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Introduction

Francisco Fernández de Vega, J. Ignacio Hidalgo, and Juan Lanchares

For many years, computer performance improvement was based on techno-
logical innovations that allowed to dramatically increase the chip’s transistor
count. Moreover, architectural progress aimed at organizing processors struc-
ture have allowed to overcome traditional sequential execution of programs
by exploiting instruction level parallelism. Yet, last decade has shown that
Moore’s Law is reaching its natural breaking point and maintaining the per-
formance improvement rate by decreasing transistor’s size will no longer be
possible. Main manufacturers have thus decided to offer more processor ker-
nels in a single chip, opening the way to the multi core era. Examples of that
are: the Intel core i3 (2 cores), i5 (4 cores), and i7 (4 cores) architectures,
AMD Zambezi, phenom iii (8 cores), phenom ii (6 cores).

But this is not the only effort coming from the hardware industry. Another
clear example are the Graphics Processing Units (GPUs). Initially conceived
for speeding up image processing, those systems have become a standard for
parallel execution of applications in the last few years.

On the other hand, the development of internet has leaded to the emer-
gence of the Cloud concept and cloud computing technology, which pro-
vides distributed computing and storage resources to be effortlessly accessed
through the web. A number of abilities must be considered when deploying
cloud applications: remote computers availability, applications dependability
and fault tolerance, to name but a few. Summarizing, the possibility of us-
ing parallel architectures is a common practice today, not only for the most
complex systems but also when the simplest ones are deployed.

On the other hand, bioinspired algorithms are being also influenced by
this paradigm shift: research is moving from sequential implementations to
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parallel and distributed versions of these typically population based tech-
niques that inherently exploit the parallel nature of the underlying models.
Although the benefit of using structured populations was foreseen by the
pioneers, several decades have been necessary for the industry to provide ac-
cessible commodities for parallel and distributed implementations -including
GPUs, multi and many cores, clouds, etc.- thus producing the grow of a trend
in the field. The combination of Parallel Architectures and Bioinspired Al-
gorithms is attracting an attention that will continue growing in the coming
years.

We are thus editing this book with the goal of gathering examples of best
practices when combining bioinspired algorithms with parallel architectures.
Leading researchers in the field have contributed: some of the chapters sum-
marize work that has been ongoing for several years, while others describe
more recent exploratory work. The book thus offers a map with the main
paths already explored and new ways towards the future.

We hope this volume will be of value to both specialists in Bioinspired
Algorithms, Parallel and Distributed Computing, as well as computer sci-
ence students trying to understand the present and the future of Parallel
Architectures and Bioinspired Algorithms.

This book is a collective effort, and we must thank all the contributing
authors, whose effort and dedication have given rise to the present work. We
also thank institutions that have funded our effort, Extremadura Government
and EDERF under project GR10029 and Spanish Ministry of Science and
Techonology, project TIN2011-28627-C04-03.

Last but not least we appreciate the encouragement, support and patience
offered by Professor Janusz Kacprzyk, as well as by Springer during the
editing process.

Road Map

This book is organized in chapters that shows some of the best know ef-
forts for exploiting the parallel nature of Bioinspired algorithms in combina-
tion with parallel computer architectures. The chapters are logically grouped
around a number of topics: hardware, algorithms and applications. Although
no explicit sections have been established, readers can follow this path se-
lecting those chapters that better fits with their interest. On the other hand,
a sequential reading will provide a general view of the field going from had-
ware to software and applications. The reminder of this section includes brief
summaries of each chapter.

Chapter 1. Creating andDebugging Performance CUDAC byW. B. Langdon
General Purpose computation on Graphic Hardware has attracted the

attention of researchers that routinely apply Evolutionary Algorithms to
hard real-life problems. The large number of processing cores included in
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standard GPUs allows us to obtain large speedups when parallel applica-
tions are run on them. Nevertheless, the new model requires extra skills from
programmers. Although manufacturers provide frameworks and languages
specifically devoted to program GPGPU applications, a number of issues
must be considered for properly developing parallel EAs that profit from
GPUs. This chapter presents various practical ways of testing, locating and
removing bugs in parallel general-purpose computation on graphics hard-
ware GPGPU applications, with attention to the relationship with stochastic
bioinspired techniques, such as genetic programming. The author presents the
experience on software engineering lessons learnt during CUDA C program-
ming and ways to obtain high performance from nVidia GPU and Tesla cards
including examples of both successful and less successful recent applications.

Chapter 2. Optimizing Shape Design with Distributed Parallel Genetic Pro-
gramming on GPUs by Simon Harding, W. Banzhaf

This chapter applies a special version Cartesian Genetic Programming to
optimize shape desing. Optimized shape design is used for such applications
as wing design in aircraft, hull design in ships, and more generally rotor
optimization in turbomachinery such as that of aircraft, ships, and wind tur-
bines. By applying self-modifying Cartesian Genetic Programming (SMCGP)
-which is well suited for distributed parallel systems, authors evolve shapes
with specific criteria, such as minimized drag or maximized lift. GPUs are
employed for fitness evaluation, using aN implementation of fluid dynamic
solver.

Chapter 3. Characterizing Fault-tolerance in Genetic Algorithms and pro-
gramming by D. Lombraña González, Juan L. Laredo , F. Fernández de Vega
and J.J. Merelo

Genetic Algorithms (GAs) and Genetic Programming (GP) are a sub-class
of Evolutionary Algorithms (EAs). In both classes, when the complexity is a
key problem, a large amount of computing resources -and time- are required.
In order to reduce execution time, both GAs and GP can benefit from par-
allel and distributed computing infrastructure. One of the most popular dis-
tributed infrastructure is the Desktop Grid System (DGS). The term desktop
grid is used to refer to distributed networks of heterogeneous single systems
that contribute idle processor cycles for computing. In DGSs, computers join
the system, contribute some resources and leave it afterwards causing a col-
lective effect known as churn. Churn is an inherent property of DGSs and has
to be taken into account when designing applications, as these interruptions
(computer powered off, busy CPUs, etc.) are interpreted by the application
as a failure. To cope with failures, researchers have studied different mecha-
nisms to circumvent them or restore the system once a failure occurs. These
techniques are known as Fault-Tolerance mechanisms and enforce that an ap-
plication behave in a well-defined manner when a failure occurs. This chapter
is a summary of the obtained results for Parallel GAs and GP, presenting the
study of fault-tolerance in PGAs and PGP in order to know if it is feasible
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to run them in parallel or distributed systems, without having to implement
any fault tolerance mechanism.

Chapter 4. Comparison of Frameworks for Parallel Multiobjective Evolu-
tionary Optimization in Dynamic Problems by Mario Cámara, Julio Ortega,
Francisco de Toro

The main feature of Dynamic Multi-Objective optimization problems
(DMO) is that the optimization is performed in dynamics environments
so the cost function and constraints are time dependent. The main inter-
est in this kind of problems is the wide range of real world applications
with socio-economic relevance that have this feature. In this chapter the
authors present two frameworks for Dynamic Multi Objective Evolutionary
Algorithms (MOEA). The first is a generic master-worker framework called
parallel dynamic MOEA (pdMOEA), that allows the execution of the dis-
tributed fitness computation model and the concurrent execution model. The
second one, a fully distributed framework called pdMOEA+, is an improve-
ment that avoid bottleneck caused by the master processor in pdMOEA .
Both approaches have time constraints in order to reach the solutions. These
frameworks are used to compare the performance of four algorithms: SFGA,
SFGA2, SPEA2 and NSGA-II. The authors also propose a model to interpret
the advantages of parallel processing in MOEA

Chapter 5. An Empirical Study of Parallel and Distributed Particle
Swarm Optimization by Leonardo Vanneschi, Giancarlo Mauri and Daniele
Codecasa.

Particle swarm optimization (PSO) is a bioinspired heuristic based on
the social behavior of flocks of birds or shoals of fish. Among its features
includes easy implementation, intrinsic parallelism and few parameters to
adjust. This is the reason why in recent times the researchers are focusing
their interest in these algorithms. In the chapter the authors present four
parallel and distributed PSO methods that are variants of multi-swarm and
attractive/repulsive PSO. Different features are added in order to study the
algorithms performance. In the Particle Swarm Evolver (PSE) the authors
use a genetic algorithm in which the individuals are swarms. Next the authors
present the Repulsive PSE (RPSE) that added a repulsive factor. The third
proposal is the Multi-warm PSO (MPSO) using an island model, where the
swarms interact by means of particle migration at regular time steps. And
finally, a variation of MPSO that incorporates a repulsive component named
Multi-swarm Repulsive PSO (MRPSO). To study the different algorithms the
author used a set of theoretical hand tailored test functions and five complex
real-life applications showing that the best proposal is the MRSPO.

Chapter 6. The generalized Island Model by Dario Izzo and Marek Rucinski
and Francesco Biscani

Authors introduce in this chapter the generalized island model, study-
ing the effects on several well-known optimization metaheuristics: Differen-
tial Evolution, Genetic Algorithms, Harmony Search, Artificial Bee Colony,
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Particle Swarm Optimization and Simulated Annealing. A number of bench-
mark problems are employed to compare multi-start schemes with migration.
An heterogeneous model is analyzed, which includes several “archipelagos”
with different optimization algorithms on different islands.

Chapter 7. Genetic Programming for the Evolution of Associative Memo-
ries by J. Villegas-Cortez, G. Olague, H. Sossa, C. Avilés

Natural systems apply learning during the process of adaptation, as a way
of developing strategies that help to succeed them in highly complex scenar-
ios. In particular, it is said that the plans developed by natural systems are
seen as a fundamental aspect in survival. Today, there is a huge interest in at-
tempting to replicate some of their characteristics by imitating the processes
of evolution and genetics in artificial systems using the very well-known ideas
of evolutionary computing. For example, some models for learning adaptive
process are based on the emulation of neural networks that are further evolved
by the application of an evolutionary algorithm. This chapter presents the
evolution of Associative Memories (AMs), which demonstrates useful for ad-
dressing learning tasks in pattern recognition problems. AMs can be consid-
ered as part of artificial neural networks (ANN) although their mathematical
formulation allows to reach specific goals. A sequential implementation has
been applied; nevertheless, the underlying coevolutionary approach will allow
to easily benefit from parallel architectures, thus emulating natural parallel
behavior of associative memories.

Chapter 8. Parallel Architectures for Improving the Performance of a GA
based trading System by Ivan Contreras, J.Ignacio Hidalgo, Laura Nunez-
Letamenda and Yiyi Jiang

The use of automatic trading systems are becoming more frequent, as they
can reach a high potential for predicting market movements. The use of com-
puter systems allows to manage a huge amount of data related to the factors
that affect investment performance (macroeconomic variables, company in-
formation, industry indicators, market variables, etc.), while avoiding psycho-
logical reactions of traders when investing in financial markets. Movements
in stock markets are continuous throughout each day, which requires trading
systems must be supported by more powerful engines, since the amount of
data to process grows, while the response time required to support operations
is shortened. This chapter explains two parallel implementations of a trading
system based on evolutionary computation: a Grid Volunteer System based
on BOINC and an implementation using a Graphic Processing Unit (GPU)
in combination with a CPU.

Chapter 9. A Knowledge-Based Operator for a Genetic Algorithm which
Optimizes the Distribution of Sparse Matrix Data by Una-May O’Reilly,
Nadya Bliss, Sanjeev Mohindra, Julie Mullen, Eric Robinson

A framework for optimizing the distributed performance of sparse ma-
trix computations is presented in this chapter. An optimal distribution of
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operations accross the processor nodes is required. An intelligent operation-
balancing mutation operator is applied to balance swaps data blocks between
hogs and slackers to explore new balances. Authors study the performance of
the algorithm introduced -HaSGA- when compared with a baseline GA. The
HaSGA is itself a parallel algorithm that achieves approximate linear speedup
on a large computing cluster. Network, memory, bandwidth and latency are
parameters that have been taken into account.

Chapter 10. Evolutive approaches for Variable Selection using a Non-
parametric Noise Estimator by A. Guillen, D. Sovilj, M. van Heeswijk, L.J.
Herrera, A. Lendasse, H. Pomares and I. Rojas

This chapter considers the problem of designing models to approximate
functions. The selection of an adequate set of variables heavily influences the
results obtained: If the number of variables is high, the number of samples
needed to design the model becomes too large and the interpretability of
the model is lost. Authors present several methodologies -that apply paral-
lel paradigms in different architectures- to perform variable selection using
a non-parametric noise estimator to determine the quality of a subset of
variables.

Chapter 11. A chemical evolutionary mechanism for instantiating service-
based applications by M. Giordano and C. di Napoli

This chapter focuses on Service Oriented Architecture (SOA) -the de facto
paradigm for the Internet of Services (IoS)-, i.e. a virtual space where in-
formation and content is stored, exchanged and manipulated by software
and human entities through services. Compositions of services on demand in
response to dynamic requirements and circumstances is required in this sce-
nario, and the process of selection required service instances is modelled as
an evolving chemical process that can react to environmental changes. The
chemical metaphor allows to approach the composition of services as a de-
centralized and incremental aggregation mechanism governed by local rules
such that environmental changes affecting any part of SBA may be processed
at any time.



Creating and Debugging Performance CUDA C

W.B. Langdon

Abstract. Various practical ways of testing, locating and removing bugs in par-
allel general-purpose computation on graphics hardware GPGPU applications are
described. Some of these are generic whilst other relate directly to stochastic bioin-
spired techniques, such as genetic programming. We pass on software engineering
lessons learnt during CUDA C programming and ways to obtain high performance
from nVidia GPU and Tesla cards including examples of both successful and less
successful recent applications.

Keywords: C programming, GPU, GPGPU, GPPPU, parallel computing, computer
game hardware, graphics controller, parallel computing, rcs, randomised search.

1 Introduction

The absence of sustained increases in computer clock speed which characterised the
second half of the twenty century is starting to force even consumer mass-market
applications to consider parallel hardware. The availability of cheap high speed net-
works makes loosely linked CPUs, in either Beowulf, grid or cloud based clusters
attractive. Even more so since they run operating systems and programming de-
velopment environments which are familiar to most programmers. However their
performance and cost advantages lie mostly in spreading overheads (e.g. space and
power) across multiple CPUs. In contrast, in theory, a single high end graphics card
(GPU) can provide similar computing power and indications are that GPU perfor-
mance increases will continue to follow Moore’s law [24] for some years. The com-
petitive home computer games market has driven and paid for GPU development.

W.B. Langdon
CREST, Computer Science, Department of Computer Science,
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For example, nVidia has sold hundreds of millions of CUDA compatible cards [8].
Engineers and scientists have taken advantage of this cheap and accessible computer
power to run parallel computing. nVidia is now actively encouraging them by mar-
keting GPUs dedicated to computation rather than graphics. Indeed the field of gen-
eral purpose computation on graphics hardware GPGPU has been established [26].

The next section will give a brief summary of a few recent successful Bioinspired
applications running on GPUs or nVidia’s Tesla cards. Also, to illustrate there are
pitfalls, we also include one less successful GPGPU application.

I shall assume the reader is already familiar with nVidia’s parallel computing
architecture, CUDA. Nonetheless Section 3 gives a quick introduction to it. Sec-
tion 4 gives some ideas on how to produced reasonably fast GPGPU applications.
In practice this always requires interaction between implementing “improvements”
and measuring your software’s performance to see if they really did have the de-
sired effect (speeding up your code). Section 5 describes practical ways to measure
performance.

There are many documents and tutorials on programming graphics hardware for
general purpose computing. Mostly they are concerned with perfect high perfor-
mance code. Most software engineering effort is not about writing code but about
testing it, debugging it, etc., etc. Development of GPGPU software remains an art,
often at the edge of feasibility. Testing and debugging are key to any software devel-
opment but little has been published about getting non-trivial CUDA applications to
work.

Although tools are improving, we concentrate upon how debugging is done for
real. Many of the lessons are general. However the examples use nVidia’s GPUs
with their CUDA C compiler, nvcc, and some examples assume the reader is fa-
miliar with the Unix operating system. Section 6 describes coding techniques to
aid debugging. Section 7 describes testing CUDA C applications, whilst Section 8
describes some bugs, the techniques used to find them and how they were fixed.

This is not a general tutorial on CUDA, however the last two sections give prac-
tical advice for when you get started (Section 9) and some ideas for where to look
for help if you hit problems and discuss alternative approaches (Section 10).

2 GPGPU Bioinspired Algorithms

For a long time bioinspired algorithms were limited by the need to be sparing in their
use of computer resources. As time has progressed computer power has increased
enormously and so more and more realistic models of nature have been applied.
Many of the natural phenomena which have inspired computer scientists concern
multiple agents, each of which has to be simulated. For example, groups of nerve
cells, swarms of insects, populations of plants or animals and diverse antibodies.
Typically each agent is more-or-less independent and to some extent can be simu-
lated independently of the others. At present each simulation is still often done one
after another on a single computer. Since such simulations need a lot of computer
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time, this has tended to limit: the size of neural networks, the size of swarms, the
number of simulated antibodies and the number of individuals in simulated popula-
tions. However in almost all cases, where parallel computers are available, the sim-
ulations can readily be run in parallel (rather than sequentially). The ease of with
which this can be done has lead to many bioinspired algorithms being classified as
“embarrassingly parallel” [23, p182]. Recently there has been considerable interest
in using graphics hardware (GPUs) which readily provide cheap parallel hardware.
Even a humble laptop can contain a low cost but powerful GPU.

Artificial neural networks come in a variety of flavours. We shall only discuss
two. Perhaps the most realistic and hence the most computationally demanding are
known as spiking neural networks. Whilst many flavours of ANN represent nerve
cell activity as a continuous valued activation level, spiking networks represent
nerve synapse activity as individual spikes. Given the computational complexity
of even approximate chemical/electrical models of synapses, it is not surprising that
the computational power of GPUs have been harnessed by several research teams.
Yudanov et al. [36] showed fairly realistic (IZ) models of a few thousand neurons
could be run in real-time by using CUDA and an nVidia GTX 260 GPU. A rather
different approach is used by self organising maps (SOMs) or Kohonen networks.
These can be thought of as unsupervised or clustering techniques which after mul-
tiple training periods learn to group similar concepts. Prabhu [28] used Microsoft’s
Accelerator GPGPU tool to get substantial speed increases from what is now modest
hardware (an nVidia GeForce 6150 Go).

Some of the first uses of GPUs in evolutionary algorithms used them for graphics
processing. This is closer to the original purpose of graphics hardware, nevertheless
Ebner et al. [5] show genetic programming could evolve GPU code (vertex and pixel
shaders written in Cg [6]) to generate images. However Fok et al. [7] were the first
to implement a general purpose evolutionary algorithm on a GPU. They showed a
complete evolutionary algorithm, including population mutation (but not crossover)
and selection, as well as fitness evaluation running on an nVidia GeForce 6800 Ul-
tra and obtained substantial speedups on a number of benchmarks with populations
of several thousands. They also used the GPU to visualise their evolving popula-
tions. (Some animations of distributed genetic programming populations evolving
under crossover and selection [21] can be found via http://www.cs.ucl.ac.uk/staff/
W.Langdon/gp on gpu.html.) Harding was the first to show general purpose ge-
netic programming running on GPUs [10]. Harding has considered a number of
approaches however mostly he has required populations of GP individuals to be
compiled [11]. Since the nVidia compiler is designed to optimise the speed of the
GPU code it generates, rather than its own run time, it is often faster to interpret GP
code rather than compile it [21]. Indeed the fastest single computer GP system uses
a parallel GPU interpreter [17].

Bioinformatics contains many computationally demanding problems. Many of
these are naturally parallel and so bioinformaticians are increasingly using GPUs.
Restricting ourselves to bioinspired algorithms, there are several examples. For ex-
ample in [19] we used an interpreted GP system built on RapidMind software run-
ning on an nVidia 8800 GTX to datamine human breast cancer biopsys to predict

http://www.cs.ucl.ac.uk/staff/W.Langdon/gp_on_gpu.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/gp_on_gpu.html
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survival following surgery. Using a cascade of populations containing 5 million pro-
grams, a small intelligible model was distilled from noisy Affymetrix HG-U133A
and HG-U133B GeneChip gene activity measurements. Whilst in [15] we used GP
and public datasets to model factors influencing noise in the GeneChip’s themselves.
(In [18] we made a start at looking at automatic generation of GPU code.) Sinnott-
Armstrong et al. have twice won the GPU competition at the GECCO conference for
innovative uses of GPUs. In 2010 for a GPU based artificial immune system (AIS)
[32] and in 2009 for epistasis analysis in human genetics. Their published work in-
cludes using three nVidia GeForce 295 (a total of 6 GPUs) to datamine a dataset of
547 people each having more than half a million genetic variations (SNPs). They
were looking for gene-gene interactions to help treat sporadic amyotrophic lateral
sclerosis (ALS) [9].

Rieffel et al. [31] showed an nVidia 9800GT could be used to evolve movement
in a soft robot. The target pneumatic robot was simulated using PhysX. Such a
soft bodied robot requires even more computational power than simulating a rigid
robot. Realism was further enhanced by evolving a spiking neural network controller
for the robot. As computer games continue to demand increased realism, dedicated
“physics engines” (PPUs) will be used to offload from the CPU simulations of the
physics of games, e.g. rock falls, in the same way that dedicated graphics processors
(GPUs) are used now to offload graphics processing from the CPU. It is anticipated
that PPUs will also contain substantial computing power and that this too will be
used for algorithmic computing. Thus GPPPU will become popular in the same
way that GPGPU has taken off.

Particle swarm optimisation (PSO) is a successful bioinspired algorithm in which
a swarm moves under the influence of a fitness function. Mussi et al. [25] used a PSO
to locate road signs in video images. With nVidia’s CUDA they showed a swarm of
particles was able to locate road signs in synthetic road images. A single GeForce
8800 GT GPU was powerful enough to run their PSO system at better than real-time
(up to 150 video frames/second).

In ant colony optimisation (ACO) the swarm of flying insects is replaced by a
colony of ants which navigate by following chemical trails left by other ants. There
are various schemes so that successful ants guide the others but ACO explicitly in-
cludes the notion of forgetting as it requires the chemical to disperse over time.
This ensures the ants do not get locked into the current best trail forever. The notion
of exploiting (i.e. searching near the best solution found so far) versus exploring
(searching more widely) comes up repeatedly (in different guises) in search and op-
timisation. Zhu and Curry [37] again used CUDA this time with a GeForce GTX 280
and show it considerably sped up their ACO on a wide range of continuous optimi-
sation benchmarks.

GPUs have even been used to speed of simulations of artificial chemistries and
regulatory networks [35].

While fuzzification is perhaps not normally thought of as “bioinspired”, it too has
substantial parallel components. Anderson et al. [12, 1] were the first to show fuzzy
logic running substantially faster by running it in parallel on a GPU.
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Although not a bioinspired approach, it is worth considering an unsuccessful ap-
proach. It is unclear exactly why [20] failed to achieve a big speed up. It may be that
the underlying “close-by-one” FCA algorithm does not have sufficient arithmetic
intensity (Section 4.1). Unlike the approaches described above, its inner loop only
requires one Boolean logical operation per data item, whereas in the bioinspired ap-
proaches each data item may refer to an agent whose complete lifetime many have
to be simulated. I.e. typically there is a huge volume of computing per data item.
Thus even though the GPU beam search approach succeeded in parallelising the
work over millions of threads this did not solve the problem that each data item had
to be moved but only acted upon once. This in turn suggests, at least in this applica-
tion, an arithmetic intensity of 1.0 is too low to make the GPU approach attractive.
We now turn to the problems of actually getting code to work and getting the best
from your parallel hardware.

3 CUDA – nVidia’s Compute Unified Device Architecture

Although the reader will need to be familiar with nVidia’s parallel computing archi-
tecture, we start with Figure 1 which shows how a CUDA application must make a
trade off between the various storage areas, parallel computation threads and how
having very many threads ready to run helps keep the many computation stream
processors busy and the whole application efficient.

shared 48k/16k

latency

Other threads

"constant" Read Only 64k(2k cache, thread contention)

off chip memory

cache 16k/48k

Fig. 1 nVidia CUDA mega threading (Fermi, compute level 2.0 version). Each thread in a
warp (32 threads) executes the same instruction. When a program branches, some threads
advance and others are held. This is known as thread divergence. Later the other branches
are run to catch up. Only the 32 768 registers per block (brown �) can be accessed at full
processor speed. If threads in a warp are blocked waiting for off chip memory (i.e. local,
global or texture memory) another warp of threads can be started. The examples assumes the
requested data are not in a cache. Shared memory and cache can be traded, either 16 Kbytes
or 48 Kbytes. Constant memory appears as up to 64 Kbytes via a series of small on chip
caches [3], Section 8.4.



12 W.B. Langdon

Figure 2 emphasises the need to divide the work between many threads. As ex-
pected performance rises more or less linearly as more threads are used. However
notice that this continues even when the number of threads exceed the number of
processing elements. While application and GPU specific, a rule of thumb suggests
maximum performance needs at least 10 threads per stream processing core.
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Double precision CUDA Tesla C2050

Double precision CUDA pre-production T10P
Value4f RapidMind 2 GeForce 8800 GTX

Fig. 2 Speed of genetic programming interpreter [17] and Park-Miller random numbers [16]
(excluding host-GPU transfer time) versus number of parallel threads used on a range of
nVidia GPUs. Top 3 plots refer to CUDA implementations and lowest one to RapidMind
code. Code available via ftp cs.ucl.ac.uk /genetic/gp-code/.

4 Performance

As novice programmers we were taught that we should get the code working be-
fore we worried about performance. However typically as CUDA developers we
approach the code from the other direction. Typically there is a working serial ver-
sion of the application which may need porting to CUDA. Ideally we should start
by planning how the code will be run in parallel. This and the next section are about
designing CUDA applications for performance, whilst Sections 4.2–4.4 deal with
what happens when you try to run your initial design on your GPU and Section 5
describe some practical ways to locate and fix performance problems when pure
design collides with real GPU hardware and software.

A high performance design will need to consider how many threads are to be
used and how they are to be grouped into blocks. (A block of threads all execute the
same kernel code on the same multiprocessor. They can pass data rapidly between

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/langdon_2010_cigpu.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/cuda_park-miller.tar.gz
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themselves via shared memory, Section 6.6. High end GPUs typically have several
multiprocessors, so multiple blocks of threads are needed to keep them all busy.)
You will also need to consider where data will be stored, how much memory will
they occupy and how and in what way memory will be accessed. In other words we
should start by designing for performance. However coding a subroutine which runs
on the GPU (known as a kernel) remains difficult and no software plan survives first
contact with the GPU hardware. The alternative of developing prototype kernels has
its attractions however getting a perfect prototype kernel is not necessarily a lot eas-
ier than coding the real kernel. In practice GPGPU software production tends to fall
between the two. That is as problems arise, some can be fixed immediately, while
others cause more drastic changes to the plan. These problems need not cause the
wrong answer to be calculated but may be performance related or because, for a
particular new work load, it is realised that some data will not fit into an available
memory store. Since faulty kernels tend to give little indication of ultimate perfor-
mance it becomes necessary to debug each new implementation of each new design.
This is time consuming.

4.1 Performance by Design

We have the usual problem that we do want to spend ages debugging a poor design
and we do not know for sure how software will perform until we have written it.
This section gives some rules of thumb to consider when designing your CUDA
application. These might also be illuminating when trying to tune it.

• How much of your application can be run in parallel? If it it less than 90% then
stop. Even if you are able to speed up the parallel part infinitely, so that it takes
no time at all, you will still only increase the whole application ten fold. This is
not worth your effort.

• In Bioinspired applications the resource consuming part is the fitness evaluation.
Usually the fitness of each member of the population can be run independently
in parallel and so fitness evaluation is an ideal candidate for parallel computa-
tion. This has been repeatedly recognised [30, 33, 4]. Indeed the comparative
ease of parallelising population based algorithms has lead to them being called
“embarrassingly parallel” [23, p182].
Recall from Figure 2, CUDA applications typically need thousands of threads to
get the best of GPUs. If your network or population does not contain thousands of
cells or individuals, perhaps there are aspects of each individual fitness evaluation
or learning which could be run in parallel? Obviously this is application specific.

• Estimate how much computation your application will need. Express this as a
fraction of your GPU’s performance. Is the fraction low enough to make the
GPU a viable approach? Remember nVidia’s performance figures are the best
that the GPU can do and so are typically much more than your GPU kernel will
get in practice.
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• It is worth considering how much computation is needed per data item. I.e. the
“arithmetic intensity”. Often in Bioinspired algorithms we are concerned with
computationally intensive tasks that most be done for every for every member
of a network, swarm or population but only a few bytes are needed to repre-
sent the individual. Thus arithmetic intensity is usually high. However if only a
few instructions are needed per word, arithmetic intensity should be considered
carefully at the design stage. Effectively arithmetic intensity is another way of
looking at the problem of communications bandwidth bottle necks.

GPU Chip

2.6 GBytes

Processors

84 Gbyte/Second

PCI

448

5.8Gbyte/S

6.1Gbyte/S

Fig. 3 Links from GPU chip to host computer via PCIe bus and to memory on the GPU
board. Fermi C2050.

• From your block level design locate its bottle neck. See Figure 3. We can try and
find the limiting part of your design in advance of coding by estimating:

1. The number of bytes of data uploaded into your GPU.
2. The number of bytes from your GPU back to your PC.
3. How many times the PC interacts with the GPU (either to transfer data or to

start kernels).
4. Do the same for global data flows from global memory into your kernel and

from it back to global memory. Assume you are going to code your kernel so
it uses registers rather than local memory.

5. In principle we could consider other bottle necks but already we are getting
into detail and relying on assumptions which may turn out to be wrong.

For GPUs connected to a traditional PC via a PCIe bus we can get a good esti-
mate of the time taken to transfer data across the PCIe by dividing the size of the
data to be passed by the advertised speed of the bus. Take the lower estimate of
your bus’s speed and your GPU’s PCI interface speed. Remember the speed into
the GPU can be different from the speed back from it. If you already have the
hardware, nVidia’s bandwidthTest program will report the actual speeds. (band-
widthTest will also give you the maximum speed of transfers between global
memory inside your GPU.)
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For PCIe transfers, with good coding, the estimates can be accurate enough.
With internal transfers so much will depend upon the details: how well the
threads overlap computation with fetching data, how effective are the various
caches.

• Normally the ratio of the volume of PCIe data size to the size of PCIe data buffers
will give the number of times the operating system has to wake up your PC code
so that it can transfer data. Typically there are a few data transfers before and after
each time your GPU kernel software is launched. Usually the system overheads
of rescheduling your process and CUDA starting your kernel are both well under
a millisecond. Nonetheless if your design requires more than a thousand PCIe
I/O operations or kernel launches per second it is probably worth considering the
initiation overhead.

• This should have given you an idea of where the bottle neck is in your design and
if your design is feasible.

If the bottle neck is the GPU’s computational speed, then it probably makes
sense to proceed. It probably means your application is sufficiently compute in-
tensive that it needs to be run in parallel. If it still not going to be fast enough
then a redesign could consider a GPU upgrade, multiple GPUs and/or traditional
code optimisation.

If the bottle neck is bandwidth, which bus is limiting? Concentrate upon the
most constricting part of the design. There are two things to consider: passing
less through the bottle neck and making the bottle neck wider.

• In the case of the PCIe bus, only hardware upgrades can widen the bottle neck.
Can you compress your data in some way? Often a huge fraction of com-

puter data is zero. Do you need to pass so many zero’s? Can you pack data more
tightly? Can you use char rather than int? (Will the cost of compress/decompress
be excessive?)

Does your application need so much data to be passed? Could you pass some
of it to the GPU once, when the application starts, and leave it on the the GPU to
be reused, rather than being passed to the GPU each time the kernel is used?

The host–GPU bottle neck can be critical to the whole GPU approach. The
above calculations have the advantage of often being feasible to estimate in ad-
vance and typically applications really do get the host–GPU advertised band-
width. So you can get good estimates of its impact on your application at the
design stage. However the PCIe bus is inflexible. Unlike internal GPU buses,
there is no coding to increase its bandwidth. If your design requires 110% of the
PCI’s bandwidth it is not going to get more than 100%. At this point many GPU
designs fail and alternatives must be considered.

• As already mentioned with internal GPU transfers design stage calculations are
much trickier. Perhaps consider algorithm or design level changes, e.g. splitting
kernels, spreading the work differently across different kernels. Again can the
bottle neck be made wider? E.g. by larger data transfers and/or coalesced trans-
fers. Remember advertised figures and data reported by bandwidthTest have al-
ready taken into account such optimisations.
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With the much lower bandwidth of PCIe it might make sense to reduce data
transfer size by compression, e.g. using 8-bit bytes rather than 32 bits. This is
probably not true within the GPU. Although the full range of C types are sup-
ported by the CUDA C/C++ compiler nvcc, the hardware works on multiples of
32-bits.

It is usually better to read data once, process it (without re-reading), then write
the processed data once. Although nVidia’s recent Fermi architecture caches lo-
cal and global data and most GPUs cache textures such caches are quickly over-
whelmed by the sheer volume of data to be processed. It is better to “cache at the
design stage” rather than hope the data will still be in a cache if it is needed a sec-
ond time. This is unlike traditional CPU coding, where it appears to cost nothing
to read and write to program variables. On the CPU it is often better to calcu-
late intermediate results, save them, then read them back and use them again.
Whereas in a GPU it might be better to recalculate rather than save–re-read.

4.2 Performance by Hacking

The previous section has talked about designing high performance GPGPU appli-
cations. Essentially the same basic idea applies whilst writing the GPGPU program
code: Is performance good enough? Stop. Can performance be made good enough?
If not then also stop. Identify and remove the bottle neck (e.g. by using the tech-
niques to be described in Section 5). Before Section 5, the next section reminds us
that it is not always necessary to implement everything the existing serial version
does, whilst Section 4.4 considers how to include multiple GPUs into your design.

4.3 Performance by Omission

Fundamentally the best way to improve performance is not by doing things better
but by doing less.

The following need not be the best example but it is real. It turned out that about
30% of the time used by a kernel was spent looking for just one case in hundreds of
thousands. It was not even a particularly interesting case and it was guaranteed to
be found eventually. So a 30% speed up could be made by ignoring it. Further, once
it was treated as impossible other parts of the kernel could be simplified giving a
further speed up. By leaving out something unimportant to the users, the code went
about twice as fast.

4.4 Multiple GPUs

The processing power and capacity of single GPU cards continues to grow as new
hardware is announced. However CUDA supports multiple GPUs per host PC and it
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may be attractive to use multiple cards. There are many twin GPU systems but three
and even four card systems are also in use. (Be sure your host PC has sufficient
power to support the additional hardware.)

To take advantage of multiple GPUs, parts of the host application must be run
in parallel. That is the host programmer must explicitly organise the parallel oper-
ation of the PC’s GPUs. CUDA does not (yet) allow you to launch a kernel across
multiple GPUs or retrieve its results from multiple GPUs. Instead the programmer
has to explicitly launch the kernel on each GPU. This is done in the same way as
for one GPU but it does force explicit parallel multi-threaded code on the PC. Al-
though CUDA provides some support for multi-threading of your PC code, it may
be better to use your operating system’s multi-threading support (e.g. the p-threads
library). The standard advice is that your PC should have one CPU core per GPU
card plugged into it. However the host multi-threading support should ensure 1) this
is not absolutely necessary 2) your application will be able to take advance of dual
or quad core CPUs without coding changes.

To avoid the surprisingly high CUDA initialisation overhead it is a good idea to
start one host thread per GPU and repeatedly use it to pass data between the host
and the thread’s GPU and to launch kernels on its GPU. (I.e. the host threads live
as long as your application itself.) Dual cards like the 295 GTX are programmed as
two CUDA devices and so should have two threads (one each) in your host code. It
is a good idea to record which devices your application is using.

cudaDeviceProp deviceProp;
cutilSafeCall( cudaSetDevice( dev ));
cutilSafeCall( cudaGetDeviceProperties(&deviceProp,0));
printf("Using CUDA device %d: \"%s\"\n",

dev, deviceProp.name);

5 Measuring Performance

The main tool for measuring performance is the CUDA profiler (next section) but
timing operations on the host (Section 5.2) yourself can also be useful. These give
kernel level statistics but Section 5.3 will describe some ways to estimate the per-
formance impact of program statements within your kernel. Obviously consider if
there is a need for tuning and higher level aspects of tuning before getting sucked
into the details (as described in Section 5.3).

5.1 CUDA Profiler

nVidia’s CUDA profiling tools can be downloaded from their web pages. As with
other parts of CUDA, nVidia also freely provides downloadable documentation.
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There are two parts to the CUDA performance profiler. The part on the GPU
which records when certain operation took place. It logs the time of host-GPU data
transfers and when kernel start and when they finish. It also counts other GPU oper-
ations. E.g. it can count the number of local or global memory cache hits and misses.
Finally it transfers the logged data to the host PC. The second part runs on the PC.
It can control the GPU based profile logging and also display both this data and pre-
viously logged data. Unfortunately certain Linux versions of this part (known was
the CUDA visual profiler) are not stable.

As may be imagined the GPU part of the profiler is limited. Its job is to monitor
performance not to interfere with it. Top end GPU contain several multiprocessors,
since they are identical it is assumed their workloads and hence performance will be
similar, therefore only one of them is monitored. Also the GPU profiler can gather
a range of statistics but not all of them simultaneously. One of the main jobs of
the visual profiler is to allow you to easily specify which data should be collected.
(Different GPUs support different counters. Sometimes counters are not supported
on a particular GPU because the counter was introduced to monitor a particular
performance bottle neck which has been removed from the new GPU.)

If you specify more counters than the GPU can manage in one go, the visual pro-
filer automatically runs your application multiple times collecting different profile
data each time and then integrating them for you. Again the number of simultaneous
counters depends on which type of GPU you are using. The visual profiler has the
great advantage that it knows which GPUs support which counters and which can
be simultaneously active. It also provides a wide range of plots and tables. A few of
the interactive menus are a bit difficult to navigate and the documentation and menu
layout may be slightly out of step.

When testing stochastic algorithms, such as Monte Carlo sampling or evolution-
ary computation, it is much easier if your code does exactly the same thing when run
again. E.g. a genetic programming system should be coded so that its use of pseudo
random numbers (PRNGs) can be controlled via the command line (see Section 7.1).
By telling the visual profiler to pass the same PRNG initial seed to your GP when
it runs it multiple times in order to collect a number of performance indicators, you
should be able to ensure that these indications are consistent with those gathered by
it on other runs.

Under the Linux operating system you can also control the GPU profiler directly
by using environment variables, see Table 1.

The CUDA profiler gives some performance information which could be very
useful but which would be either difficult or impossible to get elsewhere (e.g. cache
hits). It also gives ready access to some critical information about the code that the
compiler, nvcc, generated for your kernel. E.g. the number of registers the kernel
needs.

If using CUDA PROFILE LOG directly, some counters become very large and
difficult to comprehend. It would probably be worth using a spread sheet or sim-
ple script to rescale counters by the “instruction” count. (E.g. divide warp serialize
count by total number of instructions.) This helps make clear which data are
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Table 1 Unix environment variable controlling CUDA profiling

Name: Example
CUDA PROFILE 1 Switch on profiling
CUDA PROFILE CSV 0 Produce “comma separated values” suitable

for importing into a spreadsheet or the CUDA
visual profiler. With the value 0 a simple text
file is produced.

CUDA PROFILE CONFIG profile r266a.txt The name of a file containing instructions
for the GPU profiler including which coun-
ters to enable. I suggest you start by copy-
ing CUDA Profiler 3.0.txt from nVidia’s web
pages and then modifying it.

CUDA PROFILE LOG profile r266a.csv The name of the profiler’s output file. NB. the
file will be overwritten if it already exists.

important. Even if a counter has a five or six digit value, after it has been normalised
by dividing by the instruction count it is clear which ratios are near zero and can be
ignored.

Another useful measure is to calculate the number of “instructions” your kernel
is executing per microsecond. The profiler is the only convenient route to these
data. On a GTX 295, the profiler says a totally compute bound kernel will run in
the region of 370 instructions per microsecond. Depending upon their “compute
level” and because of the arcane way in which the profiler reports “instructions”
other GPUs will each have their own value. (It is a useful exercise to construct your
own compute bound kernel and see what figure your GPU gives.) Your application
kernels will not reach the GPU’s peak rate. If they are getting more than half the peak
rate congratulate yourself and stop. I have had GTX 295 kernels as disastrously low
as 5 instructions per microsecond.

5.2 CUDA Timing Functions

CUDA’s timing functions can be used to time operations. They have the advantage
of using the GPU’s own high resolution clock but, as the following example shows,
they tend to end up with voluminous code.

cutilCheckError(cutCreateTimer(&hTimer));

...

cutilSafeCall( cudaThreadSynchronize() );
cutilCheckError( cutResetTimer(hTimer) );
cutilCheckError( cutStartTimer(hTimer) );

http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/visual_profiler_cuda/CUDA_Profiler_3.0.txt
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cutilSafeCall(
cudaMemcpy(d_1D_in,In,In_size*sizeof(int),

cudaMemcpyHostToDevice));

cutilSafeCall( cudaThreadSynchronize() );
cutilCheckError(cutStopTimer(hTimer));
const double gpuTimeUp = cutGetTimerValue(hTimer);
gpuTotal += gpuTimeUp;

As well as the reassurance of knowing what your code is doing, using the CUDA
timing routines allows easy integration of timing information with the other data
about your use of the GPU. However very similar timing information is available
from the CUDA profiler without coding (Section 5.1). It is often convenient to create
a CUDA timing data structure (hTimer in the above example) at the same time as
you create your CUDA buffers (Section 6.1.3).

Notice some CUDA calls are asynchronous. Typically, this means, on the host
they start a GPU operation and then return and allow the PC code to continue
operation even though the GPU operation has only been started and will finish
some time later. This allows 1) host PC and GPU operations to be overlapped
and 2) the use of multiple GPUs on a single PC. However it does mean care is
needed when timing operations on the PC, hence the heavy use of cudaThread
Synchronize() in the timing code. A common error is to omit calling cuda
ThreadSynchronize(). If it is not used hTimer typically gives the time taken
to start an operation, e.g. the time taken to launch your kernel, rather than the time
your kernel takes to run.

Except where multiple GPUs are to be used and assuming the GPU is doing the
heavy computation, there is little advantage in allowing GPU and PC to operate
asynchronously. This sort of parallelism is radically different from that provided by
the CUDA and the GPU, it is just as error prone and hard to debug and typically
offers only a modest performance advantage.

In production code you can use conditional compilation switches to disable
hTimer. However, in practice (even when removing many cudaThreadSyn
chronize() calls) typically this will only make a marginal difference.

5.3 GPU Kernel Code Timing

Although the GPU has on chip clocks, a useful approach is to add code to your
kernel and see how much longer the kernel takes. This can be quite informative but
needs to be done with care. Usually it is best to ensure the new code does not change
subsequent operations in any way since their timing effects could totally cancel the
timing effect of your new code.

Timing operation of the kernel from the PC is subject to noise from other ac-
tivities on the PC. Random noise can be averaged out but it is better to ensure the
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timing effect that is being measured is much bigger than the noise. (E.g. perhaps
do the additional operation a thousand times rather than just once.) When adding
code you must remember that nvcc is an optimising compiler. In particular this
means it will try to remove code that makes no difference to the kernel’s outputs.
To prevent nvcc optimising away the timing code we have just added, what is often
done is to make the new code calculate a result and then use an “if” to ensure the
result is discarded. Perhaps the if can depend upon one of the kernel’s inputs, so
that nvcc cannot easily reason about it, but we ensure that the if is always false.
E.g. since in_length should never be negative, the code “if(in_length<0)
d_out=timing_info;” will never be executed but nvcc does not know this and
so cannot remove it and so it cannot remove the calculation of timing_info
either.

This can be a useful way of confirming which parts of your kernel are expen-
sive. However benefits can be disappointing. Kernels that are working well usually
overlap reading from global memory with computation. So even large reductions
in computation time can have little reduction in total time because the I/O time is
unchanged. In the worse case, the more efficient coding simply increases the idle
time waiting for data held in global memory to arrive.

Of course there is also always the dilution effect of Amdahl’s law. In one example
a function was made thirty times faster. However even the inefficient version of the
function was responsible for only a small proportion of the total time. So vastly
speeding it up made only an 11% change to the speed of the whole application.

6 GPU Debugging Techniques

6.1 Defensive Programming

6.1.1 GPU Kernel Infinite Loops

The hardest problem to debug is probably when the kernel fails. Since CUDA GPUs
do not have timeouts, this can mean the kernel never returns. It may lock the whole
GPU. If you are using the same GPU to drive your computer’s monitor, it will appear
as if the whole computer has failed. It may require the computer to be restarted to
reset the GPU. (Section 9.1 has some suggestions for reducing the impact of this.)

Notice not only is the result painful but you may get no indication of what has
gone wrong or where. Further it is quite likely that it will happen again.

Given this is one of the worse bugs it is probably worth some defensive program-
ming. A useful approach, particularly during development is to write a description
of every kernel launch before it is started to a log file. (It may also be necessary to
flush the log file before asking CUDA to start the kernel.) Conditional compilation
switches could be used to remove it from production code. When a kernel fails, or
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is interrupted, the last thing in the log should give you an indication of where the
error lies. I tend to write not just the kernel’s name but also the thread grid dimen-
sions, block size, number of bytes of shared memory requested and parameters to
the kernel. In the case of arrays, I write the volume of the data in the array, rather
than all it’s values. This is probably unnecessary for most bugs but it is easier to be
consistent and it is impossible to be sure in advance which information in the log
will be useful.

printf("kernel_name<<<%d,%d,%d>>>(%d,%d,%d,<%d>,<%d>,<%d>:",
grid_size, block_size, shared_size,
height,width,len,
len*sizeof(int),
len*width*sizeof(unsigned int),
len*sizeof(int));

printf("<%d>,<%d><%d>)\n", //outputs
len*width*sizeof(unsigned int),
len*width*sizeof(unsigned int),
3*sizeof(int));

kernel_name<<<grid_size, block_size, shared_size>>>
(height,width,len,d_in,d_a,d_y,d_out1,d_out2,d_status);
cutilCheckMsg("kernel_name execution failed.\n");

Typically kernels have a main thread loop which allows you to change the block
and/or grid size without recoding or recompiling but still ensures it steps through all
of the input array. (See second example in this section.) Given the CUDA parallel
processing architecture, it is seldom necessary to have other loops in kernel code.
Similarly recursion is seldom used (in fact it is has only recently become possible).
Thus it should not be too difficult to track all (potential) loops in your code and
make absolutely sure that they terminate. A recent bug will show how this was used
and proved very helpful.

int id = -1; //found it
int free = -1; //free slot
int i = hash(value,Nvalue); //start search at i
int loop = 0; //prevent looping forever
do {
if(s_value[i]==value) {id =i; break;}
if(s_value[i]== 0) {free=i; break;}
i++; if(i>=Nvalue) i=0; //Goto beginning of s_value

} while(loop++ < Nvalue);
if(id == -1 && free <0 ) Error(0x99960000,Nvalue);
}

The do while loop searches s value for value. On successful exit id will
indicate where it is. If it has not already been stored, free will say where it can be
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stored. hash() is only used to speed the search. If things were working as expected,
the while loop could have been coded as while(1) However we know in ad-
vance the maximum number of times the loop should go round. (It is Nvalue, the
size of the array s_value.) Therefore we can use while(loop++ < Nvalue)
to force the loop to terminate, knowing it will catch indefinite loop errors but not
abort the loop too soon. In fact the two break statements are the only legitimate
ways of exiting the loop. An older programmer may have used goto, which might
have simplified the last line.

The last line, checks the loop terminated as expected and if not reports an error.
If, in some unexpected future run, we have more examples of value than we have
space in s_value the error could arise legitimately. If we had not provided a check
on loop++, this would cause the kernel to lock up the GPU and hence the monitor
would freeze.

In an actual bug, hash() returned a very negative value. The search loop termi-
nated and the problem was reported by via Error() on the last line.

The second example bug arose in the following loop structure which is based on
CUDA’s SDK examples:

int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;
int threadN = MUL(blockDim.x, gridDim.x);
for(int i = tid; i < length; i += threadN) {
...

}

CUDA should provide legal values for blockDim.x, gridDim.x, threadIdx.x and so
the loop should always terminate and so is commonly not protected. However in
one kernel it was desired to dedicate different blocks of threads within the grid to
different parts of the calculation and a bug was introduced when the second MUL
was changed. This lead to threadN being set to zero and the kernel running until
manually aborted. Of course, after the fact, it is also possible to add code to detect
indefinite loop errors in this construct too. However, as errors here are not expected,
it it seldom done.

6.1.2 CUDA Kernel Launch Failure

When launching a kernel always follow kernel_name<<<...>>>with cutil
CheckMsg("kernel name execution failed.\n"); This will ensure
you know which was the first kernel to fail. Normally the string you supply to
cutilCheckMsg() is fixed. However it need not be. If, for example, you start
your kernel in a loop, you could use sprintf() to make the string you pass to cutil
CheckMsg() include the loop index.

Since there is seldom a good reason for allowing the code to continue passed an
error, you should wrap all host calls to CUDA routines with cutilSafeCall() or cutil
CheckError(). See the examples in CUDA’s SDK routines.
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Sometimes the error message supplied by CUDA can be helpful but often it
is very general. E.g. cutilCheckMsg cudaThreadSynchronize error:
kernel name execution failed in file <kernel.cu>, line
1455 : unspecified launch failure. This error message says there is
an error somewhere. It is probably related to a particular kernel launch and the
message tells you where in your source code to start looking. Sometimes starting
your program via cuda-memcheck --continue can give additional informa-
tion perhaps confirming the bug is an addressing error within the kernel.

The information you have written to the log file can sometimes be very helpful.
For example did you tell CUDA to launch a kernel with zero threads per block? Was
the grid size more than 65535? Or did you tell it to use more shared memory than
the GPU has? Sometimes index array out of bounds errors inside the kernel can be
reported as unspecified launch failure.

6.1.3 GPU Device Buffers

High end GPUs typically have a lot of high speed “graphics” memory. PCs with
their lower performance typically have lower speed memory. Since it is cheaper,
host computers typically have more memory than GPUs.

A good CUDA coding convention is to allocate a buffer in the PC’s memory for
each buffer in the GPU’s global memory. The host and device buffers are of the
same type and same size.

Given the high initial overhead on both starting kernels and transferring buffers,
GPGPU applications tend to have a few large buffers. Even a complex application
is unlikely to have more than a dozen PC/GPU buffer pairs.

It turns out that allocating CUDA device buffers has a very high overhead, so typ-
ically they and their shadow PC buffer are allocated once when the application starts
and reused many times. I suggest you adopt a naming convention which makes it is
obvious which buffers are on the CPU and which on the GPU and which shadows
which.

Using cudaMalloc to create GPU global memory buffers:

cutilSafeCall( cudaMalloc(
(void**)&d_buffer, buff_size*sizeof(int) ));

As with other C code, when debugging it is a very good idea to set all variables into
a defined state before using them. In the case of GPU buffers this can be done with
cudaMemset():

cutilSafeCall( cudaMemset(
d_buffer, 0, buff_size*sizeof(int) ));

cudaMemset() is fine for use whilst debugging. Often applications can be written
which do not require large buffers to be cleared. However if yours does, it may be
slightly more efficient to use GPU kernel code to initialise a large array in global
memory, rather than to use cudaMemset().
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6.1.4 Host PC Buffers – Non-paged “Pinned Memory”

The host buffers on the PC can be created in the usual C or C++ ways however it
is more efficient to ensure that they are locked into the PC’s memory rather than
being pageable. (This avoids the GPU driver copying the data twice.) Normally
this effectively doubles the transfer speed to and from the GPU. However in one
case, switching to non-paged memory gave a 27 fold speed up. cudaMallocHost
provides a convenient way of allocating “pinned memory”:

printf("Allocating non-paged host memory\n");
cutilSafeCall( cudaMallocHost(

(void**)&Buffer, buff_size*sizeof(int) ));

Even though “pinned memory” is in host RAM, some versions of the GNU GDB
debugger cannot access it. Instead it produces error messages confusingly similar to
those it produces if you try and access the GPU’s memory via GDB.

6.1.5 Debugging GPU Device Buffers

GPU device buffers are often huge, typically containing thousands or millions of
data. Too many to check all individually. It is not always easy to construct small test
examples which highlight particular bugs. Indeed the bug may only manifest itself
with larger data sets.

Sometimes the GNU GDB debugger can deal with whole arrays. However the
ability to interactively display arrays, even in an intelligible screen format, rapidly
becomes less useful as the arrays get bigger. The CUDA programming style tends
to mean pointers to buffers are passed around the code and (even without the
problem of “pinned memory” mentioned in the previous section) GDB rapidly
loses the sense of data as being an array and human access is only via pointers
and offsets. Interactive access via pointers and offsets is tedious and hence error
prone.

What has proved useful is creating a suite of host functions, one per data type,
which simply dump an entire GPU buffer into a disk file in human readable format.
(Depending upon your application, you may also want functions to load data from
disk.) The files mean the whole of a buffer can be rapidly inspected by eye. They can
also be subjected to semi-automatic sanity checks. Such checks might be informal
or only true in particular circumstances. E.g. you might want to double check that
there are exactly 273 non-zero elements in the buffer. It can be easier to apply such
variable checks outside your application code.

Notice the following debug code does not use the host/GPU shadow but creates
it’s own dedicated buffer and reads from the GPU. The idea is to avoid cross talk
between the debug code and the code being debugged. Also we avoid making as-
sumptions about what we thought we had put into the GPU and instead read what is
actually there.
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if(debugging) {
my_type* in = new my_type[size];
cutilSafeCall(

cudaMemcpy(in, d_in, size*sizeof(my_type),
cudaMemcpyDeviceToHost) );

print_my_type("In.txt",in,size);
delete[] in;

}

Each of the print routines sends each datum to an output file one per line. The human
readable format of each data item is as simple and as clear as possible.

void print_my_type(const char* fname,
const my_type buff[],
const int length) {

FILE* ifd = open_(fname);
for(int i=0;i<length;i++) {

fprintf(ifd, "%8d %g\n",
buff[i].timestamp,buff[i].pressure);

}
fclose(ifd);

}

The idea is to have a file for each GPU buffer. It may be that during a particular
debug/test cycle not all of them will be needed.

When you have a working version of your application these files become valuable
in their own right. The assumption is, since you know your application is working,
then the contents of the GPU buffers and hence these files is also correct. Therefore
when we produce a new version of the code (e.g. to tune it’s performance or port it
to different hardware) we can readily re-run the new code on the old input and use
these files to confirm that the contents of the GPU buffers are the same as they were
before.

The idea of open_() is to automatically give each file a name which de-
pends on the version of the kernel we are running. open_() uses a Version
macro containing the source file kernel.cu’s version number: #define Version
"Revision: 1.266a ". Thus GPU buffer d_in will be automatically saved
in file In.266a

FILE* open_(const char* fin) {
FILE* ifd;
//replace fin type by Version
char fname[80];
char* p = strrchr(fin,’.’);
const int len = p-fin+1; assert(len >0 && len <80);
strncpy(fname,fin,len);
char buf[80], buf2[80];
strncpy(buf,Version,79);
char* p2 = strrchr(buf,’.’)+1;



Creating and Debugging Performance CUDA C 27

{const int len2 = p2-buf; assert(len2>0 && len2<80);}
strcpy(buf2,p2);
char* p3 = strrchr(buf2,’ ’);
{const int len3 = p3-buf2; assert(len3>0 && len3<80);}

*p3 = ’\0’;
strcpy(fname+len,buf2);

ifd = fopen(fname, "w");
if(ifd==NULL) {

printf("Failed to fopen %s w\n",fname);
exit(1);

}
printf("Printing to %s\n",fname);
return ifd;

}

When either debugging or conducting regression tests there are at least two reasons
why simple comparisons between two versions of a file might fail. 1) Your code
has changed and the effect of the change on the GPU is being entirely correctly re-
flected by differences in the files. 2) The code is not deterministic but the details of
it’s output (even when correct) depends upon the exact order in which parallel oper-
ations appear in the files. Thus running the program twice need not produce identical
files (see Section 8.5). This makes the whole of testing and debugging much more
complicated and so nondeterminism should be avoided. The increased possibility of
creating a successful application may mean it is better to have deterministic code,
even if it is slower.

If nondeterminism or potential future code changes mean that the order of data
inside the GPU might change it is better to avoid saving line numbers, indexes,
time stamps, etc., in the file. If blocks of data can legitimately move in the buffer,
utilities like diff can often report this as a simple move of data about the file. Another
approach is to sort the two files and then compare the sorted files. If data have simply
been rearranged, the two sorted files will be identical.

It is now possible to generate your own debug text from inside your kernel using
printf(), however my preference is still to use the “dump whole GPU buffer
to disk file” approach. It is less intrusive to the code you are trying to debug and
requires no change to the kernel code at all. Although, with very large files, it can
have an impact on performance, the impact is readily isolated when inspecting either
your own timing log or the CUDA profiler output. As mentioned above, it gives easy
access to the whole of large data structures and typically integrates well with regres-
sion testing. With modest kernels, studying their source code, inputs and outputs is
often sufficient to quickly locate problems. Perhaps as kernels grow in complexity,
printf()’s ability to report kernel internals will be more important.
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6.2 Debugging GPU Bioinspired Algorithms

Whilst some aspects of getting Bioinspired algorithms to work on GPUs will be spe-
cific to the algorithm many of the ideas I have described will also apply. However
a particular class are the stochastic search algorithms, such as evolutionary compu-
tation. I have already mentioned the need to control their use of randomness (see
Section 5.1, and also Section 7.1). Some algorithm specific techniques developed
for serial versions can also be very useful when run on GPUs. For example in ge-
netic programming [27, chpt. 13] it is recommended to test your implementation by
seeding the population with one or more individuals of known fitness. E.g. create a
GP seed individual which passes no tests or a “perfect” individual which passes all
tests. Then verify that the fitness of these individuals, when calculated by your code
on the GPU, is 0% and 100% respectively. (This is similar to the idea, described in
Section 7.1, of testing by ensuring the GPU implementation gives the same results
as a serial version of the algorithm.)

Another way of verifying your algorithm is to try it on a published “benchmark”,
e.g. 6-Mux [14] and ones max [29]. Your GPU code should give the same answer.
With randomised algorithms like genetic algorithms (GAs) it will be necessary to do
many runs and compare the mean number of fitness evaluations or other statistic to
be sure that minor differences can really be put down to random chance fluctuations.

However this raises the awkward question of what to do if your GPU really does
generate different answers. Unfortunately some benchmarks are not well described.
This suggests you use well established simple benchmarks with published results
from a range of authors. Also consider problems which you have worked on and
have (debugged) serial code implementations. Can you compare your new GPU
code against them? Of course for such comparisons to make sense, your GPU algo-
rithm must be doing the same as the serial algorithm.

One oft repeated discovery is that GAs with distributed populations tend to do
better than those with a single monolithic (panmictic) population. This is due the
populations searching in different ways. For example, while it may make perfect
sense for your GPU GA to contain several isolated populations each stored in iso-
lated shared memory, we would not expect it to behave the same as a GA with the
same combined population size, which every generation allowed complete mixing
of all members of the population. These are different algorithms. One may work
better than the other but it probably does not make sense to compare them when
looking for bugs.

6.3 Your First GPU Kernel

The following way of debugging GPU kernels was suggested by Gernot Ziegler of
nVidia. The idea is not to have the kernel do anything but simply prove to yourself
that it can read it’s inputs and send output to the right place.
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When you come to debug more complex kernels, these steps may still be impor-
tant. 1) Does the input data reach the kernel? This may be particularly important if
the data were created by another kernel. 2) Does output leave the kernel? 3) Do the
various threads put the data in the correct places? Are their values correct?

Lets start with a simple CUDA kernel which checks “does the GPU sends data to
the right places?”

int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;
int threadN = MUL(blockDim.x, gridDim.x);
for(unsigned int t = tid; t < LEN; t += threadN) {
d_1D_out[t] = threadIdx.x;

}

You will need fair amount of code on the PC to support even this simple kernel.
See the examples in the CUDA SDK sources directories. These directories include
compilation command scripts. Remember to include code to check the kernel really
is working. Once satisfied with your first kernel, inject a fault into it [22]. Did it fail
in the way you expected? Did your error checking code catch the error, and handle
it in an appropriate way? Did your revision control system (Section 7.3) allow you
to recover your working version reliably and correctly?

Ok so now try both input and output. E.g. replace the contents of the loop with:

d_1D_out[t] = 1 + d_1D_in[t];

What values did you put in d_1D_in? Did you get the expected values in
d_1D_out? Did you get the expected values in d_1D_in? How fast is it? How
does the speed vary: if the arrays are bigger or smaller? if the arrays are types other
than integer? what happens with different numbers of threads per block? (Remember
Figure 1.) what happens if the grid size and dimensions are changed? what happens
if adding one is replaced by a more demanding calculation? (Remember to check
the answers the GPU gives.) What do you expect to happen if you run your kernel
on a different GPU?

6.4 GPU Coding Style

Often GPGPU applications contain only one or two kernels. Less than half a dozen
is very typical. It is common to design them to be small (e.g. between 10 and 100
lines).

Earlier nVidia GPU’s had quite limited numbers of registers, however current
Fermi designs include 32 768 registers per multi-processor. The registers are used
by every thread active on the multi-processor. Thus a kernel which used 100 regis-
ters could use at most 327 threads per block. With small purpose written kernels, the
number of registers is no longer as big a factor as it used to be on earlier GPUs with
fewer registers. However if large serial functions are converted into large kernels
the number of registers could be an issue. The nvcc compiler has various options to
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allow fewer registers to be used and/or to “spill over” registers into local memory.
However remember local memory is actually stored off-chip and even with caches
it has the same performance impact as using global memory.

6.5 GPU device functions

The CUDA C compiler, nvcc, efficiently supports functions on the GPU. Since nvcc
inlines function calls, there is no overhead in calling them but the GPU code is
not reduced by being able to use common subroutines to implement functionality
needed in multiple places. Nonetheless nvcc implements them as full C functions
and so one gets the normal development advantages of data scoping and variable
arguments. Indeed there is no parameter passing overhead. Nonetheless one must
always remember that the functions are to be run by many threads in parallel.

A coding problem, unique to parallel computing, is that the programmer must
keep track of which threads are really going to execute the function. The following
shows how this (and programmer error) created a bug.

Suppose a GPU function assembles an answer in GPU shared memory, it then
wishes to send the answer to the host PC. It must first write it to global memory. In
a kernel the following loop might be used.

for(int i=threadIdx.x; i<Nvalue; i+=blockDim.x) {
d_out[i] = s_value[i]; //Bug

}

Notice how it spreads the work evenly amongst all the threads and allows the GPUs
I/O hardware to efficiently bunch together large numbers of simultaneous writes into
large low overhead blocks. Even access to the shared memory s_value avoids the
overhead of bank conflicts. Unfortunately the code may be wrong.

Worse the error lies not in the code itself but in how it is used. Even worse the
error may be very subtle, with almost all data correct and only incorrect every so
often, depending on exactly what data the kernel is processing. Indeed if, e.g. for
performance reasons, d_out is not reset between kernel invocations, it’s last con-
tents may be close to the values expected.

If instead of using a function, we had placed the above code inside the kernel
itself we might have spotted the error immediately.

for(unsigned int t = tid; t < LEN; t += threadN){
for(int i=threadIdx.x; i<Nvalue; i+=blockDim.x) {

d_out[i] = s_value[i]; //Missing threads bug
}

}

It starts to become clear that there is a relationship between the threads in the outer
loop and those in the inner loop. The inner loop assumes all blockDim.x threads
will run it. So does the outer one. However the problem arises, because once t
reaches LEN the outer loop assumes it is done and effectively stops any remaining
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threads. Thus these threads are not available to the inner loop. This only happens
in the last iteration of the outer loop, it only effects the highest numbered threads.
At least it is deterministic but without studying the code and knowing the details of
the parameters used to launch the kernel and the value LEN we do not know which
threads will be affected. At the start of the kernel, both loops work well, however at
the end some parts of d_out may not be updated and which ones depends on too
many details.

Notice, to detect this error, it would be better to check the end of the buffer,
rather than it’s start. In fact the bug was picked up by noticing a regular pattern of
zeros towards the end of the output file (generated using the debugging technique
described in Sections 6.1.3–6.1.5).

This bug arises from parallel computing. In serial computing, once we have coded
a subroutine and debugged it, we are now confident in it and only limited further
checks are made. This is the case here. The code has been checked and when it is
run it works. The problem arises because we think certain threads are going to run
it but they do not. The code would have worked but it was never run.

To avoid the detailed consideration needed to ensure this bug does not hap-
pen, you should try to code __device__ functions so as to avoid operations
which need interaction between threads. This also has the advantage that sync
threads() should not normally be needed in __device__ functions.

6.6 nVidia GPU Shared Memory

GPU shared memory is rapid access read write on-chip memory available to blocks
of kernel threads, see Figure 1. It gives CUDA it’s only modifiable rapid access ar-
rays. (Individual CUDA threads can have modifiable “local” arrays but until Fermi
all local data was off chip and consequently slow. Fermi provides a cache which
potentially makes read/write access to local arrays competitive with shared mem-
ory.) Shared memory can also be used as a very rapid way of passing data between
computation threads in the same block. It cannot link threads from different blocks.

Shared memory is required for parallel computing “reduction” techniques (see
SDK’s reduction kernel.cu). Whereby each thread calculates part of an an-
swer but the whole answer is created by reducing these partial answers hierarchi-
cally into one (usually thread 0). It takes log2 n steps to combine the answers of
n threads.

There is only a small amount of shared memory and it may be quickly be ex-
hausted. CUDA’s SDK has examples (e.g. histogram) where data are first stored
in shared memory and then results from different blocks of threads are combined.
SDK’s matrix manipulation examples also make heavy use of shared memory.

In kernels where data are not processed independently shared memory can be a
good place to store intermediate results. E.g. When scanning and removing dupli-
cates from large arrays, multiple threads are needed to read the array rapidly but
each thread needs to know which duplicates the others have found [20].
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As with global, local and constant memory, there is a “best” way to arrange your
threads when they access shared memory (which will of course be simultaneously).
However unlike the other three types of memory the penalty for not using the best is
slight and shared memory “bank conflicts” are seldom worth worrying about before
the kernel is debugged. However as I have got a better understanding of how GPUs
work, my kernels have used shared memory less.

It is often suggested that shared memory be used as a cache for your kernel. This
can be a bit misleading. It is not worth using shared memory to buffer either input
or output data whilst it is being read from or written to off chip memory. If you use
__syncthreads() to ensure all data has arrived before you try and use them the
GPU loses a large part of it’s ability to overlap I/O with computing and performance
falls horribly. Each thread has a number of registers. Global data can be read/written
directly to/from a thread register very efficiently without using shared memory.

6.7 Error Reporting

The function Error(), mentioned in Section 6.1.1 (and in Section 8.9.2) was intro-
duced into a kernel which was proving very hard going. It is designed to report the
first error detected to the host PC, where code retrieves it and reports it to the log
file. Given a parallel multithreaded environment, it need not always be clear which
is the first error. The implementation of Error() does not try overly hard and the de-
bugger must always be aware that events may be reported in an unexpected order.
Even so Error() is probably more sophisticated than necessary for most kernels.

__device__ void Error(const int error,
const short int aux) {

if(s_error==0) s_error = error | (aux & 0xffff);
}

In the main loop of the kernel we also have

if(s_error) {d_status[2] = s_error; break; }

Notice d_status[2] is shared between all the blocks of threads and so will suffer
from “races”. We do not take special precautions about this since: it is code that
should not normally be in use, the simpler it is the easier it will be to understand
and the less likely it too will have bugs in. (Debugging debug code is especially
annoying1.) However d_status is an array of 32 bit values, so each 32-bit word
will be self consistent. Often several blocks of threads will encounter errors and
d_status[2] will contain the first error reported by the last block of threads.
When using it to assist your debugging you may need to be aware that it was not
necessarily the only error reported by your kernel. You will also need some code to
transfer d_status[2] to the host PC and check it’s value:

1 When you are in the swamp killing alligators, the thing to remember is that you are not
supposed to be killing alligators; you are supposed to be draining the swamp.
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cutilSafeCall(cudaMemset(d_status,0,3*sizeof(int) ));

...

cutilSafeCall(
cudaMemcpy(Status, d_status, 3*sizeof(int),

cudaMemcpyDeviceToHost)
);
if(Status[2]) {
printf("ERROR reported by kernel 0x%x\n",Status[2]);
exit(99);

}

In the production code it is tempting to remove Error() or similar sanity checking
code (such as assert in the host code). I suggest you do not remove it from the source
code. In code that is in use, there will always be another bug and what you have
already developed might help you or the next programmer find it. Again conditional
compilation might be a good way to disable it. However in one complex kernel,
commenting out “unneeded” sanity checking code saved only 6% of it’s overall
execution time.

7 Testing Parallel Software

Assume new or modified code is wrong. This is particularly important with stochas-
tic bioinspired techniques. Guided by a fitness function, there are many occasions
where evolution has worked around horrendous implementation bugs. From an ap-
plication point of view, this is of course a strength. If the genetic algorithm came
up with a good solution, we do not care the implementation was poor. Indeed it
might be argued buggy GAs are considerably cheaper to implement than perfect
ones. From a scientific point of view this is less satisfactory.

If we are researching an improved stochastic search operator (e.g. a new GA
crossover operator) for a particular application domain, we want to be sure that any
differences are really due to the crossover operator and not due to bugs in either our
GA or in the GA we are comparing against. The fact that a good solution was found,
does not mean the GA code we used did what we thought it did.

7.1 Comparison with a “Gold Standard”

Many of nVidia’s SDK examples, not only show how to code an example in CUDA
but also include comparing the GPU’s results with a traditional implementation of
the example. Can you do the same? Do you have a convenient solution to your
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problem (which you are confident is correct)? Can you knock up a simple (even
inefficient) conventional version? This need not even be written in C, perhaps
python, gawk or spreadsheet, as long as it produces correct (but non-trivial) an-
swers. (Nonetheless remember to use your revision control system, Section 7.3.)

It is much easier to compare results if your CUDA code produces identical re-
sults to your gold standard. Insist on it. Once you get into heavy coding it is easy
to assume small differences are unimportant and as data volumes ramp up larger
differences can be overlooked in a mass of minor ones.

With stochastic methods use (at least during testing) deterministic sources of
random numbers (PRNGs), e.g. [16]. Keep a record of the seeds used in the log file.
Perhaps use the same seeds with the GPU and your gold standard code. (Do not use
these seeds during production runs).

With floating point numbers the GPU will produce different answers. Decide in
advance how big a difference you expect. When comparing PC and GPU results, use
an automated method which will only show you unexpected differences. Consider
if you should include -0, NaN, etc., as different.

7.2 Regression Testing

Be sparing in your inclusion and careful in the placement of: version numbers, date
stamps and elapse times in output files. Even in correct code, these will be reported
as different and you can quickly be swamped by uninteresting differences, which
may (particularly if mixed with other data) conceal important differences.

7.3 Software Version Control

You will create multiple version of your source code. At some point you will insert
a fault into it and want to revert to an earlier version. You will want to be able
to compare different versions. You should start using a convenient version control
system when you start coding.

Having said that the best way to use it will depend on you. It is easy to delay
saving a version whilst coding/debugging is going well and then find at the end of
the day (usually when tired) that an error has been made and you do not want to
throw away all the nice code written since the last time you checked kernel.cu into
your revision control system (rcs) before the error was made. However you did not
spot the error as it was made and either your editor will not allow you to undo the
changes or you need to undo so many individual character changes that that it itself
becomes tedious and error prone. On the other hand it is possible to check-in source
code too often so the rcs history log becomes a sequence of meaningless messages
of the type “changed function xxx: still not working”. My preference is for too often.
After all saving a revision will take less time than compiling it.
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8 GPU Bugs

The following sections described a few examples of real GPGPU bugs, how they
were found and how they were fixed.

8.1 Not All Threads Available

Another manifestation of the problem described in Section 6.5 occurred when a
function was called inside conditional code within the main kernel.

if(data) {
... lookup data ...
if(missing) save_data(data,...);

}

It is obvious from this code that only certain threads (those for which data is both
non-zero and has not already been saved) will call save data(). However this is not
so clear when studying, as one is trained to do, save data() in isolation.

Initially there were other problems with save data() and this bug mearly added to
the confusion. For performance reasons, save data() was redesigned several times
and eventually detailed knowledge of how it handled threads in different warps was
used to implement it efficiently.

Large volumes of test data were passed through the kernel both to soak test it and
to give reasonable estimates of how it will perform for real. The soak test gives some
reassurance that the heavily inspected code really can cope with all combinations of
simultaneous arrival of identical and non-identical data.

8.2 nVidia GPU Shared Memory Bug

The optional third parameter in nvcc’s <<< >>> CUDA kernel launch syntax al-
lows you to specify the number of bytes of shared memory available to each block
of threads in the kernel. The nVidia CUDA C programming guide says how to write
your kernel. Unfortunately it is complicated and, as we shall see, error prone.
kernel<<<grid_size,block_size,shared_size>>>(...) effec-

tively gives the kernel an anonymous array2 which the kernel (with the compiler’s
help) has to convert into usable C variables. I have evolved the following (which is
based on the CUDA C programming guide).

There is one shared array. (It appears that if you try and declare two, they
will actually be placed on top of each other.) It is declared in your .cu file us-
ing extern shared unsigned int shared array[]; Every shared

2 Anyone else old enough to remember Fortran unnamed common blocks? They were also
a bug waiting to happen.
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variable is explicitly defined as an offset from the start of it. You should provide host
based checks (cf. shared size) that these do not run off the top of shared mem-
ory. CUDA will check at run time you have not asked for more shared memory than
your GPU has.

For every kernel that uses shared memory, we define macros like set shared. Each
such macro is used in the scope of it’s kernel and/or the kernel’s __device__
functions.

#define set_shared \
volatile int* xs_error = (int*) &shared_array[0]; \
volatile int* xs_ndata = (int*) &shared_array[1]; \
volatile unsigned int* s_data = &shared_array[2]; \
volatile int* s_ptr = (int*) &s_data[Nvalue]

#define shared_size ((3+2*Nvalue)*sizeof(int))

#define s_error xs_error[0]
#define s_ndata xs_ndata[0]

...

__device__ void Error(...) {
set_shared;
if(s_error==0) s_error = ...

}

The additional macros s error and s ndata allow the kernel code to treat them as
scalars rather than arrays. Notice array s ptr should lie after s data and none of the
data should overlap. The particular bug arose as a cut and paste error whereby in-
stead of using starting s ptr at the last plus one element of s data (i.e. s data[Nvalue])
another value was used. Nvalue is a const int set to 800. The wrongly used variable
was set to 600. Hence a quarter of the two arrays overlapped. This meant the code
worked on some small examples but failed horribly on others. The device buffers de-
scribed in Sections 6.1.3–6.1.5 and regression testing were used whilst finding and
fixing this bug. However knowing which parts of the source code had been recently
changed lead quickly to the location of the problem.

8.3 nvcc C++ Compiler Volatile Keyword

I tend to avoid exotic parts of programming languages and so had overlooked nvcc’s
use of volatile when declaring shared memory variables. volatile essentially turns
off nvcc’s optimisations whereby it uses registers rather than direct access to shared



Creating and Debugging Performance CUDA C 37

memory. Normally I would simply let the compiler get on with generating code but
here was a bug in the making. Shared memory was deliberately used by multiple
threads. When multiple threads of the same warp write to the same shared data, the
hardware ensures one of them succeeds and the data from the others is discarded.

When nvcc optimises code which does not use volatile it may replace an access
to shared memory by using a thread register. This lead my C code to think all the
threads had succeeded in writing. Now that I realise what can happen, I use volatile
on all shared memory declarations. The performance penalty of accessing shared
memory rather than a register is small and I have not yet found an example where I
am sure it is safe to allow the compiler to prevent inter-thread communication. After
all I am mostly using shared memory to communicate between threads.

8.4 nVidia GPU Constant Memory

I going to call this a bug because even though the correct answers were calculated:
in supercomputing we don’t just want the correct answers but we want them fast,
and this wasn’t.

At first sight constant memory (Figure 1) appears attractive. Often applications
have important data that we know is not going to change. Sometimes it looks small
enough that it will fit into 64Kbytes. Or perhaps it is sparse and we can compress it
into 64K. Essentially it can be much faster than global memory but it is not really
64Kbytes but a 64K window onto a much smaller caching system [34]. One view is
to use textures instead since these are cached. Another possibility might be to take
advantage of Fermi’s cache and assume it will have the kernel’s (read only) data in
it most of the time that it is needed.

Here is my view of how constant memory works. Each kernel has a 64Kbytes
window onto the same patch of regular global memory. Only the host PC is allowed
to update that window but it can do it multiple times. Each time a thread tries to
read from constant memory, the read request works it’s way up through a hierarchy
of caches. I am sure the details will vary between GPU architectures but Wong et
al. [34] suggests the closest and hence fastest cache has only space for 512 integers
or floats. (They say the largest useful cache has space for 2048.) Hence, we might
think, if each thread block uses somewhat less than 8 KB (ideally less than 2 KB)
there is a reasonable chance constant memory will help. Now it might be that we
manage our kernel so a different thread block reads a different 8 KB, so it may be
we can actually efficiently use all 64 KB if we are lucky (or skillful) with the details
of how we write our kernel’s reading of __constant__ data. (Have I put you off
yet? It gets worse.)

The hardware restrictions mean only one word can be read at a time from the
__constant__ cache. So if you code your kernel so that all threads in a warp
read the same datum at the same time all is well. If they read two data, even if both
are in the __constant__ cache, the hardware will stall some of the threads and
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the whole read will take twice as long. In the worse case, where each thread accesses
it’s own datum, the read takes 32 times as long. So while we have an advertised
64 KB, this is actually something like 512 words of real fast memory and then we
can efficiently only read one of them!

The CUDA profiler turned out to be very useful. It can display the compute
level 1.x GPU counter warp serialise. In one case warp serialise was huge, about 23
times the instruction count. This required the whole application to be redesigned.
Essentially random access was replaced by a system where each block of threads
uses only a limited part of the 64K and usually threads in the same warp read the
same elements of the array at the same time. warp serialise fell to an average of less
then 1% across the kernel and the kernel at last started to run at a reasonable speed.

The following two code snippets declare and set constant memory. They are in
the same .cu file and so are compiled in one go by nvcc.

__constant__
unsigned int Constant[15*1024]; //Leave 1kw free

The host PC code uses cudaMemcpyToSymbol() to initialise Constant[].
cudaMemcpyToSymbol() can also be used to change Constant[] between
kernel executions. Placing it in a host function allows the GPU Constant array to
be changed anywhere in the host PC code.

assert(0<matrix_size &&
matrix_size<=15*1024*sizeof(unsigned int));

cutilSafeCall(
cudaMemcpyToSymbol((const char*)Constant,matrixw,

matrix_size, 0, cudaMemcpyHostToDevice) );

In principle the compiler can use the C const quantifier to recognise read only
inputs to your kernel and access them via constant memory. In practise I have not
seen it do this. At present it appears that only GPU data you explicitly denote with
__constant__ is accessed via constant memory.

nvcc uses .const in the ptx assembler it generates to indicate __constant__
memory. (See the nvcc -keep command line option.) Note although the compiler
generates human readable assembler, inspecting it is very rarely helpful.

8.5 Non-reproducible Parallel Bugs

In industry it can be standard practise to ignore non reproducible bugs. They are hard
to find and hard to fix. And besides there are plenty of well behaved bugs to fix. In
parallel code the fact that it behaves differently in different circumstances can give
you a clue that it suffers from some race condition. It may be that an asynchronous
update problem has been in your code sometime but is only exposed by a change in
the way it used. For example running on a different GPU or a change in load within
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the kernel or a change in the way it uses threads, particularly increasing the number
of threads above 32.

8.6 Impossible Bugs

Sometimes is just impossible to see why something does not work. It may be
this is an opportunity to re-read the relevant CUDA documentation, find examples
which do work, or consult the various online discussion groups, e.g. the nVidia
CUDA Programming and Development forum. However perhaps you should use
your revision control system (Section 7.3) to rewind your source code back to some
earlier stable version.

Is it absolutely essential you implement the feature in the buggy kernel code? If
so, is the bug related to the parallel threads? Perhaps it would be sufficient to have a
serial version?

The following example shows using thread zero to force what should have been
done in parallel to be done in series. (Remember the warning in Section 6.5 that
thread zero must actually execute your serial code.)

//ugly hack
if(threadIdx.x==0) {
s_ndata = 0; //Number of non-zero elements in s_data
for(int i=0; i<Nvalue; i++) {

if(s_data[i]) s_ndata++;
}

}
__syncthreads();

8.7 Difficult Code

Perhaps if you suspect something is going to be hard you should consider writing a
prototype first. The idea is the prototype should the opposite of CUDA. It need not
be fast, it should not be run in parallel and it should be easy to implement. I tend
to use gawk scripts because they handle reading input files much better than C. But
it needs to be something you are comfortable with programming. Hack about your
prototype until you have worked out the transformation you want the kernel code to
do and the algorithm whereby it should do it. Kernels do not take kindly to being
hacked. It should be much easier to work through your ideas in simple serial host
PC code.

The GPU buffer files described in Section 6.1.3 might be quite a useful source
of test data for your prototype. Ensure at least the “final” version of your prototype
and any scripts/command lines needed to run it are saved in your revision control
system (Section 7.3) before you go back to coding your kernel.

http://forums.nvidia.com/index.php?showforum=71
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8.8 CUDA Bugs

Very rarely you will come across bugs in nvcc. Old versions of nvcc are not going to
be fixed. If you have the very newest nvcc, you can report the problem. In all cases
you will have to work around the problem.

Some advocate the C++ Standard Template Library (STL), but C++ templates
have caused compiler bugs in the past.

8.9 C Coding Bugs

8.9.1 Loop++

This was a logic error and not particularly related to CUDA or parallel computing.
I had provided hash() to speed up searches. The monitoring code suggested a huge
problem with many more hash clashes than searches. Inspecting the kernel code
suggested the problem lay here:

int loop = 0;
do {
if found .... break;
else ... continue to search ...

} while(loop++ < large limit) //avoid infinite loop
if(loop) report long search

If hashing was working well, in almost all cases the loop should be exited before
the while statement but in many cases loop was not zero and a hash clash was
being reported. The wrong fix was applied. “Obviously” loop++ had incremented
loop from 0 to 1, so the last line should have been checking if(loop>1) not
if(loop). This was wrong (and did not resolve the problem). It turned out the
hashing algorithm was flawed, resulting in a hash clash in many cases causing the
while loop to be reached and loop to be correctly incremented and a hash clash
to be correctly reported. Eventually hash() was improved and the number of hash
clashes reported fell dramatically.

Part of the reason for the misdiagnosis was the delay between when I had first
(correctly) written the loop and the availability of hash() and so the ability to test the
loop. In the intervening period I had forgotten the logic of how while(loop++
was expected to work. Better comments in the source code might have helped.

8.9.2 C Shift Operations and unsigned int

Given the dire warnings about the computational expense of division on GPUs
and for other “efficiency” reasons the use of left shift << and right shift >>
is common place. It is easy to overlook the warning in [13, p49] which says
>> on an int can either fill with copies of the sign bit (“arithmetic shift”) or
with zeros (“logical shift”) depending on the hardware. This gave rise to the bug
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mentioned in Section 6.1.1. For example when kernel local variable int v has the
value 0x80000000 and it is right shifted 24 instead of getting 0x00000080 (128),
v >> 24 gives 0xffffff80 (-127). Once found, this is readily fixed by declaring v
as unsigned int.

It is claimed that the CUDA optimising compiler, nvcc, will spot division by inte-
ger powers of two and replace them by the correct shift operation. So it is common
to use /32 rather than >>5 and rely on nvcc to create efficient code.

Although Error(0x99960000,Nvalue) quickly trapped the error, it was
actually localised by remembering that the nearby hash() function had been recently
changed and then asking the rhetorical question “how could hash() generate unex-
pected values”.

hash() is expected to return a value between 0 and Nvalue-1, so conditional
code was added to report if hash() returned something outside this range. E.g.
if(i<0 || i>=Nvalue) Error(0x999a0000,i); Once this confirmed
hash() was misbehaving (probably producing negative values) if.. Error could
be used to further localise the bug but fundamentally hash() is short enough for the
unexpected source of negative integers to be traced to my wrong assumptions about
v >> 24 and the declaration of v to be corrected.

8.9.3 Defensive Coding and Conditional Compilation

Again this is a bug which should not have happened, nevertheless it gives an
example of where defensive coding was helpful. I had changed my GP CUDA
kernel so that it ran all possible test cases rather than just a sample. Thinking
I would only want to use this in special cases I intended wrapping it in condi-
tional compilation marks #ifdef ALL20 unfortunately I placed the correspond-
ing #endif //ALL20 after the new code. Thus leaving the original code to
be compiled regardless of whether ALL20 was defined or not. This meant when
ALL20 was defined each individuals fitness was calculated using both all the tests
and the original sample. It was thus quite possible to score more than 100%. Here
the defensive coding came in.

When the GP had been ported to the GPU all values calculated by the GPU
were regarded with suspicion. In particular there was an assert which checked
for both negative fitness values and values above 100%. After the GP had been de-
bugged “obviously” the check was no longer needed, however fortunately I had not
removed it. When the “improved” kernel was run, the check was quickly triggered
and the error reported. The bug was easily located using the revision control system
(Section 7.3) to highlight code that I had recently changed.

8.9.4 Graphics Card Hardware Monitoring

When debugging is hard it is always tempting to look for hardware problems. The
nvidia-smi program can be used. E.g. nvidia-smi -a will tell you which GPUs
you have and their temperature. However this is seldom useful.
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Sometimes, e.g. when not using X-11, the nVidia GPU driver can unload soft-
ware when the GPU is not in use. It can take several seconds, particularly if you
have multiple GPUs, to reload it. This can delay the start of some GPU tools. A
hack to avoid the driver thinking the GPUs are not in use, is to run nvidia-smi con-
tinuously in the background. E.g: nvidia-smi -l -i 10 > /dev/null &
keeps nvidia-smi looping every ten seconds but discards its output.
lspci can be useful during installation for confirming you have the GPUs you

expected plugged into the computer you expected them to be in.

9 GPGPU Development Environment

Section 9.1 suggest ways of setting up your system to ease development. Sec-
tions 9.2 and 9.3 described compiling your code whilst Section 9.4 discusses
common configuration problems.

9.1 Hardware Environment

As mentioned in Section 6.1.1, the most disruptive problem to debug is probably
when the kernel locks up your computer. There are a range of ways to set up your
GPU programming system to ameliorate this:

• Test kernels on a dedicated computer.
• Have the test computer and GPU physically adjacent to your desk.
• Have multiple GPUs in the computer. E.g. a small cheap one that only drives the

monitor and one or more GPU that are used for kernel development. It may be
there is already a GPU on your PC’s motherboard which was disabled when the
development GPU was plugged into it. Perhaps it can be renabled?

Make sure your CUDA application uses the GPU you want it to. It is probably
sufficient to be able to specify which CUDA device your application will use via
the command line.

if(argc>1 && argv[1][0]) {
const int dev = atoi(argv[1]);
cutilSafeCall( cudaSetDevice( dev ));

}
else cudaSetDevice( cutGetMaxGflopsDeviceId() );

• If the PC you use to develop CUDA applications is on the network, arrange
that another networked computer is nearby so that you can log in via the net-
work (e.g. using ssh). While this may allow you to gain reassurance that it really
is a GPU problem rather than anything else, in the event of a GPU lock up it
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may be that there is little you can do, other than reboot. However you should
have the option of telling the operating system to shutdown in a more controlled
fashion. Perhaps informing other users/applications before their resources are
removed.

• Some computer rooms have facilities to allow remote reboot. This may be under
software control or you may have to ring up the operator and ask them to do it
for you. Make sure you tell them the right computer!

• Make sure all of your CUDA system restarts automatically on reboot. Remember
to include all the “little” tweaks to the operating system and X-11 windows that
were done when CUDA was installed. This is especially important if CUDA was
installed by someone else or if any of the “tweaks” need the root system password
to reapply them.

• With its default setting, X-11 times out your screen if it fails to respond in about
10 seconds. E.g. suppose your kernel sometimes takes 12 seconds. Every so often
it will cause the GPU on which it is running not to respond to X windows fast
enough. For someone who is using the screen, this appears the same as if the
GPU had failed, even though the GPU may be ok. Since this only effects X-11,
you may be able to recover without rebooting Linux. For example, use one of the
methods mentioned above to log into the host PC and restart X. It is also possible
to disable the X-11 timeout or change its default setting.

If the GPU can be reserved for calculations only, it might make sense to con-
figure X-11 to ignore the monitor connected to the compute only GPU. However
this might effect non-GPU uses of X-11, e.g. ssh -Y.

9.2 Compiling CUDA C/C++ Programs

You will need to compile your kernel with nVidia’s CUDA compiler, nvcc. nvcc is
also able to compile regular C and C++ code. nvcc host and GPU code can be linked
with PC code compiled in the normal way. nvcc recognises many of the command
line switches used by the GNU gcc compiler, such as setting conditional compilation
switches (e.g. -DUNIX) and the debug flag -g). You will probably also need the
GPU specific switch which tell the compiler to produce code for a particular nVidia
GPU compute level (e.g. -arch sm_20 for Fermi compute level 2.0). Check with
the nvcc compiler documentation.

CUDA supports both 32 bit and 64 bit host PCs. You may need to double check
you are linking the right libraries when you ask the linker to create your executable
program.

9.3 CUDA SDK Makefile common.mk

The CUDA SDK examples include compilation scripts, known as Makefile. Most
of their complexity is common to all SDK examples and is kept in a common make
file (known as common.mk). One approach is to organise your application so that it
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follows the same directory structure and file naming conventions as CUDA’s SDK.
This will allow you to use common.mk. However it is also possible to adapt one of
the SDK Makefile for your own project.

A disadvantage of using common.mk is that it assumes particular locations for
your object and executable files. By default, the GNU GDB debugger run within
emacs, is not compatible with this and refuses to show your host sources inside an
emacs window as you use step through (the host part) of your application. If so, it
may be easier to compile and link in your usual fashion. (cuda-gdb and commer-
cial debuggers, e.g. Parallel Nsight and Allinea DDT, are increasingly available and
increasingly capable.)

9.4 CUDA Compilation and Linking Problems

We next describe some errors that are common when you first use CUDA or after
upgrading it and suggest potential solutions.

If using Unix and SDK’s common.mk a helpful option is to run make in verbose
mode so that it tells you the commands it is running. This is enabled in Unix by
setting the environment variable verbose. E.g. setenv verbose 1.

On some older CUDA systems the additional line, "NVCCFLAGS +=
-include=vararg-fix.h" in common.mk may be required to get your ker-
nel to compile.

Error mkdir: cannot create directory ‘/opt/cuda/sdk’:
Read-only file system suggests a problem with ROOTDIR or some incon-
sistency between your Makefile and common.mk. Perhaps you need to try overrid-
ing ROOTDIR, e.g. ROOTDIR := /my directory/cuda/sdk, where /my
directory... refers to the directory tree you are using for your application.

nvcc compilation error error: cutil inline.h: No such file or
directory suggests a problem with COMMONDIR or some inconsistency be-
tween common.mk and your Makefile. Perhaps try overriding ROOTDIR2, e.g.
ROOTDIR2 := /usr/local/cuda/NVIDIA GPU Computing SDK/C/
tools. Of course the actual setting for ROOTDIR2 will depend on where exactly
the files were placed when CUDA was installed.

nvcc compilation error error: cuda runtime.h: No such file or
directory. Again perhaps a problem with ROOTDIR2, however also check your
system does really have a copy of cuda runtime.h installed somewhere. It might also
be a problem with CUDA INSTALL PATH. If so, you could try overriding it with
something like CUDA INSTALL PATH := /usr/local/cuda-3.0

The Unix linker error /usr/bin/ld: cannot find -lcutil suggests a
problem with LIBDIR or inconsistency between make files. This can occur when
there are multiple versions of CUDA installed. Perhaps try overriding LIBDIR, e.g.
by adding something like LIBDIR := /my directory/cuda 3.1/cuda/
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NVIDIA CUDA SDK/lib. However eventually it may be better to resolve the
problem of multiple version of CUDA and/or create your own make file or com-
pilation script or process.

The Unix linker error ld: skipping incompatible /usr/local
/cuda-3.0/lib/libcudart.so when searching for -lcudart
might be a 32 bit v 64 bit problem. The Unix file utility will tell you if
libcudart.so contains 32 or 64 bit code. Perhaps you need to change LIBDIR
with something like LIBDIR := /usr/local/cuda/lib64

If you geterror while loading shared libraries: libcudart
.so.2: cannot open shared object file: No such file or
directory this suggests your LD LIBRARY PATH environment variable is in-
correctly defined. LD LIBRARY PATH allows the Unix program starter to search
for libcudart.so.2 in multiple directories. These are separated by a “:”.
Assuming you have an existing LD LIBRARY PATH environment variable then
an option is to append the directory holding libcudart.so.2 E.g. setenv
LD LIBRARY PATH "$ LD LIBRARY PATH":/usr/opt/cuda/lib.

10 Other Sources of Help with Parallel Software Development

10.1 nVidia

nVidia has made available a host of documentation for CUDA and each of its com-
ponents. Typically these are freely downloadable in PDF format.

A typical CUDA installation comes in three parts: GPU operating system drivers,
CUDA toolkit and CUDA SDK. It is well worth installing the SDK directory tree
when you install the first two. It contains more than 70 CUDA programming ex-
amples and GPGPU utilities, including their source code and in some case detailed
documentation.

The SDK examples often both explain and give examples of tricky but highly
efficient parallel computing approaches and are of course written for a GPU like
yours. Examples include fast matrix multiply and calculating histograms in parallel.
These examples show how to efficiently use shared memory in CUDA C.

10.2 nVidia Forums

nVidia hosts an impressive array of discussion fora at forums.nvidia.com. There are
perhaps too many for an individual and it is better to stick to the one closest to your
interest. For GPGPU the CUDA Programming and Development forum has proved
useful.

http://forums.nvidia.com/
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10.3 Other Venues

There are many other Internet web pages in addition to those hosted by nVidia.
For example, Simon Harding runs gpgpgpu.com specifically for combining genetic
programming and GPUs whilst gpgpu.org is more generic. Whereas gpgpu.org does
not deal specifically with bioinspired algorithms, there are a number of workshops
and special events which do. For example, Computational Intelligence on Consumer
Games and Graphics Hardware CIGPU, has run annually since 2008. Similarly the
Workshop on Parallel Architectures and Bioinspired Algorithms WPABA has also
run each year. With a winder remit than just GPUs, EvoPAR is set to become a track
within the european evolutionary computing EvoApplications conference.

10.4 Alternative Approaches

We have talked about CUDA C. Is CUDA C the right language to choose? C is no-
toriously difficult and other languages are being added (e.g. Fortran, Matlab, Math-
ematica and Python). Nevertheless we can be reasonably confident that in the near
term C/C++ will remain both the most efficient high level language for GPU com-
puting and the most advanced and best supported CUDA programming language.
CUDA is and is expected to remain nVidia’s best way into the GPGPU world. How-
ever you might want your application to run on other manufacturer’s GPUs or even
non-GPU parallel hardware. OpenCL has been proposed by a small group of com-
panies (including nVidia, AMD, Intel, Apple and IBM) as a way of implementing
parallel applications. In theory it offers the possibility of running code on both GPUs
from different manufactures and other parallel architectures. Currently support is
patchy in practice.

In 2007 Harding gave a nice summary GPGPU tools [10]. It is notable that many
have already fallen out of use. The software side of GPU computing has proved less
stable than the underlying GPU architectures.

11 Conclusions

Some physical devices, e.g. some types of disk drive, give some indication of being
used (e.g. audible hum or clicks, change in appearance or shaking, or getting hot).
However, as with most solid state electronic devices, GPUs give little physical indi-
cation of how much they are being used or how close to they are to their maximum
performance. To get the best of GPGPU you must use software techniques to pre-
dict, design and monitor performance. Sections 4 and 5 described how high GPGPU
performance can be obtained and measured in practise.

Although tools continue to improve debugging CUDA C remains hard. Section 6
and 7 gave practical ideas for debugging and testing, whilst Section 8 describes how
they were used with real bugs. The last two sections give practical advice on setting
up your CUDA development system, other sources of help and alternatives.

http://gpgpgpu.com/
http://gpgpu.org/
http://www.cs.ucl.ac.uk/staff/W.Langdon/cigpu
http://bioinspired.dacya.ucm.es/doku.php?id=wpaba2011:home
http://www.cs.ucl.ac.uk/staff/W.Langdon/evopar/
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Computation Is Cheap. Data Is Expensive

Perhaps slightly too strong but I have put it strongly to make the point. Wasting
computing power does not come naturally. It is the opposite of what we were told as
students. Nevertheless when on a GPU it can be more efficient to waste computation
than move data.

It may be better to recalculate intermediate results than to store them. E.g. in
some large matrix calculations. This is especially true if the intermediate results
have to be saved on the host computer. On a GPU it often takes longer to move data
than it does to calculate with it once it has arrived.

Since the GPU multiprocessors can only execute one instruction at a time, closely
linked parallel threads which need to run different code have to run sequentially, not
in parallel. Divergence represents idle compute resources. Effectively divergences is
throwing away computation. But computation is cheap! It may be better to discard
it than be unable to use a GPU at all.

The trend is for the cost of computation to fall faster than the cost of moving data.
Thus the balance will continue to move in favour of more intensive calculations.

Debugging Is the Most Expensive Thing You Can Do

Avoid writing new code. Do you really need new code? Can you reuse nVidia’s
examples? Can you use an existing library?

Does it makes sense to treat your application as a matrix manipulation problem.
Is there an existing solution written in a matrix manipulation language (e.g. Mat-

lab) which will run on your GPU?
Is there an existing GPGPU solution? Perhaps it is available on the Internet via

FTP?

The Future of Bioinspired Applications

Life is parallel. Nature runs in parallel. Chemical molecules react when they meet.
Antibodies neutralise antigens. Nerve cells fire at the same time. Ants follow trials.
Bees swarm. Birds flock. Fish school. Populations mate and rear their young simul-
taneously. In many cases bioinspired algorithms are naturally parallel. Even em-
barrassingly parallel. Typically there is a good fit to parallel computing. This is
especially true of low cost GPGPU computing.

Although a main stream break though in parallel computing has been forecast
for at least 30 years [2] the 3 GHz ceiling has forced the hardware manufactures to
generate affordable massively parallel computers and provide software support for
them. Already there are many parallel bioinspired applications (Section 2) and with
improving parallel development tools and cheap hardware, GPGPU (perhaps soon
GPPPU) based applications have a great future.
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Optimizing Shape Design
with Distributed Parallel Genetic
Programming on GPUs

Simon Harding and W. Banzhaf

Abstract. Optimized shape design is used for such applications as wing de-
sign in aircraft, hull design in ships, and more generally rotor optimization in
turbomachinery such as that of aircraft, ships, and wind turbines. We present
work on optimized shape design using a technique from the area of Genetic
Programming, self-modifying Cartesian Genetic Programming (SMCGP), to
evolve shapes with specific criteria, such as minimized drag or maximized
lift. This technique is well suited for a distributed parallel system to increase
efficiency. Fitness evaluation of the genetic programming technique is accom-
plished through a custom implementation of a fluid dynamics solver running
on graphics processing units (GPUs). Solving fluid dynamics systems is a
computationally expensive task and requires optimization in order for the
evolution to complete in a practical period of time. In this chapter, we shall
describe both the SMCGP technique and the GPU fluid dynamics solver that
together provide a robust and efficient shape design system.

1 Introduction

Optimized shape design (OSD) is a problem of optimal control theory, where
the task is to find a shape that minimizes certain parameters while satisfying
a set of constraints. In this chapter we describe an OSD technique that uses
inspiration from biological evolution to design hydrodynamic shapes (such as
wing surfaces) which meet certain criteria like the minimization of drag or the
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maximization of lift. The approach we shall consider is general and could be
used to find good shapes for car bodies, aeroplane fuselages, boat hulls, etc.
The technique uses a so-called distributed parallel evolutionary algorithm to
optimize the solution, along with a general purpose parallel fluid dynamics
solver to evaluate the shape parameters.

Evolutionary algorithms (EAs) have a long history of being used to gen-
erate designs for physical objects. In fact, one of the branches of this field,
Evolutionary Strategies, started out with a problem for nozzle design [25, 27].
Generally, EAs mimic mechanisms of biological evolution (populations of so-
lutions under mutation and recombination, using fitness evaluation to deter-
mine what is being promoted from one generation of solutions to the next) to
solve optimization problems. In the area of design previous examples include
electronic circuit design, furniture design, or the design of structural features
of buildings, and aerodynamic shape design. Section 2 describes previous
attempts to evolve aerodynamic shapes using similar approaches. Section 3
then introduces a genetic programming technique for the optimized shape
design. Genetic Programming [14, 23] is another branch of EAs that has re-
cently become more prominent due to its ability to adapt solutions to the
complexity of a problem at hand.

Generally, the work flow of the method includes steps in which such de-
signs need to be tested in a simulated environment, complete with models of
physics. This will result in the assignment of solution quality to each of the
individual solutions in the population, provided quality (“fitness” criteria,
in EA speak) have been defined beforehand. Physical simulations, however,
are notoriously expensive in terms of computation time - but with recent
advances in Graphics Processing Units (GPUs) it is now possible to speed
up these simulations and hence the fitness evaluation of solutions consisting
of complicated objects within a complex physical system at relatively low
cost.

Graphics processing units are a specific type of parallel many-core process-
ing units. GPUs are cheap and ubiquitous, they are now present in almost
all modern PCs and laptops to enhance performance. Originally designed
for gaming and graphics processing, they have evolved into general purpose
processing units with advantages for the solution of many types of scientific
problems. Section 4 describes the hardware and software models of GPUs
and their advantages for this type of problem.

Computational Fluid Dynamics (CFD) is an area of fluid mechanics that
uses algorithms and numerical methods to solve fluid flow problems. Within
CFD there are many different approaches, involving different solution meth-
ods. The choice of a solution method is largely dependent on the problem,
on the context of the problem, and on what is required of a solution for later
analysis (post-processing). Section 5 will describe a technique to simulate and
evaluate general purpose fluid design environments using GPUs to increase
efficiency.
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2 Evolving Aerodynamic Shapes

Nature is full of examples of creatures that are adapted to operate with
aerodynamic or hydrodynamic requirements. Wings, fins, streamlined bodies,
textures to minimize turbulence, and feathers are all examples of this. Given
the variety and efficiency of what nature produces it seems appropriate to
use the same principles to solve man-made challenges.

Evolutionary algorithms have already been successfully applied to optimiz-
ing the design of objects that interact with a fluid environment. For example,
in [22] genetic algorithms, another branch of EAs, are used to optimize the de-
sign of airfoils. Two-dimensional (2D) representations of airfoils were specified
as a set of control points for B-Splines. The evolutionary algorithm adjusted
these control points until a satisfactory arrangement was found. Fitness of
candidate airfoils was determined by simulating the design and measuring
variables such as pressure rise. Using a similar technique, nozzles for rocket
engines have been optimized, too[3].

In [24], the authors applied a hybrid system of a genetic algorithm and a
neural network to optimize the design of yacht keels. Here, the parameters for
the keel design were optimized to reduce drag and maximize lift. In [4], airfoils
were evolved, again using Bezier surfaces to define the sections. Recently, [1]
built on this work employing a grid of computers to reduce the bottleneck of
fitness evaluation.

Wing evolution has also been demonstrated using physical models, where
the rotation of a number of connecting plates was altered and tested for lift
in a wind tunnel [26]. Rechenberg has also used a similar method to examine
other related systems such as the evolution of the wing tips of birds and
nozzle designs.

Previous approaches have largely involved either optimizing parameters
for known designs or using Bezier/Nurbs surfaces. This was well suited for
genetic algorithms or evolutionary strategies, as it significantly reduced the
search space. With such constrained representations, however, it is difficult to
imagine how radically new designs could be produced or how these techniques
could be expanded to evolve more complex, multi-component systems. In
other words, as soon as more creativity in solutions is required, or one is
prepared to test truly novel ideas, other techniques will need to be applied.

There have been several attempts to implement an evolutionary design of
objects. The aim of the work described in this chapter is to allow for arbitrary
structures to be evolved, and therefore the Bezier control point based rep-
resentations mentioned above are not used. The requirements for this work
include the ability to produce both 2D and 3D representations, single ob-
jects and non-connected designs, to produce vectorized objects that allow for
distortion-free scaling and rotation, and the ability to produce curved/free
form shapes. It is also envisaged that interesting designs would include
concepts such as symmetry, repetition or repetition with variation. These
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requirements suggest that a genetic programming approach in the context of
a developmental system would be appropriate [17, 2].

3 Self-modifying Cartesian Genetic Programming
(SMCGP)

Self-modifying Cartesian Genetic Programming (SMCGP) is a developmental
version of Genetic Programming. In brief, SMCGP is a way of evolving com-
puter programs that can change their own structure (and hence behaviour)
at runtime. This method has been used for numerous applications, such as
evolving digital circuits [9, 10, 6], finding algorithms that approximate phys-
ical constants [11, 12], discovering learning algorithms [8] and regression and
classification [7].

As the name suggests, SMCGP is based on the Cartesian Genetic Pro-
gramming (CGP) technique. In CGP, programs are encoded in a partially
connected feed forward graph. (see [18]). The genotype encodes this graph,
with each node represented as a function and connections to other nodes
that this function connects to. The representation has a number of interest-
ing features. For instance, not all of the nodes of a solution representation
(“the genotype”) need to be connected to the output node of the program,
so there are nodes in the representation that have no effect on the output, a
feature known in GP as ”neutrality”. This has been shown to be very useful
[20] for the evolutionary process. Also, because the genotype encodes a graph,
there can be reuse of nodes (revisiting of nodes is allowed), which makes the
representation distinct from a classically tree-based GP representation.

Although CGP has been used in other developmental systems [19, 15],
the programs that those approaches produced were not themselves develop-
mental. SMCGP, on the other hand, was designed as an attempt to bring
development into CGP so that CGP could be used as a general purpose
developmental GP system.

The SMCGP representation is similar to CGP in some ways, but has ex-
tensions that allow it to exhibit self-modifying features. SMCGP genotypes
are a linear string of nodes. Each node connects to two other nodes by way of
a relative address, which states how many nodes back to connect. To prevent
cycles, nodes can only connect to other nodes in one direction. Relative ad-
dressing allows entire sections of the graph to be moved, duplicated, deleted,
etc, without breaking the reference structure, whilst allowing some sort of
modularity.

In overview, each node in an SMCGP graph contains a number of elements:

• The computation function, represented in the genotype as an integer;
• A list of (relative) connection addresses, again represented as integers;
• A set of parameters, represented by 3 floating point numbers.
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As with CGP, the number of nodes in the genotype is typically kept constant
throughout an evolutionary run. However, this means care has to be taken to
ensure that the genotype is large enough to store a possibly complex target
program. Any kind of adjustment to the complexity would then come from
the turning on and off of node execution paths through this graph which we
shall explain next.

3.1 Executing a SMCGP Individual

SMCGP individuals are evaluated in a multi-step fashion, with the evolved
program (the “phenotype”) executed several times. An evolved program in
SMCGP initially has the same structure as the genotype, which is supposed
to represent it. The first step in producing the phenotype is to simply make
a copy of the genotype and call it the initial phenotype. This graph is the
‘working copy’ of the program that will later be modified during further
execution of nodes. Each time the program is executed, the phenotype graph
is first run and then any self-modification operations encoded are invoked.

The graph is executed in the following manner: First, the node (or nodes)
to use as output(s) are identified. This is done by parsing through the graph
looking for nodes of type OUTPUT. Once a sufficient number of these nodes
has been found, the various nodes that they connect to are identified using
recursion. In case that there are not enough output nodes found in this way,
the last n nodes in the graph are rededicated as output nodes, where n means
the number of outputs required. If there are not even enough nodes to satisfy
this condition, execution is aborted and the individual is discarded as lethal.

At this point, all the nodes that are used by the program have been iden-
tified and so their values can be calculated. For mathematical and binary
functions, these operations are performed in the usual manner. However,
SMCGP has a number of special functions (see Table 1) that allow for self-
modification.

If a function is a self-modification function, then it may be activated.
Binary functions are always activated, but numeric nodes are activated only if
the first input is larger than the second input. The self-modification operation
of an activated node is added to a list of pending operations - the ‘ToDo’ list.
After execution, the self-modification functions on the ToDo list are applied to
the current graph, up to a maximum number of self-modification operations
which is a parameter of the system.

In turn, the self-modification functions usually require parameters, which
are taken from the parameters part of the calling node. Many of the parame-
ters are integers, so the parameters may need to be cast into integer numbers.
For instance, parameters may be treated as relative addresses depending on
the function. The program can now be iterated again, if necessary. It is im-
portant to note that modifications are only made to the phenotype, and not
to the genotype.
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In the current work, we extended SMCGP to allow for design generation.
To do this, several changes to SMCGP are required. Extra functions are
added to the function set that perform various drawing operations. To sup-
port this, each node in the genotype additionally encodes for a structure that
can represent the parameters of these shape functions, the shape data type
(SDT).

An SDT structure contains five vectors of four element each. One of these
vectors is labeled as “source”, another is labeled as “destination”. Four-
element vectors are used so that we can easily move to a 3D representation.
In 3D geometry, 4 element vectors are very useful as they can represent rota-
tions and transformations as quaternions. Elements are referred to as x, y, z
and w. The five vectors in the SDT represent entry and exit location, rota-
tion, size and value. Value can be considered as a holder for some additional
parameters.

These source and destination vectors are used when mathematical opera-
tions are applied upon two SDT structures. For example, to ADD two struc-
tures A and B, a copy of A is made and the destination vector in A is set to
the sum of the source vectors in A and B. The structure contains 5 vectors
and each vector encodes a different parameter that is used to specify a shape
location, size, rotation and connectivity, as well as an additional parameter.

When a shape is drawn, it is drawn with respect to a current position
(origin) and rotation. Further parameters specify the size of each dimension
of the shape. Two of the parameters encode additional position information
as to where to start drawing the object (entry position) and where the next
origin should be (exit position). The entry and exit positions are relative to
the origin and rotation.

Consider Figure 1. The origin and initial rotation are determined by the
previous drawing operation, or by a predetermined position for the first shape.
The shape is then drawn relative to the origin and entry positions. The sub-
sequent origin will be the exit position of the last node, and the subsequent
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Bounding box width
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Fig. 1 Shapes are defined relative to an initial origin, with Entry and Exit positions
defined relative to the shape. The entry and exit positions, shape rotation and shape
geometry are under evolutionary control, and can be modified by the SMCGP
program at run time.
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initial rotation vector will be the current rotation added to this shape’s rota-
tion vector. Entry, exit and rotation values are taken from the SDT structure.

The shape parameters are calculated from the value of the SDT passed
to that node. Hence, they can be affected by computations performed by
mathematical functions. This allows for more complex transformations to be
performed.

To simplify the shape generation, only one shape function is allowed. This
function, called the “Superformula”, is able to generate a wide variety of
shapes, including many that have a very biological feel [5]. Conveniently, the
function also can be extended to 3D which will be useful in later work. In
polar form the equation is:

r(φ) =

[∣∣∣∣∣cos(
mφ
4 )

a

∣∣∣∣∣
n2

+

∣∣∣∣∣sin(
mφ
4 )

b

∣∣∣∣∣
n3
]−

(
1

n1

)

Each of the parameters a, b, m, n1, n2 and n3 is under evolutionary control,
defined by the values stored in the SDT. a, b are taken from the z and w
component of the size vector. The other four parameters are taken from the
value vector.

Because the formula is written in polar coordinates, results needs to be
converted to Cartesian coordinates (p and q). In this transformation, the x
and y values from the size vector are used to specify the radii of the transform:

p = x sin(φ)

q = y cos(φ)

The function set also contains other functions for manipulating the current
origin and rotation. The MOVE command specifies a simple translation of
the current origin. TRANSMC allows for the origin to be moved and scaled. A
stack of origin and rotation values is also provided. The PUSHTRANSFORM
and POPTRANSFORM perform operations on this stack.

Figure 2 shows the developmental steps of a simple object (a rough outline
of an aeroplane). Each frame in the sequence shows the next time step in the
developmental process. Here, all but the last time step add new shapes to
the figure.

Fig. 2 Developmental steps in drawing a simple object. Each frame represents one
time step in the developmental process.
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Table 1 The SMCGP function set.

Function Description

MOVE Move the origin
POLYGON Draw a polygon
PUSHTRANSFORM Push origin/rotation to stack
POPTRANSFORM Pop origin/rotation from stack
TRANSMC Translate and scale the current origin.

ADD, SUB, DIV, MUL Perform the relevant mathematical operation on the source
vectors

PRC Executes a subgraph as a procedure
MOVESRCTODEST Moves a vector from the source register to the output register
INDEX Returns a STD that represents the current index of the node in

the graph
CONST Returns a STD that represents a set of evolved mathematical

constants
OUTPUT Labels this node as being the output, i.e. final connected node in

the graph

SMDUP Duplicates a set of nodes, inserts copy elsewhere in the graph
SMDEL Deletes a set of nodes
SMDUPREV Same as SMDUP, but reverses the order of the inserted nodes

4 Graphics Processing Units (GPUs)

Graphics Processing Units (GPUs) have a many-core parallel architecture.
They consist of a set of stream processors that execute programs (also called
kernels) in parallel. GPUs were originally designed for graphics processing, so
the stream processors are designed for small and fast operations (per stream
processor) such as filtering a texture. A simple description of GPU program-
ming and hardware models is given in this section. For more information
about the both GPU architecture(s) and programming models readers should
consult [21].

The programming model used for GPUs is built around a SIMT (single-
instruction multiple-thread) architecture concept. SIMT is not the same as
the traditional SIMD (single instruction multiple data) concept in that SIMD
applies the same instruction to multiple pieces of data simultaneously, while
SIMT executes the same thread (code block) simultaneously with a single
instruction. A typical program execution on a GPU consists of a mapping
of the threads (or kernels) to a two-level grid of a user-specified size (see
Figure 3). The threads are mapped as a set of threads, grouped into blocks.
The number of blocks in the grid is called the grid size and the number of
threads per block is called the block size. Once the threads are mapped they
are then enumerated and distributed to the available cores on the device.
Scheduling of these kernels, as threads of the grid are terminated and new
ones are executed, is performed automatically on the GPU itself.
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Fig. 3 GPU Program Model

The hardware model of most GPUs, illustrated in Figure 4, are generally
designed as an array of multi-threaded Streaming Multiprocessors (SMs).
Each of these processors contain a set of Scalar Processor (SP) cores (cur-
rently all NVIDIA devices contain eight cores per SM), a multi threaded
instruction unit, and a shared memory unit for that multiprocessor. Outside
of the array of SMs there is at least one memory space, most importantly
the main device memory, that is in use by all components of the GPU (other
memory spaces are not relevant to this chapter). Device memory is the slow-
est on-card memory, while shared memory (per SM) is the fastest on-card,
next to the registers of course but not far behind [21].

Fig. 4 GPU Hardware Model
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A general set of optimization rules for developing any type of algorithm
for GPUs is:

Memory Transfers. Memory transfer to or from device memory is the
slowest individual operation that can be performed on a GPU. For this reason
memory transfers should be kept to a minimum for any algorithm developed
for the GPU. An optimal design approach is to design your algorithm to
perform all operations on the main data in device memory and transfer only
the results back to host memory.

Memory Coalescence. Memory coalescence is the pattern of reads per-
formed on the device memory. For example, if text is read one word at a time
(each kernel reads one word, and assuming words are stored in memory in
the order that they are written) to perform some operation on each word,
then each kernel should read blocks of memory locations that are contiguous.
In contrast, an algorithm that would have kernels read a set of random words
from the text would cause many random read locations per kernel and there-
fore be inefficient. The former is an example of good memory coalescence
which is ultimately a consequence of the architectural design choices made
for GPUs optimized for a uniform memory access strategy.

Domain Decomposition.When developing a parallel algorithm care should
be taken to decompose the domain in order to allow separate thread blocks
to run on separate sub-domains of a discretized physical system. This will
allow memory access and thread usage/scheduling for thread blocks on mul-
tiprocessors to be optimized. Keeping with the text reading example, one
would decompose a text into separate paragraphs and map one word to one
thread and one paragraph to one thread block so that each multiprocessor
can process a paragraph at a time.

Shared Memory. Shared memory is much faster than device memory on
GPUs. If an algorithm involves reads of the same subset of data for multiple
kernels with a thread block, this data should be loaded into shared memory
at the start of the thread block (which would require a thread sync call in
order for all threads within the block to be processed up to the point where
shared memory is loaded). Using the text reading example again, it would
be the requirement that each thread would have to have read access to three
words (the working word, the one prior it and the one directly following)
which would cause an overlap in the read of surrounding words. The optimal
approach would be to load all words in a paragraph into the shared memory
of that thread block and then process the data.
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Multiprocessor Occupancy. The GPU occupancy (CUDA Occupancy for
NVIDIA GPUs) is a measure of kernel invocation that describes how well
the kernels make use of the multiprocessor resources located on GPUs, such
as allocated registers and shared memory. This concept is best described by
NVIDIA [21] and is related to domain decomposition and algorithm design.
Care must be taken to divide a sequential algorithm into operations that can
be converted to kernel calls so that each kernel does not require too much
limited resources (shared memory, registers, etc). Otherwise, the algorithm
is not optimally designed and resources could be wasted. The overall goal is
to maximize the multiprocessor occupancy measure.

5 Computational Fluid Dynamics (CFD) on Graphics
Processing Units

The governing equations of a fluid system are at a minimum the continu-
ity equation for mass and the Navier-Stokes equation, although others may
be applied as required by the system in question, such as the equation of
state, conservation of mass, conservation of energy, and/or boundary con-
dition equations. The continuity equation for mass and the Navier-Stokes
equation will be all we can discuss in this chapter, but the method can be
easily extended to other equations using the same techniques.

The continuity equation is a description of the transport of mass under
mass conservation,

∂ρ

∂t
+∇ · (ρu) = 0 (1)

where ρ is the density of the fluid, t is the time, and u is the velocity vector.
Since we are only concerned with incompressible fluid flow, the incompressible
Navier-Stokes equation is relevant,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ μ∇2u+ f (2)

where p is the pressure, and f symbolizes external forces. Equations (1)
and (2) comprise the required equations for solving incompressible transient
(time dependent) fluid flow. It is important to understand that not all so-
lutions to fluid flow are required to be transient, some simple flows have
time independent solutions, or steady-state solutions. The steady-state equa-
tions are similar to the above equations but do not contain explicit time
dependence.
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The main issue in solving these equations is that they are coupled nonlinear
differential equations. Solving these types of equations usually requires an
iterative method that optimizes an approximation to the equation solution.
Next, we will describe the iterative methods used to solve both the steady-
state and transient fluid flow equations.

5.1 Method for Solving Fluid Equations

The iterative method used to solve transient fluid flow equations is called
the PISO (Pressure Implicit Splitting of Operators) method. This method
requires that the system be discretized, we take the example of a finite vol-
ume (FV) discretization here. The PISO (Pressure Implicit with Splitting of
Operators) method is described in Algorithm 1.

From this algorithm, the most computationally expensive step for each
iteration is solving the momentum and pressure correction equations, which
are systems of linear equations. Another iterative method can be used to solve
these systems of linear equations. It is called the successive over-relaxation
(SOR) method and we will discuss it in the next section, specifically a version
for GPUs (the SOR-GPU method).

5.2 Solving Fluid Equations on GPUs

The fluid flow simulation algorithm discussed in Section 5.1 requires a general
set of operations:

• Construct coefficient matrices for systems of linear equations
• Solve systems of linear equations
• Apply corrections to flow fields
• Check convergence (residual sum).

In order to ensure speed optimization on GPUs it is best to keep all data
in GPU memory with minimal swapping to host or main memory because
host-to-device and device-to-host memory transfers are the slowest single
operation on GPUs. The fluid simulation method discussed in this chapter
keeps all relevant data in the GPU memory at all times. While this limits the
size of the system we can simulate (to the amount of memory available on the
GPU), it ensures optimal simulation speed. The following sections describe
the design of these operations optimized for GPUs.
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Algorithm 1. PISO algorithm

1: Initialize guesses for p∗, u∗, v∗.
2: repeat
3: {STEP 1: Solve discretized momentum equations to get u∗, and v∗}
4: ai,ju

∗ =
∑

anbu
∗
nb +

1
2 (p

∗
i−1,j − p∗i+1,j)Ai,j + bi,j

5: ai,jv
∗ =

∑
anbv

∗
nb +

1
2 (p

∗
i,j−1 − p∗i,j+1)Ai,j + bi,j

6:

7: {STEP 2: Solve pressure correction equation to get p′}
8: ai,jp

′
i,j = ai−1,jp

′
i−1,j + ai+1,jp

′
i+,j + ai,j−1p

′
i,j−1 + ai,j+1p

′
i,j+1 + bi,j

9:

10: {STEP 3: Correct pressure and velocities}
11: pi,j = p∗i,j + p′i,j
12: ui,j = u∗

i,j +
1
2d ui,j(p

′
i−1,j − p′i+1,j)

13: vi,j = v∗i,j +
1
2d vi,j(p

′
i,j−1 − p′i,j−1)

14:

15: p∗ = p; u∗ = u; v∗ = v
16:

17: {STEP 4: Solve second pressure correction equation to get p′}
18: ai,jp

′′
i,j = ai−1,jp

′′
i−1,j + ai+1,jp

′′
i+,j + ai,j−1p

′′
i,j−1 + ai,j+1p

′′
i,j+1 + bi,j

19:

20: {STEP 5: Correct pressure and velocities using second pressure correc-
tion}

21: pi,j = p∗i,j + p′′i,j
22: ui,j = u∗

i,j +
1
2d ui,j(p

′′
i−1,j − p′′i+1,j)

23: vi,j = v∗i,j +
1
2d vi,j(p

′′
i,j−1 − p′′i,j−1)

24:

25: p∗ = p; u∗ = u; v∗ = v
26: until convergence

5.2.1 Construction of Coefficient Matrices

Constructing coefficient matrices for each system of linear equations is the
first operation to be parallelized on the GPU architecture. This operation can
be performed with a single GPU program, or kernel, for each type of equation,
e.g each velocity component, pressure correction, second pressure correction.
Since the matrix is sparse involving only coefficients for direct neighbor nodes
memory on the device needs only to be allocated for neighboring coefficients,
not for the full matrix. Access to field values at a local node and at direct
neighbors is also required, and since global memory access on GPUs is their
most important bottleneck, shared memory is used to store nodes per block
in order to reduce the number of duplicate memory accesses.
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5.2.2 Solving Systems of Linear Equations

The most important part of the implementation is the solution method used
for solving systems of linear equations, since this operation is performed up
to 2 + number of dimensions times for each iteration. Normally (on a CPU),
a type of preconditioned conjugate gradient (CG) method would the best
choice for these linear solvers, but the CG method involves a matrix-vector
multiplication and a vector-vector summation, which, compared to a linear
solution method such as the Gauss-Seidel (GS) or successive over-relaxation
(SOR) methods (with a single update per iteration), is much more expensive
computationally on a GPU. The reason this is so much more expensive on a
GPU is that GPUs do not handle random memory access very well, that is
they are built and optimized for a uniform memory access strategy (coalesced
memory access). For this reason, the SOR method is used for all linear solvers
discussed in this chapter.

Successive Over-Relaxation Method on GPUs. The successive over-
relaxation (SOR) method is an iterative method for solving linear systems
of equations. It involves a single update per node in the system. The general
algorithm is described in Algorithm 2, a full description of the method and
the terms can be found in [16]. For the purpose of this chapter, we note
that the algorithm is composed of an outer iteration loop for all nodes in the
system with a single update to each node.

Algorithm 2. Successive over-relaxation algorithm

1: for iter=0:maxiter do
2: for i = 2:(m+1) do
3: for j = 2:(n+1) do
4: u(i,j) = ω((a W (i, j)u(i−1, j)+a E(i, j)u(i+1, j)+a S(i, j)u(i, j−

1) + a N(i, j)u(i, j + 1) + b(i, j))/a P (i, j)) + (1− ω)u(i, j)
5: end for
6: end for
7: if convergence then
8: break
9: end if

10: end for

The GPU implementation of the Gauss-Seidel (GS) or successive over-
relaxation method (both methods are very similar and the terms will be used
interchangeably in the rest of this chapter) is a type of domain decomposition
of the numerical fluid system. The implementation is not a straightforward
domain decomposition, however, it involves making two passes over the sys-
tem per iteration, although each node is only updated once per iteration.
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Fig. 5 Red Black Nodes

Initially the method “colors” each node in the system by two alternating
colors so that no node has neighboring nodes of the same color, such as in
Figure 5. This coloring of nodes (two colors for a uniform two dimensional
mesh) is why this parallel technique for the GS is also known as the red-black
or the checkerboard method. Once each node is assigned a virtual color, we
continue as we would in the sequential version of the method, with for one
change: at each iteration there are two passes over the nodes, the first pass
updates one set of colored nodes (the red nodes) and the second pass updates
the second set of colored nodes (black nodes). Then we iterate as normal until
convergence is reached. So far the parallel algorithm may look something like
(in sequential form for now) Algorithm 3.

Algorithm 3. Parallel (Red-Black) Gauss-Seidel algorithm

1: for iter=0:maxiter do
2: for i = all RED nodes do
3: update u(i)
4: end for
5: for i = all BLACK nodes do
6: update u(i)
7: end for
8: if convergence then
9: break

10: end if
11: end for
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The advantage of this algorithm, in a parallel sense, is that all RED nodes can
be updated simultaneously and all BLACK nodes can be updated simultane-
ously since from the sequential Algorithm 2 we know that only neighboring
nodes are read during each node update. Since neighboring nodes will defi-
nitely not be updated at the same time (because of the different coloring), this
allows us to perform updates on all nodes of the same color simultaneously.

Now that we have the general idea of the algorithm, we can move on
to a more custom implementation for GPUs. First of all, we can map each
node to a single thread. With the implementation up to this point, for a two
dimensional system, five reads and one write per node update are required.
The write is to the node that is mapped to the thread (the local node) and
the reads are from the local node and its direct neighbors, as indicated by
the white dots in Figure 6.

Fig. 6 Red Black nodes with local and neighboring nodes

As of the algorithm developed so far, we use global GPU memory for the
five reads per node update, which requires many duplicate reads per update
since all neighboring nodes of a single local node are being read at least one
more time and up to four more times per half iteration (per single color
update pass). If we recall Section 4, the GPU programming model uses a
set of blocks, where each block contains a set of threads, and each block has
access to more efficient memory (called shared memory in the section above).
If we make use of this shared memory per block we can remove nearly all
of these duplicate reads by loading all nodes in a block into shared memory
before we do the update. The set of nodes required for a block to update all
of its associated threads (from the running example) are indicated by white
lines in Figure 7. If we load all of these nodes into shared memory, including
the ghost layer which is the layer of non local nodes (nodes that do not need
to be updated by this current block) that surround the edges of the block,
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Fig. 7 Red Black nodes that must be read per block (block is highlighted in yellow)

we can reduce the number of reads by a factor of almost four along with
the memory access time for these reads since shared memory is much more
efficient.

The pseudo code for the kernel (see Section 4) that is executed for each
thread would then look something like Algorithm 4. Lines 2 to 15 load
all local nodes and the ghost layer into shared memory. Line 17 uses the
syncthreads() function, which causes all threads in the block to wait at this

location in the code until all of them have reached that point, this way all
required data is loaded into shared memory before we start to do any updates
(reads and writes) using this data.

5.2.3 Applying Corrections to Flow Fields

The application of the corrections to the flow fields is simply a kernel that
applies the correction to each node. Since these corrections require only access
to local field values at each node (as opposed to field values at neighbor
nodes), a simple update per kernel is most efficient.

5.2.4 Convergence Check

Convergence of the PISO method can be determined in many different ways,
depending on the application of the method. The most popular methods are
a check of the velocity residual sum against a tolerance, or a check of the
norm of pressure correction against a tolerance.

For both residual sum and norm calculations on the GPU we must per-
form a sum. This may seem simple but to efficiently do this on a GPU a little
work is required. To do an efficient sum of a large vector on the GPU we do a
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parallel sum reduction. The method used in this work is defined in [28], and
uses a tree based approach within each thread block, as illustrated in Figure
8. This algorithm works by assigning a uniform and contiguous subset of the
vector to each thread block, each thread block then performs the sum of its
associated subset and stores the result in the first memory location of its
subset (denoted by the child node in the figure). It recursively does this until
only one value is left (moved down the tree in the figure), which is the sum of
the original vector. The time complexity of this technique is O(N/#Blocks+
logN), vs O(N) if we were to use a simple loop for summation.

Algorithm 4. GPU Gauss-Seidel algorithm

1: {Load local node into shared memory}
2: u shared[s i][s j] = u[ij];
3: {check if on edge node, if yes then load ghost layer}
4: if threadIdx.x == 0 then
5: u shared[s i-1][s j] = u[i-1][j];
6: end if
7: if threadIdx.x == BLOCK SIZE X-1 then
8: u shared[s i+1][s j] = u[i+1][j];
9: end if

10: if threadIdx.y == 0 then
11: u shared[s i][s j-1] = u[i][j-1];
12: end if
13: if threadIdx.y == BLOCK SIZE Y-1 then
14: u shared[s i][s j+1] = u[i][j+1];
15: end if
16: {wait for all threads in block to finish loading shared memory}
17: syncthreads();
18: for i,j = all RED or BLACK nodes only do
19: update u[i][j]
20: end for
21: if convergence then
22: break
23: end if

Advantages of this technique are not only that the majority of the compu-
tations are performed on the GPU but that the vector itself never needs to
leave the GPU (which is preferred since all other calculations for the PISO
method are on the GPU). Further, only one value needs to be copied from
GPU memory to host memory. As we have noted in Section 4, copying from
device to host memory is one of the most serious bottlenecks in any GPU
implementation.
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Fig. 8 Parallel sum reduction using tree based approach within each thread block

6 Optimized Shape Design with SMCGP and
CFD-GPU

Optimized shape design is the optimization of shapes in order to minimize
and/or maximize specific parameters of the shape. The technique described
throughout this chapter is an optimization of a shape to minimize drag and
maximize lift within a fluid. The results of this experiment can be easily
predicted to develop a shape that is more aerodynamically “smooth”, such
as that of an airfoil or hydrofoil at some optimal angle of attack.

The technique used to drive the optimization is genetic programming as
described in Section 3. The fluid simulation technique described in Section
5 is used to evaluate fitness. Since the GP method could potentially require
millions of evaluations in order to evolve an optimal solution we have to use
this fluid simulation technique on a parallel architecture to increase perfor-
mance. This is required to achieve an optimal solution in a practical period
of time.

To tackle the optimized shape design problem we expect that about a
million evaluations are required. Table 2 illustrates run time estimates for
GP to converge with a 1024× 512 discretized fluid system. As shown in this
table, it is evident that to perform this shape optimization on a single CPU
is very impractical (as it would require 10 years). But it requires only 10 days
on a cluster of 50 (average) GPUs.1

Figure 9 illustrates a simple result of this technique for a partial evolution.
This figure shows only a very small subset of the shapes as the evolution
progresses in order to illustrate the effectiveness of the technique.

It is interesting to observe changes in the design of shapes during evolution.
For example, Figure 10 shows one experimental run. In the initial popula-
tion, a simple triangle is found, and this shape forms the basis for further
evolution. At first evolution modifies the parameters of this shape, making it

1 For example a nVidia GeFore 9800 GT, with 120 cores and 1 GB of memory
produces about 336 GFLOPS, is average at the time of this writing.



70 S. Harding and W. Banzhaf

Table 2 Optimized Shape Design Problem: Estimated Times

Hardware GP Convergence Time

1 CPU 10 years
50 CPU Cluster 70 days
1 GPU 1.4 years
50 GPU Cluster 10 days

Fig. 9 Shape evolution for drag minimization

more angled at the front to reduce drag. Next evolution introduces a small
spike on the top of the shape, which will alter the flow over the top of the
surface. Eventually, this spike is smoothed into a small lump, that will have
less drag. This shape then further changes into larger, rounder shape which
encompasses the entire front of the triangle further reducing drag. Finally,
the evolution approximates a shape very similar to the familiar shape of a
wing cross-section.

6.1 Measuring Fitness Using CFD

The fitness function uses the CFD simulation to obtain drag and lift coef-
ficient for a design. The fitness score is the absolute lift minus the absolute
drag. Hence, fitness scores above zero represent objects with more lift than
drag, and therefore indicate that a lifting body has been evolved. Here we
also look for shapes that have a minimal size. In order to enforce this, we
insert a block into the environment that the shapes must form around. The
block has zero lift and a large drag. To get a good fitness score, this block
must somehow be incorporated into the design.
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Fig. 10 Sequence showing the best shape at different times within an evolutionary
experiment.

For the fitness function to work correctly, shape designs that will not simu-
late correctly are discarded. In particular, very small and very large structures
are not tested. We also currently discard non-contiguous shapes which, if we
were to construct the shape, would mean it could be fashioned from a single
piece.

6.2 Evolutionary Algorithm

The actual evolutionary algorithm used was also parallel, and distributed in
nature. As the evaluation time of individuals would be different (dependent
not only on the convergence properties of the simulation, but also on the com-
puting hardware used), to work efficiently, the algorithm also has to work in
an asynchronous and non-blocking way, so that all available computing re-
sources are always helping with the search. The evolutionary algorithm is
based on [13], as this was found to work efficiently in an asynchronous envi-
ronment. A central population of individuals is stored on the root computer,
and when a client node finishes processing an individual it is returned to this
population. When a client requires a new individual to process, individuals
are selected from this population and crossover/mutation applied to produce
a new individual for evaluation. As this shared population increases in time
as evaluated individuals are added, it periodically needs to be reduced in size.
In [13] this dynamic of a variable population size was found to be beneficial
to evolution. Figure 11 shows an example of the algorithm running.

The most significant parameters are shown in Table 3.
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Fig. 11 Screen shot of the shape evolver. The small tiles show either an individual
that is currently being processed, or the result of a simulation for an individual.

Table 3 Parameters of the evolutionary algorithm.

Parameter Value

Initial genotype length 20 nodes
Mutation rate 0.05
Initial Population Size 50
Frequency of population resizes 60 seconds

7 Conclusions

This chapter described a technique inspired by natural evolution and applied
to a shape optimization design problem. The evolutionary technique itself
was developed as a parallel algorithm for a distributed system, along with
the fitness evaluation on a GPU parallel architecture. A focus on efficient
algorithm design is necessary since fluid simulations are a very computation-
ally expensive task, while the evolutionary algorithm discussed would require
on the order of millions of evaluations of fluid simulations.

The fluid dynamics solver described in this chapter applied a popular iter-
ative method for solving the pressure-coupled governing fluid flow equations
adapted to the GPU to allow for faster evaluation times. The adaptation
to the GPU required several parallel optimization steps many of which are
general purpose optimizations that can be extended to other problems to be
solved on GPUs.



Optimizing Shape Design with Distributed Parallel Genetic Programming 73

The optimized shape design method described in this chapter also fulfills
the requirement of having the capability to produce fully general shapes,
where there are minimal constraints on the design. This minimal constraint
design results from the SMCGP method allowing any combination of shapes
to produce the final result. This requirement is an advantage in design opti-
mization since it allows for new designs that may not have been expected, and
may not have been possible with an otherwise more constrained approach.
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Characterizing Fault-Tolerance in Evolutionary
Algorithms

Daniel Lombraña González, Juan Luis Jiménez Laredo,
Francisco Fernández de Vega, and Juan Julián Merelo Guervós

Abstract. This chapter presents a study of the fault-tolerant nature of some of
the best known Evolutionary Algorithms, namely Genetic Algorithms (GAs) and
Genetic Programming (GP), on a real-world Desktop Grid System. We study the
situation when no fault-tolerance mechanisms is employed. The results show that
when parallel GAs and GPs are run on non-reliable distributed infrastructures -thus
suffering degradation of available hardware- they can achieve results of a similar
quality when compared with a failure-free platform in three of the six scenarios
under study. Additionally, we show that increasing the initial population size is a
successful method to provide resilience to system failures in five of the scenar-
ios. Such results suggest that Parallel GAs and GPs are inherently and naturally
fault-tolerant.

Keywords: genetic programming, genetic algorithms, evolutionary algorithms,
fault tolerance.

1 Introduction

Genetic Algorithms (GAs) and Genetic Programming (GP) are well known repre-
sentatives of Evolutionary Algorithms (EAs), frequently used to solve optimization
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problems. Both require a large amount of computing resources when the problem
faced is complex. The more complex the problem, the larger the computing re-
quirements. This fact leads to a sometimes prohibitively long time to solution that
happens, for example, when tackling real-world problems. In order to reduce the ex-
ecution time of EAs, researchers have applied parallel and distributed programming
techniques during the last decades.

There are two main advantages in exploiting the inherent parallelism of EAs:
(i) the computing load is distributed among different processors, which improves
the execution time, and (ii) the algorithm itself may suffer of structural changes
allowing to outperform the sequential counterpart (see for instance [51]).

Parallel algorithms, and thus parallel GAs and GP, must be run on platforms
that consists of multiple computing elements or processors. Although supercom-
puters can be employed, usually commodity clusters and distributed systems are
used instead, due to both good performance and cheaper prices. One of the most
popular distributed systems nowadays are the Desktop Grid Systems (DGSs). The
term “desktop grid” is used to refer to distributed networks of heterogeneous single
systems that contribute idle processor cycles for computing.

Perhaps the most well known desktop grid system is the Berkeley Open Infras-
tructure for Network Computing (BOINC) [4], which supports among other projects
the successful Einstein@Home [29] . DGSs are also known as volunteer grids be-
cause they aggregate the computing resources (commodity computers from offices
or homes) that volunteers worldwide willingly donate to different research projects
(such as Einstein@Home).

One of the most important features of DGSs is that they provide large-scale par-
allel computing capabilities, only for specific types of applications –bag of tasks
mainly–, at a very low cost. Therefore DGSs can provide parallel computing capa-
bilities for running demanding parallel applications, which is frequently the case
of EAs. A good example of the combination of PEAs and DGSs is the Milky-
Way@Home project [13].

But with large scale comes a higher likelihood that processors suffer a failure
[44], interrupting the execution of the algorithm or crashing the whole system (in
this chapter we use the term “failure” and do not make the subtle distinction between
“failure” and “fault”, which is not necessary for our purpose). Such an issue is char-
acteristic of DGSs: computers join the system, contribute some resources and leave
it afterwards causing a collective effect known as churn [46]. Churn is an inherent
property of DGSs and has to be taken into account in the design of applications, as
these interruptions (computer powered off, busy CPU, etc.) are interpreted by the
application as a failure.

To cope with failures, researchers have studied and developed different mecha-
nisms to circumvent the failures or restore the system once a failure occurs. These
techniques are known as Fault-Tolerance mechanisms and enforce that an appli-
cation behave in a well-defined manner when a failure occurs [20]. Nevertheless,
not many efforts have been applied to study the fault tolerance features of PEAs in
general, and of PGAs and PGP in particular.
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In previous works [36, 27] we firstly analyzed the fault-tolerance nature of Paral-
lel Genetic Programming (PGP) under several simplified assumptions. These initial
results suggested that PGP exhibits a fault-tolerant behavior by default, encouraging
to go a step further and run PGP on large-scale computing infrastructures that are
subject to failures without requiring the employment of any fault-tolerance mech-
anism. This work was lately improved [22, 23, 25] by studying the fault-tolerance
nature of PGP and PGAs using real data from one of the most high churn distributed
systems: the Desktop Grids. The results again showed that PGP and PGAs can cope
with failures without using any fault-tolerance mechanism, concluding that PGP and
PGAs are fault tolerant by nature since it implements by default the fault-tolerance
mechanism called graceful degradation [21].

This chapter is a summary of the main results obtained for PGAs and PGP re-
garding the study of fault-tolerance and their intrinsic fault-tolerant nature. To this
aim, we have chosen a fine-grained master-worker model of parallelization [51].
A server, “the master”, runs the main algorithm and hosts the whole population.
The server is in charge of sending non-evaluated individuals to workers in order to
obtain their fitness values. This approach is effective because one of the most time-
consuming steps of GAs or GP is the evaluation –fitness computation– phase. The
master waits until all individuals in generation n are evaluated before going to the
next generation n+ 1 and run the genetic operations.

We assume that the system only suffers from omission failures [21]:

• the master sends N individuals with N > 0 to a worker, and the worker never
receives them, e.g., due to network transmission problems; or

• the master sends N individuals with N > 0 to a worker, the worker receives them
but never returns them. This can occur because the worker crashes or the returned
individuals are lost during the transmission.

In order to study the behavior of PGAs and PGP under the previous assumptions, we
are going to simulate the failures using real-world traces of host availability from
three DGSs. We have chosen Desktop Grid availability data because these systems
exhibit large amounts of failures, and thus if it is possible to run inside them PGAs
or PGP without using any fault-tolerance mechanism, PGAs and PGP will be able
to exploit any parallel or distributed systems to its maximums.

The rest of the chapter is organized as follows. Section 2 reviews related work;
section 3 describes main fault tolerance techniques. Section 4 presents the setup of
the different scenarios and experiments; section 5 shows the obtained results and
their analysis; and, finally, section 6 concludes the chapter with a discussion of the
results and future directions.

2 Background and Related Work

When using EAs to solve real-world problems researchers and practitioners often
face prohibitively long times-to-solution on a single computer. For instance, Tru-
jillo et al. required more than 24 hours to solve a computer vision problem [53],
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and times-to-solution can be much longer, measured in weeks or even months. Con-
sequently, several researchers have studied the application of parallel computing
to Spatially Structured EAs in order to shorten times-to-solution [17, 51, 9]. Such
PEAs have been used for decades, for instance, on the Transputer platform [6], or,
more recently, via software frameworks such as Beagle [19], grid based tools like
Paradiseo [41], or BOINC-based EA frameworks for execution on DGSs [38].

Failures in a distributed system can be local, affecting only a single processor,
or they can be communication failures, affecting a large number of participating
processors. Such failures can disrupt a running application, for instance imposing
the application to be restarted from scratch. As distributed computing platforms
become larger and/or lower-cost through the use of less reliable or non-dedicated
hardware, failures occur with higher probability [43, 45, 54]. Failures are, in fact,
the common case in DGSs. For this reason, fault-tolerant techniques are necessary
so that parallel applications in general, and in our case PEAs, can benefit from
large-scale distributed computing platforms. Failures can be alleviated, and in some
cases completely circumvented, using techniques such as checkpointing [15], re-
dundancy [26], long-term-memory [28], specific solutions to message-passing [2]
or rejuvenation frameworks [48]. It is necessary to embed the techniques in the
application and the algorithms. While some of these techniques may be straightfor-
ward to implement (e.g., failure detection or restart from scratch), the most common
ones typically lead to an increase in software complexity. Regardless, fault tolerance
techniques always requires extra computing resources and/or time.

Currently, available PEA frameworks employ fault tolerant mechanisms to tol-
erate failures in distributed systems such as DGSs. For instance ECJ [40], Par-
adisEO [8], DREAM [7] or Distributed Beagle [19]. These frameworks have distinct
features (programming language, parallelism models, etc.) that may be considered
in combination with DGSs, and provide different techniques to cope with failures:

• ECJ [40] is a Java framework that employs a master-worker scheme to run PEAs
using TCP/IP sockets. When a remote worker fails, ECJ handles this failure by
rescheduling and restarting the computation to another available worker.

• ParadisEO [8] is a C++ framework for running a master-worker model using
MPI [18], PVM [47], or POSIX threads. Initially, ParadisEO did not provide any
fault-tolerance. Later on, developers implemented a new version on top of the
Condor-PVM resource manager [42] in order to provide a checkpointing fea-
ture [15]. This framework, however, is not the best choice for DGSs because
these systems are: (i) loosely coupled and (ii) workers may be behind proxies,
firewalls, etc. making it difficult to deploy a ParadisEO system.

• DREAM [7] is a Java Peer-to-Peer (P2P) framework for PEAs that provides a
fault-tolerance mechanism called long-term-memory [28]. This framework is de-
signed specifically for P2P systems. As a result, it cannot be compared directly
with our work since we focus on a master-worker architecture on DGSs.

• Distributed BEAGLE [19] is a C++ framework that implements the master-
worker model using TCP/IP sockets as ECJ. Fault-tolerance is provided via
a simple time-out mechanism: a computation is re-sent to one or more new
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available workers if this computation has not been completed by its assigned
worker after a specified deadline.

While these PEA frameworks provide fault-tolerant features, the relationship be-
tween fault tolerance and specific features of PEAs has not been studied.

So far, EA researchers have not employed massively DGSs. Nevertheless, there
are several projects using DGSs like the MilkyWay@Home project [13] which uses
GAs to create an accurate 3D model of the Milky way, a ported version of LilGP
[11](a framework for GP [14]) to one of the most employed DGSs, BOINC [4], or
the custom execution environment facility proposed and implemented by Lombraña
et. al. in [37, 24] for BOINC.

Other EA researchers have focused their attention on P2P systems [35], which are
very similar to DGSs because the computing elements are also desktop computers
in its majority. However these systems are different because there is not a central
server as in DGSs.

In all the described proposals –to the best of our knowledge– none of them have
specifically addressed the problem of failures within PGAs or PGP. Nevertheless,
some of those solutions internally employ some fault-tolerance mechanisms. In this
sense, only Laredo et al. have analyze the resilience to failures of a parallel Genetic
Algorithm in [34], following the Weibull degradation of a P2P system (failures are
the host-churn behavior of these systems as well as DGSs) proposed by Stutzbach
and Rejaie in [46]. Therefore, PGAs or PGP have not been analyzed before under
real host availability traces (a.k.a. host-churn). Hence, this chapter assesses fault tol-
erance in PGAs and PGP using host-churn data collected in three real-world DGSs
[30]. Therefore, the key contribution of this chapter is the full characterization of
PGAs and PGP from the point of view of fault-tolerance with the aim of studying if
PGAs can be run in parallel or distributed systems without using any fault-tolerance
mechanism.

3 Fault Tolerance

Fault tolerance can be defined as the ability of a system to behave in a well-defined
manner once a failure occurs. In this chapter we only take into account failures at
the process level. A complete description of failures in distributed systems is beyond
the scope of our discussion. In this section, we describe different failure models as
well as different techniques to circumvent failures.

3.1 Failure Models

According to Ghosh [21], failures can be classified as follows: crash, omission, tran-
sient, Byzantine, software, temporal, or security failures. However, in practice, any
system may experience a failure due to the following reasons [21]: (i) Transient
failures: the system state can be corrupted in an unpredictable way; (ii) Topology



82 D. Lombraña González et al.

changes: the system topology changes at runtime when a host crashes, or a new host
is added; and (iii) Environmental changes: the environment – external variables that
should only be read – may change without notice. Once a failure has occurred, a
mechanism is required to bring back the system into a valid state. There are four
major types of such fault tolerance mechanisms: masking tolerance, non-masking
tolerance, fail-safe tolerance, and graceful degradation [21].

To discuss fault-tolerance in the context of PEAs, we first need to specify the way
in which the GP or GA application is parallelized. Parallelism has been traditionally
applied to GP and GAs at two possible levels: the individual level or the population
level [51, 9, 50, 3]. At the individual level, it is common to use a master-worker
scheme, while at the population level, a.k.a. the “island model”, different schemes
can be employed (ring, multi-dimensional grids, etc.).

In light of previous studies [51, 50] and taking into account the specific parallel
features of DGSs [31, 30], we focus on parallelization at the individual level. In fact,
DGSs are loosely-coupled platforms with volatile resources, and therefore ideally
suited to and widely used for embarrassingly parallel master-worker applications.
Furthermore parallelization at the individual level is popular in practice because
it is easy to implement and does not require any modification of the evolutionary
algorithm [9, 50, 3].

The server, or “master”, is in charge of running the main algorithm and manages
the whole population. It sends non evaluated individuals to different processes, the
“workers,” that are running on hosts in the distributed system. This model is ef-
fective as the most expensive and time-consuming operation of the application is
typically the individual evaluation phase. The master waits until all individuals in
generation n are evaluated before generating individuals for generation n+1. In this
scenario, the following failures may occur:

• A crash failure – The master crashes and the whole execution fails. This is the
worst case.

• An omission failure – One or more workers do not receive the individuals to be
evaluated, or the master does not receive the evaluated individuals.

• A transient failure – A power surge or lighting affects the master or worker pro-
gram, stopping or affecting the execution.

• A software failure – The code has a bug and the execution is stopped either on
the master or on the worker(s).

We make the following assumptions: (i) we consider all the possible failures that
can occur during the transmission and reception of individuals between the master
and each worker, but we assume that all software is bug-free and that there are
no transient failures; (ii) the master is always in a safe state and there is no need
for master fault tolerance (unlike for the workers, which are untrusted computing
processes). This second assumption is justified because the master is under a single
organization/person’s control, and, besides, known fault tolerance techniques (e.g.,
primary backup [26]) could easily be used to tolerate master failures.

Our system only suffers from omission failures: (i) the master sends N > 0 in-
dividuals to a worker, and the worker never receives them (e.g., due to network



Characterizing Fault-Tolerance in Evolutionary Algorithms 83

transmission problems); or (ii) the master sends N > 0 individuals to a worker, the
worker receives them but never returns them (e.g., due to a worker crash or to net-
work transmission problems).

3.2 Fault-Tolerant and Non-Fault-Tolerant Strategies

Since our objective in this work is to study the implicit fault-tolerant nature of the
PEA paradigm, we need to perform comparison with the use of a reasonable and
explicit fault-tolerant strategy. In the master-worker scheme, four typical approaches
can be applied to cope with failures:

1. Restart the computation from scratch on another host after a failure.
2. Checkpoint locally (with some overhead) and restart the computation on the same

host from the latest checkpoint after a failure.
3. Checkpoint on a checkpointing server (with more overhead) and move to another

host after a failure, restarting the computation from the last checkpoint.
4. Use task replication by sending the same individual to two or more hosts, each

of them performing either 1, 2, or perhaps even 3 above. The hope is that one of
the replicas will finish early, possibly without any failure.

Based on the analysis in Section 2 of existing PEA frameworks that are relevant in
the context of DGSs, namely ECJ and Distributed Beagle, the common technique to
cope with failures is the first one: re-send lost individuals after detecting the failure.
The advantage of this technique is that it is low overhead, very simple to implement,
and reasonably effective. More specifically, its modus-operandi is as follows:

1. After assigning individuals to workers, the master waits at most T time-units per
generation. If all individuals have been computed by workers before T time-units
have elapsed, then the master computes fitness values, updates the population,
and proceeds with the next generation.

2. If after T time-units some individuals have not been evaluated, then the master
assumes that workers have failed or are simply so slow that they may not be
useful to the application. In this case:

a. individuals that have not been evaluated are resent for evaluation to available
workers, and the master waits for another T time-units for these individuals to
be evaluated.

b. If there are not enough available workers to evaluate all unevaluated individu-
als, then the master proceeds in multiple phases of duration T . For instance, if
after the initial period of T time-units there remain 5 unevaluated individuals
and there remain only 2 available workers, the master will use � 5

2�= 3 phases
(assuming that all future individual evaluations are successful).

This method provides a simple fault-tolerant mechanism for handling worker fail-
ures as well as slow workers, which is a common problem in DGSs due to high
levels of host heterogeneity [4, 21, 5]. For the sake of simplicity, we make the as-
sumption that individuals that are lost and resent for evaluation to new workers are
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always evaluated successfully. This is unrealistic since future failures could lead
to many phases of resends. However, this assumption represents a best-case sce-
nario for the fault-tolerant strategy. The difference between the failure-free and the
failure-prone case is the extra time due to resending individuals. In the failure-free
case, with G generations, the execution time should be Texecutiontime = G×T , while
in a failure-prone case it will be higher.

By contrast with this fault-tolerant mechanism, we propose a simple non-fault-
tolerant approach that consists in ignoring lost individuals, considering their loss
just a kind of dynamic population feature [52, 16, 39, 32]. In this approach the
master does not attempt to detect failures and no fault tolerance technique is used.
The master waits a time T per generation, and proceeds to the next generation with
the available individuals at that time, likely losing individuals at each generation.
The hope is that the loss of individuals is not (significantly) detrimental to the
achieved results, while the overhead of resending lost individuals for recomputa-
tion is not incurred.

4 Experimental Methodology

All the experiments presented in this chapter are based on simulations. Simulations
allow us to perform a statistically significant number of experiments in a wide range
of realistic scenarios. Furthermore, our experiments are repeatable, via “reproduc-
tion” of host availability trace data collected from real-world DG platforms [30], so
that fair comparisons between simulated experiments are possible.

4.1 Experiments and Failure Model

We perform experiments for a GA and a GP well-known problems. The GP problem
is the even parity 5 (EP5) which tries to build a program capable of calculating the
parity of a set of 5 bits. In the case of the GA problem, we use a 3-trap instance [1]
which is a piecewise-linear function defined on unitation (the number of ones in a
binary string).

In every case, two kind of experiments are carried out:

1. for the failure-free case (i.e. assuming no worker failures occur)
2. reproducing and simulating failure traces from real-world DGSs.

In the failure free case the available number of computing nodes is kept steady
throughout the execution, while in the second case the number of nodes vary along
the generations.

The simulation of host availability in the DG is performed based on three real-
world traces of host availability that were measured and reported in [30]: ucb, en-
trfin, and xwtr. These traces are time-stamped observations of the host availability
in three DGSs. The ucb trace was collected for 85 hosts in a graduate student lab in
the EE/CS Department at UC Berkeley for about 1.5 months. The entrfin trace was
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collected for 275 hosts at the San Diego Supercomputer Center for about 1 month.
The xwtr trace was collected for 100 hosts at the Université Paris-Sud for about 1
month. See [30] for full details on the measurement methods and the traces, and
Table 1 for a summary of its main features.

Table 1 Features of Desktop Grid Traces

Trace Hosts Time in months Place
entrfin 275 1 SD Supercomputer Center
ucb 85 1.5 UC Berkeley
xwtr 100 1 Université Paris-Sud

Figure 1 shows an example of available data from the ucb trace: the number of
available hosts in the platform during 24 hours time. The figure depicts the typical
churn phenomenon, with available hosts becoming unavailable and later becoming
available again. Experiments were performed over such 24-hour segments.

In addition, we use two different scenarios when simulating host failures based
on trace data. In the first scenario a stringent assumption is used: hosts that become
unavailable never become available again (i.e. the system degrades). An example is
shown in Figure 1, as the curve “trace without return.” In such an scenario, we have
selected as a starting point policy the moment in which a largest number of hosts
are available. In the second scenario hosts can become available again after a failure
and reused by the application. This phenomenon is called “churn,” and is inherent
to real-world DG systems. In this case, application execution starts at an arbitrary
time in the segment. Note that in the first “no churn scenario,” population size (i.e.,
the number of individuals) becomes progressively smaller as the application makes
progress, while population size may fluctuates in the “churn scenario.”

4.2 Distribution of Individuals to Workers

At the onset of each generation the master sends an equal numbers of individuals
to each worker. This is because the master assumes homogeneous workers and thus
strives for perfect load-balancing. We call this number I. Whenever a worker does
not return the evaluated individuals within a time interval T , then those I individuals
are considered lost. In the fault-tolerant approach in Section 3.2, such individuals are
simply re-sent to other workers. In our non-fault-tolerant approach, these individuals
are simply lost and do not participate in the subsequent generations.

Note that for our non-fault-tolerant approach the execution time per generation in
the failure-free and the failure-prone case are identical: with P individuals to be eval-
uated at a given generation and W workers, the master sends I = P/W individuals
to each worker. When a worker fails I individuals are lost. Given that these individ-
uals are discarded for the next generation and that the initial population size is never
exceeded by new extra individuals, the remaining workers will continue evaluating
I individuals each, regardless of the number of failures or newly available hosts.
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Fig. 1 Host availability for 1 day of the ucb trace.

Regardless of the approach in use, if there is host churn then the population size
can be increased at run-time due to the newly available hosts. We impose the re-
striction that the master never overcomes a pre-specified population size. This may
leave some workers idle whenever a large number of workers become available. In
such a case, it would be interesting to re-adjust the number of individuals I sent to
each worker so as to utilize all the available workers. We leave such load-balancing
study outside the scope of this work and maintain I constant.

In the churn scenario, one important question is: what work is assigned to newly
available workers? When a new worker appears, the master simply creates I new
random individuals and increases the population size accordingly (provided it re-
mains below the initial population size). These new individuals are sent to the new
worker. Note that whenever there are no available workers at all, the master loses all
its individuals except the best one thanks to the elitism parameter. Then, the master
proceeds to the next generation by waiting a time T for newly available workers.

4.3 Experimental Procedure

We have performed a statistical analysis of our results based on 100 trials for each
experiment, accounting for the fact that different individuals can be lost depending
on which individuals were assigned to which hosts. We have analyzed the normality
of the results using the Kolgomorov-Smirnov and Shapiro-Wilk tests, finding out
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that all results are non-normal. Therefore, to compare two samples, the failure-free
case with each trace (with and without churn), we used the Wilcoxon test. Table 4
and 8 present the Wilcoxon analysis of the data. The following sections discuss these
results in detail.

5 Experimental Results

5.1 GP: Even Parity 5

For the GP problem, fitness is measured as the error in the obtained solution, with
zero meaning that a perfect solution has been found. All the GP parameters, includ-
ing population sizes, are Koza-I/II standard [33]. See Table 2 for all details.

Table 2 Parameters of selected problems.

EP5
Population 4000
Generations 51
Elitism Yes
Crossover Probability 0.90
Reproduction Probability 0.10
Selection: Tournament 7
Max Depth in Cross 17
Max Depth in Mutation 17
ADFs Yes

Even if the required time for fitness evaluation for the problems at hand is short,
we simulate larger evaluation times representative of difficult real-world problems
(so that 51 generations, the maximum, correspond to approximately 5 hours of com-
putation in a platform without any failures).

5.1.1 EP5: Results without Churn

In this section we consider the scenario in which hosts never become available again
(no churn). Figure 2 shows the evolution of the number of individuals in each gen-
eration for the EP5 problem when simulated over two 24-hour periods, denoted by
Day 1 and Day 2, randomly selected out of each of three of our traces, entrfin, ucb,
and xwtr, for a total of 6 experiments.

Table 3 shows a summary of the obtained fitness for the EP5 problems and of
the fraction of lost individuals by the end of application execution. The first row
of the table shows fitness values assuming a failure-free case. The fraction of lost
individuals depends strongly on the trace and on the day. For instance, the Day 1
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period of the entrfin trace exhibits on its 10 first generations a severe loss of in-
dividuals (almost half); the ucb trace on its Day 2 period loses almost the entire
population after 25 generations (96.15% loss); and the xwtr exhibits more moderate
losses, with overall 23.52% and 12.08% loss after 51 generations for Day 1 and Day
2, respectively.

The obtained fitness in the failure-free case is 2.56, and it ranges from 2.44 to
5.13 for the failure-prone cases (see Table 4 for statistical significance of results).
The quality of the fitness depends on host losses in each trace. The entrfin and ucb
traces present the most severe losses. The ucb trace exhibits 68% losses for Day
1 and 96.15% for Day 2. Therefore, the obtained fitness in these two cases are the
worst ones relatively to the failure-free fitness. The entrfin trace exhibits 48.02% and
13.04% host losses for Day 1 and Day 2, respectively. As with the previous trace,
when losses are too high, as in Day 1, the quality of the solution is significantly
worse than that in the failure-free case; when losses are lower, as in Day 2, the
obtained fitness is not significantly far from the failure-free case. Similarly, the xwtr
trace with losses under 25% leads to a fitness that it is not significantly different
from the failure-free case.

We conclude that, for the EP5 problem, it is possible to tolerate a gradual loss
of up to 25% of the individuals without sacrificing solution quality. This is the case
without using any fault tolerance technique. However, if the loss of individuals is too
large, above 50%, then solution quality is significantly diminished. Since real-world
DGSs do exhibit such high failure rates when running PGP applications, we attempt
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Table 3 Obtained fitness for EP5

EP5
Trace Loss(%) Fitness

Error free 0.00 2.56
entrfin (Day 1) 48.02 3.58
entrfin (Day 2) 13.04 2.44

ucb (Day 1) 68.00 3.98
ucb (Day 2) 96.15 5.13
xwtr (Day 1) 23.52 2.78
xwtr (Day 2) 12.08 2.61

Table 4 EP5 fitness comparison between failure-prone and failure-free cases using Wilcoxon
test (Day 1 and 2) – “not significantly different” means fitness quality comparable to the
failure-free case.

Error Free fitness = 2.56
Results without Host Churn

Trace Fitness
Wilcoxon Significantly

Fitness
Wilcoxon Significantly

Test different? Test different?

D
ay

1

entrfin 3.58 W = 6726, p-value = 1.843e-05 yes

D
ay

2

2.44 W = 4778.5, p-value = 0.5815 no
entrfin 10% 3.52 W = 6685, p-value = 2.707e-05 yes 2.65 W = 5201.5, p-value = 0.6167 no
entrfin 20% 3.01 W = 5760, p-value = 0.05956 yes 2.29 W = 4571, p-value = 0.2863 no
entrfin 30% 3.13 W = 5942.5, p-value = 0.01941 yes 2.36 W = 4732.5, p-value = 0.505 no
entrfin 40% 2.80 W = 5355, p-value = 0.3773 no 2.01 W = 4098, p-value = 0.02458 yes
entrfin 50% 2.85 W = 5620, p-value = 0.1233 no 1.92 W = 3994.5, p-value = 0.01213 yes

ucb 3.98 W = 7274, p-value = 1.789e-08 yes 5.13 W = 8735.5, p-value < 2.2e-16 yes
ucb 10% 3.75 W = 6927.5, p-value = 1.799e-06 yes 5.21 W = 8735.5, p-value < 2.2e-16 yes
ucb 20% 3.61 W = 6769, p-value = 1.123e-05 yes 4.68 W = 8266.5, p-value = 6.661e-16 yes
ucb 30% 3.33 W = 6390, p-value = 0.0005542 yes 4.50 W = 8152, p-value = 6.439e-15 yes
ucb 40% 3.35 W = 6408, p-value = 0.000464 yes 4.71 W = 8325.5, p-value = 2.220e-16 yes
ucb 50% 3.17 W = 6080, p-value = 0.007298 yes 4.47 W = 8024.5, p-value = 6.95e-14 yes

xwtr 2.78 W = 5509, p-value = 0.2043 no 2.61 W = 5238.5, p-value = 0.5524 no
xwtr 10% 2.40 W = 4762, p-value = 0.5532 no 2.66 W = 5215.5, p-value = 0.5927 no
xwtr 20% 2.32 W = 4643.5, p-value = 0.3753 no 2.42 W = 4686.5, p-value = 0.4364 no
xwtr 30% 2.46 W = 4802, p-value = 0.6221 no 2.33 W = 4611.5, p-value = 0.3336 no
xwtr 40% 2.15 W = 4363, p-value = 0.1121 no 1.96 W = 4033.5, p-value = 0.01574 yes
xwtr 50% 2.13 W = 4296.5, p-value = 0.08027 no 2.24 W = 4511, p-value = 0.2226 no

Results with Host Churn

entrfin 2.86 W = 5513.5, p-value=0.2012 no 2.75 W = 5404.5, p-value = 0.3142 no
ucb 8.87 W = 9997, p-value = 2.2e-16 yes 5.89 W = 9645, p-value < 2.2e-16 yes
xwtr 2.56 W = 4940, p-value = 08823 no 2.52 W = 5035, p-value = 0.9315 no

to remedy this problem. Our simple idea is to increase the initial population size (in
our case by 10, 20, 30, 40, or 50%). The goal is to compensate for lost individuals
by starting with a larger population.

Increasing population likely also affects the fitness in the failure-free case. We
simulated the EP5 problem in the failure-free case with a population size increased
by 10, 20, 30, 40 and 50%. Results are shown in Figure 3, which plots the evolution
of fitness versus the “computing effort.” The computing effort is defined as the total
number of evaluated individuals nodes so far (we must bear in mind that GP indi-
viduals are variable size trees), i.e., from generation 1 to generation G, as described
in [16]. We have fixed a maximum computing effort which corresponds to 51 gen-
erations and the population size introduced by Koza [33], which is employed in this
work. Figure 3 shows that population sizes M > 4,000 for a similar effort obtain
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worse fitness values when compared with the original M = 4,000 population size.
Thus, for static populations, increasing the population size is not a good option, pro-
vided a judicious population size is chosen to begin with. Nevertheless, we content
that such population increase could be effective in a failure-prone case.
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Fig. 3 Fitness vs. Effort with increased population for failure-free experiments

Table 5 shows results for the increased initial population size, based on simula-
tions for the Day 1 and Day 2 periods of all three traces. Overall, increasing the
initial population size is an effective solution to tolerate failures while preserving
(and even improving!) solution quality. For instance, for the Day 1 period of the en-
trfin trace, with host losses at 48.02%, starting with 50% extra individuals ensures
solution quality on par with the failure-free case. Similar results are obtained for the
entrfin and xwtr two periods. Furthermore, for the Day 2 period of traces entrfin and
xwtr, adding 40% or 50% extra individuals results in obtaining solutions of better
quality than in the failure-free case. However, the increase of the initial population
is not enough for the ucb trace as its losses are as high as 96.15% and 68% for Day 1
and Day 2, respectively. Note that in these difficult cases the fault-tolerant approach
does not succeed at all.

From these results we conclude that increasing the initial population size is ef-
fective to maintain fitness quality at the level of that in the failure-free case. The
fraction by which the population is increased is directly correlated to the host loss
rate. If an estimation of this rate is known, for instance based on historical trends,
then the initial population size can be chosen accordingly. Also, one must keep in
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Table 5 EP5 fitness with increased population

Error Free fitness = 2.56

Traces entrfin ucb xwtr entrfin ucb xwtr
+0% 3.58 3.98 2.78 2.44 5.13 2.61

+10% 3.52 3.75 2.40 2.65 5.21 2.66
+20% 3.01 3.61 2.32 2.29 4.68 2.42
+30% 3.13 3.33 2.46 2.36 4.50 2.33
+40% 2.80 3.35 2.15 2.01 4.71 1.96
+50% 2.85 3.17 2.13 1.92 4.47 2.24

mind that an increased population size implies longer execution time for each gen-
eration since more individuals must be evaluated.

5.1.2 EP5: Results with churn

In this section we present results for the case in which hosts can become available
again after becoming unavailable, leading to churn. Recall from the discussion at
the beginning of Section 4.2 that the population size is capped at 4,000 individuals
(according to Table 2) and that each worker is assigned I individuals. Such indi-
viduals are randomly generated by the master when assigned to a newly available
worker.

Table 6 Obtained fitness for EP5 with host churn

Trace Hosts Fitness
Min. Median Mean Max. Var. (s2) EP5

Error free - - - - - 2.56
entrfin (Day 1) 92 160 157.50 177 179.33 2.86
entrfin (Day 2) 180 181 181.30 183 0.75 2.75
ucb (Day 1) 0 1 1.51 9 2.21 8.87
ucb (Day 2) 0 2 2.57 7 4.29 5.89
xwtr (Day 1) 28 29 28.92 29 0.07 2.56
xwtr (Day 2) 86 86 86 86 0 2.52

Table 6 shows the obtained fitness for the EP5 problem on all traces. It also shows
the host churn represented by the minimum, median, mean, maximum, and variance
of the number of available hosts during application execution. Among all the traces,
the ucb trace is the worst possible scenario as it has very few available hosts. This
prevents the master from sending individuals to workers, both in Day 1 and Day 2,
leading to poor fitness values. For the entrfin and xwtr traces, both for Day 1 and
Day 2, the obtained fitness value is comparable to that in the failure-free case (see
Table 4 for statistical significance).
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If the variance of the number of available hosts for a trace is zero, then the trace
is equivalent to the failure-free case, as the hosts do not experience any failure. The
obtained fitness should then be similar to that in the failure-free case.

The xwtr trace, Day 2, exhibits such zero variance, and indeed the obtained fit-
ness value is similar to that in the failure-free case (see Table 6). The variance of the
xwtr trace, Day 1, is low at 0.07, and the obtained fitness is again on par with that
in the failure-free case. The entrfin trace, Day 1, exhibits the largest variance. Nev-
ertheless, the obtained fitness is better than that of its counterpart in the non-churn
scenario, and similar to that in the failure-free case. This shows that re-acquiring
hosts is, expectedly, beneficial. Finally the ucb trace leads to the worst fitness values
despite its low variability (see Table 6). The reason is a low maximum number of
available hosts (9 and 7 for Day 1 and Day 2, respectively), and many periods dur-
ing which no hosts were available at all (in which case the master loses the entire
population except for the best individual). As a result, it is very difficult to obtain
solutions comparable to those in the failure-free case.

5.2 GA: 3-Trap Function

According to [12], 3-trap lies on the region between the deceptive 4-trap and the
non-deceptive 2-trap having, therefore, intermediate population size requirements
that Thierens estimates in 3000 for the instance under study in [49]. A trap function
is a piecewise-linear function defined on unitation (the number of ones in a binary
string). There are two distinct regions in the search space, one leading to a global
optimum and the other one to the local optimum (see Eq. 1). In general, a trap
function is defined by the following equation:

trap(u(−→x )) =

{ a
z (z− u(−→x )), if u(−→x )≤ z
b

l−z (u(
−→x )− z), otherwise

(1)

where u(−→x ) is the unitation function, a is the local optimum, b is the global opti-
mum, l is the problem size and z is a slope-change location separating the attraction
basin of the two optima.

For the following experiments, 3-trap was designed with the following parameter
values: a = l −1, b = l, and z = l −1. Tests were performed by juxtaposing m = 10
trap functions in binary strings of length L = 30 and summing the fitness of each
sub-function to obtain the total fitness. All settings are summarized in Table 7.

In order to analyze the results with confidence, data has been statistically ana-
lyzed (each experiment has been run 100 times). Firstly, we analyzed the normality
of the data using the Kolgomorov-Smirnov and Shapiro-Wilk tests [10], obtaining
as a result that all data are non-normal. Thus, to compare two samples, the error-
free case with each trace, we used the Wilcoxon test (Table 8 shows the Wilcoxon
analysis of the data).

Figure 2 shows, for the worst-case scenario, how the population decreases as
failures occur in the system. As explained before, two different 24-hours periods
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Table 7 Parameters of the experiments

Trap instance
Size of sub-function (k) 3

Number of sub-functions (m) 10
Individual length (L) 30

GA settings
GA GGA

Population size 3000
Selection of Parents Binary Tournament

Recombination Uniform crossover, pc = 1.0
Mutation Bit-Flip mutation, pm = 1

L

Table 8 3-Trap fitness comparison between error-prone and error-free cases using Wilcoxon
test (Day 1 and 2) – “not significantly different” means fitness quality comparable to the
error-free case.

Error Free fitness = 23.56
Results without Host Churn

Trace Fitness
Wilcoxon Significantly

Fitness
Wilcoxon Significantly

Test different? Test different?

D
ay

1

Entrfin 23.3 W = 6093, p-value = 0.002688 yes

D
ay

2

23.57 W = 4979.5, p-value = 0.9546 no
Entrfin 10% 23.47 W = 5408.5, p-value = 0.2535 no 23.69 W = 4397.5, p-value = 0.07682 no
Entrfin 20% 23.48 W = 5360, p-value = 0.3137 no 23.67 W = 4522.5, p-value = 0.1645 no
Entrfin 30% 23.49 W = 5283.5, p-value = 0.4271 no 23.70 W = 4405, p-value = 0.08086 no
Entrfin 40% 23.57 W = 4923.5, p-value = 0.8286 no 23.69 W = 4453.5, p-value = 0.11 no
Entrfin 50% 23.59 W = 4910.5, p-value = 0.7994 no 23.75 W = 4162.5, p-value = 0.01234 yes

Ucb 23.22 W = 6453, p-value = 6.877e-05 yes 23.09 W = 6672.5, p-value = 7.486e-06 yes
Ucb 10% 23.27 W = 6098.5, p-value = 0.002753 yes 23.12 W = 6826, p-value = 6.647e-07 yes
Ucb 20% 23.37 W = 5837.5, p-value = 0.02051 yes 23.14 W = 6654, p-value = 7.223e-06 yes
Ucb 30% 23.40 W = 5664, p-value = 0.06588 no 23.26 W = 6371, p-value = 0.0001507 yes
Ucb 40% 23.51 W = 5186.5, p-value = 0.6004 no 23.37 W = 5893.5, p-value = 0.01316 yes
Ucb 50% 23.42 W = 5623, p-value = 0.08335 no 23.32 W = 6108, p-value = 0.002166 yes

Xwtr 23.56 W = 5056, p-value = 0.8748 no 23.60 W = 4806, p-value = 0.5791 no
Xwtr 10% 23.57 W = 4923.5, p-value = 0.8286 no 23.62 W = 4765, p-value = 0.5002 no
Xwtr 20% 23.68 W = 4474, p-value = 0.1245 no 23.69 W = 4453.5, p-value = 0.11 no
Xwtr 30% 23.73 W = 4259.5, p-value = 0.02812 yes 23.60 W = 4806, p-value = 0.5791 no
Xwtr 40% 23.68 W = 4502, p-value = 0.1466 no 23.63 W = 4688.5, p-value = 0.3695 no
Xwtr 50% 23.71 W = 4356.5, p-value = 0.05817 no 23.77 W = 4065.5, p-value = 0.004877 yes

Results with Host Churn

Entrfin 23.52 W = W = 5222, p-value = 0.5322 no 23.58 W = 4931, p-value = 0.8452 no
Ucb 21.31 W = 9708.5, p-value < 2.2e-16 yes 23.03 W = 7038.5, p-value = 4.588e-08 yes
Xwtr 23.64 W = 4640, p-value = 0.2982 no 23.7 W = 4405, p-value = 0.08086 no

randomly selected are shown, denoted by Day 1 and Day 2, for the three employed
traces of the experiments. Thus, a total of 6 different experiments, one per trace and
day period, were run with the 3-Trap function problem.

Table 8 shows a summary of the obtained results for the experiments. From all the
traces, the ucb has obtained the worst fitness 23.22 and 23.09 (respectively for both
periods Day 1 and Day 2). The reason is that this trace in the first day loses a 64%
of the population and in the second day it loses more or less the whole population
95.83% (see Figure 2). Consequently it is very difficult for the algorithm to obtain
a solution with a similar quality to the error-free scenario.

The second worst case of all the experiments is the entrfin trace for the first period
(Day 1). This trace loses more or less half of the population in the first 5 generations
(see Figure 2), making really difficult to obtain a good solution even though the
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population size is steady the rest of the generations. Thus, the obtained fitness for
this period is not comparable to the error-free case.

Finally, the xwtr trace in both periods obtains solutions with similar quality to the
error-free environment (23.56 and 23.6 respectively for each day). In both periods,
the xwtr trace does not lose more than a 20% for Day 1 and 12% for the second day.
Consequently, we conclude that for the 3-Trap function problem, it is possible to
tolerate a gradual loss of up to 20% of the individuals without sacrificing solution
quality and more importantly without using any fault-tolerance mechanism. Never-
theless, if the loss of individuals is too high, above the 45%, the solution quality is
significantly diminished. Since real-world DGSs experience such large amount of
failures, we attempt to address this problem. Our simple idea is to increase the ini-
tial population size (a 10%, 20%, 30%, 40% and 50%) and run the same simulations
using the same traces. The aim is to compensate the loss of the system by providing
more individuals at the first generation.

Table 8 shows the obtained results for Day 1 and Day 2 periods of the three traces
with the increased population. For the entrfin trace, the first period (Day 1) with a
loss rate of 45.3%, a 10% extra individuals is enough to obtain solutions of similar
quality to the error-free case. In the second period, Day 2, the trace obtains similar
solutions to the error-free case and when adding an extra 50% the obtained solution
is even better than in the error-free case.

For the ucb trace, the first period (Day 1) increasing a 30% the size of the popu-
lation is sufficient to obtain solutions with similar quality to the error-free case. The
second period, Day 2, even though an extra 50% of individuals is added at the first
generation it is not enough to cope with the high loss rate of this period: 95.83%.

Finally, the xwtr trace for both periods obtains solutions with similar quality to
the error-free case and in some cases it improves it. For this trace, the increased
population would have not been necessary because the PGA tolerates, without any
extra individual, the rate loss of both periods.

It is important to remark that by adding more individuals to the initial population,
we are increasing the computation time since more individuals have to be evaluated
per generation. Nevertheless, this extra time is similar to the extra time that would be
required by standard fault tolerance mechanisms (e.g. failure detection and re-send
lost individuals for fitness evaluation). Thus, we conclude that increasing the popu-
lation size, accordingly to the failure rate, is enough to improve the PGA quality of
solutions when the failure rate is known.

Up to now, we have only considered the worst-case scenario: lost resources never
become available again. Nevertheless, real-world DG systems does not behave like
this assumption, and thus we are going to use the traces with the possibility of re-
acquiring the lost resources (see Figure 1). Next section analyzes the results obtained
when re-acquiring lost resources is a possibility.

5.2.1 3-Trap:Results with Churn

When using the full churn traces of the three DGSs (entrfin, ucb and xwtr) an im-
portant question arises: what work is assigned to the new available workers? We
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have assumed that when workers become available again the master node creates I
new random individuals and increases the size of the population accordingly. Thus,
the size of the population can be changed dynamically as individuals are added and
removed along generations. In this scenario it could happen that new workers nodes
appear during the execution of the algorithm increasing the population over its opti-
mum size. Hence the master node is not allowed to create more individuals than the
optimum population size leaving several workers idle. In order to avoid idle workers,
it would be interesting to adjust the number of I individuals to evaluate accordingly
to the number of available hosts. Nevertheless, we leave such load-balancing study
for a future work.

On the other hand, due to the loss of resources, the population can be emptied
because all the workers have disappeared. If this situation occurs, the server node
proceeds to the next generation by waiting the specified time T (based on the re-
quired time per generation in the failure-free environment) for new workers.

Table 8 shows the obtained results for the three traces with the host-churn phe-
nomena (entrfin, ucb and xwtr) and the previous corresponding two periods: Day 1
and Day 2. We used the same periods as in the worst-case scenario, but now choos-
ing a random point in the 24-hours period as the starting point for the algorithm. Ta-
ble 9 shows the obtained fitness of the 3-Trap function problem and the host churn
of each trace represented by the minimum, median, mean, maximum, and variance
of the number of available worker nodes.

Table 9 Obtained fitness for 3-Trap function with host churn

Trace Hosts Fitness
Min. Median Mean Max. Var. (s2) 3-Trap

Error free - - - - - 23.56
entrfin (Day 1) 92 161.5 156.8 177 305.59 23.52
entrfin (Day 2) 180 181 180.9 182 0.6 23.58
ucb (Day 1) 0 2 1.9 9 3.12 21.31
ucb (Day 2) 0 4 3.7 7 2.7 23.03
xwtr (Day 1) 28 29 28.87 29 0.11 23.64
xwtr (Day 2) 86 86 86 86 0 23.70

If the variance of the number of available hosts is zero, then the execution is
obviously the same as in the error-free case because the number of hosts is steady
along generations. In this case, the obtained fitness should be similar to the error-
free case. This situation is present within the second period (Day 2) of the xwtr trace
(variance equal to zero) and thus the obtained fitness is similar to the error-free case
(see Table 8). The other period of the xwtr trace has also a very small variance,
0.11, resulting in a similar solution quality in comparison with the error-free sce-
nario. The entrfin trace for both periods obtains solutions of similar quality to the
error-free environment, even though the large variance observed in the Day 1 period
(s2 = 305.59). Despite the large variance, the number of available hosts is high in
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comparison with the other traces, so the PGA tolerates better the failures and pro-
vides solutions of similar quality to the error-free case. Finally, the ucb trace obtains
the worst results due to in both periods the minimum number of available hosts is
zero. Consequently, the population is emptied, making very difficult to obtain solu-
tions of similar quality to the error-free environment.

5.3 Summary of Results

Based on two standard applications, EP5 and 3-trap, we have shown that PGP and
PGA applications based on the master-worker model running on DGSs that exhibit
host failures can achieve solution qualities close to those in the failure-free case,
without resorting to any fault tolerance technique. Two scenarios were tested: (i) the
scenario in which lost hosts never come back but in which one starts with a large
number of hosts; and (ii) the scenario in which hosts can re-appear during applica-
tion execution. For scenario (i) we found that there is an approximately linear degra-
dation of solution quality as host losses increase. This degradation can be alleviated
by increasing initial population size. For scenario (ii) the degradation varies during
application execution as the number of workers fluctuates. The main observation is
that in both cases we have graceful degradation.

6 Conclusions

In this chapter we have analyzed the behavior of a parallel approach to Genetic
Programming and Genetic Algorithms when executed in a distributed platform with
high failure rate. The aim is characterizing the inherent fault tolerance capabilities of
the evolutionary computation paradigm. To that end, we have used two well-known
problems and for the first time in this context (to the best of our knowledge) we have
used host availability traces collected on real-world Desktop Grid platforms.

Our main conclusion is that, whenever executed in parallel, either GP and GA
provide a fault tolerant mechanism known as graceful degradation.

We have also presented a simple method for tolerating faults in especially chal-
lenging scenarios with high host losses, which consists of increasing the initial pop-
ulation size.

To the best of our knowledge, this is the first time that PGP and PGAs are
characterized from a fault-tolerance perspective. We contend that our conclusions
can be extended to other Parallel Evolutionary Algorithms via similar experimental
validation.
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Comparison of Frameworks for Parallel
Multiobjective Evolutionary Optimization
in Dynamic Problems

Mario Cámara, Julio Ortega, and Francisco de Toro

Abstract. In this chapter some alternatives are discussed to take advantage of par-
allel computers in dynamic multi-objective optimization problems (DMO) using
evolutionary algorithms. In DMO problems, the objective functions, the constraints,
and hence, also the solutions, can change over time and usually demand to be solved
online. Thus, high performance computing approaches, such as parallel processing,
should be applied to these problems to meet the quality requirements within the
given time constraints. Taking this into account, we describe two generic paral-
lel frameworks for multi-objective evolutionary algorithms. These frameworks are
used to compare the parallel processing performance of some multi-objective opti-
mization evolutionary algorithms: our previously proposed algorithms, SFGA and
SFGA2, in conjunction with SPEA2 and NSGA-II. We also propose a model to ex-
plain the benefits of parallel processing in multi-objective problems and the speedup
results observed in our experiments.

Keywords: dynamic multiobjective optimization (DMO), parallel processing,
parallel evolutionary algorithms

1 Introduction

Present evolution towards multicore processors have fueled the relevance, use-
fulness, and interest of parallel implementations of applications that have to ful-
fill time constraints, and/or require a high amount of computing workload to be
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satisfactorily solved. Dynamic optimization problems, which appear in many dif-
ferent real-world applications with socio-economic relevance, are examples of such
class of problems. These problems are dynamic because they show changes over
time in the parameters on which the cost functions depend and/or in the restrictions
that their solutions must meet. For example, in some scheduling problems, such
as those appearing in parallel computing servers or in the semiconductor industry
[1], the available resources and the volume of tasks to be allocated could vary over
time [2], or the voltage should be regulated during operation [3]. In the control of
an industrial plant the conditions change due to the aging of the plant, to random
intrinsic effects, etc. The shifting of optima with time is an important issue in this
kind of problems. An approach to solve dynamic optimization problems uses an on-
line optimization procedure that considers the dynamic problem as stationary for a
given period of time in which the optimization algorithm should be able to find the
optimal (or near-optimal) solution. Thus, if it is assumed that the optimization prob-
lem remains constant or almost constant within the time t, it should be verified that
Topt < t, where Topt is the time needed by the optimization algorithm to obtain an
enough accurate optimal solution. This way, the faster is the optimization algorithm,
the wider is the set of dynamic optimization problems where it can be applied.

On the other hand, there are many optimization problems whose solutions must
optimize several objectives that are in conflict. Examples of these problems have
been reported in applications such as dynamic scheduling, and inventory manage-
ment [4,5]. In this context, the concept of optimum must be redefined, because
instead of providing only one optimal solution, the procedures applied to these
multi-objective optimization problems should obtain a set of non-dominated solu-
tions, known as Pareto optimal solutions [6], from which a decision agent (be hu-
man or not) will choose the most convenient solution in the current circumstances.
Roughly speaking, these solutions are optimal in the sense that in the corresponding

Fig. 1 Decision space, Objective space, and Pareto front in a multiobjective optimization
problem with two objectives, f1 and f2, to be minimized
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hyper-area known as Pareto set, or Pareto front, there is not any solution worse than
any of the other ones when all the objectives are taken into account (see Fig. 1). In
the dynamic multi-objective optimization problems the objective functions and the
set of variables which define the search or decision space may change over time.

In this chapter, Sect. 2 defines and describes some of the main topics involved
in the evolutionary dynamic multi-objective optimization problems. Then, Sect. 3
deals with the parallel processing issues of evolutionary multi-objective optimiza-
tion. The parallel processing frameworks proposed in this chapter are described in
Sect. 4 and 5, while the corresponding results obtained from experiments on these
parallel frameworks are presented and discussed in Sect. 6. Finally, the conclusions
are given in Sect. 7.

2 Evolutionary Dynamic Multi-objective Optimization

A dynamic multi-objective optimization (DMO) problem [7,8,9] can be defined as
the problem of finding a vector of decision variables, that satisfies a restriction
set and optimises a function vector whose scalar values represent objectives that
change with time. Thus, it has to be found a decision variable vector x*(t)={x1*(t),
x2*(t),. . . .,xn*(t)} that satisfies a given restriction set {g(x,t)=0; h(x,t)=0}, and op-
timises the function vector: f(x,t)={fi(x,t):1=i=k}, where k is the number of objec-
tives, and t represents the time or the dynamic nature of the problem.

In a dynamic multi-objective optimization problem, we can define Sp(t) and Fp(t)
as the sets of Pareto optimal solutions at time t, respectively in the decision and
objective spaces. A classification of DMO problems depending on whether the sets
Sp(t) and Fp(t) change with time or not, is presented in [8].

To tackle DMO problems, we will consider the use of evolutionary algorithms.
Evolutionary algorithms have been widely applied to multi-objective optimization,
bringing a different point of view on the resolution of these problems with respect to
the classic methods previously proposed. They can give a very good approximation
to the Pareto set and to reveal the properties of the optimal solutions [10].

In an evolutionary algorithm a set (population) of candidate solutions (individ-
uals) to the problem is transformed through generations (iterations) by applying
the so-called genetic operators (selection, mutation, crossover, etc.) resembling the
species natural evolution process. In an evolutionary algorithm, a trade off is re-
quired between exploration and exploitation of the search space. Thus, the charac-
teristics of the genetic operators must be set in order to find a balance between the
search for solutions in new areas of the space and the convergence towards better
solutions in the surroundings of the already found ones.

Because of this, diversity and uniform distribution are required in the solutions
in order to provide an accurate description of the Pareto set. Moreover, in dynamic
optimization problems, the population of the evolutionary algorithm must react to
changes as fast as possible. Some of the main topics and techniques that should be
addressed in evolutionary DMO are the following ones [9]:
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1. Diversity after changes. As soon as a change is detected, diversity in the popula-
tion should be increased in order to make easier the evolution towards a new op-
timum. If the mutation probability is too high, the situation is similar to a re-start
of the algorithm and no advantage is obtained from the already found solutions.
There are some alternatives to deal with this issue: hypermutation [11], a sud-
den increment in the mutation probability after a change of the conditions, and
variable local search [12], where mutation probability is gradually increased.

2. Diversity along the runtime. It tries to avoid convergence through the execution
of the algorithm so that the population could better adapt itself to changes. Here
the alternatives are: to insert random migrant solutions in the population in each
generation; the thermodynamic genetic algorithms [13]; and the use of niching
techniques [14] for preserving diversity like sharing or crowding.

3. Memory based techniques. The evolutionary algorithm uses a memory that keeps
information about what has happened in previous generations [15,16]. This ap-
proach is mainly useful when the problem shows conditions that have appeared
before.

4. Multi-population techniques. The population is divided into subpopulations that
hold information about different regions of the decision or objective spaces [17,
18]. The idea behind this approach is to evolve different optimal solutions in each
independent population. This alternative will be reviewed with more detail in the
development of parallel procedures for DMO [26-32].

The availability of parallel computers, even with nodes based on multi-core mi-
croprocessors, makes parallel processing an attractive approach to accelerate the
reaction to the changes in the Pareto front that dynamic problems determine. In the
next section, we consider the issues on parallel processing for evolutionary multi-
objective optimization [19].

3 Parallel Evolutionary Multi-objective Optimization

Parallel processing is useful to efficiently solve dynamic optimization problems with
evolutionary algorithms [20,21], not only by improving the quality of the solutions
found but also by speeding up the execution times. Two decomposition alternatives
are usually implemented in parallel algorithms: functional decomposition and data
decomposition.

The functional decomposition techniques identify tasks that may be run sepa-
rately in a concurrent way. The data decomposition techniques divide the sequential
algorithm into tasks that are executed on different data (i.e. the individuals of the
population). Moreover, hybrids methods are also possible.

In this paper, data decomposition has been applied as we consider this alternative
more attractive and useful in many different problems, such as evolutionary compu-
tation. In an evolutionary algorithm, the evaluation of the objective function and the
application of genetic operators to the individuals of the population can be indepen-
dently done. As it will be seen, this allows data parallelization approaches that do
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not modify the convergence behaviour of the sequential algorithm. In what follows,
sections 3.1 to 3.3 deal with the main issues on the parallelization of evolutionary
algorithms and introduce a model to evaluate the speedup that could be achieved by
different parallel models.

3.1 The Design Space of Data Decomposition Approaches

Two main possible models can be considered to parallelize evolutionary algorithms
in the context of the data decomposition approach (see Fig. 2): (1) the distribution
of fitness computation; and (2) the concurrent execution of evolutionary algorithms
over multiple subpopulations. In the first case, the individuals of the population are
distributed among several processes (usually called workers) that compute the fit-
ness values of the individuals in the corresponding subpopulation. Once each worker
process completes the fitness evaluation of its subpopulation, it sends this infor-
mation to another process that executes the evolutionary iteration by applying the
corresponding operators to the individuals of the whole population. Then, the pop-
ulation is distributed again among the worker processes to obtain the new values
of the fitness. It is clear that this alternative does not modify the convergence char-
acteristics of the corresponding sequential algorithm although, to complete a given
iteration, communication is required between the process that applies the evolution-
ary operators to the population and the processes that evaluate the fitness values of
the subpopulations.

In the second alternative, several processes concurrently execute iterations of
the corresponding evolutionary algorithm (including the fitness evaluation step) on
different subpopulations. In this case, the convergence behavior could be differ-
ent in sequential and parallel versions of the algorithms as the different subpop-
ulations usually evolve concurrently and only exchange some information about
their individuals after completing some iterations. The number of individuals in the

Fig. 2 Data decomposition parallel alternatives for evolutionary algorithms
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subpopulations (the grain size of the parallel procedure), and the characteristics of
the communication (communication frequency, synchronous/asynchronouscommu-
nication, characteristics of the data communicated, etc.) are important issues of these
parallel procedures.

The previously described two parallelization alternatives can be implemented in
several ways. The first approach, as it only distributes the fitness evaluation of the in-
dividuals is usually implemented by using a master-worker approximation in which
the process that distributes the population and executes the rest of steps in the evolu-
tionary iterations is executed by a processor while the other processors (the workers)
evaluate the fitness of individuals in the different subpopulations. Thus, in a given it-
eration, the master has to communicate with the workers to distribute the population
and receive the fitness values.

The second parallelization alternative (concurrent execution of evolutionary al-
gorithms over multiple subpopulations) can be also implemented by using a master-
worker scheme. The master distributes the subpopulation among the workers that
communicate among themselves through the master. Nevertheless, this implemen-
tation implies that the master processor could become a bottleneck that reduces the
efficiency of the parallel procedure. Thus, this parallel alternative is usually imple-
mented by assigning each subpopulation to a different processor and communicat-
ing this processor with the others when required. According to the size of the grain
(number of individuals in the subpopulations), two alternatives can be found, the
island parallel approach (coarse grain) and the cellular or diffusion approach (fine
grain). There are also hybrid models that include different implementation alter-
natives. For example, each island can be implemented by using a master-worker
alternative.

The master-worker paradigm usually provides reasonable levels of speedup
(sometimes even super-linear ones, as we will see in Sect. 6), but as it has been
said it could suffer from a bottleneck in the communication and processing costs
at the master process. Due to this circumstance, researchers have tried to develop a
fully distributed algorithm for multi-objective optimization.

Unfortunately this task is not as easy to achieve as it could be in other kind of
optimization algorithms. The reason is that evolutionary optimization behaves better
when the underlying algorithm is searching in a set of tentative solutions at the same
time. But due to the fact that in a fully distributed algorithm the processes should
work independently, an issue arises on how to redistribute the search space among
the processes. This is considered in the following section 3.2.

3.2 Search Space Distribution in Evolutionary Parallel
Procedures

An important issue in the parallel model of concurrent execution of evolutionary
algorithms over multiple populations is the distribution of individuals among those
different subpopulations. Basically, there are two options:
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1. Every process uses the whole search space. This option is similar to run the
sequential algorithm a number of times equal to the number of workers, although
with less individuals in the population.

2. Every process explores a different part of the search space.

The second option is the ideal one, because it would allow the best use of the re-
sources by avoiding that more than one process searches on the same area. However,
it is also very hard to develop a working procedure that enforces that each process
searches only on a specifically limited and independent area. There is also a hybrid
approach where every process tries to focus on an area while overlapping between
processes is allowed but somehow discouraged. This second approach is fairly pos-
sible when a cellular algorithm is employed, because every process is working on
only one solution at any time. But even in this case it is difficult to restrict the search
area of every process. Some researchers have tried to find an elegant and practi-
cal way to deal with that mixed approach where processes focus on some part of
the search space but some overlapping may occur. Nevertheless, the overlap should
be low.

The distribution of solutions among the subpopulations that define the different
islands can be obtained in several ways. For example it is possible to divide the ob-
jective space by assigning the individuals in a given zone of the Pareto front to the
same island. Another alternative consists on assigning individuals in different parti-
tions of the search or decision space to different islands. In all these approaches, the
local information is included into the global optimization procedure by dividing the
search space into areas where the corresponding evolutionary algorithm is applied
by each processor. Procedures such as [26,27,28], and our frameworks pdMOEA
and pdMOEA+ described below (Sect.s 4 and 5), divide the objective space, while
[29] divides the decision space.

In the papers [26,28], the authors propose an island model where the worker
processes (the islands) can search in the whole decision space, although each worker
is limited to a different part of the Pareto front. This restriction in the objective space
is done implicitly by using a guided domination technique. The main drawback of
this approach is that to work properly it requires to know the shape of the multi-
objective problem that is to be solved.

Another proposal that provides a MOEA able to search at different space areas is
given in [27]. This procedure divides geometrically the objective space by cone sep-
aration, and each part of the objective space is assigned to a different subpopulation
in a processor. The problem behind this approach is that it is not good for objective
spaces with more than two dimensions.

In [30], the authors use a similar approach to the pdMOEA framework of
Sect. 4. They use a clustering algorithm where after a number of generations the
MOEA combines the sub-populations and clusters them with the K-means algo-
rithm, commonly used in many applications [31,32]. Then, the new sub-populations
are partitioned and sent to the worker processes. Nevertheless, in [30] some global
computation must be done for clustering and subpopulation redistributing.
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Finally, in [29] it is proposed to distribute the decision space among the different
processes by locating to each process an adaptive sphere including points of the
corresponding decision space volume. The main difference of this framework with
respect to the previously described procedures (included our procedures pdMOEA
and pdMOEA+), is that in [29] the partition takes place in the decision space instead
of the objective space. In addition, it uses particle swarm optimization algorithms to
guide the spheres in the search space instead of using algorithms such as K-means
to cluster the solutions.

As it has been said earlier, we propose a framework that allowed the processes
to work wholly independent from a central master process. This approach can be
considered a hybrid of the proposals described in [29,30]. The reason to use a clus-
ter algorithm is that we feel that in this way we could respond to any shape that a
problem could have, including discontinuous fronts. This is so important that some
researchers even relied on the knowledge of the Pareto front [26]. Our proposed
distributed algorithm, that has been called pdMOEA+, locates a centroid to every
process. The centroids are intended to keep themselves far enough and try to ap-
proach the Pareto front.

3.3 A Simple Model to Estimate the Speedups

The selection of individuals and the diversity maintenance operations in a evolution-
ary multiobjective algorithm require comparisons that imply the whole population
or a big part of it. This means that data parallelization by the concurrent execution
of evolutionary algorithms on subpopulations, especially in the case where there is
not any mechanism to share information about the fitness of the individuals between
the processes, modifies the behavior of the algorithm with regard to the sequential
version. Most of the time, it is difficult to predict the behavior of this kind of par-
allelization and must be evaluated for each particular implementation. So, the ini-
tial population is divided into subpopulations associated to different search spaces
which are evolved separately. Sometimes, individuals can be exchanged between the
subpopulations (migration). This kind of parallelization could improve the diversity
of the population during the algorithm convergence and lead to algorithms with bet-
ter performance than the sequential versions. So, together with advantages from the
bigger availability of memory and CPU, the evidences of bigger efficiency and di-
versity in the population justify the use of parallelism in the field of evolutionary
algorithms.

After the evaluation of the objective functions, the algorithms with Pareto front-
based selection usually calculate dominance and the corresponding distances as part
of the mechanism for keeping diversity. This mechanism is implemented in each
case, as a previous step to assign the fitness value to each individual and to select the
parents. The parallelization of these tasks is not easy. For example, problems appear
in algorithms that usually work with small populations (PAES) [22], in algorithms
where the calculation of distances must be done sequentially after the determination
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of dominance relationships (PSFGA) [23], or in those algorithms where the calcula-
tion of dominance relationships, distance, and selection takes place at the same time
(NPGA) [24].

Equation (1) provides an estimation of the processing time for gen iterations of a
sequential evolutionary multi-objective algorithm:

T1 = gen(kNt f itness + kN2tnondom +Ntevolution +Nrtniching) , (1)

The terms in parenthesis in equation (1) respectively correspond to the evaluation of
the fitness for a population of N individuals in a problem with k objectives; the de-
termination of the non-dominated individuals (it requires to compare the individuals
of the population by using their k objectives); the application of the evolutionary op-
erators (mutation, crossover, etc.) to the N individuals of the population or a subset
of the individuals of the population; and the application of a procedure to main-
tain the distribution of individuals along the present Pareto front (the complexity
of these operations is taken into account through the parameter r). The parameters
t f itness, tnon−dom, tevolution and tniching determine the relative weights of these different
terms.

Equation (2) provides a generic expression for the computing time in a parallel
implementation executed on P processors.

Tp = δ (par,1)(gen((kN2tnondom +Ntevolution +Nrtniching)+ (k N
P t f itness)))+

tcomm(N,P)+ (1− δ (par,1))(genser(kNt f itness+ kN2tnon−dom+Ntevolution +
Nrtniching)+genpar(k N

P t f itness + k(N
P )

2tnon−dom+ N
P tevolution +(N

P )
rtniching)) , (2)

In equation (2), δ (i,j)=1 if i=j and δ (i,j)=0 otherwise, and par is used to take into
account the parallelization alternative (see Fig. 2). The case par=1 corresponds
to a parallel model that distributes the fitness computation implemented through a
master-worker parallel procedure, while whenever par�=1, the parallel model is the
concurrent execution of evolutionary algorithms over multiple subpopulations. The
parameters genser and genpar in Tp correspond, respectively, to the number of gen-
erations executed in a master processor and in each of the worker processors where
the population has been divided into N/P individuals. If genser=0, a pure island
model is used to parallelize the algorithm, while if genser�=0, we have a master-
worker implementation, as it is supposed that after executing genpar iterations in
parallel, the concurrent evolutionary algorithms communicate themselves through
a master process that executes genser iterations. Thus, we can set different values
for genser and genpar in our parallel procedure to implement an island model that
allows the communication among the subpopulations through a master. The term
tcomm(N,P) corresponds to the communication cost, and it depends on the parallel
model used, on the amount of individuals that processors exchange (a function of
N) and on the number (and communication topology) of processors that have to
communicate themselves (a function of P).

This simple model (equations (1) and (2)) allows the explanation of different
speedup (S=T1/Tp) behaviours [25]. Thus, if genser+genpar < gen, it is possible to
observe super-linear speedups (as in curves 1 and 2 of Fig. 3). This situation could
appear whenever the parallel evolutionary algorithm provides, for example, better
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diversity conditions than the sequential implementation and a lower number of iter-
ations is required by the parallel algorithm to get a solution with similar quality that
the one obtained by the sequential algorithm.

Moreover, the effect of the communication cost, tcomm(N,P), can be also shown.
Thus, in Fig. 3, as the number of processors P increases, the speedup is lower in
curve 2 than in curve 1. The communication cost is higher for curve 2, although in
this curve 2 genpar is higher and genser+genpar is lower than in curve 1. In Fig. 3,
curve 3 corresponds to a case where genser+genpar>gen.

In [25], a taxonomy is proposed for speedup measurements in evolutionary algo-
rithms. This taxonomy distinguishes between the Class I or strong speedup measure-
ments, which compare the execution times of the parallel evolutionary algorithms
and the better known sequential algorithm for the problem at hand; and the Class II
measurements that compare the parallel algorithm with its own sequential version
executed in only one processor. Inside the Class II measurements, it is also possi-
ble to distinguish between other two types of measurements according to the way
the algorithm finishes. The group A includes the measurements obtained if the al-
gorithms finish when solutions of similar qualities are found by both, the parallel
and sequential algorithms. Whenever the measures are obtained by setting a similar
number of iterations for the sequential and the parallel algorithms we have the group
B of measurements. As it can be seen, in the performance model described in this
section the speedup measurement considered belong to the class B and group II.

In what follows (Sect. 4, 5, and 6), we describe the frameworks pdMOEA,
pdMOEA+ and analyze their performances.

Fig. 3 Different Speedup behaviors
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4 A Generic Master-Worker Evolutionary Framework for
DMO

The proposed generic master-worker evolutionary framework for DMO is described
in Fig. 4. It is called pdMOEA, from parallel dynamic MOEA. It is a parallel frame-
work for multi-objective optimization that allows the execution of the both parallel
models previously described in section 3.1 (i.e. the distributed fitness computation
and the concurrent execution of evolutionary algorithms on subpopulations) by us-
ing a master-worker implementation. It divides the population to send subpopula-
tions of the same size to each worker process. For comparison purposes the parallel
algorithm has been generalised in order to be able to run and test different multi-
objective evolutionary algorithms.

In this generalised version, every worker searches, with the chosen multi-objective
evolutionary algorithm (MOEA), the optimal solutions in the search space that has
been assigned to it, and keeps only those solutions that are not dominated by the
others. However, in this parallel procedure the workers share the same search space.
After a fixed number of iterations (genpar), the workers send the solutions found
to the master, who after gathering all the solutions into a new population, runs an
instance of the MOEA (along genser iterations) over the whole population before
sending new subpopulations again to the worker processes.

Fig. 4 Description of pdMOEA
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The use of this generalised parallel dynamic MOEA (pdMOEA) in DMO allows
either the execution of more optimization iterations (genser or genpar) for a given
amount of time (thus exploring more search space and improving the quality of the
solutions found), or to speed up the convergence (thus allowing the approach to
dynamic problems with higher rates of change).

The EAs are implemented with all the required initialisation code outside the
main function in order to offer a continuous model of execution, where the popula-
tion used in the last generation will be intact for the next generation. Furthermore,
each MOEA implementation may differ in which subpopulation is sent; for exam-
ple, depending on the implemented algorithm it can be an exact copy of the current
population or a copy of the algorithm archive, but for simplicity in Fig. 4 it is repre-
sented just as SP[i] when receiving and sending.

In order to carry out a thorough comparison of this parallel framework, in this
paper, we will use as MOEAs our previously proposed SFGA [23] and SFGA2 [7],
along with two of the best known MOEAs: SPEA2 [33] and NSGA-II [34].

5 A Fully Distributed Framework for DMO

Fig. 5 provides a description of another generic distributed evolutionary framework
for DMO. It has been called pdMOEA+ as it tries to achieve better performance by
avoiding a possible bottleneck caused by the master processor in pdMOEA. This
way, a coarse grained island implementation of the parallel model that uses concur-
rent evolutionary algorithms on different subpopulations is provided by pdMOEA+.

Each process in pdMOEA+ uses a centroid and a sphere to define the volume in
the objective space that includes the individuals of the subpopulation allocated to the
process. Firstly, the radii of the spheres must be adjusted so that every sphere con-
tains some solutions within it. In order to do this, the MOEA is executed for a small
number of iterations, for example 50, and with the solutions obtained after these 50
iterations have been run, the centroid for each process is adapted to the correspond-
ing nearest solutions with an appropriate radius. After that, the algorithm is run and
the centroid is updated subsequently by each process, after executing a given num-
ber of iterations (genpar) of the corresponding MOEA. The line 14 in Fig. 5 can
be implemented according to the different alternatives that define the way migration
is implemented and the topology of connection among processes described in the
functions connected to[i]. We propose a migration scheme in which individuals that
are farest from the centroid of the subpopulation located in a given processor, are
asynchronously sent to the other processors, along with the corresponding distance
to that centroid. The processor that receives an individual, includes it in their sub-
population, or not, according to its distance to the centroid located in the processor.
There are also several alternatives to actualize the centroid and radius of the subpop-
ulation in each processor (line 15). In our case, the center of mass of the individuals
in each subpopulation has been considered the centroid, and the longest distance
from the centroid to the individuals in the subpopulation determines the radius.
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Fig. 5 Description of pdMOEA+

At the end of pdMOEA+, as it described in Fig. 5, the solutions found are sent
by each process (i=2,..P in Fig. 5) to one of them (i=1 in Fig. 5) that would gather
all the solutions, build the final Pareto set, and later would store them into a file.
However, with the advanced capabilities found in parallel libraries such as MPI 2,
distributed I/O it is possible, and every process can directly store their solutions into
a file. Certainly, this could imply that some solutions in the file would be dominated
by others, but on the other hand, the processes would run at their fastest pace.

6 Experimental Results

In this section, both proposed parallel frameworks, pdMOEA and pdMOEA+, are
analyzed with regard to their experimental results in different test cases. The exper-
iments have been carried out on an 8-node cluster with two 2 GHz AMD Athlon
processors and 2 Gbytes RAM by node, connected via Gigabit Ethernet. The data
shown in the tables has been gathered after running the parallel procedure in 1, 2,
4 and 8 worker processors for each of the MOEAs: SFGA, SFGA2, SPEA2 and
NSGA-II. The code is implemented in C++ with MPI. SPEA2 and NSGA-II were
added anew from the implementations kept in the authors’ sites.

The MOEA parameters were set to those values that showed the best results and
to those that are the commonly used among researchers. These values are the follow-
ing ones: master population=800 individuals; crowding distance=0.0075, for SFGA
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and SFGA2; the iterations executed in pdMOEA are gen=200, genser=50 and gen-
par=150; five executions have been done for each algorithm and number of workers;
simulated binary crossover (SBX) with ηc=15 [35] and crossover probability=0.75;
polynomial mutation with ηm=20 [36] and mutation probability=1/(number of deci-
sion variables).

For the sake of the evaluation of DMO algorithms, the FDA set of functions [8]
has gained the highest relevance among the researchers in this field. In this sec-
tion, our results have been obtained by using the benchmarks FDA1 to FDA5. More
specifically, the FDA2 and FDA3 benchmarks proposed in [8] have been substi-
tuted by their versions FDA2-mod and FDA3-mod, described in [37], to avoid some
difficulties with their firstly proposed versions in [8].

The parameter τ i in the FDA functions corresponds to the time instant where
the evaluation of the function takes place. Due to the long running time of some of
the MOEAs, only data from τ i=1 to τ i=20 have been taken into account. Moreover,
the parameter τT sets the time period with stationary objective functions. As in all
our examples, we have used τT =5, this means that every five time instants there is a
change in the current Pareto set [8], and the solutions should be recalculated.

Table 1 shows the cumulative time of the execution of the algorithms for differ-
ent number of worker processes and benchmarks. The resulting speedups reached
by the parallel algorithm are provided in Table 3. In order to allow the biggest sta-
bility in the algorithms, Tables 2 and 3 provide the results achieved by each algo-
rithm after completing 20 time instants of the function, i.e. τ i=20. It can be seen
in Table 3 that super-linear speedup was achieved for some runs of SPEA2 and
NSGA-II. This behavior can be explained by the model proposed in Sect. 3.3. The
communication cost modeled in this case is linear with the number of processors. As
the parallel algorithm allows more diversified populations, it may have to do with
the achieved improvement in the performance, particularly with the observed super-
linear behavior.

Nevertheless, from Table 1, it is clear that the running times of the SFGA family
of algorithms are always much smaller than the running times of SPEA2 and NSGA-
II algorithms. Two different behaviors can be outlined:

1. First of all, for the FDA2-mod and FDA3-mod functions, SFGA and SFGA2 are
at least one order of magnitude faster than SPEA2 and NSGA-II. This is a very
important advantage for SFGA and SFGA2 in comparison to those state-of-the-
art MOEAs. In addition, for these two functions, SPEA2 and NSGA-II are on a
par with respect to the running times.

2. Moreover, for the three-objective functions FDA4 and FDA5, the SFGA and
SFGA2 prove themselves as the fastest algorithms. However, in this case they
are only four times faster than SPEA2. It is important to note that NSGA-II be-
haves very badly in terms of the running time for these functions, and once more
it is one order of magnitude slower than the family of SFGA algorithms.

With regard to the speedups, shown in Table 2, it can be seen that:

1. SFGA and SFGA2 achieve slightly better speedup results for FDA4 and FDA5
than those obtained for FDA1, FDA2-mod and FDA3-mod.
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Table 1 Running time (in seconds) for pdMOEA until τi = 20

Problem Workers SFGA SFGA2 SPEA2 NSGA-II

FDA1 1 49.3±0.3 44.9±0.8 1318.3±9.4 987.1±52.3
2 46.3±0.8 35.2±0.7 381.3±13.1 364.4±27.6
4 28.5±0.3 26.3±0.3 230.6±2.1 208.0±7.6
8 17.1±0.1 15.5±0.1 186.3±0.9 121.5±2.2

FDA2-mod 1 138.3±2.7 64.67±2.3 3087.0±36.0 2351.0±46.0
2 162.0±3.6 46.18±4.1 931.8±31.9 756.1±32.1
4 79.75±1.2 40.64±2.7 683.7±13.0 422.7±11.3
8 60.71±1.0 34.25±1.4 629.5±12.1 455.1±20.1

FDA3-mod 1 125.9±3.6 68.3±2.0 2477.0±34.0 2534.0±50.0
2 93.5±1.1 45.9±1.3 888.0±21.0 757.3±31.5
4 74.9±0.9 38.8±1.6 831.2±15.7 493.7±5.3
8 58.9±1.0 34.6±0.5 683.9±8.3 631.0±13.5

FDA4 1 641.9±15.1 776.1±7.5 2733.0±37.0 23774.0±89.0
2 291.2±8.1 353.1±4.7 1089.0±13.0 3793.0±73.0
4 198.7±6.9 238.5±3.1 805.3±9.9 2285.0±40.0
8 169.9±6.2 208.5±3.2 689.6±8.6 2439.0±53.0

FDA5 1 746.6±13.8 921.7±8.5 2721.0±43.0 22446.0±71.0
2 329.6±9.1 411.0±6.3 1102.0±17.0 4001.0±69.0
4 216.7±4.6 285.7±5.2 1102.0±17.0 2371.0±46.0
8 189.2±4.3 246.8±4.9 728.0±9.1 2390.0±44.0

2. SPEA2 speedup results for FDA4 and FDA5 are almost the same that the ones
obtained by SFGA and SFGA2.

3. NSGA-II shows super linear speedups for four workers. These are also the max-
imum peaks of its speedup for all the functions.

4. All the algorithms but NSGA-II show increasing speedup values as the number
of workers increases.

Table 2 also shows that speedups for SFGA and SFGA2, which are indeed very close
to each other, are not as good as the speedups shown by SPEA2 (in FDA1, FDA2,
and FDA3), and by NSGA-II. But it should be kept in mind that the cumulative time
needed for the execution of NSGA-II and, especially, SPEA2 are, by far, bigger than
the time needed by SFGA and SFGA2. Thus, Table 1 shows that the SFGA family
algorithms differ in more than one order of magnitude to the times needed by the
SPEA2 and NSGA-II.

Table 3 shows the number of Pareto optimal solutions found by each algorithm.
The sets of Pareto optimal solutions found by each algorithm represent very good
approximations to the real Pareto front. It can be seen that SPEA2 is the algorithm
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Table 2 Speedups for pdMOEA until τi = 20

Problem Workers SFGA SFGA2 SPEA2 NSGA-II

FDA1 2 1.10 1.30 3.50 2.70
4 1.73 1.70 5.72 4.75
8 2.88 2.90 7.08 8.12

FDA2-mod 2 0.85 1.40 3.31 3.11
4 1.73 1.59 4.51 5.56
8 2.28 1.89 4.91 5.17

FDA3-mod 2 1.35 1.49 2.79 3.35
4 1.68 1.76 2.98 5.13
8 2.14 1.97 3.62 4.02

FDA4 2 2.20 2.20 2.51 6.27
4 3.23 3.25 3.39 10.40
8 3.78 3.72 3.96 9.75

FDA5 2 2.26 2.24 2.47 5.61
4 3.44 3.22 2.46 9.46
8 3.94 3.73 3.74 9.39

that obtains by far the highest number of non-dominated solutions, but it does so at
the cost of employing the biggest time among all the algorithms (see Table 1).

Furthermore, in Table 3 there is also a compilation of measures consisting on
the number of non-dominated solutions found by each algorithm divided by the
time needed for that algorithm. This measure cannot be used to indicate whether a
certain algorithm is better in terms of quality of the solutions to a multi-objective
problem, be it in diversity of the solutions or closeness to the actual Pareto set,
but on the other hand, this measure can be useful in DMO. This is because it can
indicate a certain advantage of one algorithm over another. The advantage relies
on that the superior algorithm could be able to find more solutions per time unit
in comparison with the other algorithm. Although this advantage does not imply
directly that solutions found by that algorithm had to be better than those found
by other algorithms according to performance indicators commonly used in multi-
objective optimization, such as hypervolume (Table 4), having more solutions per
time unit is a desired feature of any algorithm meant to be used in DMO.

It is clear that our algorithms SFGA and SFGA2 do not expose super-linear
speedups when adding more processors. However, they gave more non-dominated
solutions per time unit, which can be seen as an improvement in data throughput
instead of time speedup (see Table 3). It is worth reminding that in DMO it is com-
mon that the algorithm has to meet strict time restrictions, and so, the possibility of
having more solutions in less time is seen as a preferred feature and trade-off over
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Table 3 Solutions and (Solutions per time, in seconds−1) for pdMOEA with τi = 20

Problem Workers SFGA SFGA2 SPEA2 NSGA-II

FDA1 1 115(2.33) 310(6.91) 800(0.61) 370(0.37)
2 142(3.07) 436(12.41) 800(2.10) 370(1.02)
4 143(5.03) 320(12.20) 800(3.47) 300(1.44)
8 136(8.00) 230(14.91) 800(4.30) 240(1.98)

FDA2-mod 1 105(0.76) 77(1.19) 800(0.26) 268(0.11)
2 138(0.85) 149(3.23) 800(0.86) 280(0.37)
4 136(1.71) 197(4.85) 800(1.17) 250(0.59)
8 125(2.06) 175(5.11) 800(1.27) 185(0.41)

FDA3-mod 1 77(0.61) 61(0.89) 800(0.32) 252(0.10)
2 93(0.99) 83(1.81) 799(0.90) 248(0.33)
4 99(1.32) 144(3.71) 799(0.96) 221(0.45)
8 106(1.80) 172(4.79) 800(1.17) 212(0.34)

FDA4 1 800(1.25) 800(1.03) 800(0.29) 981(0.04)
2 800(2.75) 800(2.27) 800(0.73) 968(0.26)
4 800(4.02) 800(3.35) 800(0.99) 995(0.44)
8 800(4.71) 800(3.84) 800(1.16) 993(0.41)

FDA5 1 800(1.07) 800(0.87) 800(0.29) 1077(0.05)
2 800(2.43) 800(1.95) 800(0.73) 1091(0.27)
4 800(3.69) 800(2.80) 800(0.73) 1084(0.46)
8 800(4.23) 800(3.24) 800(1.10) 1123(0.47)

that of having more accurate solutions but at the cost of employing much more time.
Therefore, it is expected that SFGA and SFGA2 can cope with more restrictive time
limits without having to reduce the population because they have a smaller runtime
and produce more solutions per time unit in comparison to NSGA-II and SPEA2.
It is interesting to note that Table 3 shows that for FDA4 and FDA5 (problems in-
volving more than two objectives) all the algorithms obtain always 800 solutions or
even more in the case of NSGA-II.

In Table 4 the quality in terms of the hypervolume of the solutions found by the
different algorithms is shown. Hypervolume gives the area covered by the solutions
found, from a given reference point in the objective space, so in minimization prob-
lems, as the FDA benchmarks are, the hypervolume is to be maximized. It can be
seen that the best quality was attained by the SPEA2 algorithm for FDA1, FDA2-
mod, and FDA3-mod; by NSGA-II for FDA4; and for SFGA2 for FDA5. Anyway,
the four algorithms show very similar results in terms of quality, according to this
hypervolume indicator, except for SFGA in FDA4 and FDA5, and for SPEA2 in
FDA5. It is important to note that when more worker processes were added the
quality did not appreciably worse and it even improved in some cases for the SFGA
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Table 4 Hypervolume for pdMOEA until τi = 20

Problem Workers SFGA SFGA2 SPEA2 NSGA-II

FDA1 1 0.64±0.00 0.63±0.02 0.66±0.01 0.65±0.00
2 0.65±0.00 0.65±0.01 0.66±0.00 0.65±0.00
4 0.65±0.00 0.65±0.01 0.66±0.00 0.65±0.00
8 0.65±0.00 0.65±0.00 0.66±0.00 0.65±0.00

FDA2-mod 1 0.77±0.04 0.74±0.04 0.83±0.00 0.81±0.01
2 0.79±0.03 0.77±0.04 0.83±0.00 0.80±0.01
4 0.80±0.01 0.77±0.05 0.83±0.01 0.80±0.01
8 0.80±0.02 0.79±0.03 0.83±0.00 0.80±0.01

FDA3-mod 1 3.72±0.02 3.70±0.03 3.75±0.00 3.74±0.01
2 3.73±0.01 3.70±0.05 3.75±0.00 3.74±0.01
4 3.73±0.01 3.72±0.02 3.75±0.00 3.74±0.01
8 3.73±0.01 3.73±0.01 3.75±0.00 3.74±0.01

FDA4 1 1.09±0.08 1.37±0.00 1.37±0.00 1.38±0.00
2 1.03±0.10 1.37±0.01 1.36±0.01 1.38±0.00
4 1.08±0.08 1.37±0.00 1.36±0.01 1.38±0.00
8 1.13±0.03 1.37±0.00 1.36±0.01 1.38±0.00

FDA5 1 5.85±0.09 6.77±0.00 6.03±0.07 6.25±0.00
2 5.93±0.05 6.77±0.00 5.94±0.13 6.25±0.00
4 5.85±0.12 6.75±0.01 5.96±0.12 6.25±0.00
8 5.98±0.03 6.75±0.01 6.07±0.05 6.25±0.00

and SFGA2 algorithms. However, it cannot be stated that the more workers used,
the better the hypervolume.

The framework pdMOEA+, described in Sect. 5, has been tested with the same
MOEAs and test functions as it was tested the pdMOEA approach. Nevertheless, in
the case of a fully distributed procedure, the tests have been carried out only for four
and eight processes. The reason behind this choice is that the pdMOEA+ procedure
should show a better behavior mainly when many workers are involved and so, it
is not relevant the performance of the algorithm with only two processes. Because
of that only results for 4 and 8 proceses are reproduced in Table 5 and Table 6. The
parameters used in the experiments with pdMOEA+ take the same values that in the
experiments with pdMOEA, the initial value for the radius has been set to 0.35.

Unfortunately, the obtained results were not as good as expected. In terms of
the quality of the obtained solutions, the pdMOEA+ results have been clearly worse
than those results given by pdMOEA. The framework pdMOEA+ also produces less
number of solutions for some combinations of algorithms and number of processes,
while it provides more solutions for other combinations. The numbers of solutions
for each problem and MOEA are collected in Table 6.
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Table 5 Running time (in seconds) for pdMOEA+ until τi = 20

Problem Workers SFGA SFGA2 SPEA2 NSGA-II

FDA1 1 49.3±0.3 44.9±0.8 1318.3±9.4 987.1±52.3
4 14.1±0.7 8.7±0.5 39.2±1.3 67.6±1.7
8 4.9±0.3 4.8±0.3 9.4±0.4 24.4±0.9

FDA2-mod 1 138,3±2,7 64.67±2.3 3087.0±36.0 2351.0±46.0
4 18.3±0.6 9.0±0.4 38.9±1.1 53.8±1.2
8 12.8±0.5 6.9±0.4 27.5±0.8 42.0±0.9

FDA3-mod 1 125.9±3.6 68.3±2.0 2477.0±34.0 2534.0±50.0
4 15.7±0.4 9.0±0.4 91.7±1.3 59.1±1.0
8 16.1±0.5 12.8±0.4 27.0±0.7 45.9±0.6

FDA4 1 641.9±15.1 776.1±7.5 2733.0±37.0 23774.0±89.0
4 18.6±0.5 27.8±0.5 42.6±0.8 195.2±2.1
8 16.3±0.5 21.6±0.8 29.8±0.9 120.9±1.4

FDA5 1 746.6±13.8 921.7±8.5 2721.0±43.0 22446.0±71.0
4 20.5±0.9 31.3±1.0 36.9±0.7 177.6±1.8
8 17.2±0.6 23.3±0.8 30.8±0.5 45.7±0.9

Table 6 Solutions and (Solutions per time, in seconds−1) for pdMOEA+ with τi = 20

Problem Workers SFGA SFGA2 SPEA2 NSGA-II

FDA1 1 115(2.33) 310(6.91) 800(0.61) 370(0.37)
4 138(9.79) 226(25.98) 30(20.41) 251(3.71)
8 313(63.88) 289(60.21) 27(2.87) 308(12.62)

FDA2-mod 1 105(0.76) 77(1.19) 800(0.26) 268(0.11)
4 111(6.07) 122(13.56) 21(0.54) 203(3.77)
8 120(9.38) 109(15.90) 42(1.53) 270(6.42)

FDA3-mod 1 77(0.61) 61(0.89) 800(0.32) 252(0.10)
4 96(6.11) 105(11.67) 36(0.39) 192(3.25)
8 257(15.96) 292(22.81) 41(1.52) 311(6.78)

FDA4 1 800(1.25) 800(1.03) 800(0.29) 981(0.04)
4 540(29.03) 67(2.41) 64(1.50) 73(0.37)
8 288(17.67) 107(4.95) 91(3.05) 68(0.56)

FDA5 1 800(1.07) 800(0.87) 800(0.29) 1077(0.05)
4 153(7.46) 126(4.03) 55(1.49) 166(0.93)
8 216(12.56) 222(9.53) 73(2.37) 164(3.59)
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Table 5 shows that the pdMOEA+ approach provides better running time im-
provements than the pdMOEA approach (see Table 1) as more workers are em-
ployed. Nonetheless, the improvement shown by these results should be taken into
account with care. The reason is that, as it has been said before, for some of the
tests, the number of found solutions has decreased with respect to the pdMOEA and
to the sequential run of the algorithms. Thus, if the MOEAs are producing a lower
number of solutions, they need less time to compute them.

Therefore, it can be said that these results did not show enough improvement nei-
ther in the quality of the solutions nor in speedup. The reason behind these results
is that the processes converge towards very narrow areas. This suggests that some
more knowledge should be added to the algorithm in order to acquire a more generic
behaviour, as that shown in Bui’s results [29]. Nevertheless this could imply to in-
crease the computing time and the results should be traded with the improvement in
the number of solutions per execution time. These tradeoff problems constitute the
core for our future work.

7 Conclusions

The use of the parallel processing in DMO problems gives a twofold improvement.
On one hand, it allows a reduction in the execution time required to reach a good
approximation to the new Pareto fronts, thus widening the field of the problems that
can be tackled (problems with faster rate of change in the Pareto front). On the other
hand, each worker can run more iterations in the same amount of time, thus it would
it possible to increase the explored search space and to make it easy the adaptation
to changes.

This chapter, besides providing a summary about the different approaches to
parallelize multi-objective algorithms, describes two frameworks, pdMOEA and
pdMOEA+, for analyzing different parallel approaches for multi-objective problems
with time constraints to find the corresponding solutions.

Results with pdMOEA have shown that some MOEAs obtain almost super-linear
speedups, while different MOEAs provide different speedup figures and solutions
per time unit, throughput. As it has been said multiple times along this chapter, these
two features are desired when dealing with real-world dynamic optimization prob-
lems because the practitioner and the researcher are both interested in getting the
best possible solutions within the time constraints. SFGA and SFGA2 have proven
to be able to accomplish these objectives, whilst other MOEAs such as SPEA2 and
NSGA-II require considerable more time to improve slightly the quality of the so-
lutions obtained by SFGA and SFGA2. The most salient feature of pdMOEA when
used with SFGA2 is that gives very fast results with a quality not much worse than
the obtained quality with SPEA2 or NSGA-II, and in addition, it produces many
solutions per time unit, allowing to solve a DMO problem with a very good repre-
sentation of the Pareto front. Specifically, pdMOEA has shown super-linear speedup
when used with SPEA2 and NSGA-II, and a smaller speedup for SFGA and SFGA2.
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In addition, the quality of the solutions has improved when more than one process
were employed to solve the problems. Finally, all the algorithms have shown in-
creases in the number of solutions per time unit or throughput as the number of
processes increases.

In addition, pdMOEA+, a framework aimed at fully distributed computation, has
been proposed and tested in this chapter. The first results with this new approach
have shown a promising future while it has also shown that more development
should be done in order to achieve better results that can rival with those provided
by the pdMOEA approach or sequential MOEAs. Concretely, pdMOEA+ has shown
faster execution than pdMOEA. Moreover, it offers linear speedup and produces a
good number of solutions per time unit. Future research for pdMOEA+ should look
for a way to keep, and even to improve, its execution time while sacrificing neither
the quality nor the number of the solutions.

This way, the results for the speedup and performance are satisfactory. It has
been shown a reduction in the convergence times (speedups), and hence, the abil-
ity to adapt to stronger time restrictions in the dynamic problem. We think that the
super-linear speedups that have been observed clearly show the usefulness of paral-
lel processing in keeping the diversity of the populations and in the algorithm adapt-
ability. Also, it has been shown that while our SFGA and SFGA2 did not achieve
super-linear speedups, they showed an improvement in the data throughput (non-
dominated solutions per time unit).

Acknowledgements. The work described in this chapter has been funded by project
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An Empirical Study of Parallel and Distributed
Particle Swarm Optimization

Leonardo Vanneschi, Daniele Codecasa, and Giancarlo Mauri

Abstract. Given the implicitly parallel nature of population-based heuristics, many
contributions reporting on parallel and distributed models and implementations of
these heuristics have appeared so far. They range from the most natural and simple
ones, i.e. fitness-level embarrassingly parallel implementations (where, for instance,
each candidate solution is treated as an independent agent and evaluated on a dedi-
cated processor), to many more sophisticated variously interacting multi-population
systems. In the last few years, researchers have dedicated a growing attention to Par-
ticle Swarm Optimization (PSO), a bio-inspired population based heuristic inspired
by the behavior of flocks of birds and shoals of fish, given its extremely simple
implementation and its high intrinsical parallelism. Several parallel and distributed
models of PSO have been recently defined, showing interesting performances both
on benchmarks and real-life applications. In this chapter we report on four parallel
and distributed PSO methods that have recently been proposed. They consist in a
genetic algorithm whose individuals are co-evolving swarms, an “island model”-
based multi-swarm system, where swarms are independent and interact by means
of particle migrations at regular time steps, and their respective variants enriched by
adding a repulsive component to the particles. We show that the proposed repulsive
multi-swarm system has a better optimization ability than all the other presented
methods on a set of hand-tailored benchmarks and complex real-life applications.

1 Introduction

Swarm systems [6, 16] are computational methods introduced to solve difficult prob-
lems or model complex phenomena, inspired by natural collective phenomena like
the behavior of colonies of social insects such as termites, bees, and ants. One of the
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simplest and most often studied and used techniques of this type is Particle Swarm
Optimization (PSO) [13, 27, 8]. In PSO, which is inspired by flocks of birds and
shoals of fish, candidate solutions to the problem at hand, that are often vectors of
real numbers or other continuous values, also called particles, are seen as moving
points in a Cartesian space. In the canonical form, a set of particles, called swarm,
is kept in memory. The particles in the swarm are iteratively shifted in the space
of solution by means of simple update rules. In particular, at each iteration, each
particle evaluates the fitness at its current location; then it determines its movement
through the solution space by combining some aspect of the history of its own fit-
ness values with those of one or more other members of the swarm. The members of
the swarm that a particle can interact with are called its social neighborhood. More
precisely, in the canonical version of PSO, the movement of each particle depends
on two elastic forces, one attracting it with random magnitude to the fittest location
so far encountered by the particle, and one attracting it with random magnitude to
the best location encountered by any of the particles social neighbors in the swarm.

Parallel and distributed approaches are natural in swarm intelligence and they
have been used intensively since the early years of this research field [21, 15].
Swarm systems, in fact, have often been described as intrinsically parallel com-
putational methods. The reason for this is that many of the main computational
tasks characterizing this family of heuristics are independent of each other; thus it is
straightforward to perform them at the same time. This is the case, for instance, of
the evaluation of the fitness of the particles in a swarm. Furthermore, by attributing
a non-panmictic structure to the population, something that also finds its inspira-
tion in nature, the operations that allow particles to update their position can also be
performed independently of each other (once the coordinates of the swarm global
best position so far have been distributed among the processors) and thus can also
potentially be parallelized. These approaches can be useful even when there is no
actual parallel or distributed implementation, thanks to the particular information
diffusion given by the more local structures of the swarms. But of course parallel
and distributed approaches are at their best when the structures of the models are re-
flected in the actual algorithm implementations. In fact, when compared with other
heuristics, swarm systems are relatively costly and slow. But parallel and distributed
implementations can boost performance and thereby allow practitioners to solve, ex-
actly or approximately, larger and more interesting problem instances thanks to the
time savings afforded.

These advantages have been known and appreciated since several years and some
of the previous efforts are summarized in Section 2. Motivated by the need of devel-
oping high quality work on parallel and distributed approaches in PSO, in [32], [33]
and [34] four new highly parallelizable PSO variants were introduced. This chapter
contains a systematic presentation of the models we defined in [32], [33] and [34]
and of the results of a set of experiments carried on to test the respective optimiza-
tion abilities between each other and with standard PSO.

One of the most delicate aspects of experimental studies aimed at comparing dif-
ferent optimization methods is to find a suitable set of test problems on which to
perform the simulations. In this chapter we use a large set of problems composed by:
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– two sets of test functions (that we call cosff and wtrap in the continuation) whose
difficulty can be tuned by simply modifying the values of some parameters and
that were introduced for the first time in [32],

– a new set of functions that integrates cosff and wtrap (we call it CosTrapFF from
now on). This set of functions is defined and studied for the first time here.

– the well known set of Rastrigin test functions (see for instance [38]),
– four complex real-life problems in the field of drug discovery, whose objective

is the prediction of as many important pharmacokinetic parameters (Human Oral
Bioavailability, Median Oral Lethal Dose, Plasma Protein Binding levels and
Docking Energy) as a function of a set of molecular descriptors of potential can-
didate new drugs (the first three of these problems were introduced in [3] and the
fourth one in [2]),

– one further complex real-life problem in the field of drug discovery, introduced
in [1] and whose objective is the prediction of the response of cancer patients to
a pharmacologic therapy based on a drug called Fludarabine.

This chapter is structured as follows: Section 2 contains a discussion of previous and
related works, focusing on multi-swarm PSO, on models that integrate Evolutionary
Algorithms (EAs) with PSO and on attractive/repulsive PSO methods defined so far.
In Section 3 the new PSO methods we are proposing are discussed. In Section 4 we
describe the sets of test problems used. In Section 5 we present and discuss the
obtained experimental results. Finally, Section 6 concludes the chapter.

2 Previous and Related Work

In [20, 12], the existing PSO publications have been classified into two broad ar-
eas: modifications/improvements to the canonical PSO algorithm (presented in Sec-
tion 3.1) and applications. The present chapter belongs to the first one of these
two classes, even though a set of real-life applications is used as a test case to
validate the proposed models. For this reason, only some of previous modifica-
tions/improvements to the canonical PSO algorithm will be discussed here, while
we refer to [20] for a survey of the main applications.

Several different variants of the standard PSO algorithm have been proposed so
far. For instance, methods to optimize parameters such as the inertia weight and the
constriction and acceleration coefficients have been proposed [7, 4, 30, 36]. Even
though interesting, these contributions are orthogonal to the present work, where one
particular, so to say, ”standard” parameter setting is considered, and they could be
integrated with the present work in the future. Another variant of PSO, whose pop-
ularity is steadily increasing, consists in establishing a “structure” (or “topology”)
to the swarm. Among others, Kennedy and coworkers evaluate different kinds of
topologies, demonstrating the suitability of random and Von Neumann neighbor-
hoods [14] for a wide set of benchmarks, even though the authors themselves also
remark that selecting the most efficient neighborhood structure is in general a hard
and problem-dependent task. In [9], Oltean and coworkers evolve the structure of
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an asynchronous version of PSO. They use a hybrid technique that combines PSO
with a genetic algorithm (GA), in which each GA chromosome is defined as an ar-
ray which encodes an update strategy for the particles. This contribution represents
one of the first efforts to integrate GAs and PSO, which is tackled also in the present
chapter by the definition of the PSE algorithm (see Section 3.2). The authors of [9]
empirically show that PSO with the evolved update strategy performs similarly and
sometimes even better than standard approaches for several benchmark problems.
After [9], many other improvements based on the integration of Evolutionary Algo-
rithms (EAs) and PSO have been proposed. For instance, a modified genetic PSO
has been defined by Jian and colleagues [39], which takes advantage of the crossover
and mutation operators, along with a differential evolution (DE) algorithm which en-
hances search performance, to solve constrained optimization problems. Other work
aimed at solving global non-linear optimization problems is presented by Kou and
colleagues in [37]. They developed a constraint-handling method in which a double
PSO is used, together with an induction-enhanced evolutionary strategy technique.
Two populations preserve the particles of the feasible and infeasible regions, re-
spectively. A simple diversity mechanism is added, allowing the particles with good
properties in the infeasible region to be selected for the population that preserves the
particles in the feasible region. The authors state that this technique could effectively
improve the convergence speed with respect to plain PSO.

As explained in Section 3, the PSE algorithm introduced in this work substan-
tially differs from the variants presented in [39, 9, 28, 37] mainly because it consists
in a GA, where each evolving individual is a swarm. This idea is new and, to the
best of our knowledge, it has never been exploited before. The interested reader is
referred for instance to [21] for a detailed survey on the different variants of the
standard PSO algorithm that have been proposed so far.

In this chapter we study multi-swarm PSO and attractive/repulsive PSO meth-
ods. In [5] a multi-swarm PSO method for dynamic optimization environments was
proposed. The main idea was to extend the single swarm PSO, integrating it with an-
other model called Charged Particle Swarm Optimization, that integrates interacting
multi-swarms. The main difference between contribution [5] and the present one is
that in [5] the goal is clearly the one of improving the PSO optimization ability and
self-adaptability in presence of dynamic environments, i.e. where the target function
changes with time according to some unknown patterns. The overhead of compu-
tation introduced by [5] for dynamic adaption clearly slows down the performance
in presence of static problems. Here we adopt a different perspective: our goal is
to improve the PSO optimization ability in case of complex (i.e. characterized by
difficult – rugged or deceptive – fitness landscapes) but static (i.e. where the target
is fixed and does not change with time) problems.

In [18] an interesting extension of multi-swarm PSO was proposed, where an in-
dependent local optimization is performed in all the different swarms. When these
local optimization processes terminate, all the particles in the system are once again
randomly partitioned in several different swarms and the process is iterated. Even
though interesting, the model presented in [18] differs from the models presented
here since we do not introduce any local optimization strategy in the algorithm.
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In fact, we want to test our models on difficult problem spaces, possibly charac-
terized by the presence of many local optima, and we believe that adding local
optimization strategies would favor premature convergence or stagnation. A vari-
ant of the algorithm proposed in [18] was presented in [17], where a mechanism
to track multiple peaks by preventing overcrowding at a peak is introduced. Instead
of introducing local optimization and then defining criteria for avoiding premature
convergence, we prefer not to use local optimization here, and to tackle complex
problems using different ideas, like isolating interacting sub-swarms and repulsion.

In [11] PSO was modified to create the so called Multi-Swarm Accelerating PSO,
which is applied to dynamic continuous functions. In contrast to the previously in-
troduced multi-swarm PSOs and local versions of PSO, the swarms are this time
dynamic. The whole population is divided into many small swarms, which are re-
grouped frequently by using various regrouping schedules, and exchange informa-
tion among them. Accelerating operators are combined to improve its local search
ability. As previously pointed out, also in the case of [11] the focus is on dynamic
environments, while here we concentrate on static, yet complex, problems.

In [19] a multi-swarm PSO method inspired by symbiosis in natural ecosystems
is presented. This method is based on a master-slave model, in which a population
consists of one master swarm and several slave swarms. The slave swarms execute
a single PSO or its variants independently to maintain the diversity of particles,
while the master swarm evolves based on its own knowledge and also the knowledge
of the slave swarms. Paper [19] represents one of our main sources of inspiration.
Nevertheless, it differs from the present work by the fact that we do not partition the
swarms into masters and slaves here, but we assign to all of them the same hierarchic
importance. This has interesting effects on the allocation of our swarm/processes on
computational resources: we do not have to identify the most powerful resources and
assign them to master swarms. In other words, we do not need complex allocation
algorithms: our system can work on clusters of machines that have all the same
computational power and the allocation can be made arbitrarily.

A domain in which multi-swarm PSO methods find a natural application is multi-
objective optimization, in which typically each swarm is used to optimize a different
criterion. It is the case, among many other references, of [35]. This contribution is
interesting and has to be considered for a future extension of our approach. But for
the moment, we restrict our work to problems that have only one target/objective.

The concept of repulsive PSO or attractive/repulsive PSO has been exploited in
some references so far. It is the case, for instance, of [23], where a PSO variant is
presented where the attractive or repulsive behavior of the particles is changed in
function of the swarm’s diversity. Even though interesting, the algorithm proposed
in [23] has the drawback of calculating diversity at each iteration of the algorithm,
to decide if particles have to be attractive or repulsive. This implies an overhead
of computation, that we want to avoid. In fact, in our models we identify some
particles as attractive and some others as repulsive once for all, on the basis of
precise principles (that will be discussed in Section 3), and we do not change their
characteristics during evolution.
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3 PSO Algorithms

In this section we give the definitions of the basic PSO algorithms and of the four
algorithms that will be compared.

3.1 Algorithm 1: PSO

This algorithm is the canonic PSO [27], where each particle is attracted by one
global best position for all the swarm and one local best position. Velocity and
position-update equations are as follows:

V(t) = w ∗V(t− 1) + C1 ∗ rand() ∗ [Xbest(t− 1)−X(t− 1)] +

C2 ∗ rand() ∗ [Xgbest(t− 1)−X(t− 1)] (1)

X(t) = X(t− 1) +V(t)

where V(t) and X(t) are the velocity and the position of the particle at time t,
C1, C2 are two positive constants that set the relative importance of the social
and individual attraction components, w is the inertia weight (constriction factor),
Xbest(t − 1) is the position with the best-fitness among the ones reached by the
particle up to time t− 1 and Xgbest(t− 1) is the best-fitness point ever found by all
the particles in the whole swarm. When a particle reaches a border of the admissible
range on one dimension, velocity on that dimension is set to zero.

In our experiments, we have considered a swarm size equal to 100 particles. We
have used this value because we have to compare the results of standard PSO with
the ones of various versions of distributed and multi-swarm PSO and we want the
total number of particles in each system to be the same (for instance, in the PSE
algorithm described below, we will use 10 swarms of 10 particles each). The other
parameters we have used are: C1 = C2 = 2. The value of w has been progressively
decremented during the execution of the algorithm from the initial value of 1 to the
final value of 0.001. Maximum particle velocity has been set to 0.5 for the cosff,
the wtrap, the CosTrapFF and the Rastriging test functions, while for the real-life
applications we have used 1/3 of its size. The motivation for this choice is that while
the cosff, wtrap and CosTrapFF functions are limited to the [0, 1] range and the
Rastriging function to the [−5.12,+5.12] range, the real-life applications generally
work on much larger ranges. The maximum number of fitness evaluations depends
on the test function and on the used parameters. For the cosff, the wtrap and the
CosTrapFF functions it varies between 105, 2×105 and 3×105. For the Rastriging
function and for the real-life applications it varies between 2× 105 and 3× 105 (for
much precision, the reader can refer to the horizontal axis of the average best fitness
plots in Figures 3, 4, 5, 6, 7 and 8). Section 4 introduces these test problems.
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3.2 Algorithm 2: Particle Swarm Evolver (PSE)

This algorithm functions as a GA in which each individual in the population is an
evolving swarm. In synthesis, all the swarms in a population work independently,
applying iteratively the PSO algorithm described above for a certain number of steps
(say p which stands for period). After that, we execute one generation of the GA by
selecting the most promising swarms for mating and by evolving them with some
particular crossover and mutation operators. Each swarm has exactly the same num-
ber of particles and this number remains constant during the whole evolution. The
fitness of an individual/swarm is defined as the fitness of its global best particle. In
this first simple implementation, the crossover between two parent swarms is just a
random mixing of their particles, in such a way that each offspring swarm contains
the same number of particles as the parent swarms but some of them (at random)
belong to one parent and the rest to the other parent. The mutation of a swarm is
the replacement of a random particle in that swarm (chosen with uniform proba-
bility) with another random particle (we point out that this process do not alter the
global best of the swarm unless the new randomly created particle is itself the new
global best).

In our experiments, we have used the following parameters: number of indepen-
dent iterations of each swarm in the population before a GA generation: p = 10.
Number of particles in each swarm: 10. Number of swarms in the GA popula-
tion: 10. Crossover probability between swarms: 0.95. Probability of mutation of
a swarm: 0.01. Selection of the most promising swarms have been obtained by tour-
nament selection with tournament size equal to 2. All the other parameters are like
in the PSO algorithm described in the first part of this section.

3.3 Algorithm 3: Repulsive PSE (RPSE)

This algorithm works as PSE defined above, except that each swarm also has a
repulsive component: each particle of each swarm is attracted by the global best
of its own swarm and by its local best position and repulsed by the global best of
all the other swarms in the GA population (this is true only in the case the global
best of the other swarm is different from the global best of the swarm that particle
belongs to). For each swarm different from the current one, the repulsive factor of
each particle is given by:

V(t) = VPSO(t)+C3∗rand()∗f(Xforeign−gbest(t−1),X(t−1),Xgbest(t−1))
(2)

VPSO(t) is the velocity calculated with the standard PSO update rule (see equa-
tion (1)), Xgbest(t − 1) is the position of the global best of the current swarm and
Xforeign−gbest(t − 1) is the position of the global best of the other considered
swarm. The function f always ignores Xgbest(t − 1) and repulses the particle by
pushing it in the opposite direction of Xforeign−gbest(t − 1) except in case the re-
pulsor is between the particle and the global best of the current swarm. In the latter
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case, f further accelerates the particle towards Xgbest(t− 1). The functioning of f
is described by the following pseudo-code:

if (X(t−1) < Xforeign−gbest(t−1)) and (Xforeign−gbest(t−1) < Xgbest(t−1))
or (Xgbest(t− 1) < Xforeign−gbest(t− 1) < X(t− 1))

return −φ(X(t− 1),Xforeign−gbest(t− 1))
else

return φ(X(t− 1),Xforeign−gbest(t− 1))

where:

φ(X(t− 1),Xforeign−gbest(t− 1)) =
sig(dis) ∗ (1− |dis/(U − L)|)

and where: dis = X(t− 1)−Xforeign−gbest(t− 1), sig indicates the sign function
and U and L are the upper and lower bound of the interval respectively.

Informally, φ is equal to the sign of the difference of its arguments multiplied
by 1 minus the normalized distance of its arguments. In other words the repulsive
factor increases with the proximity to the repulsor and the obtained value does not
depend on the space dimension.

In our experiments, we have used C3 = 2/N , where N is the number of repul-
sors, i.e. the number of swarms minus 1. All the other parameters we have used used
had the same values as in the PSE algorithm described above.

3.4 Algorithm 4: Multi-swarm PSO (MPSO)

As for the previous methods, also MPSO uses a set of swarms that run the standard
PSO algorithm independently for a given number of iterations and then synchronize
and have an interaction. The interaction, this time, simply consists in the exchange
of some particles. In particular, as it is often the case in island EAs models [10], the
set of the k best particles in the sender swarm is copied into the receiver swarm. The
new particles replace the worst k ones in the receiver swarm, while a copy of them
also remains in the sender swarm (the process is a copy instead of a migration).

The number of independent PSO iterations in each swarm before communication
has been set to 10 (as in PSE). The number k of migrating particles has been set
to 1/5 of the number of particles in each swarm (all the swarms have exactly the
same number of particles). The swarms communicate using a ring topology (see for
instance [10]). As for the PSE algorithm, we have used 10 swarms of 10 particles
each. All the other parameters we have used are as in the PSO algorithm described
above.

3.5 Algorithm 5: Multi-swarm Repulsive PSO (MRPSO)

This algorithm works as MPSO defined above, except that the particles in the
swarms with an even index in the ring topology (i.e. only a half of the swarms)
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also have a repulsive component. Each particle of those swarms is attracted by the
global best of its own swarm and by its local best position so far and it is repulsed
by the global best of the previous swarm in the ring, i.e. the swarm from which it re-
ceives individuals at migration time (given that this swarm will be in an odd position
in the ring topology, its particles will not have a repulsive component). In this way,
the particles that migrate in the even swarms should be as different as possible from
the particles already contained in those swarms (given that they have been repulsed
by the global best of the sender swarm until the previous generation). This should
help maintaining diversity in the whole system. The repulsive component of each
particle is exactly the same as for the RPSE algorithm described above, except that
this time we have used C3 = 0.5 because we have only one repulsor for each parti-
cle. All the other parameters we have used are the same as for the MPSO algorithm
described above.

4 Test Functions

4.1 Cosff Functions

The first set of test functions we propose in this work is defined as:

cosff (x) = (
n∑

i=1

fi(xi,Mi))/n (3)

where n is the number of dimensions of the problem, x = (x1, x2, ..., xn) is a
point in an n-dimensional space and for all i = 1, 2, ..., n given two floating point
numbers x and M :

(a) (b) (c) (d)

Fig. 1 Two dimensional graphical representations of two cosff (plots (a) and (b)) and two
wtrap (plots (c) and (d)) functions. Plot (a) shows the cosff function with K = 10, M1 =
M2 = 0.3. Plot (b) shows the cosff function with K = 20, M1 = M2 = 0.3. Plot (c) shows
the wtrap function with B = 0.3 and R = 0.75 and plot (d) shows the wtrap function with
B = 0.7 and R = 0.25. See the text for an explanation of the K, M1 and M2 parameters of
the cosff functions and an explanation of the B and R parameters of the wtrap functions.
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fi(x,M) =

{
cos(K ∗ (x −M)) ∗ (1.0− (M − x)), if x ≤ M
cos(K ∗ (x−M)) ∗ (1.0− (x−M))), otherwise

and where (M1,M2, ...,Mn) are the coordinates of the known maximum value of
the function andK is a constant that modifies the ruggedness of the fitness landscape
(the higher K the most complex the fitness landscape).

The two dimensional graphical representations of function cosff with K = 10
and K = 20 are reported in Figures 1(a) and 1(b) respectively. In both plots, we
have used (M1,M2) = (0.3, 0.3) as the coordinates of the global maximum. From
those plots it is clear that increasing the value of K we are able to increase the
ruggedness of the fitness landscape and thus its complexity.

4.2 WTrap Functions

The second set of test functions we use in this work is called W-trap functions
(see for instance [31] for a preliminary and slightly different definition of these
functions). It is defined as follows:

wtrap(x) = (

n∑

i=1

g(xi))/n (4)

where n is the number of dimensions and, given a floating point number x:

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

R1 ∗ (B1 − x)/B1, if x ≤ B1

R2 ∗ (x−B1)/(B2 −B1), if B1 < x ≤ B2

R2 ∗ (B3 − x)/(B3 −B2), if B2 < x ≤ B3

R3 ∗ (x−B3)/(1 −B3) otherwise

and where B1 < B2 < B3 and B1, B3 are the coordinates of the two minima in the
search space while the global maximum has coordinates in B2

1. R1 is the fitness of
the first local maximum placed in the origin (all coordinates equal to 0.0), R2 is the
fitness of the global maximum and R3 is the fitness of the second local maximum,
that has all its coordinates equal to 1.0.

In this chapter, for simplicity, we wanted to modify the functions difficulty by
changing the values of only two parameters, instead of the 6 typical parameters of
wtrap functions. For this reason, given two parameters B and R, we have used:
B1 = 0.4−B/3, B2 = 0.4, B3 = 0.4 +B ∗ 2/3, R1 = R, R2 = 1.0 and R3 = R
and we have obtained different test problems by modifying B and R.

1 I.e. the first minimum has coordinates (B1, B1, ..., B1), the global maximum has coor-
dinates (B2, B2, ..., B2) and the second minimum has coordinates (B3, B3, ..., B3). In
other words the first minimum has all its n coordinates equal to B1, the global maximum
has all its n coordinates equal to B2 and the second minimum has all its n coordinates
equal to B3.
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The two dimensional graphical representations of functions wtrap with B = 0.3
and R = 0.75 and with B = 0.7 and R = 0.25 are reported in Figures 1(c) and 1(d)
respectively. We can see that changing the values of B and R we can modify the rel-
ative importance of the basins of attraction of global and local maxima, thus tuning
the difficulty of the problem.

4.3 CosTrapFF Functions

These functions are defined in terms of the cosff and wtrap previously introduced.
In particular, if x < B1 or x > B3 then we use the wtrap, otherwise we use the
cosff with M = B2. In order to reduce the number of parameters, as for the wtrap
functions, we have defined two values B and R, where: B1 = 0.4−B/3, B2 = 0.4,
B3 = 0.4 + B ∗ 2/3, R1 = R2 = R, while the parameters of the cosff have been
are M = B2 and K . Experiments have been performed changing the values of the
following parameters:

• the number of dimensions (10 and 20);
• B = 0.10, 0.30, 0.50, 0.70 and 0.90;
• R = 0.25, 0.50 and 0.75;
• K = 10 and 20.

For the experiments on 10 dimensions we have used 100000 as the maximum num-
ber of fitness evaluations, while for the tests on 20 dimensions this limit was set to
200000 fitness evaluations. Figure 2 reports a two-dimensional graphical representa-
tion of two of these functions using the following parameters: B1 = 0.2, B2 = 0.4,
B3 = 0.6, R1 = 0.7 and R2 = 0.7. In Figure 2(a) we have set K = 30, while in
Figure 2(b) we have K = 50.

4.4 Rastrigin Functions

The Rastrigin functions are a well known and widely used set of test functions
for floating point parameters optimization, given its high multimodality, the regular
distribution of the minima and the possibility of changing the ruggedness of the
induced fitness landscape by modifying one single real-valued parameter. These
functions are defined as follows:

Rastrigin(x) = n · A+

n∑

i=1

(x2
i −A · cos(2πxi)) (5)

where for all i = 1, 2, ..., n, xi ∈ [−5.12, 5.12], n is the dimension of the
function and A is the parameter that determines the steepness of the local op-
tima and thus the complexity of the induced fitness landscape. For a deeper
introduction to these functions the reader is referred to [38] and for their
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(a) (b)

Fig. 2 Two dimensional graphical representations of two CosTrapFF functions. For both
functions we have used B1 = 0.2, B2 = 0.4, B3 = 0.6, R1 = 0.7 and R2 = 0.7. Plot (a)
shows the CosTrapFF function with K = 30. Plot (b) shows the CosTrapFF function with
K = 50.

graphical representations for various different values of the A parameter to:
http://www.cs.rtu.lv/dssg/en/staff/rastrigin/astr-function.html.

4.5 Real-Life Applications in Drug Discovery

We also consider a set of real-life applications characterized by a large dimensional-
ity of the feature space. Four of them consist in predicting the value of as many im-
portant pharmacokinetic parameters and the fifth consists in predicting the response
of a set of cancer patients to the treatment of the Fludarabine drug. These prob-
lems are briefly discussed in the continuation of this section. The interested reader
is referred to the contributions quoted below for a more detailed introduction.

Prediction of pharmacokinetic parameters. These problems consist in predicting
the value of four pharmacokinetic parameters of a set of candidate drug compounds
on the basis of their molecular structure. The first pharmacokinetic parameter we
consider is human oral bioavailability (indicated with %F from now on), the second
one is median oral lethal dose (indicated with LD50 from now on), also informally
called toxicity, the third one is plasma protein building levels (indicated with %PPB
from now on) and the fourth one is called Docking Energy (indicated with DOCK
from now on). %F is the parameter that measures the percentage of the initial orally
submitted drug dose that effectively reaches the systemic blood circulation after the
passage from the liver. LD50 refers to the amount of compound required to kill
50% of the test organisms (cavies). %PPB corresponds to the percentage of the drug
initial dose that reaches blood circulation and binds the proteins of plasma. DOCK
quantifies the amount of target-drug chemical interaction, i.e. the energy that binds
the molecules of the candidate drug to the ones of the target tissue. For a more
detailed discussion of these four pharmacokinetic parameters, the reader is referred
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to [3, 2]. The datasets we have used are the same as in [3] and [2]: the %F (LD50,
%PPB and DOCK respectively) dataset consists in a matrix composed by 260 (234,
234 and 150 respectively) rows (instances) and 242 (627, 627 and 268 respectively)
columns (features). Each row is a vector of molecular descriptor values identifying
a drug; each column represents a molecular descriptor, except the last one, that
contains the known target values of %F (LD50, %PPB and DOCK respectively).
These datasets can be downloaded from:

http://personal.disco.unimib.it/Vanneschi/bioavailability.txt,
http://personal.disco.unimib.it/Vanneschi/toxicity.txt,
http://personal.disco.unimib.it/Vanneschi/ppb.txt, and
http://personal.disco.unimib.it/Vanneschi/dock.txt.

For all these datasets training and test sets have been obtained by random split-
ting: at each different PSO run, 70% of the molecules have been randomly selected
with uniform probability and inserted into the training set, while the remaining 30%
formed the test set. These problems were solved by PSO by means of a linear re-
gression, were the variables in a PSO candidate solutions represent the coefficients
of the linear interpolating polynomial. We have imposed these coefficients to take
values in the range [−10, 10]. As fitness, we have used the root mean squared error
(RMSE) between outputs and targets. For more details on the solving process for
the bioavailability dataset via a linear regression by means of PSO, the reader is
referred to [7].

Prediction of response to Fludarabine treatment. This problem consists in pre-
dicting anticancer therapeutic response on the basis of the genetic signature of the
patients. To build the data, we have used the NCI-60 microarray dataset [25, 26, 22],
looking for a functional relationship between gene expressions and responses to the
Fludarabine oncology drug. Fludarabine (indicated by FLU from now on) is a drug
for the treatment of chronic lymphocytic leukemia. The dataset we have used can
be represented by a matrix with 60 lines (instances) and 1376 columns (features).
Each line represents a gene expression. Each column represents the expression level
of one particular gene, except the last one that contains the known value of the
therapeutic response to the chosen drug (Fludarabine). Thus, as for the previous
problems, the last column of the matrix contains the known values of the parameter
to estimate. The reader is referred to [22] for a more detailed documentation of this
dataset. The dataset itself can be downloaded from the web page:

http://personal.disco.unimib.it/Vanneschi/gp nci datasets.htm.

5 Experimental Results

The results presented in this section have been obtained performing 200 indepen-
dent runs of each considered PSO method for the cosff, wtrap, CosTrapFF and
Rastriging functions and 25 independent runs for five real-life applications (because
the fitness calculation for those problems is more time consuming than for the other
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ones). Furthermore, we have studied three different performance measures. These
measures are three of the evaluation criteria requested in [29]: the number of suc-
cessful runs, the success performance and the average best fitness.

• The number of successful runs is defined as the number of runs in which an
individual has been found that approximates the global optimum with an error
smaller than a given threshold. For the cosff, wtrap, CosTrapFF and Rastrigin
test functions the threshold we have used is equal to 10−8. For the real-life ap-
plications it is equal to 10−5.

• The success performance is defined as the mean of the fitness evaluations re-
quested for successful runs, multiplied by the total number of runs, divided by
the number of successful runs (this measure is introduced in [29], at page 41).
By its definition, small values of the success performance are better than large
ones, but this has an exception, given that we have forced the value of the success
performance to be equal to zero when no run has been successful (thus, a success
performance equal to zero is the worst possible value and not the best possible
one).

• Finally, the average best fitness reports the average of the best fitness in the whole
PSO system at each iteration, calculated on all the performed runs.

For the number of successful runs, we have calculated standard deviations (for ver-
ifying the statistical significance of the presented results) following [10], where ex-
perimental runs are considered as a series of independent Bernoulli trials having
only two possible outcomes: success or failure. In this case, the number of successes
(or of failures) is binomially distributed [24]. The maximum likelihood estimator p̂
for the mean of a series of Bernoulli trials, and hence for the probability of success,
is simply the number of successes divided by the sample size (the number of runs
n). With this information at hand, one can calculate the sample standard deviation
σ =

√
n.p̂(1 − p̂). The experimental results that we have obtained for the different

studied test problems are discussed below.
Figure 3 reports the results obtained for the cosff test function. The dimension-

ality of the problem (number of elements of the vector coding a particle) is equal
to 20. The K constant of the cosff function is equal to 10. The number of successful
runs, with their standard deviations are reported in tabular form in figures 3(a), 3(b),
3(c) and 3(d). The success performance is reported as histograms in plots 3(e), 3(f),
3(g) and 3(h). The average best fitness curves against fitness evaluations are reported
in plots 3(i), 3(l), 3(m) and 3(n). As explained in the figure’s caption, the difference
between Figures 3(a), 3(e) and 3(i), Figures 3(b), 3(f) and 3(l), Figures 3(c), 3(g)
and 3(m) and Figures 3(d), 3(h) and 3(n) stands in the fact that the M parameter
(that represents the coordinates of the optimal solution) is modified. In Figures 3(e)
to 3(h) the different studied algorithms are reported in abscissa, where: algorithm 1
is PSO, algorithm 2 is PSE, algorithm 3 is RPSE, algorithm 4 is MPSO and algo-
rithm 5 is MRPSO.

Looking at the number of successful runs (Figure 3, tables (a), (b), (c) and (d)),
we can see that MRPSO performs better than the other methods and the differ-
ences between the results obtained by MRPSO and the other methods are always
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Fig. 3 Results obtained by the five studied PSO variants on the cosff functions with 20 di-
mensions. The value of the K parameter is equal to 10. In table (a) (respectively ta-
ble (b), (c), (d)) we report the number of successful runs with their standard deviations
for M1 = M2 = ... = M20 = 0.1. (respectively M1 = M2 = ... = M20 = 0.2,
M1 = M2 = ... = M20 = 0.3, M1 = M2 = ... = M20 = 0.4). In plot (e) (respectively
plot (f), (g), (h)) we report success performance for M1 = M2 = ... = M20 = 0.1.
(respectively M1 = M2 = ... = M20 = 0.2, M1 = M2 = ... = M20 = 0.3,
M1 = M2 = ... = M20 = 0.4). In plot (i) (respectively plot (l), (m), (n)) we re-
port average best fitness against fitness evaluations for M1 = M2 = ... = M20 = 0.1
(respectively M1 = M2 = ... = M20 = 0.2, M1 = M2 = ... = M20 = 0.3,
M1 = M2 = ... = M20 = 0.4). In plots (e) to (h) we identify PSO with 1, PSE with 2,
RPSE with 3, MPSO with 4 and MRPSO with 5.
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Fig. 4 Results obtained by the five studied PSO variants on the cosff functions with 10 di-
mensions. All the rest is as in Figure 3.

statistically significant. If we consider the success performance plots (Figure 3,
plots (e), (f), (g), (h)) we as well can see that MRPSO outperforms the other meth-
ods, while the performances of MPSO are more or less comparable with the ones
of PSO and the performances of PSE and RPSE are always the worse ones. Finally,
looking at the average best fitness plots (Figure 3, plots (i), (l), (m), (n)), we can
see that in all cases RPSE performs worse than the other methods. Figure 4 reports
exactly the same results as Figure 3 for the cosff function, but for a dimensionality
of the problem equal to 10, and it brings us to the same qualitative conclusions.
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Figure 5 reports the results we have obtained on a set of wtrap functions for a
dimensionality of the problem equal to 10. Also in this case, it is possible to see
that MRPSO performs a larger number of successful runs than all the other studied
methods, with statistically significant differences. About the success performance,
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Fig. 5 Results obtained by the five studied PSO variants on the wtrap functions with 10 di-
mensions. In table (a) (respectively table (b), (c), (d)) we report the number of successful runs
for B = 0.3 and R = 0.5 (respectively B = 0.5 and R = 0.5, B = 0.7 and R = 0.75,
B = 0.9 and R = 0.75). In plot (e) (respectively plot (f), (g), (h)) we report success per-
formance for B = 0.3 and R = 0.5 (respectively B = 0.5 and R = 0.5, B = 0.7 and
R = 0.75, B = 0.9 and R = 0.75). In plot (i) (respectively plot (l), (m), (n)) we report aver-
age best fitness against fitness evaluations for B = 0.3 and R = 0.5 (respectively B = 0.5
and R = 0.5, B = 0.7 and R = 0.75, B = 0.9 and R = 0.75). In plots (e) to (h) we identify
PSO with 1, PSE with 2, RPSE with 3, MPSO with 4 and MRPSO with 5.
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we can see that PSE and RPSE are the methods that have returned the worst results,
while MRPSO has returned slightly better results compared to PSO and MPSO.
Finally, also the average best fitness plots show that PSE has obtained the worst
results and that MRPSO slightly outperforms all the other methods.

In Figure 6 we report the results for various CosTrapFF functions, obtained by
changing the values of parameters B, R and K (see the figure’s caption for the val-
ues of these parameters for each one of the reported plots). Given that, both for the
cosff and the wtrap functions the PSE and RPSE models had returned the worst re-
sults, for the CosTrapFF function we have decided to report only the results returned
by PSO, MPSO and MRPSO. Furthermore, in this case we report only the average
best fitness plots (even though we also have the results of the other performance
measures and they all confirm the general trend). All the plots of Figure 6 clearly
confirm that MRPSO is the method that performs better among the studied ones. In
particular, it is interesting to remark that, for all the studied cases, PSO and MPSO
outperform MRPSO in the first part of the run, while MRPSO overcomes the other
methods successively. This is clearly due to the repulsive component of MRPSO.
In fact PSO and MPSO, that do not have this repulsive component, converge more
rapidly, but they probably converge towards a local optimum. Indeed, in all the plots
of Figure 6 we can remark that, after a certain number of generations, the curves
of PSO and MPSO stabilize (they remain constantly at the same fitness value). This
is not the case in general for MRPSO, whose curve is steadily growing up during
all the run for all the studied functions, stabilizing only when the globally optimal
solution (fitness value equal to one) has eventually been found. Also, we can remark
that the curves of MRPSO do not hit the optimal fitness value before the end of the
run for all the studied cases (see for instance Figures 6(b), 6(d), 6(f) and 6(b)). This
also makes sense; in fact, if on the one hand the repulsive component helps to escape
from locally optimal solutions, on the other hand it slows down the convergence to
a globally optimal one when the right pick of the fitness landscape has been found.
In conclusion, the results in Figure 6 confirm that MRPSO outperforms the other
studied methods and they also suggest that MRPSO could be further improved by
adding a hill climbing local optimizer in the final part of the evolution, as suggested
in [18].

Figure 7 reports the results we have obtained on a set of Rastrigin functions for
a dimensionality of the problem equal to 10. In this case, in the plots 7(i), 7(l),
7(m), 7(n) (concerning the average best fitness results), the curves are decreasing
because the Rastrigin functions, differently from the cosff, wtrap and CosTrapFF
ones, are minimization problems (i.e. low fitness values are better than high ones).
What makes the difference more visible between MRPSO and the other methods
is once again the number of successful runs: MRPSO has consistently performed a
larger number of successful runs for all the studied instances, with statistically sig-
nificant differences, as indicated by the standard deviations. Also the other measures
confirm the suitability of MRPSO.

Figure 8 reports the results we obtained for the %F, LD50 and %PPB problems.
For all the considered real-life problems, we report only the average best fitness
plots. On the other hand, contrarily to the theoretical hand-tailored test functions
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Number of dimensions = 20:
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Fig. 6 Average best fitness plots obtained by PSO, MPSO and MRPSO on some of the Cos-
TrapFF functions. (a): B = 0.1, R = 0.5, K = 10; (b): B = 0.1, R = 0.75 and K = 20;
(c): B = 0.3, R = 0.25, K = 20; (d): B = 0.3, R = 0.5, K = 20; (e): B = 0.5, R = 0.25,
K = 20; (f): B = 0.7, R = 0.5, K = 20; (g): B = 0.9, R = 0.5, K = 10; (h): B = 0.9,
R = 0.75, K = 10; (i): B = 0.1, R = 0.25, K = 10; (l): B = 0.3, R = 0.25, K = 10;
(m): B = 0.3, R = 0.5, K = 10; (n): B = 0.5, R = 0.25, K = 10; (o): B = 0.5, R = 0.5,
K = 10; (p): B = 0.7, R = 0.25 and K = 10; (q): B = 0.9, R = 0.25, K = 10; (r):
B = 0.9, R = 0.5, K = 10.
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Fig. 7 Results obtained by the five studied PSO variants on the Rastrigin functions with
10 dimensions. In table (a) (respectively table (b), (c), (d)) we report the number of successful
runs for A = 4.0 (respectively A = 6.0, A = 8.0, A = 10.0). In plot (e) (respectively
plot (f), (g), (h)) we report success performance for A = 4.0 (respectively A = 6.0, A = 8.0
and A = 10.0). In plot (i) (respectively plot (l), (m), (n)) we report average best fitness
against fitness evaluations for A = 4.0 (respectively A = 6.0, A = 8.0 and A = 10.0). In
plots (e) to (h) we identify PSO with 1, PSE with 2, RPSE with 3, MPSO with 4 and MRPSO
with 5.

considered until now, for the real-life problems we are also interested in studying the
generalization ability of the proposed models. For this reason, plots (a), (b) and (c)
report the average of the best (i.e. minimum) RMSE between outputs and targets
(measure used as fitness) on the training set, while plots (d), (e) and (f) report the
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Results on the training set:
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Results on the test set:
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Fig. 8 Average best fitness (RMSE between outputs and targets) against generations for the
prediction of bioavailability (%F) (plots (a) and (d)), median oral lethal dose (LD50) (plots (b)
and (e)) and plasma protein binding levels (%PPB) (plots (c) and (f)). Plots (a), (b) and (c)
report results on the training set and plots (d), (e) and (f) report the average of the RMSE of
the best individuals on the training set, calculated on the test set.

average of the RMSE of the best individuals on training, evaluated on the test set
(for %F, LD50 and %PPB, respectively). For simplicity, for the real-life problems,
we only report results for PSO, MPSO and MRPSO (which are the methods that
have returned the best results on these problems). Figure 8 shows that, also for the
considered real-life applications, MRPSO outperforms the other models, both on the
training and on the test set. Interestingly, while the differences between the fitness
values found by the different methods at termination is not statistically significant
on the training set, it is statistically significant on the test set for LD50 and %PPB
(Figure 8, plots (e) and (f)). Once again, MRPSO seems the best among the studied
methods.

In Figure 9 we report the average best fitness results obtained for the FLU and
DOCK datasets. As for the three previously considered applications, also in these
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Results on the training set:
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Results on the test set:
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Fig. 9 Average best fitness (RMSE between outputs and targets) against generations for the
prediction of the response to Fludarabine (FLU) (plots (a) and (c)), and the prediction of
docking energy (DOCK) (plots (b) and (d)). Plots (a) and (b) report results on the training set
and plots (c) and (d) report the average of the RMSE of the best individuals on the training
set, calculated on the test set.

cases PSO, MPSO and MRPSO obtain very similar fitness values on the training set,
but once again MRPSO is the method that generalizes better, given that it obtains
the best results on the test set, with statistically significant differences. Even more
interestingly, for the FLU dataset we observe that the fitness on the training set
steadily improves for all the three reported methods, included PSO; but for PSO
this improvement on the training set corresponds to a visible deterioration of the
results on the test set. On the other hand, the RMSE on the test set of both MPSO
and MRPSO never worsens during the whole evolution. This indicates that PSO
overfits training data for the FLU problem, while MPSO and MRPSO have a better
generalization ability.
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In synthesis, we can conclude that MRPSO consistently outperforms all the other
studied methods for all the considered problems.

6 Conclusions and Future Work

The amount of computational effort required by search heuristics to generate high
quality solutions to complex problems is generally very high. But the implicit par-
allelism of population-based heuristics make their parallelization a very natural and
straightforward job. This particularly true for particle swarm optimization (PSO),
given the high level of independency of the particles that form a swarm and also of
the different regions of a swarm, if the latter in organized in a non-panmictic struc-
ture. In this chapter, we have introduced and studied four parallel and distributed
PSO methods, that investigate four different ways of organizing a PSO system into
sub-swarms.

The presented PSO methods, in fact, are variants of multi-swarm and attrac-
tive/repulsive PSO. They include a version in which swarms are interpreted as indi-
viduals of a genetic algorithm (GA), called particle swarm evolver (PSE); a variant
in which a repulsive factor is added to the particles, called repulsive PSE (RPSE);
a multi-island parallel and distributed model, called multi-swarm PSO (MPSO) and
a variant of MPSO in which particles also contain a repulsive component, called
multi-swarm repulsive PSO (MRPSO). The idea behind the definition of these mod-
els is that exchanging individuals at fixed time rates between the different swarms
should allow to reinject diversity into those swarms, that otherwise would have the
tendency to converge prematurely, in particular in case of complex problems. Fur-
thermore, the repulsive component of two out of the four studied models should
allow us to further stress the diversity maintenance into the whole system.

The performances of the studied models have been compared on a set of the-
oretical hand-tailored test functions and on five complex real-life applications. As
already pointed out in our preliminary work [32, 33, 34], the experimental results
presented here confirm that MRPSO outperforms the other considered PSO meth-
ods on all the studied problems. This is probably due to the fact that the double role
played by the distribution of particles into island and by the repulsive factor of each
particle allows us to maintain a higher degree of diversity compared to the other
models. Interestingly, MRPSO has also obtained better results than the other meth-
ods on out-of-sample test data for all the considered real-life applications. MPSO
has obtained better, or at least comparable, results than the ones of standard PSO,
while PSE and RPSE are the methods that have obtained the worst results. The
poor performances obtained by PSE and RPSE are probably due to the fact that
in the GA system individuals are complicated structures (swarms), and this forces
us to use relatively few individuals (10), which limits the exploration ability of the
GA. Furthermore, the choice of defining as the fitness of a swarm the fitness of the
best particle that belongs to it is questionable and variants deserve further investi-
gation. Future work also includes an implementation of the proposed methods on
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GPUs and also on geographically distributed networks. Last but not least, we plan a
deeper study of the proposed models generalization ability.
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The Generalized Island Model

Dario Izzo, Marek Ruciński, and Francesco Biscani

Abstract. The island model paradigm allows to efficiently distribute genetic algo-
rithms over multiple processors while introducing a new genetic operator, the migra-
tion operator, able to improve the overall algortihmic performance. In this chapter
we introduce the generalized island model that can be applied to a broad class of
optimization algorithms. First, we study the effect of such a generalized distribution
model on several well-known global optimization metaheuristics. We consider some
variants of Differential Evolution, Genetic Algorithms, Harmony Search, Artificial
Bee Colony, Particle Swarm Optimization and Simulated Annealing. Based on an
set of 12 benchmark problems we show that in the majority of cases introduction
of the migration operator leads to obtaining better results than using an equivalent
multi-start scheme. We then apply the generalized island model to construct hetero-
geneous “archipelagos”, which employ different optimization algorithms on differ-
ent islands, and show cases where this leads to further improvements of performance
with respect to the homogeneous case.

1 Parallelizing Optimization Tasks

Parallel computing is an indispensable tool of modern science. Dividing the given
task into independent units that can be performed in parallel can lead to significant
reduction of the time needed to obtain desired results. While in the past decades
parallel computing machines were a scarce resource, available exclusively to the
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customers of computing centers, nowadays virtually every personal computer sold
has parallel computing capabilities in the form of multi-core/multi-threaded CPU or
even massively parallel-capable GPU. It is not surprising then that much research is
being done about how to utilize best these now omnipresent capabilities.

In the context of optimization, parallel architectures were considered from very
early on, actually the first concepts appeared when parallel computing machines
were still in a primitive stage [1]. Much of both practical and theoretical research
has been done on parallelization of many types of algorithms [14, 2, 16]. Equally
much work was then needed to classify and categorize the multitude of existing
approaches in order to provide the global view on the subject. From our standpoint,
the ways in which parallel computing has been utilized in order to speed up the
processes of optimization could be roughly divided into three categories described
in the following paragraphs.

The first class of algorithms benefits from the possibility of using parallel com-
puting to speed up the computation of the objective function value for a given so-
lution. This is of course most practical in cases where such calculation requires a
relatively large amount of computational effort, such as those where simulations of
some sort are involved. Because calculation of the objective function is the core
operation of every optimization process, any gain in the execution time of this
operation translates directly to shortening of the optimization process itself, of-
ten resulting in a linear speed-up. Because parallelism remains “encapsulated” in
the objective function, the optimization algorithm does not need to be modified in
any way.

Second class of approaches to exploit parallel architectures in optimization takes
advantage of the fact that often one step of the optimization algorithm requires eval-
uating many solutions. This is usually the case for algorithms like the Generic Al-
gorithm (GA) or Differential Evolution (DE), which operate on a set of solutions,
often called a population. Because objective function evaluations for different solu-
tions from the population are completely independent, they can be easily performed
in parallel, shortening the time needed to evaluate the whole set of solutions, and
again resulting in a linear speed-up. Also in the case of this class only simple mod-
ifications to the original sequential algorithm are required, as the only thing that
changes is that the solutions in the population are evaluated in parallel instead of
iteratively in a loop. This type of parallelization/distribution strategy is also called
master-slave model [5] in the context of GAs, where it was born, as one CPU (the
Master) carries out the computations necessary to apply the genetic operators, while
the slaves CPUs are delegated to evaluate the chromosome fitness. The common
characteristic of the two approaches described above is that the original optimiza-
tion algorithm is not modified in any significant way. Although some changes nat-
urally have to be done to allow for a parallel implementation, the logic and flow of
the optimization process does not change – the results obtained with the sequential
and parallel variant of the algorithm are exactly the same, only that in the latter case
they are available faster.

The final, third category of approaches is the one in which introduction of the
parallel execution is done not only to speed up the processing, but also to exploit
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completely new dynamics present because of the existence of parallel populations
and possible interactions between them. A classical example of such an approach is
so-called coarse-grained or island model parallelization scheme designed for GAs
in which many populations co-exist and exchange individuals at certain intervals.
Our definition includes however also other schemes, like the fine-grained model,
in which a local structure of the neighborhood between solutions is introduced and
exploited. The important difference between this category of algorithms and pre-
viously introduced ones is the necessity of adaptation of the original optimization
paradigm.

In this chapter we focus on the island model parallelization scheme. For paral-
lel GAs (PGAs), it has been shown to be superior to the global approach (i.e. with
only one population) both in practice and by theoretical analysis [5]. In one of our
previously published works we have shown that the island model paradigm can be
relatively easily used with algorithms other than GAs, both those explicitly utiliz-
ing populations and not [17]. While in that work we were focussed mainly on the
impact of the network topology defining the island connectivity (migration paths)
here we take a step back and we formally introduce the generalized migration op-
erator which allows for a coarse-grained parallel implementation of virtually any
optimization algorithm (provided that it fulfills few simple criteria) as well as study
heterogeneous clusters of islands implementing various algorithms which cooperate
together in one optimization process to “evolve” good solutions. Based on compu-
tational experiments involving 10 algorithms and 12 benchmark problems we show
that introduction of the migration operator allows in case of most of the considered
optimization algorithms to obtain better solutions than in a sequential multi-start
case with the same amount of computational effort. Subsequently, we make use
of the knowledge about preferences of particular algorithms toward migration we
gained in those experiments in order to construct a heterogeneous archipelago of
various algorithms and compare its performance with the homogeneous case.

Motivations behind performing the study presented herein are the following:

• because of the technological advances, implementation of parallel optimization
algorithms is these days much less constrained by the hardware architecture than
in the past. This enables much more flexible experimentation with various par-
allel designs, as the problem of communication overheads became negligible in
most cases;

• computation of the objective function is, in a number of representative cases, fast
enough to allow for parallel processing involving a large number of solutions
grouped in many generously sized populations on one machine;

• parallel processing involving many different optimization algorithms and ex-
change of information between them is expected to improve the exploration-
exploitation balance thanks to the additional variety;

The remaining part of the chapter is organized as follows. First, we present the
generalized island model paradigm and an in-depth discussion of the parameters
involved. Next, we provide a short overview of PaGMO, our open-source imple-
mentation of the model. Then, we present two computational experiments: #1) “the
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migration dilemma” aimed at establishing for which algorithms introduction of the
migration operator yields better results than an equivalent multi-start execution, and
#2) “can they cooperate?” comparing performance of homogeneous and heteroge-
neous archipelagos. The chapter ends with the presentation of conclusions from the
computational experiments and a short discussion of future prospects.

2 The Generalized Island Model

2.1 Definition

The island model has been proposed as an extension of a traditional GA with the
intention of improving the diversity of solutions and thus delaying stagnation. First
works to mention the idea of using a number of subpopulations can be dated as early
as 1967. With the dawn of parallel and distributed computing machines in the 1980s,
the research on PGAs gained significant momentum (see [1] for a more detailed his-
torical note). The core idea behind the island model is the introduction of a structure
to the population used in the original GA. Instead of permitting recombination be-
tween any two individuals in the solution pool, this possibility becomes restricted
only to solutions belonging to the same sub-population, or deme, which number tra-
ditionally varies between a few to a few dozen. The sub-populations evolve mostly
independently, however at certain relatively sparsely distributed moments of time
they are allowed to exchange solutions in a process called migration. From the point
of view of the GA theory, the transition from the original model to the island model
has thus been frequently viewed as a modification of the selection operator [18].
However, the perspective that allows for a few more general conclusions is to con-
sider the island model simply as running a certain number of global GA algorithms
in parallel with the additional introduction of a new operator called the migration
operator. Informally, this operator is engaged at certain points of time between two
consecutive generations of the original GA algorithm, and its job is both to select
individuals from the current island to be sent to other islands, as well as potentially
introduce foreign individuals to the local population. Note how, from the point of
view of the migration operator, the details of the optimization process that take place
in between two events of migration are irrelevant. GAs on different islands could
easily use different parameters for example the selection rule, crossover operator or
mutation probability. The optimization process would still work, and actually could
perform even better than the variant with fixed parameters across islands thanks to
the additional variability. One can go even a next step further, and state that for the
migration operator it does not matter at all what kind of algorithm is used on the
islands, and whether different islands use the same algorithms or not, as long as all
the islands use the same problem solution coding and the migration can be “plugged
in” on every island. This informal discussion shows that the island model is a gen-
eral paradigm that can be applied not only to genetic or evolutionary algorithms,
but to a much broader family of optimization processes, and even can be used to
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form heterogeneous archipelagos of islands which use various algorithms. Let us
now introduce the concept more formally.

We define an archipelago A as a couple:

A= 〈I,T 〉 (1)

where I = {I1, I2, . . . , In} is the set of islands, and T is the migration topology, a
directed graph with I as the set of vertices. Every island Ii is a quadruple:

Ii = 〈Ai,Pi,Si,Ri〉 i = 1,2, . . . ,n (2)

where Ai is the optimization algorithm used by the i-th island, Pi the population
there contained, and Si and Ri are respectively the migration-selection policy and
migration-replacement policy for the island. A population Pi is a couple 〈P ,P〉
containing a set of individuals P whose fitness value is always referred to the prob-
lem P we are considering. Note that, unlike other works, we speak of populations
always in connection with their fitness values (i.e. the problem they refer to).

The optimization algorithm A is any optimization process supporting an evolu-
tion operator P′ ←A (P,μ), where μ denotes the migration interval (i.e. the number
of allowed algorithmic iterations before a migration is allowed). Algorithms may or
may not have the following distributive property:

A (A (P,μ1),μ2) = A (P,μ1 + μ2) (3)

if they do not they are referred to as adaptive . Note that A can also operate on pop-
ulations containing one only individual, in which case we write |P| = 1 (simulated
annealing is one of such algorithms)

The migration-selection policy S determines the deme M⊆ P to be sent to other
islands via migration. We write this as M←S (P). In turn, given a deme M, the
migration-replacement policy R specifies how M could be inserted into a popula-
tion P. We write this as P′ ←R(P,M).

We are now ready to specify the flow of the general coarse-grained optimization
algorithm. On every island Ii, processing follows the pseudo-code presented on list-
ing 1. Optimization on all islands is performed in parallel. The final result of the
optimization is the best solution found over all islands.

Listing 1. Pseudo-code for the island Ii

1 initialize P
2 while !stop criteria
3 P′ ←Ai(P,μi)
4 M←Si(P′)
5 /∗ Send M to islands adjacent to Ii in T ∗/
6 /∗ Let M′ be the set of solutions received from adjacent islands ∗/
7 P′′ ←R(P′,M′)
8 P← P′′
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2.2 Parameters

The generalized island model just introduced has a number of parameters which
require further clarification and discussion.

2.2.1 Implementation of Migration

The formal definition given above does not specify all details involved in the im-
plementation of the migration. One question is whether the migration should be
synchronous or asynchronous, or in other words: should the communication event
happening in line 5 of 1 block all islands until communication is completed?.
Both approaches have advantages and disadvantages. Asynchronous communica-
tion seems to be an obvious choice for distributed computing architectures, because
no or little global control over the execution of the code on islands is required (just
initialization of the tasks and gathering of the final results). It provides good scal-
ability and maximally utilizes available computing resources, as communication
overheads are limited to the necessary minimum. On the other hand, because pro-
cessing time on islands is usually unpredictable, it is also not possible to predict
when migration events occur, an thus the resulting algorithm is non-deterministic,
non-repeatable and hard to control or debug. These issues are solved if the commu-
nication between all islands is synchronized. Under this assumption it is possible
to obtain a deterministic process. The price that one has to pay, however, is a po-
tentially significant overhead resulting from the synchronization of all islands and
the fact that the slowest island dictates the execution time of the whole process. The
presence of a global synchronization mechanism thus limits the speed-up and the
scalability of the system.

Should the asynchronous migration be the choice, there are still certain decisions
to be made about its implementation. Two opposite approaches could be called mi-
gration initiated by source and migration initiated by destination. The former is the
most intuitive implementation of a simple message passing protocol. As soon as an
island reaches line 5 of the island model code introduced above, the migrating in-
dividuals are sent to adjacent islands. It is very likely that a destination island will
not be able to insert incoming individuals immediately to the local population be-
cause of being for the moment busy executing the optimization step in line 3, thus
every island needs a buffer in which incoming migrating individuals are stored in
between two events of execution of line 7 of the pseudo-code. We call this approach
initiated by source, because the transmission of solutions from one island to another
is performed when the source island reaches the communication step. In contrast,
in the migration initiated by destination, when an island reaches line 5 of the island
model code, the solutions are not sent to individuals just yet, put placed in a local
buffer or “database”. Then, when an island is about to execute the line 7 of the code,
it contacts adjacent islands and fetches individuals available in their “databases”
at the moment. The individuals are thus transmitted when the destination island
ask for them. At the first glance this may seem to be just an implementational
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detail, however these two strategies differ quite significantly in a way that may affect
the performance of the optimization. If one consideres a topology with one island
acting as a “hub” in the center, in the case of migration initiated by source this is-
land will receive much more individuals than in the case of migration initiated by
the destination. Or, one can imagine a situation where one island is much slower
than its neighbors: here migration initiated by destination could mean that the neig-
bors would receive the same individuals several times, as the slow island would not
manage to update its “database” in between communication events initiated by fast
neighbors.

Another detail of the migration implementation that is not explicitly specified
in our definition is the method of distribution of the migrating solutions. Migration
topology T specifies which islands are adjacent and thus are allowed to exchange
solutions. However when an island has more than one neighbor, there is plenty of
different scenarios possible. One strategy could be to send the migrating individu-
als to all adjacent islands. On the other side of the spectrum of available choices,
solutions could be sent only to one neighbor – for example selected randomly or
in an algorithmic fashion (e.g. round-robin). It is likely that the choice will have an
impact on the performance of the optimization process. It is reasonable to expect
that in the former case, the effect of the choice of the migration topology should be
more pronounced than in the latter. The frequency of communication between two
particular islands in the latter case is lower, and also the total amount of information
being exchanged in the whole archipelago is smaller, what may be significant for
densely connected archipelagos with many islands. The method of distribution of
individuals is moreover connected with other parameters of the island model, espe-
cially the migration-selection policy S : a common strategy of migration is to allow
the whole local population to be sent to the neighbors, but partitioned in such a way
that each neighbor receives a distinct part of it [5].

2.2.2 Number of Islands n

The number of islands n is one of the most straightforward parameters of an
archipelago. There may be many factors influencing the choice of n for a partic-
ular application: the computing platform used, the number of available comput-
ing machines, or the choice of the migration topology. Along with the progress in
computing technology, this choice becomes now less and less constrained by the
hardware. More and more researchers have access to large numbers of relatively
powerful computers (for example on a university or company network) that could
be used to perform distributed optimization in their idle time. Common sense pre-
diction is that the more islands are involved in the computations, the better the final
result of the optimization should be, as more computational resources are employed.
It is reasonable to expect that using an archipelago with many islands will provide
various benefits. For example this can remove the necessity (or at least reduce the
importance of) fine-tuning of the parameters of the employed optimization algo-
rithm. One can just create an archipelago in which different islands use different
combinations of parameters and hope that islands with “good” parameters will drive
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the optimization process, compensating for the other, underperforming islands [11].
One should keep in mind however, that the bigger the number of islands, the more
important the choice of the migration topology becomes. For instance, comparing
archipelagos with 8 and 1024 islands, for a fully-connected topology this means
nearly 20000 more connections between islands, while for the hypercube topology,
the increase is only 500-fold.

2.2.3 Migration Topology T

Another parameter of the archipelago is the migration topology T . In the past, the
migration topology was often dictated by the hardware on which the island model
was implemented. Dedicated parallel machines without shared memory were used
and the topology of the connections between available processors was thus used also
when implementing an island model. Distributed computing architectures available
today provide much greater flexibility, and the migration topology can be selected
appropriately to the task at hand. The choice of the migration topology was the fo-
cus of a previous study [17] where the effect of the topology choice was related
to the quality of the final results. A selection of migration topologies that can be
found in the literature about the island model and other parallelization schemes is
presented in figure 1. How to choose the migration topology for a given problem
and optimization algorithm(s) remains an open question. Probably the most signif-
icant way in which the migration topology affects computation in the island model
is shaping the information flow in the archipelago. From this point of view, most
relevant parameters of the topology graph are: the average length of a path between
two islands (or its diameter, i.e. the longest of the shortest paths between any two
islands), the number of edges (which can be viewed as the measure of the commu-
nication overheads), and the degree of connectivity (average or maximum number
of neighbors per island).

2.2.4 Migration Interval μ

The migration interval μ specifies the iterations of A before a migration occurs
(an equivalent term sometimes found in the literature is migration frequency). The
value of the migration interval should be chosen by taking into account the prop-
erties of the considered optimization algorithm Ai, in particular, the convergence
rate of the algorithm in relation to P . It is reasonable to assume that the algorithm
should be allowed to achieve a sensible progress in optimization in between two
migration events. It has been shown that in certain cases too short migration interval
may cause the algorithm to stop working as expected [21]. This is why the choice
of the migration interval should be proceeded at least by experimental observation
of the optimization progress on an isolated island. Another idea is to use a dynami-
cally changing migration interval, and performing migration only after the algorithm
achieves stagnation [4].
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(a) Chain (b) 1-way ring (c) Ring (d) +1+2 ring

(e) +1+2+3 ring (f) Torus (g) Cartwheel (h) Lattice

(i) Hypercube (j) Broadcast (k) Fully-connected (l) Barabasi-Albert
(3,2)

Fig. 1 Common migration topologies

2.2.5 Migration-Selection Policy S and Migration-Replacement Policy R

The island model requires specification of two operations: the strategy of the selec-
tion of the solutions from the local population to be sent to adjacent island(s), as well
as the method of integration of incoming individuals into the local population. In
our generalised island model, these details are specified by the migration-selection
policy S and migration-replacement policy R. Note that among the details of se-
lection and replacement there is the number of solutions to send or accept (usually
called the migration rate), and that in principle Si and Ri could differ from is-
land to island. The spectrum of available reasonable choices for S and R could
be narrowed down to randomness and elitism [18], however also more sophistcated
mechanisms could be used, for example the Metropolis criterion.

3 The Code: PaGMO

All the experiments described in this chapter have been performed using a software
platform for global optimization called PaGMO [3]. PaGMO has been developed
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within the Advanced Concepts Team of the European Space Agency, originally with
special focus on spacecraft trajectory optimization problems, and later extended to
be a general-purpose optimization framework.

The generalized island model is implemented within PaGMO using different
threads of execution and a shared memory model, in order to take full advantage
of contemporary multicore architectures. Each island executes the optimization al-
gorithm in a separate thread, whose scheduling is managed asynchronously by the
operating system (which will typically migrate the threads among the available com-
puting cores as needed to maintain a balanced workload). Locking primitives such
as mutexes, condition variables and thread barriers are used to avoid contention
issues and manage access to resources shared among different threads. The paral-
lelization of optimization tasks through the coarse-grained approach of the island
model results in an “embarrassingly parallel” workload, since most of the CPU time
is typically spent in the execution of the optimization algorithm in separate threads.
Synchronization points, mostly due to the implementation of the migration operator,
are sparse and lightweight, and as result PaGMO’s performance scales linearly with
the number of available cores.

Although not used in the experiments described in this chapter, PaGMO also
has the capability of implementing the island model over a network of connected
computers (e.g., a high-performance computing cluster) using the Message Passing
Interface (MPI) [19]. In this operative mode, each island on the master node first
serializes the objects representing the algorithm, the optimization problem and the
population, and then transmits them over the network to another computer in the
cluster, a slave node, where the optimization is actually executed in a local process.
When the optimization process finishes, the new (optimised) population is serialised
on the slave node and sent back to the master node, where it replaces the original
population in the island. With respect to the multithreaded, shared memory version
of the island model, this implementation incurs in the additional overheads and la-
tencies of object serialization and network transmission. On the other hand, the abil-
ity to run on computer clusters greatly enhance the parallelisation potential which
would otherwise be limited by the number of cores available on a single machine.

Written in C++ with the availability of Python bindings for increased ease of
use and user-friendliness, designed with portability in mind and tested on
GNU/Linux, OSX and Windows, PaGMO is free/libre/open-source software
licensed under the GNU Public License. It can be downloaded from the website
http://pagmo.sourceforge.net

4 Experiments

4.1 Problems

We consider some standard multimodal mathematical function with diverse proper-
ties (separability, etc.) together with “real world” problems. The problems have been

http://pagmo.sourceforge.net
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selected to pose a real challenge to the algorithms studied and to maintain the over-
all CPU time for the entire test reasonable. The standard test functions we selected
are: Rastrigin, Rosenbrock, Griewank, Ackley, De Jong, Levy5 (exact details on the
implementation of these common mathematical functions can be found directly in
the PaGMO code [3]. All problems are here instantiated with a dimension d = 50.
We also consider two examples of the Lennard-Jones test function [23] correspond-
ing to 11 and 17 atoms. We then extract some cases from the GTOP database [22], a
European Space Agency’s repository of difficult global optimization test functions
related to interplanetary space travel. Out of such a database we have selcted the
three problems named Rosetta, Cassini 2 and Messenger Full, also implemented
and available in PaGMO [3].

4.2 Algorithms

We consider a number of global optimization algorithms based on diverse paradigms.
Our selection is certainly not exaustive but it includes some of the arguably most
popular algorithms that have proved their value extensively in the past decades.

1. DE: Differential Evolution – This algorithm by Storn and Price [20] has a rather
standard implementation we here test. In particular we consider two variants of
the algorithm commonly called rand/1/exp and rand/1/bin, that differ, essentially,
in the crossover type (binomial or exponential). The algorithm parameters [20]
are set to be CR = 0.9 and F = 0.8. We allow for 500 generations over a popu-
lation of dimension 20 for each algorithmic call, corresponding to 2000 function
evaluations.

2. PSO: Particle Swarm Optimization – The original algorithm proposed by Kennedy
and Eberhart [13] was later improved by the introduction of a so called constric-
tion factor [6]. We here consider this version of the algorithm together with the
variant named Fully Informed Particle Swarm [15]. For both algorithms we se-
lect rather canonical values for the different coefficients [6]. In the canonical
algorithm a ring topology with two neighbours is used, while for the FIPS we
use a lattice topology, as suggested in [15].

3. SA: Simulated Annealing – There are many different implementations of simu-
lated annealing available in the literature, in this work we consider the adaptive
neighbourhood simulated annealing as introduced by Corana et al. [8]. The main
algorithm parameters are the starting and final temperatures (Ts, Tf ) and the num-
ber of total iterations n (these can be approximately be taken as the number of
function evaluation made). Other parameter also control the performances of the
we use Ns = 20 and NT = 1, where Ns is the number of cycles and NT the number
of step adjustments (see Corana et al. [8]). The cooling schedule implemented is
a geometric cooling schedule. For all problems we use Ts = 0.1, Tf = 0.001.

4. HS: Harmony Search – This metaheuristic algorithm [9] is inspired by the im-
provisation process of musicians. In the HS metaphor, each decision variable is
seen as a musician which, through improvisation, generates new notes together
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with the other musicians in order to find a good “harmony” (i.e., the global best).
More specifically, in the HS algorithm new candidate solutions are generated ei-
ther by randomly choosing components of existing solutions and adjusting them
by increasing/decreasing their values, or by generating components of the can-
didate solution completely randomly. The parameters of the algorithm include
the population size, the probability of generating new components by adjusting
existing components instead of by random selection, and the amount of adjust-
ment. In this study, we have adopted the canonical HS algorithm described in
the original paper. To our knowledge, this is the first time that the island model
paradigm is tested on a HS algorithm.

5. GA: Genetic Algorithm – This class of algorithms [10] is wide and contains many
different variants that do not have an agreed common implementation. Here we
consider a rather straight forward implementation with tournament selection, ex-
ponential crossover and elitism of one individual (i.e. the best among the parents
is reinserted in the new generation substituting the worst of the offsprings if bet-
ter). As for the mutation, we consider two different algoritmic variants, one with
gaussian mutation (with the gaussian bell having a standard deviation of σ = 0.1
with respect to the width of the linear bounds on that particular component) and
one having random mutation implemented. The crossover coefficient c = 0.95
and the mutation rate is m = 0.05 applied to each component of the cromosome.
As to allow for a number of iterations (migration interval) mu = 2000 we let the

6. ABC: Artificial Bee Colony – This rather new metaheuristics still did not have
the time to “mutate” much from the original version proposed by Karaboga [12]
and we thus here consider that original algorithm. The parameters are the itera-
tion number n which we set to n = 50 as to allow 2000 function evaluations for
each algorithmic call, and the number of tries m after which a source of food is
dropped if not improved. We here use m = 20.

For all algorithms we set the migration interval μi so that 2000 function evaluation
are allowed in between migrations.

4.3 Experiment #1: The Migration Dilemma

Consider the pair < P,A > containing an optimization algorithm A and an op-
timization problem P . A common approach to use A to solve P is to run A
indipendently N times over P and record, at the end, the best result found x. Al-
ternatively, one could run N times A over P allowing solutions to be exchanged
(migrate) among the N runs of A and and record, at the end, the best result found
y. The two approaches require the exact same computational effort (i.e. it takes the
same CPU time to get y or x) if one neglects the overhead of migrating and ex-
changing information among algorithmic runs (i.e. CPUs) Accumulating statistical
evidence on the difference between x and y helps us in evaluating the benefits of
the generalized island model and to answer the simple question “should I migrate?”
and thus will be the focus of the results here presented. For each pair < P ,A >



The Generalized Island Model 163

and for N = 8,N = 32 we build samples (containing 200 instances) of the stochastic
variables x and y at different points along the process. We indicate these samples
with bold symbols xi and yi, where i = 1 . . .30 indicates at point of the process the
value is recorded. In other words:

1. (Without Migration - unconnected topology) We run the algorithm independently
N times (on different CPUs) and we record in the variable xi, i = 1 . . .30 the best
solution found across the N algorithmic runs each 2000 function evaluation

2. (With Migration - two way ring topololgy) We run the algorithm N times (on
different CPUs) and we record the best solution found across the N algorithmic
runs each 2000 function evaluation in the variable yi, i = 1 . . .30 when we also
let solutions migrate along a two-way ring topology. Thus the index i can be seen
as the number of migrations occured and will so be interpreted in the following.

At the end of this process we have the samples xi and yi, ∀i= 1 . . .30 each containing
200 instances of the stochastic variables xi and yi.

We first detect if there is any statistical difference in the samples for i = 30 (i.e.
after the very last migration), in case there is none we set i = i− 1 and repeat the
test until a difference is found. When a dfference is detected at i = m we sort the
solutions in xm and ym and compare the best 60. If they all but one are better in one
sample we conclude that that solution strategy is better, otherwise we try again with
i = i− 1. If we get to i = 1 without having found any result we conclude that there
is not enough statistical evidence to choose between the two solution strategies for
the particular couple < P ,A > under consideration.

Fig. 2 Comparison in the case of PSO (FIPS) applied to Griewank 50

Example: Assume the problem P is Griewank 50 and the algorithm A is
a 100 generation Fully Informed Particle Swarm algorithm (PSO FIPS) with
population size of 20. In Fig. 2, on the left, we show, after each of the 30
migrations, the box plot in logarthmic scale of the samples xi and yi. Clearly
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at i = 30 there is no difference between the results, as in both cases the global
optimum of the problem (i.e. J=0) has been found. Proceeding backwards, we
then consider i = 16, where there actually is a statistical difference between
the two samples. At that stage of the runs, we show in Fig. 2, on the right,
the ranked solutions. As 59 out of the best 60 solutions of the sample x16 are
better than the best 60 solutions of sample y16 we conclude that for this pair
< P,A > migration is actually better.

NOTE: in this example the comparison is quite trivial and a visual inspec-
tion of the results is enough to conclude, however there are cases where a
mathematical formalization of the comparison is necessary to decide conclu-
sively whether migration helped or not.

In the method outlined above, one must be very careful when detecting the statis-
tical difference between the samples (in the exmaple it is rather obvious, but things
do get much more complicated). Here we use a method based on random resam-
pling, essentially a jacknifing method [7]. The use of this method is not too com-
mon within the global optimization community and we thus briefly explain it in the
following. We create a new sample r joining x and y. We then randomly create two
disjoint new samples of size equal to the original x, y out of r and we evaluate, for
these two samples, the difference d in a chosen statistics (in our case the mean). We
repeat this process n = 10000 times, thus building an experimantal distribution of d
for two samples of equal size extracted at random from r. We then evaluate, accord-
ing to the built distribution, the probability of d being as big as the one calcualted
from the two original samples x and y and we use this as our confidence level that
the two distribution actually are different. Only if this is larger than 99.97% we con-
clude that they indeed are. Note that if p = 0.9997 approximate the probability that
the two samples come from different random processes, our actual confidence level
that the whole optimization process is different is smaller as we need to compare
the samples 30 times (after each migration). Thus, our true confidence level will be
p30 = 0.99.

4.3.1 Results

We apply the methodology described above to approach “the migration dilemma”
for each possible problem-algorithm couple < P ,A > one can form starting from
the algorithms and problems introduced. We repeat the same experiment using
N = 8 and N = 32 islands. This results in a total of 240 experiments. Simple calcu-
lation show that for each one of those where N = 8, 24,000,000 objective function
evaluations are performed, while for N = 32 the number of function evaluation per
experiment is 96,000,000 (we report these number with the sole purpose of giving a
feel for the amount of computations involved in our tests). These allow the construc-
tion of our statistical samples xi and yi. Making use of the inherent parallelization
offered by PaGMO, the 240 experiments take roughly 96 hours to complete on a
linux gentoo system installed on top of a dual quad core OSX XServe machine.
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Fig. 3 Two non obvious cases

The results are summarized in Table 1 where we report, for each experiment, the
outcome of our comparison criteria. In reporting only this final information we are
synthezising in a single table a very complex procedure producing a great amount of
data, thus many of the details on what is actually happening in a case to case basis
are inevitabley lost. As an example, we here only investigate in more detail what
happens in the case of N = 8 for the pairs, Lennard-Jones 11, PSO (canonical) and
PSO (FIPS). This case is interesting as our comparison concludes that migrating is
actually harmful in the case of PSO, (FIPS) and undecidable in the case of the PSO
(canonical), a strange conclusion that is worth further investigation. A closer look to
the data reveal more details on the rationale for such a conclusion. In Figure 3 we re-
port the boxplots for xi and yi. In the case of PSO (canonical) we observe how after
some migrations one lucky trial, not using migration, finds the optimal solution and
is shown as an oulier (or flier) in the boxplot. For this particular experiment, this fact
and the generally lower median of the sample relative to the optimization without
migration (see the median red line in the boxplot) is not considered as no statistical
differenc is found between the samples at any of the migration steps. For this reason
our comparison criteria does not choose among the two approaches. Looking at the
other case, the one considering the PSO (FIPS) algorithm, we note from Figure 3
that even though a lucky shot finds the optimal solution in the case of migration
(shown as an outlier, or flier, in the boxplot), our comparison criteria concludes that
not migrating is actually better for this case and gives to the unconnected topology
the “winner” cup. This clearly implies that there is statistical significance between
the samples at some point during the optimization and that, except that lucky run, the
other 59 best solutions found in the case of the unconnected topology are actually
better than the ones found by migrating (as evaluated at the point where statistical
difference is found between the samples). Other cases are much easier to judge (as
shown for example in Figure (2) and here we picked up one of the most trouble-
some cases in order to show how our comparison criteria is able to make intelligent
choices also in difficult situations where, probably, also humans would argue on
what conclusion to reach.
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Table 1 Generalized Island Model Results: migration occurs every 2000 function evalua-
tions, algorithms are stopped after 30 migrations, samples are made of 200 instances. M =
Migration outperforms non migration. U = Non migration outperforms migration, - = no
conclusion is possible as the results are not significantly different
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Griewank (d = 50) M M M M M M M M M M M M M M M M M M M M
Rastrigin (d = 50) - U M M M M M M M M M M M M M M M M M M

Rosenbrock (d = 50) U M M M M M M M M M U U M M M M M M M M
Ackley (d = 50) M M M M M M M M M M M M M M M M M M M M

De Jong (d = 50) M M M M M M M M M M M M M M M M M M M M
Levy 5 (d = 50) M U M M M M M M M M M U M M M M M M M M

Schwefel (d = 50) M U M M M M M M M M M U M M M M M M M M
Lennard-Jones (11 Atoms) M U M M M M M M M M M U M M U M M M M M
Lennard-Jones (17 Atoms) - U M M M M M M M M M U M M M M M M M M

Rosetta - - - M M M - M M M - - - M M M M M M M
Cassini 2 - U - M - M - M M M - U - U M M M M M M

Messenger Full - U - M U M M M M M - U M M U M M M M M
8 Islands 32 Islands

Let us now take a look at Table 1. We may observe a number of things that appear
quite strongly from the reported data. We list them in the following as they all are
observation worth further studies.

• Not surprisingly (the no free lunch theorem applys here) the answer to the
question “should I migrate or not?” is “it depends from the algorithms and the
problem”.

• As a general rule-of-thumb, our generalized migration operator help algorithms
find better solutions.

• PSO (and in particular for its FIPS variant) is an exception to the above rule being
unable to take consistently advantage of our generalized migration operator.

• Problems such as Griewank, Ackley and De Jong are solved more efficiently
making use of migration, regardless of the employed algorithms.

• Increasing the problem complexity, it is more difficult to find statistically sig-
nificant results using a sample size of 200, as shown by the higher number of
inconclusive tests for problems such as Lennar-Jones, Rosetta, Messenger Full
and Cassini.

• Increasing the number of islands the conclusions do not change. Statistical sig-
nificance is easier to be found in the comparisons made using a higher number
of islands.
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Table 2 Heterogeneous tests results: parameters as in the previous experiment. Number in
every cell reports how many of the 5 heterogeneous archipelagos performed better than best
of the two homogeneous algorithms from experiment 1 (with or without migration) for the
given problem and algorithm.
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Griewank (d = 50) 4 0 5 5 5 5 5 5 5 5 0 0 5 5 5 5 5 5 5 5
Rastrigin (d = 50) 5 5 4 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5

Rosenbrock (d = 50) 1 3 5 5 5 5 5 5 5 1 0 5 2 5 5 5 5 5 5 0
Ackley (d = 50) 4 0 5 5 5 5 5 5 5 5 0 0 5 5 5 5 5 5 5 5

De Jong (d = 50) 4 0 5 5 5 5 5 5 5 4 0 0 5 5 5 5 5 5 5 5
Levy 5 (d = 50) 5 5 0 5 5 4 5 0 5 5 5 5 2 5 5 5 5 3 5 5

Schwefel (d = 50) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Lennard-Jones (11 Atoms) 5 5 2 5 5 5 5 1 1 5 5 5 5 5 5 5 5 0 1 5
Lennard-Jones (17 Atoms) 5 5 0 5 5 5 5 0 5 5 5 5 0 5 5 5 5 0 5 5

Rosetta 2 0 5 5 5 5 5 0 0 5 5 3 5 5 5 5 5 0 0 5
Cassini 2 2 5 5 5 0 5 5 0 3 5 5 5 5 5 5 5 5 0 5 5

Messenger Full 0 0 5 5 4 5 5 0 0 5 0 5 5 5 5 5 5 0 0 5
8 Islands 32 Islands

4.4 Experiment #2: Can They Cooperate?

In the previous section we have established that the influx of migrants help popu-
lations in islands to converge faster to good solutions for the majority of the evolu-
tion startegies tried. We now ask ourself the question: does it matter whether these
migrants come from populations being evolved with the same paradigm? In other
words: does it help to evolve populations using different algorithms while still ex-
changing migrants among them? In order to answer this question we compared the
results obtained in the previous section (where we used archipelagos of 8 and 32
homogeneus islands, i.e. islands containing the very smae algorithm) with the result
obtained using archipelagos of 8 and 32 island containing heterogeneous algorithms.
As we have determined that PSO is, as an exception, not taking advantage of our
generalized migration operator, we do not allow migrants to islands containing PSO,
only from. Different heterogeneous archipelagos can be created out of mixing the 10
different algorithm instances considered, thus we perform our comparison with re-
spect to five archipelagos containing different permutations of the chosen algorithms
(a simple round robin startegy is implemented to select the algorithms to instanti-
ate in the different islands). These are then compared pairwise (see the previous
section for the comparison criteria) to the corresponding homogeneous archipelago.
In Table 2 we report for each pair problem-algorithm the number of heterogeneous
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archipelagos that performed better than the corresponding homogeneous ones (us-
ing migration or not according to the best choice outlined in Table 1).

One would expect that the heterogeneous archipelago performs either a) as good
as or b) worse than an homogeneous archipelago having the best algorithm across all
islands. This is infact the case, as an example, for the problem Griewank. In this case
PSO FIPS is the best performing algorithm and no heterogeneous archipelago (also
the ones containing islands with PSO FIPS) can perform better. The surprising result
comes from problems such as Rastrigin or Schwefel, where we can conclude that the
cooperation between different algorithms via our generalized operator creates de-
facto a new meta-algorithm that improves over the performance of all its algorithmic
components.

5 Conclusions

We propose a generalization of the island model to obtain a coarsed grain paral-
lelization strategy valid across global optimization algorithms. The new model, es-
sentially, allows for information exchange among different instances of algorithms.
We show how, for algorithms such as Particle Swarm optimization, Differential Evo-
lution, Simulated Annealing, Bee Clolony Search, Harmony Search and Genetic
Algorithms such an information exchange is indeed beneficial in a large number of
cases. We then test the same migration strategy across heterogeneous algorithms to
study whether solutions generated by one algorithm could improve over the per-
formance of a second algorithm and vice versa. We find that on some problems,
migration among a set of heterogenous algorithms allows for a better search than
all possible set ups where migration occur among different instances of the same
algorithm.
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Evolutionary Associative Memories
through Genetic Programming

Juan Villegas-Cortez, Gustavo Olague, Humberto Sossa, and Carlos Avilés

Abstract. Natural systems apply learning during the process of adaptation, as a way
of developing strategies that help to succeed them in highly complex scenarios. In
particular, it is said that the plans developed by natural systems are seen as a funda-
mental aspect in survival. Today, there is a huge interest in attempting to replicate
some of their characteristics by imitating the processes of evolution and genetics in
artificial systems using the very well-known ideas of evolutionary computing. For
example, some models for learning adaptive process are based on the emulation of
neural networks that are further evolved by the application of an evolutionary al-
gorithm. In this work, we present the evolution of a kind of neural network that is
collectible known as associative memories (AM’s) and which are considered as a
practical tool for reaching learning tasks in pattern recognition problems. AM’s are
complex operators, based on simple arithmetical functions, which are used to recall
patterns in terms of some input data. AM’s are considered as part of artificial neural
networks (ANN), mainly due to its primary conception; nevertheless, the idea in-
herent to their mathematical formulation provides a powerful description that helps
to reach a specific goal despite the numerous changes that can happen during its op-
eration. In this chapter, we describe the idea of building new AM’s through genetic
programming (GP) based on the coevolutionary paradigm. The methodology that is
proposed consists in splitting the problem in two populations that are used to evolve
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simultaneously both processes of association and recall that are commonly used in
AM’s. Experimental results on binary and real value patterns are provided in order
to illustrate the benefits of applying the paradigm of evolutionary computing to the
synthesis of associative memories.

1 Introduction

Associative Memories (AM’s) are considered as simple and useful devices that are
designed to recall output patterns in terms of input patterns by means of simple
operations. AM’s are considered as part of artificial neural networks (ANN); but
instead of using complex structures and operators, it is said that AM’s are divided
in two abstract processes that are created through a set of elementary operations,
which are used within two processes known as association and recall.

As a preliminary introduction, let’s say that during the association phase, the
AM is built in terms of the patterns X and Y , denoted as (X,Y )k, with k an in-
teger. Thus, every pattern association is carried out by the application of simple
operations such as: addition, multiplication, maximum, minimum, and other alike
operators acting over the input patterns. In this way, an associative memory M is
represented by a matrix, which is written from all the pattern associations in order
to consider the whole knowledge being provided by the input patterns. The corre-
sponding components mij can be seen as the synapses of a simple neural network.
On the other hand, the operator M is generated from a predefined set of finite known
associations called the fundamental set; thus, such association set is represented
as

{
(Xk;Y k) | k = 1, . . . , p

}
, where p is defined as the number of associations.

Moreover, if (Xk = Y k) ∀ k = 1, . . . , p, then M is considered auto-associative,
otherwise it is called hetero-associative. Finally, if a distorted version of a pattern,
denoted as X̃ , is fed up to M, and the obtained output is exactly Y k; then, recalling
is considered as perfect.

Research on associative memory models is characterized by their simplicity that
could be seen as the result of a number of great developments that have been carried
out during the last 50 years; for some examples we refer the interested reader to
[6],[24], [14], [15], [25], [22, 23], [31, 32]. Nevertheless, most of these models have
several limitations that are major research topics; for example: their limited storage
capacity, the difficulty to deal with more than one type of pattern (binary, integer
or real-valued), their lack of robustness against different kind of noise (additive,
subtractive, mixed, Gaussian, etc.); and above all, these models work only for a
specific purpose defined during the moment where they were contrived. Moreover,
all these models have been manually developed and in general the whole design
process for one model could take from one up to two years of research.

The research described in this chapter from the viewpoint of genetic program-
ming it is briefly outlined here. A first attempt to automatically generate AM’s has
been reported in [16]. This method was conceived for the case of bidirectional as-
sociative memories (BAM). On the other hand, the closest work to the approach
presented in this chapter is concerned with the automatic design of artificial neural
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networks[13], which uses some kind of genetic programming (GP) for this purpose.
Another reported work applies Particle Swarm Optimization [4]. Bearing in mind
the relevant results obtained with GP techniques versus genetic algorithms [21], in
this work we describe a GP-based methodology to automatically generate AM’s. GP
has been successfully applied in a huge range of areas. In particular, we can mention
some related to computer vision ([1], [29], [10], [12], [27], [28], [37], [38], [26]).

In this chapter, we deal with the problem of automatically generating AM’s
through GP; by considering an evolutionary process. Previous results can be found
in ([33], [34]) where the initial ideas described there turns into the simplicity of
AM’s devices. We improve our initial technique and provide a better description
of the problems involved in the recall of binary and real-valued patterns. The im-
provement were focused on two evolutionary processes using coevolutionary mixed
aspects as it is reported in [35].

This research is related to [40] that deals with the idea of evolving ANN. Nev-
ertheless, as an alternative to performing the optimization of an ANN regarding
the number of parameters and their respective topology; the idea explained in this
chapter is to evolve the representation of an associative memory using the pow-
erful paradigm of genetic programming. Moreover, it is important to mention that
this work is naturally extended in to the generally accepted perspective of parallel
and distributed computing [39]. Thus, we can talk without loss-of-generality of dis-
tributed associative memories (DAM’s) instead of associative memories. The reason
is due to the fact that all input data can be manipulated as separate chunks of infor-
mation and the whole system could be implemented using a parallel and distributed
architecture.

The rest of the chapter is organized as follows, and is oriented towards the expla-
nation and construction of an evolutionary methodology. In section 2, we provide
a brief description of our first approach fully described in [35]. In section 3, we
present our co-evolutionary based-GP methodology for the automatic generation of
AM through GP. In section 4, we show the experimental results for some represen-
tative databases, composed of elemental and complex pattern sets. Finally, section
5 presents the conclusions and suggestions for future research.

2 Automated Design of AM’s through GP

The proposed model for generating AM’s using evolutionary algorithms is based on
the following two-stage process. First, evolution starts as a simple ANN with a pre-
established topology that is evolved from more than one connection [40]. Second,
the parallel architecture is evolved with the aim of generating different topological
structures. Common AM models uses a connection structure that is fixed, and it is
said that such traditional models are confronted with several challenges by consid-
ering the full aspects of every possible situation; such as: the capacity of memory
recall, as well as noise suppression. Our proposal is based on the linear associa-
tor concept introduced in [7], in such a way of considering the general association
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aspects between pattern sets, but bearing in mind that the local association of all
parts is focused on the connectivity of every synapse that is carried out between the
vector pattern components. This chapter explains the necessary steps to implement
the evolution of associative memories through a coevolutionary paradigm. The ba-
sic idea is to divide the evolutionary process in two independent stages, association
and recall, that are useful in the modeling and design of associative memories for
pattern recognition problems.

Therefore, the proposal describes the evolutionary process by considering three
steps that help to define the two stages that characterize an associative memory.
First, we define the set of function operators that are used during the association
stage; second, we define the set of function operators and terminals that are used for
the recalling stage by considering the fundamental aspects of the association matrix
previously built; and finally, we implement the co-evolutionary approach, similar to
[2], by joining the two evolved individuals in order to create a single one.

3 A Coevolutionary Model for the Design of AM’s

In this way, our proposed GP based co-evolutionary model consists of two popu-
lations; one for association and one for recalling. The idea of managing both pro-
cesses through two separated populations has helped us to achieve better solutions
in contrast to our first study, where the solution consists of a single evolutionary pro-
cess [33]. In this chapter, we explain how it was considered during the design two
sequential processes instead of only one, through the cooperative co-evolutionary
paradigm. This new strategy is more adequate to the aim of reaching our goal of
developing a simulated correlation between both processes. Thus, each population
represents a separate part of the problem, and the coevolutionary process is in charge
of solving the whole pattern recognition problem. Hence, the solution is achieved
through the coevolutionary process, in which two separate species or populations
are jointly evolved in such a way that every species cooperates to attain a global
solution that satisfy both stages at the same time. Note, that the proposed model
can be naturally extended into a distributed and parallel system, since our two pop-
ulation model can be accessed concurrently. In this case, the DAM’s could allow
a straightforward implementation of the proposed coevolutionary model by carry-
ing out the associative memory paradigm for parallel and distributed computing.
Hence, every individual is a possible solution for the problem in the pre-established
environment. The basic idea of coevolution consists in the concept of divide and
conquer, that is used to conceptualize the problem (system) as if it was adapted or
conformed from many sub-problems (sub-systems), which are integrated by evolv-
ing them separately and later combining them into a single solution; i.e., the original
sought solution. In other words, all sub-systems are finally joined by implementing
a strategy where the entire solution is built from partial components [11].

Figure 1 shows the framework for implementing the cooperative co-evolutionary
process. Here, the AM’s that are representing suitable solutions to the problem at
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Fig. 1 This figure shows the conceptual framework of our cooperative coevolutionary
process.

hand, work on two complementary search spaces with the aim of fitting the pattern
association with the better recall. Thus, the first process, GP1, could be seen as a
clustered process working on the association stage that is producing a number of
individuals with the goal of identifying the best individual at each cluster and the
result is considered as the winner of the evolutionary process. Then, the second
process, GP2, known as the recalling stage gets as input all winner individuals from
the previous stage to participate in the solution of the second process by recombining
their learned features. This process is iterated until a termination criteria is satisfied,
and the whole process is said to be completed, and we finally get an individual
global winner.

Some important aspects related to the fitness function is the global criteria where
the whole process is measured as the minimum of all individual pairs up to the sec-
ond phase. In this way, the components of our new model are defined in terms of
both, function and terminal, sets per every population for each GP evolutionary pro-
cess; see Figure 2. Hence, the co-evolutionary model is composed of the following
aspects:

1. Opak represents the evolutionary operator being applied in each pattern associ-
ation. The representation or genotype of each individual is encoded in the tra-
ditional GP-form of a tree. The local association matrix µi is integrated by the
Opak operator acting on the components of each vector of the local association
{Yj , X

T
j }.

2. Mk describes the general association matrix. This is taken as the sum of all
local associations and it provides the cumulative knowledge, which is inspired
by the perceptron principle.
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Fig. 2 This figure illustrates the proposed coevolutionary model for the GP-developmental
process of AM’s.

3. Ta is considered as the Terminal Set for the association stage. It consists of a set
of nodes taking the vector entries, such as Ta = {xj , yj}. These nodes belong
to each pattern-vector{X} and {Y }; this is implemented in order to encode a
local correlation input.

4. Fa is the Function Set for the association stage. These functions have been
defined after reviewing the solutions reported in literature. This helped us to
devise the set of possible structures in order to target the space with the aim
of producing individuals that achieve similar performance in comparison to the
reviewed AM models. In this case, Fa = {+,−,∧,∨,×} where ∧,∨, and ×
are the minimum, maximum and multiplication operators

5. Oprp is the evolutionary operator being applied during the pattern recall process.
It comprises the input vector Xj , as well as the matrix association Mk being
generated by the previous evolutionary association operator.

6. Tr is the Terminal Set being applied during the recalling stage. This is written
as Tr = {v,R1, R2, . . . , Rm,Mk}; where v ∈ X is the input vector, and Ri is
the ith row-vector of Mk corresponding to the kth-AM.

7. Fr represents the Function Set for the recalling stage. Thus, Fr = {+,−,∧,∨,
⊗}; where ⊗ is defined as the multiplication operator between vector compo-
nents, ⊗(X,Y ) = [x1 ∗ y1, x2 ∗ y2, . . . , xn ∗ yn], and the association matrix is
defined as follows ⊗(X,Mk) = X ∗Mk; hence, it satisfies the dimensionality
of the multiplication operator between matrices.
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8. Finally Ỹj represents the approximated Yj pattern obtained through the appli-
cation of the operator rule Oprp being applied during the recalling stage.

In this way, the fitness function that provides the measure of every process is an
essential evolutionary step of the whole process. For our purpose the fitness value
is applied at the end of both stages: association and recall. Therefore, the fitness
function covers the sum of all local fitness, related to local associations, and the
recalling set, one recalling for every pattern relation, as shown in Figure 2. For this
evolutionary approach we considered the normalized correlation coefficient between
the goal (Y ) and the source processed pattern (Ỹ ) [18]. The fitness function f , is
known as similarity and it is defined in the range (0 ≤ f ≤ 1) as follows:

f =
Y · Ỹ√

Y · Y
√
Ỹ · Ỹ

(1)

where Y and Ỹ are vectors of size 1 × N , and Y · Ỹ is given by the following
equation:

Y · Ỹ =
1

N

N∑

j=1

Y (1, j) · Ỹ (1, j) (2)

Thus, function f tries to maximize the number of matching component between
vectors Y and Ỹ . This seems to be a reasonable choice for the fitness function.
Here, the optimum is found when f = 1 and it corresponds to the matching of all
pixels. The worst case takes place for f = 0 implying that a single pixel does not
match the pattern.

Thus, we used Equation (1) as our fitness function, which was applied in the
evaluation of every generated individual µi. In this way, for the association stage,
the training between the source set X and the goal set Y , is used to integrate the
fundamental sets. In this work, the fitness evaluation is carried out in three steps:

1. The association between the pattern sets X and Y is performed through the first
stage operator Opak; then,

2. The multiplication operator is fixed for the recalling task, in order to have a
first estimation of the multiplication operator. Thus, one recall-pattern set Ŷ
is obtained and the computed local fitness is used to sort out the winner for the
first evolutionary run, GP1; and this operation is repeated for the the association
block as an n batch processes; see Figure 1.

3. The n−winner individuals from the first process are considered as input for the
second GP process; the recalling stage. At the end of this block, the fitness
function is applied again to get the winner for every m−population. This step
is performed as a way of computing a local estimation for each operator Opra.
Then, a pair of operators is considered as a single individual (Opak, Opra) and
the global fitness is computed for each pair of operators as the fitness value for
the solution pair. The architecture of the proposed system is depicted on Figs. 1,
2 and 3.
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Fig. 3 Fitness model for the GP-development of AM’s.

4 Experimental Results and Analysis

All experiments were carried out on a workstation with a 64-bit architecture using
Matlab and the GPLab toolbox ver. 3.0 [17]. The proposed coevolutionary system
was programmed in two stages, association and recalling. They were performed in
two batch processes n and m executing GP1 and GP2 respectively. In this way,
the program runs for 50 generations with a population of 70 individuals and for
each evolutionary process the best-so-far individual is designated as the solution to
the problem. Thus, all experiments have considered GP parameters similar to those
suggested in [8]; such as the crossover rate of 0.7 and 0.3 for mutation. Finally, in
order to initialize the populations the method of ramped-half-and-half was used.

In this section, we present three experiments that were performed to test the ef-
ficiency of the proposed methodology. In the first example, we demonstrate the va-
lidity of the proposal with a binary-pattern problem that is known to be difficult for
common AM’s in the case of mixed noise. In the second experiment, we illustrate
the application of our proposal for solving a classical pattern recognition problem.
The third experiment, shows the results for a classification problem. In the last two
examples we use well-known datasets from the associative memory literature.

4.1 Experiments with Binary Patterns

In this section, a first experimental test was proposed using a set of simple vec-
tors consisting of binary patterns and representing the digital characters 0 to 9,
which were written as a matrix of size 7 × 5; see Figure 4. Thus, for these simple

Fig. 4 These images show the matrices of digital characters that were proposed as the first
problem.
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(a)

(b)

Fig. 5 This image depicts the evolved AM’s for the auto-associative case that solves the
binary pattern problem. Figure 5(a) shows the rule for pattern association; while, Figure 5(b)
shows the rule for pattern recalling.

images a line-vector representation was considered to represent each matrix using
an auto-associative relationship, with X and Y as the source and goal vector sets
respectively.

As a by-product of the methodology, it is generated a set of rules for the asso-
ciation; as well as, another set of rules for the recalling. Hence, all these rules are
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coevolved with the aim of maximizing the global fitness. In this way, after evolution
the selected winner is the pair of rules shown in Figure 5. Here, the AM shown in
Figure 5 is but an example of a pair of AM’s that successfully solves the problem.
This solution was evolved through a vast number of individuals and it successfully
achieves a solution that fits perfectly for this kind of pattern.

The solution depicted in Figure 5 shows that an important describing feature for
this particular pattern set, is row number 7, which belongs to the association ma-
trix Mk. It is the only significant one during recalling regarding the auto-associative
relationship. As can be seen this solution is generated by the corresponding associ-
ation rule 5(a).

In order to verify the quality of the evolved AM’s of Figure 5, a new test was car-
ried out in which the digital characters were added different levels of mixed noise,
salt and pepper, in order to evaluate the AM’s robustness. Thus, the mixed noise was
increased from 10% to 100 % in steps of 10%; see Figure 6. These noisy images
were generated using Matlab. Remarkably, we got perfect recall: zero error; hence,
the GP-generated AM outperformed other human-designed memories such as the
morphological and alpha-beta models; see [15] and[36].

Fig. 6 Digital characters represented as matrices. The first row shows the digital characters
without noise and the following rows from top to bottom shows the resulting images after
adding some mixed noise.
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(a)

(b)

Fig. 7 This figure shows operators Opa1 and Opa2 used as association rules; where x and y
are the input and target patterns.

4.2 Experiments on the Iris-Plant Database

The results achieved during the first experiment gave us confidence for testing the
proposed methodology in a more complex association problem. Here, the test con-
sists on finding the AM’s for the Iris-Plant database that provides a test from a
real-world application. In particular, real value patterns should be associated in such
a way of solving a problem in a bigger and more complex search space.

The proposed methodology was applied to a very well-known database prob-
lem, the Iris-Plant classification database [30], that consists of 4 features, 3 classes
and 150 instances. The final AM’s that achieve the highest score on this problem
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min(max(-(*(max(g,*(g,min(g,v))),min(max(-(*(g,min(g,v)),g),-(-(*(*(g,-(v,+(*(g,v),g))), 
 *(g,v)),g),-(-(v,+(+(v,v),g)),+(-(g,*(g,g)),v)))),v)),g),-(-(*(*(+(g,*(v,g)),-(-(*(*(+(g,*(v,g)), 

 -(v,+(*(g,v),g))),*(g,v)),g),g)),*(g,v)),g),g)),g)

min

max g

- -

* g - g

max min * g

g * max v * *

g min - - + - g v

g v * g - - g * - g

g min * g - + v g * g

g v * * v + - v * *

g - g v + g g * + - g v

v + v v g g g * v +

* g v g * g

g v g v

Fig. 8 This figure shows operator Opa3 used as the association rule for the AM in the Iris-
Plant database.

are shown in Figs. 7 and 9. All the experiments were implemented for the auto-
associative case. In particular, the model was implemented as a search process to
find three-individuals to be used as the association rules; where each class is asso-
ciated through an individual. In this way, the coevolutionary process was executed
in order to find three individuals that recall the patterns. Each individual was coe-
volved during the association stage following the proposed cooperative coevolution-
ary model, until a suitable solution is achieved. Thus, each individual was labeled
in the evolutionary process in order to track the global fitness for every winner pair
as shown in Table 1.

Note that according to Figures 7, 8, 9, and Table 1, the evolutionary process
is capable of producing different solutions; like a complex one, see Figure 8, to a
simple recalling run, as shown in Figure 9(c). According to Table 1, the association
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(a)

(b) (c)

Fig. 9 Evolved recall operators to be used in the recall stage on the AM’s for the Iris-Plant
database; where Mk is the association matrix.

Table 1 Fittest individuals pairing the association rules, first column in competition, with its
corresponding recalling rule, second column, and the global fitness attained in cooperation.
The indexed operators in the first column are related to each association rule. Operator Opa1
is shown on Figure 7(a); also, Opa2 and Opa3 can be seen in Figures 7(b) and 8, respectively.
Operator Opr1, Opr2, and Opr3 in the second column is depicted in Figure 9(a).

Association rule Recalling rule Global Fitness
Competition(Opa1, Opa2 , Opa3) := Opa1 Opr1 1
Competition(Opa1, Opa2 , Opa3) := Opa1 Opr2 1
Competition(Opa1, Opa2 , Opa3) := Opa1 Opr3 1
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Fig. 10 Robustness to noisy patterns for the three AM pairs.

rules, see Figures 7(b) and 8, were not selected for the association stage due to the
low performance in cooperation with the recalling rules. In this way, all the three-
evolutionary rules obtained for the recalling stage achieved the higher fitness in
cooperation with the first association rule Opa1 , see Figure 7(a).

On the other hand, the proposed methodology reveals the application of different
synapsis or connections in the solution of the recalling stage. In this example, the
best recalling rule shows that all rows of matrix Mk are significant for the recalling
stage. In particular, the rows are related to the sepal length and width; as well as, the
petal length and width. In this way, all four features are relevant to the recall process
for the Iris Plant database [30].

Finally, we tested this new AM by adding some random noise to the input pattern
set X . Here, the samples were affected by a small amount of noise given in the
percentage range [0.01, 0.09]. The resulting fitness is depicted in Figure 10 showing
that the recalling rate decreases as the noise increases.

4.3 Experiments on the Pima Indians Database

The third experiment analyses the dataset of the Pima Indians diabetes problem [30]
from a classification standpoint. In this way, 8 attributes are considered as multivari-
ate characteristics using 768 instances. The resulting AM’s suitable for this problem
consider real and integer valued patterns that are show in Figure 11(a). In this sec-
tion, all experiments were implemented for the auto-associative case.

Thus, the proposed model searches for a suited individual to be used as an asso-
ciation rule and another one for the recalling rule. The resulting trees are shown in
Figure 11. Note that the recalling rule of Figure 11(b) uses the rows R1, R2 and R3
of the association matrix; while, Figure 11(c) is a simpler rule but uses the whole
matrix.
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(a)

(b)

(c)

Fig. 11 This figure shows the best individuals found for the Pima Indian diabetes dataset.
The first tree (a) is the operator used as the association rule, then, (b) and (c) are the two best
individuals found for the recall stage. Finally, Mk is the association matrix.
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5 Conclusions

In this chapter, we described our GP-based approach for the synthesis of AM’s. In
particular, the proposed methodology is based on the coevolutionary paradigm that
is used as a way of managing the association and recalling stages that are an integral
part of classical AM’s. Nevertheless, the idea of applying GP to the design of AM’s
opens us to the possibility of automating the entire design process; in such a way, of
developing AM’s in just a few hours instead of the extensive work that is normally
applied by human experts. Moreover, the proposed methodology provides a way of
creating novel AM’s with an standardize procedure. Also, in this chapter it was ex-
tensively described the inherent problems that were solved to achieve our final goal
[33]. Moreover, the new methodology was tested on three different datasets and the
results obtained in the form of several AM’s that perfectly fit each pattern set. Here,
the time necessary to generate a solution varies from hours to days instead of the tra-
ditional approach that takes years of research performed by experts. In this way, the
approach depends on the computational effort that is necessary to synthesize about
ten or more models. This methodology is similar to the evolution of ANN using
genetic algorithms. Thus, our methodology has one very important advantage: the
possibility of developing AM’s that are specially designed for specific pattern sets.
The resulting new AM’s are produced by a cost-effective process based on GP that
searches for optimal solutions. In particular, these can be implemented in parallel
in order to compute several solutions for each pattern recognition problem using a
lower computational time. For future research, we are working towards improving
our methodology through the use of new fitness functions and metric spaces suited
to the kind of pattern recognition problems in challenging real world applications.
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Parallel Architectures for Improving
the Performance of a GA Based
Trading System

Iván Contreras, J. Ignacio Hidalgo,
Laura Nuñez-Letamend́ıa, and Yiyi Jiang

Abstract. Research and development of automatic trading systems are be-
coming more frequent, as they can reach a high potential for predicting mar-
ket movements. The use of these systems allows to manage a huge amount
of data related to the factors that affect investment performance (macroeco-
nomic variables, company information, industry indicators, market variables,
etc.), while avoiding psychological reactions of traders when investing in fi-
nancial markets. Movements in stock markets are continuous throughout each
day, which requires trading systems must be supported by more powerful en-
gines, since the amount of data to process grows, while the response time
required to support operations is shortened. In this chapter we present two
parallel implementations of a GA based trading system. The first uses a Grid
Volunteer System based on BOINC and the second one takes advantage of a
Graphic Processing Unit implementation.

1 Introduction

The investment process in real time on the stock market has become an in-
creasingly difficult process as manifested in the daily news we receive in this
environment of financial crisis. Several factors are influencing this process.
These include the large amount of data available, the difficulty in the process
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of valuation of financial assets and the growing complexity of financial and
socio-economic environment. Each asset class has its peculiarities and there-
fore requires to perform its assessment from a different approach. We need
to determine exactly which are the variables that affect their performance in
order to anticipate his return, bearing in mind the risk factors and volatility.

Therefore, it seems logical to seek to develop automatic or mechanical
trading systems that rely on technology to make predictions of values, selec-
tion of factors to consider and, of course, analyze and process all available
information for investors. Other factors have contributed to the development
and expansion of trading systems supported by computers:

• the popularization of systems with some degree of parallelism has led to the
advancement of computing power. At present any desktop has a tremen-
dous computing power unthinkable just a few years ago. This process has
accelerated recently with the emergence of new graphics processing units
(GPUs) working on massively parallel calculations

• the tremendous expansion of the globalization process symbolized for in-
stance by the tremendous development of the “hedge funds industry”, a
class of funds which invest in any kind of assets around the world (stocks,
indexes, bonds, commodities, currencies, etc.)

• the attempt to avoid the psychological aspects that biases the investment
process (known in the literature as behavioral finance ([28])

Automatic and mechanical trading systems are based on rules that uses mar-
ket, business or macroeconomic information embedded in algorithms that look
for the best combination of these rules to drive the stock trades in an at-
tempt of obtaining the maximum possible return for a period. Those systems
have evolved from very simple If-then algorithms to more sophisticatedmodels
that use methods like artificial intelligence, chaos theory, fractals, evolutionary
algorithms, nonlinear stochastic representations, econo-physics models, etc.,
which are ultimately based on market, fundamental or macroeconomic data.

Focusing on the subject of this book, some previous studies document the
use of Genetic Algorithms (GA) and Evolutionary Computation (EC) to de-
sign and optimize automatic trading systems for the Stock Market (see [1] [23]
[24] [17] [25] [14] [5]). We can affirm that, the investment practitioners have
begun to use evolutionary algorithms to build automatic trading systems.

In [17] the authors describe a trading system designed with GAs that use
different kind of rules with market and companies information, which is ap-
plied to trade, in a daily base, to companies belonging to the S&P 500 index.
One of the difficulties the authors claim is the computational time required
for training the trading system with daily data of stocks prices. This restric-
tion is even more critical when we take into account that the majority of
traders invest in an intra-day base (what means that the investment posi-
tions are canceled during the same day). Therefore, the operative in financial
markets seems to recommend the use of an even shorter frequency in data
when training and applying mechanical trading systems.
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However, the focus on intra day (instead of daily data) cause some diffi-
culties for the design and application of these trading systems because of the
shorter time of respond we require, since it is not possible to wait for hours
to obtain the investment decision result provided by the mechanical trading
system when the investments have to be done continuously during the day.
The necessity for speeding up the GA process, to get in time good results for
this kind of trading applications, as well as its possibilities of parallelization
allows us to use alternative ways of implementing these applications.

In this Chapter we describe the implementation on two differents parallel
computer architectures to speed up the functioning of a GA-based trading sys-
tem to invest in stocks: a corporative grid and a GPU-CPU architecture. Start-
ing from the work presented in [17] and [10], both plataforms are compared in
terms of computational time. This comparison is important when implement-
ing the proposals in a real way, allowing execution times to generate buy and
sell signals in times operationally functional. In other words, the more efficient
is the parallelization, the more realistic is the possibility of using these systems
for intraday data. Although in the scientific literaturewe can find, with increas-
ing frequency, the use of such architectures for solving complex problems, they
only have been marginally applied to markets. Experimental Results show how
the combination of the GA and the parallel architectures allows us to obtain
solutions for real time (or intra-day data) investment decision. It is very diffi-
cult to have access to intra-day data since the commercial databases for stock
prices and stock exchangemarkets donotprovide frequencydata inferior to that
of daily prices. The way to accede to intra-day data is through an investment
bank, and usually they do not like to publish results obtained in joined research
projects.Nevertheless, since the onlydifferencebetweena trading-systembased
on intra-day data versus daily data is the respond time required, we apply our
trading systems to daily data, because of the mentioned difficulty of accede to
intra-day data. We show how we can use and configure the GA on the parallel
architectures in order to analyze results for different companies at once.

The rest of the chapter is organized as follows. In the next section, section
2, we formulate the investment problem describing the proposed trading sys-
tem to cope with it. In section 3 we explain the parallelization in the grid
platform and Section 4 introduces the details of the GPU implementation us-
ing the CUDA architecture. Section 2 and Section 3 are based on [17], while
section 4 is based on [10]. We summarize and conclude in Section 5, where
we show both parallel architectures in opposition.

2 Formulation of the Investment Problem and
Description of the Proposed Trading System

The investment problem is defined as to maximize return (or risk adjusted re-
turn) for a specific time period when investing long or short-sell in a financial
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asset (in our case a stock)1. Since the performance of investment decisions in
stock markets is influenced by a wideness of factors of different type: political,
macroeconomic, regulatory, local, international, etc. that are uncertain, there
is not a single and perfect rule with a specific parameter or threshold value
that can be used to maximize future returns, but a broad set of potential rules
which combine indicators, representing different factors and driven by a range
of values in their parameters. Therefore, the investment problem consists first
of finding the best combination of indicators and second of fine-tuning the pa-
rameters for these indicators to obtain the maximum return when applied to
the investment decision making in a stock. Thus, the input set of variables for
a trading system consists of the indicators to be used as investment criteria
and the parameters being the threshold values for these indicators, while the
output is the return obtained by the trading system this way defined.

2.1 Two Types of Financial Analysis

When the objective of the analysis is to determine what stock to buy and
at what price, there are two basic methodologies: fundametal analysis and
technical analysis. Investors can use any or all of these different but somewhat
complementary methods for stock picking. For example many fundamental
investors use technicals for deciding entry and exit points. Many technical
investors use the fundamental analysis to limit their universe of possible stock
to good companies.

2.1.1 Fundamental Analysis

Fundamental analysis maintains that markets may misprice a security in the
short run but that the “correct” price will eventually be reached. Profits can
be made by trading the mispriced security and then waiting for the market
to recognize its ”mistake” and reprice the security. Fundamental analysis of
a business involves analyzing its financial statements and health, its manage-
ment and competitive advantages, and its competitors and markets. When
applied to bonds and forex, it focuses on the overall state of the economy (in-
terest rates, production,etc...). When applied to companiesśhares. it focuses
on accounting information from those companies.

A plethora of indicators can be applied, thus the first step to solve the
investment problem is to select the indicators to be included in the decision
making trading system. In this document we follow previous works [17] where
the authors carried out an exhaustive analysis of the investment literature
to select different classes of accounting indicators from which subsequently,
they selected one indicator whitin every class by applying a GA. For sale
positions the indicators selected were Price Cash Flow (PCF), Debt Over

1 In this section we present and abridged description of the trading system proposed
in [17]. For more details we refer the reader to it.
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Table 1 Indicators used for fundamental analysis based on [17]

Acronym Description Formula

PCF Price Cash Flow PCFt =
PRCCQt·CSHOQt
NIQt−1+DPQt−1

DBE Debt over Book Value Equity DBEt =
DLTTQt−1+DLCQt−1−CHEQt−1

CEQQt−1

SG Sales Growth SGt =
REV TQt−1

REV TQt−2
− 1

TOG Turnover Growth TOGt =
REV TQt−1/ATQt−1

REV TQt−2/ATQt−2
− 1

PBV Price Book Value PBVt =
PRCCQt·CSHOQt

CEQQt−1

ROA Return on Asset ROAt =
NIQt−1

ATQt−1

Book Equity (DBE), Sales Growth (SG) and Turnover Growth (TOG), while
for buying, they selected Price Book Value (PBV), Sales Growth (SG) and
Return On Assets (ROA). As the authors remark, all these indicators have
been reported to be useful in the literature on investment (see [2] [4] [6] [8]
[12] [13] [27], among others). The formulation of these indicators is presented
in Table 1(for a broader description see [17]).

Indicators in Table 12 are applied to the investment process related to a
threshold or parameter value3. For instance, the PCF can be used as follows:
take a long position in the company stock if the PCF is below 8 / invest short
or sell in the company stock if the PCF is above 15. Therefore it is necessary to
fine-tune the parameter for each one of the indicators within a range following
market practices (we use the same range that [17]). The trading systems
signals are triggered by comparing the value of every indicator estimated

2 To compute these indicators Jiang et al. obtained, from the COMPUSTAT
database , quarterly data on the nine items (COMPUSTAT codes in paren-
thesis) from the companieśfinancial statements for the period January 1986 to
December 2006: total assets (ATQ), total common ordinary equity (CEQQ),
cash and short-term investments (CHEQ), debt in current liabilities (DLCQ),
total long-term debt (DLTTQ), total depreciation and amortization (DPQ), net
income / loss (NIQ), total revenue (REVTQ) and common shares outstanding
(CSHOQ). From the Center for Research in Security Prices (CRSP) Databases
prices (PRCCQ) are obtained and adjusted by stock dividends and splits. To
ensure that the items used to compute the indicators at quarter t were known
to the market as of quarter t, Jiang et al. used the data on quarter t-1 for all of
them, except for the common shares outstanding and prices.

3 Sales Growth (SG) indicator is used for both investment signals, long and short,
however a different parameter is used for triggering each signal.
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Table 2 Fundamental trading Rules

Short-Sell Positions (-1) Trading Rules Threshold Value Range

Price Cash Flow (PCF) If PCF ≥ threshold value 5-29
Debt over Book Value Equity (DBE) If DBE ≥ threshold value 60-135%

Sales Growth (SG) If SG ≤ threshold value +5% to (-17.5%)
Turnover Growth (TOG) If TOG ≤ threshold value +1% to (-29%)

Long or Buying Positions (+1) Trading Rules Threshold Value Range

Price Book Value (PBV) If PBV ≤ threshold value 0,25 - 5,75
Sales Growth (SG) If SG ≥ threshold value 1% - 23.5%

Return on Asset (ROA) If ROA ≥ threshold value 1% - 15%

Neutral Positions (0) When variables values comparing with threshold values
are not triggering short-sell or long positions

with the company information against the parameter value selected by the
GA for each one of the indicators based on maximization of return. The
fundamental trading Rules are showed in Table 2.

Consequently, the difficulty of solving the investment problem defined
above depends on the number of indicators included in the trading system
and the range allowed for the parameters to be used as threshold values for
these indicators. Notice that we face a combinatorial optimization hard prob-
lem that is growing exponentially with both indicators and parameters range,
being explosive when using a high number or range for both variables.

2.1.2 Technical Analysis

Technical analysis maintains that all information is reflected already in the
stock price. Trends “are your friend” and sentiment changes predate and
predict trend changes. Investors’ emotional responses to price movements
lead to recognizable price chart patterns. Technical analysis does not care
what the ’value’ of a stock is. Their price predictions are only extrapolations
from historical price patterns.

Technicians using charts search for archetypal price chart patterns, such as
the well-known head and shoulders or double top/bottom reversal patterns,
study technical indicators, moving averages, and look for forms such as lines
of support, resistance, channels, and more obscure formations such as flags,
pennants, balance days and cup and handle patterns.

Technical analysts also widely use market indicators of many sorts, some
of which are mathematical transformations of price, often including up and
down volume, advance/decline data and other inputs. These indicators are
used to help assess whether an asset is trending, and if it is, the probabil-
ity of its direction and of continuation. Technicians also look for relation-
ships between price/volume indices and market indicators. Examples include
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Table 3 Indicators used for technical analysis based on [17]

Description Formula

Crossing of Moving
Average

MA = MAl −MAs

(MA) MAn =
PRCCMt+PRCCMt−1+PRCCMt−2+...+PRCCMt−N

N

Relative Strength
Index Divergence

(RSID) RSID =

⎧
⎨

⎩

1 if (RSIt −RSIt−n > 0)&(PRCCDt − PRCCDt−n < 0)
−1 if (RSIt −RSIt−n < 0)&(PRCCDt − PRCCDt−n > 0)
0 otherwise

RSI = 100− 100
1+RS

RS =
∑m

i=1
UPCPi∑

m
i=1

DWCPi

UPCPi = (PRCCDi − PRCCDi−1)∀PRCCDi > PRCCDi−1

DWCPi = (PRCCDi−1 − PRCCDi)∀PRCCDi < PRCCDi−1

Support and
Resistance Levels SRL = (SLn, RLm)

(SRL) SLn Local Minimum PRCCM for the last n periods
RLm Local Maximun PRCCM for the last m periods

Volume Price
Divergences

(V PD) V PD =

⎧
⎨

⎩

1 if (V Dt − V Dt−n > 0)&(PRCCDt − PRCCDt−n > 0)
−1 if (V Dt − V Dt−n > 0)&(PRCCDt − PRCCDt−n < 0)
0 otherwise

the relative strength index, and Moving Average Convergence - Divergence
(MACD). Other avenues of study include correlations between changes in op-
tions (implied volatility) and put/call ratios with price. Also important are
sentiment indicators such as Put/Call ratios, bull/bear ratios, short interest,
Implied Volatility, etc.

As it was the case for fundamental analysis, numerous technical indicators
can be applied to trigger investment signals, thus, again, to solve the invest-
ment problem we need to select the indicators to be included in the trading
system for which we follow again previous works in [17] where the authors se-
lected the following technical indicators: Crossing of Moving Averages (MA);
Relative Strength Index Divergence (RSID); Support and Resistance Lev-
els (SRL) and Volume Price Divergences (VPD). The formulation of these
indicators is presented in table 3 (for a broader description see [17]).
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Table 4 Technical Trading Rules

Indicator Trading Rules Investment Signals
& Parameter Range

MA if MAs −MAl > 0 Long Position (+1)
s (1-31) if MAs −MAl < 0 Short Position (-1)
l (33-93) otherwise Neutral Position (0)

RSID if RSID = 1 Long Position (+1)
n (1-31) if RSID = −1 Short Position (-1)
m (1-31) if RSID = 0 Neutral Position (0)

SRL if PRCCD > RLm Long Position (+1)
n (1-76) if PRCCD < SLn Short Position (-1)
m (1-76) otherwise Neutral Position (0)

V PD if V PDn = 1 Long Position (+1)
n (1-31) if V PDn = −1 Short Position (-1)

if V PDn = 0 Neutral Position (0)

These technical indicators presented in table 34,5 are driven by parame-
ters when used in the investment process. For instance, the MA needs two
parameters that are l and s and give us the number of daily prices we need
to use to compute each moving average. Then, it is necessary to fine-tune
the parameters for each one of the indicators within a range following mar-
ket practices (we use the same range that [17]). Trading systems signals are
triggered by the technical rules as described in Table 4.

2.2 Sample Data

The sample of firms for the trading systems in [17] is the same used here
for comparing both platforms and comprises all companies included in the
S&P 500 for at least two quarters during the period January 1986 to De-
cember 2006 with non-missing values for the variables required for at least
the previous consecutive 20 quarters (if available 40 quarters are used), with
the exception of those companies belonging to the finance, insurance and

4 Besides the variables already mentioned in table 1, Jiang at al. take daily prices
(PRCCD) and volume (VD) from CRSP Database adjusted by dividends and
splits. We use the same data.

5 UPCP and DWCP stands for UP changes in price and DOWN changes in price
respectively.
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real estate industries. In this way, the number of companies in the sample is
599 with 332.710 observations for quarterly fundamental data and 7.157.320
observations for daily technical data. Original data in [17] are gathered from
Compustat and CRSP databases.

2.3 Genetic Algorithm

As it is well known, the design of a GA involves some key factors that will
depend heavily on the characteristics of the problem at hand. One of them
is the chromosome encoding used for representing the solutions by means of
some type of code (binary, real, etc.). In this system the GA is the responsi-
ble of selecting threshold values of the indicators that comprise the trading
systems or investment rules.

The chromosomes representing the parameters or threshold values for both
types of indicators fundamental and technical are encoded using binary code
with 4 genes for each parameter. For fundamental indicators we need to
encode 7 threshold values for the 7 variables used to guide the trading sys-
tems (four for short-sell investments and three for long positions). For tech-
nical indicators we also need to encode 7 parameters values, since each one
of the four indicators uses 2 parameters with the exception of the Volume
Price Divergence indicator that needs only one parameter. Therefore, each
chromosome for each type of trading system (fundamental and technical)
comprises 28 genes (7 parameters X 4 genes) giving a total search space of
228 = 268.435.456 possible combinations. This huge space implies that the
analysis of more than 2.5 millions of potential combinations of indicators with
different parameter values would reach only 1% of the full search space.

For selection we use the roulette wheel [15] method initially (on Boinc
system) and tournament selection (on the GPU). Crossover and mutation
are implemented as usual based on one-point crossover and mutation. The
GA choice of threshold values is driven by the value of the fitness function
consisting in the accumulated return obtained when applying the trading
systems to the sample data computed as described below:

ARf =

i=1∏

f

(1 +DRi) (1)

Where ARf is the accumulated return at the end of the trading period and
DRi is the daily return given by:

DRi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pi−Pi−1

Pi−1
if the TS gives a long signal

−Pi−Pi−1

Pi−1
if the TS signal is short selling

RFDRi if the TS signal is neutral

(2)
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Pi denotes the stock price at day “i”, while RFDRi is the risk-free daily
return given by the US Treasury Bills, and TS stands for Trading System.

The main problem of this approach to design trading systems is the execu-
tion time that takes some time, what makes difficult to apply these systems
for intra-day trading. With a sequential execution of the GA we are not able
to apply these trading systems to real time problems with intra-day data. In
the following sections we explain how we can approach this problem by using
several parallel implementations. For this purpose we made first an analy-
sis of the execution time for the whole program and, based on the results,
we implemented several important changes not only in the structure of the
program, but also in the genetic operators.

3 Parallelization with a Grid System

Buying supercomputers requires heavy investment that can be avoided by set-
ting up computer grids. In order to carry out its complex financial operations,
a Bank or a company can use the idle time of computers on its Local Area Net-
work (LAN). This solution has many advantages. First, it is relatively cheap
and second, it is scalable. If the company needs more computing power, it will
only have to tighten its grid by adding more computers to it. Some companies
already provide these sevices, thus these allow hiring his services when another
company require it, for instance the enterprise Grid Systems [11].

Other alternative is to use volunteers computers [9] [16]. We have imple-
mented our grid system using the Berkeley Open Infrastructure for Network
Computing (BOINC 6), which allows to interconect a set of voluntaries com-
puters. People interested in helping to science can joined these projects allow-
ing to a Boinc server to use his idle computer time. Boinc is an open software
system developed with the main intent of achieve a massive computing capac-
ity. This feature is carried out with the interconexion of computers trought
ethernet, either LAN or WAN, like a grid system. The huge computation
power of Boinc falls in the volunteer users.

3.1 The BOINC Architecture

The Boinc architecture is a client-server model. Therefore the Boinc frame-
work consists of two layers which operate under the client-server architecture.
Once the BOINC software is installed on a computer, the server starts send-
ing tasks to the client. The operations are executed in the client and finally,
the results are uploaded to the server.

6 Open-source software for volunteer computing and grid computing. University of
California at Berkeley. http://boinc.berkeley.edu
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Fig. 1 The typical Boinc project structure

3.2 Boinc Server

The Boinc Server (BS) is responsible for planning and scheduling tasks for the
projects. The server interacts with all others machines, and it is the manager
of sending and receiving works and results. There are several ways to install
the Boinc server software.

• Server like a virtual machine: Boinc provides a virtual machine to use as
BS. This BS includes all necessary requirements to be used. These fea-
tures make the BS one of the best options when you are starting with it.
The operative system of the virtual machine is one distribution of Linux,
specifically a basic distribution of Debian. This version do not includes a
graphical interface, however you can install it later. All Boinc software is
provided with the original package and with all programs already com-
piled. Furthermore this package has a ready user accounts with execution
permissions. The virtual machine can be running with several software like
VirtualBox (free7) or VMware (you can download free limited versions8).

• Independent BS : For experimentation and debugging, you can use almost
any computer as a BOINC server. However, when the size of the project
grows, it is necessary an independent BS for an optimal use of this soft-
ware. If our project is executed in a huge amount of machines it is highly
recommended to use the independent BS. Given the fact that we have
a specific server machine, we use it for this project, thus we ensure the
performance, availability, and security of the BS.

The features of our server are exposed in Table 5. Together with the
mentioned characteristics of the server we should have an internet connec-
tion with adequate performance and a static IP address.

7 https://www.virtualbox.org
8 http://www.wmware.com
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When we want to set up an application in the environment of Boinc, we need
to create and to configure a project. A Boinc project is the form of naming a
set of applications with a common objective and the configurations needed to
be executed in the Boinc platform. When speaking about a Boinc application
we refer to a specific program inside a project and each application consists of
a set of works to be done. An application must have a name (“short name”)
that will be used to name folders and files of the application and a common
name by which the volunteers know the project (“friendly name”).

Once an application is ready for execution the BS should create tasks
for starting the grid computation. These tasks are commonly named as jobs
for the programmers. Boinc jobs have two different parts, workunits and
results. A workunit is technically a portion of the program that describes the
computation to be performed. A workunit has one or more results, each of
which describes an instance of a computation, either unstarted, in progress,
or completed. The Boinc client software refers to results as “tasks”.

We can use also the Wrapper which is a program provided by Boinc able
to execute any type of application in the environment of this platform. Thus,
Wrapper is a very useful tool when the programmer cannot access to the
source code, or in cases where the code is difficult for support changes, even
when the code is developed in programming languages not actually supported
by Boinc. This program encapsulates the original application, as a result
Boinc can process the application. It can execute a sequential number of
applications and it can establish checkpoints for heavy applications. Wrapper
executes the programs as subprocesses, so the communications with the Boinc
environment are fluid.

The BS database is a set of tables and indexes that contains the informa-
tion stored for all projects in the Boinc server. Boinc stores the data in a
MySQL database. We can find tables for the workunits, results, applications,
user, etc. The database for each project is generated by the make project
script (this is a script that you should execute when you create a new project).
Usually, the user don’t have to directly examine or manipulate the database,
however sometimes it is very useful to manage the workunits and results,
because we can obtain statistics, delete the failed workunits, etc. There are
several ways to access to the database, the MySQL command-line interpreter
or the Boinc’s administrative web interface are the most common.

In order to develop applications with Boinc it is important to know the
Boinc client. The Boinc client is a light program (in terms of memory and
compuation requirements) that remains in communication with the server.
The most important thing that we must know is the structure for the inputs
and outputs. On Boinc client computers, each project has an specific directory
where all data related to it is stored. Every executed task will have a different
folder and these will reside in the directory slots. Each of these folder has an
identification number. Furthermore, this directory will have the links to the
inputs and outputs of the tasks.
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3.3 Modifications in the Code

In order to port our GA to the Boinc grid we made some neccesary modifica-
tions in the code. The original GA code is an unique program that takes as
input a matrix with the data of the companies in the S&P 500 for a period
of 1976 to 2006. This program executes the GA approximately 4500 times,
once for each company and year . The way for parallelize the program is to
divide these thousands of executions in independent tasks. Of course, 4500
tasks are enough for achieving one of the best configurations with our grid.
The tasks are enough big for not overloading the server with a lot of requests,
and are little enough for not overloading the computers with long executions.
Thanks to this way of partition of the program, the modifications needed in
the code for achieving a parallelized program are small. Mainly, we need to
change the main file where the execution of the GA is processed and create
a script for reading the data, executing the algorithm and saving the data,
in this order and with the correct parameters.

The script executes the program in the adequate order, it is a file written
in Matlab programing language. This script receives an unique string with
the year and the company number (acording to the data that the program
runs). First the script reads data from the company to be stored in an array.
Second, it executes the algorithm with the default parameters, as the number
of individuals, generations, mutation and crossover probabilities, etc. The
output data is stored in a file with the same name of the data of the company.

In addition, we needed to do modifications in the main file of the GA,
changing the code for processing the data just for one company.

3.4 Parallelization Tasks

In order to parallelize the execution we made some parallelization tasks.
Regarding the input data, the original code has an Excel book as input. This
Excel file is divided by years, the pages of the book, and by companies, all on
the same page. These files have a weight between 20 MBytes and 80 MBytes,
so if the Boinc server sends the full input to the client computers, we will
overload the grid system. This overload is unnecessary because we use only
one company in the execution of the program in a grid node. Then we need
to divide the input data into independent data sets (one for each company).
Thus, the program will run with the minimum amount of data. We have
created a little program that divides the original data in a collection of Excel
files. Finally we have around 10000 files: 5000 for technical analysis and the
same number for the fundamental analysis.

At the same time, when all tasks are ended, we have a great amount of
files with the final results (one result for each task). We need to develop a
program that combines all the results in the same once more. The results are
stored in a “mat”file with several matrices and variables. These matrices and
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variables represents the final result of our GA, then we take all the results
and create a collection of matrices and variables with another dimension.
With the pre-process we achieve all the results in one file, and a grid with
more fluid communications.

3.5 Matlab in the Client

The first option to consider is to install a version of Matlab in the client.
In this way the source program must be a script (sh script) that executes
Matlab in the client. The input of this script should be the name of the main
file of our program. The main file will be created like an executable. It is
highly recommended to run the program without graphical interface, thus
the user (computer where the Boinc client is installed) has no knowledge of
his execution. If we follow this way, all the files needed for our applications
must be added to the input template, including the main file of our program,
because the file executed by the wrapper is the script mentioned above. This
option has a big problem, because all the clients must have installed the
Matlab program, which limited the number of potential volunteers. Moreover,
the software is a program with a not free license. Even in the case that the
client has the Matlab software licensed and installed, the execution may throw
exceptions due to incompatibilities between different versions of the software.

The second and more desirable way is to use a Matlab Executable file
encapsulated in the Boinc Wrapper. Matlab has the ability to convert a pro-
gram written in its language to a single executable file that will depend on
the target platform. For the right operation of the executable file, the client
computer should have MCR (Matlab component runtime) installed. MCR
can run almost all Matlab functions and is freely distributed with the library
files generated by the Matlab compiler.

It is also possible to package the application together with MCR libraries.
In this way we would have just one executable file which brings together
all the elements needed to run the application on any computer. The MCR
libraries are distributed by Matlab.

3.6 Experimental Results

In this sections we will present a description of the experimental tests that
we have done with the program in the Boinc enviroment.

3.6.1 Metrics

The set of experimental tests have been carry out in a Boinc grid installed in
CES Felipe II (A Computer University College of Aranjuez, Madrid, Spain),
thus we have used the computers of different laboratories and some well-known
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volunteers (falua.cesfelipesegundo.com). Tests are used for estimating the grid
computing power, because the capability to support volunteers carries a non-
constant computing power. These tests consist of a series of computing time
measurements in a independent CPU and in the computing grid. The execu-
tion times of the grid tests were obtained with the administrator page of the
Boinc project. Moreover, the execution times of the basics executions in the
CPU were measured with the Matlab Profiler tool in a computer with a Pen-
tium 4 processor (see Table 6). Boinc client and the MCR libraries of Matlab
were installed in all computers. The trading system has been executed fully,
for all companies and for all years, which means approximately 10000 runs of
the GA. In Table 5 we can see the main characteristics of the server.

Table 5 Main characteristics of the Server used in the experiments

Server IBM xSeries 236 Type 8841

Processor Intel Xeon 2,8 GHz
RAM 2 Gb
HDD x4 70Gb - Raid 5

Table 6 summarizes the main characteristics of the different groups of com-
puters that comprise the system (processor type and operating system) and
the measures undertaken to estimate the computing capacity of the system.

We have carried out two tests of performance in each of the computers for
determine both magnitudes (GFLOPS and GMIPS). The name of the test
are Whetstone and Dhrystone provided by Boinc. Once done, it is taken the
maximum value of the same for each group of computers with the same pro-
cessor and operating system. In short, the grid Falua has about 225 GFLOPS
and 433 GMIPS. These numbers supposed the grid at full capacity, with all
the computers active and available.

Others software packages are used for managing the Boinc grid. We need to
manage all computers (no volunteers) in our grid, because it is very uncom-
fortable to manipulate the computers independently. We used the software
EMCO Remote Shutdown9, to a great extend for turning on/off our comput-
ers. We also need a manager for the Boinc client, it is heavy and inefficient
going computer by computer, for example joining the computer in a project,
or requesting more tasks. For this purpose we used the BoincViewer that
facilitates the use of a lot of computers with the Boinc client, that allows you
to manage the Boinc Client on a single PC.

3.6.2 Execution Time Analysis of the Algorithm in the Grid

Figure 2 shows the experimental results for different number of individuals
(X-axis) vs. Total Execution Time (Y-axis) and 500 generations. Note that
execution time is represented using a 10-base logarithm scale.

9 http://emcosoftware.com/



204 I. Contreras et al.

Table 6 Main components of the Grid

Group PCs CPU Operative GFLOPS GIPS Total Total
System GFLOPS GIPS

Lab. 20 2 x Intel Windows 2,744 5,101 54,88 102,02
ITIS 1 P4 3GHz XP x86

Lab. 21 2x Intel Windows 2,744 5,194 57,624 109,074
ITIS 2 P4 3GHz XP x86

Lab. 22 2x Intel Windows 2,744 5,01 60,368 111,22
ITIS 3 P4 3GHz XP x86

Lab. 1 2x Intel Ubuntu 1,853 5,436 5,905 13,204
I4 E2200 2GHz Linux x86

2 2x Intel Ubuntu 2,026 3,884
P4 3GHz Linux x86

Lab. DOSI 2 2x AMD Windows 4,906 8,974 11,84 21,556
I+D Athlon 4600+ XP x86

1 2x Intel P4 Ubuntu 2,028 3,608
3GHz Linux x86

Volunteers 6 2x Intel XP x86 2,722 4,747 35,128 77,53
P4 3GHz XP x86

2 2x Intel Ubuntu 1,847 2,876
P4 3GHz Linux x86

1 4x Intel i5 Windows 11,492 36,736
750 2.7GHz 7 x64

1 AMD Athlon Windows 2,129 3,578
2600+ XP x86

1 2x Intel Windows 0,802 1,508
T2450 2GHz XP x86

1 Pentium III Ubuntu 0,679 1,474
Coppermine Linux x86

TOTAL 225,745 433,604

The grid implementation provides lower execution times, even for a small
number of individuals. Technical Analysis is computational heavier than Fun-
damental Analysis, since it uses huge amounts of data. Due to that it achieves
the highest compuation times. We can observe the inefficient compuation
times of an independent CPU implementation. For example, we can ana-
lyze the first bars of Figure 2, where the times of technical analysis (500
generations, 500 individuals) are more than 100 days (184,9 days) and ap-
proximately one week for the grid version (4,11 days). We can see that for
fundamental analysis the grid version achieves the results in a few hours (5,6
hours) while one single computer spends about 10 days (12,64 days). 100
days of execution is a very high time, fully uneasy, even more if we think
that the execution depends only on one machine, with an execution without
checkpoints. In this way, the system becomes easily susceptible to any danger
or event, like a failure of the software or a cut of energy.
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Fig. 2 Execution times in the grid (y- axis) for 500 generations and different
number of individuals (x- axis)

Fig. 3 Speed-up in the grid

Figure 3 represents the speed-up in the grid. We can observe that figures
are approximately constants. The achieved speed-up is around 50 and this
ratio remains constant throughout all the experimental tests. The speed-up
is not continue at all, this is because the computers in the grid do not have
a continued availability, one computer could be off-line for hours.

4 Parallelization with a Computer Graphic Card

On last section we have explained a parallel implementation of the trading
system using a grid enviroment. Graphic Processing Units (GPUs) are more
and more extended for hihgly parallel applications. In this section we presents
some results of a GPU-CPU implementation of our GA.
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We can find in the literature several approximations for implementing evo-
lutionary algorithms on GPUs ([20] [18] [26] [3] [22] [29]). Most of them rely
on the CUDA architecture10 and provide detailed information on how to con-
figure the control parameters in order to obtain an efficient implementation.
Those works show that doing an ad-hoc implementation require a good level
of knowledge on a set of computer architecture and programming issues. How-
ever, that could represent a serious problem when a trader tries to use GPUs.
The proposal explained in this section differs from previous approaches offer-
ing an adaptable tool for investors with no special knowledge on computer ar-
chitecture, although familiar with Matlab tools11. In this way, we proposed
an implementation based on a software tool named Jacket by AceelerEyes12.
This section explains the general structure of a graphics device, the motivation
for this selection and several parallelization and implementation details. This
implementation is based on previous authors work [10].

4.1 CUDA Architecture

Multithreading in general purpose processors is used for taking full advan-
tage of available resources. The processor in collaboration with the operating
system can process instructions of two or more threads simultaneously. In
tasks designed for graphics processors, the parallelism is easily exploitable.
There are calculations to be performed for each vertex or each fragment,
which means repeating the same task over and over again on different data
in memory, so the idea of parallelism and multithreading is essential in the
design of current GPUs programs.

Figure 4 depicts a high-level view of the GeForce GTX 280 GPU parallel
computing architecture. A hardware-based thread scheduler at the top man-
ages the scheduling of threads across the Thread Processing Clusters (TPCs).
Furthermore, we have fully operative a texture cache and memory interface
units. Texture caches are used to combine memory accesses for more efficient
and higher bandwidth memory read/write operations. The elements indicated
as ”atomic” refer to the ability to perform atomic read-modify-write opera-
tions to memory. Atomic access provides granular access to memory locations
and facilitates parallel reductions and parallel data structure management.

A Thread Procesing Cluster (TPC) in computing mode is represented in
Figure 5. Each TPC is made up of a number of streaming multiprocessors
(SMs), and each streaming multiprocessors contains eight processor cores
or Processing Elements (PE). It can be observed that a local shared mem-
ory is included in each of the three SMs. Each processing core in an SM can

10 Compute Unified Device Architecture Reference Manual:
http://developer.download.nvidia.com

11 http://www.mathworks.com/products/matlab/
12 Jacket Documentation: http://www.accelereyes.com/support/documentation
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Fig. 4 GeForce GTX 280 GPU Parallel Computing Architecture

Fig. 5 Detail of a Thread Procesing Cluster (TPC)

share data with other processing cores in the SM via the shared memory,
without reading or writing from any external memory subsystem. This con-
tributes greatly to increased computational speed and efficiency for a variety
of algorithms.
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4.1.1 Execution Time Analysis in CPU

Being a genetic algorithm, the main program structure is a for loop with
a certain number of generations. Parallelizing directly the execution of this
for in a lot of threads is unfeasible, since this would prevent the populations
evolution. To parallelize these cycles, we would have to change the basic
structure of the algorithm as other approximations, such as island model,
usually do ([7]). Having in mind the structure of the GA, it is necessary to look
for a parallelization in its basic operators: selection, evaluation, crossover, etc.
In order to determine the critical elements a time analysis for the different
processes that form the main program has been done. To analyze the program
execution time, a Matlab profiler has been used, with which the different
execution time used by each function can be distinguished. Thanks to these
time measurements the parallelism of the most controversial areas can be
influenced in so far as to computation time.

Fig. 6 Genetic algorithm execution in the CPU. It has been run for a company
with 5000 individuals; 500 generations and the roulette wheel selection algorithm.
Total time = 2266 seconds.

Figure 6 shows the 15 functions with greater weight in the GA computa-
tion time. Their names are listed in the base of each column. For example,
“main”is the main program and “geneticAlg”is the main genetic loop. Some
function names are marked with an asterisk; all these functions are MEX
functions. These functions have been written in C language, and are used to
manage external libraries, in this case the sortrows function. Total Time is
the time that the program is working, as it can be noticed main is active
practically all the time during the program execution as expected. Self time
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is the total time minus the time that shares with the calls to other functions.
The repopulation file is the part of the GA code which evaluates the random
population and selects a new population for a further crossover. As it can
be observed in the graphic, repopulation spends part of the time running in
other files that correspond to population assessment (i.e. fitness) and other
time running a selection algorithm directly embedded in repopulation. Know-
ing the division of this file and analyzing the graphic we can conclude that
most of the time is devoted to run the selection algorithm, taking almost 90%
of the execution time. One important point to remark is that the initial im-
plementation used roulette wheel selection, widely used in genetic algorithms
although computationally expensive.

As we can check, the main limitation of the efficiency of the program
was found in the selection algorithm, and it is here where we should focus
the parallelization in order to reduce the execution time of the algorithm.
However, we not only will affect the parallelism of the selection but also
will try to optimize the cost of GPU-CPU context switching. So, in order to
make more profitable the parallelization in the GPU, we shall use during the
main loop the data located in the graphic card and run the greater part of
the program in the GPU. As we have mentioned, we take profit of Jacket
capabilities to perform the parallelization of the code. For details about the
parallelization tasks and more information we refer the reader to [10].

Special attention should be paid to the selection algorithm. The roulette
algorithm has a computing cost of quadratic order, since it consists of two
nested loops. Jacket provides a large capacity of parallelization with for loops,
thanks to the gfor command. However Jacket is only compatible with simple
while and for loops, not with more complex loops (as the needed for the
roulette wheel method), and therefore the point where the problem requires
more parallelism could not be solved in a sufficiently effective way to get a
substantial advantage in the execution on the GPU.

With this motivation we decided to replace the roulette wheel selection
algorithm by another one, also classic in genetic algorithms; the tournament
selection [21]. This algorithm, which is able to obtain the same (or even bet-
ter) quality in the results, is clearly less computationally expensive because
it has a cost of lineal order. Some other previous implementation of Evolu-
tionary Algorithms on GPUs adopted similar solutions ([1] [20] [19] [18]).

This change in the selection operator, has led to a decrease of approxi-
mately 75% of the total execution time. Nevertheless, the reduction of the
execution time in this algorithm does not reduce the time spent in the se-
lection in proportion with the other functions used. Still, the weight of the
tournament selection algorithm is more than half of the total execution time
of the program.
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4.2 Experimental Results

4.2.1 Metrics

The experimental results presented in this section are based upon a series
of tests executed in both CPU and GPU. These tests consist of a series of
computing time measurements in both processing units. Times have been
measured using Matlab software. Due to the stochastic nature of GAs, all
experimental tests have been executed 30 times. Once obtained the required
data, a graph is presented to show and interpret the data in a simple way. The
data used for graphs were obtained by the arithmetic average of all previous
tests. A speed-up graphic is also included to evaluate the improvement of the
execution time in the GPU.

Three Different CPU architectures (see table 7) has been used to compare
the execution time with the GPU. These CPUs have been chosen due to their
great variety of characteristics, for instance the P4 is the oldest CPU and has
only capacity to execute one thread, whereas the i7-860 processor is a modern
one with a capacity to execute up to 8 threads simultaneously. The SU4100
CPU is an intermediate architecture with a capacity to process two different
threads simultaneously.

Jacket GPU programming is only compatible with nVidia graphic cards
with CUDA technology. For the tests conducted here a 460GTX and a
570GTX nVidia GPUS have been used. This is a modern hardware, a range
normally used for entertainment and with prices of 300 and 150 euros re-
spectively. These graphic cards have been assembled in the third computer
of Table 7, that is, the i7 − 860 CPU computer. Table 8 summarizes the
main features of the GPU. The data previously presented on Figure 6 have

Table 7 CPU Architectures used for comparison

Processor Intel Pentium 4 Intel Pentium SU4100 Intel Core i7-860

Number of cores 1 2 4
Number of threads 1 2 8
Max. Frequency 2.8 GHz 1.3 GHz 3.46 GHz
Cache 512 KB L2 Cache 2 MB L2 Cache 8 MB Intel Smart Cache
System Bus 533 MHz 800 MHz 2.5 GT/s
Operating system Windows XP-32-bit Windows 7 64-bit Windows 7 64-bit
RAM -Memory 768 MB 4GB 8GB

Table 8 Main characteristics of the GPUs used in the experiments

Graphic Card MSI nVidia 460 GTX OC Gigabyte nVidia 570 GTX

CUDA Cores 336 480
Memory 768 MB 1280 MB
Clock for graphics 725 MHz 732 MHz
Clock for processor 1350 MHz 1464 MHz
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been obtained for the same architecture, corresponding to the third column
in Table 7.

4.2.2 Execution Time Analysis of the Algorithm in the GPU

By implementing the code in the GPU the searched objectives have been
achieved, the selection function is no longer a bottleneck in the program. The
program total execution time has been reduced, in this particular case, around
90% if compared to the CPU version with the same selection algorithm, and
to a 97% if compared to the original algorithm.

Fig. 7 Speed-up on the GPU (y-axis)with variable number of individuals (x-axis)
and 500 generations

Figure 7 represents the speed-up obtained with the GA execution in the
graphic card. In this figure y-axis represents the speed-up for a certain number
of generations. We can observe from negative speed-ups (below 1) to very
high improvements, around 10000 units. We can observe the rise and sudden
drop of the speedup of the 570GTX on 460GTX in the last two series of
executions. The rise is due to the lack of memory in the 460GTX, and the
drop is a consecuence of the lack of memory of the 570GTX.

The number of generations is the number of times that the algorithm will
iterate. As no parallelization technique has been applied in this loop, its
execution time would be in proportion to this parameter. This affirmation is
not exact due to the fact that the size of the data also influences the program
execution time. That is, the more GA generations, the more data will be
stored by Matlab (not only the final results are stored). At each iteration,
Matlab stores the new array of fitness and the best individuals. Storing a
large amount of data cause the slowdown of Matlab with the advance of the
GA step. Anyway, regardless the number of generations of the GA runnning
on the CPU, the improvement margin among the different CPUs will be the
same. However, this situation does not occur in GA execution over the GPU.
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For this implementation, with this parallelization software and our strategy,
the number of generations will influence the GPU speed-up due to memory
overloads. Each additional iteration bears an extra cost, although sometimes
small, what is true is that after a great number of generations it will have
repercussions on the final execution time. To testify this event, another series
of runs of the GA has been done. Figure 8 and Figure 9 summarize the results
of this set of experiments.

Figure 8 represents a series of executions of 100 generations on the dif-
ferent GPUs. As it can be observed comparing both figures, the execution
times on CPUs are proportional. As an example, we can look at the value of
the execution time for the i7− 860 with 6000 individuals. For this number of
individuals and 100 generations the value of the execution time is approxi-
mately 150 seconds (exactly 154.3 seconds). On the other hand, the measure
taken for the i7 − 860 with 6000 individuals for 500 generations is 775.92
seconds. If we multiply by five the execution time for 100 generations, we

Fig. 8 Execution times (y-Axis) for 100 generations and different number of indi-
viduals (x-axis)

Fig. 9 Speed-up : Speed-up on the GPU (y-axis) with variable number of
individuals(x-axis) and 100 generations
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obtain approximately the same measure than for 500 iterations. Nevertheless
if we make the same operation for the GPU times, that is multiply 20.26
seconds (Figure 8) by 5, we obtain 100.15 seconds. However the execution
time of the program is 219 seconds, which shows the non-proportionality of
the execution time when changing the number of generations.

Figure 9 shows the speed-up of time for the series of executions of Figure
8. As previously explained it can be observed that the non-proportionality of
the generations impacts in the improvement margin of the GPU if compared
to the CPUs, thus remaining a much better margin of improvement for 100
cycles (generations). So eventually we conclude that for less number of gen-
erations and more than 2000 individuals the speed-up of the execution time
on the GPU will be higher, and the higher the number of generations, the
lower the improvement on time.

5 Conclusions

This sections depictes the conclussion of the chapter. First we expose some
conclussions comparing the two parallel implementations of the trading sys-
tem; Grid computing versus GPU computing, then we make a performance
analysis. Finally we summarize some ideas that may be useful to the reader
in future approaches to similar problems, which seek to improve both the
quality of the solutions as the run time using parallel implementations.

5.1 Grid Computing versus GPU Computing

We have presented two parallel implementations of the same program; a
genetic algorithm for trading systems that can provide the investor a set of
signals for buying and selling financial stocks. In this section we will compare
the two alternatives Jacket and Boinc (i.e. the GPU and the grid).

• Speaking about the difficulty of developing a project in both platforms. On
the one hand, developing an application for the Boinc platform requires a
larger knowledge than doing the same development using Jacket. Settting
up a Boinc project request a middle level of C language, SQL, Bash, etc.
Nevertheless, the designer only needs a good knowdelege of Matlab lan-
guage to develop an application with Jacket, that means that the learning
curve in Jacket is softer than for Boinc.

• If we have an application that has not been developed with Matlab, we
have access to a grid architecture, we have a system to attract volunteers
and we want to reduce the performance in the execution times, surely
we should develop for Boinc. Boinc allows us the parallelization in sev-
eral programming languages, furthermore it includes some tools like the
wrapper which enables the encapsulation of applications developed in not
compatibles languages (see section 3.2).
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• Boinc platforms are more stable and reliable for some specific aspects. For
example, the execution in this system can be stopped at any time and
back to the execution whenever the user needs. A GPU cannot stop the
execution without the lost of partial results.

• GPUs and architetures like CUDA have been developed rapidly in recent
years. The key advantage of using a GPU-CPU architecture as the one
presented in this chapter, is that we could develop a realistic and indepen-
dent investment environment, i.e. a professional in this area could get a
computer system to have its own infrastructure for no more than 1000 $.

Fig. 10 Execution times comparative (y- axis) for 500 generations and different
number of individuals (x- axis)

5.2 Performance Analysis

Figure 10 shows a comparative graph between the different execution times of
the platforms analyzed in the present chapter. Y-axis represents the execution
time measure in days and, X-axis shows the different amount of individuals
in each execution. In this graph we use fundamental analysis. It must be
noticed that the grid Boinc version actually implements a different selection
algorithm, so we must take in consideration that execution times on the GPU
are taking benefit of that fact. We can observe that the grid system becomes
inefficient around the 4000 individuals, because we consider that more than
10 days of execution starts to be too large times. Nevertheless, the GPU
system remains with a little increments throughout the test (all the time
bellow the 10 days).

With the same tests used in Figure 10, we have develop a speed-up graphic.
Figure 11 shows the speed-up between the GPU and the grid, and also
the reverse form. More specifically, the dark lines represent the relations:



Parallel Architectures for Improving the Performance 215

Fig. 11 Speed-up on the differents plataforms (y-axis)with variable number of
individuals (x-axis) and 500 generations

570GTX/grid and grid/570GTX. The clear lines represent the relations:
460GTX/grid and the grid/460GTX. X-axis represents the number of in-
dividuals and Y-axis shows the speed-up.

The first thing that takes our attention is that both platforms could be useful
in differents periods. At the beginning, the Boinc system has a better behavior
than the GPU, but this performance vanish when the number of individuals in
a population rises. Beyond 2000 individuals the GPU/grid speed-up grows up
constantly. Maybe the critical point (where both technologies have the same
performance) should be shifted to the right because the GPU uses a different
algorithm, however the trend to raise the speed-up by the GPU is clear. After,
we have analyzed the above figures; we can conclude that the grid systemworks
fine when the number of individuals is not too high.

5.3 Final Conclusions

As we have already mentioned, the performance of investment decisions in
stock markets is influenced by a huge number of variables related to macroe-
conomic, companies or market information that are difficult to analyze and
even to follow since nowadays we have access to all this information (that is
continuously changing) in real time. In addition, professionals making invest-
ment decisions suffer a high degree of stress due to the impressive amounts
of money they manage. This factor may cause a bias in the analysis of the
information by the trader. Next we summarize some of the ideas outlined in
this chapter:

• The use of mechanical trading systems copes, at least partially, with these
difficulties, since it avoids psychological reactions of traders while allowing
managing a huge amount of realtime data.
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• The exponential growing complexity of the investment problem related
with the number of factors affecting the investment performance makes it
necessary to count with powerful algorithmic tools to deal with the selec-
tion of indicators and parameters from the universe of existing economic
and company variables and threshold values.

• GAs offer a powerful and fast search capacity due to its ability of processing
information in a parallel way and the intelligent mechanism that is driving
its functioning.

• For dealing with intra day or daily investment decisions for a big number
of stocks is vital to speed up the GA process, to get in time good results.
For this purpose, we carry out an innovative implementation of the GA
that is fine-tuning the trading system, by means of using parallel computer
architectures.

• Boinc from Berkeley is a mature platform that achieve great results using
a lot of computers. We can use old computers or the volunteer system to
cheapen the costs and we will obtain a powerful grid with few resources.
The implementation of an application in Boinc requires a good knowledge
of information technologies, this means that it is a tool with high curve of
learning.

• Jacket of Accelereyes is a tool that brings results, recommended to decrease
the difficulty when programming on GPU.

• By implementing the code in the GPU, the selection function no longer
is a bottleneck and the total execution time has been reduced in a 90% if
compared to the CPU version with the same selection algorithm, and to a
97% if compared to the original algorithm.

• There is a limit in the number of individuals implemented on the GPU of
around 400000 individuals, where performance drops sharply. This figure
is architecture dependant.

• The number of generations will influence the GPU execution time due
to memory overload issues. Each additional generation suppose an extra
cost, that after a great number of generations will have repercussions on
the final execution time.

• For a reduced number of generations and more than 2000 individuals the
speed-up of the execution in the GPU will be higher, and that for a higher
number of generations the improvement margin will be reduce.
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9. Cole, N., Desell, T., Lombraña González, D., Fernández de Vega, F., Magdon-
Ismail, M., Newberg, H., Szymanski, B., Varela, C.: Evolutionary Algorithms on
Volunteer Computing Platforms: The milkyWay@Home Project. In: Fernández
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A Knowledge-Based Operator for a Genetic
Algorithm which Optimizes the Distribution of
Sparse Matrix Data

Una-May O’Reilly, Nadya Bliss, Sanjeev Mohindra,
Julie Mullen, and Eric Robinson

Abstract. We present the Hogs and Slackers genetic algorithm (GA) which ad-
dresses the problem of improving the parallelization efficiency of sparse matrix
computations by optimally distributing blocks of matrices data. The performance
of a distribution is sensitive to the non-zero patterns in the data, the algorithm, and
the hardware architecture. In a candidate distributions the Hogs and Slackers GA
identifies processors with many operations – hogs, and processors with fewer oper-
ations – slackers. Its intelligent operation-balancing mutation operator then swaps
data blocks between hogs and slackers to explore a new data distribution. We show
that the Hogs and Slackers GA performs better than a baseline GA. We demonstrate
Hogs and Slackers GA’s optimization capability with an architecture study of varied
network and memory bandwidth and latency.1

1 Introduction

As processor speeds increase and dye sizes shrink, there is a growing demand to do
increasingly complex computations on machines that were once extremely limited
in terms of computational power. One area where this can be seen is in the high
performance embedded computing imaging devices found in surveillance systems.
Previously, these devices were only expected to handle the image processing capa-
bilities, and the resulting images were post-processed by outside machines. A trend
towards moving post-processing capabilites onto the imaging devices themselves
now exists.
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Largely, this post-processing consists of entity extraction, a relatively efficient
process on these devices, as well as determining the relations between entities and
properties of those relations, a much more challenging problem. This second prob-
lem corresponds to a graph processing algorithm. Typically, these graphs can grow
to be very large, but also remain very sparse. These types of computations present
significant challenges to modern parallel architectures, which are typically not de-
signed to perform them well. The irregular data access patterns of these computa-
tions being of primary concern.

This paper examines these challenging graph problems. Rather than using a typ-
ical graph structure, the duality between graphs and sparse adjacency matrices is
exploited. The graph problems are recast as algebraic operations on sparse matrices.
By studying and optimizing these operations, significant performance increases can
be demonstrated that help close the gap between the desired and actual efficiency of
parallel architectures on these algorithms.

In this contribution, a software optimization strategy is taken that maps the sparse
matrix data in an efficient way across the processors to resolve, as much as possi-
ble, the irregular data access in local memory read and write accesses and across
network communications. Given irregular data access as the main source of the
poor performance, there are three interconnected factors that influence how the data
should be mapped. These are: the location of the non-zero data in each matrix, the
data movements dictated by the individual matrix operations (i.e. kernels) within the
algorithm, and the parameters of the hardware which dictate the cost of computation
operations and memory access (both local and network transfer operations).

The realization of this optimization necessitates the design and implemention of
a framework, the Mapping and Optimization Runtime Environment (MORE), for
measuring and optimizing the performance of sparse algebra kernels such as matrix
multiply. As shown in Figure 1, at a high level, MORE enters the computation flow
when, within a program, a sparse matrix operation is encountered and the matrix
operands are tagged for distribution. The data mapping component within MORE
then maps processors to continuous blocks it designates within each matrix and
passes these to the operations analysis module. The operations analysis module,
working from the program parse tree and maps, generates a dependency graph that
expresses the dependencies between all network, local memory and compute oper-
ations comprising the computation. The dependency graph, being a sufficiently de-
tailed description of the computation for estimating its execution time, becomes the
input to MORE’s final module, the simulator. The simulator, consulting a hardware
model matched to the parameters of a target platform, processes the dependency
graph and computes how long each parallel execution stage takes. It presents the
sum of these times as MORE’s output. In the language of signal processing, com-
monly used in high performance embedded computing, this simulated execution
time is referred to as the “execution latency” of the kernel. The execution time can
be used, along with a count of the number of operations in the kernel, to compute
the overall OP/s, the rate of floating point operations per second.

MORE also has an optimization component. When this component is enabled, a
genetic algorithm is engaged in lieu of the mapping module. The goal of the genetic
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Fig. 1 The flow and components of the MORE framework. See Introduction and Section 5
for details.

algorithm is to search for matrix maps that result in the minimum execution latency (or
maximum OP/s) of the kernel. At a high level, the genetic algorithm module “wraps
around” the analysis and simulator modules to repeatedly use them to test the execu-
tion time of the maps that the genetic algorithm encodes as a genome in lieu of the data
mapping component. The execution time of a map is used as the fitness score of that
map’s genome. The genome representation of the genetic algorithm is a straightfor-
ward processor-to-block pairings. The output of the genetic algorithm optimization
is the best set of maps it finds along with the execution time of the kernel.

While the artificial intelligence-based interpretation of a genetic algorithm posi-
tions it as a “weak method” ([21]) that is notable for its generality, it has long been
recognized ([12]) that practitioners want to bring all available knowledge to bear in
solving an optimization problem. In this domain, both the source of the performance
gap – irregular data reference – and the factors that influence it – data locality, ker-
nel, and hardware specifications – are well understood. Therefore the optimization
module of the MORE framework employs the Hogs and Slackers GA and functions
as a knowledge-based algorithm. It incorporates a deeper insight, shown graphi-
cally in Figure 2, searching for an ideal parallelization that suitably balances the
entire computation across processors.

Drawing upon the domain knowledge in order to better optimize the mapping
is not trivial. However, due to the fact that the MORE operations analysis module
generates a dependency graph, it is possible to count how many operations are as-
signed to each processor and calculate their balance. This measurement is an explicit
surrogate for the parallelization concept expressed in Figure 2. Intermediate results
generated by the genetic algorithm help to show the relationship between operations
balance and the genetic algorithm’s search for maps yielding higher performance.
A generation by generation analysis uncovers how the different candidate maps of
the genetic algorithm explore balance of operations. It is apparent that, as the genetic
algorithm continuously improves OP/s, its superior maps also hone in on a narrow
balance interval.
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Fig. 2 Knowledge of parallelization suggests a knee in the performance curve in terms of
the balance of the computation across processors. The best maps lie at the point of ideal
balance that, for a sparse matrix kernel, is not at the point where the computation is evenly,
ie. perfectly balanced.

Determing that the operations balance “sweet spot” coincides with the best perfor-
mance prompts the introduction of operations balance information into the genetic
algorithm so that it can be exploited. How to properly introduce this is not obvi-
ous due to the fact that the genetic algorithm, via its genome encoding and genetic
operators, works on the level of blocks and processor assignments, not operations.
Changing the assignment of a block from one processor to another affects all the
data in the block and this has a macroscopic and indirect effect on operations bal-
ance. Each block is also varies with respect to where its non-zero entries are and how
they match up with the non-zero entries of other matrices involved in the kernel.

The Hogs and Slackers GA incorporates the insight that the search must find an
ideal parallelization that suitably balances the entire computation across processors.
The Hogs and Slackers GA references the computation’s distribution of memory
operations across processors in order to guide a genetic mutation operator, BAL-
ANCINGMU, to intelligently choose processors for block exchange. The BALANC-
INGMU operator ranks all the processors by either the number or cumulative size of
their memory operations. High-ranked processors are “hogs” and low-ranked ones
are “slackers”. The mutation operator trades blocks assigned to hogs with those
assigned to slackers. When tested against a naive block mutation operator, the BAL-
ANCINGMU operator is superior. This advantage is demonstrated and then the Hogs
and Slackers GA is used to study a range of 3 hardware models with parameterized
network bandwidth. The study shows that, on different architectures, the genetic
algorithm provides consistent and significant optimization over conventional maps.

This contribution is organized as follows: In Section 2 more details of the motiva-
tion to study graph algorithms and expand on the graph matrix duality are provided.
In Section 3 observations are presented that support the assessment that a perfor-
mance gap between desired and present performance of sparse matrix computation
exists. In Section 4 the source of the inferior performance is examined and the com-
plexity involved in trying to understand the interaction of the three factors – nonzero
data location, algorithm, and hardware parameters – that affect it is explored. In Sec-
tion 5 the MORE framework for studying and optimizing a sparse matrix computa-
tions is described. In Section 6 a complete description of the Hogs and Slackers GA is
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provided. In Section 7 experimental results are presented related to the knowledge-
based BALANCINGMU operator and a study of the optimized performance of a sparse
matrix multiply kernel on a range of architectures. In Section 8 related work is pre-
sented. In Section 9 a conclusion is presented and future work is described.

2 Graph Algorithms for Decision Support Systems

High performance embedded computing is transitioning from solely serving the do-
main of signal processing to additionally serving the domains of knowledge extrac-
tion and decision support. This can be seen in a “system of systems” architecture
where the lower level information streams from multiple computing systems with
various sensing modalities and is integrated to provide unified object inference and
global situation assessment. In many decision support systems, graphs play a role
as important information elements. For example, graphs are used when examining
social networks, determining sensor net coverage, and representing the Bayesian
networks that are used to fuse images. Some general graph algorithms are edge
(or vertex) betweenness centrality, Bayesian belief propagation, minimal spanning
trees, and single source shortest path. Common real-world situations typically yield
extremely large graphs with relatively few edges (on the order of thousands or mil-
lions of vertices and tens or hundreeds of edges, on average, per vertex).

It has previously been shown that it is efficient to cast graph algorithms as sparse
matrix operations [18]. Using this graph-matrix duality, a graph is represented with
a two-dimensional adjacency matrix. An entry in this matrix at row i and column
j denotes an edge from vertex with id i to vertex with id j. Common operations
on graphs can be implemented to take advantage of this matrix representation by
using common linear algebra operations. For example, raising the adjacancy matrix
to some power p yields a resulting matrix where an entry v in row i and column j

P1 P2 P3 P4

Fig. 3 The matrix map concept. On the left a sparse matrix is shown. In the middle a grid
is designated over the matrix to delineate blocks of matrix elements. On the right each block
is assigned to a processor. Which processor is shown by coloring the block and providing
a legend below the map. This is an example of an Anti-Diagonal Block Cyclic map. Along
each diagonal line of the matrix, the processor assignment is cycled. This map is designed for
efficient dense matrix maps. As with other conventional maps, its grid creates square blocks.
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indicates that v distinct traversals through p edges exist between vertices i and j.
An example of the use of linear algrebra operations to compute vertex betweenness
centrality can be found in [28].

In addition to the rigour and precision of its mathematical formalism, the matrix
representation also supports a straightforward means of parallelization through the
distribution of blocks of the matrix elements across processors of the distributed
architecture. As a first order approximation, the efficiency of a distributed matrix
computation depends on how its operands, the matrices, are mapped. Mappings such
as anti-diagonal block cyclic, see Figure 3, have been established as practical and
efficient.

3 The Sparse Matrix Performance Gap

Unfortunately challenges arise when the graphs (or matrices) are sparse. For exam-
ple, see Figure 4(a), which compares sparse and dense performance for serial matrix
multiply implementation. Dense data is associated with front end processing, i.e.
signal processing, whereas sparse data is associated with back end processing, i.e.
graph processing for decision support. On two different hardware platforms, a 1.5
GHz Power PC and a 3.2 GHz Intel Xeon, rgw number of edges is increased while
the sparsity is held constant. After 10,000 edges the performance of both platforms
(OP/s) with sparse data degrades. An efficiency differential of approximately 103 is
observed. Figure 4(b) shows that an edge betweenness centrality algorithm does not
extract any performance advantage from being run on more than 30 processors. In
addition, this algorithm’s performance falls radically short of performance targets
set by the decision support application in question.

There are a number of potential methods to resolve this performance gap. Spec-
ifications can be formed that will drive future hardware design. The specifications
can consider the relative latencies and bandwidths within the memory hierarchy
and may factor in payloads costs. An alterantive, and possibly a more powerful,

(a) (b)

Fig. 4 (a) Comparison between dense and sparse matrix data with the same serial matrix
multiply algorithm. (b) Scaling performance of an edge betweenness centrality algorithm
when the number of available processors is increased.
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approach is a hardware and software co-design process that supports the concurrent
investigation of hardware design choices and their implications on sparse algebra
computational performance.

These approaches have promise but entail a rather long development process.
They do not address what can be done for architectures set be deployed in the short
term and that will likely have tens to hundreds of processing nodes. In addition, new
technologies for compute nodes, memory, and networks cannot be expected to be
convergent so we should anticipate hardware that is a combination of technologies
at different maturities. The short term will offer different architectural trade-offs as
hardware designers explore design ideas in the relatively new space of 3D compo-
nent packing and the relatively recent issues arising from power demands.

In the short term, software optimization holds the best promise. In the dense
matrix case, the general strategy of mapping the data before the computation starts
is sound. However, in the sparse matrix case, the mapping can not be solved in as
straight forward a manner.

4 Problem Discussion: Mapping Sparse Matrices

At its root, poor sparse algebra computational performance stems from the internal
representation of sparse matrices. Only the non-zero elements of sparse matrices are
stored. They are usually stored in compressed sparse column (CSC), compressed
sparse row (CSR), or tuple format. Sparse matrix kernels must compute only the in-
teractions of non-zero elements. This makes them more computationally expensive.
Each storage format incurs a particular cost for column and row access, and for the
insertion, deletion, element transpose and a find-element primitives. See [7, 15, 29]
for more details. More notably, the compressed storage formats leads to sparse ma-
trix algorithms generating irregular data references, i.e read, write, or transfer oper-
ations. These operation may occur at any level of the memory hierarchy: either local
to a processor or the inter-processor block transfers of data through the network. A
memory reference can have a unit cost based on whether it is local or not. Each local
or non-local reference cost can also be weighted by its time, i.e. “latency”, or the
size of the data payload.

In a dense matrix mapping approach, where this irregularity does not emerge,
it is sufficient to use mappings of the processors that cycle processors through the
blocks. See Figure 5 for examples. The anti-diagonal block cyclic map shown in
Figure 3 is one choice, along with the block cyclic map. Maps can be stored in an
“atlas” that is referenced at run time ([32]).

In a sparse mapping approach, the intention is to distribute the data of the matri-
ces over the processor architecture in a manner that reduces the irregularity of data
reference. This goal makes the mapping problem much more complicated and con-
ventional maps are not sufficient ([33]). It is necessary to be able to map any block to
any processors. In addition, there are now three primary factors that influence how
the data should be mapped – the location of the non-zero data in a matrix, the data
movements dictated by the algorithm, and the parameters of the hardware which
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Fig. 5 Conventional block mappings for dense matrices.

dictate the time cost of computation operations and data access, retrieval and net-
work transfer operations. Studying any one of these factors in isolation is difficult.
For example, there are multiple sparse data patterns that commonly arise. Figure 6
presents the patterns considered as part of this contribution. The difficulty of un-
derstanding the interactions of all three factors in order to determine an efficient
map is very high despite knowing, in general, that some ideal balance of the com-
putation across the processors is desired. The approach to this problem taken here
involves the design and implementation of the MORE framework for evaluating and
optimizing sparse matrix computations.

Fig. 6 Different patterns of sparsity observed in the graph processing applications of our
interest.

5 The MORE Framework

As introduced earlier (see also Figure 1), the Mapping and Optimization Runtime
Environment (MORE) framework measures and improves the performance of a
sparse matrix computation on a distributed system. The framework is implemented
in pMatlab ([2]) and is supported by the software of the pMapper automatic matrix
mapping project ([32]), both developed at Massachuesttes Institute of Technology
Lincoln Laboratory. pMatlab is a parallel toolbox for Matlab developed that lever-
ages MatlabMPI. pMatlab provides program mechanisms for tagging array data for
distribution and distributing or aggregating such data to and from multiple proces-
sors. The pMapper project supports automatic mapping of the programmer-tagged
dense arrays for a select set of overloaded matrix operations. It supports lazy evalu-
ation of distributed array operations: execution is delayed until a result is required.
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The framework has four principle components: a mapper, a program analyzer, an
operations analyzer and a performance simulator. The Hogs and Slackers GA is an
auxiliary map optimization component that can be switched on and which integrates
with MORE’s framework when maps need to be automatically generated rather than
specified by a programmer. The Hogs and Slackers GA accesses the parse tree from
the program analyzer and the dependency graph from the operations analyzer. It also
uses the performance simulator.

5.1 The Mapper

The mapping component facilitates better sparse matrix kernel performance with its
implementation of fine-grained maps. It permits much smaller blocks of data than
does the dense mapping case. It allows any processor to be assigned to any block
because regularity in their distribution is likely to be detrimental to performance.

The mapper is able to support the fine grained maps without significant increase
to index computation cost by using pMapper’s underlying index representation
scheme: Processor Indexed Tagged FAmiLy of Line Segments (PITFALLS)[26].
The advantage of using PITFALLS is that it allows for efficient redistribution of
data by providing fast computation of indices local to each processor and a direct
means of calclulating of messages that have to be sent between processors when
changing maps.

A map, see Figure 3 for an example, consists of two components: the grid describ-
ing how the matrix is subdivided into blocks, and a list of processor assignments for
the blocks. The genetic algorithm that maps matrix operands searches over a list of
potential grid choices and all possible processor assignments for blocks. It repeat-
edly uses the program analyzer and performance simulator to obtain fitness scores
for its candidate maps.

A map does not specify routing information. However, once maps are defined,
the set of communication operations can be enumerated. The mapping component,
when not in optimization mode, greedily routes by the shortest path in terms of
communication operations. When in optimization mode, the genetic algorithm can
run in nested mode where it enables an “inner” genetic algorithm to search for the
best routes for the map. The performance of this nested genetic algorithm is reported
in [33]. In this contribution, to focus on the knowledge-based aspects of mapping,
all experiments are executed without nested-mode. Routes are chosen greedily.

The mapping component can either use maps supplied by the programmer or
run a map optimization algorithm that performs search-and-test-based optimization
implemented by a genetic algorithm.

5.2 The Program Analyzer

The program analysis component converts the user code into a parse tree, T, to be
analyzed. It uses a lazy evaluation strategy, not sending code for analysis until it is
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required by the user. This allows for the analysis to take in as much of the context
of the code as possible and can lead to improved performance.

5.3 The Operations Analyzer

The operations analysis component performs fine-grained dependency analysis. It
takes the maps supplied by the mapping component, the parse tree of the program to
the current point of execution, and the hardware programming model and constructs
a dependency graph. The dependency graph is a directed acyclic graph (DAG) of
operations that are topologically sorted to identify parallel stages of the computa-
tion. Operations in the dependency graph are classified as either compute, network
or local memory operations. Each dependency graph node identifies its origin in the
program parse tree and its topological level in the dependency graph. Each node for
a network and memory operation has a chunk size which lists the number and sizes
of the accesses associated with it. Each memory operation node has a type identifier
specifying whether it is a read or write.

5.4 The Performance Simulator

The performance simulator is designed to consult a parameterized model of a tar-
get architecture. By modifying these parameters, the effects of varying rates and
latencies at various levels in the memory hierarchy on sparse computations can
be examined. This model also permits experimentation with both heterogeneous
or homogenous processor configurations and the exploration of power-performance
trade-offs. The hardware model specification is represented logically through the
use of a Kuck diagram ([19]). The Kuck notation provides a clear way of describing
a hardware architecture along with the memory and communication hierarchy. It is
can be used to provide both a high-level and a detailed physical description of the
architecture. Figure 7 shows elements of a Kuck diagram for a system with a three
level hierarchy.

The architecture model, for each processing element, records the computation
rate and latency of the element, the operations allowed by the element and their
efficiency, local memory capacity, bandwidth, and latency, and power requirements.
For a network element it records the number of nodes, the inter-node bandwidths
and latencies, routes, including paths and costs, and a routing policy. The shared
memory network is recorded with its size, bandwidth, and latency to each element,
routes, and a routing policy. See Table 1 for a brief example.

The performance simulator determines the performance of the program on the
intended hardware. It takes a dependency graph of the program and network routes,
R, along with a model of the hardware, H, and computes the time required to run
the operations specified by the dependency graph on that hardware. Note that this
allows one to easily interchange the hardware model and keep in place the remaining
structure, providing easy transition to analysis of future hardware designs.



A Knowledge-Based Operator for Sparse Matrix Data Distribution 229
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Fig. 7 Example 2-Level Memory Hierarchy in Kuck Notation.

Table 1 Performance Simulator: Example parameters

Parameter Symbol Unit
Number of processing cores NP N/A
Processor Pi speed RP (FL)OPs/second
Processor Pi latency LP second
Processor Pi efficiency on operation k EPi,k N/A
Memory, including remote, bandwidth R bytes/second
Memory, including remote, latency L second
Size of a single data element of data type T ST bytes

For the purposes of this paper, a topological simulator is considered. In a topo-
logical simulator, the dependency graph is sorted topologically based on the depen-
dences. This organizes the nodes in the graph into distinct levels. The simulation
time for each level, L, can then be evaluated, where the operations within L may
be run concurrently according to H. The total simulation time is the sum of the
simulation time for all L.

6 MORE Map Optimization: The Hogs and Slackers GA

MORE uses a genetic algorithm because it is simulation-based and little is known
about the nature of the solution space: whether it is flat in terms of mapping op-
tions, rugged or multi-modal. The goal of the genetic algorithm is to return a set
of maps such that the simulated execution time of the related dependency graph is
minimized.
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Formally, given the parse tree, T, and the hardware model, H, the genetic algo-
rithm identifies a set of maps, M with corresponding set of routes, R, such that the
following objective function, f is satisfied:

argminM,R f (T,H,M,R) (1)

The function f returns a duration of execution. Evaluation of f is performed by
simulating the dependency graph of T using the hardware model H. Optimization
results are reported in operations per second (OP/s) by dividing the operations ex-
ecuted by the duration of execution. The minimum size of search space of maps
is:

SM = NP
(B) (2)

where

• NP = number of processing nodes
• B = number of blocks, which is equal to ∑NM

i=1 Bi where NM is the number of
matrices or arrays in T and Bi is the number of blocks in matrix i.

The genetic algorithm, see Figure 8(a), runs for a specified number of generations.
When invoked, it receives the matrix operands of the sparse algebra operator. It starts
by creating a random initial population of candidate genomes. Each genome encodes
a map for each operand (see Figure 8(b)) and can optionally encode a map for the
result. Each map is first set up with a grid which is determined randomly from pre-
specified options, such as the minimum number of blocks per row or column or some
specific grid set. The grid dimensions are linked to the genome for reference. Then,
for each grid, processors are assigned an approximately equal number of blocks.

To obtain the fitness score, the genome is passed to the operations analysis mod-
ule which generates the fine-grained dependency graph (abbreviated as DG in Fig-
ure 8(a)) of the computation using the maps and parse tree. The dependency graph
is then passed as input to the simulator, with a greedy route selection policy, which
returns the execution time.

After the fitness evaluation of the population, the genetic algorithm uses tourna-
ment selection, with replacement, to select parents. A fraction of parents undergo
both crossover and mutation. Another fraction undergo only mutation. Elitism prop-
agates a small number of current best solutions, usually one or two, without any
genetic variation. Upon completion, the genetic algorithm returns the maps of the
fittest genome and its execution time.

When route selection is to be co-optimized with mapping, an inner genetic algo-
rithm is triggered after the dependency graph has been generated. All possible routes
for the given graph are determined and the inner genetic algorithm does a smaller
scale search of them to return the best routes and execution time of the genome, as
well as the associated dependency graph and route set. In this contribution, route
selection is done greedily. This allows the focus to be placed on the impact of ex-
ploiting problem knowledge. As a result, the inner genetic algorithm is not invoked.
For results on the nested genetic algorithm see [33]. The genetic algorithm can also
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(a) Execution Flow (b) Genome

Fig. 8 Genetic Algorithm Overview

optimize multiple objectives. Once again, in this contribution, the capability is not
used. See [24] for more details.

6.1 Parallel Implementation

The genetic algorithm is well suited to parallelization. In a parallel implementation,
fitness evaluation of the population is divided across nodes of a cluster each gener-
ation. Each “worker” node receives a slice of the population. For each genome, it
computes the dependency graph and runs the simulation. It stores the fitness scores
of its sub-population locally. Upon completion of the entire sub-population’s evalu-
ation, it sends the results to the master node where they are aggregated to reassem-
ble a population fitness array. This requires minimal code changes using pMatlab
– about 20 lines of code or 1% of the code base. The implementation provided by
this contribution is executed on the Lincoln Laboratory computing cluster named
LLGrid ([27]) and achieves near linear speedup. The time to pass each worker’s
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fitness results across the network is significantly lower than the time to evaluate the
fitness of one individual.

6.2 Genetic Representation and Naive Operators

Figure 8(b) shows that the genome is a linear vector of processor identifiers, one per
block. When the grid of a map is allowed to vary across genomes in the population,
genomes have different numbers of blocks and vary in length.

The BLOCKXO operator is a uniform crossover operator. It aligns the blocks
of the parents’ genome and, at each block, probabilistically determines whether to
swap the block between the parents. BLOCKXO is only permitted on maps with the
same number of blocks because of the philosophical intent to exchange alleles of
a gene. For more macroscopic recombination, MAPXO probabilistically exchanges
the maps of a matrix operand between the parents. The “naive” RANDMU operator
probabilistically changes the processor assignment of a block to a random processor.

6.3 Operations Balancing Mutation:BALANCINGMU

In the design of the knowledge-based BALANCINGMU, recall the basic hypothesis:
the genetic algorithm will benefit from explicitly varying the computational balance
as a means of exploring new maps. In the MORE framework, the available surrogate
for computational balance is the “even-ness” or “balance” of operations across pro-
cessors. These operations (in three types – CPU, memory or network) are countable
from the dependency graph because each of its nodes corresponds to a hardware
operation and is annotated with its type, the operation payload and what proces-
sor executes the operation. The operations balance measure expresses a normalized
variation in the distribution of operations (of an operation type) across processors.
The balance of a set of maps’ memory operations is:

bal.memops =
stdev(opcounts.memops)
mean(opscounts.memops)

(3)

CPU or network operations can be substituted for memory operations to similarly
derive CPU or network operations balance. To test whether the measure is ade-
quately reflective of computational balance, it was confirmed that there are differ-
ences in the CPU, memory and network operations balances in an optimized map
when the pattern of sparsity in the matrices and the specific matrix multiply kernels
are varied. Table 2 shows balances in a random and optimized map when twp differ-
ent matrix types – power-law and scrambled power-law – and two different matrix
multiply implementations – hybrid (see Section 7.1 for details) and inner product
([13]) – are paired for map optimization.
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Table 2 Balance of CPU, memory and network operations for matrix operands with different
sparsity patterns

Pattern MatMult Random Optimized
(CPU,MEM,NW) (CPU,MEM,NW)

Scrambled Power Law Inner (0.34,0.16,0.17) (0.09,0.05,0.05)
Scrambled Power Law Hybrid (0.38,0.23,0.26) (0.45,0.19,0.29)

Power Law Inner (0.91,0.42,0.46) (0.70,0.30,0.28)
Power Law Hybrid (0.91,0.55,0.62) (0.99,0.52,0.68)

Figure 9(a) and Figure 9(b) show counts of all three operation types for a ran-
dom (from the first generation) and best of run (from the final generation) map set
with scrambled power-law matrices using the hybrid matrix multiply algorithm. In
the initial generation, despite blocks being distributed evenly across processors, the
operations are quite imbalanced due to the matrix sparsity pattern and the matrix
multiply algorithm. This imbalance diminishes in the best individual but, as one
would also expect, due to the complex interactions among the network, memory
and CPU computations, perfectly even balance does not actually provide the best
performance.

(a) Random map (b) Optimized Map

Fig. 9 CPU, memory and network operation counts.

Despite its indirect influence, changing processor assignments to an entire block
of a matrix can control operation re-distribution. A simplified intelligent operations
balancing operator, called MICRO BALANCING MU, was tested that reassigns only
a single block between one of the processors with the highest number of memory
operations (the “hog”) and one of the processors with the lowest number of mem-
ory operations (the “slacker”). On maps selected from later generations of different
genetic algorithm runs, this reassignment frequently resulted in a more even opera-
tions balance. Accurate control was more frequent when consulting memory or CPU
operations counts: 95% to 99% of changes changed balance in the appropriate direc-
tion) versus network operations counts (85%). When done in the opposite direction
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(block reassignment from slacker to hog), the operations balances also consistently
became less even. In addition, MICRO BALANCING MU frequently generates off-
spring that are better than the parent (roughly 70% of the time). These results are
better than the naive operators – BLOCKXO, MAPXO and RANDMU – whose suc-
cess rates lie around 10% to 20%.

memops
proc . . .. . .

[1] [2] [3] . . . [n ]

Sorted Operations Counts Data Structure

12 52 16 35
3213 2300 2198 785

. . .

. . .. . .

[block]

processor assignment

p

[1][2] [3] . . . [n ]. . . b

MatrixMap Data Structure
12 12 12 1252 52 5235. . . . . . 16 1612

Fig. 10 BALANCINGMU inputs

matrixMaps = function BalancingMu(opsCounts, matrixMaps, quota)

% input: opsCounts - sorted operations counts for memory operations
%            matrixMaps - processor assignments to blocks of each matrix operand
%            quota - number of blocks swapped between processors
% global Nprocs: number of processing nodes

outlierBorder=floor(Nprocs/6)
hogs=getProcsAtExtreme(outlierBorder, 'high', opsCounts)
slackers=getProcsAtExtreme(outlierBorder, 'low', opsCounts)
for each matrixMap in matrixMaps

hogBlocks=blocksAssignedToProcs(hogs,quota,matrixMap)
slackerBlocks=blocksAssignedToProcs(slackers,quota,matrixMap)
matrixMap(hogBlocks)= slackers
matrixMap(slackerBlocks)= hogs

end

Fig. 11 Pseudocode of BALANCINGMU

Given these analyses, BALANCINGMU, a more general version of
MICRO BALANCING MU, was designed. The operator’s inputs and pseudocode are
shown in Figures 10 and 11. BALANCINGMU is passed the sorted memory op-
erations counts corresponding to the operation nodes of the dependency graph. It
selects as a set of hogs or slackers 1/6 of the total number of processors from the
upper or lower extremes respectively. These processors are those whose operation
counts are greater or less than approximately one standard deviation from the mean.
From among each set, with uniform probability, a fixed number of their blocks are
selected. These groups of blocks are then swapped between hogs and slackers.
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7 Experimental Results

7.1 Experimental Setup

In this contribution, the kernel selected for optimization is matrix multiply, the asso-
ciated codelet is shown in Table 2 (left). The genetic algorithm maps the operands A
and B. The result C is assigned the map of A. Both A and B have either a power-law
or scrambled power-law distributions with a non-zero element density of 8/N where
N = 1024 is the number of vertices in the graph (the dimensions of the matrices).
An R-MAT power law generator ([5]) was selected to produce A and B. The imple-
mentation of “matrixMult” is a hybrid inner-outer product algorithm. It alleviates
some of the communication load associated with an outer product algorithm and
handles distributed sparse data better than Strassen matrix multiply. Similar to an
outer product, the algorithm sends A’s entries to B’s column owners as their row po-
sition requires. However, rather than producing a local sum, the products generated
are sent immediately to C, as with an inner product, and final values are summed
once all of the products are gathered.

Because of the need for computational efficiency and fast optimization, the ge-
netic algorithm was run for only 50 generations with a population size of 100. This
amounts to searching a very tiny fraction of the search space. The tournament size
is set to 5. Elitism preserves the two best genomes each generation. The genetic al-
gorithm has 9 different grids it can randomly assign to a map when it initializes the
population. Thus the number of possible combinations of grids for 2 matrices is 81.
Each grid has 256 blocks. See Table 2 (right) for a list of possible grids. To select
operator probabilities ranges were explored via experimental design. The probabil-
ity of MAPXO was decreased from 0.125 to 0.0 over the first half of the run to
foster large exploration steps early. The probability of BLOCKXO was increased
from 0.25 to 0.75 over the run with the likelihood of a block crossover decreas-
ing from 0.1 to 0.01 to foster finer-grained exploration steps later on fewer blocks.
RANDMU was applied with 0.75 probability throughout the run on each genome
while the likelihood of a block being reassigned linearly decreased from 1.0 to 0.
BALANCINGMU was applied frequently at the beginning of a run (selecting a ma-
trix map with 0.75 probability) then its application was decreased linearly (to 0.25
probability) over the course of the run. Over the same interval, the quota of blocks
swapped was decreased from 10% of the maximum blocks in the grid to 1%.

Table 3 Optimized Codelet (left), Grid Dimensions (right)

A=rand(N,N,p);
B=rand(N,N,p);
C=zeros(N,N,p);
C=matrixMult(A,B);
eval(C);

Possible Grids
1 X 256 256 X 1
2 X 128 128 X 2
4 X 64 64 X 4
8 X 32 32 X 8

16 X 16
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7.2 Evaluation of BALANCINGMU

To evaluate BALANCINGMU, it was compared (see Table 4) to RANDMU, or con-
ventional Anti-Diagonal Block Cyclic (ADBC) maps, which provide the best advan-
tage in dense computation. Fifty runs were executed, each with different matrix data
but the same non-zero pattern and density, and their best maps in terms of OP/s were
considered. Both mutation operators were teamed with the crossover operators. The
mean performance of BALANCINGMU’s best maps was approximately three times
better than ADBC. Compared to RANDMU, the mean performance improvement is
statistically significantly (t-test, p=5.5e-38) with the best of all runs providing a 13%
improvement (8.678e9 vs 9.778e9 OP/s). To test whether random swapping would
further improve the smart swapping of BALANCINGMU, a RANDSWAP operator
was added in that swapped a set of blocks chosen at random. The total applications
of both swap operators and their blocks quotas were kept equal to the values set
when BALANCINGMU is used alone. The unpaired t-test confirms there is a sta-
tistically significant benefit to adding the random swap (p=0.0035) though the best
result is, on average, only 1% better.

Table 4 Comparison of BALANCINGMU to using RANDMU or conventional Anti-Diagonal
Block Cyclic (ADBC) maps, then RANDSWAP added.

Mean (SD) Best of Run Best of Runs Relative
( OP/s) (OP/s) to ADBC

ADBC 3.17E+09 (6.39E+08) 3.71E+09 1.0
RANDMU 8.06E+09 (3.23E08) 8.68E+09 2.54X
BALANCINGMU 9.47E+09 (1.70E08) 9.78E+09 2.99X
BALANCINGMU 9.56E+09 (1.45E08) 9.92E+09 3.01X
+ RANDSWAP

Using the run which provided the best maps over 50 runs for ADBC, BALANC-
INGMU, and RANDMU respectively, the memory operations balance of the best in-
dividual in each generation is presented in Figure 12 (left). While ADBC generates
an evenly balanced map in terms of memory operations counts, the ideal distribution
of counts (per the optimized map of the BALANCINGMU run) is slightly uneven.
However, if the balance is too uneven, as is the case with the maps generated by the
RANDMU run, performance is not as good. In general, BALANCINGMU’s behavior
is consistent with the goals of its design: to significantly boost the efficiency of the
genetic algorithm.

7.3 Hardware Model Parametric Study

In addition to providing optimization on a single architecture, the MORE frame-
work enables comparative investigation of sparse matrix computation on different
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Fig. 12 Left: Balance over a run Right: Baseline hardware model.

architectures. Here, the effects of varying network rate are examined. The baseline
model, Figure 12 (right), corresponds to a nominal Cray-like machine with a 4X4X4
torus topology. Like the Cray, it has very high network provisioning. Two variations
of it are created: flooding the system with a 10X improvement in bandwidth and
restricting the bandwidth by 10−1X.

Table 5 Comparison of Network Rate Parameterized Hardware Model

Mean of Runs Best of Runs Improvement
Model Absolute OP/s Relative Absolute OP/s Relative over ADBC

TenthX 4.998E+09 0.53 5.575E+09 0.57 2.4X
nominal 9.471E+09 1 9.777E+09 1 3.0X

TenX 9.335E+09 0.99 1.023E+10 1.05 2.7X

When the hardware model is constrained (row “TenthX” of Table 5), the best
run reaches a solution of 5.575e+09 OP/s, which is only approximately 0.57 times
the rate when the model is nominally configured. This is still over two times bet-
ter than an ADBC map. The lower improvement ratio (2.4:1 vs 3.0:1) compared
to the nominal model reflects the difference between the optimized balance point
and balance point of the ADBC map. Across the 50 runs, the mean best solution
is 0.53 times less efficient than solutions for the nominal model. As expected, the
same relative differences between nominal and “flooded”, i.e. “TenX”, are not ob-
served because the nominal model already has a relatively high network rate. The
differences are still statistically significant but smaller. There is larger variance, but
a lower mean, in the outcome of the TenX runs (mean best solution = 9.335E+09
OP/s with SD=4.40e08), while the best of runs of the “flooded” network is is better
than the nominal: 1.02e10 vs 9.78e10 OP/s). Note that in all of the models the use
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of Hogs and Slackers GA maps provides better performance than the conventional
ADBC mapping.

8 Related Work

Computational linear algebra has long considered parallel and distributed sparse
matrix-dense vector multiplication, as discussed in [8, 22]. More recently sparse
matrix-sparse matrix multiplication, such as in [3, 4], has been examined and the
old, and previously inefficient, idea of representing a graph as an adjacency matrix
has become plausible. Before, most of the work using an adjacency matrix repre-
sentation revolved around formalizing proofs about graph computations as opposed
to performing the computations themselves, e.g. [9, 31, 35]. In contrast, recent work
has focused on using mathematical software and algebraic operations to solve vari-
ous graph problems, e.g. [25, 36, 6, 11, 18]. This contribution is the first to optimize
sparse matrix-sparse matrix algebra via a genetic algorithm. The idea of using a ge-
netic algorithm to optimize a distributed algorithm traces back (at least) to [30] who
compared it to hill climbing and simulated annealing for a mapping problem defined
as “the optimal static allocation of communication processes on distributed memory
architectures”. Subsequently other work has widened this definition of mapping to
include task allocation ([17, 1, 16, 20]), while also considering specific problems
as varied as training set parallelism,([10]), and query ordering for sequence anal-
ysis, ([34]). [23] uses a GA for distributed sparse matrix Cholesky factoring.The
contribution also includes a tree rotate mutation operator that references auxilliary
knowledge. A recent example of exploiting domain specific intelligent genetic op-
erators (with complementary genome representation) comes from the single vehicle
pickup and delivery problem with time windows in [14].

9 Conclusions and Future Work

These results contribute to the study of genetic algorithms as well as optimization
of distributed computations. They demonstrate again that knowledge gives a genetic
algorithm an advantage. BALANCINGMU is a means by which the genetic algorithm
can consider information on one representation level – operations balance, and make
changes on another (processor and block assignment) with an effective improvement
in performance.

With respect to the present challenge of optimizing a parallelized computation
on increasingly complex architectures, the MORE framework serves as a concrete
demonstration of a general methodology that will be more frequently necessary
in high performance embedded computing. Plans exist to expand the optimiza-
tion beyond that of one kernel to support entire graph algorithms. The plan is
to use MORE’s multiobjective genetic algorithm to examine power-performance
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trade-offs. While this current work focuses on distributed memory models, in the
future shared memory models will also be considered.
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Evolutive Approaches for Variable Selection
Using a Non-parametric Noise Estimator

Alberto Guillén, Dušan Sovilj, Mark van Heeswijk, Luis Javier Herrera,
Amaury Lendasse, Héctor Pomares, and Ignacio Rojas

Abstract. The design of a model to approximate a function relies significantly on
the data used in the training stage. The problem of selecting an adequate set of vari-
ables should be treated carefully due to its importance. If the number of variables is
high, the number of samples needed to design the model becomes too large and the
interpretability of the model is lost. This chapter presents several methodologies to
perform variable selection in a local or a global manner using a non-parametric noise
estimator to determine the quality of a subset of variables. Several methods that ap-
ply parallel paradigms in different architecures are compared from the optimization
and efficiency point of view since the problem is computationally expensive.

1 Introduction

In many real-life problems like finance, weather forecast, electricity load prediction,
medical , etc. it is desirable to decrease the number of existing features (variables)
in order to reduce the complexity. This is especially important when the number of
input samples is not as large as the number of variables would require to have a
good sampling of the space. If the sampling is not good enough, the ultimate task
of designing a model that approximates the relationship between the inputs and the
output will not succeed.
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In order to reduce the dimensionality, several approaches can be considered al-
though not all of them are feasible to use due to the complexity in the evaluation
of a solution. To overcome this drawback, information theory and noise estimation
have been successfully applied to this problem.

The ultimate problem that this papers aim is to perform a regression, known as
well as function approximation. Formally, this problem can be stated as, given a set
of inputs/output

{
(x j;y j); j = 1, ...,N

}
, a function F(x j) ∈ R must be designed so

when a new vector xN+1 is given as input, the modelled function is able to compute
the correct output F(xN+1).

In order to implement F(x), there is a large variety of models that are universal
approximators, that is, they can model any kind of relationship between the inputs
and the output. The most common models that are used in the literature are Neural
Networks [55, 33], Fuzzy Systems [45, 41], kernel methods [46, 60], etc.

Although they can be very accurate, they all suffer from the ”Curse of Dimension-
ality” [40], which implies that, as the number of dimensions d grows, the number of
input vectors should be increased exponentially in order to perform a good sampling
of the space. When the number of samples is small, the data set could be unbalanced
and test results could be quite wrong even if the training results were quite accurate.
This problem arises in many real life situations because of the difficulty of perform-
ing an exhaustive sampling.

This is not the only issue related to a high dimensionality, the fact of having a
large number of variables can lead to models that are not easy to interpret [37] and,
for some real life problems, it is important to understand the model and how the
variables relate with each others.

Therefore, it is clear that there is a necessity of reducing the dimension of a data
set before a model is designed, there are several papers that tackle this problem, but
they are applied to the classification problems ([56, 53, 52, 57, 61]) instead of re-
gression. There are several differences between these problems that make unsuitable
apply the previous methods:

• Classification targets a finite number of classes meanwhile in regression, an infi-
nite interval of numbers could be generated.

• To perform a miss-classification can be penalised in an equal way, however, in
regression, if the output is not exactly the same, if it is ”close” enough to the real
output, it should not be penalised in the same way.

Due to these differences, specific algorithms for variable selection in regression
problems should be designed. The complexity of the design and evaluation of the
model in order to evaluate the quality of a subset of variables led researchers to
study methods which are not dependent on the model and with as few parameters as
possible. In [14] the Delta Test (DT) was proposed as a criterion to perform the vari-
able selection and further studies have confirmed its adequacy. This chapter presents
several techniques in order to find the best subset of variables using local and global
optimization techniques. A novel aspect that is treated as well is how to speed the
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expensive computational costs of the process by parallelizing the algorithms using
different paradigms.

2 Using Delta Test for Variable Selection

The Delta Test (DT) is a technique to estimate the variance of the noise, or the mean
squared error (MSE), that can be achieved without overfitting. It was introduced
by Pi and Peterson for time series [54] and proposed for variable selection in [14].
Given N input-output pairs (xi,yi) ∈ R

d ×R, the relationship between xi and yi can
be expressed as

yi = f (xi)+ ri, i = 1, ...,N

where f is the unknown function and ri are i.i.d. noise terms. The DT estimates the
variance of the noise r.

The DT is useful for evaluating the nonlinear correlation between two random
variables (i.e. the input and output pairs), and can be also applied to input variable
selection: the set of input variables that minimizes the DT is the one that is selected.
Indeed, according to the DT, the selected set of input variables is the one for which
the relationship with the output variable can be represented in the most deterministic
way. DT is based on a hypothesis coming from the continuity of the regression
function. If two points x and x′ are close in the input variable space, the continuity
of regression function implies that the outputs f (x) and f (x′) will be close in the
output space. Furthermore, if the corresponding output values are not close in the
output space, this is due to the influence of noise.

The DT can be interpreted as a special case of the Gamma Test [44] considering
only the first nearest neighbour. With the first nearest neighbour of a point xi in the
R

d space denoted as xNN(i), the nearest neighbour formulation of the DT estimating
Var[r] can be written as

Var[r]≈ δ =
1

2N

N

∑
i=1

(yi − yNN(i))
2,

where yNN(i) is the output corresponding to xNN(i), the estimator is unbiased when
N → ∞.

2.1 Approaches to Compute the Delta Test

This subsection presents two different approaches in order to efficiently compute the
DT. The fact of having to recompute the distances between the input points makes
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any algorithm very slow since this computation is quite expensive. Therefore, to be
able to optimize this aspect is crucial in order to be able to evaluate an acceptable
number of solutions.

2.1.1 Computation of Delta Test Using Pre-calculated Distances

Computation of the nearest neighbour in the naive way involves calculating the dis-

tances between each pair of samples d2
i, j = ∑d

m=1(x
(m)
i − x(m)

j )2 and returning the
smallest di, j and the corresponding index NN(i) for each sample. Since the focus is
on examining non-empty subsets of variables which can share individual elements,
a lot of time is wasted recomputing the squared differences to obtain di, j. A simple
solution to decrease running time is to store that information into a N(N −1)/2 × d
matrix, where each row contains precomputed squared differences for a pair of sam-
ples (xi,x j). Given this matrix, computing all pairwise distances for a given variable
subset I ⊆ {1,2, . . . ,d} involves summing precomputed values for those I variables
(i.e. the I-th columns of the matrix).

2.1.2 Computation of Delta Test on GPU

The computation of the k Nearest Neighbours (KNN) requires a big computational
effort since it has to compute the pairwise distances between all the points. In [17]
an implementation of the k-NN algorithm on a GPU1 was presented, showing very
large speed-ups compared to CPU times. We use this algorithm to determine the
nearest neighbours (xNN(i)) to all input points (xi).

Differently from the approach in the previous subsection, the pairwise squared
differences between all points are not pre-calculated, since it would not be feasible
to keep this entire matrix in memory. However, even though we do not make this
optimization, computing the pairwise distances between the points can still be many
times faster when using a fast GPU instead of the CPU.

Once all pairwise distances have been computed, a partial sort is performed in
order to determine the nearest neighbour xNN(i) (and its index NN(i)) to each of
points xi. Finally, given these indices of the nearest neighbours, we can compute the
Delta Test as explained in the beginning of this section.

3 Local Search Variable Selection Methodologies

This section presents commonly used methodologies to compute the optimization
criteria in variable selection setting. These are heuristic approaches and can be
easily modified for minimization of DT. Then, an adaptation of the Tabu search
is presented which uses these local search algorithms.

1 The code is available at: http://www.i3s.unice.fr/∼creative/KNN/
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The main focus is on variable selection, such that encoding of a solution
(subset of variables) is binary. The value indicates whether that variable is relevant
or not.

3.1 Greedy Local Search Strategies

To obtain optimal solution in variable selection, all subset of variables should be
checked and return the one solution that has the best value with respect to the cri-
terion. This requires examining 2d − 1 solutions, which is infeasible as d grows. To
overcome the difficulties and the high computational time that an exhaustive search
would entail, simple greedy algorithms are widely used to obtain a solution that is
most promising at least locally. These strategies are affected by local optima be-
cause they do not test every input variable combination, but they are preferred over
an exhaustive search if the number of variables is too large.

Among the typical search strategies, there are three that share similarities:

• Forward search
• Backward search (or pruning)
• Forward-backward search

The difference between the first two is that the Forward search starts from an empty
set of selected variables and adds variables one at a time according to the optimiza-
tion of a search criterion. The Backward search start starts from a set containing
all the variables and removes those for which the elimination optimizes the search
criterion.

The Forward-Backward search (FBS) is a combination of of the two previous
strategies. Instead of exclusively adding or removing variables, FBS considers both
operations and chooses the one most beneficial to the optimization process. If a
variable is discarded during earlier stages of the search, it can later be introduced
again if improves the search criterion. Another advantage is flexibility in the starting
solution as FBS can be initialized with any variable set: empty set, full set, custom
set or randomly initialized set.

Denoting with O the optimization criterion, with S the set of selected variables,
and SC the complement of S (all variables that are not in S), with Xk the k− th vari-
able in data set, the goal is to select set S∗ such that O(S) is minimum or maximum,
depending on the problem. O(S) is the value of optimization criterion for a data set
using only variables in the set S.

Given this notation, FBS can be described as follows:

1. Initialization:
Choose starting set S (empty set, full set, randomly chosen) and compute O(S)
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2. Examining local solutions:
Form set Ne(S) = {S∪Xk|k ∈ SC}∪{S\Xk|k ∈ S}. Choose a set S′ ∈ Ne(S) with
the best O(S′).

3. Termination:
Check if O(S′) is better than O(S). If so, then replace S with S′ and repeat step 2.
Otherwise finish the algorithm and output set S as the final solution.

In the above algorithm, the set of solutions Ne(S) is called the neighbourhood of S
which plays key role in Tabu search, while the difference in solutions S and S′ is a
single variable. This difference can be seen as changing the status of that variables
between binary values, and such change is sometimes referred to as a move between
solutions.

In the case of variable selection using DT, the goal is to minimize function O(S),
which is replaced with Var[r].

3.2 Tabu Search

Tabu Search (TS) is a metaheuristic method designed to guide local search methods
to explore the solution space beyond local optimality. The first successful applica-
tion was by Glover ([18], [19], [20]) for combinatorial optimization. Later TS was
successfully used in scheduling ([13], [47], [69]), design ([67], [68]), routing ([5],
[63]) and general optimization problems ([21], [38], [1]). The TS has become a pow-
erful method with different components tied together, that is able to obtain excellent
results in different problem domains.

In the context of TS,the neighbourhood relationship between solutions, denoted
Ne(S), plays the central role. Compared to greedy local strategies, TS uses memory
in order to influence which parts of the neighbourhood are going to be explored. A
memory is used to record various aspects of the search process and the solutions
encountered, such as recency, frequency, quality and influence of moves. Instead of
storing whole solutions in memory, which is impractical in some problems, the com-
mon practice is to store attributes of solutions or moves/operations used to transition
from one solution to the next one.

The most important aspect of the memory is to forbid some moves to be applied,
or in other words, to prevent the search to go back to solutions that were already
visited. This also allows the search to focus on those moves that lead toward unex-
plored areas of the solutions space. This part of the memory is called a tabu list, and
the moves in this list are then considered tabu, and thus forbidden to use. The size of
the tabu list as well as the time each move is kept in the list are important issues in
TS. These parameters should be set up so that the search is able to go through two
distinct, but equally important phases: intensification and diversification.

Another distinction between TS and greedy methods is that TS is not restricted
by local optima, i.e. the search is guided towards the best solution in Ne(S) which
does not necessarily have to be better then the current solution S.



Evolutive Approaches for Variable Selection 249

3.2.1 TS for Variable Selection

For variable selection problem, a move is defined as a flip of the status of exactly
one variable in the data set. The neighbourhood Ne(S) is defined in the same way
as described in the previous subsection, thus set Ne(S) consists of solutions which
have exactly one variable changed compared to S. With this setup, each solution has
exactly the same amount of neighbours, which is equal to d.

The tenure for a move is defined as the number of iterations that it is considered
as tabu. This value is determined empirically when the TS is applied to solve a
concrete problem. For the variable selection problem, we propose a value which is
dependent on the number of dimensions so it can be applied to several problems. In
the experiments, only short-term recency based memory is used which remembers
recently performed transitions and discards them after certain number of iterations.
This memory keeps track when a variable Xk changes state, and then prevents further
change for this variable for d/4+2 iterations. This value has been found to be good
through experimentation on data sets with different dimensionality.

4 Global Searches

Although local search techniques can perform satisfactory for some problems, the
risk of falling into a local minimum is high. Genetic Algorithms [42] (GA) have
been used for a long time successfully in global optimization problems although
recent research suggests that the hybridization with local search procedures achieves
better results. This section describes an algorithm of this kind that ameliorates the
computational cost by parallelizing different functions.

4.1 Hybrid Parallel Genetic Algorithm

4.1.1 Encoding of the Individuals and Population Initialization

When designing a GA, the first step is to decide how an individual will encode a
solution as this decision will condition the rest of the design [10, 51, 49]. For vari-
able selection problems, the most straight forward encoding is to use a binary vector
where 0 means that the variable is not selected and 1 that it is selected. There is an-
other approach noted as scaling where the variable is given a weight, so values near
0 mean that the variable is not relevant and values near 1 mean that it is significant.
To encode those solutions a vector of real numbers must be used and the GA will
fall into the category of Real Coded Genetic Algoritms (RCGA). Nonetheless, the
values of the real values should be discretised for, at least, two reasons: 1) the solu-
tion space diminishes significantly 2) it is possible to use the precomputed distance
matrix.
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4.1.2 Selection, Crossover and Mutation Operators

Once the individual is defined, it is possible to start choosing which operators will
be used to evolve it. The three main aspects are: selection, crossover and mutation.
The literature presents a large variety of operators based on heuristics that would
require more computation than classical approaches but, as the design restriction
demands efficiency, the classical ones were selected.

Regarding the selection, binary tournament selection [22] was shown to be ade-
quate because the compromise it achieves between exploration and exploitation of
the solution space instead of Baker’s roulette wheel [4] and other complex operators
[8]. The main benefit of the operator is that it does not require any extra computation
apart from generating 4 random numbers.

The crossovers considered were the classical ones for the binary coded GA: one
and two-point crossovers and the uniform crossover [9, 42, 64]. As the experiment
section will show, the two-point crossover showed to perform slightly better than
the other two.

Another crossover was implemented for the case where the scaling is considered.
For this situation, an adaptation of the well known BLX-α [15] was coded in such
a way that the offspring are discretised so they remain within the set of discretised
values.

Regarding the mutation, it mutates a gene so, when it is applied, a variable is
selected or unselected depending on its previous state.

4.1.3 Hybridization

The good behaviour of local search when starting from an appropriate initial solu-
tion contrasts with the not so satisfactory results when performing the local search
from another initial solution. On the other hand, with global search, it is easy to find
a good starting point although the time required to refine the search is large and not
too robust. Therefore, it seems reasonable to merge both techniques in a hybrid al-
gorithm as was already done in [43, 11, 29, 53]. The use of a local search to provide
a good individual to the initial population is advisable, especially when the size of
the population is small [58]. Once the GA has a good starting point, it can explore
the solution space and provide a final set of solutions, then, a new local search is ap-
plied to refine the final result. Regarding the local search applied, TS was selected
since it can escape from local minima unlike FBS.

4.2 Different Parallelization Approaches

Even though the computation of the DT is much more efficient than the design of
a model in order to determine the fitness of a subset of variables, it still requires
a considerable amount of effort since all the distances between the input samples
must be computed in order to determine the nearest neighbours. Therefore, in order
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to take advantage of the available architectures, the algorithm has been optimized
and parallelized to provide better solutions in less time.

The parallelization has been done in several ways that can be further extended
with more functionalities. The first way of optimization and parallelization consists
in the computation of a big distance matrix where all the distances between each
pair of points are stored. This computation was distributed among processors. Fur-
thermore, the evolution process was also parallelized so the individuals of a single
population are evaluated in different processors.

The second approach optimizes the memory consumption of the previous ap-
proach by optimizing the computation of the distances using Graphic Processing
Units (GPUs). Moreover, the second stage of evolving the individuals was imple-
mented in parallel so several populations are evolved simultaneously.

In the following subsections, these approaches are described in detail.

4.2.1 Using Precomputed Distance Matrix and One Population

Among the different approaches to parallelize a GA [7, 3, 2], for this first approach,
the classical master/slave paradigm[26] would be the more suitable to classify the
implementation.

Computing the distances and storing them in memory shows to be much more
efficient that recomputing the distances using the CPU. Nonetheless, the evaluation
of the population remains as the most time consuming part of the GA stages. As
was described in the literature [7], the master/slave approach is the one where the
sequential part of the algorithm is executed in one process (processor) and the eval-
uation of the individuals is distributed among all the processors available. Although
this approach seems quite straight-forward, several aspects must be considered like
the homogeneity of the processors, the variability in the computation of the fitness
function, the topology of the communications, etc.

In this implementation, we can assume that the time to compute DT indepen-
dently of the number of variables selected by the individual is very similar since the
process only has to make several memory access which are allocated in contiguous
positions in memory. Therefore, the number of individuals sent to the processors
can be the same (assuming that the cluster has homogeneous processors) and equal
to sizeo fpopulation/numbero fprocessors.

Data Parallelism Paradigm
According to the classification of parallel paradigms in data and functional, this
implementation fits into the data parallelism since it considers the same data (a
population) and chops it into several slices where it is processed independently. The
main problem with this approach is the time spent distributing and collecting the
chunk that correspond to each process.

In order to minimize the number of communications and the size of the packets
sent, the implementation was optimized in such a way that it only requires one
communication operation on each iteration. Since the number of processes is known
in advance and we are assuming that the time of evaluation is constant, each process
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(mapped to a processor) knows in advance how many individuals will evaluate. The
problem is that GAs have a random component that makes populations evolve in a
non-determinist way so, a priori, the master should distribute the new individuals
generated to the others. To skip this expensive step, all processes will execute the
same code so all of them have the entire population at their disposal and, without any
communication, will take care of their individuals. The trick consists in broadcasting
the seed of the random number generator at the beginning of the execution so, when
a process calls the function, it will obtain the same value as the other processes.
Therefore, all the processes will perform selection, crossover and mutation with the
same values. Thus the only communication that is needed is to send and receive the
fitness of the individuals evaluated by the other processes.

Hybridizing with Local Approaches
A good way to obtain both benefits that the local and the global search provides is
to merge them. This objective can be achieved by applying the local search at some
stage of the GA: initialization, evolution and final solution. As it is known, the inclu-
sion of good individuals in the initial population will lead to better populations and
final solutions so it is quite reasonable to introduce at least an adequate individual
generated using local search. The local search procedure chosen was TS because it
escapes from local minima. Each process will start from a random point the local
search procedure so the initial population will have p individuals generated by TS,
where p is the number of processes.

The use of local search during the evolution has been applied in [29], however,
since we already started from an initial population generated in that way, applying
it again during the evolution might lead to a premature convergence.

Finally, once the GA is finished, TS is applied again to the best solutions. As we
have several processes, several TS can be aplied in parallel so process 1 applies TS
to the best individual, process 2 to the second best and so on.

The structure of the algorithm is depicted in Figure 1 showing the communica-
tions steps needed to obtain the final solution.

4.2.2 Multi-deme GA Using a Cluster of GPUs

The previous approach evolves a unique population using several computers to eval-
uate the individuals of that population, however, other approaches exist where sev-
eral populations can be evolved at the same time. This kind of GAs usually include
a migration step or operator that allow the isolated populations to communicate with
others performing an exchange of individuals. This class of algorithms have shown
a good behaviour outperforming the sequential approaches [3, 32, 30, 31].

Island Model
The paradigm of evolving isolated populations in parallel and communicating them
periodically is known as the island model [6, 31, 39]. The classical mapping is to
assign one island per processor so all populations can evolve at a similar speed.
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Fig. 1 Algorithm scheme. Dashed line represents one to one communication, dotted lines
represent collective communications.

The previous approach is very efficient for computing the DT. However, the need
of precomputing the distance matrix forces to have a large memory. For big data
sets, this might suppose a critical problem. In order to overcome this drawback, the
computation of the DT was implemented so it can be computed using a Graphic Pro-
cessing Unit (GPU). As the architectures improve, nowadays, it is possible to find
a machine with several cores and several GPUs, therefore, the code was adapted
so it can be executed in a machine like this. Furthermore, it is possible to connect
several of these machines in a classical cluster manner so scalability is guaranteed.
The mapping of the islands in the processors is recommended to be done using one
pair of CPU/GPU to process one population (island). Otherwise, more synchroniza-
tion and data distribution mechanisms, which could make the process less efficient,
should be implemented.

The way in which the migration is done can be random [50], fixed [31], or using
information about the population like diversity or convergence. In this work, a fixed
migration scheme after a certain number of generations, like the one presented in
[32] was implemented. It can be considered as an elitism operator because the best
individuals of each population are sent to the others, replacing the worst individuals,
in the same way the classical elitism keeps the best individual (or a few of them) in
the following generations. The way in which the migration is performed is shown
in 2.



254 A. Guillén et al.

Fig. 2 Island migration scheme.

Population distribution in the cluster
The architecture presented allows to have heterogeneous nodes with different CPU
and GPU models as used in [36]. As the migration scheme is fixed, there is the
possiblity of slowing the fastest machines that will have to wait for the slower ones
to finish their generations. In order to fix this problem (in the case it arises), the
decision of using different population sizes was taken in such a way that slower
machines will have to process smaller number of individuals than the faster ones.
The determination of the population size can be taken dinamically depending on
the performance of the fastest machine so the other sizes are computed depending
on this one: popSizew = popSize0 ∗ Sw where w = 1...p and S is division of the
time required to evaluate one individual in the machine w and the time required to
evaluate the same individual in the fastest machine (processor 0).

5 Experiments and Results

This Section presents the results obtained by the different design stages of the algo-
rithms as well as a comparison of several alternatives. The first experiment analyses
the effect of computing the distance matrix and evaluating the individuals using
several computers. The next experiment compares different design alternatives by
hybridizing the local and global searches. Afterwards, the use of GPUs to speed up
the evaluation of the individuals and the evolution of several islands is compared
with the hybrid approach.

In order to set a stop criterion for global searches, a time limit of 600 seconds
was chosen. The reason is because, as experienced with workers in the industry, 10
minutes is the maximum time that an operator wants to wait. This time limit has
been used already in previous work in the literature [66, 70].

5.1 Computer Architectures Used

The algorithms were implemented in MATLAB and, in order to communicate the
different processes, the MPImex ToolBox with the capabilities to use GPUs pre-
sented in [34] was used.
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5.1.1 Homogeneous Cluster of Computers

The experiments carried out for the evaluation of the data parallelism used a cluster
of homogeneous nodes where each processor has the following characteristics:

Table 1 Node specifications used in the the homogeneous cluster

Cpu family 6
Model 15

Model name Intel(R) Xeon(R) CPU E5320 @ 1.86GHz
Stepping 7
Cpu MHz 1595.931
Cache size 4096 KB
Cpu cores 2
Bogomips 3723.87

Clflush size 64
Cache alignment 64

Address sizes 40 bits physical, 48 bits virtual

5.1.2 Heterogeneous Cluster of CPUs with GPUs

The cluster that was configured had the components described below that were in-
terconnected as Figure 3 shows.

Fig. 3 Cluster of GPUs used in the experiments

5.2 Data Sets Used in the Experiments

To compare the different approaches, several well-known data sets were used. These
data sets are, as described in [35]:

1. The Housing data set2: The housing data set is related to the estimation of hous-
ing values in suburbs of Boston. The value to predict is the median value of

2 http://archive.ics.uci.edu/ml/data sets/Housing.
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Table 2 Node specifications of the heterogeneous cluster of GPUs

Master node with 2 GPUs

Processor
model name (26) Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz
cache size 8192 KB
cpu cores 4

2 GPUs
Graphics Processor GeForce GTS 450

CUDA Cores 192
Memory 1024 MB

Memory Interface 128-bit
Bus Type PCIExpress x16 Gen1

PCI-E Max Link Speed 2500

Two local network nodes with 1 GPU

Node 1 Processor
model name (23) Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz — cache size 6144 KB

cpu cores 4
Node 1 GPU

Graphics Processor GeForce 9800 GTX
CUDA Cores 128

Memory 512 MB
Memory Interface 256-bit

Bus Type PCIExpress x16 Gen2
PCI-E Max Link Speed 5000

Node 2 Processor
model name (15) Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
cache size 4096 KB
cpu cores 4

Node 2 GPU
Graphics Processor GeForce 8400 GS

CUDA Cores 16
Memory 512 MB

Memory Interface 64-bit
Bus Type PCIExpress x16

PCI-E Max Link Speed not available

owner-occupied homes in $1000’s. The data set contains 506 instances, with 13
input variables and one output.

2. The Tecator data set3: The Tecator data set aims at performing the task of predict-
ing the fat content of a meat sample on the basis of its near infrared absorbance
spectrum. The data set contains 215 useful instances for interpolation problems,
with 100 input channels, 22 principal components (which will remain unused)
and 3 outputs, although only one is going to be used (fat content).

3. The Anthrokids data set4: This data set represents the results of a three-year study
on 3900 infants and children representative of the U.S. population of year 1977,

3 http://lib.stat.cmu.edu/data sets/tecator.
4 http://ovrt.nist.gov/projects/anthrokids.
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ranging in age from newborn to 12 years of age. The data set comprises 121
variables and the target variable to predict is children’s weight. As this data set
presented many missing values, a prior sample and variable discrimination had to
be performed to build a robust and reliable data set. The final set5 without missing
values contains 1019 instances, 53 input variables and one output (weight). More
information on this data set reduction methodology can be found in [48].

4. The Finance data set5: This data set contains information of 200 French indus-
tries during a period of 5 years. The number of samples is 650. It contains 35
input variables, related to balance sheet, income statement and market data, and
one output variable, called ”return on assets” (ROA). This is an indicator of how
profitable a company is relative to its total assets. It is usually calculated by di-
viding a company’s annual earnings by its total assets.

5. The Santa Fe time series competition data set6: The Santa Fe data set is a time se-
ries recorded from laboratory measurements of a Far-Infrared-Laser in a chaotic
state, and proposed for a time series competition in 1994. The set contains 1000
samples, and it was reshaped for its application to time series prediction using
regressors of 12 samples. Thus, the set used in this work contains 987 instances,
12 inputs and one output.

6. The ESTSP 2007 competition data set5: This time series was proposed for the
European Symposium on Time Series Prediction 2007. It is an univariate set
containing 875 samples but has been reshaped using a regressor of 55 variables,
producing a final set of 819 samples, 55 variables and one output.

All the data sets were normalized to zero mean and unit variance, so the DT values
obtained are normalized by the variance of the output.

5.3 Parallelization of the Sequential GA

The first tests that should be done are the ones that confirm that a parallel implemen-
tation outperforms sequential ones keeping in mind that the improvement obtained
depends in the measure used. As a time limit of 600 seconds was used to stop the al-
gorithm, parallel implementations will not be faster than sequential ones so, instead
of measuring the execution time, the variables to compare sequential and parallel
approaches will be the number of generations computed by the algorithms and the
quality of the final solution given by the algorithms.

The analysis of the performance between the sequential GA and the paralleliza-
tion does not consider the hybridization with TS since this would distort one of the
measures selected.

The parameters of the GA were set to the following values:

• Crossover Type: BLX-α
• Crossover Rate: 0.85

5 http://research.ics.tkk.fi/eiml/datasets.shtml
6 http://www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html
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• Mutation Rate: 0.1 7

• Generational elitism: 10%

The sizing of the population is another critical issue when optimizing a genetic
algorithm, and therefore there are many studies in that field [23, 24, 25, 59, 65].
Most recommended settings are established by empirical rules, and usually range
from 30 to 100 individuals depending on the author [12, 27, 62]. The results of DT
were obtained for population sizes of 50, 100 and 150 individuals, and averaged
from 5 or 10 repetitions, depending on the case.

In this experiment, the crossover operator used is the BLX-α in order to weight
the importance of the variables. The aim of using this operator instead of performing
the classical binary approach is to obtain smaller DT values, therefore, the GA turns
out into a parallel Real Coded Genetic Algorithm (pRCGA).

Table 3 shows the results for the sequential and the parallel approach for three
data sets: Anthrokids, Tecator and ESTSP. The values correspond to the number of
generations evolved (higher is better) and the final DT (lower is better).

The way in which the number of processors influences the number of generations
is shown graphically in Figure 4 showing the same behaviour for the other data sets.

The results show how the bigger the population is, the less the number of gen-
erations is confirming that the evaluation function is the bottleneck for the GA.

Fig. 4 Generations evaluated by the GA vs the number of processors used. Anthrokids with-
out scaling.

7 This is the same rate used in [53], also for a feature selection application. This rate is higher
than the recommended by most authors [12, 16, 27, 62], but it is motivated by the nature of
the search: a wide space of solutions needs to be explored, sacrificing exploitation power.
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As the parallel approach expands easily, the number of generations increase almost
linearly with the number of processors, specially with large populations. Due to
the increase in the number of generations, better solutions regarding the DT can be
obtained as Table 3 showed.

Table 3 Performance of RCGA vs pRCGA for Three Different data sets. Values of the Delta
Test and Number of Generations Completed.

Data set Population Measurement RCGA pRCGA (np=2) pRCGA (np=4) pRCGA (np=8)

Anthrokids

50

Mean (DT) 0.01278 0.01269 0.01204 0.01347

StDev (DT) 11.5e-4 14.2e-4 12.6e-4 8.1e-4

Mean (Gen.) 35.5 74.8 137.8 169.3

StDev (Gen.) 1.9 4.1 6.8 13.8

100

Mean (DT) 0.01351 0.01266 0.01202 0.0111 5

StDev (DT) 11.6e-4 86.4e-4 17.4e-4 5.6e-4

Mean (Gen.) 17.2 35.4 68.8 104

StDev (Gen.) 1 1.2 4.3 28.2

150

Mean (DT) 0.01475 0.01318 0.01148 0.01105

StDev (DT) 12.1e-4 11.2e-4 9.9e-4 12e-4

Mean (Gen.) 11 22.7 45.6 61

StDev (Gen.) 0.8 0.9 0.6 4.2

Tecator

50

Mean (DT) 0.13158 0.14297 0.13976 0.1365

StDev (DT) 7.9e-4 7.7e-3 7.8e-3 3.7e-3

Mean (Gen.) 627 1129.4 2099.2 3369.5

StDev (Gen.) 39.5 55.4 119.6 256.7

100

Mean (DT) 0.13321 0.13587 0.13914 0.13525

StDev (DT) 3.1e-3 2.4e-3 8.6e-3 3e-4

Mean (Gen.) 310.8 579.6 1110.4 1731

StDev (Gen.) 23.6 34.4 61.5 32.5

150

Mean (DT) 0.13146 0.1345 0.13522 0.1303

StDev (DT) 8.5e-4 2.4e-3 6.9e-3 9.9e-4

Mean (Gen.) 195 388.1 741.2 1288

StDev (Gen.) 14.6 26.1 19.9 21.2

ESTSP

50

Mean (DT) 0.01422 0.01452 0.01444 0.01403

StDev (DT) 1.8e-4 3.7e-4 2.5e-4 2.9e-4

Mean (Gen.) 51 99.2 190.8 229

StDev (Gen.) 2.7 8.5 16.4 7.9

100

Mean (DT) 0.01457 0.01419 0.01406 0.01393

StDev (DT) 2.5e-4 3.9e-4 2.9e-4 3.2e-4

Mean (Gen.) 24.8 50.5 93 128.7

StDev (Gen.) 1.4 2.8 2.9 2.1

150

Mean (DT) 0.01464 0.01429 0.01402 0.0141

StDev (DT) 3.4e-4 2.1e-4 1.8e-4 1.4e-4

Mean (Gen.) 16.6 33.6 63.2 82.5

StDev (Gen.) 0.8 1.2 2 2.1
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5.4 Combining TS and the pRCGA

The experiments also consider the incorporation of the TS with the pRCGA to obtain
smaller DT values. In order to perform this hybridization, it is necessary to consider
elements like: resource allocation for TS, when to apply it, and to which individuals.

Regarding the moment to apply the TS, several approaches can be taken:

• at the begging to initialise the population
• during the evolution, as a mutation operator
• at the end of the evolution

These three possibilities can be combined simultaneously [29] although, in order to
avoid a premature convergence during the evolution and satisfy the time constraint,
the TS was not applied during the evolution and only was considered at the begin-
ning and at the end. As there is a time limit to execute the algorithm, it must be
decided how much time will be spent on each of the three stages: TS start, GA and
TS end.

Several experiments were carried out using different configurations of the time
dedicated to the stages. However, the experiments always considered less time ded-
icated to the initial TS since highly refined individuals could lead to a fast conver-
gence, making the global search not useful anymore.

Table 4 shows the results for the following alternative: pRCGA, pTSGA using
TS at the end and pTSGA at the beginning and at the end. Following the results
obtained in the previous experiments, the population was fixed to 150 individuals.

As the results show, the application of TS improves the performance of the algo-
rithm in two ways: the DT values obtained are smaller and the robustness of these
good results is increased.

Table 4 Performance of pRCGA vs pTSGA, with the BLX-α Crossover Operator. The time
distribution is tT S1/tGA/tT S2 where tGA is the time (in seconds) dedicated to the GA, tT S1 is
the time dedicated to the first TS, and tT S2 the time dedicated to the last.

Data set Measurement pRCGA pTSGA 0/400/200 pTSGA 50/325/225

Anthrokids
Mean (DT) 0.0113 0.0084 0.0083

StDev (DT) 11.5e-4 17.3e-5 5.8e-5

Tecator
Mean (DT) 0.13052 0.1180 0.1113

StDev (DT) 25.8e-4 12.1e-3 88.9e-4

ESTSP
Mean (DT) 0.01468 0.01302 0.01303

StDev (DT) 16.4e-5 8.4e-5 5.8e-5

Housing
Mean (DT) 0.0710 0.0710 0.0710

StDev (DT) 0 0 0

Santa Fe
Mean(DT) 0.0165 0.0165 0.0165

StDev (DT) 0 0 0

Finance
Mean(DT) 0.1498 0.1406 0.1406

StDev (DT) 3.4e-4 7.9e-4 1.2e-4
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5.5 Experiments Using GPUs

This section will compare the previous parallel approach with the parallelization
that can be obtained using clusters of GPUs. Since it is desired to analyse the effect
of parallelism in the evolution, the TS was not included in the algorithm.

5.5.1 Small Datasets

The same parameters for the GA were used as well as the same population sizes
(50,100 and 150).Two data sets are used (Tecator and Anthrokids) since they have
the largest number of features. Even though they are the largest of the previous
experiments, the number of input vectors and variables to be selected is quite small
in comparison with real life problems that can be highly monitorised.

As Table 5 shows, the results provided by the GPU implementation do not im-
prove significantly the ones provided by the classical cluster approach. For these
type of data sets, the precomputation of the distance matrix makes the computation
of the DT much faster even for the use of GPUs.

Table 5 Performance in tems of DT value of the cluster of GPUs (pGPU) against sequential
and parallel approaches.

Data set Population Measurement seq. parallel(np=2) parallel(np=4) pGPU(np=4,4GPUs)

Anthrokids
50 Mean (DT) 0.01278 (11.5e-4) 0.01269 (14.2e-4 ) 0.01204 (12.6e-4) 0.01587 (8.1e-3)
100 Mean (DT) 0.01351 (11.6e-4) 0.01266 (86.4e-4) 0.01202 (17.4e-4) 0.014553 (5.6e-4)
150 Mean (DT) 0.01475 (12.1e-4) 0.01318 (11.2e-4) 0.01148 (9.9e-4) 0.01556(12e-4)

Tecator
50 Mean (DT) 0.13158(7.9e-4) 0.14297 (7.7e-3) 0.13976 (7.8e-3) 0.123803 (3.7e-3)
100 Mean (DT) 0.13321 (3.1e-3) 0.13587 (2.4e-3) 0.13914 (8.6e-3) 0.132501 (3e-4)
150 Mean (DT) 0.13146 (8.5e-4) 0.1345 (2.4e-3) 0.13522 (6.9e-3) 0.13197 (9.9e-4)

5.5.2 Large Datasets

As commented before, the data sets used so far can be considered small, if the
number of input vectors or variables increases significantly, the optimization of
computing the distance matrix in advance becomes infeasible due to the memory
constraints. For these situations, the use of a cluster of GPUs becomes the only way
to obtain some results.

The data to be used in this experiment consists of 19967 input vectors with 20
variables that was divided so 15385 input vectors were used for training and the
rest for test. The input vectors contain information about the marital dissolutions
in Spain and the data was provided by the Spanish Institute of Statistics (Instituto
Nacional de Estadı́stica, INE). The output desired to predict consists in how many
months the dissolution process will take, so children damage can be reduced.

The algorithm was executed for several population sizes obtaining the results
showed in Table 6.
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Table 6 Number of variables selected and DT values for the large size data set.

Population size DT value (std) # vars
50 0.00167 (1e-4) 7.3 (0.57)

100 0.00166 (2e-5) 8.6 (1.52)
150 0.00167 (3e-5) 9 (1)

To check if the variable selection performed by the algorithm is effective, as there
are no other results to compare, several regression models were designed to see if
they can achieve better approximation errors after performing the variable selection.
Table 7 shows the Normalised Mean Squared Error (NRMSE) of the approximations
using Radial Basis Function Neural Network designed with Improved Clustering for
Function Approximation (ICFA) [33]. The approximation errors obtained after the
variable selection are much better than without it both in test and training for both
algorithms and different number of neurons.

Table 7 Approximation errors (NRMSE) of the large data set with and without variable
selection using a RBFNNs with 5 neurons and 7 variables.

Train Error Test Error
without var. selec. 0.5444 0.5689

with var. selec. 0.4869 0.5051

6 Conclusions

This chapter has covered several strategies to perform variable selection (including
scaling) based on the non-parametric noise estimator, the Delta Test. Among the
optimization strategies there are local and global searches that, combining them
together, are able to provide better results.

From the implementation point of view, several parallel approaches have been
compared leading to the conclusion that for small data sets, the precomputation of
the input vector distances is efficient however, when the data size requires too much
memory, the only way to obtain a good solution is by speeding up the algorithm
using GPUs.
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29. Guillén, A., Pomares, H., González, J., Rojas, I., Herrera, L.J., Prieto, A.: Parallel multi-
objective memetic rbfnns design and feature selection for function approximation prob-
lems. Neurocomputing, 3541–3555 (2009)
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A Chemical Evolutionary Mechanism
for Instantiating Service-Based Applications

Maurizio Giordano and Claudia Di Napoli

Abstract. Service Oriented Architecture (SOA) has become the de facto paradigm
for the Internet of Services (IoS), i.e. a virtual space where information and con-
tent is stored, exchanged and manipulated by software and human entities through
services. In this scenario, a Service Based Application (SBA) is a composition of a
number of possibly independent services, that is software programs or interfaces for
human entities connected through the network and performing a set of functionali-
ties whose integration should fulfil the requirement of the SBA end-user. Therefore
it becomes necessary to organize compositions of services on demand in response to
dynamic requirements and circumstances. At this end the process of selecting ser-
vice instances matching an SBA requested under certain conditions is modelled as
an evolving chemical process that can react to environmental changes as they occur,
so providing adaptability to non-functional characteristics changes. The chemical
metaphor allows to approach the composition of services as a decentralized and in-
cremental aggregation mechanism governed by local rules such that environmental
changes affecting any part of SBA may be processed at any time.

1 Introduction

The Internet of Services (IoS) is becoming the substrate of a virtual space where in-
formation and content is stored, exchanged and manipulated by software and human
entities through services. Service Oriented Architecture (SOA) has become the de
facto paradigm for the IoS. Internet actors like enterprises and other organizations
(social, educational, media, government, and so on.) take up the roles of both service
providers and consumers, and services have to be composed in a way to fulfil their
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needs. This view has changed the way enterprises do business, public and private or-
ganizations cooperate to solve and accomplish different tasks, people socialize and
work together.

In this scenario, a Service Based Application (SBA) is a composition of a num-
ber of possibly independent services, that is software programs or interfaces for hu-
man entities, connected through the network and performing a set of functionalities
whose integration should fulfil the requirement of the SBA end-user.

What is new in the SBA design and realization is that they should not rely on a
centralized control mechanism. Moreover SBAs will be enacted in open and very
dynamic settings, therefore their design should take this aspect into account: par-
ticipant services of the composition may join/leave and fail/be-unavailable/degrade
while the SBA is running. It is hard for an SBA designer to foresee all possible
changes in service provisioning and status in order to perform at the right moment
actions both to adapt services at runtime to guarantee SBA user requirements satis-
faction, and to prevent possible SBA failures.

In the IoS scenario it is likely that more service providers can provide the same
functionality at different conditions referring to non-functional characteristics of a
provided service, like price, time to deliver, and so on. These may change in time
depending on provider policies, and as such they cannot be advertised together with
the service description nor planned at the composition design time. So, it becomes
necessary to organize compositions of services on demand in response to dynamic
requirements and circumstances.

SBA self-adaptability to unpredictable service provisioning and changes in ser-
vice availability is a required feature service-based systems should support.

In the present contribution we address the problem of providing an adaptive
mechanism to select service instances that match an SBA request specifying func-
tionality of service components, their dependence constraints and some user’s pre-
ferred non-functional characteristic values.

More specifically we use a chemical metaphor to model the problem of select-
ing service instances according to the required conditions as a decentralized and
incremental aggregation mechanism governed by local rules [23]. In such a way
environmental changes affecting any part of SBA may be processed at any time.
Furthermore, applying this metaphor to the problem of selecting service instances
allows to reduce the search space considerably, and more importantly, to model the
service selection process as an evolving and always running mechanism that can
adapt to environmental changes as they occur, so providing adaptability to non-
functional characteristics changes.

2 The Chemical Computational Model

The γ-calculus [24, 12] is a formal definition of the chemical paradigm aimed at
relaxing the artificial sequentializing of algorithms. The fundamental data structure
of the γ-calculus is the multiset, i.e. a set that may contain multiple occurrences of
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the same element. Multisets are affected by so called reactions taking place inde-
pendently and potentially simultaneously, according to local and actual conditions
yielding a multiset rewriting system. There is no concept of centralized control, or-
dering, serialization, rather the computation is carried out in a not deterministic,
inherently parallel, self-evolving way.

γ-terms (molecules) are:

1. constants, i.e. numbers, booleans or labels (strings)
2. variables x
3. γ-abstractions: γ〈x〉.M
4. multisets of γ-terms: M1 , . . . , Mm

5. solutions: 〈M〉.
Juxtaposition of γ-terms is commutative (M1,M2 ≡ M2,M1) and associative (M1,
(M2,M3) ≡ (M1,M2),M3). Commutativity and associativity are the properties that
realize the ‘Brownian-motion’, i.e., the free distribution and unspecified reaction
order among molecules that is a basic principle in the chemical paradigm [13].

γ-abstractions are the reactive molecules that operate on other molecules and
replace them by reduction. Due to the commutative and associative rules, the order
of parameters is not relevant; molecules, solutions participating in the reaction are
extracted by pattern matching. The semantics of a γ-reduction is:

(γ〈x〉.M),〈N〉 →γ M[x := N] (1)

where the two reacting terms on the left hand side are replaced by the body M of the
γ-abstraction where each free occurrence of variable x is replaced by parameter N.
Reactions may depend on certain conditions expressed as C in γ〈x〉�C�.M that can
be reduced only if C evaluates to true. Reactions can capture multiple molecules in
a single atomic step.

Besides associativity and commutativity, reactions are governed by: (i) law of
locality, i.e. if a reaction can occur, it will occur in the same way irrespectively
of the environment; and (ii) membrane law, i.e. reactions can occur in solutions
containing sub-solutions separated by a membrane (nested solutions).

The γ-calculus is a higher order model, where γ-abstractions – just like any other
molecules – can be passed as parameters or yielded as a result of a reduction.

The Higher Order Chemical Language (HOCL) [15] is a programming language
based on the γ-calculus.

HOCL uses the self-explanatory replace... by... if... construct to express active
molecules. replace P by M if C formally corresponds to γ(P)�C�.M with a major
difference: while γ-abstractions are destroyed by the reactions, HOCL rules remain
in the solution. replace... by... if... is followed by in 〈...〉 that specifies the solution
the active molecule floats in.

HOCL extends the γ-calculus with:

1. typed variables expressed by the notation x ::< type >, that can be used in pat-
terns for matching the HOCL rules;
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Fig. 1 An HOCL program
to compute the maximum
number in a set of inte-
gers and its exeucution trace
(bold molecules are the ones
involved in the reaction)

1 let max = replace x :: int,y :: int

2 by x

3 if x > y

4 in 〈max,16,5,9,−6,0,3,5,0,5,9,−3,1〉

Step 1 〈max,16,5,9,−6,0,3,5,0,5,9, -3,1〉
Step 2 → 〈max,16,5,9, -6,0,3,5,0,5,9,1〉
Step 3 → 〈max,16,5,9,0,3,5,0,5,9,1〉

. . .

Step 10 → 〈max,16,9〉
Step 11 → 〈max,16〉

2. tuples of molecules with the notation M1 : . . . : Mn,
3. names to identify and match active molecules in multisets and rules.

In Fig.1 the HOCL code defining an active molecule named max that captures a pair
of numbers and replaces it with the greatest number is reported. The active molecule
(rule) is floating in the solution specified at line 4.

3 Problem Formalization

It is assumed that users requiring SBAs submit their requests by specifying both
the functionality of each component of the application, and the dependence con-
straints occurring among the components, i.e. the order of execution in which the
components should be delivered. Users also provide a value representing a measure
of some non-functional characteristics they would “prefer” the application to be de-
livered with. This value will be used to drive the selection of the suitable service
components.

For example, the user may specify that he/she wants the composition to be de-
livered within a given deadline, or the money he/she is willing to pay to obtain
the result of the application, or a measure of the reliability of the providers of the
required services or more complicated features.

In the current approach, it is assumed that a single value is specified by the user at
the time when the request is issued, representing a sort of Quality of Service (QoS)
required for the application (all the dimensions required to develop a usable QoS
model for a workflow of services are not investigated in this work).

It is also assumed that the QoS specified by the user for the entire composition
can be related to a parameter for each component service in the abstract workflow.
Of course it is not always possible to relate a global preference on a composition of
services to each component service, but at the moment we refer to cases in which
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this exemplification is acceptable, i.e. where an additive property holds for the con-
sidered QoS.

The required functionalities together with their dependence constraints are ex-
pressed in the form of an abstract workflow (AW). The abstract workflow is a Di-
rected Acyclic Graph (DAG) AW = (S,E) where S = {si, . . . ,sn} is a set of nodes
in the graph, and E ⊆ S× S is a set of directed edges in the graph. Each node rep-
resents a required activity, i.e. a service interface whose actual implementation can
be provided by one or more services instances with different non-functional char-
acteristics. Each directed edge represents a data, or a control (or both) dependence
between two nodes it connects.

Definition 1. Given an AW = (S,E), a path from sl to sp is a set of AW nodes
{sm1 , . . . ,smk} such that (smi ,smi+1) ∈ E ∀i ∈ {1, . . . ,k− 1} and sl = sm1 and
sp = smk ; the nodes sl and sp are named respectively the first and last nodes
of the path.

AW nodes are ordered, i.e. for any path {sm1 , . . . ,smk}, mi <mi+1 ∀i∈ {1, . . . ,k−1}.
It is assumed that for each node in the AW the corresponding in/out-degrees

assume the values 0, 1, and 2. This is not a constraint, since nodes with outdegree
greater than 2 may be either or-nodes or and-nodes; it is simply to transform an
or(and)-node with an outdgree of n, in a sequence of n− 1 or(and) nodes with and
outdegree of 2. From the workflow execution perspective, a n-outdegree or-node is
typically a switch-case construct, while a n-outdegree and-node is a split construct,
where all branches may be concurrently executed.

In the AW there are four types of nodes: (1) a start node with an in-degree equal
to 0; (2) a stop node with an out-degree equal to 0; (3) a split node with an out-degree
equal to 2; (4) a merge node with an in-degree equal to 2.

Service providers able to provide the required AW activities make them avail-
able as offers specifying both the end point of a service implementing the required
activity, and the value of the QoS parameter representing the non-functional charac-
teristics they can provide the service with (see Fig.2). We denote with Oi the set of
offers provided for the same activity si ∈ S, and with oi ∈ Oi a selected offer for the
activity si.

Services matching the user’s requirements have to be selected to obtain the actual
workflow to be enacted, that we refer to as an instantiated workflow (IW) that is
defined as follows:

Definition 2. Given an AW = (S,E), an Instantiated Workflow of AW is the
graph IW = (ω ,ε) where:

• ω = {o1,o2, . . . ,on} ∈ Oi ×O2 × . . .×On, such that each oi ∈ Oi is a se-
lected and unique offer corresponding to the AW activity si, and
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• ε ⊆ ω ×ω and (ok,ol) ∈ ε if and only if (sk,sl) ∈ E, i.e. there is a directed
edge between two offers if and only if there is a directed edge between the
corresponding activities.

For example with respect to the AW reported in Fig.2(a), the IW = (ω ,ε) corre-
sponding to the selected offers (typed in bold) is:
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According to the number of service instances available for each node in the graph,
and to the value of the QoS parameter of each instance, it will be possible to find
zero or more instantiated workflows.
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Fig. 2 (a) Abstract Workflow with offers associated to its activities; (b) examples of partially
intantiated workflows

A path in an IW is defined in the same way as for an AW:

Definition 3. Assumed that IW = (ω ,ε) is an instantiated workflow of AW and
that {sm1 , . . . ,smk} is an AW path from sm1 to smk , the corresponding IW path is
{om1 , . . . ,omk}.

Once at least one IW is computed, its execution can take place. An IW execution
path is defined as follows:
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Definition 4. Given an IW = (ω = {o1, . . . ,on},ε), an IW execution path is any IW
path from the offer o1 of the start node to the offer on of the end node.

Since any path in the AW is ordered, also the corresponding IW path is ordered.
The process that leads from an AW to an IW is the workflow instantiation pro-

cess, and it is computed in terms of chemical reactions [23]. The basic mechanism
consists of the application of local chemical rules that aggregate service offers ac-
cording to the AW structure in an incremental and recursive way. Each rule appli-
cation produces the instantiation of an AW fragment so that it can be incrementally
aggregated with other fragments leading to larger instantiated fragments.

An instantiated AW fragment is named a partially instantiated workflow (PIW)
and its definition is the following:

Definition 5. Given an AW = (S,E) and for each AW node si let Oi be the set
of its offers, a Partially Instantiated Workflow of AW can be:

1. the graph PIW = ({oi}, /0), where oi ∈ Oi, i.e. the graph containing no
edges and a single node oi which is a service offer of any AW node (ele-
mentary PIW),

2. the graph PIW = (ω ′,ε′), where:
• ω ′= {om1 , . . . ,omk} ∈ Om1 × . . .×Omk , i.e. a set of service offers of the

AW such that any AW path from node sm1 to smk contains only nodes in
the set {sm1 , . . . ,smk} ⊆ S,

• ε′ ⊆ ω ′×ω ′ and (op,ol) ∈ ε′ if and only if (sp,sl) ∈ E.

The nodes om1 and omk are named respectively the first and last node of the
PIW.

The PIW is the building block of the chemical-based instantiation process, and
its formal definition corresponds in the control flow analysis theory [1] to the basic-
block definition. In fact, a PIW is an instantiation of an AW fragment where the
control flow enters only the first activity, and it comes out only from the last activity
of the fragment.

For example, Fig.2(b) reports two possible PIWs of the AW of Fig.2(a): The left-
most PIW is the graph (ω ′,ε′) where:
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where o1
2 is the first node while o2

10 is the last node. The node o2
4 is a split node

since it has an out-degree of 2, while the node o2
10 is a merge node since it has an

in-degree of 2. According to the PIW definition, every path from o1
2 to o2

10 contains
nodes all in ω ′.

Of course an IW is a PIW whose first and last nodes correspond respectively to
the start and stop nodes of the AW.
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Three relations characterize nodes connectivity in the AW graph:

Definition 6. Two AW nodes sp and sl are chainable if and only if (sp,sl) ∈ E ∧
¬(∃(sp,sk) ∈ E : sk �= sl ∨∃(sk′,sl) ∈ E : sk′ �= sp), i.e. there is an edge from sp to sk

but there is no other edge either outgoing from sp or incoming to sl.

The boolean function chainable(sp,sl) is introduced and it evaluates to true if the
AW nodes sp and sl are chainable according to the above definition.

Definition 7. An AW node sp is a split to nodes sl and sm if and only if
(sp,sl),(sp,sm) ∈ E ∧¬(∃(sk,sl) ∈ E : sk �= sp ∨∃(sk′,sm) ∈ E : sk′ �= sp), i.e. the
node sp is the only source for nodes sl and sm.

Definition 8. An AW node sp is a merge of nodes sl and sm if and only if
(sl ,sp),(sm,sp) ∈ E ∧¬(∃(sl ,sk) ∈ E : sk �= sp ∨∃(sm,sk′) ∈ E : sk′ �= sp), i.e. the
node sp is the only sink of both sl and sm.

The boolean functions splitto(sp,sl ,sm) and mergefrom(sp,sl ,sm) are introduced to
check, respectively, if the AW nodes sp, sl and sm satisfies the relations of Def.7 and
Def.8.

4 Chemical Representation of the Problem

A chemical solution represents the environment in which active and passive
molecules are inserted. The solution is the context of a computation: passive
molecules represent the data of the computation, and active molecules represent
the computation itself, i.e. reaction rules that apply on molecules that match the rule
condition and that may consume molecules and/or produce new molecules in the
same solution as outcome. Active molecules may remove/add new reaction rules in
the solution thus changing the behaviour of the computation.

To represent the AW instantiation process in terms of chemical reactions, passive
molecules are used to represent service offers associated to AW nodes. The QoS
parameter of each offer is taken into account by the chemical-based selection pro-
cess to incrementally and recursively build a partially instantiated workflow until
an IW is computed, if possible. The IW will be computed if there are offers for all
AW nodes and if the selection criteria allow to find at least one IW that satisfies
the QoS requirements specified by the user requiring the service composition. In
the chemical-based service instantiation process, when no more reactions can take
place with the molecules available in the system, an inert state is reached with zero
or more IWs produced, and PIWs.

4.1 Abstract Workflow and Service Offers as Chemical Molecules

The AW structure provides the topological relations between AW nodes, i.e. edges
between two nodes and in/out-degree of each node. This information is relevant to
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the workflow instantiation (and execution) phase and it drives the chemical rules
applications while aggregating PIWs. In our approach the AW node connectivity is
not explicitly expressed according to the chemical formalism. Instead, the condition
part of the chemical rules computes this information by means of boolean functions
with the same semantics of relations defined in Def.6, Def.7 and Def.8.

In the chemical notation two data structures are introduced: the service offers o ji
i

and the PIWs that are the outputs of the instantiation process.
The chemical notation of a service offer is the tuple:

oi ≡ urli : si : ci (2)

where:

1. urli is a string representing the url of a specific service implementation for the
AW activity si,

2. si is the identifier of the corresponding AW activity,
3. ci is the value of a QoS parameter representing the condition under which the

service implementation is provided.

So, for each AW activity si a set of actual service implementations may be available,
url1

i , . . . ,urlmi
i .

Multiple service implementations, or the same service implementation with dif-
ferent QoS values, correspond to different service offers. For example, the same AW
activity hotelbooking can be provided by different organizations with different
costs, or the same service implementation can be provided by the same organization
with different costs:

"http://provider1/htlbook":hotelbooking:5euros
"http://provider1/htlbook":hotelbooking:4euros
"http://provider12/hotelbk":hotelbooking:5euros
...

4.2 Instantiating Workflow as Chemical Reactions

To model the instantiation process in terms of chemical reactions, in addition to
the molecules representing the offered services, also PIWs that are built during the
chemical reactions are represented in the chemical formalism.

The chemical molecule representing a PIW is the following:

〈first : urli : si, last : url j : s j, node : urlk : sk, . . . , qos : c〉 (3)

where:

• first : urli : si is a tuple representing the service offer selected for the first node
of the PIW,

• last : url j : s j is a tuple representing the service offer selected for the last node
of the PIW,
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• node : urlk : sk, . . . represents a set of intermediate nodes of the PIW (if any),
where node can be one of three possible labels:

– split for a split node;
– merge for a merge node;
– seq for a node that is not either a split or a merge node;

• qos : c is the value of the considered non-functional parameter associated to the
PIW obtained by combining the QoS values of the composed PIWs.

For an elementary PIW the notation is:

〈first : urli : si, last : urli : si, qos : ci〉 (4)

that contains a service offer for the single node si, and ci is the associated QoS value.
Let’s consider the chemical representation of the (leftmost) PIW reported in

Fig.2(b):

〈first : url 2 1 : s2, last : url 10 2 : s10,
split : url 4 2 : s4, merge : url 10 2 : s10,
seq : url 6 2 : s6,seq : url 9 3 : s9,
seq : url 7 2 : s7,
qos : 12euros〉

(5)

where the split and merge labels identify the split and merge nodes of the PIW.
In this example the node url 10 2:s10 is represented twice since it is both a
merge node and the last node of the PIW.

In Eq.5 the molecules seq:url 6 2:s6 and seq:url 9 3:s9 represent the
left branch of the split node, while the molecule seq:url 7 2:s7 represents the
right branch of the same split. Again the qos parameter is a combination of the QoS
values of the component nodes.

In the following subsections the chemical rules necessary to concatenate PIWs
without branches and to aggregate PIWs containing split/merge nodes are described.

5 Workflow Instantiation as a Chemical Process

In order to obtain IWs to be enacted, a process to select the suitable service offers
(and thus their actual implememtations) takes place. This process is expressed in
terms of chemical reactions that occur when some conditions are satisfied, i.e. as
long as there are molecules that match the rule conditions. When no more chemical
reactions can take place an inert state is reached. IWs are created when service
endpoints are assigned to all the corresponding nodes of the requested AW. All rules
may apply concurrently. In fact, reactions are governed only by the availability of
the suitable service offers, and they take place in a not deterministic way.
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ol = urll : sl : cl

oj = urlj : sj : cj

oi = urli : si : ci

ok = urlk : sk : ck

Fig. 3 Two chainrule reactions

5.1 Building Elementary PIWs

To apply the reaction rules to incrementally build the PIWs, it is necessary to convert
the molecules representing service offers into elementary PIWs. The chemical rule
performing this transformation, called prerule, is:

let prerule= replace url : s : c
by 〈first : url : s, last : url : s, qos : c〉 (6)

where the replace part matches a molecule representing a service offer, and the
by part, that is the action of the rule, has the effect of introducing in the chemical
system a new molecule representing the elementary PIW corresponding to that offer.
The prerule matches all service offers and thus it applies on all of them, i.e. no
condition (if part) is specified to trigger the reaction.

After the transformation is done, all elementary PIWs are ready to be matched by
other chemical rules to react, so that they can be composed in more complex PIWs,
and finally in IWs if possible.

5.2 Concatenating PIWs

Elementary PIWs are the starting building blocks of the workflow instantiation pro-
cess. Two PIWs can be chained together to form a new PIW containing a sequence
of consecutive nodes. The sequences can be further concatenated producing longer
sequences.
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Two PIWs can be concatenated if the first one ends with a node that is not a split
node, and the second one starts with a node that is not a merge node. The rule that
concatenates PIWs is named chainrule and it is reported in Eq.7.

let chainrule= replace 〈first : urll : sl , last : urli : si, qos : c1, ω1〉,
〈first : url j : s j , last : urlk : sk, qos : c2, ω2〉,

by 〈first : urll : sl , last : urlk : sk,
seq : urli : si, seq : url j : s j,
qos : φ(c1,c2), ω1, ω2〉

if chainable(si,s j) = true∧ψ(c1,c2) = true
(7)

where the replace part of the rule matches two molecules representing the PIWs
that can be chained through an edge if the conditions specified in the if part of the
rule holds.

The if part of the rule is a conjunction of the following sub-conditions:

1. nodes si and s j of the AW are “chainable” according to Def.6. If this condition
holds, there is only one outgoing edge from the last node (oi = urli : si : ci) of the
first PIW to the first node (o j = url j : s j : c j) of the second PIW.

2. ψ(c1,c2) = true, that is the QoS values of the PIWs satisfy a certain boolean
condition expressed by the function ψ .

The by part of the rule is the action resulting in a new PIW that is the concatenation
of the two input PIWs in the rule, and its QoS parameter is obtained by combining
the QoS parameters of the two input PIWs according to a generic function φ .

The input PIWs transformed by the chainrule are no longer in the chemical
solution. The rule in Eq.7 may generate several PIWs starting from the same input
AW nodes by matching other available service offers.

The ω symbols are wildcards matching anything inside the input molecules that
is not relevant for the reaction to take place: all information matching the wildcards
is reinserted in the new produced molecule, so intermediate nodes (if any) of the
input PIWs are reinserted (following the output pattern) in the generated PIW. Two
examples of chainrule applications are reported in Fig.3.

5.3 Processing Split/Merge Nodes

To concatenate two PIWs where the first one ends with a split node and the
second one starts with a merge node, a new chemical rule is introduced, called
splitrule. This rule links together four PIWs, one ending with a split node,
one starting with the corresponding merge node, and two ones representing the sub-
graphs of the right and left branch of the split (see Fig.4).
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The formula of the splitrule is the following:

let splitrule=
replace 〈first : urli : si, last : urlk : sk, qos : c1, ω1〉,

〈first : urll : sl , last : url j : s j, qos : c2, ω2〉,
〈first : urlp : sp, last : urlq : sq, qos : c3, ω3〉,
〈first : urlr : sr, last : urlt : st , qos : c4, ω4〉,

by 〈first : urli : si, last : url j : s j ,
split : urlk : sk, merge : urll : sl ,
qos : θ (c1,c2,c3,c4), ω1, ω2, ω3, ω4〉,

if splitto(sk,sp,sr) = true∧merge f rom(sl ,sq,st) = true
∧ψ(c1,c2,c3,c4) = true

(8)

where the replace part of the rule specifies four molecules representing the PIWs to
be linked around the split and merge nodes sk and sl (see Fig.4).
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chainrule

oi = urli : si : ci

ok = urlk : sk : ck

op = urlp : sp : cp

oq = urlq : sq : cq

or = urlr : sr : cr

ol = urll : sl : cl

oj = urlj : sj : cj

ot = urlt : st : ct

Fig. 4 A splitrule reaction

More specifically, the four PIWs are in order: the PIW ending with the split
node sk, the one starting with the merge node sl , the two PIWs representing the
branches originating from the split and converging to the merge node. These con-
ditions are verified in the if part by checking the boolean values of the functions
splitto(sk,sp,sr) and merge f rom(sl ,sq,st) (see Def.7 and Def.8). The if part of the
rule also checks if the input QoS values of the components (once combined) satisfy
some general property (espressed by the ψ function) to meet the QoS requirement
specified in the user request.



280 M. Giordano and C. Di Napoli

The by part of the rule produces the PIW obtained by combining the four
molecules around the split and merge nodes denoted by Eq.5.

6 Lazy Instantiation of Workflows

AW nodes may be characterized by additional attributes that are necessary for the
execution phase once the nodes have been instantiated. In this section we introduce
the possibility to exploit node attributes that are necessary for the execution phase,
also for the AW instantiation process. In particular, we extend the proposed chemical
model to make it possible to compute IWs also when there are missing offers in one
of the branches of a split node that refers to if-then statements. In fact, in such cases
it would be still possible to find an execution path for an IW although the IW is not
yet fully instantiated.

6.1 Missing Services as Future Molecules

In the chemical notation a molecule named service future is introduced, that rep-
resents a “placeholder” for an actual service offer that is not yet available in the
chemical system when the AW instantiation starts and that could enter the system
during (or after) the instantiation finishes.

The chemical notation of a service future is the tuple:

oi ≡ future : si : undef (9)

In the chemical notation the future value will be replaced by actual service im-
plementation when necessary. This new molecule is used to generate a PIW with
some not instantiated parts.

Note that an undef QoS value is assigned to the placeholder since it does not
represent a service implementation but just a dummy offer that will allow the com-
position process to continue in case of missing offers.

The elementary PIW notation that supports futures is the following:

〈first : future : si, last : future : si,
qos : undef, canexec : false, fixno : 1〉 (10)

In this notation the label canexec has a boolean value specifying if the PIW has
at least one execution path. In case of elementary PIW the single node is a future
placeholder, thus its execution is not possible. The label fixno is a counter for the
number of future occurrences, i.e. how many placeholders (to be fixed) are in the
molecule that represents the PIW.

In the case the chemical system is used to find IWs also with missing offers, then
all the rules previously defined have to be modified to be compatible with the future
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mechanism. In particular, the prerule of Eq.6 has to generate elementary PIWs
either with an available offer or with a placeholder for a missing offer with the same
format. Therefore, two rules are introduced in Eq.11 and Eq.12.

let prerule= replace urli : si : ci

by 〈first : urli : si, last : urli : si,
qos : ci, canexec : true, fixno : 0〉

if urli �= future

(11)

let prerule*= replace future : si : ci

by 〈first : urli : si, last : urli : si,
qos : ci, canexec : false, fixno : 1〉

(12)

6.2 Aggregating Lazy PIWs

The chainrule of Eq.7 needs to be modified to compute an output PIW (i.e. the
result of the chaining) with the new number of pending futures, and to determine
the canexec attribute of the chain (i.e. the boolean AND). The new chainrule
is reported in Eq.13

let chainrule= replace 〈first : urll : sl , last : urli : si, qos : c1,
canexec : b1, fixno : f 1, ω1〉,

〈first : url j : s j , last : urlk : sk, qos : c2,
canexec : b2, fixno : f 2,ω2〉,

by 〈first : urll : sl , last : urlk : sk,
seq : urli : si, seq : url j : s j, qos : φ(c1,c2),
canexec : b1∧b2, fixno : f 1+ f 2, ω1, ω2〉

if chainable(si,s j) = true∧ψ(c1,c2) = true
(13)

Since the new rule applies to PIWs with futures, it is assumed that the φ(c1,c2)
returns an undefined value if some arguments are undefined.

In the same way, the splitrule has to be changed to process the canexec
and fixno molecules included in each chemical solution representing the four ar-
guments of the rule. So, the rule condition includes an additional check to verify that
at least one branch can be executed, i.e. it is either fully instantiated or it contains
nested split/merge constructs with at least one instantiated execution path.

The PIW produced by this rule, called lazy PIW, could be passed to an enact-
ment engine for execution. The use of futures allows to postpone the problem of
associating an actual service implementation to an activity of the AW at runtime, or
during the chemical instantiation process as soon as the new service offers enter the
chemical system.
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let splitrule= replace 〈first : urli : si, last : urlk : sk, qos : c1,
canexec : b1, fixno : f 1, ω1〉,

〈first : urll : sl ,last : url j : s j, qos : c2,
canexec : b2, fixno : f 2, ω2〉,

〈first : urlp : sp, last : urlq : sq,qos : c3,
canexec : b3, fixno : f 3, ω3〉,

〈first : urlr : sr, last : urlt : st ,qos : c4,
canexec : b4, fixno : f 4, ω4〉,

by 〈first : urli : si, last : url j : s j ,
split : urlk : sk, merge : urll : sl ,
canexec : true, fixno : f 1+ f 2+ f 3+ f 4,
qos : θ (c1,c2,c3,c4), ω1, ω2, ω3, ω4〉,

if splitto(sk,sp,sr) = true∧merge f rom(sl ,sq,st)= true
∧(b3∨b4)∧ψ(c1,c2,c3,c4)= true

(14)

6.3 Fixing Future Services

Suppose that, when the instantiation process starts, some service offers are missing,
so they are replaced by service futures. In this case, a new chemical rule is necessary
to fix service futures when missing offers become available during the chemical
system evolution. The formalization of this rule is reported in Eq.15

let fixfuture= replace urli : si : ci

〈node : future : si, fixno : n, ω〉
by 〈node : urli : si, fixno : n− 1, ω〉

(15)

The rule takes the new offer for the activity si and it tries to match a PIW with a
future placeholder associated to the same activity node. The rule rewrites the PIW
by inserting the new service implementation, and decreasing the future occurrence
counter.

To give an example of the fixfuture rule behaviour, let’s suppose that an
intermediate (not inert) state of the chemical system is:

〈prerule, chainrule, splitrule, fixfuture,
url 9 1 : s9 : 5euros,
url 1 3 : s1 : 6euros,
. . .other just-arrived offers . . . ,
〈first : url 1 2 : s1, last : url 11 7 : s11, seq : future : s9, fixno : 2 . . .〉
〈first : url 3 1 : s3, last : url 8 5 : s8, seq : url 5 4 : s5, fixno : 0, . . .〉
. . .other PIWs with (or without) futures . . . ,

〉
(16)

where the node s9 was replaced by a future placeholder since there were not asso-
ciated offers when the instantiation process started.
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At this intermediate stage the system is still active since a new service offer, that
is the tuple url 9 1:s9:5euros, has entered the chemical solution, and it can
be used by the fixfuture rule to replace the placeholder in the lazy IW.

We point out that the QoS parameter of the later incoming offer is not processed
in the reaction. Currently we have not addressed the problem of combining QoS
parameters in case of some missing instances, but we plan to investigate possible
solutions in future works.

The future-fixing mechanism may reactivate the chemical system once it reached
an inert state with only partially instantiated workflows1 (with or without futures),
as soon as new offers become available. So a complete instantiation of the abstract
workflow that was not possible when the process started can be computed.

7 Related Works

Recently, the problem of dynamically selecting partner services composing a Ser-
vice Based Application has gained wide attention since services are provided in
highly changing and evolving environments like the Internet of Services. Also, sev-
eral competing services may coexist implementing the same functionality, but with
different QoS attributes (e.g., response time, reliability, cost, and so on) that are
usually not static and so their values may change for several reasons.

Some research efforts address this problem by focusing on the development of
automatic mechanisms to select appropriate services to build service compositions
relying on languages and ontologies to represent service non-functional character-
istics and providing selection algorithms that take them into account ([19, 18]).

Other research works have studied the development of frameworks to dynami-
cally select service implementations. The Sword project [21] explores techniques
for composing services using logical rules to express the inputs and outputs associ-
ated with services. A rule-based expert system is used to automatically determine
whether a process could be implemented with the given services. It also returns
a process plan that implements the composition. Maximilien et al. [20] propose
a framework and ontology for dynamic Web Service selection based on software
agents coupled with a QoS ontology. With this approach, participants can collabo-
rate to determine each other’s service quality and trustworthiness. Keidl et al. [22]
propose the serviceGlobe environment that implements dynamic service selection
using UDDI’s notion of a tModel.

These approaches lack in providing self-adaptation techniques that may signif-
icantly improve service-oriented systems, because such techniques can help tackle
the increased complexity of the systems themselves and of their environment. In
fact, the variability of the number of providers available to provide the services cor-
responding to the required functionalities, and the dynamic nature of the values of
QoS parameters they can offer, makes it necessary to rely on approaches that allow

1 In fact the splitrule checks that both branches have at least one execution path, and
this condition may inhibit workflow coverage completion.
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to find sub-optimal solutions based on some heuristics in a reasonable time and to
compute new solutions every time conditions in the system changes.

The rationale for self-adaptive service selection and composition is summarized
in literature as: the evolving behavior of a service (mobility, quality, faults, etc.), un-
informed evolution of external services, inadequacy of pre-deployment information
[11], extreme dynamicity, unreliability, and large scale [10], and a highly complex
task, already beyond the human capability to deal with [9].

Also, it has been argued and generally accepted, that such self-adaptable, evolv-
able and context-aware systems require innovative approaches that take inspiration
from nature, by considering devices, data, and services interacting as individuals of
an ecosystem [2] and they can effectively organize large numbers of unreliable and
dynamically changing components (cells, molecules, individuals, etc.) into robust
and adaptive structures [10].

Viroli et al. [2] constructed a conceptual architecture for clarifying the concepts
expressed and framing the several possible nature-inspired metaphors that could
be adopted. They follow a biochemical approach where above a common environ-
mental substrate (defining the basic ”laws of nature”), individuals of different kinds
interact, compete, and combine with each other, so as to serve their own individ-
ual needs as well as the sustainability and the evolvability of the overall service
ecosystem.

Ding et al. [9], Sun et al. [4] take the neuroendocrine-immune (NEI) system as a
metaphor to create a decentralized, evolutionary, scalable, and adaptive system for
Web service composition and management. Bio-entities represent Web services and
they are able to obtain the desirable characteristics by self-organizing, cooperating,
and compositing.

Ardagna et al. [3] aimed at fulfilling different preferences and constraints so as
selection dynamically identifies the best set of services available at runtime. A new
modeling approach involves service selection problem formalized as a mixed integer
linear programming problem, loops peeling is adopted in the optimization, and con-
straints posed by stateful Web services are considered. Similarly to our approach, the
notion of speculative/predictive execution has been investigated by applying prob-
ability of execution of conditional branches [3] and service rankings using social
network analysis [11].

8 Conclusions

The present contribution proposes to decouple the workflow instantiation from its
execution, so that the first one can be modelled as an independent, autonomous, and
always running system. In such a way it is possible to take into account environ-
mental changes, i.e. new provider availability, or changes in the provided QoS, as
they occur without discharging IWs already produced. In fact, in very dynamic en-
vironments like the service oriented ones, it is not known a priori if new offers may
lead to better workflows in terms of their QoS.
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This is easily realized with a chemical approach since it allows to change at
runtime the state of the system (in this case the number and/or the attribute of offers),
so allowing new compositions to be found because new chemical reactions may take
place in a way that simulate an adaptation of the system to different configurations
not planned in advance.

Furthermore, the proposed approach allows also to dynamically change the se-
lection criteria coming from user requirements because they are represented in the
chemical reactions that are manipulated in the same way as molecules; so reactive
molecules can be removed from the system, and new ones can be inserted in it so
changing the system behaviour.

In such a way the chemical-based mechanism provides adaptability from both
the provider side, by giving the possibility to insert new offers and so to re-activate
chemical reactions, and from the user side, by giving the possibility to change
his/her preferences during the instantiation phase.

This approach has also the advantage to make it possible to generate an IW also
when there are missing service offers for some AW nodes. In fact, once the IW
enactment takes place, and a path with missing service instances has to be executed,
the execution may be suspended to query the chemical system for the missing parts
if available by instantiating the placeholders in the IW. This is because the chemical
system may run concurrently with the enactment engine, so it is possible to exploit
new offers made available in the system by new providers, if it is the case, allowing
for an adaptive instantiation of the workflow that could not be possible before the
enactment starts.
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