find a witness to their inconsistency. Check which of them
is inconsistent with the text and remove candidate from its list. If
cur is removed, set cur to the previous item on Cc, otherwise do
nothing.

We remove the candidate that has a mismatch against the text. If the
item in Rrow is removed, then we still need to check if cur is consistent
with the remaining candidates in that row. Thus, we don't need to update
any pointers. Otherwise, if cur is removed, we move up in Cc- We don't
need to change row because of the comment above. None of the rows below
row need to be compared against the new candidate cur since we already
know they are consistent.

Step Bl.2.3: If the row counter points to a row above cur's row,
set cur to the previous candidate in Cc-

Theorem 9.4. The Algorithm B is correct and runs in O(n2).

Proof: As in algorithm A, no candidate is removed unless a mismatch is
found against the text. Therefore, no valid candidates are removed.

To show that at the end of the algorithm, only mutually compatible
candidates are left on the Ri lists (and on the Ci), we pick two arbitrary
surviving candidates (r1,c1) and (r2,c2) such that c1 < c2. We have two
cases:

Case r1 < r2: We show this case by induction. Suppose that after pro-
cessing column GI + 1 that P(c1 + 1) holds. The base case is true by
Theorem 9.3. Let ( r 2 , c') be the leftmost candidate such that c' > c1
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and c' appears on Rr2 after processing column c1. By lemma 9.1, we
need only show that (r1,c1) = (r2,c') since (r2,c') = (r2,c2).
Let (r',c1) be the last candidate with which ( r 2 , c ' ) was compared
during BottomUp(c1).

Claim 9.4.1. r' > r1 and (r',c1) = (r2,c').

Proof: Suppose that (r',c1) = (r2,c'). Then we either delete (r',c1)
or (r2,c') from the candidate list. If we remove (r2,c') from the
list, then we would compare the next candidate on Rr2 with (r1, c1),
thus violating the assumption that ( r 2 , c') was the leftmost candidate
compared with a c1 candidate. If we remove (r',ci), the we would
compare ( r 2 , c') with the next candidate above (r', c1), thus violating
the assumption that (r', c1) was the last candidate on column c1 with
with (r2,c') was compared.
To show that r' > r1 we observe that if r1 > r', then we couldn't
have compared (r2,c') with ( r ' , c 1 ) without first comparing (r1 ,c1)
with (r2,c'). Since they both survived, they would have had to have
been compatible. But then we never would have compared (r2,c')
with (r',c1) at all. D
Finally, we know that ( r 1 , c 1 ) = (r',c1), (r',c1) = (r2,c'), (r2,c') =
(r2, c2) and that r1 < r' < r2 and that c1 < c' < c2. So by lemma 9.1,
we have proved the case.

Case r1 > r2: This case is very similar to the one above, however, we
refer the reader to procedure TopDown rather than BottomUp and
lemma 9.2 rather than lemma 9.1.
The argument that shows the running time to be O(n2) is similar
to the complexity analysis in Theorem 9.3. We observe that during
BottomUp (and TopDown) in each comparison of candidates results
in the removal of a candidate (which can only happen n2 times in all
calls to these procedures), or in the cur pointer being decremented
(resp. incremented). This can only happen O(n) time each time
BottomUp (resp. TopDown) is called, and they are each called O(n)
times. Therefore the complexity is O(n2).

Source Verification All remaining candidates are now mutually consis-
tent. Note that each text element t = T[r, c] may be contained by several
candidates, and that all candidates agree on their area of overlap. We say
a candidate (i, j) is relevant to a position (k, 1) if 0 < k — i < m — 1 and
0<l — j < m — I, that is, if candidate (i, j) covers position (k, I). This
leads to the following crucial observation: Every position in T can be la-
beled as either true or false, where true means that it equals the unique
pattern symbol expected by all relevant candidates, and false is all other
cases. Thus, every text element needs to be compared to a single pattern
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element, and every candidate source that contains a false element within
it is not a pattern appearance and can be discarded.

The candidate verification algorithm follows:

Algorithm C. Candidate Verification

Step C.1: Mark every text location T[r, c] with a pattern coordinate
pair(i,j), where (i, j) are the coordinates of the pattern element P [ i , j ]
that T[r, c] should be compared with.

There may be several options for some locations, namely, the position
of the scanned text element relative to each of its relevant candidates.
However, any will do since all candidate sources are now compatible. If a
location is not contained in any candidate source it is left unmarked. We
will later see how this step is implemented (procedure C1).

Step C.2: Compare each text location T[r, c] with P[i,j], where (i, j)
is the pattern coordinate pair of T[r,c]. If T[r,c] = P[i,j] then label
T[r, c] as true, else label it false.

Step C.3: Flag with a discard every candidate that contains a false
location within its bounds.

This flagging is done by the same method as in step C.1.

Step C.4: Discard every candidate source flagged with a discard. The
remaining candidates represent all pattern appearances.

Our only remaining task is showing how to mark the text elements with
the appropriate pattern coordinate pairs. We adopt the popular sports fans
technique - the wave.

Starting at the top (left) of each column (row), a wave is propagated
going down (to the right) as follows. The first element stands and waves
its pattern coordinate pair, if such exists. This nudges the neighbor below
(to the right of) it to jump and raise its own pair. If it does not have a
pair, it borrows its antecedent's pair, incrementing by 1 its row (column)
coordinate, to adjust for its position relative to the same source. If the pair
assigned to some position exceeds the size of the pattern, that position is
left unmarked.

Thus in two sweeps of the text, column waves and row waves, each text
element is given an appropriate pattern coordinate pair. Details of the
wave follow:

Step C1. The Wave

Step C1.1: Initialization: Mark every candidate with (1,1).

Step C1.2: Column Waves: For each column c, and for all positions
r from 1 to n in column c do the following step: If T[r, c] does not have
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a pair , and T[r — l,c] has pair ( i , j } with j < m then assign to T[r, c]
the pair (i+ 1 , j ) .

Step C1.3: Row Waves: For each row r, and for all positions c from
1 to n in row r do the following step: If T[r, c] does not have a pair,
and T[r,c— 1] has pair (i, j) with j < m then assign to T[r,c] the pair
(i,j + 1).

A similar version of the wave can be used to flag candidates with discard.
What is propagated there is the discard flag, along with a counter pair to
make sure the discard flag doesn't get propagated too far.

Theorem 9.5. Algorithm C is correct and runs in time O(n2).

Correctness: The only non-trivial fact is that the wave correctly marks
all elements. We need the following terminology. Let (r, c) be a candidate
containing position T[r + i,c + j]. Then j is the column distance between
T[r + i,c + j] and (r, c) and i is the row distance between T[r + i,c + j] and
(r, c). The column-close sources containing location T[r, c] are the sources
whose column distance to T[r, c] is minimal. The closest source containing
location T[r, c] is the column-close source whose row distance to T[r, c] is
smallest.

Claim: The pattern coordinate pair marked by procedure C1 in loca-
tion T[r, c] is the pair (i, j) where (r — i + 1, c — j + 1) is the closest source
to T[r, c].

Proof: By induction on the column distance of the closest source. For
column distance 0 the column wave assures that the marked pair is the
distance to the closest source (+1). Assuming that for every text element
whose column distance to its closest source is d, the marked pair is the
distance to the closest source, the row wave will ensure correct marking of
all element with column distance d + 1 to the source.

Time: Each of the steps of algorithm C is easily implementable in time
O(n2). Note that in each of steps C.1 and C.4 is single call to procedure
C1, which clearly takes O(n2) time.

9.2 Scaled Matching

An interesting extension of exact matching is exact scaled matching. Such
a problem is motivated by the fact that one may be interested in matching
patterns whose occurrence in the text is of different scale than provided by
the pattern. For example, if the text is a newspaper that we would like to
scan, then we encounter letters of the alphabet in various sizes.

A "clean" version of the problem may be defined as follows:
The string aa...a where the symbol a is repeated k times (to be denoted

ak), is referred to as 'a' scaled to k. Similarly, consider a string A = a1 • • • a1.
'A' scaled to k (Ak) is the string a1,..., al.



SCALED MATCHING 277

Let P[m x m] be a two-dimensional matrix over a finite alphabet E.
Then P scaled to k ( P k ) is the km x km matrix where every symbol P[i, j]
of P is replaced by a k x k matrix whose elements all equal the symbol in
P [ i , j ] . More precisely,

The problem of two-dimensional pattern matching with scaling is defined
as follows:

INPUT: Pattern matrix P[i, j] i = 1, ...m;j = 1, ...,m and Text matrix
T[i, j] i = 1, ...,n; j = 1, ...,n where n > m.

OUTPUT: all locations in T where an occurrence of P scaled to k starts,
henceforth a k-occurence, for any k = 1, ..., [m].

The basic algorithmic design strategy described below can be viewed
as realizing the following approach: For each scale k, try to select only a
fraction of j among the n columns and seek k-occurrences only in these
columns. Since each selected column intersects n rows, this leads to con-
sideration of O(n 2 ) elements. Summing over all scales, we get 0(n2) multi-

plied by the harmonic sum Ei=1 l, whose limit is log m, making the total
number of elements scanned O(n2 log m).

A final intuitive step is to select also a j fraction of the rows. Since

Ei=i i2 is bounded by a constant, the number of elements decreases now
to

We will show here how to achieve the O(n2 log m) bound and hint at
the method used to eliminate the logarithmic factor.

9.2.1 STRING SCALED MATCHING

Let us consider the scaled matching problem in one dimension. The solution
to this problem will shed light on one aspect of the two dimensional scaled
matching problem.

The problem of one-dimensional string matching with scaling is the
following:

INPUT: Pattern P = p1 • • • pm and text T = ti • • • tn where n > m.
OUTPUT: All positions in T where a k-occurrence of P starts, for any

We can use the inherent repetitions in scaled appearances of strings to
provide a simple scaled matching algorithm.
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Definition: Let S = a1a2 • • • an be a string over some alphabet S. The
run length compression run length compression of string 5 is the string
S' = a1'

r1a2'
r2 • • • an'

ra such that: (1) a'i = ai + 1 for 1 < i < n; and (2) 5
can be described as concatenation of the symbol a1 repeated r1 times, the
symbol a2 repeated r2 times, ..., and the symbol a'n repeated rn times.

We denote by SE = a'1a'2 • • • a'n, the symbol part of S, and by S#, the
vector of natural numbers r1, r2, ..., rn, the repetition part of S.
Example 1: For S = AAABABBCCACAAAA, S" =
A3B1A1B2C2A1C1A4,

5s =ABABCACA and S* = [3,1,1,2,2,1,1,4].

Algorithm D. Algorithm for the one dimensional scaled matching prob-
lem

Step D.1: Derive the symbol string Ts and the repetition string
T#(= t1,... ,tn) from the text string T. Similarly, derive PE and
P#(= p1, . . .,pm) from the pattern string P.

Observation 1. Finding all occurrences of P in T scaled to k is equivalent
to finding all locations t that satisfy conditions A and B below.

Condition A. There is an exact occurrence of PE in location i of TE.
Condition B.1. ti > kp1

Condition B.2. ti+l = kp2, ... , ti+m-2 =
Condition B.3. ti+m-1 > kpm

Step D.2: Suppose m > 3. Derive the quotient string T' =
from T* and the quotient string

from P#.

Observation 2. Suppose m > 3. Condition B.2 from Observation 1 is
satisfied for k = P2 if and only if an occurrence of string P' starts at
location i' + 1 of string T".

Step D.3.1: Find all occurrences of string Ps in the string Ts and all
occurrences of the string P' in the string T'.

This is done by applying any linear time string matching algorithm.

Step D.3.2: For each location i in TE, such that PB starts at i and
P' starts at location i + 1 of T', check whether conditions B.1 and B.3
extend to locations i and i + m — 1 in T'.

This will take O(l) time per location i.
Comment: Extension to the case where m < 3 within the same com-

plexity bound as claimed below is trivial.
Time: Step D.1 needs O(|P|+ |T|) time. All other steps need O(|PE| +
|TE|) time. If the input is already provided in the run-length form, then the
running time of the algorithm will be linear in the length of the compressed
input, and possibly sublinear in |P| + |T|.

kpm-1
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9.2.2 TWO DIMENSIONAL SCALED MATCHING

The main idea behind the O(n2 logn/m) algorithm is similar to the string
matching algorithm presented above. Consider any column j and scale k.
If Pk (the pattern scaled to k) starts in column j then every row of the
pattern is translated into a k-block of k consecutive equal rows where each
row is of length km. The maximum number of possible blocks in a column
is n/k. Suppose we succeed in dividing column j into bk k-blocks in time
O(bk)(< O(n/k)). Finding all appearances of Pk in column j can now be
done in time O(bk) by running a KMP-like algorithm where every pattern
row is compared only to the first row in the appropriate block (constant
time using LCA on suffix trees) and verifying that the number of rows in
the block indeed matches the expected number (comparison of numbers,
also constant time).

Thus the total time for finding all appearances of Pk is O(n2/k) and the

total time for all scales is O(E [ n / m ])= O(n2 logn/m )•
We now present a detailed algorithm for scaled pattern matching, as-

suming that the block division can be done efficiently (we will later show
how the block division is done).

Let us first formally define a k-block.
k-blocks: Let k be a positive integer. A k-block at position i1 of column

j1 of T is a submatrix T' = T[i1,..., i2,j1,..., j1 + km — 1], that satisfies
the following:
(1) all rows of T' are equal.
(2) no rows can be added to T' without disrupting condition (1) above
(formally, substring T[i2; j1,..., j1 + km — 1] is not equal to substring T[i2 +
1; j1, ......., j1+ km — 1] and substring T[i1; j1, ..., j1 + km — 1] is not equal to
substring T[i1 - 1; j1, ...,j1 + km- 1]).

The height of a submatrix is its number of rows. The height of such
k-block is i2 — i1 + 1. If a k-block is contained in a k-occurrence then
its height must be at least k. (Because each pattern row must appear k
successive times.)

Let Sk
j be a list whose elements are lists of consecutive k-blocks in

column j. The k-blocks in each list are adjacent and in consecutive order.
The last k-block in a list does not have an adjacent k-block below it. The
first k-block below it starts the next list. Every list entry is a starting row
of a k-block and its height. The sum of the heights of all blocks in a list is
no less than km.

Algorithm E. Scaled Matching Algorithm

Pattern analysis: Let Pi,P2,...,Pm be the rows of the pattern matrix
P. P can be described as row P11 repeating rI times (the block at row
l1), followed by row Pl2(= Pl1) repeating r2 times, followed by additional
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blocks until finally we have row Pla(= Pla-1) repeating ra times, where
l1 = 1, lk = r1 + + rk-1 + 1 and r1 + r2 + + ra = m. The above
description is a run-length representation of the sequence P1 ,P2 , . . . ,Pm

when viewed as a one dimensional string R with m symbols. Formally a
pair (P l h , r h ) is a block of rh rows at row lh.

Step E.1: Compress the string R into its run length representation, which
is denoted FR.

(This will take time proportional to |P1| + |P2| + ... + |Pm|.)
In the remainder of this presentation we assume that a > 2. We leave

it to the interested reader to see why there is a solution within the claimed
bound for the case a < 2. Let FR be the subsequence of FR that starts at
its second element and ends at the predecessor of the last element. That
i s , F R = ( P l 2 , r 2 ) . . . ( P l a _ l , r a - 1 ) .

Step E.2: Compute the failure array FAIL for string FR.

This step is done precisely as in the KMP algorithm with one exception.
Comparison of two pairs (Pl i , ri) and (Pl j, rj) is done by comparing Pli and
Plj (using the suffix tree of the concatenated pattern rows, as in Chapter
4) and by comparing the numbers ri and rj.

Scanning the text: Scan each column j of T separately, as if it was a one-
dimensional string. The scan is done in a similar way to KMP, with a few
modifications. Most notable is the fact that instead of advancing from a
row i to its successive row i + 1 in column j, our advancement is guided
by the list Sk. The other modification is due to the fact that, as in the
pattern preprocessing, comparisons between pattern and text symbols are
now comparisons between blocks.

Input for Step E.3: Pattern automaton for FR, lists Sk (recall that the
elements of 5* are lists of consecutive k-blocks).

Output of Step E.3: All indices of T where a copy of rows Pl2,...Pla-1, of Pk

begins.

In other words, we are ignoring the first and last blocks of P. This is done
because all blocks except the first and last are sharply delineated in the
text, but the first and last blocks may appear in a text location that has
leading and trailing rows equal to the rows in the first and last pattern
blocks. Thus, after finding the appearances of Pk without the first and
last blocks, we will verify that the beginning and end also match (step
E.4). Step E.3 is a modified version of the main loop of KMP. We provide
somewhat more detailed psuedocode so emphasize the similarity.
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Step E.3:

for column col := 1 to n — km + 1 do
l = start of first list in Scol

While l is still a list in Scol do
row := / (start of first block in list); h := 2
last := start of last block in list
While row < last do

if COMPARE(k-block at T[row, col], block at row klh of Pk)
then row := row + krh (start of next block in Scol);
h := h + 1

if h = a
then

Output: there is a match at [row — k(m — la) + l,col] ;
h := FAIL(h)

else h := FAIL(h)
end { while}
l = next list in Scol

end { while}
end { for}

Step E.4: For every occurrence of FR check whether it extends into an
occurrence of the whole pattern.

Time: Assuming that comparisons can be done in constant time, step
E.3 is basically the Knuth-Morris-Pratt algorithm. Its time for column col
is O(|Scol|) < O(n/k). The time for all n columns is O(n2/k). Step E.4 takes
constant time per occurrence so its total contribution is also O(n2/k).

We now show how the constant time comparison is achieved.

Step El. Compare

INPUT (1) Block at T[i, j]. (The algorithm guarantees that row i is in the
list Sk.)
(2) The k-block at row klh of Pk (represented by the pair (Pl h , r h ) ) .

OUTPUT Determine in O (1) time whether T[i; j, j+1,..., j+km -1] = Plh

and the height of the 5* block is rh.

The main tool in comparing the strings T[i; j,j+l,-..,j + km — 1] and
Plh is an LCA query with respect to the suffix tree ST.

We need to make the suffix tree ST more explicit.
Constructing Suffix Tree ST:

Step El.l: Form a long string C as follows. Concatenate all rows of T
and append to them the following [n/m] strings:

* A concatenation of the rows of P.
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* A concatenation of the rows of P, where each row is scaled to 2.
* For k, 3 < k < [n/m],a concatenation of the rows of P, where

each row is scaled to k.

The length of string C is equal to

which is O(n2), since

and

Time: The initial preprocessing of ST is 0(n2loga), for effective al-
phabet size a. Initial preprocessing for LCA takes also O(n2) time. Sub-
sequently, every query (i.e. comparison) is constant time.

Our only remaining task is constructing the lists Sk .

9.2.3 PARTITIONING A COLUMN INTO K-BLOCKS

The main idea in constructing list Sk is the power columns. The algorithm's
efficiency is achieved by grouping the n columns of the text into sets of m
successive columns each, as follows {1,..., m},{m+ 1, ...,2m}, ...{(|n/m] —
l)m+ 1, ..., [n/m]m} (possibly followed by a final set of less than m elements
{[n/m]m+1, ...,n}). Instead of handling each of the columns separately, the
effort for processing all m columns in a set is combined. The key player
in each such set is its rightmost column, called power column. Columns
m, 2m, ..., [n/m]m are the power columns.

We now need an additional data structure that enables retrieval of the
following queries: Given a power column c and another column j > c
(alternatively, j < c), find all rows 1 < i < n— 1 such that rows i and i+l
differ between columns c and j (alternatively, between columns j and c—1).
Formally, T[i; c, ...,j] = T[i+l; c, ..., j] (alternatively, T[i;j,j+l, ...,c-l] =
T [ i + 1 ; j , j + 1 , . . . , c - 1 ] ) .

We would like the time to process this query to be proportional to the
length of the output (that is, the number of such rows j). The following
data structure will enable such processing.

Let [i, c] be a position on a power column c in T. Let Br[i, c] be the
largest integer k for which the two strings T[i;c, c+ l,...,c+ k — 1] and
T[i + 1; c, c + I, ..., c+ k — 1] are equal. Similarly, let Bi[i, c] be the largest
integer k for which the two strings T[i; c — k, c — (k — 1), ..., c — 1 ] and
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T[i + 1; c — k, c — (k — 1),..., c — 1] are equal. In words, Br[i, c] gives the
longest common prefix of rows i and i + 1 starting at column c and Bi[i, c]
gives the longest common suffix of rows i and i + 1 ending at column c — 1.

It is easy to see that Br[i, c] and B1[i,c] can be constructed for every
row i and power column c in time totalling O(n2).
Example 2: Let row i in T be a3bb4c5a2b5 and row i + 1 be
C2a1b4c1a1c3b1a1b5. Suppose columns 5,10 and 15 are power columns. The
figure below illustrates rows i and i +1 in T, as well as the power columns:

Then Br[i, 5] = 4, Br[i, 10] = 3, Br[i, 15] = 5 and B,[i, 5] = 2, B,[i, 10] = 0,
Bi[i, 15] = 1.

For a fixed column j and scale k, let c be the power column immediately
to the right of j. Consider the arrays Br[l,..., n — l;c] and B1[l, ...,n — 1; c].
Every i where Bi[i, c] < c — j + 1 or Br[i, c] < km — (c — j + 1) indicates
a start of a new block. We call such a row a seam. We can find the seams
using range minimum queries.

Definition: Let L = [l1, ...,ln] be an array of n numbers.
A Range Minimum query is of the form:

Input: Given a range of indices [i,..., j], where 1 < i < j < n,
Output: Return an index k i < k < j such that Ik = min{lj,..., Ij}.

Following a linear time preprocessing of L, each range minimum query
can be processed in O(l) time.

The only difficulty is that we want to find all the k-blocks in time O(n/k).
Direct use of range minimum queries will find all blocks, even the small
ones. The time then may exceed the allowed O(n/k).

However, since we are only interested in consecutive k-blocks, we are
assured that, except for the first and last block, all k-blocks have only one
seam every k rows. In other words, there are k seamless rows in each side
of a seam. This observation leads to the following algorithm.

Algorithm F. Algorithm for constructing Sk

Step F.I: Divide column j into n/2k intervals of k/2 consecutive rows each.

Step F.2: For each interval, do 3 range minimum queries, to find a seam
and possibly another seam to its right or left within the interval. If two
seams or more are found in an interval it is discarded.

Step F.3: Every single seam interval, followed by non-seam intervals and
eventually another single seam interval (with at least k rows between the
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two seams), defines the beginning of a k-block. Its height is the number
of rows between the seams.

Step F.4: Discard all 5* entries where the total height of consecutive
k-blocks is less than k(la-1 — l2).

Time: Since there is only a constant amount of work per interval, the time
is O( n/k) for every column, or O(n2/k) for the entire text.

Total Algorithm Time: We have seen that the time for searching
all occurrences of Pk is O(n2/k). Since k ranges over {1, . . . , [n/m]} the total
time is

Remarks: Note that for scale k, even a list of consecutive k-blocks
do not necessarily indicate a possible appearance of Pk. In particular,
character changes within rows force upon us the knowledge that a scaled
occurrence can appear only within multiples of k from that change (because
scale k means that every pattern row now consists of k-length strings, each
consisting of a single repeating character). Thus for every scale k it is
only necessary to construct the 5* for j columns. This brings the total
algorithm time to O(n2).

9.3 Compressed Matching

Data compression is a well-studied area in information science. The two
most common motivations for the study of data compression are:

• Data storage: Compression allows more data to be stored on a given
device.

• Data Communications: Communication links, be they cables, phone
lines or satellite channels, are both limited and, usually, slower than
the data gathering and data processing ends. Compressing the data
prior to transmission, and decompressing on the receiving end can
increase the speed (and thus the volume) of the transmission process.

The main thrust in the study of data compression has been to achieve
compression that is efficient in packing while also being practical in time
and space. Compression of strings has had a long history of study, starting
with the naive run-length encoding and encompassing such diverse algo-
rithmic methods as the Huffman code, on-line textual substitution meth-
ods and stochastic methods. The various methods of string compression
generalize to multidimensions. An example of a simple and widely used
two-dimensional compression scheme is quadtrees. Other examples include
arithmetic methods and textual substitution methods.
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In the context of pattern matching, one would like a compression scheme
to have the property of allowing pattern matching directly in the com-
pressed data. We refer to the problem of finding patterns in compressed
text representations as compressed matching. If a pattern can be found
without the need to decompress the data, noticeable savings in time may
arise. For example, in the communications arena, systems of small net-
worked processors could enjoy a boost in efficiency if data could be both
transmitted and analysed in a compressed form, especially if the process
requires transmission and analysis of the same data in many nodes.

The compressed matching problem is the following: Let C be a given
compression algorithm, let c(D) be the size of the output of C(D).

INPUT: Compressed text C(T) and compressed pattern C(P).
OUTPUT: All locations in T where pattern P occurs.

A compressed matching algorithm is optimal if its time complexity is
O(c(T)). It is efficient if for T such that c(T) < \T\ its time complexity
is o(|T|). This definition of efficient may seem somewhat strange. It is
motivated by the following observation. The size of the compressed data
will vary depending on the internal structure of the data. In the worst
case it may be O(|T|). Any algorithm that is not optimal would then be
worse than first decompressing the text and then matching. However, we
implicitely assume that compression is beneficial, i.e. c(D) < |D|. This
leads to our definition of efficient compressed matching. As a further char-
acterization of efficient, we call almost optimal any efficient algorithm with
complexity O(c(T)polylogc(T)).

In one dimension (strings), an optimal compressed matching algorithm
is readily apparent for the run-length compression as defined in section 9.2.
Such an algorithm is given by the scaled string matching algorithm by
simply considering the 1-occurences in the output of that algorithm.

The run-length compression can be simply generalized to two di-
mensions by concatenating the run-length compression of all the matrix
rows. For simplicity's sake we will refer to this compression as the two-
dimensional run-length compression, or simply the run-length compression.

The classification of two dimensional periodicity has proven to be a
powerful tool for this problem, and allowed Amir and Benson to present a
O(c(T)log |P| + \P\) time algorithm for compressed matching in the two-
dimensional run-length compression.

For didactic reasons we make some simplifying assumptions and only
show this result for the easier, non-periodic case. The more general cases
have a similar flavor but need to contend with greater details.

9.3.1 PROBLEM DEFINITION AND ALGORITHM OVERVIEW

The two-dimensional run-length compressed matching problem is formally
defined as follows:
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INPUT: Two-dimensional run-length compressed text matrix T; Com-
pressed two-dimensional pattern matrix P.

OUTPUT: All locations in T where P occurs.

We want the running time of our algorithm to be insensitive to the
size of the output, therefore we do not allow trivial patterns. A trivial
matrix is one in which every element contains the same character. If the
text and the pattern are both trivial with the same character, then the
output size is O(|T|) which is not efficient for any compression scheme.
All other patterns contain a seam, that is, an occurence of two different,
adjacent characters. Since the number of seams in the text is O(c(T)) for
run length compression, the output size is optimal. For simplicity's sake
we will assume here that every pattern row contains a seam.

Below is an overview of the algorithm. As in section 9.1, the term
candidate refers to a location in the text that may correspond to the element
P[0 , 0] of an actual occurence of the pattern. Recall that a set of candidates
is compatible if for any two candidates in the set, the two copies of the
pattern originating at the sources overlap without any mismatches.

Algorithm Overview:
Following the scheme of many pattern matching algorithms, this algo-

rithm consists of a pattern preprocessing part and a text scanning part.
Pattern Preprocessing: As in section 9.1.2 and exercise 1, a witness

table is constructed for the pattern. We will assume that the if the (un-
compressed) pattern is an m x m matrix, then there is a witness for every
offset (i, j) such that —m < j < m and 0 < i < m/2. In a sense, this
is equivalent to the condition for aperiodicity in one dimension, in which
a string is considered to be to aperiodic if its longest border is less than
half the length of the string. A similar (but more complicated) algorithm
to the one presented below works for cases in which such an aperiocity
assumption is not warranted.

Text Scanning: Performed in three phases:
1) The restriction phase is a text scan in which preliminary candi-

dates sources are selected. This phase is not needed in the uncompressed
exact matching algorithm because all text locations are assumed to be
candidates.

2) The compatibility phase, partitions the portion of the text having
candidate sources into blocks of size m/2*m/2. Within each block, a single
candidate remains, by the aperiodicity assumption.

3) The verification phase is a triple scan of the text to determine
which of the remaining candidates are actual occurrences of the pattern.

9.3.2 THE COMPRESSED MATCHING ALGORITHM

To simplify the description of the algorithm, we will assume that the un-
compressed text is an n x n array, the pattern is an m x m array and both
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n and m are powers of 2.

Algorithm G. Text Analysis for Non-Periodic Patterns

Step G.I: Input Compressed representations of the text and the pattern,
and the output from the pattern preprocessing.

Step G.2: Restriction Phase

The goal of the restriction phase is to find potential candidate patterns
in the text subject to the restriction that each candidate must contain
a pattern characteristic seam (in fact, we are even assuming that each
row contains a seam). Because there can be no more seams in the text
than c(T), this phase provides an important initial limit on the number
of candidates considered in the remaining phases of the algorithm. This
step scans through the text computing the source position relative to every
seam. The list is then bin-sorted by columns. The remaining candidates
are now stored on column lists Ci , where i corresponds to the column of
the text in which the candidate source occurs. These lists will be used in
the compatibility and verification phases.

Step G.3: Compatibility Phase

Here we partition the text into disjoint, occupied blocks of size m/2*m/2.
An occupied block contains a candidate source. As a result of the restriction
phase, the text is partitioned into occupied blocks of size 1x1 each con-
taining one candidate source. We initially combine vertical pairs of these
blocks into blocks of size 2x1 and then combine horizontal pairs of these
blocks into blocks of size 2x2 . Repeating in a similar fashion for log m — 1
stages, we obtain blocks of size m/2*m/2. Blocks are combined vertically
by scanning down one column list (steps 3.1 and 3.2) and horizontally by
scanning down two adjacent column lists simultaneously (step 3.3). After
each stage, the number of lists is reduced by half, until there are 2n/m lists
at the end of this phase. More formally, each stage partitions the text into
disjoint, occupied .j-blocks. A j-block is a subarray

that form a half j + 1-block.

containing 2j rows and columns. A half-j-block is a subarray

containting 2j rows and 2j-1 columns. A pair of j-blocks is two j-blocks
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Step G.3: Implementation of Consistency Phase
For j := 1 to log m — 1 do:

Step G.3.1: For each column list Ci, i = 0 ... n/2j-1 — 1 scan the list
from the top down. If the list contains a pair of occupied (j — 1)-
blocks, look up the witness w = T[r, c] for the candidates in the
Witness table from the pattern preprocessing step and put onto
the witness list.

The two candidates are incompatible and thus have a witness since two
compatible sources for non-periodic patterns cannot co-exist within a block
of size m/2*m/2 or smaller. As the blocks are combined, we use witness loca-
tions from the pattern analysis and refer to the text to eliminate incompat-
ible candidates. Since the text is stored in row lists due to its compressed
representation, it is not possible to directly access a witness location in
0(1) time. So, for each stage, we first determine all the witness locations,
sort them and then do a complete scan of the text to determine which
character is in each witness. For each witness, we maintain a pointer to its
pair of blocks.

Step G.3.2: Radix sort the witness list. Scan the text to determine
the character in each witness and determine which one or both
of the candidates mismatches the text character. Eliminate the
appropriate candidate(s) from list Ci.

After step 3.2, each list contains half-j-blocks.

Step G.3.3: For each pair of lists C2i, C2i+1, i = 0... n/2j -1, scan
down both lists simultaneously. If the lists contain two horizontally
adjacent occupied half j-blocks, find the witness for the candidates
and put on a witness list. Repeat step 3.2 except the remaining
candidates are linked onto a new list Ci.

After step 3.3, the number of lists has been reduced by half and each
list contains occupied j-blocks.

Step G.4: Verification Phase

In testing the candidates against the text, we employ the following main
idea:

• For each segment (run of identical characters) of the text, at most
nine candidates contain the first character of the segment.

Step G.4.1: For each segment 5 of the text, if a candidate C
contains the first character of 5, then test if S matches the next
untested segment of C. If a mismatch occurs, eliminate C.
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Consider the first character of a text segment at location T[r, c]. Any
candidate that overlaps this character must have its source in one of nine
contiguous blocks. Let

Then, the sources for candidates that can contain T[r, c] are in the m/2*m/2

size blocks encompassing text locations

These blocks are on lists Cl-j . Number the blocks consecutively row-by-
row from upper left. Then T[r, c] occurs in block B9. Candidates with
sources in blocks B4-B6 always overlap row r. Candidates with sources
in blocks B1—B3 and B7 — B9 may be, respectively, completely above row
r or completely below row r.

Now, compare segment S with first character at T[r, c] and , candidate
C with source in one of the nine blocks. Test if S matches the next untested
segment in C. (We keep, for each candidate, a pointer to the next untested
segment in the compressed representation for P.) On a mismatch, either
of character, position or length, eliminate C.

We perform a special test when we begin testing a new row rc of C, but
S is not the first segment of that row. C is eliminated unless S matches the
second segment of row rc and the character of the text segment preceding
S matches the character of the first segment of row rc •

We move down each column list Ci as we move down the rows of the
text, so there is no time penalty for finding the (possibly) nine candidates
to test for each segment.

Theorem 9.6. The algorithm runs in time O(c(T)log|P|)

Proof: Restriction Phase: Clearly, O(c(T)).
Compatibility Phase: Each stage requires two passes through the text

(size c(T)) and two passes through the lists Ci (size O(c(T)). Sorting
the witnesses is done by radix sort in time O(c(T)). Each of log m stages
thus requires time O(c(T)) and the entire compatibility phase requires time
0(c(T)logm) = 0(c(T)log|P|).

Verification Phase: There are c(T) text segments and O(c(T)) candi-
dates. In the scan of the text rows, each segment is tested against at most
9 candidates. The entire verification phase requires time O(c(T)).

The total time for the algorithm is therefore O(c(T) log |P|). D
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9.4 Exercises

1. Write a O(m) time algorithm that constructs the witness table of a
pattern string P — pi • • -pm. More precisely,

2. Recall the Bird and Baker two dimensional pattern matching algo-
rithm. It first used the Aho and Corasick dictionary matching algo-
rithm to find all pattern rows, and then did a Knuth-Morris-Pratt
(KMP) scan vertically, to find all locations were the pattern rows
appear consecutively, exactly below each other.
Using suffix trees, modify the KMP algorithm to find all consecutive
appearances of the pattern rows in the text without needing the Aho
and Corasick algorithm.

3. The two dimensional scaling algorithm presented here had time com-
plexity O(n2logm). Modify the algorithm to achieve time O(n2).
(Hint: Assume non-trivial patterns, i.e. patterns with at least two
different alphabet symbols. Use symbol changes in the text as "an-
chors" for possible pattern occurrences.)

4. A prefix encoding of string T = t1 • • -tn over alphabet E is a mapping
c(T) = c ( t 1 ) • • - c ( t 1 ) where c : E —» {0,1}* and where for any a =
6, a, 6 € E c(a) is not a prefix of c(6) and c(6) is not a prefix of c(a).
Consider the following compressed matching problem:

INPUT: Prefix encoding c, c(T), and pattern P.
OUTPUT: All locations in T where there is an occurrence of P.

Give a O(|c(T)| + |P|) algorithm for the above problem.
5. In the compressed matching algorithm we assumed that every row

(or every column) has a seam. In fact, it is sufficient to assume that
one row (or column) has a seam. Let us assume that we will encode
by run-length of rows if every row has a seam, otherwise, we encode
by run-length of columns, if every column has a seam. If there are at
least one row and at least one column without a seam (i.e. a stripe),
then we encode by run-length compression of the rows.

(a) Prove that if the pattern is non-trivial (has more than one sym-
bol) then there are at least one row and at least one column
with a seam.

(b) Prove that if there are stripes in the compression, then all stripes
are of the same "color" (have the same repeating symbol).

6. Generalize the compressed matching algorithm to handle compres-
sions with stripes, by adding a preliminary scan that eliminates all
text locations that have a stripe of the wrong color.
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9.5 Bibliographic Notes

We have scanned some of the recent results in two dimensional matching.
This area is clearly too big to be comprehensively studied in such a brief
description. We have therefore concentrated in efficient worst-case sequen-
tial deterministic algorithms for exact matching and its variants. Given
the long list of modifiers, it is not surprising that a vast amount of work
falls outside of the scope of this chapter.

For the interested reader, we can recommend the following papers. For
the automata approach described in Section9.1, see Bird [1977] and Baker
[1978]. For the alphabet independent approach of Section 9.1.2, see Amir,
Benson and Farach [1994a]. The first O(m2) witness table construction
appeared in Park and Galil [1992]. See Amir, Landau and Vishkin [1992]
for a description of the scaled matching algorithm of Section 9.2, and Amir
and Calinescu [1996] for an alphabet independent and dictionary scaled
matching algorithm. The compressed matching algorithm of Section 9.3
appeared in Amir and Benson [1992], and an improvement can be found in
Amir, Benson and Farach [1994b].

See Aho and Corasick [1975] for a description of the the automaton
based dictionary matching algorithm. Suffix trees and their contruction
are described in Weiner [1973] and McCreight [1976]. The first optimal
algorithm for Least Common Ancestor queries appears in Harel and Tarjan
[1984]. Gabow, Bentely and Tarjan [1984] discuss range minimum queries
and cartesian trees.
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10
Suffix Tree Data Structures for
Matrices

We discuss the suffix tree generalization to matrices in this chapter. We
extend the suffix tree notion (described in Chapter 3) from text strings to
text matrices whose entries are taken from an ordered alphabet with the
aim of solving pattern-matching problems. This suffix tree generalization
can be efficiently used to implement low-level routines for Computer Vision,
Data Compression, Geographic Information Systems and Visual Databases.
We examine the submatrices in the form of the text's contiguous parts that
still have a matrix shape. Representing these text submatrices as "suitably
formatted" strings stored in a compacted trie is the rationale behind suffix
trees for matrices. The choice of the format inevitably influences suffix tree
construction time and space complexity.

We first deal with square matrices and show that many suffix tree fam-
ilies can be defined for the same input matrix according to the matrix's
string representations. We can store each suffix tree in linear space and
give an efficient construction algorithm whose input is both the matrix
and the string representation chosen. We then treat rectangular matrices
and define their corresponding suffix trees by means of some general rules
which we list formally. We show that there is a super-linear lower bound
to the space required (in contrast with the linear space required by suffix
trees for square matrices). We give a simple example of one of these suffix
trees. The last part of the chapter illustrates some technical results regard-
ing suffix trees for square matrices: we show how to achieve an expected
linear-time suffix tree construction for a constant-size alphabet under some
mild probabilistic assumptions about the input distribution.

10.1 Suffix trees for square matrices

We begin by defining a wide class of string representations for square ma-
trices. We let £ denote an ordered alphabet of characters and introduce
another alphabet of five special characters, called shapes.

Definition 10.1. A shape is one of the special characters taken from set
{IN,SW,N''W,S£,NE}. Shape IN encodes the 1x1 matrix generated
from the empty matrix by creating a square. The other shapes denote the
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Fig. 10.1. Shapes SW,S£,NE, NW (clockwise, from the top left).

extension of a generic (i — 1) x (i — 1) matrix 5 in a larger i x i matrix that
contains S as a submatrix, for any i > 1. Shape «SW denotes appending a
row of length i — 1 to the bottom (South) of 5 and a column of length i
to the left (West) of S. Shapes SE, NE and NW are defined analogously
(see Fig. 10.1).

According to Definition 10.1, a string S[l: n] of shapes, such that S[l] =
IN and S[i] = IN for i > 1, encodes a partition of a generic n x n matrix
A into subrows and sub columns: Shape S[i] denotes the extension of an
(i — 1) x (i — 1) submatrix to a larger i x i submatrix, for I < i < n.
Consequently, S[l:n] can be thought of as a sequence of "onion peeling
instructions" used to represent A in one dimension.

Example 10.2. Let us examine the shape string illustrated in Fig. 10.2a,
where S[l: n] = INS£NW S£NW • • •. It induces a unique matrix parti-
tion by "putting" IN in the "center" and by then "covering" the matrix
subrows and subcolumns with shapes (see Fig. 10.2b).

Let us take A's entries, which are some characters chosen from S. We
can associate each shape S[i] with a subrow and a subcolumn because of
Definition 10.1. Consequently, we "cover" 1i — 1 A's entries and concate-
nate the characters read from these entries clockwise. We obtain a string
(representation) that we consider atomic and we therefore call it a macro
character. We define £ = U i = 1 E 2 i - 1 as the set of macro characters: Two
macro characters are equal if their string representations are equal; they
can be concatenated whenever their string representation lengths are 2i — 1
and 2i + 1, respectively, for an integer i > 1. A macro string a = a[l:n]
(of length n) is the concatenation of n macro characters according to the
above rule, such that the first macro character a[l] E S. We use com-
mon terminology for macro strings a: for example, the prefix of length i is
a[l:i]. However, a macro substring a[i: j] is called a chunk to emphasize
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Fig. 10.2. (a) A sequence of shapes and (b) the partition induced by it.

that a[i:j] is not a macro string when i > I (see Example 10.3). There
is a one-to-one correspondence between square matrices and their macro
strings.

Example 10.3. A macro string a[l:n] is called spiral when S[l:n] =
IN SE NW SE NW • • • (see Fig. 10.2). We partition the matrix illus-
trated in Fig. 10.3a according to $ (see Fig. 10.3b). Each shape covers a
matrix subrow and subcolumn and the strings obtained by visiting these
shapes clockwise are shown in Fig. 10.3c. At the top, we report the po-
sitions the characters are taken from. Fig. 10.3d shows the spiral macro
string a [1:3] corresponding to our matrix, in which the macro characters
are separated by vertical bars. We wish to point out that a[l] is a character
in £ and a[l: 2] is still a spiral macro string, whereas a[2:3] is not. We can
represent a macro string in the form of either Fig. 10.3b or Fig. 10.3d.

We would like to build a regular compacted trie (digital search tree) on
a set of macro strings and handle their string representations by the method
used for suffix trees for regular strings (see Chapter 3). The format induced
by the shapes gives us some extra information that we exploit thanks to the
notion of compacted trie built directly on the macro strings in E* rather
than on their string representations in E*.

Given a set of matrices, let us examine the corresponding set M of their
macro strings; we assume that no macro string is a prefix of another one.
A trie for macro strings is like a trie for strings except for the following
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Fig. 10.3. (a) A matrix, (b) its partition into shapes, (c) the strings obtained
by visiting the shapes clockwise, and (d) the matrix's macro string.

characteristics (Figs. 10.4a,b): Each arc is labeled by a macro character; all
the arcs coming from a node are labeled by different macro characters which
originate from the same shape and contain the same number of matrix
entries; there is a leaf v for each macro string a € M, such that the
concatenation of the labels along the path from the root to v gives a.

Tries for macro strings can have one-child nodes just like tries for strings
(Fig. 10.4b). We therefore compact tries for macro strings by taking the
maximal paths made up of one-child nodes and compressing them in single
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Fig. 10.4. (a) The macro strings for three matrices according to S [1:3] =
IN SE NW. (b) The trie for the macro strings, (c) Its compacted version, in
which the arcs are labeled by chunks.

arcs. The arcs' new labels are chunks obtained by concatenating the macro
characters found along the compressed paths. The resulting data structure
is a compacted trie for M. (Fig. 10.4c). Sibling arcs in the compacted trie
are labeled by chunks whose first macro characters are distinct.

We use the following terminology when dealing with compacted tries
CT. We say that a node u is the locus of a macro string a if and only if
the labels' concatenation along the downward path leading from the root
to u is equal to a. The extension of a is any macro string having a prefix
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equal to a. The extended locus of a is the locus of a's shortest extension
having its locus in CT. If the extended locus of a macro string exists, then
it is unique.

We can now define the suffix tree for a square matrix A by carefully
choosing A's "suffixes", i.e., A's submatrices whose macro strings have to
be stored in compacted trie leaves. We closely follow the idea illustrated in
Chapter 3 for storing string suffixes in distinct leaves. We aim at defining
a compacted trie that represents all of A's square submatrices along the
paths by imposing the following two constraints:

Completeness: For each submatrix B, the extended locus of the
macro string representing B is in the compacted
trie. Moreover, there is a one-to-one correspon-
dence between A's positions (i,j) and the com-
pacted trie leaves.

Common Submatrix: If u denotes the extended locus of the macro string
representing a submatrix B, then all of u's descen-
dants are extended loci of macro strings represent-
ing matrices that contain B as their submatrix.

We now illustrate the suffix tree definition. We define it in terms of an
"augmented" square matrix A$ (see Fig. 10.5a) whose rows' and columns'
numbering ranges from — n +1 to 2n: we set A$[l: n, I: n] = A, while all the
other entries A$[p, q] (with — n + 1 < p, q < 2n; p E [1, n] or q E [1, n]) are
distinct instances of $ E E. We let the "suffixes" be n x n matrices denoted
by Aij (with 1 < i,j < n), which are A$'s submatrices defined in the
following way (Fig. 10.5b): S[l] is put in position (i, j) and A$'s subrows
and subcolumns around ( i , j ) are covered by the shapes in S [2:n]. Suffixes
Aij are distinct due to the $ instances and we identify Aij with its origin
(i,j). We use a.-j to denote the macro string (of length n) representing
Aij and let M = {ai, j : 1 < i,j < n} be the set of macro strings to be
stored in the compacted trie. When referring to ai,j and Aij, we implicitly
assume that 1 < i, j < n.

Definition 10.4. The suffix tree TA for an n x n matrix A is a compacted
trie (over the alphabet S) built on M's macro strings:

(10.4.1) There are n2 leaves labeled by the pairs (1,1), (1,2),..., (n, n)
and no internal node having one child (except for the root).

(10.4.2) Each arc is labeled by a chunk so that the labels' concatena-
tions along a root-to-leaf path is equal to one of M's macro
strings. That is, each leaf is the locus of a macro string a,-j-
and is labeled by the pair (i, j) corresponding to Aij's origin.
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Fig. 10.5. (a) The matrix .A$ corresponding to the matrix A (in the center).
The $ symbols represent different instances of $. (b) The "suffixes" Ai,j: we are
only showing the ones such that A$[i,j] = b. They are partitioned according to
S[1:4]=INSENWSE.



300 SUFFIX TREE DATA STRUCTURES FOR MATRICES

Fig. 10.6. The suffix tree for the matrix in Fig. 10.5a. We only illustrate the
root-to-leaf paths storing the macro string of the matrices shown in Fig. 10.5b.

(10.4.3) The first macro characters in the sibling arcs' labels are dif-
ferent and originate from the same shape and have the same
string representation length.

Example 10.5. We show A$ in Fig. 10.5a and let A = AS[1:4,1:4]. Let
us only examine the suffixes Aij with A$[i, j] — b (Fig. 10.5b). We obtain
TVs portion in Fig. 10.6. Macro string ai,j has its locus in the leaf labeled
(i, j). If two leaves share the same path, then their macro strings share the
same prefix that is equal to the macro string represented by the path (e.g.,
leaves (1, 1) and (3, 3) and the path from the root to one of their common
ancestors).

It is worth noting that Conditions 10.4.1-10.4.3 are reminiscent of Con-
ditions 1-3 in the suffix tree definition for strings (Chapter 3). The Com-
pleteness and Common Submatrix constraints mentioned previously are
satisfied by TA because every submatrix is represented by a prefix of a
macro string in M..

Fact 10.6. Let us examine the suffix tree TA for an n x n matrix A and
take an s x s matrix B (where s < n). We have that B is equal to one
of A's submatrices if and only if the extended locus of the macro string
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Fig. 10.7. The same tree as the one shown in Fig. 10.6 whose chunks are
substituted by descriptors.

representing B is in TA- All of A's submatrices equal to B can be retrieved
in all of TA 's leaves that descend from the extended locus.

Suffix tree TA has O(n2) nodes since there are n2 leaves and every
internal node except the root has at least two children. Storing TA in
optimal O(n2) space requires encoding its labeling chunks by constant-
space descriptors. We pick out an arc (u,v) in which v's parent is u and
take the arc's label 7. We examine an arbitrary leaf descending from v, i.e.,
f, and let (i, j) be the pair labeling /. Because of Condition 10.4.2, the
labels' concatenation obtained by traversing the path from the root to /
must give ai,j E M. Since (u, v) is along this path, its label 7 must appear
somewhere in the form of ajj's chunk. That is, we can find p, q E [l,n],
such that ai, j [ p : q ] — 7. We therefore define the constant-space quadruple
(p,q,i,j) as 7's descriptor. By using (p,q,i,j), we can locate A$'s part
corresponding to 7 in constant time. From now on, we assume that the
chunks labeling TA'S arcs are substituted by their appropriate descriptors
• (Fig. 10.7).

Remark 10.7. Suffix trees for matrices can almost always be used in the
same way as suffix trees for strings. For example, we can use TA to search
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Fig. 10.8.
shapes.

(a) The sequence of shapes for Lstrings. (b) Another sequence of

on-line for pattern matrix B's occurrences in A by using Fact 10.6 (see
Exercise 10.1). We can also obtain some statistics about A's square sub-
matrices by means of some TA preprocessing (see Exercise 10.2).

Definition 10.4 holds for many macro strings which are well-suited for
defining suffix tree families.

Example 10.8. With regard to spiral macro strings, in current literature,
their suffix tree is known as PAT-tree for spiral strings (see Fig. 10.6). Let
us now choose S[l: n] = IN SE SE SE • • • to induce the partition shown in
Fig. 10.8a. The resulting macro strings are known in literature as Lstrings.
The corresponding suffix tree is called an Lsuffix tree. An example of an
Lsuffix tree is given in Fig. 10.9, where only the paths leading to the leaves
labeled (i,i) (for i = 1, 2,.. . . , 6) are shown (we ignore some of $'s instances).
The tree satisfies Definition 10.4 and so it can be considered a special case
of suffix trees. There are many suffix trees for the same input matrix. For
example, if we choose S[l:n] = IN SW NE SE SW • • • (see Fig. 10.8b), we
obtain another suffix tree because of Definition 10.4.

In general, an arbitrary string of shapes S[l:n] with S[1] = IN and
S[i] = IN for i > 1 causes a partition of the input matrix A. Consequently,
we can construct the macro string a that represents A according to $ by
letting S[i] "cover" one subrow and one sub column. We let a1 , . . . , a2i-1
be the entries in .A's subrow and subcolumn covered by shape S[i] and read
them clockwise. We can then make it possible to read these characters in
any order (i.e., not only clockwise) by taking a permutation n2i-1 of integers
{1,..., 2i - 1} and letting Bi be the string an2i_1(1)an2i-1(2) • • • an2i_1(2i-i)
obtained by permuting a1 , . . . , a2i-1 by means of n2i-1. We set an array
II[l:n] to store these permutations (i.e., II[i) = n2i-1 for 1 < i < n).
We define A's string representation according to $ and II to be the macro
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Fig. 10.9. The Lsuffix tree: only the paths corresponding to some "suffixes"
are shown, and some $'s are not shown.

stringB1B2 . . .Bn , where each Bi is a macro character. The one-to-one
correspondence between macro strings and matrices still holds.

Suffix tree TA'S previous definition still holds even if the choice of the
"suffixes" Aij (and hence their macro strings ai, j) can vary because of
S and II. We can think of S and II as producing a suffix tree's concise
description independently of A's characters. Since we have 4n-1 distinct
sequences S with n shapes, such that S[l] = IN, and since we can obtain
IIi=1(2i — 1)! permutation arrays II from each S, we therefore obtain many
suffix trees that can be built on the same text matrix. However, once S
is fixed, the suffix trees obtained by means of the IIi=1(2i — 1)! permuta-
tion arrays II are all isomorphic (see Exercise 10.3). This is why we only
explicitly treat sequences of shapes 5 without specifying II (by default, we
assume that II contains the identity permutations read clockwise).

10.2 Suffix tree construction for square matrices

Building the suffix tree TA for an n x n matrix A and a shape sequence S can
be easily accomplished in O(n4) time by installing the paths corresponding
to all the macro strings ai,j E M. The bound follows because each ai, j
has a string representation of O(n2) length and the installing procedure is
repeated for 1 < i,j < n. However, the expected time of this simple ap-
proach is O(n2logn) when using spiral strings, as pointed out by Gonnet.
The first O(n2 log n) worst-case time solution was obtained by Giancarlo
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for the special case of Lstrings by generalizing McCreight's construction
(see Chapter 3). Unfortunately, for all other kinds of macro strings (an
exponential number because of S), Giancarlo's construction does not work
because it does not make clear how the notions of suffix links and rescan-
ning (the main components of McCreight's algorithm) can be extended to
our suffix tree families for matrices.

We present an O(n2 log n) time construction that works for all kinds
of macro strings that can be described by S. We have the additional
advantage of taking linear expected time, i.e., O(n2), for a constant-size
alphabet £ (see Section 10.5).

Our construction follows the high-level scheme of Apostolico, Iliopoulos,
Landau, Schieber and Vishkin's parallel algorithm (in short, AILSV) for
building a suffix tree for strings (see Chapter 3). However, we also need
some techniques tailored to handle macro strings rather than regular strings
efficiently. Instead of employing McCreight's suffix links and rescanning,
Algorithm AILSV's key step is the notion of refinement: it produces a
sequence of trees denoted D(r) (for r = log n , . . . , 0), each one of which is
a better approximation of TA • We show that refinement can be applied
to matrices when allowing an arbitrary S. Given two chunks a i, j[p:q] and
a i ' , j ' [ p : q ' ] , we define a refiner as an integer l, with 0 < I < min(q,q')—p+l,
such that the first t macro characters of the two chunks are equal (i.e.,
a,-j[p:p + l— 1] = ai', j ' [p :p + l — I]). It is worth noting that the first macro
characters of both chunks originate from the same shape S[p] and contain
2p— 1 characters each (including $'s).

Definition 10.9. A refinement tree D(r) is a labeled tree satisfying the
following constraints (for 0 < r < logn):

(10.9.1) There are n2 leaves labeled by the pairs (1,1), (1,2),. . . , (n, n)
and no internal node having one child, except for the root.

(10.9.2) Each node is labeled by a chunk (at least 2r long) represented
by a descriptor. The labels' concatenation along the downward
path from the root to leaf (i,j) is equal to macro string ai : j E
M. (An implicit ( l ,n , i , j ) descriptor is associated with this
leaf.) Furthermore, if descriptor (p,q,i,j) labels a node, then
leaf (i, j) is its descendant.

(10.9.3) Any two chunks labeling sibling nodes do not have a refiner 2r

and their first macro characters originate from the same shape.
(Constraint (10.9.2) allows us to apply the refiner to chunks.)

We wish to point out that D(r)'s arcs are stored as child-to-parent
pointers and its nodes are labeled by chunks, while TA 's arcs are parent-to-
child pointers labeled by chunks. At the beginning, D(logn) is only made
up of the root and the n2 leaves; at the end, D(0) satisfies TA'S definition
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Fig. 10.10. Refinement tree D(2) for the suffix tree in Fig. 10.9. Only some
"suffixes" are shown, and some $'s are not shown.

except that the labels must be moved from the nodes to the arcs and the
arcs' direction must be inverted.

Example 10.10. Let us choose the Lstrings (Fig. 10.8a) as macro strings
in this example and let TA be the suffix tree partially shown in Fig. 10.9.
Refinement tree D(r) (with r = 1) is partially illustrated in Fig. 10.11 (we
explicitly show the chunks on the arcs rather than their descriptors). No
two sibling nodes are labeled by chunks that have a refiner 2r, i.e., the
same 2r = 2 initial macro characters. It is worth noting that D(r) can
be seen as a "relaxed" version of TA , in which the chunks can have less
than 2r initial macro characters that are equal. D(logn) = D(2) is shown
in Fig. 10.10 (here, by logn we mean [logn] because n = 5), while D(0)
shown in Fig. 10.13 and is isomorphic to TA (Fig. 10.9).

Once the sequential version of Algorithm AILSV for regular strings is
available, we might think that applying a refinement step to macro strings is
just an exercise but this is not so (as can be seen below). At the beginning,
D(logn) can be built in O(n 2 ) time. The next important task is to transform
D(r) into D(r-1) by means of the following two steps. We let the children of
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Fig. 10.11. Refinement tree D(1) for the suffix tree in Fig. 10.9. Only some
"suffixes" are shown, and some $'s are not shown.

a D(r)'s node be referred to as its nest. We say that two nodes u, v € D(r
are equivalent if and only if u and v are in the same nest and the chunks
labeling them have a refiner 2 r -1 .

STEP 1. We partition D(r)'s nodes except its root into classes by means
of the equivalence relation and refiner 2r-1. For each equivalence class
C with \C\ > 1, we create a new node w. The parent u of the nodes in
C becomes w's parent and w becomes the new parent of the nodes in C.
If (p,q,i,j) is the descriptor labeling a node in C, then we assign label
(p,p + 2 r - l — 1, i, j) to w and change the descriptor's first component from
p to p + 2r-1 for each node in C.

STEP 2. Let D(r) be the tree resulting from Step 1. For each node u
(other than the root) whose nest produced only one equivalence class, we
remove u from D(r) and make u's only child w be a child of w's parent.
We modify their labels as follows: If (p, q, i, j) and (q + 1, q', i',j') are the
descriptors labeling u and w, respectively, then w's descriptor becomes
(P, q', i', j')• The resulting tree is D(r-1).
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Fig. 10.12. Refinement tree D(1) for the suffix tree in Fig. 10.9, after Step 1.
Only some "suffixes" are shown, and some $'s are not shown.

Lemma 10.11. Steps 1 and 2 correctly transform D(r) into D(r-1).

Proof: See Exercise 10.13b.

Example 10.12. We illustrate trees D(2), D(1), D(1), D(0), respectively,
by continuing Example 10.10 with reference to Figs. 10.10-10.13 (we ex-
plicitly show the chunks rather than the descriptors). We only discuss
the refinement from D(1) to D(0). Let us take D(r) = D(1) and exe-
cute Step 1 with r = 1. The equivalence classes partitioned by refiner
2r-1 = 1 are: {(1,1),(3,3)},{«,(5,5)},{(6,6)},{v},{(2,2)} and {(4,4)},
where pair (i, j) denotes leaf (i, j). The equivalence classes C with \C\ > 1
are: C1 = {(1,1), (3, 3)} and C2 — {u, (5,5)}. We create a new parent for
them (i.e., w and z respectively) in the resulting tree D(1) (Fig. 10.12).
We then execute Step 2 with D(1), where u is the only node whose nest
produced one class (i.e., C1 in Step 1) and so u has only one child w. We
remove u, make z be w'S parent and adjust the labels in order to obtain
tree D(0) (Fig. 10.13).

At this point, the reader may wonder what makes the computation in
Example 10.12 difficult. The answer is that the refinement steps work on
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Fig. 10.13. Refinement tree D(0), which is isomorphic to the suffix tree in
Fig. 10.9. Only some "suffixes" are shown, and some $'s are not shown.

macro strings rather than regular strings. The problem we encounter (in
Step 1) is how to partition D(r)'s nodes into equivalence classes in O(n2)
time. There are O(n2) nests and each nest requires 0(n2) time to be
partitioned with a brute-force approach, while the rest of the operations
in Steps 1-2 can be performed in 0(n2) time. This takes a total of O(n4)
time.

We could reduce the time complexity by using Karp, Miller and Rosen-
berg's pattern-matching technique adapted to macro strings and by fol-
lowing Algorithm AILSV for regular strings. We can briefly describe this
approach as follows. In the first place, a label called, name is assigned to the
chunks (of a power-of-two length) that can be found in the macro strings in
M, so that any two chunks are equal if and only if they both have the same
length and name. Each of D(r)'s nodes also receives a unique integer that
identifies it. It is worth noting that both the names and the integers range
from 1 to O(n2). Secondly, pair (n1, n2) is assigned to each node u (except
the root) where n1 is the unique integer assigned to u's parent and n2 is
the name assigned to the first 2 r - 1 macro characters in the chunk labeling
u. As a result, the equivalent nodes have equal pairs and the node parti-



SUFFIX TREE CONSTRUCTION FOR SQUARE MATRICES 309

tioning can be obtained by sorting these pairs lexicographically in O(n2)
time. The drawback to this approach is that it requires Q(n3logn) time
and space because it may have to assign the names to Q(n3logn) distinct
chunks in M. in the worst case (see Exercise 10.6).

We now show how to partition the nodes in O(n2) time per refinement
step (there are logn steps), after a preprocessing done in O(n2logn) time.
It is worth noting that not all the power-of-two length chunks need names
and the ones that need them vary with the refinement step used and the
sequence S chosen. Our preprocessing consists of applying Karp, Miller
and Rosenberg's technique to matrices in a standard way by computing
the names of A$'B submatrices whose side is a power of two (i.e., of shape
s x s for a power of two s). This can be accomplished in O(n2logn)
time and space because there are O(n2logn) of these submatrices. We
avoid using the names in a straightforward way. For example, we do not
take a chunk and split its corresponding A$ part into "maximal" square
submatrices whose names are known by preprocessing: Since the chunks
represent A$'s parts that can have irregular shapes (e.g., long and thin),
a tuple of O(n) names would be associated with each chunk in the worst
case and the total complexity would again be O(n3logn) time (there would
be O(n2) nests in each of the log n refinement steps, and each nest would
contain some tuples of O(n) names).

For these reasons, we introduce the important notion of capsular matrix
for a chunk, which is defined as the smallest square submatrix that encloses
j4$'s part represented by the chunk. Although two equal chunks do not
necessarily have equal capsular matrices, this is so in our construction.
More specifically, we let au denote the first 2r-1 macro characters in the
chunk labeling a node u 6 D(r) (it is well-defined by Condition 10.9.2 of
Definition 10.9) and assume that (p, p+ 2r-1 — l, i, j) is au's descriptor.
We define au's capsular matrix Mau to be the one corresponding to the
macro string represented by (l, p+ 2r-1 — l, i, j), i.e., by partitioning Aij
according to S[l: n] in order to obtain its submatrix covered by the shapes
in S[l:p+ 2 r -1 — 1] (this submatrix is Ma u).

Example 10.13. We give the capsular matrix when using spiral macro
strings. We examine chunk a (see Fig. 10.14c) and show its capsular ma-
trix Ma partitioned according to S[1:4] = IN SE NW SE (see Fig. 10.14a).
We wish to point out that a can be obtained from Ma by removing the ma-
trix induced by S[1:2] (see Fig. 10.14b). The capsular matrix's definition
applies to any other kind of macro strings and has an interesting property
with respect to the chunks that label the refinement trees' nodes. With ref-
erence to the Lstrings shown in Fig. 10.11, we examine leaves / and g with
labels (1,1) and (3,3), respectively. We let af and ag be the first macro
characters of the chunks that label them and let af's capsular matrix, i.e.,
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Fig. 10.14. Chunk (c) is obtained by removing matrix (b) from matrix (a).

Mf, be obtained by first concatenating chunks from the root to f's parent
and then by appending af to them (the same holds for Mg and ag, see
Fig. 10.15a). It is worth noting that Mf = Mg because aj = ag. Let us
now examine the leaves / and g that have labels (1,1) and (3, 3) shown
in Fig. 10.13. The two macro characters and their capsular matrices are
shown in Fig. 10.15b. We wish to point out that af= ag and Mf= Mg.
The close relationship existing between a chunk and its capsular matrix is
usually not verified in general and only holds for the chunks that label the
refinement trees' nodes.

Lemma 10.14. (Encapsulation) Given any two nodes u and v in D(r)
(which are distinct and not equal to the root): Mau = Mav if and only if
u and v are equivalent (i.e., au = av and u and v are in the same nest).

Proof: The proof is quite technical and is given as Exercise 10.13c.

Lemma 10.14 is crucial for dividing the nodes into equivalence classes.
For each node u (E D(r) in a nest, we locate its capsular matrix Ma u in
constant time. We let H. denote the set of O(n2) matrices obtained. From
Lemma 10.14, it follows that dividing the nodes amounts to grouping their
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Fig. 10.15. Some examples of capsular matrices.

equal capsular matrices together in H. Consequently, we want to identify
the equal matrices in H. Since they do not necessarily have a power-of-
two side, we associate the following quintuple of integers with each matrix
M G H: its side and the names of the four submatrices covering M (they
appear at M's corners, their side is the largest power of two smaller than
M's side and their union with the overlaps gives M). It is worth noting
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that any two matrices are equal if and only if they have the same quintuples
and so a standard lexicographic sorting on the quintuples partitions H in
O(n2) time. We can therefore group equivalent nodes together and perform
a refinement step in O(n2) time.

A simple induction on the refinement steps gives our construction's
correctness by Lemma 10.11. We spend 0(n2logn) time and space to
assign names to the submatrices, O(n2) time per refinement step and the
whole sequence of refinement trees takes a total of O(n2) space because we
only need to store one refinement tree at a time.

Theorem 10.15. Given an n x n matrix A, its suffix tree TA can be built
in O(n2 log n) time and space.

We can reduce the space required for suffix tree construction to linear,
i.e., O(n2), without any loss in efficiency (see Section 10.4). For a constant-
size alphabet, we can also obtain an expected linear-time construction (see
Section 10.5). We now go on to treat the more general case of rectangu-
lar matrices. An important remark must be made about their submatrix
aspect ratios (the aspect ratio of an n1 x m1 submatrix is n1/m1 and so
square submatrices have aspect ratio 1). Let us fix a single aspect ratio
and take all the corresponding (fixed aspect ratio) submatrices into consid-
eration. Their indexing can be done without any loss in efficiency by the
algorithms and data structures examined so f a r . In the next section, we
therefore assume that submatrix aspect ratios vary.

10.3 Suffix trees for rectangular matrices

The reader may wonder whether the notions and algorithms proposed so
far apply to rectangular matrices. In this section, we show that super-linear
space is required for indexing rectangular matrices by means of known data
structures (in contrast to the linear space required for square matrices). We
also give a simple example of a suffix tree for rectangular matrices. As in
the case of square matrices (see Section 10.1), we introduce some basic
building blocks.

Definition 10.16. A block character extends an n1x m1 matrix to a larger
matrix by adding a sequence x of characters to it (see Fig. 10.16): Block
( S , m 1 , x ) denotes appending a row of length m1 to the bottom (South)
and filling this row with x's characters from left to right; blocks (N, m1, x),
(E, n 1 , x ) , and (W, n1, x) are defined in the same way.

Block characters can be defined for any row's and column's length and
two block characters are equal if and only if they are entry-by-entry equal.
Block characters are analogous to macro characters (see Section 10.1) ex-
cept for the fact that the former contain encoded shape information. They
can also be concatenated under the obvious constraint of the appended
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Fig. 10.16. The extensions of C in a matrix that contains C as a submatrix.
The shaded rows and columns correspond to the block characters we define.

row's or column's length. Each matrix can be expressed as a sequence of
block characters called a block string (our definitions of prefix and chunk
are analogous to the ones given for macro strings).

Example 10.17. With reference to Fig. 10.17, let us examine matrix B
(illustrated in (a)). One of its possible representations as a block string
is shown in (b) and its partition in (c): integer i in (c) denotes the i'-th
block character that appears in the string shown in (b), for i = 1,2,..., 6.
Another representation is illustrated in (d) and (e).

An important feature of block strings is that we cannot fix a shape
sequence a priori for them to describe the submatrices' format for a given
input matrix because the submatrices can have various aspect ratios (while
we were able to do so for macro strings, because all the square submatrices
are characterized by a fixed aspect ratio). We characterize this feature by
means of the "submatrix of" relation denoted by =,. This relation is a total
order when restricted to square matrices and can be "translated" into the
total order relation "prefix of" by means of macro strings. Unfortunately, =
becomes a partial order for rectangular matrices and does not "translate"
smoothly into a total order relation like "prefix of" by means of block
strings.

We let A be a general n x m matrix whose entries are taken from an
alphabet E. We assume that n > TO without any loss in generality. We
define the notion of suffix trees for matrices represented in the form of block
strings and then prove that the trees defined in this way require super-
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Fig. 10.17. A matrix and two of its possible representations as block strings.
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linear space, i.e., Q(nm2). The following abstract notion of suffix trees is a
restatement of the Completeness and Common Submatrix properties given
in Section 10.1.

Definition 10.18. An uncompacted index IA for an n x m matrix A is a
rooted tree whose arcs are labeled by block characters:

(10.18.1) No two arcs originating from a node are labeled by equal
block characters.

(10.18.2) Let L(u) be the matrix obtained by the labels' concatenation
found along the path from the root to a node u. For each
submatrix B, there is at least one node u such that L(u) = B.

(10.18.3) For any two nodes u and v, if u is v's ancestor, then L(u) is
a submatrix of L(v).

The suffix tree TA is an uncompacted index IA whose maximal paths of
one-child nodes are compressed into single arcs.

An uncompacted index topology depends on how we represent A's sub-
matrices in terms of block characters. Let us examine a maximal path p of
one-child nodes that goes from a node u to a node v. We compress p in order
to obtain a suffix tree by transforming p into a single arc (u, v) whose label
is the chunk identified by deleting L(u) from L(v) (by Condition 10.18.2,
L(u) is a submatrix of L(v)}. The chunk can be represented in constant
space by the coordinates of its occurrence in A and naturally corresponds
to some blocks in the block string representing L(v). See Fig. 10.18 for an
example. We do not lose any information in going from the uncompacted
index to the suffix tree. We use L(u) to denote the matrix obtained by
concatenating the arc labels (now chunks) from the root to a node u. Since
we compressed the maximal paths of one-child nodes, A's submatrices are
no longer represented by nodes but by arcs instead, i.e., there is at least
one arc (u,v) such that L(u) = B < L(v) for each submatrix B. The
submatrices represented by the same arc are totally ordered even if = is a
partial order:

Fact 10.19. Let A1 , . . . ,Aq be the submatrices represented by arc (u,v)
(i.e., L(u) < Aj < L(v) for 1 < j < q). There is a permutation ji, . . . ,jq

of 1,..., q, such that Ajl < Aj2 < • • • Ajq.

We now derive an Q(nm2) lower bound on the number of TA'S nodes
and arcs for an arbitrary n x m matrix A, with n > m. This also provides
us with a lower bound to the time needed to build it. Therefore, for the
class of data structures introduced in this Chapter, the problem of building
a suffix tree for a general matrix is provably harder than that of building
a suffix tree that only represents square submatrices (or fixed aspect ratio
submatrices).
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Fig. 10.18. (a) A matrix A and (b) its uncompacted index I A (only the paths
representing the submatrices that contain character a in their upper leftmost
entries are shown), (c) Its suffix tree TA (only the paths corresponding to the
ones in (b) are shown).
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For an input matrix A, we let once(A) be the number of the submatrices
that occur only once in A and let SIZE(A) be the number of arcs and
nodes in the smallest suffix tree satisfying Definition 10.18. For given n
and m, such that n > m, we then define SPACE(n, m) as the maximum
SIZE(A) taken over all the possible input n x m matrices A. It is worth
noting that there are always some of the smallest suffix trees that contain
at least SPACE(n, m) arcs and nodes.

Lemma 10.20. SPACE(n, m) > c • once(A)/n for some constant c > 0.

Proof: We let T(A) denote the smallest suffix tree for A (i.e., the smallest
suffix tree chosen among all possible TA's satisfying Definition 10.18). For
each arc ei E T(A), we denote the submatrices that are represented by ei-
and only occur once by Ai, 1 <...< Ai, ki (they are sorted according to the
= relation by Fact 10.19). The inequalities must be strict because these
submatrices occur once in A and are distinct pairwise. It is worth noting
that ki < 2n. Indeed, in the uncompacted index yielding T(A), matrix
Ai, j+1 is obtained by appending at least one block character (either a row
or a column) to Ai, j for 1 < j < ki, and Ai,ki has n x m shape at most (it
is one of A's submatrices).

We let e be the number of arcs in T(A). Since each submatrix is repre-
sented by at least one arc of T(A), we have Ei=1ki > once(A). But ki, < 2n,
and hence e > once(A)/(2n). Therefore, SPACE(n,m) > SIZE(A) =
\T(A)\ > e > c • once(A)/n for some constant c > 0. D

Theorem 10.21. Let £ be an alphabet of at least two characters which the
characters in A are taken from. For an infinite number of n and m values
with n>m, we obtain SPACE(n,m) > cnm2 for some constant c > 0.

Proof: We build an infinite family of matrices A for which once(A) >
Q(n2m2). We pick out n2 = 2* (for some k > 0) verifying n > 64 and
n > k. We also choose an arbitrary m with 0 < m < n. Let us consider a
de Bruijn sequence y of length nm constructed on two characters of E. By
de Bruijn sequence definition, each substring of y of length k = log(nm) is
distinct, i.e., it only occurs once in y. We transform y into an n x m matrix
A by reading y's characters and putting them in column-major order in A.
Let us fix i and j with 1 < i < n — k + 1 and 1 < j' < m. The subcolumn
A[i: i + k — l, j] only appears once in A because it is a substring of length
k of the de Bruijn sequence y stored in column-major order in A. As a
result, any submatrix that contains the subcolumn in its left must only
appear once. Moreover, there are bi, j = (n — i — k + 2)(m — j + 1) of these
submatrices. Therefore, once(A) > En-k+1Ej=1bi, j because all of these
submatrices are distinct pairwise. For n > 64, this sum is lower bounded
by cn2m2 for some constant c > 0, which means that for the matrix A that
we built, once(A) > cn2m2. The theorem follows from Lemma 10.20. D
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We now define a class of suffix trees for n x m matrices, called s-trees.
We assume that n > m because the definition extends to case n < m by
symmetry. We also mention some efficient algorithms for building s-trees.

Let us restrict the block characters in Definition 10.16 to (S, d, x), where
x € Ed, and d is fixed with 1 < d < m. Since we only use one kind of block
character and d is fixed, we can drop the encoding S and d in (S, d, x) so
that the block character becomes a string of length d. As a consequence,
the block strings are now strings on the new alphabet Ed.

The s-trees are a forest of m trees BLTd, for 1 < d < m. For a fixed d,
BLTd represents all the submatrices of width d in the form of block strings
on the alphabet Ed. This is done as follows:

Let Bjtd be the block string of length n that represents A[l: n, j: j+d—l],
with l<j<m—d+l. That is, the block character B j t d [ i ] is the row
A[i, j: j + d — 1]. Every submatrix A[i: k, j: j + d — I] corresponds to a sub-
string of Bjtd (i.e., Bj:d[i, k] = A[i: k,j:j+d— 1]). Hence, if we build a trie I
(for the alphabet Ed) on all the block suffixes of B j t j , for 1 < j < m — d+1,
then we represent all of A's submatrices of width d. That is, for each sub-
matrix C of width d, there is a node u £ I such that the concatenation
of the labels (block characters) produces C. Moreover, all the submatri-
ces of width d whose prefix is equal to C are in the subtree rooted at u.
Therefore, J satisfies the uncompacted index definition (Definition 10.18)
when restricted to A's submatrices of width d. By compressing the max-
imal paths of one-child nodes in I, we obtain BLTd and therefore satisfy
the suffix tree definition when restricted to A's submatrices of width d. By
repeating the above process for each width d with 1 < d < m, we obtain
the s-trees {BLTd :l<d<m}.

Theorem 10.22. The s-trees are suffix trees for matrix A. Moreover, they
can be built in O(nm2 log n) time and stored in optimal O(nm2) space.

Proof: We merge the roots of each BLTd, 1 < d < m, into a single node
so that the forest becomes a tree. This, in turn, is a suffix tree for A by
the definition of BLTd •

As far as the time analysis is concerned, each BLTd is O(n(m — d +
1)) size and can be built in O(n(m — d + l)logn) time. As a matter
of fact, we know that the best algorithm for building a suffix tree for
some regular strings with a total length of t (for an alphabet E') takes
O(imin(|E'|,logt)) < O(t logt) time, provided that we can compare the
characters of E' in constant time (see Chapter 3). For E' = Ed, this can be
done by some preprocessing of A's rows in O(nmlog |E|) time in order to
find the longest common prefix between any two subrows in constant time
(see Chapter 6). O

The s-trees can be used for pattern matching after some preprocessing
in O(nm2logn) time (see Exercise 10.9).
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10.4 Linear-space suffix tree construction for square matrices

In Section 10.2, we showed how to build suffix tree TA for an n x n matrix
A in 0(n2 logn) time and space. We solved our first problem, namely, that
of partitioning the refinement tree nodes into equivalence classes. From
now on, we improve time and space complexity and solve the problem of
reducing the space required in Theorem 10.15 from O(n2logn) to optimal
O(n2). The overhead space is necessary for storing all the names of the
O(n2 log n) submatrices having a power-of-two side. We now want to store
the names in linear space only, i.e., in O(n2), while maintaining O(n2 log n)
time complexity.

We therefore solve the following abstract problem, referred to as Names
on Demand (in short, NOD). We state it in terms of a generic matrix
F[l:p, l:p] whose entries are integers in [l,p2], where p is a power of two.
NOD consists of the following two stages:

NOD-Processing: We examine F's submatrices whose power-of-two side
is no more than p. We group them into equivalence
classes, which each contains the equal submatrices.

NOD-Query: We choose a subset Q of O(p2) submatrices on-line
from the ones in JVOD-processing. A unique integer
in [l,p2] (the name) must be assigned on demand to
each submatrix in Q so that two equal submatrices
have equal names assigned. (We say that these names
are consistent.)

A NOD-queiy can be repeated with different sets Q and the same sub-
matrix can be assigned two different names in two distinct NOD-queries.
Furthermore, we allow some submatrices having different sides to be as-
signed the same name because they are characterized by their sides.

Remark 10.23. We use the two NOD stages to build the suffix tree (see
Section 10.2), assuming that E C {1,2,..., n2} (if this is not so, then we
sort and number the n2 characters in A and encode the $ instances in .A$
as integers in [n2 + l, 9n2]). We apply ,NOD-processing, with F = A$
and p the power of two nearest to 3n, before starting the sequence of
refinement steps. In each refinement step, we have to partition the set H.
of capsular matrices by sorting the quintuples associated with each M <E W,
namely M's side and the names of the four submatrices in M's corners.
We collect all of these submatrices in set Q, which is therefore contained in
the set of the matrices that have been grouped in NOD-processing, where
|Q| = O(n2). We invoke a NOD-queiy on Q to obtain their names, and
finish constructing the suffix tree as in Section 10.2.

The NOD problem can be solved by Karp, Miller and Rosenberg's tech-
nique in O(p2 logp) time and space for NOD-processing and in O(p2) time
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for each NOD-query. However, we can reduce the space to an optimal
O(p2), while maintaining time performance. Let us use shorthand [i,j]k

to denote the submatrix F[i: i + 2k — l,j:j + 2* — 1] (for 1 < i, j < p and
0 < k < logp). (If some entries of [i, j]k are outside F's boundaries, then
we simply assume that they are $ instances.) Our idea of space reduction
is based on the fact that, in NOD-processing, grouping F's submatrices
amounts to computing logp + 1 partitions TO, . . . , Tlogp of F's positions.
More specifically, we group all the positions (i, j) whose corresponding sub-
matrices p, j] are equal together in the same equivalence class by means
of the k-th partition Tk, for 0 < k < logp. These partitions can be suitably
stored as "packed" arrays and require a total of O(p2) memory cells. Given
set Q, a NOD-query consists of "unpacking" a part of the arrays efficiently.
Before describing this formally, we wish to give the following example.

Example 10.24. Let F[l:4,1:4] = A$[l:4, 1:4], with p = 4, where A$ is
the matrix shown in Fig. 10.5a. For matrix F, partition TO groups its 1 x 1
submatrices into the following two classes (one for characters 'a' and the
other for characters 'b'):

{(3, 1), (2, 1), (1, 3), (1, 2), (2, 3), (3, 4), (4, 1), (4, 2), (4, 3)};

{(1, 1), (3, 3), (3, 2), (2, 4), (2, 2), (1, 4), (4, 4)};

partition TI groups the 2x2 submatrices into the following classes:

{(3,1)}; {(2,1), (1,3)}; {(1,2)}; {(2,3)}; {(3,4)}; {(4,1), (4, 2)}; {(4,3)};

{(1,1),(3,3)}; {(3,2)}; {(2,4)}; {(2,2)}; {(1,4)}; {(4,4)};

and partition T2 groups the 4x4 submatrices into singleton classes. Posi-
tion (i, j) in partition Tk represents matrix [i, j] . Let us examine the posi-
tions' sequence in Tk: we say that position (i, j) has rank I in the partition if
(i, j) occupies the l-th position in the sequence. The above partitions are il-
lustrated to highlight the following properties: (1) There is a ranking B such
that B(i, j) = / is (i,j)'s rank in all the partitions whatever their classes
may be (e.g., B(3, 4) = 6 in T0. T1 and T2). (2) The classes' boundaries can
be encoded by logp +1 = 3 binary sequences BO, BI, ..., B logp of p2 + 1
bits each, which can be thought of as "characteristic" vectors of the classes.
In this example, B0 = 1000000010000001, BI = 11011110110111111, and
B2 = 111111111111111. All the matrices [ i , j ] k in an equivalence class
correspond to ranks B(i , j) delimited by two integers: h and h', such that
Bk[h:h'] - 1 0 • • • 0 • • - 0 1 and h < B(i, j) < h'. For example, the equiv-
alence class of 1 x 1 matrices {(1, 1), (3, 3), (3, 2), (2, 4), (2, 2), (1, 4), (4,4)}
is associated with the binary subsequence Bo[10:17] = 10000001, and the
class of 2 x 2 matrices {(2,1), (1,3)} is associated with B1[2:4] = 101.
Ranking B requires O(p2) space, and BO, ..., B logp can be packed in parts
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of O(logp) bits each, providing an O(p2) space representation of partitions
T0 ,.... , T logp.

We give a formal description of the ideas illustrated in Example 10.24.

Definition 10.25. A representation of the partitions T0, • • •, Tlogp is given
by a ranking B : [l,p] x [l,p] —> [l,P2], along with logp+1 binary sequences
B0,B1,...,B logp of p2 + 1 bits each:

(10.25.1) Each matrix [i, j]k corresponds to a rank B(i, j) that remains
the same in all Bk's.

(10.25.2) Bk is a "characteristic" vector of partition T K: the ma-
trices in an equivalence class of Tk occupy a contiguous
part in Bk whose bits are all set to 0, except where a new
equivalence class begins. That is, [i, j]k = [i', j']k if and
only if h < P(i,j), P(i', j') < h' for two integers h,h', such
that Bk[h:h'] = 1 0 - - - 0 - - - 0 1 . (By convention, Bk[l] =
Bk[p

2 + 1] = 1.)
A succinct representation of T0, . . . , Tlogp is obtained by the ranking B and
the arrays B o , . . . , Blogp that are produced by packing B0 , . . . ,B l o g p (in
parts of 0(logp) bits).

From Definition 10.25 it follows that a succinct representation can be
stored in 0(p2) space.

10.4.1 NOD-PROCESSING

We use a prefix-sum-like algorithm Number, which takes a (not necessarily
ordered) sequence t1, t 2 , . . .,t3 , of input keys, and assigns equal integers to
adjacent equal keys. That is, it assigns a non-decreasing number ni to each
ti, such that n1 = 1 and ni = n i-1 + bi, for 1 < i < s, where bi € {0, 1}
verifies 6i = 0 if and only if ti = ti-1. This algorithm takes O(s) time.
Furthermore, we use a linear-time integer or lexicographic sorting.

In .NOD-processing, the simple algorithm described below computes
a succinct representation in O(p2logp) time and O(p2) space. It works
by induction on the matrices [i, j] for k = 0, 1 ,.. .logp by assigning some
"temporary names" to them. The temporary names range from 1 to p2 and
are eventually discarded. At the end, the algorithm also outputs ranking
B. The k-th inductive step is based on the idea that a matrix's temporary
name depends on the temporary names of the four submatrices which the
matrix can be decomposed into:

CASE k = 0. We sort the matrices [i, j] according to their characters
F[i, j] and then apply Algorithm Number to the sorted matrices (by using
their characters as input keys) in order to assign a non-decreasing sequence
of temporary names » n 1 , n 2 , . . . . , n p 2 to them. All matrices in an equivalence
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class of T0 now correspond to a sequence nh, nh+1,. . . , nh'-1 of equal names.
The matrices in some other classes of T0 get different names. Entries Bo[l]
and 5o[p2 + 1] are set to 1 and, for 1 < h < p2 + 1, entry B 0 [h] is set to 1
whenever nh-1= nh. The rest of BO'S entries are set to 0 and B0 is then
packed in B0.

CASE k > 0. We let Qi = [i, j]k-1, Q2 = [i + 2k-1, j]k-1, Q3 = [i,j +
2 k - 1 ] k - 1 , and Q4 = [i + 2k-1, j + 2k-1]k-1 be the four submatrices of
side 2k-1 into which we partition [i,j]k. We assign the quadruple q i,j =
(E1, E2j, E3, E4) to [i, j] , where Ed is the temporary name assigned to Qd in
step k — 1, for 1 < d < 4. These names are still available by our inductive
assumption (unless Qd lies completely outside F's boundaries, in which
case Qd is given a unique integer larger than p2) and can be discarded
after use. In analogy with step k = 0, we sort the matrices [i, j]k by
using the quadruples q i, j as keys. We apply Algorithm Number to the
sorted matrices (by using their quadruples as input keys) and obtain their
temporary names. We set Bk's entries and then pack Bk in Bk.

If k = logp, we compute ranking B by setting B(i , j) — I where / is (i, j)'s
rank in the final list of sorted matrices. This simple algorithm produces a
succinct representation that satisfies Definition 10.25.

Lemma 10.26. NOD-processing correctly computes a succinct represen-
tation of the partitions T0, . . . , T logp in O(p2 logp) time and O(p2) space.

We now prove Lemma 10.26. We define a "local" ranking Bk, such that
Bk(i, j) — I if and only if / is (i,j)'s rank in the sorted list of matrices
produced by step k (and so B = Blogp). Let Bk

-1 be the inverse ranking
(i.e., /^(O = (i, j) if and only if B k ( i , j) = /). We now need Claim 10.27,
which states that 0k and Bk correctly represent the equivalence classes in
the k-th partition Tk.

Claim 10.27. In step k, NOD-processing correctly produces a partition Tk,
of F 's positions into equivalence classes. That is, for each equivalence class,
there are two unique integers: h and h', such that Bk[h:h'] = 1 0 - - - 0 - - - 0 1
and this class is made up of all the matrices [i, j]k that satisfy ( i , j ) E
{Bk

-1(h), B k
- 1(h)B k

- 1(h+1), . . . ,B k
- 1(h '-1)} .

The proof is left to the reader as Exercise 10.13d. Even though the Bk 's are
usually distinct pairwise, Claim 10.28 states that B = Blogp subsumes the
information of all the other Bk's and so we can discard all the Bk's except
Blogp.
Claim 10.28. The equivalence classes created in step k are stable in its
subsequent steps k + 1, k + 2 , . . . , logp. That is, if position (i,j) belongs to
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the equivalence class {Bk
-1(h), Bk

-1(h+1),..., Bk
-1(h'-1)} in partition Tk

(described in Claim 10. 27), then h < Bl(i, j) < h', for all l = k,..., logp.

We choose c such that h < c < h1 to see why Claim 10.28 is true. We let
(i, j) = Bk

-1(c) be a position in an equivalence class of Tk. The k-th step
assigns an integer nc to [i, j]k by Algorithm Number. However, nc is the
first component E1 of the quadruple qi, j assigned to [i, j]k+1 in step k+ 1
and so the positions that are given a rank in [1, h — 1] by Bk, are still to
the left of (i, j) in ranking Bk+1, and the positions that are given a rank in
[h',p2] by Bk are still to the right of (i, j) in Bk+1. Therefore, in step k + 1,
['i jlk+1 can only appear somewhere between the h-th and the (h' — l)-st
position in the sorted list of matrices. That is, h < Bk+1(i, j) < h' — 1.
This process can be repeated for the other steps k + 2, . . . , logp.

We now go back to the proof of Lemma 10.26 and show that ranking
B and the characteristic binary sequences Bk computed by the algorithm
satisfy Definition 10.25. Assuming that [i, j]k =[i', j']k , we notice that
(i, j) and (i', j) are in the same equivalence class of IV By Claim 10.27,
there are two integers h and h', such that h < B k ( i , j ) , B k ( i ' , j ' ) < h' with
B k[h:h '] - 10 • • • 0 • • 01. On the other hand, Claim 10.28 and the fact
that Blogp = B imply that h < B(i, j ) , B ( i ' , j') < h' as well. The reverse of
the proof can be proved in the same way.

As for time and space analysis, there are logp + 1 steps and each step
requires O(p2) time and space (we use linear-time sorting). Moreover,
the total size of packed arrays Bk's is O(p2) because each array is size
0(p2/logp) and there are 0(logp) of them. This completes the proof of
Lemma 10.26.

10.4.2 NOD-QUERIES

We explain how to implement a NOD-query in 0(p2) time. As previ-
ously mentioned, we want to assign consistent names to a set Q of O(p2)
submatrices:

STEP 1. We sort the matrices [i, j] E Q by using the pairs (k, B(i, j)) as
keys in order to obtain a list C. We let Lk be L's contiguous sublist that
contains the submatrices having side 2k, for a fixed k (by Definition 10.25,
equal submatrices are adjacent in Lk, because of ranking B).

STEP 2. For k = 0, 1, . . . , logp, we use the succinct representation of Tk,
to mark the boundaries between the adjacent equivalence classes in Lk.
We then use the boundary marks to assign a distinct integer to each class.
The integer is the name of all the matrices in its class.

Step 1 can be easily implemented in O(p2) time because it sorts all the
pairs in range [0, logp] x [l,p2]. Step 2 is a little trickier. We show how to
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carry it out in O(p2logp) time by using Bk, two new binary vectors, Ck
and Dk, and a transducer A. By using the so-called Four Russians' trick
(see Exercise 10.15), the same computation can be simulated in O(p2)time
on a Random Access Machine (RAM) by using integer vectors Bk, Ck and
Dk that pack the bits of Bk, Ck and Dk, respectively (Exercise 10.16).

We let the span of a given equivalence class in Tk be the interval
[h, h' - 1] if the class is encoded by Bk [h: h'] = 10 • • • 0 • • • 01, where h =
min{B(i, j)} and h' — max{B(i,j)} + 1 for all [i, j]k ranging in the class
(Condition 10.25.2). We also let Ck be the characteristic vector of Ck,
i.e., a binary vector of p2 + 1 bits, such that Ck[B(i, j)] = 1 if and only if
[i, j]k E Lk. All the other entries in Ck are 0. It can be seen that [i. j]k

has the same rank B(i, j) in both Ck and Bk and this, together with the
definition of span, let Lk's matrices belonging to the same class in Tk be
represented by the Is in Ck[h, h' — 1], They form a group induced by Bk
(groups are always nonempty). Therefore, we can mark the list Ck and
locate the boundaries between all the adjacent classes by dividing the Is
in Ck into groups by scanning Bk .

For efficiency's sake, we perform the above operation indirectly by us-
ing a transducer A to compute a binary vector Dk. The bits in Dk, are
considered to be binary colors whose correspondence to the matrices in Tk
is given by B. Dk is initialized to all Os. For all q such that Ck[q] = 1,
Dk[q] is set as follows: The Is in the leftmost group in Ck are assigned 1 in
their homologous positions in Dk. If the previous group in Ck is assigned
b, with b E {0, 1}, then the Is in the current group are assigned b in their
homologous positions in Dk •

Example 10.29. With reference to Example 10.24, we consider the list
L1 = {(1, 3), (1, 2), (3, 4), (4, 1), (4, 2), (3, 3), (3, 2), (1, 4)} in Step 1. Since
the corresponding ranks given by B are 3, 4, 6, 7, 8, 11, 12, 15, respectively,
we have C1 = 0011011100110010. The corresponding groups are induced
by B1 = 11011110110111111, i.e., 00{1}{1}0{1}{11}00{1}{1}00{1}0 (the
groups are indicated in brackets). The binary colors are alternated every
other group and produce D1 = 0010010000100010.

Exercise 10.14 involves verifying that the transducer A in Fig. 10.21
correctly produces Dk for any given Bk and Ck. In the efficient imple-
mentation of iteration k in Step 2, the proper binary colors are assigned
to every other class in Ck by A and the names are found by running al-
gorithm Number on the binary colors in Lk' , this is left to the reader as
Exercise 10. 16.

Lemma 10.30. A NOD-query correctly assigns consistent names to the
matrices in the set Q in O(p 2 ) t ime and space.

Proof: We only analyze complexity. Step 1 takes O(p2) time and space
by using a linear-time lexicographic sort. In Step 2, we let qk be the
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number of matrices in Ck, where Ek=0
logp qk = O(p2). We set Ck and then

compute Dk by means of A so that the matrices in Lk get the proper
binary colors. The operations are simulated by using vectors Bk, Ck and
Dk, rather than Bk, Ck and Df.. In Exercise 10. 16, we show that this can
be done in O(p2/logp + qk) time and space for each iteration k by means
of the Four Russians' trick. The time and space bounds follow because
0(logp - p2/ logp + Ek=0

logpqk) = 0(p2).

This completes our discussion of NOD queries. By Remark 10.23 and
Lemmas 10.26 and 10.30, we can now achieve an optimal space construc-
tion of the suffix tree TA and maintain the same time bound as in Theo-
rem 10.15.

Theorem 10.31. Given an n x n matrix A, Us suffix tree TA can be built
in O(n2 log n) time and O(n2) space.

The result obtained in Theorem 10.31 is optimal for a general alphabet
£ because it amounts to sorting E's characters. When £ is constant size,
we can use the following algorithm.

10.5 *Linear expected-time suffix tree construction for square
matrices

We solve another problem in constructing suffix trees for square matrices
stemming from the fact that the required time is not optimal for a constant-
size alphabet (unlike suffix trees for strings, which only take linear time).
We introduce a variation of our construction that requires optimal O(n2)
expected time for a constant-size alphabet £ under some mild probabilistic
assumptions. We let a repeated submatrix of A be a square submatrix
that occurs at least twice. We define A's largest repeated submatrices as
the ones having the largest number of entries. Let us assume that the
following reasonable hypothesis holds (see the bibliographic notes); we call
it the Logarithmic-Expected-Size or L-hypothesis:

L-Hypothesis: Each of A's largest repeated submatrices is O(logn) ex-
pected size, i.e., the number of its entries is asymptotically
smaller than (cL)2 for some constant c > 1 (where L is
the largest power of two, such that L2 < [log|E| n2]).

As far as the L-hypothesis is concerned, let us assume that cL is an
integer, without any loss in generality. The L-hypothesis implies that cL
is an upper bound to the expected length of the macro strings representing
A's repeated submatrices. With regard to the suffix tree TA, its internal
nodes are the ones that store A's repeated submatrices (Exercise 10. 2a)
and so the extended loci of macro strings longer than cL are expected
to be leaves. We call a node heavy if it is the locus of a macro string
longer than cL; we call it light in all other cases. The concept underlying
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this section is that TVs part containing light nodes can be built in O(n2)
worst-case time; the rest of TVs nodes are heavy, and can be installed in
O(n2) expected time. Of course, the worst-case complexity must remain
O(n2 log n) time; otherwise, adding heavy nodes becomes a trivial task.

A simple analysis shows that we can achieve O(n2 log log n) expected
time with the algorithms discussed so far. The refinement trees for TA
have sibling nodes sharing cL macro characters at most and so D(logn) =
••• = D(r'), for r' = [logcL] = O(loglogn). We expect that the re-
maining O(loglogn) refinement steps really transform the refinement trees
D ( r ' ) , . . . , D(0) in O(n2) time per step, whereas the previous steps do not
modify D(logn). This O(n2loglogn) analysis can be improved to a better
O(n2) as follows.

A compacted trie CT is said to be pruned when it is obtained from TA
by selecting the light nodes; this is done by pruning the subtrees that only
contain heavy nodes. More precisely, if M is the set of macro strings which
TA is built on according to Definition 10.4, then CT is built on the set M'
of distinct cL-length prefixes of M's macro strings. Let us now assume the
following:

(i) We can execute the NOD-processing in O(n2) expected time (see
Exercise 10.18);

(ii) We are able to call a NOD-queiy in O(n2) worst-case time (see
Exercise 10.19);

(iii) We can build CT in 0(n2) worst-case time (see Section 10.5.1).

As a consequence, TA can be obtained by installing the heavy nodes
in CT by a lazy execution of the refinement steps. This means that CT's
leaves must be expanded into TA 's pruned subtrees as follows. We augment
CT by creating some new leaves. There is a new leaf, i.e., w, for each macro
string in M. This new leaf w's parent is the (light) leaf v 6 CT, such that
the macro string stored in w is a prefix of the macro string associated with
w. It follows that the new children of each (light) leaf v £ CT have a
one-to-one correspondence with the leaves of TVs pruned subtree, which
must be rooted at v. Therefore, we only have to refine v'a nest and remove
it when it has one child.

Definition 10.32. For 0 < h < log log n, let lazy(h) be the sequence of
refinement steps r = 2h, 2h — 1,. . . , 1 described in Section 10.2 having the
following additional characteristics:

(10.32.1) At the beginning, we have, D(2h), which is defined as CT
augmented with the new leaves (one new leaf per string in
M).

(10.32.2) If a node in D(r) has only one child, then the node is either
the root of D(r) or a (light) leaf in CT.
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(10.32.3) A refinement step from D(r) to D(r-1) can only be applied
to heavy nodes.

Each refinement tree still has O(n2) nodes because the nodes having
at least two children cannot be more than the leaves, i.e., O(n2), and the
one-child nodes cannot be more than CT's nodes, i.e. O(n2) (by Condi-
tions 10.32.1-10.32.2). Moreover, nest-refining is done almost the same
way as in Section 10.2 by Condition 10.32.3 (the one-child nodes are light).

Consequently, lazy(log log n) produces TA correctly as CT's refinement
after removing all the one-child nodes except the root from it. It can be
seen that Iazy(h) produces the compacted trie for the (cL + 0(22n ))-length
prefixes of M's macro strings and its cost is 0(2hn2) time by point (ii).
Our strategy relies on applying lazy(h) in stages h = 0, 1 ,.. .,loglogn,
according to Definition 10.32. We start from stage h = 0, and after each
stage h, we check to see if tree D(0) has two sibling nodes that make refiner
2° possible. This check can be performed in O(n2) worst-case time by
simply running an extra refinement step with r — 0. If the result is true,
we continue and start stage h + 1. If the result is false, we can infer that
lazy(h + 1), . . . , lazy(log logn) will do no more refining and therefore we
stop executing at stage h.

The worst-case complexity of this execution is still Eh=0
log logn O(2hn2) =

O(n2 logn) time and O(n2) space (see Theorem 10.31). On the other hand,
the L-hypothesis implies that we stop executing at stage h1 — 0(1), such
that cL + 0(22h' ) = cL + 0(1). It follows that no further refining is nec-
essary because TA has already been produced by lazy(h') as well! The
expected cost is therefore Eh'

h=0 O(2hn2) = O(n2) time. In brief, if we can
implement points (i)-(iii) in the bounds claimed, then the overall construc-
tion of TA can be carried out in 0(n2) expected time. Points (i) and (ii)
are quite technical and so we discuss them in Exercises 10.18 and 10.19.
We now deal with Point (iii).

10.5.1 CT'S CONSTRUCTION

There are two main steps in CT's construction in O(n2) worst-case time.
As previously mentioned, CT is built on the set M' of distinct cL-length
prefixes of M. 's macro strings.

STEP 1. For each macro string a E M', we read the matrix's characters
"covered" by a in the order determined by shape sequence S (Section 10.1).
This corresponds to a regular string x of length (cL)2 = 0(log n) associated
with a. We sort these strings lexicographically to obtain an ordered list "R,
and group the strings sharing a common prefix together.

STEP 2. We compute the length of the longest common prefix, LCP,
between any two adjacent strings in R. This can be done in constant time
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Fig. 10.19. An example of a compacted trie CT.

per string pair by means of the Four Russians' trick and some table look-
ups. Next, we build CT on the macro strings in M.' by using the ordered
list R of associated strings along with their LCP information. Indeed, we
are able to build a compacted trie in linear time, given its leaves in left-
to-right order and the lowest common ancestor's depths of adjacent leaves
(Exercise 10.17). In our case, the leaves correspond to the macro strings
in M' in the order determined by their corresponding strings in R. The
lowest common ancestor's depth of two adjacent leaves is found by using
the longest common prefix's length of the two relative macro strings, i.e.,
a, B E M'. This, in turn, can be calculated by the LCP information given
by the associated regular strings x, y E R, respectively, and by the fact
that the longest common prefix's length between a and B is l if and only

Example 10.33. Let M1 contain the three macro strings illustrated in
Fig. 10. 19a. The shape sequence is S[1:3] = IN SE NW and the asso-
ciated strings are babbababb, abaabaaba, babbabaaa and constitute list R =
{abaabaaba, babbababb, babbabaaa}. The LCP information between any two
adjacent strings in R. is 0 and 7, respectively. If we examine the compacted
trie CT in Fig. 10. 19b, built on the macro strings shown in Fig. 10. 19a,
then the macro strings appear in CT's leaves in the order determined by 72
(from left to right). In Fig. 10. 19b, it can be seen that the lowest common
ancestor's depth of the second and third leaf is related to the longest com-
mon prefix's length between the corresponding macro strings, i.e., l = 2

if l2 < LCP(x,y) < (l+1)2.
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(because 22 < LCP(babbababb, babbabaaa) = 7 < 32).

The details implementing Step 2 in O(n2) worst-case time are quite
standard and so they are left to the reader as Exercise 10.21. In the rest of
this section, we discuss the implementation of Step 1 by producing R. from
M'.

10.5.2 SORTING M' TO OBTAIN R

Given a E M', we want to determine its associated string x, which is
used as a key to sort M' and produce R. Since |x| = O(logn), we cannot
explicitly compute this string for every a E M' because it would cost
O(n2 log n) time. Instead, we propose the following solution: We consider
a string decomposition x = x1.x2 ... xs, such that 1/4•L2 < |Xi| < 1/2 • L2

for 1 < i < s and |xs| < 1/2 • L2. The decomposition must be the same for
all the strings x E R, which are associated with the macro strings a E M'.
Sorting all the x's amounts to sorting their tuples ( x 1 , x 2 , . . . . , x s ) because
we use an identical string decomposition for them. Each such string x
satisfies:

• The number of strings which x is decomposed into is s = O(l).
• Each Xi can be interpreted as an integer to the base |E|, denoted I(xi),

where I: E* — [0, n2 — 1] is an isomorphism, such that I (x i ) < I(yi)
if and only if Xi is lexicographically smaller than, or equal to, yi (the
$ character is treated as the largest one).

Therefore, a constant-size tuple ( I ( x 1 } , I ( x 2 ) , - • • , I ( x s ) ) of polynomially-
bounded integers can be used instead of (x1, x2, • • •, xs) for each string x
to be ordered. We can now sort the integer tuples in O(n2) time and focus
on the problem of associating a tuple (I(xI), I(x2), . . . I (xs)) with each
macro string a E M'.

Let us fix a macro string a E M' and examine its associated string
x. We must decide how to decompose x, i.e., we have to establish the
length of the decomposition's members xi. We use the shapes in S[l:cL]
to do this. We actually decompose the sequence S[l: cL] into its contiguous
subsequences S1,..., Ss,. We assign weight 2k — 1 (the number of covered
matrix elements) to shape S[k], for 1 < k < cL, so that each Si's weight is
defined as the sum of the weights of the shapes contained in it. We require
that Si's weight be between 1/4 • L2 and 1/2 • L2 except for Ss's weight,
which can be smaller. This shape decomposition can always be carried out
in O(L) — O(Vlogn) time because each shape's weight is upper bounded
by 1/2 • X2 (since c > 1), and S[k + l]'s weight is equal to S[k]'s weight
plus two. Consequently, we set \Xi\ equal to Si's weight, for 1 < i < s.

We must now determine Xi and find I(xi) by using the length |xi|. We
use a trick for it because finding I ( x i ) directly would take us a total of
O(n2logn) time (see Example 10.34): We compute another integer I(x'i)
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where string x't is obtained by permuting the characters in xi, and then
compute I(xi) from I(x'i) without any loss in efficiency. We let pi be the
mapping between the characters in x'i and Xi according to their permu-
tation (which we define further on). Exercise 10.21 shows that we can
compute a table by the Four Russians' trick with an O(n2) preprocess-
ing time, such that a table look-up of I(x'i) produces I(xi) in constant
time. This means that (I(x1),I(x2), . . . , I (xs) ) can be determined from
(I(x'i), I ( x 2 ) > • • • > •I(x's))-by s = 0(1) table look-ups. In this way, we only
have to define x't and compute I(x'i).

We use S1 S2 • • Ss = S[l:cL] to define x'i. We first define on as a's
chunk obtained by concatenating the macro characters corresponding to
Si's shapes so that we can decompose a as a1 • a2 • • • a s . We can see that
Xi is the string obtained from on by reading the matrix's characters in
the order determined by Si. We then define x'i as the string obtained by
reading these characters in column-major order and pi• as the permutation
that relates the characters in Xi and x'f to each other. The advantage of
using X{ instead of Xi is that I(x'i) can be computed more efficiently, as
follows.

Example 10.34. For two macro strings a = a1 • a2 • • • as and B = B1 •
B2 • • •Bs, let ai be the chunk highlighted in Fig. 10.20a and Bi be the one
highlighted in Fig. 10.20b. As previously, S [ 1 : c L ] = IN SE NW SE • • •.
The matrix entries covered by these chunks are illustrated in Fig. 10.20c
and 10.20d, respectively, and their associated strings can be determined
by reading the characters clockwise according to the macro characters il-
lustrated in Fig. 10.20a,b. We have Xi = bbcaccaacbbabcccabaabcaabcc for
ai, and yi = baabaccaaaabcccabbbacbcaabc for Bi. It is worth noting that
Pi is the "right" shift of ai in the matrix shown in Fig. 10. 20a,b. At this
point, we might consider expressing yi as a sequence of "edit" operations
on Xi to compute 7(yi) from I ( x i ) but this is not possible because the
number of these operations is proportional to the number of Si's shapes,
which can be cL/s = Q(L). We therefore examine the strings obtained
by reading the characters in Fig. 10.20c,d in column-major order, i.e.,
x'i = abbcacbacccbccacbbcaaabaabc and y't = baaaacccbccacaaabaabcbbbacb.
Now y'i can be obtained from x'i- by a constant number of "edit" operations,
namely split and concatenate (see Fig. 10.20e). The sequence of splits and
concatenates depends on which Si is chosen and on the fact that Bi is a
"right" shift of ai. We perform these operations by encoding the strings
x'i and y'f as integers I(x'i) and I(y'i) to the base |E| ranging in [0, n2 — 1].
Splitting a string consists of computing the quotient and the remainder
of the division between the encoding integer and a proper (precomputed)
power of |E| (we recall that the string is encoded to the base |E|). Merg-
ing two strings means multiplying the integer encoding the first string by
some power of |E|, and by then adding the integer encoding the second
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Fig. 10.20. An example of integer computation according to /().

string. Therefore, if we assume that I(x'i) is known and all the subcolumns
of length 3 and 6 have been encoded as integers to the base |E|, 7(y'i) can
be computed with splits and concatenates, according to the edit sequence
shown in Fig. 10.20e. We delete the integers encoding columns abbcac
and bbc from I(x'i), and insert the integers encoding aaa and bbbacb. The
"down" shift can be handled the same way as the "right" shift.
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Example 10.34 shows us that, for a given i E [1, s], I(y'i) can be obtained
from I(x'i) by a constant number of operations, including integer division
and multiplication for a precomputed power of |E|. In general, for each
i = 1, . . . , s , we compute all the integers I(x'i) by the property that an
integer is either the right or the down shift of another. We then compute
the integers I(xi). At the end, each a E M' has an associated tuple
( I ( x 1 ) , I ( x 2 ) , . . . , I ( x 2 ) ) and the process takes a total of O(n2) worst-case
time. This can be seen as a generalization of the Karp-Rabin fingerprint
computation for matrices, with the significant exceptions that: (a) our
computation is deterministic because we work with an isomorphism from
n2 "short" strings into integers in [0, n2 — I]; (b) we do not need to bound
the range of the integers resulting from an operation because (in our case)
the integers always belong to [0, n2-1]; and (c) we work with chunks rather
than submatrices. This completes the description of both the sort of M'
in O(n2) worst-case time and the construction of CT in O(n2) worst-case
time.

In summary, we proved the following result:

Theorem 10.35. According to the Logarithmic-Expected-Size hypothesis,
the suffix tree TA for an n x n matrix A can be built in O(n2) expected time
for a constant-size alphabet E.

10.6 Exercises

1. Reduce the node fan-out in suffix tree TA from O(n2) to O(|E|),
for the n x n matrix A, by starting out from the fact that the first
macro characters in the sibling arcs are different from each other,
and each macro character has a string representation obtained by
concatenating a subrow and a subcolumn of A. Devise an on-line
search of an m x m pattern matrix B to find its occurrences as a
submatrix of A in O(m2 log |S| + occ) time, where occ is the number
of occurrences.

2. Design linear-time algorithms that, given TA, allow the computation
of the following two-dimensional statistics for A:

a) The largest repeated square submatrices: Find the largest square
submatrices of A that occur at least twice in A. Prove and use
the fact that these repeated submatrices are stored in the inter-
nal nodes of TA •

b) Submatrix identifiers: For each position (i, j) of matrix A$, with
1 < i, J < n , find the smallest submatrix whose origin is only
there. The matrix A$ is defined as in Section 10.1.

c) Compact weighted vocabulary: For any submatrix A' of A, find
the number of occurrences of A' in A in O(log n) time. [Hint:
Preprocess the shapes in S such that, for any submatrix A', its
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origin (i, j) can be found in constant time. Take leaf (i, j) in TA
and perform a binary search on (i,.j)'s ancestors assuming that
the h-th ancestor can be found in constant time.]

3. For a fixed sequence S of shapes and a given matrix A, prove that
the suffix trees obtained by varying the array II of permutations are
all isomorphic.

4. Extend the definition of suffix tree to d-dimensional matrices (i.e.,
matrices whose entries are addressed by d > 2 indices). What is a
macro character? How can the node fan-out in the suffix tree be
reduced to O(|E|)? [Hint: Sibling arcs start with different macro
characters that can be treated as matrices of dimension d—l. Build
a compacted trie for dimension d — 1 recursively.]

5. **Suffix automata and directed acyclic word graphs (DAWGs) can
be used for on-line string searches in a given text string (see the
bibliographic notes). Is it possible to extend these notions to square
matrices?

6. **Let E be a general alphabet. For every n > 1, prove that there
are n x n matrices A whose corresponding sets M (Definition 10.4)
contain macro strings with Q(n3 log n) distinct chunks of a power-of-
two length. [Hint: Choose A whose entries are all distinct.]

7. *Devise some efficient algorithms for the Concurrent-Read Concurrent-
Write Parallel Random Access Machine (CRCW PRAM) to build the
suffix tree for matrices, and to search for matrices on-line.

8. Let L be a library of square matrices having different sides. Extend
the definition of suffix trees to library L, and examine the special case
of Lsuffix trees. Devise some efficient algorithms that allow updating
the Lsuffix tree after inserting a matrix into L or deleting it. [Hint:
Use McCreight's construction and the Lsuffix tree.]

9. Preprocess the s-trees for an n x m matrix in O(nm2logn) time in
order to reduce their node fan-out and then perform pattern matching
(see Exercise 10.1). Devise some efficient CRCW PRAM algorithms
for the construction of the s-trees and their on-line search.

10. **Devise an 0(nm2)-time construction of the s-trees for a constant-
size alphabet E.

11. **Find a new index definition for rectangular matrices (alternative to
Definition 10.18) for which the Q(nm2) lower bound in Theorem 10.21
does not hold. The asymptotic time performance of the construction
of the new index should be significantly better than the 0(nm2 log n)
obtained in Theorem 10.22.

12. Consider a matrix M (of a power-of-two side) treated by NOD-
processing (Section.10.4.1). Note that M is decomposed into smaller
and smaller submatrices (case k > 0) until we get characters (case
k — 0). Let SM be the string obtained by reading the characters in
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Fig. 10.21. The transducer A used for computing names by the succinct
representation. For each triple of binary digits on the transitions, the first digit
comes from Bk, the second from Ck, and the third is the output for Dk.

M in the order determined by its decomposition. Prove the following
Prefix Decomposition property:
For any two matrices M and M' of a power-of-two side, M' occurs
in the top left corner of M if and only if SM' is a prefix of SM •

13. Prove the statements in:

a) Fact 10.6. [Hint: Each submatrix is represented by a prefix of
some macro string in M..]

b) Lemma 10.11, with reference to Chapter 3.
*c) Lemma 10.14. [Hint: Both the submatrices of Mau and Mav

that are covered by S[l:p — 1] must be stored in u's and v's
common parent.]

d) Claim 10.27, by induction on step k.

14. Prove that the transducer A illustrated in Fig. 10.21 correctly pro-
duces the binary sequence Dk for any two given binary sequences Bk
and Ck (see Section 10.4.2). Note that A has four states. Two states
are "waiting" (00 and 11) and two are "coloring" (10 and 01):



EXERCISES 335

State 00 encodes the fact that A is "waiting" for the next group of
Is in Ck to start and that this group must be assigned color 1. This
is the initial state. There is a transition out of 00 into "coloring"
state 01 when a group starts. State 01 encodes the fact that A is
"currently scanning" a group of Is in Ck and that this group must
be assigned color 1. There is a transition out of 01 when the end of
a span in Bk is detected. This corresponds to the end of a group in
Ck. The next state is either "waiting" state 11 (no new group starts)
or "coloring" state 10 (a new group starts). The definitions of states
11 and 10 are symmetric to those of 00 and 01, respectively.

15. The Four Russians' trick is based on packing m consecutive charac-
ters a m - 1 , . . . , a0 E E, which are interpreted as an m-digit integer
I(am = 1 , . . . , a0) = Ei=0

m-1 ai|E|i to the base |E|. Solve the following
problems in O(N) time, where N is the input size and |E|m = N.
[Hint: Traverse a complete |E|-ary tree of m height, in which there is
a path from the root to the leaf numbered I (a m - 1 , . . . , a0) for each
distinct configuration of a m - 1 . . . , a0.]

a) Build a table A N D [ I ( a k - 1 , . . . , a0), I ( b k - 1 , . . . , b0)] to compute
the 'bitwise and' between any two sequences a t_ i , . . . , a 0 and
b k - 1 , . . . ,b 0 , where S = {0, 1}, m = 2k, and 22k = N. (A
similar table can be built for the 'bitwise or'.)

b) Compute a table AUT[I ( s1 , s0 ) , I (bk -1 , . . . , b 0 ) , I ( c k - 1 , . . .,c0)]
= /(s'1, s'0), I (dk-1, • • •, d0), with reference to the transducer A
described in Exercise 10.14 so that if any two sequences b k - 1 , . . . ,
60 and ck-1,..., c0 are given as input to A, and the current state
is S1S2, then A outputs the sequence d k - 1 , . . . , do and reaches
state S'1S'0 . (In other words, AUT encodes all possible transitions
of A on binary sequences of length k starting from any state.)
We require that S = {0, 1}, m = 2k + 2, and 22k+2 = N.

c) Given a permutation p of the integers in [0, k — I], compute a ta-
ble P E R M [ I ( a k - 1 , . . . , a 0 ) ] = I ( a p ( k - 1 ) , • •-,ap(o)) to permute
the characters in any sequence according to p, where m = k and
|E|k = N.

d) Build a table L C P [ I ( a k - 1 , . . .,a0), I ( b k = 1 , . . . , b0)] = l, such
that l < k is the length of the longest common prefix between
ak-1 • • a0 and bk-1 • • b0, where m = 2k and |E|2k = N.

16. Implement Step 2 of a NOD-query with vectors Bk, Ck, and Dk,
(Section 10.4.2) by using Exercises 10. 15a-b. The complexity must
be O(p2/logp+ qk) time and space for each iteration k of Step 2,
where qk is the number of matrices in the list Lk.

17. Build a compacted trie in linear time in its size, with your only in-
put being the leaves in left-to-right order and the lowest common
ancestor's depths of the adjacent leaves. [Hint: Use a stack.]
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18. * Implement .NOD-processing in O(n2) expected time (see Point (i)
in Section 10.5) by using the following two ideas: (1) Simulate the
first log L steps by the Prefix Decomposition property given in Exer-
cise 10.12. Sort the strings SM lexicographically for all F's submatri-
ces M having side L (they are n2 at most). Since L = O(logn), the
sorting can be done in O(n2) time by Exercise 10.15c. [Hint: Com-
pute the integer packing the characters in M in column-major order
for all M and then use PERM to obtain I(SM).] Group the equiv-
alent submatrices together whose sides are a power of two smaller
than, or equal to, L by means of a sort history tree SHT. This tree
has logL + 2 levels of nodes, numbered from —1 (the root, corre-
sponding to the empty matrix) to logL (its leaves). There is a node
at level k < log L for each group of equal matrices of side 2* (except
for the root, when k = —1). A node containing a matrix, say M', is
an ancestor of another node containing a matrix, i.e., M, if and only
if M' occurs in the top left corner of M (i.e., SM' is a prefix of SM).
There are no one-child nodes except the root. Build SHT in O(n2)
time by using Exercises 10.15d and 10.17. [Hint: Exploit the rela-
tionship between SHT and the compacted trie built on the strings
SM.] (2) Run the other steps in NOD-processing in a lazy fashion,
i.e., stop executing when all equivalence classes are singletons and
you obtain a "reduced" succinct representation in a total of O(n2)
expected time.

19. Implement a NOD-queiy in O(n2) worst-case time (see Point (ii)
in Section 10.5). [Hint: Let Q be the set of matrices to be named.
Partition Q into two sets Q1 = {[i,j]k E Q : k < logL} and Q2 =
Q — Q1. The equivalence classes for Q1 are obtained by grouping its
matrices together by traversing SHT. The classes for Q2i are found as
indicated in Section 10.4; use the "reduced" succinct representation
computed in Exercise 10. 18.]

20. Extend the definition of SHT given in Exercise 10.18 to all of A's
submatrices having a power-of-two side. Label each node at level
k of SHT with h, h' if the equivalence class stored in this node is
represented by Bk[h:h'] = 1 0 • • • 0 • • - 0 1 (Definition 10.25). Show
that an alternative succinct representation can be given by ranking B
and the extension of SHT (instead of B0, ..., Blogp). Also describe
how to modify NOD-processing and a NOD-query.

21. Refer to Step 1 of CT's construction (Point (iii) in Section 10.5.1).
Show how to transform (I(x'i), . . . , I(x's)) into ( I ( x 1 ) , . . . , I ( x s ) ) by
using Exercise 10.15c. Also describe how to implement Step 2 by
Exercises 10.15d and 10.17.

22. * Consider the following L'-hypothesis, which is a variation of the
.L-hypothesis for a general alphabet £ (Section 10.5):
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Each of A's largest repeated submatrices is no more than (cL)2 ex-
pected size for some constant c > 1, where L is the largest power of
two such that L2 < [log n2](the difference is that the logarithm is
to the base two, whereas in the L-hypothesis, it is to the base |S|).

Show that if the L'-hypothesis holds, then the algorithms in Sec-
tion 10.5 run in 0(n2 log |E|) expected time. [Hint: Sort and number
the characters in O(n2log|E|) time; replace each character by the
log |E| bits of its binary representation. Implement Points (i)-(iii) as
follows: NOD-processing in O(n2 log |E|) expected time, NOD-queiy
in 0(n2) worst-case time, and CT's construction in 0(n2log|E|)
worst-case time.]

23. ** Design a suffix tree construction for n x n matrices that works
in O(n2log |E|) worst-case time for a general alphabet E. Say which
macro strings such a fast construction does not exist for.

24. ** Devise an efficient algorithm for building the suffix tree by using
some string representations other than macro strings (e.g., use row-
or column-major order).

10.7 Bibliographic notes

The study of suffix tree data structures for matrices is motivated by the
pattern-matching applications arising in low-level image processing (Rosen-
feld and Kak [1982]), visual databases in multimedia systems (Jain [1992])
and data compression (Storer [1996]). Gonnet [1988] was the first to in-
troduce the notion of suffix tree for a matrix by using spiral strings (also
see Gonnet and Baeza-Yates [1991]), called PAT-tree—slightly different
from the definition given in Section 10.1. Spiral strings were also discussed
by Mark and Goodchild [1986]. The first efficient suffix tree construction
for square matrices was given by Giancarlo [1993a, 1995], who introduced
the Lsuffix tree and the Lstrings. An equivalent notion of Lstrings was
independently proposed by Amir and Farach [1992]. Giancarlo [1993b]
introduced the abstract notion of rectangular matrix index described in
Definition 10.18 and he proved the lower bound in Theorem 10.22. He
also defined s-trees and devised their construction. Both the s-trees and
the Lsuffix tree can support a wide range of queries, many of which can
be answered in optimal time (see Giancarlo [1993a, 1993b]). Both in these
papers and in Choi and Lam [1995], some algorithms for the dynamic main-
tenance of a library of matrices (see Exercise 10.8) are proposed. Giancarlo
and Grossi [1993a, 1993b] proposed some CRCW PRAM algorithms for the
construction of both Lsuffix trees and s-trees. Giancarlo and Grossi [1994,
1995] introduced the general framework of macro strings and their related
suffix tree families, along with an efficient suffix tree construction method,
all described in this Chapter.

The definition of compacted trie can be found in Knuth [1973]. The



338 SUFFIX TREE DATA STRUCTURES FOR MATRICES

suffix tree construction for strings was proposed in Weiner [1973] and Mc-
Creight [1976], and the AILSV algorithm was introduced in Apostolico,
Iliopoulos, Landau, Schieber and Vishkin [1988] (also see Chapter 3 and
JaJa's book [1992]). The naming technique was devised by Karp, Miller
and Rosenberg [1972] and is described in Chapter 2 (the technique pre-
sented in Section 10.4 improves the amount of space required). With regard
to CRCW PRAM algorithms, Crochemore and Rytter [1991] discuss the
application of the naming technique to several problems, such as the on-
line search in pattern-matching problems involving pattern matrices hav-
ing a power-of-two side (some more references for two-dimensional pattern
matching are given in Chapters 2 and 9). Linear-time lexicographic sort-
ing algorithms are discussed in many textbooks (see, for instance, Aho,
Hopcroft and Ullman [1974]). The Four Russians' trick was devised by
Arlazarov, Dinic, Kronrod and Faradzev [1970] (see Exercise 10.15). The
L-hypothesis on the expected sizes of the largest repeated submatrices (Sec-
tion 10.5) holds under mild probabilistic models, which have all been intro-
duced and discussed for strings (see Szpankowski [1993], equations (2. 3b)
and (2.10) with b = 1 , and point (iv), p. 1185), but they also generalize
to square matrices (Szpankowski [1994]). The expected-time construction
was partially inspired by the one given for suffix arrays by Manber and
Myers [1990] (e.g., the sort history tree SHT and the use of the Four
Russians' trick). The Karp-Rabin fingerprint technique for strings and
matrices is described in Karp and Rabin [1987]. De Bruijn sequences are
defined in de Bruijn [1946]. The technique for finding the longest common
prefix in constant time (proof of Theorem 10.22 and Exercise 10.1) by us-
ing the suffix tree and some lowest common ancestor (LCA) queries was
introduced by Landau and Vishkin [1989] (also see Chapter 6). The best-
known algorithms for LCA queries are described in Harel and Tarjan [1984]
and Schieber and Vishkin [1988]. The algorithm for finding a leaf's h-
th ancestor (Exercise 10.2c) was devised by Berkman and Vishkin [1994].
The directed acyclic word graphs and suffix automata mentioned in Ex-
ercise 10.5 were introduced by Blumer, Blumer, Haussler, Ehrenfeucht,
Chen and Seiferas [1985], Blumer, Blumer, Haussler, McConnell and Ehren-
feucht [1987], and Crochemore [1986].
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11
Tree Pattern Matching

Most of this book is about stringology, the study of strings. So why this
chapter on trees? Why not graphs or geometry or something else? First,
trees generalize strings in a very direct sense: a string is simply a tree
with a single leaf. This has the unsurprising consequence that many of our
algorithms specialize to strings and the happy consequence that some of
those algorithms are as efficient as the best string algorithms.

From the point of view of "treeology", there is the additional pragmatic
advantage of this relationship between trees and strings: some techniques
from strings carry over to trees, e.g., suffix trees, and others show promise
though we don't know of work that exploits it. So, treeology provides a
good example area for applications of stringologic techniques.

Second, some of our friends in stringology may wonder whether there is
some easy reduction that can take any tree edit problem, map it to strings,
solve it in the string domain and then map it back. We don't believe there
is, because, as you will see, tree editing seems inherently to have more data
dependence than string editing. (Specifically, the dynamic programming
approach to string editing is always a local operation depending on the
left, upper, and upper left neighbor of a cell. In tree editing, the upper
left neighbor is usually irrelevant — instead the relevant cell depends on
the tree topology.) That is a belief not a theorem, so we would like to
state right at the outset the key open problem of treeology: can all tree
edit problems on ordered trees (trees where the order among the siblings
matters) be reduced efficiently to string edit problems and back again? l

The rest of this chapter proceeds on the assumption that this question
has a negative response. In particular, we discuss the best known algo-
rithms for tree editing and several variations having to do with subtree
removal, variable length don't cares, and alignment. We discuss both se-
quential and parallel algorithms. We present negative results having to
do with unordered trees (trees whose sibling order is arbitrary) and a few
approximation algorithms. Finally, we discuss the problem of finding com-
monalities among a set of trees.

1 Since the editing problem for unordered trees is NP-complete, we can say that it is
not possible to map it into a string problem.
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11.1 Preliminary definitions and early history

11.1.1 TREES

A free tree is a connected, acyclic, undirected graph. A rooted tree is a free
tree in which one of the vertices is distinguished from the others and is
called the root. We refer to a vertex of a rooted tree as a node of the tree.
An unordered tree is just a rooted tree. We use the term unordered tree to
distinguish it from the rooted, ordered tree defined below. An ordered tree
is a rooted tree in which the children of each node are ordered. That is, if
a node has k children, then we can designate them as the first child, the
second child, and so on up to the kth child.

Unless otherwise stated, all trees we consider are either ordered labeled
rooted trees or unordered labeled rooted trees.

Given a tree, it is usually convenient to use a numbering to refer to
the nodes of the tree. For an ordered tree T, the left-to-right postorder
numbering or left-to-right preorder numbering are often used to number
the nodes of T from 1 to |T|, the size of tree T. For an unordered tree,
we can fix an arbitrary order for each of the node in the tree and then
use left-to-right postorder numbering or left-to-right preorder numbering.
Suppose that we have a numbering for each tree. Let t[i] be the ith node
of tree T in the given numbering. We use T[i] to denote the subtree rooted
at t[i].

11.1.2 A BRIEF REVIEW OF ALGORITHMIC RESULTS IN EXACT TREE
MATCHING

We distinguish between exact and approximate matching as follows. A
match between two objects o and o is exact based on a a matching relation
R if o is a member of R(o). It is in this sense, in strings, that w*ing
matches both "willing" and "windsurfing" where R is defined so that *
can match any sequence of non-blank characters. A match between two
objects o and o given a matching relation R is inexact or approximate if
it isn't exact. For example, w*ing matches "widen" only approximately.
In the case of an approximate match, the distance is normally based on
some monotonic function of the smallest changes to o and/or o that result
in objects p and p respectively such that p is a member of R(p ). Using
edit distance w*ing matches "widen" with distance three, the number of
changes to "widen" to transform it to "wing."

Most of our work has concerned approximate matching in trees, so our
review of the results of exact matching in trees is extremely brief, serving
mostly to give pointers to some of the important papers with the barest
hint of algorithmic idea.

Exact tree matching without variables Let pattern P and target T
be ordered labeled trees of size m and n respectively, P matches T at node
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v if there exists a one-to-one mapping from the nodes of P into the nodes
of T such that

1. the root of P maps to v,
2. if x maps to y, then x and y have the same labels, and
3. if x maps to y and x is not a leaf, then the ith child of x maps to

the ith child of y. (This does not imply that P maps to the subtree
rooted at v, but merely that the degree of y is no less than the degree
of x.)

The obvious algorithm takes O(nm) time. A classic open problem was
whether this bound could be improved. Kosaraju broke the O(nm) barrier
for this problem with an 6(nm0.75) algorithm. (Note that O(f(n,m)} =
O(f(n, m)polylog(m))) He introduced three new techniques: a suffix tree
of a tree; the convolution of a tree and a string; and partitioning of trees
into chains and anti-chains. More recently, Dubiner, Galil and Magen
improved this result giving an O(n-Vm) algorithm. Their result was based
on the use of "k-truncated" suffix trees that, roughly speaking, shorten the
representation of paths from the root of the pattern P to descendants of
the root to have length no more than k. They also used periodical strings.
(A string a is a period of a string B if B is a prefix of ak for some k > 0.)

Dubiner, Galil and Magen first construct a 3Vm-truncated suffix tree,
S, in O(mVm) time. Depending on how many leaves £ has, there are two
cases:

• E has at least \fm leaves. They show that there are at most n/Vm
"possible roots" in the target tree. They can find these "possible
roots" and then check to see if there is a match in O(nVn) time.

• £ has at most Vm leaves. They show that by using the properties of
periodical strings, a matching can be found in O(nVm) time. This
gives an O(nVm) time algorithm.

Exact pattern matching with variables Exact pattern matching has
many applications in term-rewriting systems, code generation, and logic
programming, particularly as a restricted form of unification. In this ap-
plication, patterns are constructed recursively from a single "wild-card"
variable v, a constant c, or a function f ( p 1 , ...,pk) where the arguments
P1,...,pk are patterns in the language. Thus, v, f(c), f ( f ( v ) , c , v ) are all
patterns. The recursion induces a tree: the expression f ( p 1 , • • • , p k ) is the
parent of the arguments p1, ...,pk and the pi's are children or "subpatterns"
of f ( p 1 , - , P k ) .

Pattern p1 matches p2 if it is "more general" (i.e., >) than p2. This
holds if either

1. p1 is v or
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2. p1 is f ( x 1 , . . . , x k ) , P2 is f(y1,...,yk) and xi > yi for all i between 1
and k inclusive.

Note that this allows a variable to match an entire subtree, but if p1 isn't
a variable, then p1 and p2 must begin with the same function symbol.

Given a set of patterns P and a "subject" pattern t, the multi-pattern
matching problem is to find the set of elements in P which match some
subpattern (i.e., subtree) in t.

There are two approaches to this problem: algorithms that start from
the roots of the trees (top-down) and those that start from the leaves
(bottom-up). The bottom-up approaches require significant preprocessing
time of the patterns, but handle each subject faster (in time proportional
to the size of the subject plus the number of matches). In rewriting sys-
tems, the subject is constantly changing, so bottom-up is more attractive.
However, in the development of rewriting systems and in the construction
of conventional compilers (which use pattern matching in back-end code
generation phases), patterns change frequently. Once the compiler is con-
structed, the patterns become static.

The basic technique in the bottom-up algorithms is to construct the set
PF of all subpatterns of P. Since this can be exponential in the size of P,
the auxilliary space and time requirement can be large and much effort has
gone into finding good data structures to hold this set.

The basic algorithm for pattern matching with variables is due to Hoff-
man and O'Donnell. Improvements using better data structures or vari-
ations of the algorithm have been proposed by Chase and Cai, Paige and
Tarjan. Recent work by Thorup presents a short algorithm (with a
rather subtle amortized analysis) that improves the space complexity and
usually the time complexity for preprocessing simple patterns of size p to
O(p logp) time and O(p) space.

11.1.3 EDIT OPERATIONS AND EDIT DISTANCE

Edit operations We consider three kinds of operations for ordered la-
beled trees. Changing a node n means changing the label on n. Deleting
a node n means making the children of n become the children of the par-
ent of n and then removing n. Inserting is the complement of deleting.
This means that inserting n as the child of m will make n the parent of a
consecutive subsequence of the current children of m.

We can consider the same kind of operations for unordered labeled
trees. In this case, in the insertion operation, we have to change consecutive
subsequence to subset.

Suppose each node label is a symbol chosen from an alphabet E. Let
A, a unique symbol not in E, denote the null symbol. We represent an
edit operation as a —> b, where a is either A or a label of a node in tree T1
and 6 is either A or a label of a node in tree T2 • We call a —> b a change
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Fig. 11.1. Edit operations

operation if a = A and b = A; a delete operation if b = A; and an insert
operation if a = A. Let T2 be the tree that results from the application of
an edit operation a —> b to tree T1; this is written T1 — T2 via a — b.

Let S be a sequence s1, ...,Sk of edit operations. An 5-derivation from
tree A to tree B is a sequence of trees A0,...,Ak such that A = A0, B = Ak,
and Ai-1 — Ai via Si for 1 < i < k. Let 7 be a cost function which assigns
to each edit operation a — b a nonnegative real number j(a — b).

We constrain 7 to be a distance metric. That is, i) 7(a — b) > 0, 7(a —
a) = 0; ii) j(a — b) = 7(6 — a); and iii) 7(a — c) < r(a — b) + r(b — c).

We extend 7 to the sequence of edit operations S by letting j(S) =
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Edit and alignment distances The edit distance between two trees
is defined by considering the minimum cost edit operations sequence that
transforms one tree to the other. Formally the edit distance between T1
and T2 is defined as:

De(T1,T2) = min {r(S) | S is an ed it operation sequence taking T1 to
O

T2}.
The alignment distance between two trees is defined by considering only

those edit operation sequences such that all the insertions precede all the
deletions. The reason why this is called alignment distance will be clear
when we discuss it later.

Note that edit distance is in fact a distance metric while alignment
distance is not since it does not satisfy the triangle inequality.

11.1.4 EARLY HISTORY OF APPROXIMATE TREE MATCHING ALGO-
RITHMS

Tai's classical Kuo-Chung Tai gave the definition of the edit distance
between ordered labeled trees and the first non-exponential algorithm to
compute it. The algorithm is quite complicated, making it hard to under-
stand and to implement. The space complexity is too large to be practical.
We sketch the algorithm here.

Tai used preorder number to number the trees. The convenient aspect
of this notation is that for any i, I < i < |T|, nodes from T[l] to T[i] is a
tree rooted at T[l].

Given two trees T1 and T2, let A(T1[l..i],T2[l..j]) be the edit distance
between T1[l] to T1[i] and T2[l] to T2[j].

We can now use the same approach as in sequence editing. Assume that

1]) are already known, we now extend them into D<(T1[l..i],T2[l..j]). If
either t 1 [ i ] or t 2 l j ] is not involved in a substitution, then it is exactly
the same as in sequence editing. That is, we just need to use either
Dt(T1[l..i- l],T2[l..j]) or Dt(Tl[l..i],T2[l..j- 1]) plus the cost of deleting
t 1 [ i ] or inserting t2[j].

The difficult case occurs when we substitute t1[t\ by t2[j]. In this case,
there must be t 1 [ r ] and t2[s] such that t 1 [ r ] is an ancestor of t1[i], t2[s] is
an ancestor of t 2 [ j ] , and we substitute t 1 [ r ] by t2[s]. Furthermore, all the
nodes on the path from t1[i] to t 1 [ r ] are deleted and all the nodes on the
path from t2[j] to t2[s] are inserted.

However in the optimal edit sequence for T1[l..i — 1] and T2[l..j — 1]
we may not find such a pair t 1 [ r ] and t2[s]. This means that in general we
cannot derive A(Ti[l..i],T2[l..j]) from Dt(Ti[l..i - l],T2[l..j - 1]).

In order to deal with this difficulty, Tai introduces another two measures
between trees and the resulting algorithm is quite complex with a time and
space complexity of O(|T1| x |T2| x depth(T1)2 x

Dt(T1[1..i-1],T2[1..j-1]),Dt(T1[1..i-1],T2[1..j]) and Dt(t1[1..i],T2[1..j-

depth(T2)2).
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Fig. 11.2. The difficult case

Lu's algorithm Another edit distance algorithm between ordered trees is
reported by Lu. Lu's definition of the edit operations are the same as Tai's.
However the algorithm given by Lu does not compute the edit distance as
it defined. Nevertheless it does provide another edit based distance.

We will briefly discuss this algorithm and show its properties. Let
t1[i1], t1[i2],..., t1[ini] be the children of t 1 [ i ] and t2[j1], t2[j2], ..., t2[jnj] be
the children of t2[j]. the algorithm consider the following three cases.

1. t1[i] is deleted. In this case the distance would be to match T2[j] to
one of the subtrees of t1[i] and then to delete all the rest of the subtrees.

2. t2[j] is inserted. In this case the distance would be to match T1[i] to
one of the subtrees of t 2 [ j ] and then insert all the rest of the subtrees.

3. t1[i] matches t2[j]. In this case, consider the subtrees t1[i1],t1[i2], ...,
t1[ini] and t2[j1], t2[j2],..., t2[jnj] as two sequences and each individual sub-
tree as a whole entity. Use the sequence edit distance to determine the
distance between t1[i1],t1[i2], ...,t1[ini] and t2[jnj], t 2 [ j 2 ] , ...,t2[jnj].

From the above description it is easy to see the difference between this
distance and the edit distance. This algorithm considers each subtree as
a whole entity. It does not allow one subtree of T1 to map to more than
one subtrees of T2. Using the definition of edit distance, we can delete the
root of one subtree and then map the remaining subtrees of this subtree to
more than one subtrees.

Figure 11.3 shows an example, the edit distance is 1 since we only need
to delete node b. The distance according to Lu's algorithm is 2 since we
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Fig. 11.3. Lu's distance are different from edit distance

can delete node a of tree TI and than replace node 6 by a. We cannot
directly delete node b since if we map a to a, then subtree rooted at b can
only map to one of the two subtrees of tree T2, resulting a distance of 3.
For two level trees, this algorithm does in fact compute the edit distance
between two ordered trees, but not for trees with more levels.

Variants of the problem Selkow gave the another tree edit algorithm
in which the insertions and deletions are restricted to the leaves of the trees.
Only leaves may be deleted and a node may be inserted only as a leaf.

In this case, it is easy to see that if t 1 [ i ] maps to t2[j] then the parent of
t 1 [ i ] must map to the parent of t2[j]. The reason is that if t1[i] is not deleted,
its parent can not be deleted or inserted. This means that if two nodes
are matched, then their parents must also be matched. Yang later give an
algorithm to identify the syntactic differences between two programs. His
algorithm is basically a variation of Selkow's.

It is easy to design an algorithm using string edit algorithm as a sub-
routine to solve this problem. The time complexity is O(|T1| x |T2|).

Kilpelainen and Mannila introduced the tree inclusion problem. Given
a pattern tree P and a target tree T, tree inclusions asks whether P can
be embedded into to T. An alternative definition is to get P by deleting
nodes of T. Both ordered trees and unordered trees are considered.

Since there may be exponentially many ordered embeddings of P to
T, they used a concept called left embedding to avoid searching among
these embeddings. Assume that the roots of P and T have the same label,
their algorithm tries to embed P into T by embedding the subtrees of P
as deeply and as far to the left as possible in T. The time complexity of
their algorithm is 0(|T1| x |T2|).

They showed that the unordered inclusion problem is NP-complete.
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11.2 Tree edit and tree alignment algorithms for ordered trees

11.2.1 NOTATION

While computing the tree-to-tree edit distance, we must compute, as sub-
routines, the distance between certain pairs of subtrees and between certain
pairs of ordered subforests. An ordered subforest of a tree T is a collection
of subtrees of T appearing in the same order as they appear in T.

Specifically, we use a left-to-right postorder numbering for the nodes in
the trees. For a tree T, t[i] represents the ith node of tree T We use T[i]
to represent subtree of T rooted at t [i] and F [i] to represent the ordered
subforest obtained by deleting t[i] from T[i]. We use desc(i) to denote the
set of descendants of t[i]

We use T[i..j] to denote the substructure of T induced by the nodes
numbered i to j inclusive. In general T[i..j] is an ordered forest.

Let t [ i 1 ] , t [ i 2 ] , ...,t[ini] be the children of t[i]. We use F[ir, i s ] , 1 < r <
s < n,, to represent the forest consisting of the subtrees T[ir], ...,T[is].
F [ i 1 , i n i ] = F[i] and F[ip, ip] = T(ip] = F[ip].

Let l(i) be the postorder number of the leftmost leaf descendant of the
subtree rooted at t[i]. When t[i] is a leaf, l(i) = j. With this notation
T[i] = T[l(i)..i] and F[i] = T[l(i)..i - I].

We use depth(T) to represent the depth of tree T; leaves(T) to represent
the number of leaves of tree T; and deg(T) to represent the degree of tree
T.

11.2.2 BASIC TREE EDIT DISTANCE COMPUTATION

Mapping and edit distance The edit operations give rise to a mapping
which is a graphical specification of which edit operations apply to each
node in the two trees (or two ordered forests). The mapping in Figure 11.4
shows a way to transform T1 to T2. It corresponds to the edit sequence
(delete(node with label c), change(node with label g to label h), insert(node
with label c)).

Formally we define a triple (M, TI , T2) to be a mapping from T1 to T2,
where M is any set of pair of integers (i, j) satisfying:

(1) 1<i<|T 1 | , l<j<|T 2 | ;
(2) For any pair of (i1,j1) and (i2, j2) in M,

(a) i1=i2 iff j1=J2 (one-to-one)
(b) t 1 [ i 1 ] is to the left of t1 [i2] iff t2[j1] is to the left of t2[j2] (sibling

order preserved)
(c) t 1 [ i 1 ] is an ancestor of t1[i2] iff t2[j1] is an ancestor of t2[j2]

(ancestor order preserved)

We will use M instead of (M,T1,T2) if there is no confusion. Let M be
a mapping from TI to T2, the cost of M is defined as follows:
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Fig. 11.4. Mapping

Mappings can be composed. Let M1 be a mapping from TI to T2 and let
M2 be a mapping from T2 to T3. Define M1 o M2 = {(i, j) | 3 k s.t. (i, k) E
M1 and (k, j) E M2} It is easy to show that M1 o M2 is a mapping and
7(M1 o M2) < y1 (M 1 ) + 7(M2).

The relation between a mapping and a sequence of edit operation is as
follows: given S, a sequence s1, ... ,Sk of edit operations from TI to T2,
there exists a mapping M from T1 to T2 such that y(M) < y(5); conversely,
for any mapping M, there exists a sequence of editing operations such
that 7(5) = 7(M). This implies that y(T1,T2) = min{y(M) | M is a
mapping from T1 to T2}. Specifically, nodes in T1 that are untouched by
M correspond to deletions from T1, nodes in T1 connected by M to T2

correspond to null edits (if the connected nodes have the same label) or
relabelings (if the connected nodes have different labels), and nodes in T2

that are untouched by M correspond to insertion operations. We will use
the mapping idea to design the algorithm in the next subsection since the
concept of mapping is easy to visualize and is order-independent.

General formula The distance between T1[i'..i] and T2[J' '..j] is de-
noted forestdist(T1[i ' . . i],T^\j ' . . j]) or simply forestdist(i' ., i,j'.. j) if the
context is clear. We use a more abbreviated notation for certain spe-
cial cases. The distance between T1[i] and T2[j] is sometimes denoted
treedist(i,j).
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We first present three lemmas and then give the algorithm.

Lemma 11.1. (i) forestdist(0,0) = 0
(it) forestdist( l( i1) . . i , 0} - forestdist(l(i1)..i -1,0)+ y ( t 1 [ i ] -> A)
depth(T2)2).(Hi) forestdist(0, l(ji)..j) - forestdist(0, l(j1)..j - 1) + y(A -> t2[j])
where i E desc(i1 ) and j E desc(j1 )

Proof: Trivial.

Lemma 11.2. Let i E desc(i1) and j E desc(ji). Then

Proof: We compute forestdis t( l ( i i ) . . i , l ( j1) . . j ) for l(i1) < i < i1 and
l(j1)< j < j1. We are trying to find a minimum-cost map M between
forest(l(i1)..i) and f o res t ( l ( j1 ) . . j ) . The map can be extended t 1 [ i ] and
t1 [i] in three ways.

t1[i] is not touched by a line in M. Then (i, A) E M. In this case we have
forestdi8t( l( i i ) . . i , l ( j1) . . j ) = forestdist(l(i1)..i-l,l(j1)..j) +7(t1[t] —> A).

t2[j] is not touched by a line in M. Then (A,j) E M. In this case we
have fores tdis t ( l ( i i ) . . i , l ( j1) . . j ) = forestdist(l(i1)..i, l ( j1 ) . . j - 1) +7(A —>

t1[i] and t2[j] are both touched by lines in M. Then ( i , j ) 6 M. Here
is why. Suppose (i, k) and (h,j) are in M. if /(i1) < h < l(i) — 1, then i
is to the right of h so k must be to the right of j by the sibling condition
on mappings. This is impossible in f ores t ( l ( j1 ) . . j ) . Similarly, if i is a
proper ancestor of h, then k must be a proper ancestor of j by the ancestor
condition on mappings. This too is impossible. So, h = i. By symmetry,
k = j and (i,j) E M.

Now, by the ancestor condition on mappings, any node in subtree T1[i]
can only be touched by a node in subtree T2[j]. Hence, forestdist( l(i1)..i,
l(h)-j) = forestdist( /(i1)..l(i)-l, l ( j 1 ) - l ( j ) ~ l ) + forestdist( l(i)..i-l,

Since these three cases express all the possible mappings yielding
forestdist( l(i1)..i, l ( j 1 ) . . j ) , we take the minimum of these three costs.
Thus the lemma is proved.

Lemma 11.3. Let i E desc(i1) and j E desc(j1) . Then
(1) if I(i) = l(h) and l(j) = l(j1)

forestdist(l(ii)..i, l(j1)..j)=

l(j)..j-1) + y(t1[i] -> t2[j]).

t2[j]).
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(2) if l(i) = l(t1) or l(j) = l(j1) ('i.e., otherwise)

Proof: Immediately from Lemma 11.2.

Algorithm Lemma 11.3 has three important implications.
First the formulas it yields suggest that we can use a dynamic program-

ming style algorithm to solve the tree distance problem.
Second, from (2) of Lemma 11.3 we observe that in order to compute

treedist(i1, j1 we need in advance almost all values of treedist(i, j) where i
is the root of a subtree containing i1 and j is the root of a subtree containing
j1. This suggests using a bottom-up procedure for computing all subtree
pairs.

Third, from (1) in Lemma 11.3 we can observe that when »' is in the
path from l(i1) to i1 and j is in the path from l(j1) to j1, we do not need to
compute treedist(i, j) separately. These subtree distances can be obtained
as a byproduct of computing t reedis t ( i1 , j i_) .

These implications lead to the following definition and then our algo-
rithm. Let us define the set LR_keyroots of tree T as follows:

LR_Keyroots(T) — {k \ there exists no k' > k such that l(k) = l(k')}

That is, if k is in LR-keyroots(T) then either k is the root of T or
l(k) = l(p(k)), i.e. k has a left sibling. Intuitively, this set will be the roots
of all the subtrees of tree T that need separate computations.

It is easy to see that there is a linear time algorithm to compute the
function l() and the set LR_keyroots. We can also assume that the result
is in array l and LR-keyroots. Further in array LR_keyroots the order of
the elements is in increasing order.

We are now ready to present a simple algorithm for computing edit
distance.

We use dynamic programming to compute treedist(i, j). The forestdist
values computed and used here are put in a temporary array; that is freed
once the corresponding treedist is computed. The treedist values are put
in the permanent treedist array.
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Algorithm: EDIT(T1,T2)

begin
Preprocessing:
(To compute l(), LR_keyroots(T1) and LR-keyroots(T2) )
for s := 1 to \LR-keyroots(T1)|

for t := 1 to |LR_keyroots(T2)|
i — LR-keyroots(T1)[s];
j = LR_keyroots(T-2)[t};
Compute treedist(i, j);

end

Output: tree_dist(T1[i],T2[j]), where 1 < i < |Ti| and 1 < j < |T2|.

Fig. 11.5. Computing treedist(T1 ,T2).

The computation of treedist(i, j) makes strong use of the above lemmas.
From the algorithm, it is easy to see that for any subtree pair T1[i] and
T 2 [ j ] the time complexity for treedist(i,j) is 0(|T1[i]| x |T2[j]|) provided
all the necessary treedist() values are available are available. If we compute
all the treedist() bottom up, we can compute the distance between T1 and
T2 . Therefore the time complexity of the algorithm can be bounded by

In fact the complexity is a bit better than this. After more careful anal-
ysis, we can show that the complexity is O(|T1| x |T2| x min( depth(T1),
leaves(T1)) x min( <depth(T2), leaves(T2))). where leaves(T1) is the num-
ber of leaves in TI . One implication is that this algorithm can be used to
compute the distance between two strings in time O(|T1| x |T2|).

11.2.3 PATTERN TREES WITH VARIABLE LENGTH DON'T CARES

Many problems in strings can be solved with dynamic programming. Sim-
ilarly, our algorithm applies not only to tree distance but also to a variety
of tree problems with the same time complexity.

Approximate tree matching with variable length don't cares Ap-
proximate tree matching is a generalization of approximate string match-
ing. Given two trees, we view one tree as the pattern tree and the other as
the data tree. We want to match, approximately, the pattern tree to the
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Procedure: treedist(i,j)

begin
forestdist(9,0) =0;
for i1 :=l(i) to i

forestdis t (T 1[l( i ) . . i 1] ,0) = forestdist(T1[l(i)..i1 - 1],0)
+ 7(t1[i1]—>A)

for j 1 :=l( j ) to j
fare8tdiat (0 ,T2[ l ( j ) . . j i ] )  =  fores td i s t (0 ,T2[ l ( j ) . . j1  -  1] )

for i1:=l(i) to i
for ji:=/(j) to j

if l(i1) = l(i) and l(j1 = l(j) then
Calculate forestdist(T1[l(i)...i1], T2[l(j)..j1])

as in Lemma 11.3 (1).
t reedis t ( i1 , j1)  = fores td is t (T1[ l ( i ) . . i1] ,T2[ l ( j ) . . j1])
/* put in permanent array */

else
Calculate forestdist(T1 [l(t)..i1], T2[l(j)..j1])

as in Lemma 11.3 (2).
end

Output: freedist(T1[s],r2[t]),
where s E desc(i) and t E desc(j), l(s) = l(i) and l(i) = l(j).

Fig. 11.6. Computing treedist(i, j).

data tree. In the match, we allow the pattern tree to match only part of
the data tree. For this purpose we allow subtrees of the data tree to be
cut freely. Also we allow the pattern tree to contain variable length don't
cares indexvariable length don't cares to suppress the details of the data
tree which are not interested. Intuitively, these VLDC's match part of a
path with or without the subtrees branching off that path. We now give
the formal definitions for cut, variable length don't cares, and approximate
tree matching.

Cutting at node t[i] means removing the subtree rooted at t[i]. Let
C be a set of nodes. We define C to be a set of consistent subtree cuts
if t[i],i|j] E C implies that neither is an ancestor of the other. We use
Cut(T, C) to represent the tree T with all subtrees in rooted at nodes of C
removed. Let subtree(T) be the set of all possible sets of consistent subtree
cuts. The term approximate tree matching (without VLDC's) is defined as
computing

+ y(A -> t2[j1])
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Intuitively, this is the distance between the pattern tree and the cut data
tree, where the cut yields the smallest possible distance.

We consider two VLDC's: | and A. A node with | in the pattern tree
can substitute part of a path from the root to a leaf of the data tree. A
node with A in the pattern tree can substitute part of such path and all
the subtrees emanating from the nodes of that path, except possibly at the
lowest node of that path. At the lowest node, the A symbol can substitute
for a set of leftmost subtrees and a set of rightmost subtrees. We call | a
path VLDC and A an umbrella VLDC, because of the shape they impose
on the tree.

Let P be a pattern tree that contains both umbrella- VLDCs and path-
VLDCs and let T be a data tree. A VLDC-substitution s on P replaces
each path-VLDC in P by a path of nodes in T and each umbrella- VLDC
in P by an umbrella pattern of nodes in T. We require that any map-
ping from the resulting (VLDC-free) pattern P to T map the substitut-
ing nodes to themselves. (Thus, no cost is induced by VLDC substitu-
tions.) The approximate matching between P and T w.r.t. s, is defined as
tree-vldc(P, T, s) = tree.cut(P, T, s). Then,

where S is the set of all possible VLDC-substitutions.

The algorithm The following lemma shows that the two kinds of VLDCs
are the same in the presence of free subtree cuts.2

Lemma 11.4. A path-VLDC can be substituted for an umbrella-VLDC or
vice versa without changing the mapping or the distance value when we
allow subtrees to be cut freely from the text tree.

Proof: Trivial.
We compute tree.vldc(i,j) for 1 < i < |P| and 1 < j < |T|. In the

intermediate steps, we need to calculate forest-vldc(l(i)..ii,l(j)..ji) for
l(i) < i1 < i and l ( j ) < j1 < j. The algorithm considers the following two
cases separately: (1) P[l(i)..i1] or T [ l ( j ) . . j 1 ] is a forest; (2) both are trees.
The overall strategy is to try to find a best substitution for the VLDCs in
P[l(i)..i1], and ask whether or not T[j1] is cut. (Note that in the algorithm,
y ( p [ i 1 ] —> A) = 0 and 7(p[i1] —> t [ j 1 ] ) = 0 when p [ i 1 ] = |.)

2The case for matching without cuttings is much more involved. In that case, we
have to consider the two kinds of VLDCs separately and need an auxiliary suffix forest
distance measure when dealing with umbrella-VLDCs.



356 TREE PATTERN MATCHING

Lemma 11.5. If P[l(i)..i1] or T[l(j)..ji] is a forest, then

Proof: If T[j1] is cut, then forest-vide (l(i)..i1, l ( j ) - - j 1 ) = forest-vide
(l( i) . . i1 , l(j)..l(ji) — 1). Otherwise, consider a minimum-cost mapping M
between P[/(i)..i1] and T[l(j)..ji] after performing an optimal removal of
subtrees of T[ l ( j ) . . j 1 ] . The distance is the minimum of the following three
cases.

(1) p [ i 1 ] is not touched by a line in M. (This includes the case where
p [ i 1 ] = | is replaced by an empty tree.) So, forest-vldc(l(i)..ii,l(j)..ji) =
forest.vldc(l(i)..ii - 1, l(j)-.j1) + y ( p [ i 1 ] -> A).

(2) t[j1] is not touched by a line in M. So, forest-vldc(l(i)..ii,l(j)..ji)
= forest.vldc(l(i)..i1, l(j)..ji - 1) + y(A —>[j1]).

(3) p[i1] and t[j1] are both touched by lines in M. (This includes the
case where p [ i 1 ] = \ is replaced by a path of nodes in T.) By the ancestor
and sibling conditions on mappings, (i1, j1) must be in M. By the ancestor
condition on mapping, any node in P[ i 1 ] (the subtree of P rooted at i1) can
be touched only by a node in T[j1]. Hence, fores t -v ldc( l ( i ) . . i 1 , l ( j ) . . j 1 ) —

( jf o r e s t _ v l d c ( l ( i ) . . l ( i 1 )  -  1 )  + t r e e . v l d c ( i 1 , j 1 ) .

Lemma 11.6. If p [ i 1 ] | or ji = l(j), then

Proof: If T[j1] is cut, then the distance should be forest-vldc(l(i) . . i1 ,0).
Otherwise, consider a minimum-cost mapping M between P[l(i)..i1] and
T [ l ( j ) . . j 1 ] after performing an optimal removal of subtrees of T [ l ( j ) . . j 1 ] .
There are two cases.

(1) p [ i 1 ] | . Depending on whether p[i1] or t[j1] is touched by a line
in M, we argue similarly as in Lemma 11.5.

(2) p [ i 1 ] = | and ji = l(j). Then, in the best substitution, either |
is replaced by an empty tree, in which case fores t -v ldc( l ( i ) . . i 1 , l ( j ) . . j i ) =
forest-vldc(l(i)..i1 - l,l(j)..j1) + y ( p [ i 1 ] —> A), or | is replaced by t[j1], in
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which case forest. vldc(l(i)..ii, l(j)..j1) = forest.vldc(l(i)..ii — 1,l(j)..j1-
1) + y(p[i1] — > i|j1])- The distance is the minimum of these two cases.

Since j1 = l(j), forest.vldc(I({)..ii,l(j)..}i - 1) + j(A —> t[j1])=
forest-vldc(P[l( i) . . i1],0)  + y(A -> t[j1] > forest_vldc(P[l( i) . . i1],0)=
forest-vldc(P[l(()..i1-1],0) = forest_vldc(l(i)..i1-1,l(j)..j1-1) + y(p[i1]
—> t[j1]). Thus, we can add an additional item forest -vldc(l(i)..ii , l ( j ) . . j i —
1)+7(A —> t[j1]) to the minimum expression, obtaining the formula asserted
by the lemma.

Lemma 11.7. If p [ i 1 ] — | and ji = l(j), then

where tk, I < k < nj1t, are children of j1.

Proof: Again, if T[ji] is cut, the distance should be forest-vldc(l(i)..i,0).1 ,0).
Otherwise, let M be a minimum-cost mapping between P[i(I)..i1] and
T[l ( j ) . . j1]  a f ter  per forming an opt imal  removal  o f  subtrees  o f  T[ l ( j ) . . j1] .
There are three cases.

(1) In the best substitution, p [ i 1 ] is replaced by an empty tree. So,
fores t -v ldc( l ( i ) . . i 1 , l ( j ) . . j 1 ) = forest.vldc(l(i)..ii - I, l ( j ) . . j 1 ) + j ( p [ i 1 ] —>
A).

(2) In the best substitution, p [ i 1 ] is replaced by a nonempty tree and
t[j1] is not touched by a line in M. So, forest.vldc(l(i)..ii,l(j)..ji) =
fareat .vldc(l( i) . . i1 , l ( j ) . . j1 - 1) + -y(A —> t[j1]).

(3) In the best substitution, p[i1] is replaced by a nonempty tree and
t [ j 1 ] is touched by a line in M. So, p [ i 1 ] must be replaced by a path of
the tree rooted at t[j1]. Let the path end at node t[d]. Let the children of
t[j1] be, in left-to-right order, t [ t 1 ] , t [ t 2 ] , . . . , t[tnj1]. There are two subcases.

(a) d = j1. Thus, | is replaced by t[j1]. So forest_vldc(l(i)..iv , l ( j ) . . j 1 )

(b) d = j1. Let t[tk] be the child of t[j1] on the path from t[j1] to
t[d]. We can cut all subtrees on the two sides of the path. So, forest-vide
(l(i)..ii, l ( j ) . . j 1 ) = tree-vide (i1, tk). The value of k ranges from 1 to nj1.
Therefore, the distance is the minimum of the corresponding costs.

These lemmas suggest the following algorithm. We omit the initializa-
tion steps.

=fores t_vldc( l ( i ) . . i1-1 , l ( j ) . . j1-1)  + y(p[ i1]  -> t[ j1]) .
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Procedure: tree-vldc(i,j)

begin
for i1 := I(i) to i do

for ji := /(j) to j do

Calculate forest.vldc(T [l(i)-i1], T2{l(j)..j1])
as in Lemma 11.5;

else begin /* l(i1) = l(i) and (j1) = l(j) */
if (p[i1] = I or j1 = l ( j ) ) then

Calculate forest-vldc(T1[l(i)..i1],T2[l(j)..ji])
as in Lemma 11.6;

if ( p [ i 1 ] = | and j1 = l(j)) then
Calculate forest.vldc(T1[l(i). . i1], T2[l(j).j1])

as in Lemma 11.7;

end
end

Fig. 11.7. Computing tree.vldc(i,j).

11.2.4 FAST PARALLEL ALGORITHMS FOR SMALL DIFFERENCES

In our research, we have often imported technology developed for strings
to develop fast tree algorithms. A particularly blatant example is our algo-
rithm for the unit cost edit distance (unit cost means that node deletions,
node relabellings, and node insertions all have the same cost). The algo-
rithm starts from Ukkonen's 1983 technique of computing in waves along
the center diagonals of the distance matrix. At the beginning of stage k,
all distances up to k — 1 have been computed. Stage k then computes in
parallel all distances up to k. We use suffix trees as Landau and Vishkin
to perform this computation fast.

In the string case, if S1[i..i + h] = S2[j..j + h], then the distance be-
tween Si[l..j — 1] and S2[l . . j — 1] is the same as between S1[l..i + h] and
52[l..j + h]. The main difficulty in the tree case is that preserving an-
cestor relationships in the mapping between trees prevents the analogous
implication from holding. In addition, to compute the distance between
two forests at stage k sometimes requires knowing whether two contained
subtrees are distance k apart.

We overcome these problems by studying the relationship between iden-
tical subforests and distance mappings. We find the relevant identical
forests by using suffix trees corresponding to different traversals.

i f  l ( i1)  = l ( i )  or  l ( j1)  = l ( j )  then

tree_vldc(i1, j1)  := forest_vldc(T1[l( i ) . . i1] ,T2[l( j ) . . j1]);
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Fig. 11.8. (a) Tree T1. (b) Tree T2. (c) The optimal alignment of T1 and
T2.

The preprocessing time complexity is dominated by the cost of con-
structing suffix trees. It is bounded by O(log(|T1| + |T2|)) < O(log(2 x
min(|T1|, |T2|) + k)) < O(log(min(|T1|, |T2|)) + log(k)). The time complex-
ity of the algorithm is: O(k x log(k) x log(min(|T1|, |T2|))) where k is the
actual distance between T1 and T2.

11.2.5 TREE ALIGNMENT PROBLEM

It is well known that edit and alignment are two equivalent notions for
sequences. In particular, for any two sequences x1 and x2, the edit distance
between x1 and x2 equals the value of an optimal alignment of x1 and x2.
However, edit and alignment turn out to be very different for trees, see
Figure 11.8. Here, we introduce the notion of alignment of trees as another
measure of similarity of labeled trees. The notion is a natural generalization
of alignment of sequences.

Definitions Let T1 and T2 be two labeled trees. An alignment A of TI
and T2 is obtained by first inserting nodes labeled with A into T1 and T2

such that the two resulting trees T1 and T2 are topologically isomorphic,
i.e., they are identical if the labels are ignored, and then T'1 is overlaid
on T2. An example alignment is shown in Figure 11.8. An edit cost is
defined for each pair of labels. The value of alignment A is the sum of the
costs of all pairs of corresponding labels. An optimal alignment is one that
minimizes the value over all possible alignments. The alignment distance
between T1 and T2 is the value of an optimal alignment of T1 and T2.

It is easy to see that in general the edit distance is smaller than the
alignment distance for trees. The reason is that each alignment of trees
actually corresponds to a restricted tree edit in which all the insertions
precede all the deletions. Note that, the order of edit operations is not
important for sequences. Also, it seems that alignment charges more for
the structural dissimilarity at the top levels of the trees than at the lower
levels, whereas edit treats all the levels the same.

The notion of alignment can be easily extended to ordered forests. The
only change is that it is now possible to insert a node (as the root) to
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join a consecutive subsequence of trees in the forest. Denote the alignment
distance between forests .F1 and F2 as A(F 1 ,F 2 ) . Let 9 denote the empty
tree, and j(a, b) denote the cost of the opposing letters a and 6. Let T1

and T2 be two fixed ordered labeled trees throughout this section.

Formulas Let t 1 [ i] be a node of T1 and t[ \ j] a node of T2. Suppose that
the degrees (number of children) of t1[i] and t2[j] are mi and nj, respec-
tively. Denote the children of t 1 [ i ] as t1[i1], . . , t1[imi] and the children of
t2|j] as t2[j1], . . . ,t2[jnj]. For any s,t, 1 < s < t < m;, let F 1 [ i , , i t ] repre-
sent the forest consisting of the subtrees T1[is], . . . ,T1[tt]. For convenience,
F 1 [ i 1 , i m i ] is also denoted F1[i]\. Note that F1[i] = F1[i , i]- F2[js,,ji] and
F2[j] are defined similarly.

The following lemmas form the basis of our algorithm. The first lemma
is trivial.

Lemma 11.8.

Lemma 11.9.

Proof: Consider an optimal alignment (tree) A of T1[i] and T2[j]. There
are four cases: (1) (t1[i],t2[j]) is a label in A, (2) (t1[i], A) and (t1[k],t2[j])
are labels in A for some k, (3) (t1[i],t2[k]) and (A.t2[j]) are labels in A for
some k, (4) ( t 1 [ i ] , A) and (A, t2[j]) are labels in A. We actually need not
consider Case 4 since in this case we can delete the two nodes and then
add (t1[i],t2|j]) as the new root, resulting in a better alignment.

Case 1. The root of A must be labeled as (t1[i],t2[j]). Clearly, A( T 1 [ i] ,
T 2 [ j ] ) = A( F1[i], F 2 ( j ] ) + y ( t 1 , t 2 [ j ] ) .

Case 2. The root of A must be labeled as (t1[i],A). In this case k
must be a node in T 1 [ i r ] for some 1 < r < m,. Therefore, A(T1[i],T2[j]) =
A(T1[i],0)+ min1<r<mi{A(Ti[ir],Ta[j]) - A(T1[ir],0)}.

Case 3. Similar to Case 2.
Note, the above implies that A(F1[i], F2[j]) is required for computing

A(T1[i],T2[j]).
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Lemma 11.10. For any s,t such that 1 < s < mi and 1 < t < nj,

Proof: Consider an optimal alignment (forest) A of F1 [i1, iS] and
F2[j1,jt]). The root of the rightmost tree in A is labeled by either

Case 1: the label is (t1 [is], t2[jt]). In this case, the rightmost tree must
be an optimal alignment of T1[is] and T2[jt]. Therefore A( F 1 [ i 1 , i,],

Case 2: the label is (t1[is], A). In this case, there is a k, 0 < k < t, such
that T1[is] is aligned with the subforest F2[jt-k+i>jt]- A key observation
here is the fact that subtree T2[jt_k+1] is not split by the alignment with
Ti[is]. There are three subcases.

2.1 (k = 0) I.e., F2[jt-k+1,jt] = 0. Therefore,
A ( F 1 [ i l t i s ] , F2[ j 1 . j t ] ) = A(F1[ii,it-1], F2[j1jt])+A(T1[is], 0).

2.2 (k = 1) I.e., F2[jt-k+1,jt] — T2[jt]. This is the same as in Case 1.
2.3 (k > 2) This is the most general case. It is easy to see that

Case 3: the label is (A,t2[jt]). Similar to Case 2.

Algorithm It follows from the above lemmas that, for each pair of sub-
trees Ti[i] and T2[j], we have to compute A(F1[t],F2[jt,ji]) for all 1 < s <
t < nj, and A(F1[i s , i t],F2[j]) for all 1 < s < t < mi. That is, we need
align F1[i] with each subforest of F2[j], and conversely align F2[j] with each
subforest of F1[i]. Note that we do not have to align an arbitrary forest
of F1[i] with an arbitrary forest of F2[j]- Otherwise the time complexity
would be higher.

For each fixed s and t, where either s = l o r t = l, l < s < m , - and 1 <
t < nj, the procedure in Figure 11.9 computes { A ( F 1 [ i s , i p ] , F 2 [ j t , j q ] ) | s <
P < mi,t < q < n j } , assuming that all A(F1 [ik], F2[jp,jq]) are known,
where 1 < k < mi and 1 < p < q < nj, and all A(F1[ip , iq], F 2 l j k ] ) are
known, where 1 < p < q < m{ and 1 < k < nj.

(t1[is],t2[jt]), (t1[is],A), or(A,t2[jt]).

jt]) = A(F1[i1,is-1], F2[j1,jt-1]) + A(T1[is],T2[jt]).
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Input: F1[is,im] and F2[jt, jni].

Procedure: forest_align()

Output: A (F 1 [ i s , i p ] ,F 2 [ j t , j q ] ) , where s < p < m; and t < q < nj}.

Fig. 11.9. Computing {A(F 1 [ i s , ip], F2[jt, j q ] ) \ s < P < mi, t < q < nj] for
fixed s and t.

Hence we can obtain A ( F i [ i ] , F 2 [ j s , j t ] ) for all 1 < s < t < nj by calling
Procedure forest-align nj times, and A (F 1 [ i s , i t ] , f 2 [ j ] ) for all 1 < s < t <
mi by calling Procedure forest-align mi times. Our algorithm to compute
A(T1,T2) is given in Figure 11.10.

For an input F 1[ i s , im i] and F2[jt , jn j], the running time of Procedure
forest-align is bounded by

So, for each pair i and j, Algorithm ALIGN spends 0(mi x nj x (m; + nj)2)
time. Therefore, the time complexity of Algorithm ALIGN is

If both TI and T2 have degrees bounded by some constant, the time com-
plexity becomes O(|T1| • |T2|). Note that the algorithm actually computes
A(T1([i],T2[j]), A(F1[i],F2[j]), A(F 1 [ i s , i t ] ,F 2 [ j ] ) and A(Fl(i],F2[js,jt])._
With these data, materializing an optimal alignment can be found using
back-tracking. The complexity remains the same.

begin
A(F1[i t , i .-1],F2[j tJ t .1]):=0;
for p := s to m;

A(Fi[ i . , i p ] ,Fi \ j t J t - 1 ]) i=A(F1[i . , i P - i] ,F2[j t , j t - i ] ) + A(Ti[ip],0)-,
for q := t to nj

A(Fi[is, is-1],F2[jt,jq,]) := A(F1[i., i.-i], F2[jt, jq_1]) + A(o,T2[jq]);
for p := s to mi

for q := t to nj
Compute A ( F 1 [ i s , i p ] , F 2 \ j t , 3 q ] ) as in Lemma 11.10.

end
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Algorithm: ALIGN(T1,T2)

begin
A(0 ,0) :=0;
for t := 1 to |T1|

Initialize A(T1[i],0) and A(Fi[i],0) as in Lemma 11.8;
for j := 1 to |T2|

Initialize A(6,T2[j]) and A(0, F2[j]) as in Lemma 11.8;
for i := 1 to |T1|

for j := 1 to |T2|
for s := 1 to mi

Call Procedure forest-align on F1[is , im i] and F2[j];
for t := 1 to nj

Call Procedure forest-align on F1[i] and F2[jt,inj];
Compute .A(Ti[i],T2[j]) as in Lemma 11.9.

end

Output: A(T1[i],T2[i]), where 1 < i < |T1| and 1 < j < |T2|.

Fig. 11.10. Computing A(T1,T2).

11.2.6 TREE PATTERN DISCOVERY PROBLEM

We briefly discuss the pattern discovery problem. In matching problems,
we are given a pattern and need to find a distance between the pattern
and one or more objects; in discovery problems, by contrast, we are given
two objects and a "target" distance d and are asked to find the largest
portions of the objects that differ by at most that distance. Specializing the
discovery problem to a pair of trees, we want to find the largest connected
component from each tree such that the distance between them is under
the target distance value.

Let us consider the connected component in one of the trees. Since it
is connected, it must be rooted at a node and is generated by cutting off
some subtrees. This means that a naive algorithm for tree pattern discovery
would have to consider all the subtree pairs and for each subtree pair all
the possible cuts of its subtrees. Since the number of such possible cuts is
exponential, the naive algorithm is clearly impractical.

Instead we use a compound form of dynamic programming. By com-
pound, we mean that dynamic programming is applied (1) to compute sizes
of common patterns between two subtree pairs given a set of cuts; (2) to
find the cuttings that yield distances less than or equal to the target one;
(3) to compute the optimal cuttings for distance k, 1 < k < d, given the
optimal cuttings for distances 0 to k — 1.

In the computation of an optimal solution for distance value k, we also
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have to solve a problem which is unique for trees. Consider a pair of
subtrees s1 and s2 whose roots map to one another in the optimal solution
for distance value k. Then, in general, there are several subtree pairs of s1

and s2 that map to one another. We have to determine how the distance
value k should be distributed to these several subtree pairs so that we
can obtain the optimal solution. We solve this problem by partitioning
the subtrees of s1, respectively s2, into a forest and a subtree. We then
compute the distance and size values from forest to forest and from subtree
to subtree.

Using this general framework, we can solve the tree pattern discovery
problem for edit and alignment distance measures. Given a target distance
value d, the time complexity of the algorithm for edit distance measure is
(d2x |T1| x |T2| x min(depth(T1), leaves(T1)) x min(depth(T2), leaves(T2))),
and the time complexity of the algorithm for alignment distance measure
is 0(d2 x |T1| x |T2| x (deg(T1) + deg(T2))

2).

11.3 Algorithms and hardness results for unordered trees

Recall that unordered labeled trees are rooted trees whose nodes are la-
beled and in which only ancestor relationships are significant (the left-to-
right order among siblings is not significant). Such trees arise naturally in
genealogical studies, for example, or in parts explosions. For many such
applications, it would be useful to compare unordered labeled trees by some
meaningful distance metric. The editing distance metric, used with some
success for ordered labeled trees, is a natural such metric. The alignment
distance is another metric. This section presents algorithms and complexity
results for these metrics.

11.3.1 HARDNESS RESULTS

We reduce Exact Cover by 3-Sets to the problem of computing the edit
distance between unordered labeled trees. This means that computing the
edit distance between unordered labeled trees is NP-hard. We assume that
each edit operation has unit cost, i.e. y7(a —> b) = 1 if a = b.

Exact Cover by 3-Sets
INSTANCE: A finite set S with |5| = 3k and a collection T of 3-element
subsets of S.

QUESTION: Does T contain an exact cover of S, that is, a subcollection
T' C T such that every element of S occurs in exactly one member of T"?

Given 5 = {s1 ,s2 , . . .sm}, where m = 3k and T = Ti,T-2,...Tn where
Ti = {t1 , t i2,ti3}i tij E S, we construct the two trees as in Figure 11.11.

The following lemmas show that treedist(T1, T2) = 3n—2k if and only if
there exists an exact 3-cover. Since the problem is clearly in NP, the lemmas
show that the problem is NP-complete. The proofs of these lemmas are
left as exercises.
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Fig. 11.11. The reduction

Lemma 11.11. Let M be a mapping between T1 and T2. If there are d > 0
nodes of T2 not in mapping M, then y ( M ) > 3n — Ik + d.

Lemma 11.12. treedist(Ti,T2) > 3n - 2k.

Lemma 11.13. If there is an exact 3-cover, then treedist(T1,T2) = 3(n —

Lemma 11.14. If treedist(T1,T2) — 3n — 2k, then there exists an exact
3-cover,

In fact there are stronger results concerning the hardness of comput-
ing the edit distance and alignment distance for unordered labeled trees.
Computing the edit distance between two unordered labeled trees is MAX
SNP-hard even if the two trees are binary. Computing the alignment dis-
tance between two unordered labeled trees is MAX SNP-hard when at least
one of the trees is allowed to have an arbitrary degree. The techniques for
these proofs are similar to the one we just presented. The reduction is from
Maximum Bounded Covering by 3-sets which is an optimization version of
Exact Cover by 3-sets.

k) +k = 3n - 2k.
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Algorithm: ALIGN(T1,T2)

Fig. 11.12. Aligning unordered binary trees.

11.3.2 ALGORITHM FOR TREE ALIGNMENT AND A HEURISTIC AL-
GORITHM FOR TREE EDIT

When the degrees are bounded, we can compute the alignment distance
using a modified version of Algorithm ALIGN. Lemmas 11.8 and 11.9 still
work. The only difference is in the computation of D(F 1 [ i ] ,F2[ j ] ) . We have
to revise the recurrence relation in Lemma 11.10 as follows: for each (forest)
C C {T1[i1],.. .,T1[imi]} and each (forest) D C {T2[j1],.. .,T2[jnj]},

Since mi and nj are bounded, A(C, D) can be computed in polynomial
time. If Ti and T2 are both in fact binary trees, the algorithm can be
much simplified, as shown in Figure 11.12 It is easy to see that the time

begin
for i:= 1 to |T1|

for j := 1 to \T2\
A(F 1[i] ,F 2 [ j]):=min{

7(t1[i2], A) + A(F1[i2], F2\j\) + A(T1[i1],O),
r(t1[i1], l) + A(F1[i1], F2\j\) + A(T1[i2], 0),
7(A, t2[j2]) + 4(F1[i], F2[j2]) + A(o, T2[j1]), T2[j1]),
r(l, t2[j1]) + A(F1[i], F2[j1]) + A(0, T2[j-2]),
A(T1[i1]),T2[j1]) + A(T1[i2],T2[j2]),
A(T1[i1],T2[j2]) + A(T1[i2],Ta^i]) };

A(T1[i],T2[j]):=min{
7(*i[*1,*2[j]) + A(F1[i], F2[j]),
7(<![i], l) + A(T1 [i1], T2[j]) + A(T1[i2], o),
7(t1[i], l) + A(T1 [i2], T2[j]) + A(T1[i1],o),
r(l,t2[j]) + A(T1[i], T2[ji]) + A(o, T2[J2]),
r(l,t2[j]) + A(T1[i], T2{[j2]) + A(o,T2[j1])};

end

Output: A[T1|T1|],T2[|T2|]).
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complexity of this algorithm is O(|T1| • |T2|).
For the edit distance, we have an efficient enumerative algorithm. The

algorithm runs in polynomial time when one of the trees has a bounded
number of leaves.

For the more general cases, we have developed heuristic algorithms
based on probabilistic hill-climbing. Another way to deal with the hard-
ness results is to add more constraints on the way in which we transform
one tree to the other. This leads to a constrained edit distance between
two unordered trees. The complexity of this algorithm is O(|T1| x |T2|
X(deg(T1) + deg(T2)) x log2(deg(Ti) + deg(T2))).

11.4 Conclusion

As we have discovered since making our tree comparison software gen-
erally available,3 many applications require the comparison of trees. In
biology, RNA secondary structures are topological characterizations of the
folding of a single strand of nucleotides. Determining the functionality of
these structures depends on the topology and therefore comparing differ-
ent ones based on their topology is of interest. In neuroanatomy, networks
of connections starting at a single point often describe trees. Comparing
them may give a hint as to structure. In genealogy, unordered trees are
of interest and may give hints about the origins of hereditary diseases. In
language applications, comparing parse trees can be of interest. Finally, we
are currently developing a package to enable users to compare structured
documents based on tree edit distance. This should be more informative
than utilities such as UNIX diff.

Algorithmically, tree comparison bears much similarity to string com-
parison. Tree comparison uses dynamic programming, suffix trees, and, in
parallel versions, counter-diagonals. We often reason by analogy to stringo-
logic work when developing new algorithms. For this reason, we believe
that treeology may be a good discipline to study for talented stringologists
who are tired of one dimensional structures. But the tree and string prob-
lems are different and no reduction appears possible — certainly not for
unordered trees (because of the NP-completeness result) and we conjecture
not for ordered trees.

Besides pursuing new applications and letting them lead us to new algo-
rithms, we are currently working on the problem of tree pattern discovery.
The philosophy of this work is best shown by distinction to the work we
have described so far. Our work to date has consisted primarily of rinding
the distance between a given pattern tree and a given data tree given a
pattern metric. By contrast, tree pattern discovery consists of producing
a pattern tree that, according to a given distance metric, is close to a col-

3 Send us email if you're interested.
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lection of data trees. Such tree "motifs" could characterize a collection of
trees representing some phenomenon in nature. We are currently working
on the secondary structure of viruses.

11.5 Exercises

1. A counter-diagonal in a dynamic programming matrix extends from
location (i,0) to (0,i). For trees as well as for strings, all elements
in a counter-diagonal can be computed in parallel. Design a parallel
version of Algorithm EDIT? Hint : The complexity should be O ( |T1| +

2. Suppose you were only interested in the editing distance between
two trees assuming they differed by no more than d. That is, your
algorithm would return the exact distance if it is less than or equal
to d, but would return "very different" otherwise. What would the
time complexity be in that case? Hint: The complexity should be
proportional to the square of d.

3. Pruning a tree at node n means removing all its children, but not
removing n itself. Define the optimal pruning distance between a
pattern tree P and a data tree T to be the minimum distance between
P and tree T' where T' is T followed by pruning. Hint: The algorithm
should be a variant of the algorithm with cuts.

4. Consider the Procedure tree-vide in which eliminating a path was free
if it is matched to a variable length don't care. Consider a metric in
which all inserts, deletes and replacements cost one and in which
deletions of paths in the text tree along with their subtrees also had
unit cost. Design an algorithm to compute that cost.

5. Prove Lemma 11.3.1 to Lemma 11.3.1.
6. Try to show the MAX SNP-hardness result mentioned in section 11.3

by reduction from Maximum Bounded Covering by 3-sets.
7. Geographical data structures such as quadtrees are not rotation-

invariant, but suppose we wanted to find the editing distance between
two trees where we allow rotations among the children of the roots.
That is, given two ordered rooted trees T1 and T2, find the distance
between R1 and R2, where R1 is T1 but perhaps with a rotation
among the children of the root of T1 ; R2 is T2 but perhaps with a ro-
tation among the children of the root of T2, such that the distance is
minimum among all such rotations of T1 and T2. Hint: If the degree
of the root of the trees is no greater than the depth of the trees, then
the complexity should be no greater than Algorithm EDIT.

8. Suppose we have a pair of ordered rootless trees T1 and T2. Define
the edit distance between those two trees to be the edit distance
between the rooted trees R1 and R2 where R1 is isomorphic to T1

and R2 is isomorphic to T2 and the distance between R1 and R2 is the

|T2|).



BIBLIOGRAPHIC NOTES 369

minimum edit distance of any pairs of rooted trees R1 and R2 where
R1 is isomorphic to T1 and R2 is isomorphic to T2. Hint: Use the
algorithm you developed for the previous question as a subroutine.

11.6 Bibliographic notes

The first attempt to generalize string edit distance to ordered trees was due
to Selkow [1977]. He gave an tree edit algorithm in which the insertions and
deletions are restricted to the leaves of the trees. The edit distance between
ordered trees was introduced by Tai [1979]. Another edit base distance was
introduced by Lu [1979]. Lu treated each subtree as a whole entity and
did not allow one subtree to match more than one subtrees in the other
tree. Tanaka and Tanaka [1988] introduced the strongly structure preserv-
ing mapping and gave an algorithm based on this kind mapping. Their
algorithm is the same as Lu's algorithm. Yang [1991] gave an algorithm
based on a mapping where two nodes in the mapping implies their parents
are in the mapping. Edit distance between unordered tree was considered
by Zhang, Statman and Shasha [1992]. Jiang, Wang and Zhang [1994]
considered the tree alignment distance problem. Tree inclusion problem
was introduced by Kilpelainen and Mannila.

The algorithm for edit distance presented in this chapter is due to Zhang
and Shasha. The alignment distance algorithm is due to Jiang, Wang and
Zhang. It is open whether the time complexity of these algorithm can be
improved. There is no non-trivial lower bound result for these problems.

The parallel algorithm for unit cost edit distance discussed in this chap-
ter is due to Shasha and Zhang.

The approximate tree match was considered by Zhang and Shasha. This
was later extended to handle the case where pattern tree can have variable
length don't cares. The algorithm presented is due to Zhang, Shasha and
Wang.

The NP-completeness results for edit distance between unordered trees
is due to Zhang, Statman and Shasha. The MAX SNP-hard result is due to
Zhang and Jiang. It is open whether these problems can be approximated
within a constant.
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