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Preface

High performance computing has changed the way in which science progresses.
During the last 20 years the increase in computing power, the development of
effective algorithms, and the application of these tools in the area of physics
and engineering has been decisive in the advancement of our technological
world. These abilities have allowed to treat problems with a complexity which
had been out of reach for analytical approaches. While the increase in perfor-
mance of single processes has been immense the increase of massive parallel
computing as well as the advent of cluster computers has opened up the possi-
bilities to study realistic systems. This book presents major advances in high
performance computing as well as major advances due to high performance
computing. The progress made during the last decade rests on the achieve-
ments in three distinct science areas.

Open and pressing problems in physics and mechanical engineering are the
driving force behind the development of new tools and new approaches in these
science areas. The treatment of complex physical systems with frustration
and disorder, the analysis of the elastic and non-elastic movement of solids
as well as the analysis of coupled fluid systems, pose problems which are
open to a numerical analysis only with state of the art computing power and
algorithms. The desire of scientific accuracy and quantitative precision leads
to an enormous demand in computing power. Asking the right questions in
these areas lead to new insights which have not been available due to other
means like experimental measurements.

The second area which is decisive for effective high performance computing
is a realm of effective algorithms. Using the right mathematical approach
to the solution of a science problem posed in the form of a mathematical
model is as crucial as asking the proper science question. For instance in the
area of fluid dynamics or mechanical engineering the appropriate approach by
finite element methods has led to new developments like adaptive methods or
wavelet techniques for boundary elements.

The third pillar on which high performance computing rests is computer
science. Having asked the proper physics question and having developed an
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appropriate effective mathematical algorithm for its solution it is the imple-
mentation of that algorithm in an effective parallel fashion on appropriate
hardware which then leads to the desired solutions. Effective parallel algo-
rithms are the central key to achieving the necessary numerical performance
which is needed to deal with the scientific questions asked. The adaptive load
balancing which makes optimal use of the available hardware as well as the
development of effective data transfer protocols and mechanisms have been
developed and optimized.

This book gives a collection of papers in which the results achieved in the
collaboration of colleagues from the three fields are presented. The collabora-
tion took place within the Sonderforschungsbereich SFB 393 at the Chemnitz
University of Technology. From the science problems to the mathematical al-
gorithms and on to the effective implementation of these algorithms on mas-
sively parallel and cluster computers we present state of the art technology.
We highlight the connections between the fields and different work packages
which let to the results presented in the science papers.

Our presentation starts with the Implementation section. We begin with
a view on the implementation characteristics of highly parallelized programs,
go on to specifics of FEM and quantum mechanical codes and then turn to
some general aspects of postprocessing, which is usually needed to analyse the
obtained data further.

The second section is devoted to Algorithms. The main focus is on FEM
algorithms, starting with a discussion on efficient preconditioners. Then the
focus is on a central aspect of FEM codes, the aspect ratio, and on prob-
lems and solutions to non-matching meshes at domain boundaries. The Algo-
rithm section ends with discussing adaptive FEM methods in the context of
elastoplastic deformations and a view on wavelet methods for boundary value
problems.

The Applications section starts with a focus on disordered systems, dis-
cussing phase transitions in classical as well as in quantum systems. We then
turn to the realm of atomic organization for amorphous carbons and for het-
erophase interphases in Titanium-Silicon systems. Methods used in classical
as well as in quantum mechanical systems are presented.We finish by a glance
on fluid dynamics applications presenting an analysis of Lyapunov instabilities
for Lenard-Jones fluids.

While the topics presented cover a wide range the common background is
the need for and the progress made in high performance parallel and cluster
computing.

Chemnitz Karl Heinz Hoffmann
March 2006 Arnd Meyer
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Parallel Programming Models
for Irregular Algorithms

Gudula Rünger

Technische Universität Chemnitz, Fakultät für Informatik
09107 Chemnitz, Germany
ruenger@informatik.tu-chemnitz.de

Applications from science and engineering disciplines make extensive use of
computer simulations and the steady increase in size and detail leads to grow-
ing computational costs. Computational resources can be provided by modern
parallel hardware platforms which nowadays are usually cluster systems. Ef-
fective exploitation of cluster systems requires load balancing and locality of
reference in order to avoid extensive communication. But new sophisticated
modeling techniques lead to application algorithms with varying computa-
tional effort in space and time, which may be input dependent or may evolve
with the computation itself. Such applications are called irregular. Because of
the characteristics of irregular algorithms, efficient parallel implementations
are difficult to achieve since the distribution of work and data cannot be deter-
mined a priori. However, suitable parallel programming models and libraries
for structuring, scheduling, load balancing, coordination, and communication
can support the design of efficient and scalable parallel implementations.

1 Challenges for parallel irregular algorithms

Important issues for gaining efficient and scalable parallel programs are load
balancing and communication. On parallel platforms with distributed memory
and clusters, load balancing means spreading the calculations evenly across
processors while minimizing communication. For algorithms with regular com-
putational load known at compile time, load balancing can be achieved by
suitable data distributions or mappings of task to processors. For irregular al-
gorithms, static load balancing becomes more difficult because of dynamically
changing computation load and data load.

The appropriate load balancing technique for regular and irregular algo-
rithms depends on the specific algorithmic properties concerning the behavior
of data and task:
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• The algorithmic structure can be data oriented or task oriented. Accord-
ingly, load balancing affects the distribution of data or the distribution of
tasks.

• Input data of an algorithm can be regular or more irregular, like sparse
matrices. For regular and some irregular input data, a suitable data dis-
tribution can be selected statically before runtime.

• Regular as well as irregular data structures can be static or can be dynam-
ically growing and shrinking during runtime. Depending on the knowledge
before runtime, suitable data distributions and dynamic redistributions
are used to gain load balance.

• The computational effort of an algorithm can be static, input dependent
or dynamically varying. For a static or input dependent computational
load, the distribution of tasks can be planned in advance. For dynamically
varying problems a migration of tasks might be required to achieve load
balancing.

The communication behavior of a parallel program depends on the charac-
teristics of the algorithm and the parallel implementation strategy but is also
intertwined with the load balancing techniques. An important issue is the lo-
cality of data dependencies in an algorithm and the resulting communication
pattern due to the distribution of data.

• Locality of data dependencies: In the algorithm, data structures are cho-
sen according to the algorithmic needs. They may have local dependencies,
e.g. to neighboring cells in a mesh, or they may have global dependencies
to completely different parts of the same or other data structures. Both
local and global data dependencies can be static, input dependent or dy-
namically changing.

• Locality of data references: For the parallel implementation of an algo-
rithm, aggregate data structures, like arrays, meshes, trees or graphs, are
usually distributed according to a data distribution which maps different
parts of the data structure to different processors. Data dependencies be-
tween data on the same processor result in local data references. Data
dependencies between data mapped to different processors cause remote
data reference which requires communication. The same applies to task ori-
ented algorithms where a distribution of tasks leads to remote references
by the tasks to data in remote memory.

• Locality of communication pattern: Depending on the locality of data de-
pendencies and the data distribution, locality of communication pattern
occurs. Local data dependencies usually lead either to local data refer-
ences or to remote data references which can be realized by communication
with neighboring processors. This is often called locality of communication.
Global data dependencies usually result in more complicated remote access
and communication patterns.

Communication is also caused by load balancing when redistributing data
or migrating tasks to other processors. Also, the newly created distribution
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of data or tasks create a new pattern of local and remote data references and
thus cause new communication patterns after a load balancing step. Although
the specific communication may change after redistribution, the locality of the
communication pattern is often similar.

The static planning of load balance during the coding phase is difficult
for irregular applications and there is a need for flexible, robust, and effec-
tive programming support. Parallel programming models and environments
address the question how to express irregular applications and how to execute
the application in parallel. It is also important to know what the best per-
formance can be and how it can be obtained. The requirement of scalability
is essential, i.e. the ability to perform efficiently the same code for larger ap-
plications on larger cluster systems. Another important aspect is the type of
communication. Specific communication needs, like asynchronous or varying
communication demands, have to be addressed by a programming environ-
ment and correctness as well as efficiency are crucial.

Due to diverse application characteristics not all irregular applications are
best treated by the same parallel programming support. In the following,
several programming models and environments are presented:

• Task pool programming for hierarchical algorithms,
• Data and communication management for adaptive algorithms,
• Library support for mixed task and data parallel algorithms,
• Communication optimization for structured algorithms.

The programming models range from task to data oriented modes for
expressing the algorithm and from self-organizing task pool approaches to
more data oriented flexible adaptive modes of execution.

2 Task pool programming for hierarchical algorithms

The programming model of task pools supports the parallel implementation
of task oriented algorithms and is suitable for hierarchical algorithms with
dynamically varying computational work and complex data dependencies.

The main concept is a decomposition of the computational work into tasks
and a task pool which stores the tasks ready for execution. Processes or threads
are responsible for the execution of tasks. They extract tasks from the task
pool for execution and create new tasks which are inserted into the task pool
for a later computation, possibly by another process or thread. Complex data
dependencies between tasks are allowed and may lead to complex interaction
between the tasks, forming a virtual task graph. Usually, task pools are pro-
vided as programming library for shared memory platforms. Library routines
for the creation, insertion, and extraction of tasks are available. A fixed num-
ber of processes or threads is created at program start to execute an arbitrary
number of tasks with arbitrary dependence structures.
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Load balancing and mapping of tasks is achieved automatically since a
process extracts a task whenever processor time is available. There are sev-
eral possibilities for the internal realization of task pools, which affect load
balancing. Often the tasks are kept in task queues, see also Fig. 1:

• Central task pools: All tasks of the algorithm are kept in one task queue
from which all threads extract tasks for execution and into which the
newly created tasks are inserted. Access conflicts are avoided by a lock
mechanism for shared memory programming.

• Decentralized task pools: Each thread has its own task queue from which
the thread extracts tasks and into which it inserts newly created tasks. No
access conflicts can occur and so there is no need for a lock mechanism. But
load imbalances can occur for irregularly growing computational work.

• Decentralized task pools with task stealing: This variant of the decentral-
ized task pool offers a task stealing mechanism. Threads with an empty
task queue can steal tasks from other queues. Load imbalance is avoided
but task stealing needs a locking mechanism for correct functionality.

P3P2P1P1 P3P2P1P1 P1P1 P3P2

Tasks  Tasks  

Decentralized
Task Pool

Central
Task Pool

Processors
Task-Stealin

g

Tasks  

Fig. 1. Different types of task pool variants for shared memory

Due to the additional overhead of task pools it is suggested to use them
only when required for highly irregular and dynamic algorithms. Examples are
the hierarchical radiosity method from computer graphics and hierarchical n-
body algorithms.

The hierarchical radiosity method

The radiosity algorithm is an observer-independent global illumination method
from computer graphics to simulate diffuse light in three-dimensional scenes
[10]. The method is based on the energy radiation between surfaces of objects
and accounts for direct illumination and multiple reflections between surfaces
within the environment. The radiosity method decomposes the surface of ob-
jects in the scene into small elements Aj , j = 1, . . . , n, with almost constant
radiation energy. For each element, the radiation energy is represented by a
radiosity value Bj (of dimension [Watt/m2]) describing the radiant energy per
unit time and per unit area dAj of Aj . The radiosity values of the elements
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Fig. 2. Illustration of the radiosity equation

are determined by solving a linear equation system relating the different ra-
diation energies of the scene using configuration factors (which express the
geometrical positioning of the elements), see also Fig. 2:

BjAj = EjAj + ρj

n∑

i=1

FijBiAi, j = 1, . . . , n. (1)

The element’s emission energy is Ej . The factor ρj describes the diffuse re-
flectivity property of Aj . The dimensionless factors Fij (called configuration
factors or form factors)

Fij =
1

Ai

∫

Ai

∫

Aj

cos(δi)cos(δj)

πr2
dAjdAi (2)

describe the portions of radiance Φj = BjAj (of dimension [Watt]) incident
on Aj , see also Fig. 3. Using the symmetry relation FijAi = FjiAj yields the
linear system of equations for the radiosity values Bj

Bj = Ej + ρj

n∑

i=1

FjiBi, j = 1, . . . , n. (3)

The computation of configuration factors as well as the solution of the lin-
ear system can be performed by different numerical methods (see [13] and its
references). A variety of methods have been proposed to reduce the compu-
tational costs, including the hierarchical radiosity method [12] which realizes
an efficient computational technique for solving the transport equations that

jA

Ai

η j
δj

δ i

η i

Fig. 3. Illustration of the form factors
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specify the radiosity values of surface patches in complex scenes. The mutual
illumination of surfaces is computed more precisely for nearby surfaces and
less precisely for distant surfaces.

A common implementation strategy uses quadtrees to store the surfaces
and interaction lists to store data dependencies due to mutual illumination.
For each input polygon the subdivision into a hierarchy of smaller portions
of the surface is organized in a quadtree, see Figure 4. The patches or el-
ements attached to the four children of a node represent a partition of the
patch attached to the parent’s node. For each patch q of each input polygon,
an interaction list is maintained containing patches of other input polygons,
which are visible from the patch q, i.e. which can reflect light to q.

input polygon

inner patch

patch
on leaf level

Fig. 4. Illustration of the quadtree data structure for the hierarchical radiosity
method

During the computation of the form factors, the quadtrees are built up
adaptively in order to guarantee the computations to be of sufficient preci-
sion. Therefore, the quadtrees need not be balanced. The method computes
the energy transport (i.e. the configuration factor) between two patches or
elements only if it is not too large; otherwise the patches are subdivided, see
Fig. 5. Thus, each patch or element has its individual set of interaction el-
ements or patches for which the configuration factors have to be computed.
The hierarchical method alternates iteration steps of the Jacobi method to
solve the energy system (3) with a re-computation of the quadtree and the
interaction sets based on FjiBi with radiosity values Bi from the last iteration
step.

The computational structure of the hierarchical radiosity method is task
oriented, input dependent, and dynamically varying during runtime. The data
structures are a set of quadtrees with multiple dynamically changing interac-
tions stored in interaction sets. Thus, an efficient parallel implementation of
the hierarchical radiosity method requires a highly dynamic parallel program-
ming model with load balancing during runtime, which is provided by task
pools.
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quadtree of quadtree of

polygon A polygon B

p

I(p)

deleted

inserted

q

For all patches in the interaction set q I(p) area(p)  >  area(q)with 

Fig. 5. Energy-based subdivision of a patch p and corresponding changes of inter-
action lists I(p) in the hierarchical radiosity method

Extensive work concerning task pool implementations of hierarchical al-
gorithms has been presented in [44]. How to realize a large potential of par-
allelism with the task pool approach in order to employ a large number of
processes is investigated in [29]. In [27] additional task pool variants are pre-
sented and their performance impact is investigated for different irregular
applications.

Task pool teams

For use on parallel platforms with distributed memory or on clusters, the
idea of task pools has to be extended in order to include communication.
One approach are task pool teams which combine task pools running on single
cluster nodes with explicit communication [15, 19]. To support complex task
and dependence structures in a dynamically growing task graph, a powerful
communication mechanism with asynchronous and dynamic communication
between tasks is needed. Asynchronous communication is required since it
is not known in advance when and where a communication partner may be
ready for execution. Dynamic communication is required since it is impossible
to know in advance that a communication, e.g. for providing data, is requested
by another task.

Task pool teams for an SMP (symmetric multiprocessor) cluster combines
thread based task pools on SMP nodes with specific communication protocols
handling the communication requirements mentioned above. The realization
uses Pthreads for SMPs and MPI for communication between SMP nodes [11].
A number of worker threads and one specific communication thread run on
each SMP node; the communication protocol for task pool teams supports
asynchronous communication between SMP nodes exploiting the communi-
cation thread. For the application programmer, the programming support
provides library routines for explicitly creating and extracting tasks; commu-
nication patterns are also explicitly inserted in the parallel program.



10 Gudula Rünger

The hierarchical radiosity method is one of the most challenging prob-
lems concerning irregularity of data access and dynamic behavior of load and
communication. Communication is required for remote data access as well as
for load balancing between nodes. Task pool teams provide an appropriate
tool for handling load imbalances on SMP nodes as well as on entire clus-
ter platforms. Load balance between SMP nodes is realized explicitly offering
additional possibilities for optimizing the expensive redistribution of data or
migration of tasks.

The programming model of task pool teams also has been used to realize
different parallel variants of the simulation of diffusion processes using ran-
dom Sierpinski Carpets [9,20]. In this application the task pool team approach
is especially suitable to efficiently realize the boundary update phase of the
algorithm which is necessary after time steps. The first variant has a synchro-
nous parallel update phase which exploits the specific communication thread
provided by task pool teams; the exchange of boundary information is started
by collective communication of the worker threads and the communication
thread is responsible for the processing of the data received. The second im-
plementation variant realizes an asynchronous boundary-update using only
the task pool team’s communication mechanism. Measurements of the exe-
cution time on a Xeon-Cluster with SCI network and a Beowulf cluster with
Fast-Ethernet show that the synchronous approach is slightly better.

The central aim of using task pool teams is to support communication
protocols that are suitable for dynamic and asynchronous communication,
but which do not rely on specific attributes of the MPI library such as thread
safety [17]. Thus, the implementation provides great flexibility concerning the
underlying communication libraries, the parallel platform used, and specific
application algorithms.

3 Data and communication management
for adaptive algorithms

Adaptive algorithms adjust their behavior according to the specified proper-
ties of the result to be computed. This includes an adaption of computation
and/or data and is usual guided by a required precision of a solution. A typical
example is the adaptive finite element method for solving partial differential
equations numerically.

The finite element method uses a discretization of the physical space into
a mesh of finite elements. The numerical solution of the given problem is
then computed iteratively on the mesh. The resulting numerical algorithm
has mainly local dependencies since only values stored for neighboring mesh
cells are used for the computation. Because of these local dependencies, a
useful parallel implementation strategy exploits a decomposition of the mesh
into parts of equal size in order to obtain load balance [3]. Communication is
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minimized by using a decomposition into blocks with small boundaries such
that a small amount of data is exchanged with the neighboring processors.

The adaptive finite element method starts with a coarse mesh and per-
forms a stepwise refinement of the mesh according to the requested precision
of the approximation solution. From the mathematical point of view, error
estimation is an important point to guide the refinement. From the imple-
mentation point of view, the appropriate data structures implementing the
mesh and an effective realization of the refinement is crucial. Treelike data
structures for storing the adaptive mesh and its refinement structures are one
option.

For a parallel implementation, one has to deal with dynamically grow-
ing or shrinking data structures during runtime and varying communication
needs. However, there is a difference compared to the hierarchical algorithm
introduced in Sect. 2. The data dependencies of the finite element method
are local in the sense that data exchange is required only with neighboring
mesh cells. This property still holds for the adaptive method. Neighboring
mesh cells might be refined into several new mesh cells but the new neighbors
for communication are immediately known. No further unknown interaction
occurs. Thus, an appropriate parallel programming model for the adaptive
finite element method is a dynamic use of load balancing methods by graph
partitioning methods known from the non-adaptive case. Graph partitioning
methods can be used during runtime to achieve load balance.

Graph partitioning

The decomposition of data meshes is more complicated in the irregular case
and is related to the NP-hard graph partitioning problem which partitions a
given graph into subgraphs of almost equal size while cutting a minimal num-
ber of edges. Graph partitioning algorithms use one- and multi-dimensional
partitioning or recursive bisection [7, 30]. Recursive bisection includes the
partitioning according to coordinate values which is especially suitable for
sparse matrices [46], recursive graph bisection exploiting local properties of
the graph [26], or recursive spectral bisection using eigenvalues of the adja-
cency matrix as global property [31]. Multi-level algorithms for graph parti-
tioning use multiple levels of the graph with different refinement which are
produced in sequence of consecutive steps [14, 23, 24]. Programming support
for the partitioning of unstructured graphs or reordering of sparse matrices is
provided by the METIS System [22,25].

The execution time for graph partitioning algorithms adds an additional
overhead to the parallel execution time of the application problem to be solved,
since the graph partitioning and repartitioning have to be done at runtime.
The resulting communication time can be very high such that the incorpora-
tion of repartitioning may result in a more expensive parallel program. Thus,
irregular algorithms with dynamically varying data structures usually require
an additional mechanism for an efficient implementation.
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Data and communication management for adaptive finite element methods

The efficient parallel implementation of a hexahedral adaptive finite element
method has been presented in [16]. In this approach, the communication is
encapsulated in order to provide a general mechanism for repartitioning in
graph based algorithms.

The main characteristics inducing irregularity to adaptive hexahedral FEM
are adaptively refined data structures and hanging nodes. A hanging node is
a vertex of an element that can be a mid node of a face or an edge. Such
nodes can occur when hexahedral elements are refined irregularly, i.e. when
neighboring volumes have different levels of refinement. For a correct numer-
ical computation, hanging nodes require projections onto nodes of other re-
finement levels during the solution process. The adaptive refinement process
with computations on different refinement levels creates hierarchies of data
structures and requires the explicit storage of these structures including their
relations. These characteristics lead to irregular communication behavior and
load imbalances in a parallel program.

The task pool team approach from Sect. 2 provides a concept which allows
any kind of data references or communication patterns, including strong ir-
regular communication. For adaptive FEM, however, the locality of references
and communication is slightly different than described for the algorithms pre-
sented in the last section.

• The adaptive FEM has a data oriented program structure with dynam-
ically growing (or shrinking) data structures. Based on the input data a
suitable initial distribution of data can be chosen at program start.

• The computational effort varies dynamically according to the dynamic
behavior of the data. The process is guided by the FEM algorithm with
appropriate error estimation methods.

• The data dependencies are of local character, i.e. there are dependencies to
neighboring cells in the mesh or graph data structures. This leads to local
communication patterns in a parallel program with only a few neighboring
processors.

• For efficient parallel execution, load redistribution is required during run-
time. But load increases resulting from adaptive refinement are usually
concentrated on a few processors. Appropriate load redistribution may af-
fect all processors but are of local nature between neighboring processors.

• Communication occurs for remote data access when data are needed for
calculation. Also shared data structures have to be maintained consistently
during program run. In most cases the exact time of communication is
not known in advance. Message sizes or communication partners vary and
depend on the input. However, the communication partners work synchro-
nously.

A parallel FEM implementation can exploit the locality of references and
local communication pattern. A suitable data management and communica-
tion layer for adaptive three-dimensional hexahedral FEM is presented in [18].
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The data management assumes a distribution of volumes across the proces-
sors where neighboring volumes share faces, edges, or nodes of the mesh data
structure. The mapping of neighboring volumes to different processors requires
an appropriate storage of those shared data such that the data management
guarantees correct storage and a correct access to the data. The following data
structures have been proposed:

• Shared data are stored as duplicates in all processors holding parts of the
corresponding volumes. The solution vector is distributed correspondingly.
Specific restrictions guarantee the correct computation on those data.

• The data structure and its distribution are refined consistently in two steps:
a local refinement step for data which are only kept in the memory of one
specific processor and a remote refinement step for data with duplicates
in the memories of other processors.

• Coherence lists store the information about the distribution of data to
support remote refinement and fast identification of communication part-
ners. Due to the locality properties of adaptive FEM the remote refinement
applies to neighboring processors.

The communication layer provides support for different communication
situations that can occur in adaptive FEM:

• Synchronization and exchange of results between neighboring processors
during the computation step.

• Accumulation of local subtotals which yield the total result after a com-
putation step.

• Exchange of administration information after a refinement of volumes,
including remote refinement, creation or update of duplicate lists, and
identification of hanging nodes.

The second and third communication situations are of irregular type and
are handled with a specific protocol. This protocol deals with asynchronous
communication since the exact moment of communication is unknown and
can take place with varying communication partners and message sizes. A
collection phase gathers information about remote duplicates and its owners
needed for the communication. Additionally, each processor asynchronously
provides information about duplicate data requested by other processors in
the collection phase.

A suitable method for repartitioning and load balancing is the use of a
graph partitioning tools like ParMetis. The communication protocol presented
in [18] can be combined with graph partitioning and guarantees the correct
behavior after each repartitioning. The protocol has been used for the paral-
lelization of the program version SPC-PM3AdH which realizes a 3-dimensional
adaptive hexahedral FEM method suitable to solve elliptic partial differential
equations [2]. The parallelization method can be applied to all adaptive algo-
rithms which provide similar locality properties and similar communication
patterns as adaptive FEM codes.
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4 Library support for mixed task
and data parallel algorithms

A large variety of application problems from scientific computing and related
areas have an inherent modular structure of cooperating subtasks calling each
other. Examples include environmental models combining atmospheric, sur-
face water, and ground water models, as well as aircraft simulations combining
models for fluid dynamics, structural mechanics, and surface heating, see [1]
for an overview. But modular structures can also be found within numerical al-
gorithms built up from submethods. For the efficient parallel implementation
of those applications an appropriate parallel programming model is needed
which can express a (hierarchical) modular structure.

The SPMD (single program multiple data) model proposed in [5] was from
its inception more general than a data parallel model and did allow a hierar-
chical expression of parallelism, however most implementations exploit only a
data parallel form. But many research groups have proposed models for mixed
task and data parallel executions with the goal of obtaining parallel programs
with faster execution time and better scalability properties, see [1, 45] for an
overview of systems and programming approaches and see [4] for a detailed
investigation of the benefits of combining task and data parallel executions.
Several models support the programmer in writing efficient parallel programs
for modular applications without dealing too much with the underlying com-
munication and coordination details of a specific parallel machine. Language
approaches include Braid, Fortran M, Fx, Opus, and Orca, see [1]. Fortran
M [8] allows the creation of processes which can communicate with each other
by predefined channels and which can be combined with HPF Fortran for a
mixed task and data parallel execution.

The TwoL (Two Level) model uses a stepwise transformation approach
for creating an efficient parallel program from a module specification of the
algorithm (upper level) with calls to basic modules (lower level) [34, 36]. The
transformation approach can be realized by a compiler tool and is suitable
for statically known module structures. Different recent realizations of the
specification mechanism have been proposed in [28] and [41]. For dynamically
growing and varying modular structures, however, support at runtime is re-
quired which is provided by the runtime library Tlib for multiprocessor task
programming.

Multiprocessor task programming

For the implementation on distributed memory machines or clusters, the mod-
ular structure can be captured by using tasks which incorporate the modules
of the application. Those tasks are often called multiprocessor tasks (M-tasks)
since each task can be executed on an arbitrary number of processors, concur-
rently with other M-tasks of the same program executed on disjoint processor
groups. Internally an M-task can have a data-parallel or SPMD structure
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but may also have an internal hierarchical and modular structure. The entire
M-task program consists of a set of cooperating, hierarchically structured M-
tasks which mimic the module dependence structure of the algorithm. M-task
programming can be used to design parallel programs with mixed task and
data parallelism where a coarse structure of tasks form a coarse-grained hier-
archical M-task graph, see Fig. 6. The execution mode is group-SPMD where
at each point in execution time disjoint processor groups execute separate
SPMD modules of the algorithm.

M−Task
data parallel or SPMD

independent

M−Task

Communication

data dependency

Fig. 6. Illustration of an M-task graph and its potential parallelism. Nodes denote
M-tasks and arrows denote data dependencies between tasks which might result in
communication

The advantage of the described form of mixed task and data parallelism
is a potential for reducing the communication overhead and for improving
scalability, especially if collective communication operations are used. Collec-
tive communication operations performed on smaller processor groups lead to
smaller execution times due to the logarithmic or linear dependence of the
communication times on the number of processors [38,48]. As a consequence,
the concurrent execution of independent tasks on disjoint processor subsets of
appropriate size can result in smaller parallel execution times than the con-
secutive execution of the same M-tasks one after another on the entire set of
processors.

Modular structures can be found in many numerical algorithms of multi-
level form [21]. As an example we describe the potential of M-task parallelism
in solution methods for ordinary differential equations.

Modular structures of Runge-Kutta methods

Numerical methods for solving systems of ordinary differential equations ex-
hibit a nested or hierarchical structure which makes them amenable to a mixed
task and data parallel realization. An example is the diagonal-implicitly it-
erated Runge-Kutta (DIIRK) method which is an implicit solution method
with integrated step-size and error control for ordinary differential equations
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ComputeStageVectors

InitializeStage

StepsizeControl

ComputeApprox

NewtonIter

SolveLinSyst

NewtonIter

SolveLinSyst

Initialization

Fig. 7. Illustration of the modular structure of the diagonal-implicitly iterated
Runge-Kutta method

(ODEs) arising, e.g., when solving time-dependent partial differential equa-
tions with the method of lines [47].

The modular structure of this solver is given in Figure 7 where boxes denote
M-tasks and back arrows denote loop structures. In each time step, the solver
computes a fixed number of s stage vectors (ComputeStageVectors) which are
then combined to the final approximation (ComputeApprox). The method
offers a potential of parallel execution of M-tasks since the computation of
the different stage vectors are independent of each other [35]. Each single
computation of a stage vector requires the solution of a non-linear equation
system whose size is determined by the system size of the ordinary differential
equations. The non-linear systems are solved with a modified Newton method
(NewtonIter) requiring the solution of a linear equation system (SolveLinSyst)
in each iteration step. Depending on the characteristics of the linear system
and the solution method used, a further internal mixed task and data parallel
execution can be used, leading to another level in the task hierarchy. A parallel
implementation can exploit the modular structure in several different ways
but can also execute the entire method in a pure SPMD fashion. The different
implementations differ in the coordination of the M-tasks and usually differ
in the resulting parallel execution time.

Runtime library Tlib

The runtime library Tlib supports M-task programming with varying, hi-
erarchically structured, recursive M-tasks cooperating according to a given
coordination program [39]. The coordination program contains activations of
coordination operations of the Tlib library and user-defined M-task functions.
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The parallel programming model for Tlib programs is a group-SPMD model
at each point in the execution time. This results in a multilevel group-SPMD
model with several different hierarchies of processor groups due to the dynamic
change of processor groups during runtime and nested M-task calls.

Tlib mainly provides two kinds of operations:

• a family of split operations to structure the given set of processors and
• a family of mapping operations to assign specific M-tasks to specific proces-

sor groups for execution.

M-tasks cooperate through parameters which can include composed data
structures so that Tlib programs have to deal with data placement, data
distribution, and data redistribution. The specific challenge for selecting a
data distribution lies in the dynamic character of M-task programs in Tlib,
since the actual M-task structure and the processor layout are not necessarily
known in advance. The advantage of this dynamic behavior is that arbitrary,
hierarchically structured and recursive M-task programs can be coded easily,
providing an easy way to express divide-and-conquer algorithms or irregular
algorithms. For a data distribution and a correct cooperation of arbitrary M-
tasks a specific data format is needed which fits the dynamic needs of the
model [40].

5 Communication optimization for structured algorithms

The locality of dependencies can also be exploited to optimize the communi-
cation for parallel algorithms with a more structured data or task dependence
graph. The parallel programming model of orthogonal processor groups pro-
vides a group-SPMD model for applications with a two- or higher-dimensional
data or task grid where dependencies are mainly aligned in the dimensions
of this grid. The advantage is a reduction of the communication to smaller
groups of processors which leads to a reduction of the communication over-
head as already mentioned in Sect. 4. The entire set of processors executing
an application program is organized in a virtual two- or higher-dimensional
processor grid and a fixed number of different decompositions of this set into
disjoint processor subsets is defined. The subsets of a decomposition into dis-
joint processor groups correspond to the lower-dimensional hyperplanes of the
virtual processor grid which are geometrically orthogonal to each other.

An application algorithm is mapped onto the processor grid according to
its natural grid based data or task structure. The program executes a sequence
of phases in which a processor alternatively executes the tasks assigned to it
in an SPMD or group-SPMD way. In a group-SPMD phase the application
program uses exactly one of the decompositions into processor hyperplanes
and a processor within a hyperplane performs an SPMD computation together
with other processors in the same group, including group internal collective
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communication operations. At each time of the execution only one partition
can be active.

For programming with virtual processor grids, a suitable coding of proces-
sor grids and grid based data or task structures is needed. Parameterized data
or task distributions can be used as a flexible technique for the mapping of
data or tasks to processor subgroups.

Parameterized data or task mapping

Parameterized data distributions describe the data distribution for data grids
of arbitrary dimension [6,37]. A task is assigned to exactly one processor, but
each processor might have several tasks assigned to it.

A parameterized cyclic mapping of a d-dimensional task grid to a virtual
processor grid of size p1 × · · · × pd is specified by a block-size bl, l = 1, . . . , d,
in each dimension l. The block-size bl determines the number of consecutive
elements that each processor obtains from each cyclic block in this dimension.
For a total number of p processors, the distribution of the data or task grid
T of size n1 × · · · × nd is described by an assignment vector of the form:

((p1, b1), . . . , (pd, bd)) (4)

with p =
∏d

l=1 pl and 1 ≤ bl ≤ nl for l = 1, . . . , d. For simplicity we assume
nl/(pl · bl) ∈ N.

The set of processors is divided into disjoint subsets of processors due to
the virtual d-dimensional processor number in a d-dimensional processor grid.
For the two-dimensional processor grid of size p1 × p2, there are two different
decompositions into a disjoint set of p2 row groups Rq, 1 ≤ q ≤ p2, and into
a disjoint set of p1 column groups Cq, 1 ≤ q ≤ p1:

Rq = {(r, q) | r = 1, . . . , p1} , Cq = {(q, r) | r = 1, . . . , p2} (5)

with |Rq| = p1 and |Cq| = p2. The row and column groups build separate
orthogonal partitions of the set of processors P , i.e.,

p2⋃

q=1

Rq =

p1⋃

q=1

Cq = P and Rq ∩Rq′ = ∅ = Cq ∩ Cq′ for q �= q′.

The row groupsRq and the column groups Cq are orthogonal processor groups.
A mapping of the task or data grid to orthogonal processor groups uses the

data distribution vector (4) and the decomposition of the set of processors (5),
see Fig. 8. Row i of the task grid T is assigned to the processors of a single row

group Ro(i) = Rk with k =
⌊

i−1
b2

⌋
mod p2 +1. Similarly, column j of the task

grid T is assigned to the processors of a single column group Co(j) = Ck with

k =
⌊

j−1
b1

⌋
mod p1 + 1. A program mapped to orthogonal processor groups

can use the row and column groups Ro(i) and Co(i), i.e. the program can use
the original task indices. Thus, after the mapping the task structure is still
visible and the orthogonal processor groups according to the given mapping
are known implicitly.
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Fig. 8. Illustration of a task or data grid of size 12×12 and a mapping to a processor
grid of size 2 × 2 with block-sizes b1 = 3, b2 = 2

Programming orthogonal structures

A runtime library ORT has been implemented to support parallel program-
ming in the group-SPMD model with orthogonal processor groups. The library
provides functions to build processor partitions and functions to assign tasks
to the processor groups. The application programmer starts with a specifica-
tion of the message-passing program using the library functions within a C
and MPI program. Processor partitions are built up internally by the library
when calling some starting routines. Tasks are mapped to processor groups
with library calls giving tasks and processor groups as parameters. The advan-
tage of a library support is to have a comfortable specification mechanism for
group-SPMD programs and an executable implementation at the same time.
The library is implemented on top of MPI so that the specification program is
executable on message-passing machines. This programming style allows the
application programmer to specify the program phases and their organization
in a clear and readable program code. The execution model for programs in
the ORT programming model has the following characteristics:

• Processors are organized in a two- or multi-dimensional grid structure
depending on the specific application and the mapping.

• Processor groups are supported in each hyperplane of the processor grid,
i.e. if processors are organized in an s-dimensional grid, hyperplanes of
dimensions 1, . . . , s− 1 can be used to build subgroups.

• Multiple program execution controls, one for each group, can exist, i.e.,
one or all groups of a single partition can be active, see Fig. 9.

• Interactions between concurrently working groups are possible.
• In the program with a two-dimensional grid, row and column groups can

be identified using corresponding function calls. Generalized functions for
more than two dimensions work analogously.

• The entire program is executed in an SPMD style but the specific section
statements pick subgroups to work and communicate together within a
part of the program. For those parts, the execution model is a group-
SPMD model.
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Fig. 9. The gray parts show active processor groups for different vertical and hori-
zontal section commands in the two-dimensional case

Flexible composition of component based algorithms

Block-cyclic data distributions and virtual processor grids have also been used
to parallelize efficiently the calculation of Lyapunov characteristics of many-
particle systems [32]. The simulation algorithm consists of a large number
of time steps calculating Lyapunov exponents and vectors, which have to be
re-orthogonalized periodically [33]. For a large number of particles an use of
parallel platforms is needed to reduce the computation time.

The challenge of the parallel simulation lies in the parallel implementa-
tion of the re-orthogonalization module and the flexible coupling of the re-
orthogonalization with the molecular dynamics integration routine. The flexi-
ble composition is achieved with an interface combining a module for the par-
allel re-orthogonalization and a module for the parallel molecular dynamics
integration routine. Both modules exploit a two-dimensional virtual processor
grid and a block-cyclic data distribution in parameterized vector form given in
Formula (4). Thus, many different data distributions can be used. The inter-
face is responsible for the correct cooperation, especially concerning the data
distribution, which may require an automatic redistribution.

The module for the parallel re-orthogonalization can be chosen from a
set of different parallel modules realizing different algorithms. For the Gram-
Schmidt orthogonalization and QR factorization based on blockwise House-
holder reflection several parallel variants with different versions of a block-
cyclic data distribution have been implemented and tested [43]. Investiga-
tions for the parallel modified Gram-Schmidt algorithm have been presented
in [42]. Depending on the molecular dynamics system and the specific parallel
hardware different parallel re-orthogonalization modules show the best per-
formance. The flexible program environment guarantees that the best parallel
orthogonalization can be included and works correctly. Thus, the parallel pro-
gram calculating Lyapunov characteristics combines the parallel programming
model of orthogonal virtual processor groups introduced in this section and
the parallel programming model for M-task programming with redistribution
between modules from Sect. 4.
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40. T. Rauber and G. Rünger. A data re-distribution library for multi-processor task
programming. To appear: International Journal of Foundations of Conmputer
Science, 2006.

41. R. Reilein-Ruß. Eine komponentenbasierte Realisierung der TwoL-Sprach-
architektur. Dissertation, TU Chemnitz, Fakultät für Informatik, 2005.
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1 Introduction

From Amdahl’s Law we know: the efficient use of parallel computers can not
mean a parallelization of some single steps of a larger calculation, if in the
same time a relatively large amount of sequential work remains or if special
convenient data structures for such a step have to be produced with the help
of expensive communications between the processors. From this reason, our
basic work on parallel solving partial differential equations was directed to
investigating and developing a natural fully parallel run of a finite element
computation – from parallel distribution and generating the mesh – over par-
allel generating and assembling step – to parallel solution of the resulting large
linear systems of equation and post–processing.

So, we will define a suitable data partitioning of all large finite element
(F.E.) data that permits a parallel use within all steps of the calculation.

This is given in detail in the following Sect. 2. Considering a typical it-
eration method for solving a linear finite element system of equations, as is
done in Sect. 3, we conclude that the only relevant communication technique
has to be introduced within the preconditioning step. All other parts of the
computation show a purely local use of private data. This is important for
both message passing systems (local memory) and shared memory computers
as well. The first environment clearly uses the advantage of having as less
interprocessor communication as possible. But even in the shared memory en-
vironment we obtain advantages from our data distribution. Here, the use of
private data within nearly all computational steps does not require any of the
well–known expensive semaphore–like mechanisms in order to secure writing
conflicts. The same concept as in the distributed memory case permits the
use of the same code for both very different architectures.
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2 Finite element computation and data splitting

Let
a(u, v) = 〈f, v〉 (1)

be the underlying bilinear form belonging to a partial differential equation
(p.d.e.) Lu = f in Ω with boundary conditions as usual. Here, u ∈ H1(Ω)
with prescribed values on parts ΓD of the boundary ∂Ω is the unknown so-
lution, so (1) holds for all v ∈ H1

0 (Ω) (with zero values on ΓD). The Finite
Element Method defines an approximation uh of piecewise polynomial func-
tions depending on a given fine triangulation of Ω.

Let Vh denote this finite dimensional subspace of finite element functions
and Vh0 = Vh ∩H1

0 (Ω). So,

a(uh, v) = 〈f, v〉 ∀v ∈ Vh0 (2)

is the underlying F. E. equation for defining uh ∈ Vh (with prescribed values
on ΓD). In more complicated situations such as linear elasticity u is a vector
function.

With the help of the finite element nodal base functions

Φ = (ϕ1, · · · , ϕN )

we map uh to the N-vector u by

uh = Φu (3)

Often ϕi(xj) = δij for the nodes xj of the triangulation, so u contains the
function values of uh(xj) at the j-th position, but it is basically the vector of
coefficients of the expansion of uh with respect to the nodal base Φ.

With (3) (for uh and for arbitrary v = Φv) (2) is equivalent to the linear
system

Ku = b (4)

with
K = (kij) kij = a(ϕj , ϕi)
b = (bi) bi = 〈f, ϕi〉 i, j = 1, · · · , N.

So, from the definition, we obtain 2 kinds of data:

I: large vectors containing ”nodal values” (such as u)

II: large vectors and matrices containing functional values such as b and K.

From the fact that these functional values are integrals over Ω, the type-II-
data is splitted over some processors as partial sums, when the parallelization
idea starts with domain decomposition.
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That is, let

Ω =

p⋃

s=1

Ωs , (Ωs ∩Ωs′ = ∅, ∀s �= s′)

be a non-overlapping subdivision of Ω . Then, the values of a local vector

bs = (bi)xi∈Ωs
∈ R

Ns

are calculated from the processor Ps running on Ωs-data independently of all
other processors and the true right hand side satisfies

b =

p∑

s=1

HT
s bs (5)

with a special (only theoretically existent) (Ns × N) -Boolean-connectivity
matrix Hs. If the i-th node xi in the global count has node number j locally
in Ωs then (Hs)ji = 1 (otherwise zero).

The formula (5) is typical for the distribution of type-II-data, for the ma-
trix we have

K =

p∑

s=1

HT
s KsHs , (6)

where Ks is the local stiffness matrix belonging to Ωs, calculated within
the usual generate/assembly step in processor Ps independently of all other
processors. Note that the code running in all processors at the same time in
generating and assembling Ks is the same code as within a usual Finite El-
ement package on a sequential one processor machine. This is an enormous
advantage that relatively large amount of operations included in the element
by element computation runs ideally in parallel. Even on a shared memory
system, the matrices Ks are pure private data on the processor Ps and the
assembly step requires no security mechanisms.

The data of type I does not fulfill such a summation formula as (5), here
we have

us = Hsu (7)

which means the processor Ps stores that part of u as private data that belongs
to nodes of Ωs.

Note that some identical values belonging to ”coupling nodes” xj ∈ Ωs ∩
Ωs′ are stored in more than one processor. If not given beforehand such a
compatibility has to be guaranteed for type-I-data. This is the main difference
to a F.E. implementation in [10], where the nodes are distributed exclusively
over the processors. But from the fact that we have all boundary information
of the local subdomain available in Ps , the introduction of modern hierarchical
techniques (see Sect. 4) is much cheaper.

Another advantage of this distinguishing of the two data types is found in
using iterative solvers for the linear system (4) in paying attention to (5), (6)
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and (7). Here we watch that vectors of same type are updated by vectors of
same type, so again this requires no data communication over the processors.
Moreover, all iterative solvers need at least one matrix–vector–multiply per
step of the iteration. This is nothing else than the calculation of a vector of
functional values, so it changes a type-I into a type-II-vector without any data
transfer again:

Let uh = Φu an arbitrary function in Vh, so u ∈ R
N an arbitrary vector,

then v = Ku contains the functional values

vi = a(uh, ϕi) i = 1, · · · , N,

and
v =

(∑
HT

s KsHs

)
u =

∑
HT

s Ksus =
∑
HT

s vs,

whenever vs := Ksus is done locally in processor Ps. From the same reason,
the residual vector r = Ku− b of the given linear system is calculated locally
as type-II-data.

3 Data flow within the conjugate gradient method

The preconditioned conjugate gradient method (PCGM) has found to be the
appropriate solver for large sparse linear systems, if a good preconditioner can
be introduced. Let this preconditioner signed with C, the modern ideas for
constructing C and the results are given in the next chapters. Then PCGM
for solving Ku = b is the following algorithm.

PCGM

Start: define start vector u

r := Ku− b, q := w := C−1r, γo := γ := rTw

Iteration: until stopping criterion fulfilled do

(1) v := Kq

(2) δ := vT q, α := −γ/δ
(3) u := u+ αq

(4) r := r + αv

(5) w := C−1r

(6) γ̂ := rTw, β := γ̂/γ, γ := γ̂

(7) q := w + βq

Remark 1: The stopping criterion is often :

γ < γo · tol2 ⇒ stop.
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Here, the quantity
rTC−1r = zTKC−1Kz

with the actual error z = u− u∗ is decreased by tol2, so the KC−1K−Norm
of z is decreased by tol.

Remark 2: The convergence is guaranteed if K and C are symmetric, posi-
tive definite. The rate of convergence is linear depending on the convergence
quotient

η =
1−√ξ
1 +
√
ξ

with ξ = λmin(C−1K)/λmax(C
−1K).

For the parallel use of this method, we define

u,w, q to be type-I-data
and b, r, v to be type-II-data

(from the above discussions) .

So the steps (1), (3), (4) and (7) do not require any data communication and
are pure arithmetical work with private data. The both inner products for
δ and γ in step (2) and (6) are simple sums of local inner products over all
processors:

γ = rTw =
(∑

HT
s rs

)T

w =
∑
rTs Hsw =

p∑

s=1

rTs ws.

So the parallel preconditioned conjugate gradient method is the following
algorithm (running locally in each processor Ps):

PPCGM

Start:
Choose u, set us = Hsu in Ps

rs := Ksus − bs, w := C−1r ( with r =
∑
HT

s rs)
set ws = Hsw in Ps

γs := rTs ws γ := γo :=
p∑

s=1
γs

Iteration: until stopping criterion fulfilled do
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(1) vs := Ksqs

(2) δs := vT
s qs δ :=

p∑
s=1
δs, α := −γ/δ

(3) us := us + αq
s

(4) rs := rs + αvs

(5) w := C−1r (with r =
∑
HT

s rs)

set ws = Hsw

(6) γs := rTs ws, γ̂ :=
p∑

s=1
γs, β := γ̂/γ, γ := γ̂

(7) q
s

:= ws + βq
s

Remark 3: The connection between the subdomains Ωs is included in
step (5) only, all other steps are pure local calculations or the sum of one
number over all processors.

A proper definition of the preconditioner C fulfills three requirements:

(A) The arithmetical operations for step (5) are cheap (proportionally to
the number of unknowns)

(B) The condition number κ(C−1K) = ξ−1 is small, independent of the
discretization parameter h (mesh spacing) or only slightly growing
for h→ 0, such as O(|lnh|).

(C) The number of data exchanges between the processors for realizing
step (5) is as small as possible (best: exactly one data exchange of
values belonging to the coupling nodes).

Remark 4: For no preconditioning at all ( C = I ) or for the simple
diagonal preconditioner ( C = diag(K) ), (A) and (C) are perfectly fulfilled,
but (B) not. Here we have κ(C−1K) = O(h−2). So the number of iterations
would grow with h−1 not optimally.

The modern preconditioning techniques such as

• the domain decomposition preconditioner (i.e. local preconditioners for
interior degrees of freedom combined with Schur-complement precondi-
tioners on the coupling boundaries, see [1, 3–7])

• hierarchical preconditioners for 2D problems due to Yserentant [9]
• Bramble-Pasciak-Xu-preconditioners (and related ones see [1, 8]) for hier-

archical meshes in 2D and 3D

and others have this famous properties. Here (A) and (B) are given from
the construction and from the analysis. The property (C) is surprisingly ful-
filled perfectly. Nearly the same is true, when Multigrid–methods are used as
preconditioner within PPCGM, but from the inherent recursive work on the
coarser meshes, we cannot achieve exactly one data exchange over the cou-
pling boundaries per step but L times for an L level grid.
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Remark 5: All these modern preconditioners can be found as special cases
of the Multiplicative or Additive Schwarz Method (MSM/ASM [8]) depending
on various splittings of the F.E. subspace Vh into special chosen subspaces.

4 An example for a parallel preconditioner

The most simple but efficient example of a preconditioner fulfilling (A), (B),
(C) is YSERENTANT’s hierarchical one [9]. Here we have generated the fine
mesh from L levels subdivision of a given coarse mesh. One level means subdi-
viding all triangles into 4 smaller ones of equal size (in the most simple case).
Then, additionally to the nodal basis Φ of the fine grid, we can define the so
called hierarchical basis Ψ = (ψ1, · · · , ψN ) spanning the same space V2h. So
there exists an (N ×N)−matrix Q transforming Φ into Ψ :

Ψ = ΦQ.

From the fact that a stiffness matrix defined with the base Ψ

KH = (a(ψj , ψi))
N
i,j=1

would be much better conditioned but nearly dense, we obtain from KH =
QTKQ the matrix C = (QQT )−1 as a good preconditioner:

κ(KH) = κ((QQT )K) = κ(C−1K).

From [9] the multiplying w := QQT r can be very cheaply implemented if the
level by level mesh generation is stored within a special list. Surprisingly, this
multiply is perfectly parallel, if the lists from the mesh subdivision are stored
locally in Ps (mesh in Ωs).

Let w = Qy , y = QT r, then the multiply y = QT r is nothing else than
transforming the functional values of a ”residual functional” ri = 〈r, ϕi〉 with
respect to the nodal base functions into functional values with respect to the
hierarchical base functions: yi = 〈r, ψi〉.
So this part of the preconditioner transforms type-II-data into type-II-data
without communication and y =

∑
HT

s ys
.

Then the type-II-vector y is assembled into type-I

ỹ = y, ỹ
s

= y
s
+
∑

j �=s

HsH
T
j yj︸ ︷︷ ︸

from other processors

containing now nodal data, but values belonging to the hierarchical base. So
the function

w = Φw = Ψỹ

is represented by w after back transforming
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w = Qỹ

This is again a transformation of type-I-data into itself, so the preconditioner
requires exactly one data exchange of values belonging to coupling boundary
nodes per step of the PPCGM iteration.

Remark 6: For better convergence, a coarse mesh solver is introduced.
Additionally use of Jacobi-preconditioning is a worthy idea for beating jump-
ing coefficients and varying mesh spacings etc., so

C−1 = J−1/2Q

(
C−1

o O
O I

)
QTJ−1/2

with J = diag(K).

Remark 7: The better modern BPX-Preconditioners are implemented
similarly fulfilling (A), (B), (C) in the same way.

5 Examples in linear elasticity

Let us demonstrate the power of this parallel finite element code at a 2D
benchmark example.

The Dam  -  Coarse Mesh / Materials 

SPC - TU Chemnitz

Fig. 1. Numerical example

We have used the GC Power-Plus-128 parallel computer at TU Chemnitz
having up to 128 processors PC601 for computation from the years before
2000. The maximal arithmetical speed of 80 MFlops/s is never achieved for
our typical application with unstructured meshes. Here, the matrix vector
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multiply vs := Ksqs (locally at the same time) dominates the computational
time. Note that Ks is a list of non-zero elements together with column index
for efficient storing this sparse matrix. The use of the next generation parallel
machine CLIC with up to 524 processors of Pentium-III type divides both the
computation time as well as the communication by a factor of 10, so the same
parallel efficiency is achieved.

We consider the elastic deformation of a dam. Figure 1 shows the 1–level–
mesh, so the coarse mesh contained 93 quadrilaterals. From distributing over
p = 2m processors, we obtain subdomains with the following number of coarse
quadrilaterals.

Table 1. Number of quadrilaterals per processor

p # quadrilaterals max.speed–up

p=1 93 –
p=2 47 1.97
p=4 24 3.87
p=8 12 7.75
p=16 6 15.5
p=32 3 31
p=64 2 46.5
p=128 1 93

It is typical for real life problems that the mesh distribution cannot be
optimal for a larger number of processors. In the following table we present
some total running times and the measured percentage of the time for com-
munication for finer subdivisions of the above mesh until 6 levels.

The most interesting question of scalability of the total algorithm is hard
to analyze from this rare time measurements of this table. If we look at the two
last diagonal entries, the quotient 85.5/64.1 is 1.3. From the table before and
the growth of the iteration numbers a ratio of (4∗15.5/46.5)∗(144/134) = 1.4
would be expected, so we obtained a realistic scale–up of near one for this ex-
ample. The percentage of communication tends to zero for finer discretizations

Table 2. Times and percentage of communication

L N It p=1 p=4 p=16 p=64

1 3,168 83 2.1”/0% 1.6”/75% 2.4”/90%
2 12,288 100 9.2”/0% 3.7”/40% 3.3”/70%
3 48,384 111 39.8”/0% 11.7”/20% 6.1”/50%
4 192,000 123 –/– 46.2”/10% 16.9”/25%
5 764,928 134 –/– –/– 64.1”/10% 19.4”/25%
6 2,085,248 144 –/– –/– –/– 85.5”/9%
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and constant number of processors. Much more problematic is the comparison
of two non–equal processor numbers, such as 16 and 64 in the table. Certainly,
the larger number of processors requires more communication start–up’s in
the dot–products (log2p). Within the subdomain communication the start-
up’s can be equal but need not. This depends on the resulting shapes of the
subdomains within each processor, so the decrease from 10% to 9% in the
above table is typical but very dependent on the example and the distribution
process.

Whereas such 2D examples give scale–up values of near 90% for fine enough
discretizations, much smaller values of the scale–up are achieved in 3D. The
reason is the more complicate connection between the subdomains. Here, we
have the crosspoints, the coupling faces belonging to 2 processors as in 2D but
additionally coupling edges with an unstructured rich relationship between
the subdomains. So the data exchange within the preconditioning step (5) of
PPCGM is much more expensive and 50% communication time is typical for
our parallel computer.
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1 Introduction

1.1 Electronic structure calculations

In solid state physics, bonding and electronic structure of a material can be in-
vestigated by solving the quantum mechanical (time-independent) Schrödinger
equation,

ĤtotΦ = EtotΦ , (1)

in which the Hamilton operator Ĥtot describes all interactions within the
system. The solution Φ, the wavefunction of the system, describes the state
of all N electrons and M atomic nuclei, and Etot is the total energy of this
state.
Usually, the problem is split by separating the electronic from the ionic part by
making use of the Born-Oppenheimer approximation [1]. Next we consider the
electrons as independent particles, represented by one-electron wavefunctions
φi. Density functional theory (DFT), based on the work of Hohenberg and
Kohn [2] and Kohn and Sham [3], then enables us to represent the total
electronic energy of the system by a functional of the electron density n(r):

n(r) =
∑

i

|φi|2 (2)

→ E = E [n(r)] = F [n] +

∫
Vext(r)n(r)dr

= Ekin[n] + EH[n] + Exc[n] +

∫
Vext(r)n(r)dr . (3)



38 Torsten Hoefler et al.

Thus the many-body problem is projected onto an effective one-particle prob-
lem, resulting in a reduction of the degrees of freedom from 3N to 3. The
one-particle Hamiltonian Ĥ now describes electron i, moving in the effective
potential Veff of all other electrons and the nuclei.

Ĥ φi = ǫi φi{
−�

2∆
2m + Veff [n(r)]

}
φi(r) = ǫi φi(r),

where Veff [n(r)] = Veff(r) = VH(r) + Vxc(r) + Vext(r) .

(4)

In (4), which are part of the so-called Kohn-Sham equations, −�
2∆
2m is the op-

erator of the kinetic energy, VH is the Hartree and Vxc the exchange-correlation
potential. Vext is the external potential, given by the lattice of atomic nuclei.
For a more detailed explanation of the different terms see e.g. [4]. The self-
consistent solution of the Kohn-Sham equations determines the set of wave-
functions φi that minimize the energy functional (3). In order to obtain it, a
starting density nin is chosen from which the initial potential is constructed.
The eigenfunctions of this Hamiltonian are then calculated, and from these a
new density nout is obtained. The density for the next step is usually a com-
bination of input and output density. This process is repeated until input and
output agree within the limits of the specified convergence criteria.
There are different ways to represent the wavefunction and to model the
electron-ion interaction. In this paper we focus on pseudopotential+planewave
methods.
If the wavefunction is expanded in plane waves,

φi =
∑

G

ci,k+Ge
i(k+G)r (5)

the Kohn-Sham equations assume the form [5]

∑

G′

Hk+G,k+G′ × ci,k+G′ = ǫi,kci,k+G , (6)

with the matrix elements

Hk+G,k+G′ =
�

2

2m
|k + G|2δGG′

+VH(G−G′) + Vxc(G−G′) + Vext(G−G′) . (7)

In this form the matrix of the kinetic energy is diagonal, and the different
potentials can be described in terms of their Fourier transforms. Equation
(6) can be solved independently for each k-point on the mesh that samples
the first Brillouin zone. In principle this can be done by conventional matrix
diagonalization techniques. However, the cost of these methods increases with
the third power of the number of basis states, and the memory required to
store the Hamiltonian matrix increases as the square of the same number. The
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number of plane waves in the basis is determined by the choice of the cutoff
energy Ecut = �

2/2m|k+Gcut|2 and is typically of the order of 100 per atom, if
norm-conserving pseudopotentials are used. Therefore alternative techniques
have been developed to minimize the Kohn-Sham energy functional (3), e.g.
by conjugate gradient (CG) methods (for an introduction to this method see
e.g. [6]). In a band-by-band CG scheme one eigenvalue (band) ǫi,k is obtained
at a time, and the corresponding eigenvector is orthogonalized with respect
to the previously obtained ones.

1.2 The ABINIT code

ABINIT [7] is an open source code for ab initio electronic structure calcu-
lations based on the DFT described in Sect. 1.1. The code is the object of
an ongoing open software project of the Université Catholique de Louvain,
Corning Incorporated, and other contributors [8] .

ABINIT mostly aims at solid state research, in the sense that periodic
boundary conditions are applied and the majority of the integrals that have
to be calculated are represented in reciprocal space (k-space). It currently fea-
tures the calculation of various electronic ground state properties (total en-
ergy, bandstructure, density of states,..), and several structural optimization
routines. Furthermore it enables the investigation of electric and magnetic po-
larization and electronic excitations. Originally a pseudopotential+planewave
code, ABINIT for a short time (since version 4.2.x) also features the projector-
augmented wave method, but this is still under developement. In the following
we refer to the planewave method.
To begin the self-consistency cycle, a starting density is constructed, and a
starting potential derived. The eigenvalues and eigenvectors are determined by
a band-by-band CG scheme [5], during which the density (i.e. the potential) is
kept fixed until the whole set of functions has been obtained. The alternative
of updating the density with each new band has been abandoned, to make
a simple parallelization of the calculation over the k-points possible. Only at
the end of one CG loop is the density updated by the scheme of choice (e.g.
simple mixing, or Anderson mixing). For a comparison of different schemes see
e.g. [9]). A more detailed description of the DFT implementation in general
is given in [10].

Different levels of parallelization are implemented. The most efficient par-
allelization is the distribution of the k-points that are used to sample the
Brillouin zone on different processors. Unfortunately the necessary number of
k-points decreases with increasing system size, so the scaling with the num-
ber of atoms is rather unfavourable. One can partially make up for this by
distributing the work related to different states (or bands) within a given k-
point. Since the number of states increases with the system size, the overall
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scaling with number of atoms improves. For example a blocked conjugate gra-
dient algorithm can be used to optimize the wavefunctions, which provides the
possibility to parallelize over the states within one block. Instead of a single
eigenstate, as in the band-by-band scheme, nbdblock states are determined
at the same time, where nbdblock is the number of bands in one block. Of
course this leads to a small increase in the time that is needed to orthogonalize
the eigenvectors with respect to those obtained previously. Furthermore, to
guarantee convergence, a too high value for nbdblock should not be chosen.
The ABINIT manual advises nbdblock ≤ 4 as a meaningful choice.
Both methods, k-point parallelization and parallelization over bands, are im-
plemented using the MPI library. A third possibility of parallelization is given
by the distribution of the work related to different wavefunction coefficients,
which is realized with OpenMP compiler directives. It is used for example in
the parallelization of the FFT algorithm, but this feature is still under devel-
opement.

These parallelization methods, which are based on the underlying physics
of the calculation, are useful only for a finite number of CPUs (a fact, that
is not a special property of ABINIT, but common to all electronic structure
codes). In a practical calculation, the required number of k-points, nkpt, for a
specific geometry is determined by convergence tests. To decrease the compu-
tational effort, the k-point parallelization is then the first method of choice.
The best speedup is achieved if the number of k-points is an integer multiple
of the number of CPUs:

nkpt = n×NCPU with n ∈ N. (8)

Ideally, n = 1.
If the number of available CPUs is larger than the number of k-points needed
for the calculation, the speedup saturates. In this case, the additional paral-
lelization over bands can improve the performance of ABINIT, if

NCPU = nbdblock× nkpt . (9)

In principle the parallelization scheme also works forNCPU = nbdblock, which
results in a parallelization over bands only. However, this is rather inefficient,
as will be seen below.

1.3 Related work

The biggest challenge after programming a parallel application is to optimize
it according to a given parallel architecture. The first step of each optimization
process is the performance and scalability measurement which is often called
benchmarking. There are methods based on theoretical simulation [11,12] and
methods based on benchmarking [13, 14]. There are also studies which try to
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explain bottlenecks for scalability [15] or studies which compare different par-
allel systems [16]. In the following we analyze parallel efficiency and scalability
of the application ABINIT on a cluster system and describe the results with
the knowledge gained about the application. We also present several simple
ideas to improve the scaling and performance of the parallel application.

2 Benchmark methodology

The parallel benchmark runs have been conducted on two different cluster sys-
tems. The first one is a local cluster at the University of Chemnitz which con-
sists of 8 Dual Xeon 2.4GHz systems with 2GB of main memory per CPU. The
nodes are interconnected with Fast Ethernet. We used MPICH2 1.0.2p1 [17]
with the ch p4 (TCP) device as the MPI communication library. The source
code of ABINIT 4.5.2 was compiled with the Intel Fortran Compiler 8.1 (Build
20050520Z). The relevant entries of the makefile_macros are shown in the
following:

1 FC=ifort

COMMON_FFLAGS=-FR -w -tpp7 -axW -ip -cpp

FFLAGS=$(COMMON_FFLAGS) -O3

FFLAGS_Src_2psp =$(COMMON_FFLAGS) -O0

FFLAGS_Src_3iovars =$(COMMON_FFLAGS) -O0

6 FFLAGS_Src_9drive =$(COMMON_FFLAGS) -O0

FFLAGS_LIBS=-O3 -w

FLINK=-static

Listing 1. Relevant makefile_macros entries for the Intel Compiler

The -O3 optimization had to be disabled for several directories, because
of endless compiling. For the serial runs we also compiled ABINIT with the
open source g95 Fortran compiler, with the following relevant flags:

FC=g95

2 FFLAGS=-O3 -march=pentium4 -mfpmath=sse -mmmx \

-msse -msse2

FLINK=-static

Listing 2. Relevant makefile_macros entries for the g95 Compiler

The second system is a Cray Opteron Cluster (strider) of the High Perfor-
mance Computing Center Stuttgart (HLRS), consisting of 256 2 GHz AMD
Opteron CPUs with 2GB of main memory per CPU. The nodes are intercon-
nected with a Myrinet 2000 network. ABINIT has been compiled with the



42 Torsten Hoefler et al.

64-bit PGI Fortran compiler (version 5.0). On strider the MPI is implemented
as a port of MPICH (version 1.2.6) over GM (version 2.0.8).

1 FC=pgf90

FFLAGS=-tp=k8 -64 -Mextend -Mfree -O4

FFLAGS_LIBS = -O4

LDFLAGS=-Bstatic -aarchive

Listing 3. Relevant makefile_macros entries for the pgi Compiler

2.1 The input file

All sequential and parallelized benchmarks have been executed with an essen-
tially identical input file which defines a (hexagonal) unit-cell of Si3N4 (two
formula units). We used 56 bands and a planewave energy cut-off of 30 Hartree
(resulting in ≈ 7700 planewaves). A Monkhorst-Pack k-point mesh [18] was
used to sample the first Brillouin zone. The number of k-points along the axes
of the mesh was changed with the ngkpt parameter as shown in Table 1.
To use parallelization over bands, we switched from the default band-by-band
wavefunction optimisation algorithm to the blocked conjugate gradient algo-
rithm (wfoptalg was changed to 1) and chose numbers of bands per block
> 1 (nbdblock) according to (9) in Sect. 1.2.

Table 1. Number of k-points along the axes of the Monkhorst-Pack mesh, ngkpt,
and resulting total number of k-points in the calculation, nkpt

nkpt ngkpt

2 2 2 2

4 2 2 4

4 4 2 8

4 4 4 16

3 Benchmark results

3.1 Sequential analysis

Due to the fact that a calculation which is done on a single processor in the k-
point parallelization is exactly the same as in the sequential case, a sequential
analysis can be used to analyze the behaviour of the calculation itself.
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Call graph

The call graph of a program shows all functions which are called during a
program run. We used the gprof utility from the gcc toolchain and the pro-
gram cgprof to generate a call graph. ABINIT called 300 different functions
during our calculation. Thus, the full callgraph is much too complicated and
we present only a short extract with all functions that use more than 4% of
the total application runtime (Fig. 1).

Fig. 1. The partial callgraph

The percentage of the runtime of the functions is given in the diagram,
and the darkness of the nodes indicates the percentage of the subtree of these
nodes (please keep in mind that not all functions are plotted). About 97% of
the runtime of the application is spent in a subtree of vtowfk which computes
the density at a given k-point with a conjugate gradient minimization method.
The 8 most time consuming functions need more than 92% of the application
runtime (they are called more than once). The most time demanding func-
tion is projbd which orthogonalizes a state vector against the ones obtained
previously in the band-by-band optimization procedure.

Impact of the compiler

Compilation of the source files can be done with various compilers. We com-
pared the open-source g95 compiler with the commercial Intel Fortran Com-
piler 8.1 (abbreviated with ifort). The Intel compiler is able to auto-parallelize
the code (cmp. OpenMP), this feature has also been tested on our dual Xeon
processors. The benchmarks have been conducted three times and the mean
value is displayed. The results of our calculations are shown in Table 2.

This shows clearly that the Intel Compiler generates much faster code than
the g95. However, the g95 compiler is currently under development and there
is a lot of potential for optimizations. The auto-parallelization feature of the
ifort is also not beneficial, this could be due to the thread spawning overhead
at small loops.
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Table 2. Comparison of different compilers

Compiler/Features Runtime (s)

ifort 625.07

ifort -parallel 643.19

g95 847.73

Impact of the BLAS library

Mathematical libraries such as the BLAS Library are used to provide an ab-
straction of different algebraic operations. These operations are implemented
in so called math libraries which are often architecture specific. Many of them
are highly optimized and can accelerate the code by a significant factor (as
compared to “normal programming”). ABINIT offers the possibility to ex-
change the internal math implementations with architecture-optimized vari-
ants. A comparison in runtime (all libraries compiled with the g95 compiler)
is shown in Table 3.

Table 3. Comparison of different mathematical libraries

BLAS Library Runtime (s)

internal 847.73

Intel-MKL 845.62

AMD-ACML 840.56

goto BLAS 860.60

Atlas 844.67

The speedup due to an exchange of the math library is negligible. One
reason could be that the mathematical libraries are not efficiently implemented
and do not offer a significant improvement in comparison to the reference
implementation (internal). However, this seems unlikely since all the libraries
are highly optimized and several were tested. A more likely explanation is
that the libraries are not used very often in the code (calls and execution do
not consume much time compared to the total runtime). To investigate this
we analyzed the callgraph with respect to calls to math-library functions, and
found that indeed all calls to math libraries such as zaxpy, zswap, zscal,
. . . make less than 2% of the application runtime (with the internal math
library). Thus, the speedup of the whole application cannot exceed 2% even
if the math libraries are improved.
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Fig. 2. Speedup vs. number of CPUs on the Xeon Cluster. Parallelization over k-
points only (KPO - filled symbols): Except for the case of 16 k-points the scaling
is almost ideal as long as NCPU ≤ nkpt . Saturation is observed for NCPU > nkpt,
only for 16 k-points this occurs already for NCPU = 8. Parallelization over k-points
and bands (K+B - open symbols): The number of bands per block at the different
data points equals NCPU/nkpt. Only negligible additional speedup is observed

3.2 Parallel analysis

Speedup analysis

Fig. 2 shows the speedup versus the number of CPUs on the Xeon Clus-
ter. In all cases except the case of 16 k-points the scaling is almost ideal as
long as NCPU ≤ nkpt. Saturation is observed for NCPU > nkpt, only for 16
k-points this occurs already for NCPU = 8, due to overheads from MPI bar-
rier synchronizations in combination with process skew on the Xeon Cluster
(see Sect. 3.2). The parallelization over bands, which needs intense commu-
nication, only leads to negligible additional speedup on this Fast Ethernet
network. Fig. 3 shows the speedup vs. the number of CPUs on the Cray
Opteron Cluster. For the parallelization over k-points only, an almost ideal
speedup is obtained for small numbers (≤ 8) of CPUs. The less than ideal
behaviour for larger numbers can be explained by a communication overhead,
see Sect. 3.2. For NCPU > nkpt the speedup saturates, as expected. In this
regime the speedup can be considerably improved (up to 250% in the case of
4 k-points and 16 CPUs) by including the parallelization over bands, as long
as the number of bands per block remains reasonably small (≤ 4).
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Fig. 3. Speedup vs. number of CPUs on the Cray Opteron Cluster. Parallelization
over k-points only (KPO - filled symbols): For NCPU ≤ nkpt the scaling is almost
ideal. Saturation is observed for NCPU > nkpt. Parallelization over k-points and
bands (K+B - open symbols): The number of bands per block at the different data
points equals NCPU/ nkpt. For reasonable numbers nbdblock ≤ 4) the speedup in
the formerly saturated region improves considerably

Communication analysis I: Plain k-point parallelization

We used the MPE environment and Jumpshot [19] to perform a short analysis
of the communication behaviour of ABINIT in the different working scenarios
on the local Xeon Cluster. This parallelization method is investigated in two
scenarios, the almost ideal speedup with 8 processors calculating 8 k-points
and less than ideal speedup with 16 processors calculating 16 k-points. The
MPI communication scheme of 8 processors calculating 8 k-points is shown
in the following diagram. The processors are shown on the ordinate (rank
0-7), and the communication operations are shown for each of them. Each
MPI operation corresponds to a different shade of gray. The processing is not
depicted (black). The ideal communication diagram would show nothing but
a black screen, every MPI operation delays the processing and increases the
overhead.

Fig. 4 shows the duration of all calls to the MPI library. This gives a rough
overview of the parallel performance of the application. The parallelization
is very efficient, all processors are computing most of the time, some CPU
time is lost during the barrier synchronization. The three self consistent field
(SCF) steps can easily be recognized as the processing time (black) between
the MPI_Barrier operations. The synchronization is done at the end of each
step and afterwards a small amount of data is exchanged via MPI_Allreduce,
but this does not add much overhead. The parallelization is very efficient and
only a small fraction of the time is spent for communication. All processors



A Performance Analysis of ABINIT on a Cluster System 47

Fig. 4. Visualization of the MPI overhead for k-point parallelization over 8 k-
points on 8 Processors. Each MPI operation corresponds to a different shade of
gray: MPI_Barrier white, MPI_Bcast light gray, and MPI_Allreduce dark gray. The
overhead is negligible and this case is efficiently parallelized

send their results to rank 0 in the last part, after the last SCF step and
synchronization. This is done with many barrier operations and send-receive,
and could significantly be enhanced with a single call to MPI_Gather.

The scheme for 16 processors calculating 16 k-points, shown in Fig. 5, is
nearly identical, but the overhead resulting from barrier synchronization is
much higher and decreases the performance. This is due to so called process
skew, where the unpredictable and uncoordinated scheduling of operating sys-
tem processes on the cluster system interrupts the application and introduces
a skew between the processes. This skew adds up during the whole application
runtime due to the synchronization at the end of each SCF step. Thus, the
scaling of ABINIT is limited on our cluster system due to the operating sys-
tem’s service processes. Even if the problem is massively parallel the overhead
is much bigger as for 8 processors due to the barrier synchronization.

Communication analysis II: Parallelization over bands

The communication diagram for 8 processors and a calculation with 4 k-
points and nbdblock=2 is shown in Fig. 6. The main MPI operations besides
the MPI_Barrier and MPI_Allreduce are MPI_Send and MPI_Recv in this
scenario. These operations are called frequently and show a master-slave prin-
ciple where the block specific data is collected at a master for each block and
is processed. The MPI-overhead is significantly higher than for the pure k-
point parallelization and the overall performance is heavily dependent on the
network performance. Thus the results for band parallelization are rather bad
for the cluster equipped with Fast Ethernet, while the results with Myrinet
are good.

The diagram for two k-points calculated on 8 processors is shown in Fig. 7.
This shows that the communication overhead outweighs the calculation and
the parallelization is rendered senseless. Nearly the whole application runtime
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Fig. 5. Visualization of the MPI overhead for k-point parallelization over 16 k-
points on 16 Processors. Each MPI operation corresponds to a different shade of
gray: MPI_Barrier white, MPI_Bcast light gray, and MPI_Allreduce dark gray. The
synchronization overhead is much bigger than in Fig. 4. This is due to the occuring
process skew

Fig. 6. Visualization of the MPI overhead for k-point and band parallelization
over 4 k-points and 2 bands per block on 8 processors. Each MPI operation corre-
sponds to a different shade of gray: MPI_Barrier white, MPI_Bcast light gray, and
MPI_Allreduce dark gray. This figure shows the fine grained parallelism for band
parallelisation. The overhead is visible but not dominationg the execution time
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is overhead (all but black regions), mainly MPI_Bcast and MPI_Barrier. Thus,
even allowing for the reasons of convergence, mentioned in Sect. 1.2, the band
parallelization is effectively limited to cases with a reasonable MPI overhead,
i.e. 4 bands per block on this system.

Fig. 7. Visualization of the MPI overhead for k-point and band parallelization
over 2 k-points and 8 bands per block on 16 processors. Each MPI operation corre-
sponds to a different shade of gray: MPI_Barrier white, MPI_Bcast light gray, and
MPI_Allreduce dark gray. The overhead is clearly dominating the execution and the
parallelization is rendered senseless

4 Conclusions

We have shown that the performance of the application ABINIT on a clus-
ter system depends on different factors, such as compiler and communication
network. Other factors which are usually crucial such as different implementa-
tions of mathematical functions are less important because the math libraries
are rarely used in the critical path for our measurements. The choice of the
compiler can decrease the runtime by almost 25%. Note that the promising fea-
ture of auto-parallelization is counterproductive. The different math libraries
differ in less than 1% of the running time. The influence on the interconnect
and parallelization technique is also significant. The embarassingly parallel
k-point parallelization hardly needs any communication and is thus almost
independent of the communication network. The scalability is limited to 8 on
our cluster system due to operating system effects, which introduce process
skew during each round. The scalability on the Opteron system is not limited.
Thus, in principle this implementation in ABINIT is ideal for small systems
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demanding a lot of k-points, e.g. metals. For systems demanding large super-
cells, the communication wise more demanding band parallelization becomes
attractive. However, the use of this implementation is only advantageous if a
fast interconnect can be used for communication. Fast Ethernet is not suitable
for this task.
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1 Introduction

The topics discussed in this paper are closely connected to the development of
parallel finite element algorithms and software based on domain decomposition
[1, 2]. Numerical simulation on parallel computers generally produces data in
large quantities being kept in the distributed memory. Traditional methods of
postprocessing by storing all data and processing the files with other special
software in order to obtain nice pictures may easily fail due to the amount of
memory and time required.

On the other hand, developing new and efficient parallel algorithms in-
volves the necessity to evaluate the behavior of an algorithm immediately
as an on-line response. Thus, we had to develop a set of visualization tools
for parallel numerical simulation which is rather quick than perfect, but still
expressive. The numerical data can be completely processed in parallel and
only the resulting image is displayed on the user’s desktop computer while the
numerical simulation is still running on the parallel machine.

This software package for parallel postprocessing is supplemented by inter-
faces to external software running on high-performance graphic workstations,
either storing files for an off-line postprocessing or using a TCP/IP stream
connection for on-line data exchange.

2 Pre- and postprocessing interfaces
in parallel computation

The main purpose of parallel computers in the field of numerical simulation
is number crunching. The discretization of mathematical equations and the
refinement of the meshes within the domain of interest lead to large arrays
of numerical data which are stored in the distributed memory of a MIMD
computer. The tasks of pre- and postprocessing, however, are not the primary
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and obvious fields of parallelization because of its mostly higher part of user
interaction. Principally, a program has one input and one output of data
and the parallel computer should act as a black box which accelerates the
numerical simulation.

Thus, looking into this black box we have some internal interfaces adapting
the sequential view for the user outside to the parallel behavior on the com-
puter cluster inside [3]. The left column in Fig. 1 shows the typical processing
sequence, and the right column specifies how this is split with respect to the
location where it is processed.

Preprocessing

Solver

Postprocessing

Geometry / Boundary conditions

Parallel numerical solution

Graphic device

Distribute subdomains

Parallel mesh generation

Output data selection

Visualization

Parallel computer

Workstation

Workstation

���������

���������

� �� � � � �

� � � � �

� �
���������

���������

Fig. 1. Pre- and postprocessing interfaces on a parallel computer

In the preprocessing phase on a single workstation it is obviously useful
to handle only coarse meshes and use them as input for a parallel program.
More complex geometries may also be described separately and submitted to
the program together with the coarse grid data. The mesh refinement can be
performed with regard to this geometric requirements [4] (see Figs. 2,3).

In the postprocessing phase we have similar problems in the reverse way.
The values which are computed in distributed memory must be summarized to
some short convincing information on the desktop computer. If this infomation
should express more than the total running time, it is mostly any kind of
graphical output which can be quickly captured for evaluation.
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SFB 393 - TU Chemnitz

sphere, 4 refinement steps

SFB 393 - TU Chemnitz-Zwickau

interior of the sphere’s mesh

SFB 393 - TU Chemnitz-Zwickau

Fig. 2. Coarse mesh and refinement for a spherical surface

crankshaft, coarse mesh,  123 elements

SFB 393 - TU Chemnitz-Zwickau

crankshaft, 3 refinement steps

SFB 393 - TU Chemnitz-Zwickau

Fig. 3. Coarse mesh and refinement for a crankshaft

3 Implementation methods

3.1 Assumptions

The special circumstances arising from parallel numerical simulation allow two
different policies of sharing the work for postprocessing among the parallel
processors and the workstation:

1. Convert as much as possible from numerical data to graphical data (e.g.
plot commands at the level of pixels and colors) on the parallel computer
and send the result to the workstation which has only to display the
images.

2. Send numerical data to the workstation and use high-end graphic tools to
obtain any suitable visualization.

Beginning in the late 1980’s, when a parallel computer was still an exotic
equipment with special hardware and software, our aim was first of all a
rather quick and dirty visualization of numerical results for low-cost desktop
workstations. Hence, we preferred the first policy where most of the work is
done on the parallel computer.

Therefore, our first implementation of graphical output from the parallel
computer is based on a minimum of assumptions:
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• The program runs on a MIMD computer with distributed memory and
message passing. (Shared-memory machines can always simulate message
passing.)

• A (virtual) hypercube topology is available for communication within the
parallel computer. It may also be sufficient to have an efficient implemen-
tation of the global data exchange for any number of processors other than
a hypercube.

• At least one processor (the root processor 0) is connected to the user’s
workstation directly or via ethernet.

• At least this root processor can use X11 library functions and contact the
X server on the user’s workstation.

Such a minimum of implementation requirements has been well-tried giving
a maximum of flexibility and versatility on changing generations of parallel
computers. The communication interface is not restricted to a certain stan-
dard library, it is rather an extension to PVM, MPI or any hardware specific
libraries [5, 6]. Since the parallel graphics library uses only this interface as
well as the basic X11 functions abstaining from special GUI’s, it has not only
been able to survive for the last two decades, but was also successfully applied
in testing parallel algorithms and presenting their computational results.

3.2 Levels of implementation

According to the increasing requirements over a couple of years, our visualiza-
tion library grew up in a few steps, each of them representing a certain level
of usage (see Fig. 4).

• At the basic level there is a set of drawing primitives as an interface for
Fortran and C programmers hiding the complex X11 data structures.

• The next step provides a simple interface for 2-dimensional finite element
data structures to be displayed in a window. This includes the usual variety
of display options including special information related to the subdomains
or material data

• For 3-dimensional finite element data we only had to insert an interface for
projecting 3D data to a 2D image plane (surface plot or sectional view).
Then the complete functionality of the 2D graphics library is applicable
for the projected data.

• Alternatively, it is possible to transfer the complete information about the
3D structure (as a file or a socket data stream) to a separate high-end
graphic system with more features. Such a transfer was integrated in our
graphics interface library as an add-on using for reference e. g. the IRIS
Explorer [7] as an external 3D graphic system.

Details of those interfaces for programmers and users are given in [8].
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X11 MPI / PVM / . . .

Drawing Primitives Communication

2D Graphics

3D Graphics

PFEM Appl.(2D) PFEM Appl.(3D)

additional

data output,

e.g. PS file

High-end

Graphics

Workstation

file

socket

Fig. 4. Graphics library access for parallel finite element applications

3.3 Examples for 2D graphics

Because our requirements are content with a basic X-library support we have
a quite simple interface for user interaction. The graphical menus are as good
as “hand-made” (see Fig. 5). This is sufficient for a lot of options to select data
and display styles as needed.

Fig. 5. Screenshots of the user interface with menus and various display options
(deformation, stresses, material regions, coarse grid, subdomains)
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Fig. 6. Strains within a tensil-loaded workpiece in different color schemes

However, it is also provided that the programmer may pre-define a set
of display options and show the same picture without interaction at running
time, e. g. for presentations or frequently repeated testing.

Among others, the menu offers a lot of common drawing options, such as

• draw grid or boundary lines, isolines or colored areas;
• various scaling options, vector or tensor representation;
• zooming, colormaps, pick up details for any point within the domain.

In particular, the user may zoom into the 2D domain either by dragging
a rectangular area with the mouse or by typing in the range of x- and y-
coordinates. Different colormaps may give either a smooth display or one
with higher contrast. For illustration, Fig. 6 shows one and the same example
displayed once with a black and white, once with a grayscale coloring. The
number of isolines can be explicitly redefined, leading to different densities of
lines. In some cases a logarithmic scaling gives more information than a linear
scale (Fig. 7).

If a solution of elastic or plastic deformation problems or in simulation of
fluid dynamics has been computed, the first two components can be consid-
ered as the displacement or velocity vector. Such a vector field can be shown
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Fig. 7. Linear and logarithmic scale for isolines
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by small arrows in grid points. A displacement (possibly scaled by a certain
factor) may also be added to the coordinates to show the deformed mesh.

As mentioned above, the 2D graphics interface is used as base level for
displaying certain views of 3D data.

3.4 Examples for 3D graphics

The primary aim of the 3D graphics support for our parallel finite element
software was to have a low-cost implementation based on the already running
2D graphics. A static three-dimensional view which is recognizable for the
user, may be either a surface plot or an intersecting plane:

1. In the case of intersecting a three-dimensional mesh by cutting each af-
fected tetrahedron or hexahedron, the result is a mesh consisting of poly-
gons with 3 to 6 edges. Inserting a new point (e.g. the barycenter of the
polygon), this may easily be represented by a triangular finite element
mesh (Fig. 8).

X

Y

Z

O

Solution in an intersecting plane

SFB 393 - TU Chemnitz

Surface view

SFB 393 - TU Chemnitz

Fig. 8. Intersecting plane and surface view of a three-dimensional solid

2. The projection of any surface mesh of a tetrahedral or hexahedral finite
element mesh to the image plane can be represented as a two-dimensional
triangular or quadrangular finite element mesh. Of course, only such sur-
face polygons are considered that point towards the viewer (Fig. 8, right).
Anyhow, some of those faces may be hidden if the solid is not convex. In
this case the mesh may be displayed as a wireframe, accepting some faulty
display, or the display may be improved by a depth-sort algorithm (Fig.
9). A complete hidden-line handling was not the purpose of this graphics
tool for parallel applications.
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hollow cylinder - some hidden lines are visible

SFB 393 - TU Chemnitz

hollow cylinder - correct view

SFB 393 - TU Chemnitz

Fig. 9. Different displays for a non-convex solid

3. Another kind of “intersection” can be obtained by clipping all elements of
a three-dimensional mesh above a given plane and show a surface view of
the remaining body (Fig. 10).
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2D display of the intersection plane
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surface after clipping whole elements
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Fig. 10. Comparison of intersection and clipping with the same plane

4. Sometimes multiple clipping planes may give a better impression of the
three-dimensional representation (Fig. 11,12).

In the case of an intersecting plane, the two-dimensional view will be just this
plane. In the other cases there remains an additonal option to specify the view
coordinate system for the projection of the surface. For that purpose, the user
may define the viewer’s position, i.e. the normal vector of the image plane,
and for a perspective view also the distance from the plane. A bounding box
with the position of the axes in the current view and the cut or clip planes
is always displayed in a separate window as shown in the leftmost pictures of
Figs. 8, 10, or 11.

Certainly, from a given view, any rotation of the coordinate system is
supported to get another view.
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Clipping with two planes

SFB 393 - TU Chemnitz

Fig. 11. Surface view of a three-dimensional solid after clipping at two planes

Magnitude of deformation at the surface

SFB 393 - TU Chemnitz

Isolines of deformation magnitude
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Fig. 12. Deformation of a solid that includes a sphere with different material, a
view to the surface and the more interesting view into the interior, clipped by 3
planes

4 Additional tasks

Although the primary purpose of this visualization tool was to have an imme-
diate display of results from numerical simulation with parallel finite element
software, it is only a small step forward to use this software for some additional
more or less general features.

4.1 Multiple views simultaneously

Since the programmer may switch off the menu and user interaction in the
graphics window for the purpose of a presentation, frequently repeated tests,
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or time-dependend simulation as in Sect 4.3, it may be convenient to split
the graphics window into two or more regions with separate views. Thus, e. g.
multiple physical quantities or the mesh may be displayed simultaneously (see
screenshot in Fig. 13).

Such settings may be made either by the user via the menu of the graph-
ics window, or by the programmer via subroutines provided by the graphics
library.

Fig. 13. The screenshot shows two displays in a split window

4.2 Postscript output

Here and there it may be sufficient to use a screen snapshot to get a printable
image of the graphical output. But higher print quality can be obtained us-
ing real postscript drawing statements for scalable vector graphics instead of
scaled pixel data. The procedure for this purpose is very simple. Each drawing
primitive for the X11 interface has its counterpart to write the corresponding
postscript commands. The user may switch on the postscript output and any
subsequent drawings are simultaneously displayed on the screen and written
to the postscript file until the postscript output is closed.

The format of the files is encapsulated postscript (EPS), best suited for in-
cluding in LATEX documents or to be converted to PDF format using epstopdf.
The header of the postscript file contains some definitions and switches which
may be adapted afterwards (see [8]).

4.3 Video sequences

Even though the performance of computers increases rapidly, there are always
some tasks that cannot be simulated in real-time, e. g. in fluid dynamics.
Hundreds of small time-steps have to be simulated one by one. In each of
them, one or more linear or non-linear systems of equations must be solved in
order to compute updates of quantities such as velocity, pressure, or density.
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In each time-step our visualization tool may produce a single image of the
current state on the screen.

At the end one is interested in the behavior of any physical quantity during
the sequence of time-steps, i. e. to see an animation or a movie.

In order to simplify the simulation process, the visualization may be
switched into a “batch mode”, where the current view is updated automati-
cally after each time-step, without user interaction. In most cases, however,
the (parallel) numerical simulation together with the computation and display
of graphical output will not be fast enough to see a “movie” on the screen in
real-time.

Therefore, one of the additional tools is a separate program that captures
the images from the screen (triggered by a synchronizing command of the
simulation program) and saves them as a sequence of image files. After the
simulation has finished the animated solution may be viewed with any suitable
tool (xanim, mpegtools).

Refer to http://www.tu-chemnitz.de/~pester/exmpls/ for a list of
examples with animated solutions.

5 Remarks

This chapter was intended to give only a short overview on visualization soft-
ware which was implemented for parallel computing already some years ago,
but has also been enhanced more and more over the years. The tools are flex-
ible with respect to the underlying hardware and parallel software. Within
this scope such an overview cannot be complete. For more technical details
and examples one may refer to the cited papers and Web addresses.
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1 Introduction

From the very efficient use of hierarchical techniques for the quick solution of
finite element equations in case of linear elements, we discuss the generaliza-
tion of these preconditioners to higher order elements and to the problem of
crack growth ,where the introduction to of the crack opening would destroy
existing mesh hierarchies. In the first part of this paper, we deal with the
higher order elements. Here, especially elements based on cubic polynomials
require more complicate tasks such as the definition of ficticious spaces and
the Ficticious Space Lemma. A numerical example demonstrates that iteration
numbers similar to the linear case are obtained.

In the second part (Sect. 6 to 10) we present a preconditioner based on a
change of the basis of the ansatz functions for efficient simulating the crack
growth problem within an adaptive finite element code. Again, we are able
to use a hierarchical preconditioner although the hierarchical structure of the
mesh could be partially destroyed after the next crack opening.

2 Solving finite element equations by preconditioned
conjugate gradients

We consider the usual weak formulation of a second order partial differential
equation:

Find u ∈ H
1(Ω) (fulfilling Dirichlet–type boundary conditions on ΓD ⊂ ∂Ω)

with a(u, v) = 〈f, v〉 ∀v ∈ H
1
0(Ω) = {v ∈ H

1(Ω) : v = 0|ΓD
}. (1)

For simplicity let Ω be a polygonal domain in R
d (d = 2 or d = 3). So, using

a fine triangulation (in the usual sense)
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TL = {T ⊂ Ω}, T are triangles (quadrilaterals) if d = 2,
T are tetrahedrons (pentahedrons/hexahedrons) if d = 3,

with the nodes ai (represented by their numbers i), we define a finite dimen-
sional subspace V ⊂ H

1(Ω) and define the finite element solution uh ∈ V

from
a(uh, v) = 〈f, v〉 ∀v ∈ V ∩H

1
0(Ω). (2)

(The usual generalizations of approximating a(·, ·) or 〈f, ·〉 or the domain Ω
from ∪T are straightforward, but not considered here).

Let Φ = (ϕ1(x), . . . , ϕN (x)) be the row vector of the finite element basis
functions defined in V, then we use the mapping V ∋ u←→ u ∈ R

N by

u = Φu (3)

for each function u ∈ V. With (3) the equation (2) is transformed into the
vector space, equivalently to

Kuex = b, (4)

when

K = (a(ϕj , ϕi))
N
i,j=1, b = (〈f, ϕi〉)N

i=1 and uh = Φuex.

So we have to solve the linear system (4), which is large but sparse. Whenever
its dimension N exceeds about 103 the problems in using Gaussian elimination
diverge, so we consider efficient iterative solvers, such as the conjugate gra-
dient method with modern preconditioners. The preconditioner in the vector
space is a symmetric positive definite matrix C−1 (constant over the iteration
process) for which 3 properties should be fulfilled as best as possible:

P1:The action w := C−1r should be cheap (O(N) arithmetical operations).
Here r = Ku− b is the residual vector of an approximate solution u ≈ uex

and w, the preconditioned residual, has to be an approximation to the
error u− uex.

P2:The condition number of C−1K, i.e.

κ(C−1K) = λmax(C
−1K)/λmin(C−1K)

should be small, this results in a small number of ∼ κ(C−1K)
1/2

iterations
for reducing a norm of r under a given tolerance ǫ.

P3:The action w = C−1r should work in parallel according to the data distri-
bution of all large data (all vectors/matrices with O(N) storage) over the
processors of a parallel computer.

In the past, preconditioning was a matrix–technique (compare: incomplete
factorizations), nowadays the construction of efficient preconditioners uses
the analytical knowledge of the finite element spaces. So, we transform the
equation w = C−1r into the finite element space V for further investigation
of more complicate higher order finite elements:
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Lemma 1. The preconditioning operation w = C−1r on r = Ku− b in R
N is

equivalent to the definition of a ‘preconditioned function’ w = Φw ∈ V with

w =

N∑

i=1

ψi〈r, ψi〉

for a special basis Ψ in V.

Proof: With w = C−1r we define w = Φw. For a given u ∈ R
N , we have

u = Φu ∈ V and define the ‘residual functional’ r ∈ H
−1(Ω) with

a(u, v)− 〈f, v〉 = 〈r, v〉 ∀v ∈ H
1
0(Ω).

In the PCG algorithm, we have the values 〈r, ϕi〉 within our residual vector
r:

r = Ku− b =
(∑

a(ϕj , ϕi)uj − 〈f, ϕi〉
)N

i=1

= (a(u, ϕi)− 〈f, ϕi))
N
i=1 = (〈r, ϕi〉)N

i=1

So, w = Φw = ΦC−1r can be written with any factorization C−1 = FFT

(square root of C−1 or Cholesky decomposition etc.) as

w = ΦFFT r =
N∑

i=1

ψi〈r, ψi〉,

whenever Ψ = (ψ1 . . . ψN ) = ΦF is another basis in V, transformed with the
regular (N ×N)–matrix F .

Remark 1: If no preconditioning is used, we have C−1 = F = I, the
definition of w is

w =

N∑

i=1

ϕi〈r, ϕi〉

with our nodal basis Φ.

Remark 2: The well–known hierarchical preconditioner due to [16] (see
next section) constructs the matrix F directly from the basis transformation
of nodal basis functions Φ into hierarchical base functions Ψ and the action
w := C−1r is indeed

w := FFT r.
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3 Basic facts on hierarchical and BPX preconditioners
for linear elements

Let the triangulation TL be the result of L refinement steps starting from a
given coarse mesh T0. For simplicity let each triangle T ′ in Tl−1 be subdivided
into 4 equal subtriangles of Tl. Then the mesh history is stored within a list
of nodal numbers, where each new node ai = 1

2 (aj +ak) from subdividing the
edge (aj , ak) in Tl−1 is stored together with his ‘father’ nodes:

(i, j, k) =(Son, Father1, Father2).

This list is ordered from coarse to fine due to the history. Note that in the
quadrilateral case this list contains (Son, Father1, Father2) if an edge is sub-
divided, but additionally

(Son, Father1, Father2, Father3, Father4)

with the ‘Son’ as interior node and all four vertices of a quadrilateral subdi-
vided into 4 parts. With this definition we have the finite element spaces Vl

belonging to the triangulation Tl equipped with the usual nodal basis Φl

Vl = spanΦl, l = 0, . . . , L.

All functions in this basis are piecewise (bi–)linear with respect to Tl. From

V0 ⊂ V1 ⊂ · · · ⊂ VL, (5)

we can define a hierarchical basis ΨL in VL recursively:
Let Ψ0 = Φ0 and Ψl−1 the hierarchical basis in Vl−1 = spanΨl−1 = spanΦl−1,
then we define

Ψl = (Ψl−1

...Φnew
l ) (6)

where Φnew
l contains all ‘new’ nodal basis functions of Vl belonging to nodes

ai that are new (‘Sons’) in Tl (not existent in Tl−1).
For l = L, we have VL = spanΨL = spanΦL, so another basis additionally to
ΦL is defined and there exists a regular (N ×N)–Matrix F with ΨL = ΦLF
which is used in our preconditioning procedure as considered in Sect. 2.
From [16] the following facts are derived:

P2 is fulfilled with κ(C−1K) = O(L2) = O(| log h|2) from the good condition
of the ‘hierarchical stiffness matrix’ KH = FTKF (κ(KH) = κ(C−1K)),
which is a consequence of ‘good’ angles between the subspaces Vl−1 and
(Vl − Vl−1).

P1 is fulfilled from the recursive refinement formula: Consider the spaces Vl−1

and Vl with the bases Φl−1 and Φl (dim Vl = Nl). Then from Vl−1 ⊂ Vl

there is an (Nl ×Nl−1)–Matrix P̃l−1 with

Φl−1 = ΦlP̃l−1. (7)
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Here P̃l−1 is explicitly known

P̃l−1 =




I
· · ·
Pl−1


 (8)

from

ϕ
(l−1)
i = ϕ

(l)
i +

1

2

∑

j∈N (i)

ϕ
(l)
j . (9)

(The sum runs over all ‘new’ nodes j that are neighbors of i forming the
set N (i).)
That is, Pl−1 hat values 1

2 at position (j, i) iff j is ‘Son’ of i or
an edge (i, i′) from Tl−1 was subdivided into (i, j) and (i′, j) in Tl.
So, the value 1

2 occurs exactly twice in each row of Pl−1.

From this definition for all l = 1, . . . , L follows that F is a product of transfor-
mations from level to level, from which the matrix vector multiply w := FFT r
becomes very cheap according to the following two basic algorithms:

A1: y := FT r is done by:
1. y := r
2. for all entries within the list (backwards) do:





y(Father1) := y(Father1) + 1
2y(Son)

y(Father2) := y(Father2) + 1
2y(Son)

A2: w := Fy is done by:
1. w := y
2. for all entries within the list do:

w(Son) := w(Son) +
1

2
(w(Father1) + w(Father2))

Note: In the quadrilateral case sometimes 4 fathers exist then 1
2 is to be

replaced by 1
4 due to another refinement equation.

Remark 1: This preconditioner works perfectly in a couple of applications
in 2D. Basically it has been successfully used for simple potential problems,
but a generalization to linear elasticity problems (plane stress or plane strain
2D) is simple. Here, we use this technique for each single component of the
vector function u ∈ (H1(Ω))2. The condition number κ(C−1K) is enlarged by
the constant from Korn’s inequality.

Remark 2: For 3D problems, a growing condition number κ(C−1K) =
O(h−1) would appear. To overcome this difficulty, the BPX preconditioner
has to be used [3, 11]. According to (7) we have
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Φl = ΦLQl ∀l = 0, . . . , L

Ql = P̃L−1 · . . . · P̃l is (N ×Nl) and QL = I.
(10)

Then the BPX preconditioner is defined as

w = C−1
r =

L∑

l=0

Nl∑

i=1

ϕ
(l)
i 〈r, ϕ

(l)
i 〉 · dl

i (11)

which is (from Sect. 2) equivalent to:

w =
L∑

l=0

QlDlQ
T
l r. (12)

Here, Dl = diag(dl
1, . . . , d

l
Nl

) are scale factors, which can be chosen as 2(d−2)l

or as inverse main diagonal entries of the stiffness matrices Kl = QT
l KQl

belonging to Φl.
For this preconditioner the fact κ(C−1K) ≤ const (independent of h) can be
proven and the algorithm for (12) is similar to (A1) and (A2).

4 Generalizing hierarchical techniques
to higher order elements

From the famous properties of the preconditioning technique in Sect. 3, we
should wish to construct similar preconditioners for higher order finite ele-
ments and especially for shell and plate elements.

We propose the same nested triangulation as in Sect. 3: T0, . . . , TL. Let nl

be the total number of nodes in Tl, then in Sect. 3 we had Nl = nl (it was
one degree of freedom per node). Now this is different, usually Nl > nl (at
least for l = L, where the finite element space VL = V for approximating our
bilinear form is defined).

For using hierarchical–like techniques we have 3 possibilities:

Technique 1: For some kind of higher order elements, we define the finite
element spaces Vl on each level and obtain nested spaces

V0 ⊂ V1 ⊂ . . . ⊂ VL.

In this case the same procedure as in Algorithms A1/A2 can be used, but due
to a more complicate refinement formula (instead of (9)), the algorithms are
to be adapted.

Example 1: Bogner–Fox–Schmidt–elements on quadrilaterals (with bicubic
functions and 4 degrees of freedom per node), see [13,14].
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Technique 2: Usually we cannot guarantee that the spaces Vl are nested
(i.e. Vl−1 �⊂ Vl), but our finest space V = VL belonging to the triangulation
TL contains all piecewise linear functions on TL. So we have the nested spaces

V
(1)
0 ⊂ . . . ⊂ V

(1)
L ⊂ VL, when V

(1)
l are defined of the piecewise linear functions

on Tl (as in Sect. 3). Then we have to represent VL = V
(1)
L

+· WL (direct sum)

and prove that γ = cos ∠(V
(1)
L ,WL) < 1. This angle is defined from the a(·, ·)

energy–inner product

γ2 = sup
a2(u, v)

a(u, u)a(v, v)
, where (13)

the supremum is taken over all u ∈ V
(1)
L and v ∈WL. If γ < 1 (independent of

h), the preconditioner works as in Sect. 3 for l = 0, . . . , L (and linear elements:
A1/A2) and additionally there is one transformation from the nodal basis ΦL

of VL into the hierarchical basis (Φ
(1)
L

...Φnew
L ) of (V

(1)
L

+· WL) and back. Again
we have to calculate a special refinement formula for this last step:

Φ
(1)
L = ΦLP̃L. (14)

Here, P̃L has another structure as P̃l(l < L) from Sect. 3. The entries of PL

are defined from
ϕ

(1)
i = ϕhigher

i +
∑

j∈N(i)

αijϕ
higher
j , (15)

where Φ
(1)
L = (ϕ

(1)
1 , . . . , ϕ

(1)
nL) are the piecewise linear basis functions and

ϕhigher
j the finite element basis functions that span VL (for example piece-

wise polynomials of higher order).

Example 2: VL = V
(2)
L (piecewise quadratic polynomials on 6–node trian-

gles). Here, αij = 1
2 iff i is vertex node of TL and j the node on the midpoint

of an edge (ai, ai′). From αij = 1
2 follows that Algorithm A1/A2 can be used

without change (one level more, all edge nodes are ‘sons’ of the vertex nodes
of this edges).

Example 3: VL = V
(2)
L (piecewise biquadratic polynomials on 9–node

quadrilaterals). Here,

αij =

{
1
2 j midpoint of an edge (i, i′)
1
4 j interior node

Again Algorithm A1/A2 works without change, one level more.

Example 4: VL = V
(2,red)
L (reduced biquadratic polynomials on 8–node

quadrilaterals).
Here, αij = 1

2 , again use Algorithm A1/A2.
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Example 5: VL = V
(3,red)
L (piecewise reduced cubic polynomials on tri-

angles, the cubic bubble is removed such that all quadratic polynomials are
included).
This example has to be considered, because this space occurs as fictitious
space in Technique 3. Here, we define the following functions:
u(x) ∈ VL is a reduced cubic polynomial on each T ∈ TL (defined by 9 values
on the vertices of T ).
We choose ui = u(ai) and ui,j = ∂u

∂sij
|ai

, the tangential derivatives along the

edges of T : aij = aj − ai, sij = aij/|aij |.
Globally, we have |N (i)| + 1 degrees of freedom at each node ai: ui = u(ai)
and ui,j = ∂u

∂sij
|ai
∀j ∈ N (i). From this definition, we easily find

ϕ
(1)
i (x) = ϕ

(3)
i (x) +

∑

j∈N (i)

1

|aij |
(ϕj,i(x)− ϕi,j(x)). (16)

Here, ϕ
(3)
i (x) is the finite element basis function with

ϕ
(3)
i (aj) = δij and ∇ϕ(3)

i (aj) = (0, 0)T ∀i, j (17)

(with support of all T around ai) and ϕi,j(x) fulfills

ϕi,j(ak) = 0∀i, j, k, ∂

∂sij
ϕi,j(ai) = 1 (18)

∂

∂sik
ϕi,j(ai) = 0 for all edges (i, k) �= (i, j),

so the support are two triangles that share the edge (i, j).

In the splitting V
(3,red)
L = V

(1)
L + WL, WL is spanned by all functions ϕi,j(x).

Technique 3: There are examples, where neither the spaces Vl are nested,

nor piecewise linear functions V
(1)
L are contained within the finest space VL.

Here, we can use the Fictitious Space Lemma (see [9,11]) for the construction
of a preconditioner which is written as

C−1 = RC̃−1R∗, (19)

if a fictitious space Ṽ exists (in general of higher dimension than VL) having
a good preconditioner C̃−1. The key is the definition of a restriction operator

R : Ṽ→ VL

with small energy norm.

Example 6: For more complicate plate analysis, the space V
HC of Hermite–

triangles is used (DKT–elements, HCT–elements). Here u ∈ V
HC is again a
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reduced cubic polynomial on each T ⊂ TL, but we use globally 3 degrees of
freedom per node: ui = u(ai) and Θi = ∇u(ai).
Here, ∇u is discontinuous on the edges, but continuous on each node ai. From

this property the spaces cannot be nested and the functions in V
(1)
L have

discontinuous gradients on all vertices ai, so V
(1)
L �⊂ V

HC .
From V

HC ⊂ V
(3,red), we may define a restriction operator

R : V
(3,red)
L → VL = V

HC

and use the preconditioner for V
(3,red)
L from Example 5 for defining C̃−1, which

leads to a good preconditioner for this space V
HC . The definition of R is not

unique, we use an easy choice, some kind of averaging of ∂u
∂sij
|ai

to ∇u(ai):

Let ũ ∈ V
(3,red)
L be represented by

ui = ũ(ai) and ui,j =
∂ũ

∂sij
|ai

(∀i,∀j ∈ N (i) )

then we define u = Rũ ∈ V
HC with ui = u(ai) and Θi = ∇u(ai) from

Θi =
1

mi
Si ui (ui = (ui,j) ∀j ∈ N (i) ).

The (2×mi)−matrix Si contains all normalized vectors sij for all edges meet-
ing ai and mi = |N (i)|. So,

Θi =
1

mi

∑

j∈N (i)

sij ·
∂u

∂sij
|ai

=
1

mi

∑
ui,jsij (20)

5 Numerical examples to the above preconditioners

Let us demonstrate the preconditioners proposed in Sect. 4 at one example
that allows some of the finite elements discussed in Example 1 to Example 6.
We chooseΩ as a rectangle with prescribed Dirichlet type boundary conditions
and solve a simple Laplace equation

−∆u = 0 in Ω
u = g on ∂Ω,

}

hence, a(u, v) =
∫
Ω

(∇u) · (∇v)dΩ and we use the following discretization:

(a) piecewise linear functions (VL = V
(1)
L )

on a triangular mesh (3–node–triangles)

(b) piecewise bilinear functions (VL = V
(1)
L )

on a quadrilateral mesh (4–node–quadrilaterals)
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(c) piecewise quadratic functions (VL = V
(2)
L )

on a triangular mesh (6–node–triangles)

(d) piecewise biquadratic functions (VL = V
(2)
L )

on quadrilaterals (9–node–quadrilaterals)

(e) piecewise reduced quadratic functions (VL = V
(2,red)
L )

on quadrilaterals (8–node–quadrilaterals)
(f) piecewise reduced cubic functions (VL = V

HC)
on a triangular mesh (Hermite cubic triangles)

The preconditioners for cases (a) to (e) were simply described in Examples 1
to 4 in Sect. 4. We will give the matrix representation for the preconditioner
of case (f) from combining Examples 5 and 6:
For VL = V

HC , we have to solve

a(u, v) = 〈f, v〉 ∀v ∈ VL ∩H
1
0(Ω)

in solving
Kuex = b.

Here u = Φu is represented by ui = u(ai) and Θi = ∇u(ai), so u ∈ R
3n.

The preconditioner C−1 from Sect. 2 is an operator which maps the residual
functional r(u) to the preconditioned function w. According to the fictitious
space lemma, we set

C−1 = RC̃−1R∗

with R : Ṽ = V
(3,red)
L → VL = V

HC as in Example 6. In the fictitious

space Ṽ, we use the preconditioner of Example 5. From Example 5 the matrix
representation of this preconditioner is

C̃−1 = QL

(
FFT

O

O I

)
QT

L (21)

with F from Sect. 2. Here, QL transforms the basis (Φ(3)
...Φ(edge)) of the cubic

functions in V
(3,red) into the hierarchical basis (Φ(1)

...Φ(edge)).

Φ(1) = (ϕ
(1)
1 , . . . , ϕ

(1)
n ) piecewise linear functions

Φ(3) = (ϕ
(3)
1 , . . . , ϕ

(3)
n ) piecewise reduced cubic

with property (17)
Φ(edge) = (ϕi,j)∀ edges (i, j) at node i piecewise reduced cubic

with property (18)

So,

QL =


 I

... O

PL

... I


 (22)

and entries of PL are found in (16). Combining this with Example 6, we have
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C−1 = RQL

(
FFT

O

O I

)
QT

LR
T , (23)

when R is the matrix representation of R. The implementation of C−1 is the
following algorithm (note that RQL is done at once for saving storage, this is
a (3n× 3n)–matrix).
The preconditioner C−1 acts on a residual vector r ∈ R

3n (n = nL) with the
entries

ri = 〈r, ϕi,0〉 and Θ̃i =

(
〈r, ϕi,1〉
〈r, ϕi,2〉

)

defined with the basis functions (ϕi,α) in V
HC :

ϕi,0(aj) = δij ϕi,1(aj) = ϕi,2(aj) = 0
∇ϕi,0(aj) = (0, 0)T ∇ϕi,1(aj) = δij(1, 0)T

∇ϕi,2(aj) = δij(0, 1)T .

Analogously, the result w = C−1r contains entries wi and Θi (for w(ai) and
∇w(ai)). From the definition

C−1 = RC̃−1RT = RQL

(
FFT

O

O I

)
QT

LR
T

we have to implement the matrix-vector-multiply

(RQL)T r

and w = RQLy, which is done at once for saving storage, i.e. there is no
need to store the (approximately 7n) values ui,j = sTijΘi. This is contained in

Algorithms B1 (for y := (RQL)T r) and B2 (for w := RQLy).

Algorithm B1: for each edge (i, j) do

∣∣∣∣
yi := ri − aT

ij(Θ̃i + Θ̃j)/|aij |2
yj := rj + aT

ij(Θ̃i + Θ̃j)/|aij |2

Algorithm B2: for each edge (i, j) do

∣∣∣∣
Θi := Θi + aij(a

T
ijΘ̃i + wj − wi)/|aij |2

Θj := Θj + aij(a
T
ijΘ̃j + wj − wi)/|aij |2

Θi are evaluated from a Jacobi–preconditioning on the input Θ̃i, wi are the
results of Algorithms A1/A2 on the n–vector y.
The hierarchical–like preconditioners for the elements (a) to (f) require a very
small number of PCG–iterations as presented in the following Table 1.
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Table 1. Number of iterations for examples (a) to (f)

L n1 (a) (b) (c) (d) (e) (f)1

1 289 17 13 19 14 13 19
2 1,089 20 15 22 17 15 21
3 4,225 23 18 24 19 17 24
4 16,641 25 20 26 20 19 26
5 66,049 26 21 27 23 21 27
6 283,169 27 23 28 24 22 28
7 1,050,625 28 25 29 – 23 –

6 Crack growth

The finite element simulation of crack growth is well understood from the
point of modeling this phenomenon. Around an actual crack tip, we are able
to calculate stress intensity factors approximately, which give information on
the potential growth (or stop) of the existing crack. Additionally we obtain the
direction of further crack propagation from approximating the J–integral. For
precise results with these approximations based on finite element calculations
of the deformation field (at a fixed actual crack situation), a proper mesh
with refinement around the crack tip is necessary. From the well established
error estimators/error indicators, we are able to control this mesh refinement
in using adaptive finite element method.

This means, at the fixed actual crack situation we perform some steps of
following adaptive loop given in Fig. 1.

After three or four sub-calculations in this loop, we end at an approxima-
tion of the actual situation that allows us to decide the crack behavior precise
enough. After calculating the direction of propagation J, we are able to return
this adaptive loop at a slightly changed mesh with longer crack (for details
see [8]).

This new adaptive calculation on a slightly changed mesh was the original
challenge for the adaptive solver strategy: All modern iterative solvers such as
preconditioned conjugate gradients (PCGM) use hierarchical techniques for ef-
ficient preconditioners. Examples are the Multi-grid method, the hierarchical–
basis preconditioner [16] or (especially for 3D) the BPX–preconditioner [3] as
in Sect. 3. The implementation of these multi level techniques requires (among
others) a hierarchical order of the unknowns. From the adaptive mesh refine-
ment such a hierarchical node ordering is given by the way, if we store the full
edge tree. From this reason we cannot allow the introduction of some extra
edges (“double” the edges) along the new crack line. A reasonable way out of
this problem is discussed in the next section.

1note that n is the number of nodes in the finest mesh TL,
which is equal to the dimension N of the linear system in cases (a) to (d).
In (e) N ≈ 3

4
n but in (f) N = 3n .
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refine / coarsen

marked elements

calculate element matrices

for new elements

solve the linear system

calculate error indicators
from last solution and

for refining / coarsening
mark elements 

Fig. 1. The adaptive solution loop

7 Data structure for maintaining hierarchies

The idea of the extension of the crack line is given in [8]. We subdivide the
existing edges that cut the crack line at the cutting point. Then the usual mesh
refinement creates (during “red” or “green” subdivision of some elements) new
edges along the crack line together with a proper slightly refined mesh and
the correct hierarchies in the new edge tree.

So, there are no“double”edges along the crack line. For defining the double
number of unknowns at the so called “crack–nodes”, we introduce a copy of
each crack–node and call the old one “–”-node on one side of the crack and
the other “+”-node at the other side. Now, the hierarchical preconditioner

P

new P

+

+

+

+

+ +

+

+

+

−

− −
−

−

−

−
−

−

−

+

−

Fig. 2. Mesh handling after crack extension from the old crack tip P to “new P”
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can access from its edge tree information only the usual and the “–”-values
but never the new additional “+”-values. An efficient preconditioner has to
combine both informations as it was expected in [8] from a simple averaging
technique of the results of two preconditioners (first with usual and“–”-values,
then with usual and “+”-values). This simple approach never can lead to
a spectrally equivalent preconditioner which is clearly seen in relative high
numbers of PCG–iterations. Here, another approach with a basis change and
a domain decomposition like method will be given in the next chapter.

8 Two kind of basis functions for crack growth
finite elements

The fact that we have a coherent continuum before the growth of the crack
that changes into a slit–domain after growing requires a special finite element
treatment. One possibility is the construction of a new mesh after crack
growing, where the new free crack shores are usual free boundaries (with zero
traction boundary condition). This is far away from being efficient because we
have a mesh from Sect. 6 and the error indicators will drive the future refine-
ment and coarsening to the required mesh for good approximating this new
situation. So, we start to work with the existing mesh with double degrees
of freedom at the crack nodes.

From the technique in [8], the crack–line in the undeformed domain is rep-
resented by some edges. Each edge refers to its end–nodes. For the calculation
of the crack opening these nodes carry twice as much degrees of freedom and
are called “crack–nodes”.

Let the total number of nodes N = n+ d of the actual mesh be split into
n usual nodes and d crack–nodes. The degrees of freedom of the crack–nodes
are called “–”-values on one shore of the crack and (different) “+”-values on
the other shore. A finite element which contains at least one crack–node is
called “–”-element, if it refers to “–”-values (lays at “–”-side of the crack) and
conversely, a “+”-element refers to “+”-values and lays at the other side of the
crack–line (as indicated in Fig. 2).

From the usual element by element calculation of the stiffness matrix,
using these 2d double unknowns along the d crack–nodes, we understand the
resulting stiffness matrix as usual finite element matrix that belongs to the
following basis of (vector) ansatz functions:

Φ =
(
ϕ1I , . . . , ϕnI, ϕ

−
n+1I , . . . , ϕ

−
n+dI, ϕ

+
n+1I , . . . , ϕ

+
n+dI

)
.

Here, we write ϕkI = (ϕke1

...ϕke2) to specify the two usual vector ansatz
functions. Moreover, ϕk (k = 1 . . . n) denotes a usual hat–function on the
usual node k. In contrast to that, ϕ−

n+j and ϕ+
n+j are half hat functions with
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its support around the crack–node (n + j) at the “–”-elements (“+”-elements
resp.) only. (If a usual node k lays on the remaining free boundary of the
domain, the function ϕk is such a “half” hat function as well). The total
number of ansatz functions is 2 · (n + d + d), which is the dimension of the
resulting stiffness matrix K.

For the efficient preconditioning of this matrix K, we introduce another
basis of possible ansatz functions, that span the same 2(n+ 2d)–dimensional
finite element space:

Φ̃ = (ϕ1I , . . . , ϕnI, ϕn+1I , . . . , ϕn+dI, ϕ̃n+1I , . . . , ϕ̃n+dI).

Here, ϕn+j is the usual full (continuous) hat function at the node (n+ j) and
ϕ̃n+j is the product of ϕn+j with the Heaviside function of the crack–line.
This means:

ϕn+j := ϕ−
n+j + ϕ+

n+j (a.e.)

ϕ̃n+j := ϕ−
n+j − ϕ+

n+j (a.e.) .
(24)

Hence, ϕ̃n+j has a jump from −1 to +1 over the crack–line at the crack–node
(n+ j).

Theoretically, we can use K̃, the stiffness matrix of Φ̃ instead of K for the
same finite element computation of the new crack opening. Note the following
differences between these two basis definitions:

Advantages of Φ:

• usual element routines
• usual post–processing (direct calculation of the displacements of both crack

shores)
• usual error estimators / error indicators (at the crack the same data as at

free boundaries)

Disadvantage of Φ:

• requires special preconditioner for K

For the basis Φ̃ the reverse properties are true. The use of Φ̃ would require
some special treatment in element routines, post–processing and a new error
control.

For K̃ an efficient preconditioner can be found, so by use of the basis
transformation (24) we construct an efficient preconditioner for K as well.
Obviously

Φ̃ = ΦD

with the block–diagonal matrix

D = blockdiag (D1, D2),
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where
D1 = I, (2n× 2n),

and

D2 =

(
I I
I −I

)
, (2 · (2d)× 2 · (2d)).

This leads to
K̃ = DKD. (25)

So, if C̃ is a good preconditioner for K̃, then C = D−1C̃D−1 is as good for
K.

9 An efficient DD–preconditioner for K̃

From the special structure of the matrix K̃ a domain decomposition approach
leads to a very efficient preconditioner. Let us recall the structure of K from
the definition of the basis Φ:

K =




A B− B+

(B−)T T−
O

(B+)T
O T+




with the blocks:
A (2n × 2n) of the energy inner products of all usual basis functions ϕiek

with itself,
T− (2d× 2d) of the energy inner products of all ϕ−

n+iek with itself,

T+ (2d× 2d) of the energy inner products of all ϕ+
n+iek with itself and

B−, B+ contain all energy inner products of ϕiek(i ≤ n) with ϕ−
n+jel (resp.

ϕ+
n+jel).

No “+”-node is coupled to a “–”-node, this leads to both zero blocks (the
crack-tip is understood as “usual node”).

If we perform the transformation (25), the new matrix K̃ possesses a much
more simple structure:

K̃ =




A B− +B+ B− −B+

sym. T− + T+ T− − T+

sym. T− − T+ T− + T+


 (26)

which is abbreviated as

K̃ =

(
A0 B
BT T

)

with A0 the leading 2(n+ d)–block and

B =

(
B− −B+

T− − T+

)
, T = T− + T+.
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Then the matrix A0 is defined from all energy inner products of all first 2(n+d)
usual hat functions of the basis Φ̃. Hence, A0 is the usual stiffness matrix for
the actual mesh without any crack opening.
All the n+d nodes are represented in a hierarchical structure of the edge–tree,
so any kind of multi–level preconditioners can easily be applied for precondi-
tioning A0.
Especially the most simple hierarchical–basis preconditioner as explained in
Sect. 3 (for details see [16]) would be very cheap but effective.
A resulting good preconditioner for the whole matrix follows from the fine
structure of T :
If all crack–nodes are ordered in a 1–dimensional chain, then T has block–
tridiagonal form for linear elements or block–pentadiagonal form for quadratic
elements. Hence, the storage of the sub block T (upper triangle) can be
arranged with

8d values (linear elements, fixed bandwidth scheme),
7d values (linear elements, variable bandwidth scheme),
12d values (quadratic elements, fixed bandwidth scheme) or
9d values (quadratic elements, variable bandwidth scheme),

and the Cholesky decomposition of T is of optimal order of complexity due
to the fixed bandwidth.
This is exploited best in a domain decomposition–like preconditioner, which
results from a simple block factorization of K̃:

K̃ =

(
I BT−1

O I

)(
S O

O T

)(
I O

T−1BT I

)

with the Schur–complement matrix

S = A0 −BT−1BT .

The inverse of K̃ can be approximated by the inverse preconditioner C̃−1:

C̃−1 =

(
I O

−T−1BT I

)(
C−1

0 O

O T−1

)(
I −BT−1

O I

)
,

when C0 represents a good preconditioner for S. Note that all other inverts are
exact (especially T−1 ), so the spectrum of C̃−1K̃ coincides with the spectrum
of C−1

0 S and additional unities. With proper scaling, we have C̃ for K̃ as good
as C0 for S. The Schur complement is a rank–2d–perturbation of A0, so we
use the same preconditioner C0 for S as it was explained for A0. The resulting
preconditioner for K follows from (24),(25) as the formula

C−1 = D

(
I 0

−T−1BT I

)(
C−1

0 O

O I

)(
I −BT−1

0 T−1

)
D.

For the action w := C−1r within the PCGM iterations, we need once the
action of the (hierarchical) preconditioner C0 and twice a solver with T , the
remaining effort is a multiplication with parts of the stiffness matrix only,
which determines a preconditioner of optimal complexity.
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10 A numerical example to the crack growth
preconditioner

The power of the above technique can be demonstrated at the example in [8].
Here, we start with a domain of size (0, 4)×(−1, 1) with a crack (0, 1)×{0} at
the beginning. Then, after each 3 adaptive mesh refinements we let the crack
grow with constant direction of (1, 0)T . Each new crack extension is bounded
by 0.25, so it matches with initial finite element boundaries. This results in
relative fine meshes near the actual crack tips, but coarsening along the crack
path. In the solution method proposed in [8], this example produced relative
high number of PCG–iterations in the succeeding steps, which arrived near
200. This demonstrates that the preconditioner in [8] cannot be (near) spec-
trally equivalent to the stiffness matrix. This situation is drastically improved
by introducing the preconditioner of Sect. 9. Now, the total numbers of neces-
sary iterations are bounded near about 30 over all calculations of a fixed crack
(compare Fig. 3). After each new crack hop the necessary PCG–iterations are
higher due to the fact that no good starting vector for this new changed mesh
is available. This leads to the nine peaks in Fig.3. Here, the preconditioner
of [8] exceeded more than 100 iterations in this example and over 300 in the
other experiment in [8]. Now, the averaged iteration numbers are far less 100
for both examples.

 0
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’30-It.’

Fig. 3. Development of the number of necessary PCG–iterations for the solution
method in [8] and the new method
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mungen, Diffusion und Transport SFB 359, Interdiziplinäres Zentrum für Wis-
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1 Introduction

For the efficient numerical treatment of boundary value problems (BVPs),
domain decomposition methods are widely used in science and engineering.
They allow to work in parallel: generating the mesh in subdomains, calculat-
ing the corresponding parts of the stiffness matrix and of the right-hand side,
and solving the system of finite element equations.
Moreover, there is a particular interest in triangulations which do not match
at the interface of the subdomains. Such non-matching meshes arise, for exam-
ple, if the meshes in different subdomains are generated independently from
each other, or if a local mesh with some structure is to be coupled with a
global unstructured mesh, or if an adaptive remeshing in some subdomain
is of primary interest. This is often caused by extremely different data (ma-
terial properties or right-hand sides) of the BVP in different subdomains or
by a complicated geometry of the domain, which have their response in a
solution with anisotropic or singular behaviour. Furthermore, non-matching
meshes are also applied if different discretization approaches are used in dif-
ferent subdomains.
There are several approaches to work with non-matching meshes, e.g., the La-
grange multiplier mortar technique, see [1–3] and the literature cited therein.
Here, new unknowns (the Lagrange multipliers) occur and the stability of the
problem has to be ensured by satisfying some inf-sup-condition or by stabi-
lization techniques.

Another approach which is of particular interest in this paper is related
to the Nitsche method [4] originally employed for treating essential bound-
ary conditions. This approach has been worked out more generally in [5] and
is transferred to interior continuity conditions by Stenberg [6] (Nitsche type
mortaring), cf. also [7–14]. The Nitsche finite element method (or Nitsche
mortaring) can be interpreted as a stabilized variant of the mortar method
based on a saddle point problem.
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Compared with the classical mortar method, the Nitsche type mortaring has
several advantages. Thus, the saddle point problem, the inf-sup-condition as
well as the calculation of additional variables (the Lagrange multipliers) are
circumvented. The method employs only a single variational equation which
is, compared with the usual equations (without any mortaring), slightly modi-
fied by an interface term. This allows to apply existing software tools by slight
modifications. Moreover, the Nitsche finite element method yields symmetric
and positive definite discretization matrices in correspondence to symmetry
and ellipticity of the operator of the BVP. Although the approach involves
a stabilizing parameter γ, it is not a penalty method since it is consistent
with the solution of the BVP. The parameter γ can be estimated easily. In

Γ

Ω2
Ω1

Fig. 1. Decomposition of Ω

most papers, mortar methods are founded for BVPs with solutions being suf-
ficiently regular and without boundary layers. Moreover, quasi-uniform trian-
gulations Th with“shape regular”elements T are employed.“Shape regularity”
for triangles T ∈ Th means here that the relation hT

̺T
≤ C < ∞ is satisfied

(hT : diameter of T , ̺T : radius of incircle in T ), where C is independent of
h (h := maxT∈Th

hT ) and of some pertubation parameter ε (if hT , ̺T de-
pend on ε). We call such triangles also “isotropic” in contrast to “anisotropic”
triangles where hT

̺T
→∞ as h→ 0 or ε→ 0.

Basic aspects of the Nitsche type mortaring and error estimates for regular
solutions u ∈ Hk(Ω) (k ≥ 2) on quasi-uniform meshes are published in [6,7,9].
Compared with these papers, we extend the application of the Nitsche mor-
taring to BVPs with non-regular solutions and with boundary layers caused
by complicated data. In particular, we apply meshes being locally refined
near corners and not quasi-uniform as well as anisotropic meshes. So we shall
consider linear reaction-diffusion problems with small diffusion parameter ε2

(0 < ε < 1). It is well-known that for small values of ε singularly perturbed
problems with boundary layers occur and that isotropic finite elements are
not convenient for the efficient treatment of such problems.

First we derive the Nitsche mortaring approach. Consider the model prob-
lem

Lu := −ε2∆u+ cu = f in Ω ⊂ R
2

u = 0 on ∂Ω,
(1)
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where Ω is assumed to be a polygonal domain with Lipschitz-boundary ∂Ω
consisting of straight segments. The following two cases are taken into account:

a) ε = 1 and c = 0 on Ω (the Poisson equation, corners on ∂Ω),
b) 0 < ε < 1 and 0 < c0 ≤ c on Ω (singularly perturbed problem),

with some constant c0, and c ∈ L∞(Ω). Furthermore, assume f ∈ L2(Ω) at
least.

For simplicity the domain Ω is decomposed into two non-overlapping,
polygonal subdomains Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅
hold, cf. Fig. 1. Introduce Γ := Ω1 ∩Ω2 to be the interface of Ω1 and Ω2. In
this context, we utilize the restrictions vi :=v|Ωi

of some function v on Ωi as

well as the vectorized form v =
(
v1, v2

)
, i.e., we have vi(x) = v(x) for x ∈ Ωi

(i = 1, 2). So we shall use here the same symbol v for denoting the function v
on Ω as well as the vector v =

(
v1, v2

)
, which should not lead to confusion.

Using the domain decomposition, BVP (1) is equivalent to the following
problem. Find u =

(
u1, u2

)
such that

−ε2∆ui + cui = f i in Ωi, ui = 0 on ∂Ωi ∩ ∂Ω, for i = 1, 2,

∂u1

∂n1
+
∂u2

∂n2
= 0 on Γ, u1 = u2 on Γ,

(2)

are satisfied, where ni (i = 1, 2) denotes the outward normal to ∂Ωi ∩ Γ .
Define H1

0 (Ω) :=
{
v ∈ H1(Ω) : v|∂Ω = 0

}
and use the variational equation of

(1). Find u ∈ H1
0 (Ω) such that

a(u, v) = f(v) for any v ∈ H1
0 (Ω), (3)

with a(u, v) := ε2
∫

Ω

(∇u,∇v) dx+

∫

Ω

cuv dx, f(v) :=

∫

Ω

fv dx.

It is well-known that there is a unique solution u ∈ H 3
2+δ(Ω) of (3), with

some δ > 0. Moreover, we have ∆u ∈ L2(Ω) (see [15]) and, owing to the trace
theorem, ∂u

∂n ∈ L2(Γ ). If Ω is convex, the solution is regular, i.e., u ∈ H2(Ω).
Nevertheless, because of small values of ε, the solution u exhibits boundary
layers, in general.

The BVP (2) can be formulated also in a weak form (see [16]). Clearly,
there is weak unique solution of (2) satisfying

(
u1, u2

)
∈ V , with Lui ∈ L2(Ωi)

for i = 1, 2. Here, the space V is defined by V := V 1×V 2, with V i := {vi : vi ∈
H1(Ωi), v

i
∣∣
∂Ω∩∂Ωi

= 0} for ∂Ω ∩ ∂Ωi �= ∅, V i := H1(Ωi) for ∂Ω ∩ ∂Ωi = ∅
(i = 1, 2). The continuity of the solution u and of its normal derivative ∂ui

∂n on

Γ (n = n1 or n = n2) is to be required in the sense of H
1
2
∗ (Γ ) and H

− 1
2

∗ (Γ )

(the dual space of H
1
2
∗ (Γ )), respectively. For Γ like in Fig. 1 (∂Ω ∩Γ �= ∅) we

define H
1
2
∗ (Γ ) as the trace space H

1
2
00(Γ ) of H1

0 (Ω) provided with the quotient

norm, see e.g. [2,15]. In the case ∂Ω ∩Γ = ∅ we employ H
1
2
∗ (Γ ) := H

1
2 (Γ ). In

the following, 〈. , .〉Γ denotes the H
− 1

2
∗ -H

1
2
∗ duality pairing. With this notation,

(2) implies formally
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2∑

i=1

(∫

Ωi

ε2
(
∇ui,∇vi

)
dx+

∫

Ωi

cuv dx−
〈
ε2
∂ui

∂ni
, vi

〉

Γ

)
=

2∑

i=1

∫

Ωi

f ivi dx

(4)

∀v ∈ V , or equivalently, owing to ∂u1

∂n1
= α1

∂u1

∂n1
−α2

∂u2

∂n2
= − ∂u2

∂n2
for any αi ≥ 0

(i = 1, 2) such that α1 + α2 = 1,

2∑

i=1

(∫

Ωi

ε2
(
∇ui,∇vi

)
dx+

∫

Ωi

cuv dx

)
−
〈
α1ε

2 ∂u
1

∂n1
− α2ε

2 ∂u
2

∂n2
, v1 − v2

〉

Γ

−
〈
α1ε

2 ∂v
1

∂n1
− α2ε

2 ∂v
2

∂n2
, u1 − u2

〉

Γ

+

∫

Γ

σ
(
u1 − u2

) (
v1 − v2

)
ds

=
2∑

i=1

∫

Ωi

f ivi dx.

(5)

Note that the two additional terms (both equal to zero) containing u1 − u2

and introduced artificially have the following purpose. The first one ensures
the symmetry (in u, v) of the left-hand side, the second one penalizes (after
the discretization) the jump of the trace of the approximate solution and
guarantees the stability for appropriately chosen weighting function σ > 0.
The Nitsche mortar finite element method is the Galerkin discretization of
equation (5) in the sense of (8) given subsequently, using a finite element
subspace Vh of V allowing non-matching meshes and discontinuity of the finite
element approximation along Γ . The function σ is taken as γε2h−1(x), where
γ > 0 is a sufficiently large constant, h(x) is a mesh parameter function on Γ .

2 Non-matching mesh finite element discretization

Let T i
h be a triangulation of Ωi (i = 1, 2) consisting of triangles T (T = T ).

The triangulations T 1
h and T 2

h are independent of each other, in general, i.e. the
nodes of T ∈ T i

h (i = 1, 2) do not match along Γ := ∂Ω1 ∩ ∂Ω2. Let h denote
the mesh parameter of the triangulation Th := T 1

h ∪ T 2
h , with 0 < h ≤ h0

and sufficiently small h0. Take e.g. h := maxT∈Th
hT . Admit that hT and ̺T

may depend on the parameter ε ∈ (0, 1) (cf. (14)). Furthermore, employ F
(F = F ) for denoting any side of a triangle, hF its length. Sometimes we use
TF in order to indicate that F is a side of T = TF . Throughout the paper let
the following assumption on the geometrical conformity of T i

h (i = 1, 2) be
satisfied. Assume that for i = 1, 2, it holds Ωi =

⋃
T∈T i

h
T , and two arbitrary

triangles T, T ′ ∈ T i
h (T �= T ′) are either disjoint or have a common vertex, or

a common side. Since anisotropic triangles (see [17]) will be applied, they are
not shape regular and, therefore, the mesh is not quasi-uniform (with respect
to ε).

Consider further some triangulation Eh of the interface Γ by intervals E
(E = E), i.e., Γ =

⋃
E∈Eh

E, where hE denotes the diameter of E. Here, two



Nitsche Finite Element Method for Elliptic Problems 91

segments E,E′ ∈ Eh are either disjoint or have a common endpoint. A natural
choice for the triangulation Eh of Γ is Eh := E1

h or Eh := E2
h (cf. Fig. 2), where

E1
h and E2

h denote the triangulations of Γ defined by the traces of T 1
h and T 2

h

on Γ , respectively, viz. E i
h := {E : E = ∂T ∩ Γ, if E is a segment, T ∈ T i

h}
for i = 1, 2, i.e., here E = F = TF ∩ Γ for some TF ∈ T i

h holds. Subsequently

Γ

EhE1
h

ΓΩ1

T 1
h =⇒

Γ

E2
h T 2

h

Ω2

⇐=

Fig. 2. Choice of Eh

we use real parameters α1, α2 with

0 ≤ αi ≤ 1 (i = 1, 2), α1 + α2 = 1, (6)

and require the asymptotic behaviour of the triangulations T 1
h , T 2

h and of Eh
to be consistent on Γ in the sense of the following assumption. According
to different cases of chosing Eh and α1, α2 from (6) assume that there are
constants C1, C2 independent of h ∈ (0, h0] and ε ∈ (0, 1) such that, uniformly
with respect to E and F , the following relations hold (use E̊, F̊ as ’interior’
of E, F , resp.).
(i) case Eh arbitrary: for any E ∈ Eh and F ∈ E i

h (i = 1, 2) with E̊ ∩ F̊ �= ∅,
we have C1hF ≤ hE ≤ C2hF ,
(ii) case Eh := E i

h and αi = 1 (i = 1 or i = 2): for any E ∈ E i
h and F ∈ E3−i

h

with E̊ ∩ F̊ �= ∅, we have C1hF ≤ hE .
This ensures that the asymptotics of segments E and sides F which touch
each other is locally the same, uniformly with respect to h and ε, in case (ii)
with some weakening which admits different asymptotics of triangles T1 ∈ T 1

h

and T2 ∈ T 2
h , with T1 ∩ T2 �= ∅.

For getting stability of the method in the case of anisotropic meshes we require
that the following assumption is satisfied, which restricts the orientation of
anisotropy of the triangles T at Γ : If h⊥F denotes the height of the triangle
TF ∈ T i

h over the side F ∈ E i
h with length hF , then for i ∈ {1, 2} with

0 < αi ≤ 1 assume that

hF

h⊥F
≤ C3 ∀ F ∈ E i

h,

is satisfied, where C3 is independent of h ∈ (0, h0] and ε ∈ (0, 1). This guaran-
tees that anisotropic triangles T = TF ∈ T i

h touching Γ along the whole side
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F and being “active” (for i : αi �= 0) in the approximation have their “short
side” F on Γ .
For i = 1, 2, introduce the finite element space V i

h of functions on Ωi by

V i
h := {vi

h ∈ H1(Ωi) : vi
h

∣∣
T
∈ Pk(T ) ∀ T ∈ T i

h , v
i
h

∣∣
∂Ωi∩∂Ω

= 0},

where Pk(T ) denotes the set of all polynomials on T with degree ≤ k. The
finite element space Vh of functions vh with components vi

h on Ωi is given
by Vh := V 1

h × V 2
h . In general, vh ∈ Vh is not continuous across Γ . For the

approximation of (5) on Vh let us fix a positive constant γ (to be specified
subsequently) and real parameters α1, α2 from (6), and introduce the forms
Bh(. , .) on Vh × Vh and Fh(.) on Vh as follows:

Bh(uh, vh) :=
2∑

i=1

(
ε2
(
∇ui

h,∇vi
h

)
Ωi

+
(
cui

h, v
i
h

)
Ωi

)
−
〈
α1ε

2 ∂u
1
h

∂n1
− α2ε

2 ∂u
2
h

∂n2
, v1h − v2h

〉

Γ

−
〈
α1ε

2 ∂v
1
h

∂n1
− α2ε

2 ∂v
2
h

∂n2
, u1

h − u2
h

〉

Γ

+ ε2γ
∑

E∈Eh

h−1
E

(
u1

h − u2
h, v

1
h − v2h

)
E
,

Fh(vh) :=

2∑

i=1

(
f, vi

h

)
Ωi
. (7)

Here, (. , .)Λ denotes the scalar product in L2(Λ) for Λ ∈ {Ωi, E}, and 〈. , .〉Γ
is taken from (5). The weights in the fourth term of Bh are introduced in cor-
respondence to σ = γε2h−1(x) at (5) and ensure the stability of the method,
if γ is a sufficiently large positive constant (cf. Theorem 2 below).

According to (5), but with the discrete forms Bh and Fh from (7), the
Nitsche mortar finite element approximation uh of the solution u of equation
(3), with respect to the space Vh, is defined by uh =

(
u1

h, u
2
h

)
∈ V 1

h ×V 2
h being

the solution of
Bh(uh, vh) = Fh(vh) ∀ vh ∈ Vh. (8)

In the following, we quote some important properties of the discretiza-
tion (8). First we have the consistency: If u is the weak solution of (1), then
u =

(
u1, u2

)
satisfies Bh(u, vh) = Fh(vh) ∀ vh ∈ Vh . Then, owing to the

consistency and to (8) we obtain the Bh-orthogonality of the error u− uh on
Vh, i.e. Bh(u−uh, vh) = 0 ∀ vh ∈ Vh. For getting stability and convergence
of the method, we need the following theorem.

Theorem 1. For vh ∈ Vh the inequality

∑

E∈Eh

hE

∥∥∥∥α1
∂v1h
∂n1
− α2

∂v2h
∂n2

∥∥∥∥
2

0,E

≤ CI

2∑

i=1

∥∥∇vi
h

∥∥2

0,Ωi
,

holds, where CI is independent of h (h ≤ h0) and of ε (ε < 1).
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The proof is given in [14]. For the ellipticity of the discrete form Bh(. , .)
we introduce the following discrete energy-like norm ‖ . ‖1,h,

‖vh‖21,h =
2∑

i=1

(
ε2
∥∥∇vi

h

∥∥2

0,Ωi
+
∥∥√cvi

h

∥∥2

0,Ωi

)
+ ε2

∑

E∈Eh

h−1
E

∥∥v1h − v2h
∥∥2

0,E
.

(9)
For ε = 1 and c ≡ 0 this norm is also applied e.g. in [2, 6, 9, 10, 12, 13]. Using
Young’s inequality and Theorem 1 we can prove the following theorem.

Theorem 2. If the constant γ in (7) is chosen (independently of h and ε)
such that γ > CI is valid, CI from Theorem 1, then

Bh(vh,vh) ≥ µ1 ‖vh‖21,h ∀ vh ∈ Vh

holds, with a positive constant µ1 independent of h (h ≤ h0) and ε (ε < 1).

3 Numerical treatment of corner singularities

We now study the finite element approximation with non-matching meshes for
the case that the domain Ω has re-entrant corners and that the endpoints of
the interface Γ are vertices of such corners. It is well-known that such corners
generate singularities enlarging the dicretization error and diminishing the
rate of convergence of the finite element approximation. If Ω has re-entrant
corners with angles ϕ0j : π < ϕ0j < 2π (j = 1, . . . , I), then the solution u can
be represented by

u =

I∑

j=1

ηj aj r
λj

j sin(λjϕj) + w,

with a regular remainder w ∈ H2(Ω). Here, (rj , ϕj) denote the local po-
lar coordinates of a point P ∈ Ω with respect to the vertex Pj ∈ ∂Ω,
where 0 < rj ≤ r0j and 0 < ϕj < ϕ0j hold. Moreover, we have λj = π

ϕ0j

( 1
2 < λj < 1), aj is some constant, and ηj is a local cut-off function at
Pj . Obviously, u ∈ Hs(Ω) for some s > 3/2 is satisfied. For approaches to
improve the approximation properties and to treat corner singularities, see
e.g. [15,18–21]. Since the influence region of corner singularities is a local one,
it suffices to consider one corner. Here we employ piecewise linear elements
(k = 1 in V i

h) and triangular meshes with appropriate local refinement at one
corner.
Let (x0, y0) be the coordinates of the vertex P0 of the corner, (r, ϕ) the
local polar coordinates with center at P0, i.e. x − x0 = r cos(ϕ + ϕr),
y − y0 = r sin(ϕ + ϕr), cf. Fig. 3. Define some circular sector G around
P0, with the radius r0 > 0 and the angle ϕ0 (here: π < ϕ0 < 2π):
G :=

{
(x, y) ∈ Ω : 0 ≤ r ≤ r0, 0 ≤ ϕ ≤ ϕ0

}
, G := G \ ∂G, ∂G boundary
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y
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Ω2

ϕr
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x0

ϕ0

Γ

P0

ϕ

P(x,y)

r

Fig. 3.

of G. For defining a mesh with grading, we employ the real grading para-
meter µ, 0 < µ ≤ 1, the grading function Ri (i = 0, 1, . . . , n) with some
real constant b > 0, and the step size hi for the mesh associated with layers
[Ri−1, Ri]× [0, ϕ0] around P0:

Ri := b (ih)
1
µ (i = 0, 1, . . . , n), hi := Ri −Ri−1 (i = 1, 2, . . . , n).

Here n := n(h) denotes an integer of the order h−1, n :=
[
βh−1

]
for some real

β > 0 ([ . ] : integer part). We shall choose the numbers β, b > 0 such that
2
3r0 < Rn < r0 holds, i.e., the mesh grading is located within G. For h, hi, Ri,

and µ (0 < h ≤ h0, 0 < µ < 1) the relation bµhR1−µ
i ≤ hi ≤ bµ

µ hR
1−µ
i

(i = 1, 2, . . . , n) holds.
Using the step size hi (i = 1, 2, . . . , n), define in the neighbourhood of

the vertex P0 of the corner a mesh with grading such that hT depends on
the distance RT of T from P0 (RT := dist(T, P0) := infP∈T |P0 − P |) in the
same way like hi on Ri. Outside of the corner neighbourhood a quasi-uniform
mesh is employed. The triangulation is now characterized by the mesh size h
and the grading parameter µ, denoted by Thµ, with 0 < h ≤ h0 and fixed µ:
0 < µ ≤ 1. We summarize the properties of Thµ and assume the following one:
The triangulation Thµ is shape regular and provided with a grading around
the vertex P0 of the corner such that hT := diamT depends on the distance
RT and on µ in the following way:

ρ1h
1
µ ≤ hT ≤ ρ−1

1 h
1
µ for T ∈ Thµ : RT = 0,

ρ2hR
1−µ
T ≤ hT ≤ ρ−1

2 hR
1−µ
T for T ∈ Thµ : 0 < RT < Rg,

ρ3h ≤ hT ≤ ρ−1
3 h for T ∈ Thµ : Rg ≤ RT ,

(10)

with some constants ρi, 0 < ρi ≤ 1 (i = 1, 2, 3) and some real Rg, 0 <
Rg < Rg < Rg, where Rg, Rg are fixed and independent of h. Here, Rg is
the radius of the sector with mesh grading, we put e.g. Rg := Rn. Outside of
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this sector the mesh is quasi-uniform. The value µ = 1 yields a quasi-uniform

mesh in the whole region Ω, i.e.,
maxT∈Thµ

hT

minT∈Thµ
ρT
≤ C holds. In [18,20,21] related

types of mesh grading are described. In [22] a mesh generator is given which
automatically generates a mesh of type (10).

A final error estimate in the norm ‖ · ‖1,h for ε = 1 and c = 0 is given in
the next theorem, where a proof can be found in [13].

Theorem 3. Let u and uh be the solutions of the BVP (1) (ε = 1, c = 0)
with one re-entrant corner (λ: singularity exponent) and of the finite element
equation (8), respectively. For Thµ let the assumptions on the mesh be satisfied.
Then the error u− uh in the norm ‖ . ‖1,h (9) is bounded by

‖u− uh‖1,h ≤ cκ(h, µ) ‖f‖0,Ω , (11)

with κ(h, µ) =





h
λ
µ for λ < µ ≤ 1

h |lnh| 12 for µ = λ

h for 0 < µ < λ < 1.

Remark: Under the assumption of Theorem 3 and for the error in the
L2-norm, the estimate

‖u− uh‖0,Ω ≤ Cκ2(h, µ) ‖f‖0,Ω (12)

is satisfied, with κ(h, µ) from (11). In particular, ‖u− uh‖0,Ω = O(h2) holds
for meshes with appropriate grading.

4 Numerical treatment of boundary layers

In correspondence to the anisotropic behaviour of the solution u in the bound-
ary layers, we shall apply anisotropic triangular meshes for improving accuracy
and rate of convergence of the finite element method like treated e.g. in [17].
Introduce vectors hT,i with length hT,i :=

∣∣hT,i

∣∣ (i = 1, 2) as follows:

hT,1 : vector of the longest side of T,

hT,2 : vector of the height of T over hT,1.

Apply the multiindex β = (β1, β2) ∈ R
2, with |β| = β1 + β2, βi ≥ 0 (i = 1, 2),

and write shortly Dβ := ∂β1

∂x
β1
1

∂β2

∂x
β2
2

.

For the estimation of the interpolation error on anisotropic triangles we
need the so-called ‘maximal angle condition’ and the ‘coordinate system con-
dition’ (according to [17]) given subsequently, cf. also Fig. 4.
’Maximal angle condition’: The interior angles θ of any triangle T ∈ Th satisfy
0 < θ ≤ π − θ0 where the constant θ0 > 0 is independent of T , h ∈ (0, h0]
and ε ∈ (0, 1).
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ϑ

x2

x1

T

hT,1

hT,2

Fig. 4. Anisotropic triangle T

‘Coordinate system condition’: The position of the triangle T in the x1-x2-
coordinate system is such that the angle ϑ between hT,1 and the x1-axis is
bounded by

|sinϑ| ≤ C4
hT,2

hT,1
,

where C4 is independent of T , h ∈ (0, h0] and ε ∈ (0, 1).
In order to present the treatment of boundary layers and the application

of anisotropic meshes, we consider for simplicity the BVP (1) on a rectangle,
w.l.o.g. for Ω = (0, 1)2. For describing the behaviour of the solution u and
the mesh adapted to this solution, we split the domain as given by Fig. 5
into an interior part Ωi, boundary layers Ωb,j (j = 1, 2, 3, 4) of width a and

corner neighbourhoods Ωc,j (j = 1, 2, 3, 4). Employ also Ωb =
⋃4

j=1Ω
b,j and

Ωc =
⋃4

j=1Ω
c,j . It should be noted that depending on the data and according

to the solution properties some of the boundary layer parts Ωb,j may be empty
(cf. numerical example); then Ωi is extended to the corresponding part of the
boundary. In each Ωb,j choose a local coordinate system (x1, x2), where x1

goes with the tangent of the boundary ∂Ω and x2 with its interior normal
such that x2 = dist(x, ∂Ω) (distance of x ∈ Ω to ∂Ω) holds. The derivatives
Dβu, β = (β1, β2), in the boundary layers are taken with respect to these
coordinates. According to [14], cf. also [23, Lemma 2], the L2-norms of the
second order derivatives Dβu (|β| = 2) considered in the subdomains Ωi, Ωb

and Ωc satisfy at least the estimates

∥∥Dβu
∥∥2

0,Ωi ≤ C ,
∥∥Dβu

∥∥2

0,Ωb ≤ C a ε−2β2 ,
∥∥Dβu

∥∥2

0,Ωc ≤ C a2ε−2|β| ,

(13)
with a := a0

c0
ε |ln ε| and a0 ≥ 2, for c(x) = c0 = const > c0 > 0.

Introduce triangulations Th(Ωi), Th(Ωc) and Th(Ωb) of the subdomains
Ωi, Ωb and Ωc, respectively. For each of these subdomains employ O(h−1)×
O(h−1) triangles T with mesh sizes hT,1 and hT,2 according to the asymptotics
(14) of the subtriangulations given by
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P4 P3

P1 P2

a

Ωc,4 Ωb,3 Ωc,3

Ωb,4

Ωc,1 Ωb,1 Ωc,2

Ωi Ωb,2

Fig. 5. Subdomains of Ω: Ωi and the parts Ωb,j and Ωc,j (j = 1, 2, 3, 4)

hT,1 ∼ hT,2 ∼ h for T ∈ Th(Ωi),

hT,1 ∼ h, hT,2 ∼ ah for T ∈ Th(Ωb),

hT,1 ∼ hT,2 ∼ ah for T ∈ Th(Ωc).

(14)

Here, for brevity the symbol∼ is used for equivalent mesh asymptotics (see e.g.
[17]). In particular, assumption (14) means that we apply isotropic triangles
in Ωi and Ωc, but anisotropic triangles in Ωb.

An important application is the following one. We decompose Ω into Ω1,
Ω2 such that the interface Γ is formed by the interior boundary part of the
boundary layer. Then, cover Ω1 and Ω2 by axiparallel rectangles. They are
formed by putting O(h−1) points on the axiparallel edges of the subdomains
defining axiparallel mesh lines. Finally, we obtain rectangular triangles by
dividing the rectangles in the usual way, see e.g. Fig. 12. The triangles in Ωb

have a ’long’ side hT,1 being parallel to ∂Ω, a ’short’ side hT,2 perpendicular
to ∂Ω, with hT,1 ∼ h and hT,2 ∼ ε| ln ε|h. Then we are able to state the
following theorem, where a proof is given in [14].

Theorem 4. Assume that u is the solution of BVP (1) over the domain Ω =
(0, 1)2, with 0 < ε < 1 ,0 < c0 ≤ c(x) = const and the smoothness assumptions
(13). Furthermore, suppose that all mesh assumptions quoted previously are
satisfied and that uh denotes the Nitsche mortar finite element approximation
according to (8), with γ > CI . Then, the error u − uh can be bounded in the
norm ‖ . ‖1,h (9) as follows:

‖u− uh‖21,h ≤ C
(
ε |ln ε|3 h2 + h4

)
,

where C is independent of h ∈ (0, h0] and ε ∈ (0, 1).



98 Bernd Heinrich and Kornelia Pönitz

5 Computational experiments with corner singularities

We shall give some computations using the Nitsche type mortaring in presence
of some corner singularity, with application of local mesh refinement near the
corner. Consider the BVP −∆u = f in Ω, u = 0 on ∂Ω, with Ω is the L-
shaped domain of Fig. 6. The right-hand side f is chosen such that the exact
solution u is of the form

u(x, y) = (a2 − x2)(b2 − y2)r 2
3 sin(

2

3
ϕ), (15)

where r2 = x2 + y2, 0 ≤ ϕ ≤ ϕ0, ϕ0 = 3
2π. Clearly, u|∂Ω = 0, λ = π

ϕ0
= 2

3

and, therefore, u ∈ H 5
3−δ(Ω) (δ > 0) is satisfied. We apply the Nitsche finite

element method to this BVP and use two subdomains Ωi (i = 1, 2) as well
as initial meshes shown as in Fig. 7 and 8. The approximate solution uh is
visualized in Fig. 10.

The initial meshes covering Ωi (i = 1, 2) are refined globally by dividing
each triangle into four equal triangles such that the mesh parameters form a
sequence {h1, h2, . . .} given by {h1,

h1

2 , . . .}. The ratio of the number of mesh
segments (without grading) on the mortar interface Γ is given by 2 : 3 (see
Fig. 7) and 2 : 5 (see Fig. 8). In the computational experiments, different
values of α1 (α2 := 1 − α1) are chosen, e.g. α1 = 0, 0.5, 1. For αi = 1 (i = 1
or i = 2), the trace E i

h of the triangulation T i
h of Ωi on the interface Γ was

chosen to form the partition Eh (for Ω1, Ω2, cf. Fig. 6), and for αi �= 0 (i = 1
and i = 2), the partition Eh was defined by the intersection of E1

h and E2
h . For

the examples the choice γ = 3 was sufficient to ensure stability. Moreover, we
also applied local refinement by grading the mesh around the vertex P0 of the
corner, according to Sect. 3. The parameter µ was chosen by µ := 0.7λ.

ϕ

−a

b

a

−b

r

Ω1 Ω2

y

x

Γ

ϕ0 = 3
2

π

Fig. 6. The L-shaped domain Ω
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Fig. 7. Triangulations with mesh ratio 2 : 3, h1–mesh (left) and h2–mesh with
refinement (right)

Fig. 8. Triangulations with mesh ratio 2 : 5, h1–mesh (left) and h3–mesh with
refinement (right)

Let uh denote the finite element approximation according to (8) of the
exact solution u from (15). Then the error estimate in the discrete norm
|| . ||1,h is given by (11). We assume that h is sufficiently small such that

‖u− uh‖1,h ≈ Chα (16)

holds with some constant C which is approximately the same for two consec-
utive levels hi, hi+1 of the mesh parameter h, like h, h/2. Then α = αobs

(observed value) is derived from (16) by αobs := log2 qh, where qh :=
‖u− uh‖(

∥∥u− uh/2

∥∥)−1. The same is carried out for the L2–norm, where

‖u− uh‖0,Ω ≈ Chβ is supposed, cf. (12). The observed and expected values
of α and β are given in Table 1. The computational experiments show that the
observed rates of convergence are approximately equal to the values expected
by the theory: α = 2

3 , β = 2α for quasi-uniform meshes, and α = 1, β = 2 for
meshes with appropriate mesh grading. Furthermore, it can be seen that local
mesh grading is suited to overcome the diminishing of the rate of convergence
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Table 1. Observed convergence rates αobs and βobs for the level pair (h5, h6), for
µ = 1 and for µ = 0.7λ ( λ = 3

2
) in the norms || . ||1,h and || . ||0,Ω , resp.

mesh ratio 2 : 3 mesh ratio 2 : 5

norm ‖ . ‖1,h α (observed) α (expected)

αobs : µ = 1 0.73 0.73 0.67

αobs : µ = 0.7λ 1.00 0.99 1

norm ‖ . ‖0,Ω β (observed) β (expected)

βobs : µ = 1 1.39 1.38 1.33

βobs : µ = 0.7λ 1.97 1.87 2

on non-matching meshes and the loss of accuracy (cf. error representation in
Fig. 10) caused by corner singularities.
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Fig. 9. The error in the norms ‖ · ‖1,h and ‖ · ‖L2 on quasi-uniform meshes (left)
and on meshes with grading (right), for mesh ratios 2:3 and 2:5

6 Computational experiments with boundary layers

In the following, we consider the BVP −ε2∆u+u = 0 in Ω, u = −e− x
ε − e− y

ε

on ∂Ω, where Ω is defined by Ω = (0, 1)2 ⊂ R
2, and the solution u is given

by u = −e− x
ε − e− y

ε . For small values of ε ∈ (0, 1), boundary layers near
x = 0 and y = 0 occur. The L2-norms of the second order derivatives of u
satisfy the inequalities at (13). Here, according to the position of the boundary
layers the definition of Ωi, Ωb and Ωc is to be modified, cf. Figs. 5 and 12. In
correspondence to the boundary layers, we subdivide Ω into subdomains Ω1 =
(a, 1)×(a, 1) and Ω2 = Ω\Ω1 , define Γ by Γ = Ω1∩Ω2. The triangulations of
the subdomains Ω1 and Ω2 are partially independent from each other. Choose
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Fig. 10. The approximate solution uh in two different perspectives (top), the local
pointwise error on the quasi-uniform mesh for µ = 1 (bottom left) and the local
pointwise error on the mesh with grading for µ = 0.7λ (bottom right)

an initial mesh like in Fig. 12, where the nodes of triangles T ∈ Th(Ω1) and
T ∈ Th(Ω2) do not coincide on Γ . The initial mesh is refined by subdividing
a triangle T into four equal triangles such that new vertices coincide with
the old ones or with the midpoints of the old triangle sides. Therefore, the
mesh sequence parameters {h1, h2, h3, . . .} are given by {h1,

h1

2 , . . .}. Let uh

be the Nitsche mortar finite element approximation of u defined by (8). Since
u is known, the error u − uh in the ‖ . ‖1,h-norm can be calculated. Then,
the convergence rates with respect to h will be estimated as follows. We fix
ε and assume that the constant C in the relation ‖u− uh‖1,h ≈ Chα is

nearly the same for a pair of mesh sizes hi = h and hi+1 = h
2 . Under this

assumption we derive observed values αobs of α like in Sect. 5. In Table 2 the
error norms ‖u− uh‖1,h and the convergence rates αobs are given, with the

settings Eh = E1
h, α1 = 1 and γ = 2.5. The results of Table 2 show that for

appropriate choice of the mesh layer parameter a, here e.g. for a = ε|ln ε| and
a = 2ε |ln ε|, optimal convergence rates O(h) like in Theorem 4 stated can
be observed for a wide range of mesh parameters h. In Fig. 13, for ε = 10−2

and on a mesh of level h3, the local error uh − u for two different values of



102 Bernd Heinrich and Kornelia Pönitz

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−2

−1.5

−1

−0.5

0

xy

e
xa

ct
so

lu
tio

n
u

a

Fig. 11. Solution u on the h3-mesh for
ε = 10−2 and a = 2ε |ln ε|

Fig. 12. h1-mesh with layer thick-
ness a, for a = 1

2
ε |ln ε| and ε = 10−1

0

0.5

1 0
0.2

0.4
0.6

0.8
1

−0.04

0

0.04

0.08

0.12

yx

p
o

in
tw

is
e

e
rr

o
r

u h
−

u

0

0.5

1 0
0.2

0.4
0.6

0.8
1

−0.04

0

0.04

0.08

0.12

yx

p
o

in
tw

is
e

e
rr

o
r

u h
−

u

Fig. 13. Pointwise error uh −u for ε = 10−2 on meshes with a = 1
2
ε |ln ε| (left) and

a = 2ε |ln ε| (right)

the parameter a is represented. The influence of the parameter a is visible,
in particular, the local error is significantly smaller for the value a = 2ε |ln ε|
compared with that of a = 1

2ε |ln ε|. For constant a = 0.5 the observed rate is
far from O(h) (cf. also Fig. 14, left-hand side) and, for a = 1

2ε |ln ε|, the rates
are not appropriate for small h.

In particular, the computational experiments show that non-matching
isotropic and anisotropic meshes can be applied to singularly perturbed prob-
lems without loss of the optimal convergence rate. The appropriate choice of
the width a of the strip with anisotropic triangles is important for diminishing
the error and getting optimal convergence rates.

Summary. The paper is concerned with the Nitsche finite element method as a
mortar method in the framework of domain decomposition. The approach is ap-
plied to elliptic problems in 2D with corner singularities and boundary layers. Non-
matching meshes of triangles with grading near corners and being anisotropic in
the boundary layers are employed. The numerical treatment of such problems and
computational experiments are described.
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Table 2. Observed errors in the ‖ . ‖1,h-norm on the level hi (i = 5, 6, 7) and the

convergence rate αobs assigned to the levelpair (hi,hi+1) (i = 5, 6); case Eh = E1
h,

α1 = 1 and γ = 2.5

Parameter ε = 10−1 ε = 10−3 ε = 10−5

a ‖u − uh‖1,h αobs ‖u − uh‖1,h αobs ‖u − uh‖1,h αobs

0.5
7.132e-03
3.566e-03
1.783e-03

1.00
1.00

5.260e-02
3.154e-02
1.718e-02

0.74
0.88

6.738e-02
4.757e-02
3.361e-02

0.50
0.50

1
2
ε |ln ε|

3.656e-03
1.733e-03
8.397e-04

1.08
1.04

1.660e-03
1.500e-03
1.127e-03

0.15
0.41

8.472e-05
4.394e-05
2.483e-05

0.95
0.82

ε |ln ε|
3.396e-03
1.692e-03
8.446e-04

1.01
1.00

9.863e-04
4.948e-04
2.488e-04

1.00
0.99

1.653e-04
8.271e-05
4.136e-05

1.00
1.00

2ε |ln ε|
6.569e-03
3.284e-03
1.642e-03

1.00
1.00

1.969e-03
9.851e-04
4.926e-04

1.00
1.00

3.275e-04
1.639e-04
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Fig. 14. Observed error u − uh in the L2-, L∞- and ‖ . ‖1,h-norm for ε = 10−5,
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1 Introduction

The simulation of non-linear problems of continuum mechanics was a crucial
point within the framework of the subproject “Efficient parallel algorithms
for the simulation of the deformation behaviour of components of inelastic
materials”. Nonlinearity appears with the occurence of finite deformations as
well as with special material behaviour as e.g. elastoplasticity.

To solve such kind of problems by means of a Finite Element simulation for
reliable predictions of the response of components and structures to mechani-
cal loading, the insertion of suitable material models into FE codes is a basic
requirement. Additionally, their efficient numerical implementation plays also
an important role.

Likewise, a realistic numerical simulation essentially depends on appro-
priate FE meshes. According to the motto “as fine as necessary, as coarse
as possible”, several techniques of mesh adaptation have been developed in
the last decades. These days the feature of adaptivity is a high-performance
attribute for FE codes.

We want to present the results of our research within the framework of
the subproject D1 concerning the efficient treatment of non-linear problems
of continuum mechanics:

• The theoretical development and numerical realization of appropriate ma-
terial laws for elastoplasticity and,

• the implementation of hierarchical mesh adaptation in case of non-linear
material behaviour.

All contrived theoretical descriptions and numerical algorithms had been
implemented and tested with the in-house code SPC-PM2AdNl which was
developed at the Chemnitz University of Technology within the context of
our collaborative research centre 393.
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2 Material model for finite elastoplastic deformations

This section deals with the formulation and efficient numerical implementation
of a material model decsribing finite elastoplasticity.

2.1 Theoretical foundation and thermodynamical consistency

The presented approach for the establishment of elastoplastic material mod-
els considering finite deformations is based on the multiplicative split of the
deformation gradient F = F eF p into an elastic part F e and a plastic part
F p. The plastic part of the deformation gradient realizes the mapping of the
deformed body from the reference to the plastic intermediate configuration,
the elastic part the remaining mapping from the plastic intermediate to the
current configuration (see Fig. 1). It has to be mentioned that the plastic
intermediate configuration is an incompatible one.

In the literature different approaches to model plastic anisotropy are pre-
sented:

• Hill developed a quadratic yield condition for the special case of plastic
orthotropy [16].

• General plastic anisotropy can be treated in a phenomenological manner
introducing special (tensorial) internal variables describing the hardening
behaviour [2, 6, 15,26,30].

• Another possibility to describe general plastic anisotropy consists in the
application of microstructural approaches [3, 13,25,27,32].

• Several authors propose phenomenological models based on so-called sub-
structure concepts [12, 18, 24, 28]. This procedure is based on the consid-
eration of microstructural characteristics of the material (substructure)
using macroscopic constitutive approaches (definition of special internal
variables). The continuum and the underlying substructure are supposed
to have different characteristics of orientation.

The substructure approach has been developed particularely by Mandel [24]
and Dafalias [12]. The last mentioned distinguished between the kinematics of
the continuum and the kinematics of the substructure in a phenomenological
manner introducing a special deformation gradient F S = F eβ related to the
substructure, where the tensor β is supposed to be an orthogonal one. Just
as Mandel he defined special objective time derivatives connected with the
substructure using its spin ωD.

The spin of the continuum is defined as

w =
1

2

{
△

F e
F e−1 − F e−T

△

F eT

}
+ (1)

1

2

{
F e

△

F p
F p−1F e−1 − F e−T F p−T

△

F pT
F eT

}

= we
D + w

p
D. (2)
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with
△

F p = Ḟ p − ωDF p,
△

F e = Ḟ e + F eωD and ωD = β̇β−1. (3)

The crucial point of Dafalias’ approach consists in the assumption of an evo-
lutional equation for the plastic spin w

p
D, which represents the difference be-

tween the spin of the continuum and the substructure spin:

w
p
D = w − ω̄D with ω̄D = ˙̄ββ̄

−1
and β̄ = Reβ , (4)

where Re represents the rotation tensor of the elastic part of the deforma-
tion gradient. Dafalias did not give a thermodynamical explanation for the
suggested evolutional equation for w

p
D.

In the following we define a substructure configuration apart from the con-
figurations describing the deformation of a continuum. A mapping tensor H

is supposed to map tensorial variables from the reference into this substruc-
ture configuration. Accordingly, the tensor combination F H−1 serves the
mapping from the substructure configuration into the current configuration.
The substructure configuration is assumed to be an incompatible intermediate
configuration characterizing a special constitutively motivated decomposition
of the deformation gradient. It differs from the plastic intermediate configu-
ration only by a rotation characterized by the tensor β (see Fig. 1). In the
following, variables related to the substructure configuration are denoted by
capital letters with a hat.

In the framework of the presented phenomenological material model, the
evolution of stresses and strains is considered with respect to the continuum.
The internal variables describing the plastic anisotropy are related to the
substructure. Therefore, the substructure configuration is connected with a
newly established objective time derivative. This Lie-type derivative is defined
in case of a contravariant tensor as follows:

▽
a = F H−1

(
H F −1aF −T

︸ ︷︷ ︸
A

HT
)·

H−T F T

= F H−1
(
Ḣ AHT + H ȦHT + H AḢT

)
H−T F T

= F H−1 ˙̂
AH−T F T . (5)

It should be mentioned that the definition of this objective time derivative is
closely connected with the supposition of the existence of a material derivative
in the substructure configuration.

If the mapping tensor is supposed to be defined as

H = βT F p, (6)

we get
F H−1 = F eβ = F S (7)

and following the plastic spin at the reference configuration can be written
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Fig. 1. Mappings between the configurations

W
p
D =

1

2

{
CH−1Ḣ − ḢT H−T C

}
(8)

using the right Cauchy-Green tensor C = F TF . As the material model has
been implemented into the in-house code SPC-PM2AdNl based on a total
Lagrangean description, the equations of the material law are defined in the
reference configuration. Considering the concept of conjugate variables, firstly
established by Ziegler and Mac Vean [35], the Clausius-Duhem inequality for
isothermal processes in the reference configuration can be written as

−̺0ψ̇ +
1

2
T ·· Ċ ≥ 0 (9)

with the second Piola-Kirchhoff stress tensor T and the material mass density
̺0. The free energy density ψ is chosen to be additively splitted into an elastic
part and a plastic part. We propose its following special representation [7]:

ψ = ψ̃e

(
Ẽe

)
+ ψp

(
Â1, Â2

)
= ψ̄e (CBp) + ψp

(
Â1, Â2

)
(10)
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with Bp = Cp−1 = F p−1F p−T (11)

introducing a covariant symmetric second-order tensorial internal variable Â1

and a covariant skew-symmetric one Â2, both defined in the substructure
configuration. Based on relation (9) we get the following inequality considering
the time derivative of equation (10):

−̺o

{
∂ψ̄e

∂ (CBp)
·· (BpC )

·
+
∂ψp

∂Â1

·· Â1
˙ − ∂ψp

∂Â2

·· Â2
˙
}

+
1

2
T ·· Ċ ≥ 0 . (12)

In the case of pure elastic material behaviour no dissipation does appear,
and a hyperelastic material law can be defined easily from (12):

T = 2 ̺o
∂ψ̄e

∂ (CBp)
Bp = 2

∂ψe

∂C
. (13)

Describing the material behaviour of metals we propose a modified compress-
ible Neo-Hookean model for the elastic part of the free energy density [7] with
material parameters which can be estimated based on the Young’s modulus
and the Poisson’s ratio.

Considering the assumptions

α̂ = ̺0
∂ψp

∂Â1

, T̂ p = −̺0
∂ψp

∂Â2

(14)

for the backstress tensor α̂ work-conjugated to Â1 and for a stress-like ten-
sor T̂ p work-conjugated to Â2 in the remaining part of the Clausius-Duhem
inequality (12) after the elimination of the hyperelastic relation, we get the
plastic dissipation inequality formulated in the reference configuration

Dp = −α ··
△

A1 − T p ··
△

A2 −
1

2
CT Cp·· Ḃp ≥ 0 (15)

with

α = H−1α̂H−T ,
△

A1 = HT Â1
˙

H ,

T p = H−1T̂ pH−T ,
△

A2 = HT Â2
˙

H .

(16)

Considering the postulate that the plastic dissipation has to achieve a
maximum under the constraint of satisfying an appropriate yield condition

F (T ,α,T p) ≤ 0 (17)

(see e. g. [31]), a corresponding constrained optimization problem based on
the method of Lagrangean multipliers can be defined as follows:

M = Dp (T , α, T p) − λG (T , α, T p, y) → stat (18)

where λ represents the plastic multiplier and y a slip variable with
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G = F (T , α, T p) + y2. (19)

The analysis of the necessary conditions (also known as Kuhn-Tucker condi-
tions) for the objective function M to be a stationary point results in the
associated flow rule

Ḃp = −2λB
∂F

∂T
Bp with B = C−1 (20)

and the evolutional equations for the internal variables

△

A1 = −λ∂F
∂α
,

△

A2 = λ
∂F

∂T p . (21)

The tensors α and A1 respectively T p and A2 are variables assumed to be
connected by the following free energy density relation defined in the sub-
structure configuration with its metric tensor Ĝ

ψp =
1

2
c̄1ĜÂ1··ĜÂ1 −

1

2
c̄2ĜÂ2··ĜÂ2. (22)

This approach with (14) and a subsequent mapping into the reference config-
uration leads to

α = c1X A1X , T p = −c2X A2X (23)

▽
α = c1X

△

A1X ,
▽

T p = −c2X
△

A2X (24)

with
X = H−1ĜH−T . (25)

Due to the dependency of the yield condition on the equivalent stress
TF which on its part represents a function of the plastic arc length Ep

v it
is necessary to consider an evolutional equation for Ep

v . Following the usual
representation the rate of the plastic arc length is given by

Ėp
v =

√
2

3
BpĖp ·· BpĖp with Ep =

1

2
(Cp −G) . (26)

The tensor G represents the metric of the reference configuration. Finally
we get the following system of differential and algebraic equations (DAE)
as a material model describing anisotropic finite elastoplastic deformations
considering an underlying substructure:
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Ṫ + λD
4

··
∂ F

∂ T
− 1

2
D
4

·· Ċ + λ

(
T
∂F

∂T
B + B

∂F

∂T
T

)
= 0 (27)

α̇ + Q1 (T ,α ,T p, λ) = 0 (28)

Ṫ p + Q2 (T ,α ,T p, λ) = 0 (29)

Ėp
v + Q3 (T ,α ,T p, λ) = 0 (30)

F (T ,α ,T p) = 0 (31)

with D
4

= 4
∂2ψe

∂C ∂C
(32)

Q1 = c1X

(
λ
∂F

∂α

)
X + H−1Ḣ α + αḢT H−T (33)

Q2 = c2X

(
λ
∂F

∂T p

)
X + H−1Ḣ T p + T pḢT H−T (34)

Q3 = −λ
√

2

3
B
∂ F

∂ T
·· B

∂ F

∂ T
. (35)

The DAE (27)-(31) represents the initial value problem which has to be
solved within the equilibrium iterations at each Gauss point.

2.2 Numerical solution of the initial value problem

Generally, initial boundary value problems of finite elastoplasticity can not be
solved analytically. Therefore numerical solution methods have to be applied.

Within the context of numerical solution strategies there exist different
kinds of proceeding. In our case we have chosen a method implying the si-
multaneous integration of the complete system of differential and algebraic
equations. This procedure has some advantages we want to elaborate after
having given its numerical implementation in the following.

Using the implizit single step discretization scheme

yn+1 = yn + (α fn+1 + (1− α) fn) ∆ t (36)

for the solution of the differential equation

dy

dt
= ẏ = f(t, y) (37)

with the time increment ∆ t = tn+1 − tn and the weighting factor α ∈ [0, 1]
we get the following time discretization of equations (27)-(31):
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T n+1 − T n −
[
α

1

2
D
4

n+1··Ċn+1 + (1− α)
1

2
D
4

n··Ċn

]
∆t

+

[
αλn+1 D

4
n+1··

∂ F

∂ T

∣∣∣∣
n+1

+ (1− α)λn D
4

n··
∂ F

∂ T

∣∣∣∣
n

]
∆t

+αλn+1

[
T n+1

∂ F

∂ T

∣∣∣∣
n+1

Bn+1 + Bn+1
∂ F

∂ T

∣∣∣∣
n+1

T n+1

]
∆t

+ (1− α)λn

[
T n

∂ F

∂ T

∣∣∣∣
n

Bn + Bn
∂ F

∂ T

∣∣∣∣
n

T n

]
∆t = 0 (38)

αn+1 −αn +
[
αQ1n+1

+ (1− α)Q1n

]
∆t = 0 (39)

T p
n+1 − T p

n +
[
αQ2n+1

+ (1− α)Q2n

]
∆t = 0 (40)

Ep
vn+1

− Ep
vn

+
[
αQ3n+1

+ (1− α)Q3n

]
∆t = 0 (41)

F (T n+1,αn+1,T
p
n+1) = 0 (42)

To eliminate the material time derivative Ċn+1, which can not be calculated
from other available values, relation (36) is applied once again:

Ċn+1 =
1

α∆t

[
∆Cn+1 − (1− α) Ċn∆t

]
(43)

with

∆Cn+1 = Cn+1 −Cn (α = 1 for the load step n = 0 ) (44)

and equation (38) becomes:

T n+1− T n+

[
αλn+1 D

4
n+1··

∂ F

∂ T

∣∣∣∣
n+1

+(1− α)λn D
4

n··
∂ F

∂ T

∣∣∣∣
n

]
∆t

− 1

2
D
4

n+1··∆Cn+1 −
1

2
(1− α)

(
D
4

n −D
4

n+1

)
··Ċn ∆t

+αλn+1

[
T n+1

∂ F

∂ T

∣∣∣∣
n+1

Bn+1 + Bn+1
∂ F

∂ T

∣∣∣∣
n+1

T n+1

]
∆t

+ (1− α)λn

[
T n

∂ F

∂ T

∣∣∣∣
n

Bn + Bn
∂ F

∂ T

∣∣∣∣
n

T n

]
∆t = 0 . (45)

Relations (45), (39)–(42) represent a non-linear system of algebraic equations
with respect to T n+1, αn+1, T

p
n+1, E

p
v n+1 and λn+1. In the following a vector

of variables
z = (T ,α ,T p, Ep

v , λ)
T

(46)
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is introduced. The left-hand side of the system of equations (45),(39)-(42) can
be written using an operator G

G = G
(
zn,zn+1,∆Cn+1, Ċn

)
. (47)

As we can consider the vectors zn and Ċn as known and therefore fixed
quantities, the vector zn+1

zn+1 =
(
T n+1,αn+1,T

p
n+1, E

p
vn+1

, λn+1

)T

(48)

represents the solution of the non-linear system of algebraic equations

Gn+1 = G (zn+1) = 0 (49)

with respect to the load step [tn, tn+1]. For the calculation of zn+1 from (49)
the Newton’s method is applied. This kind of proceeding leads to a linear
system of algebraic equations

(
∇

zi
n+1

G

)
∆z i+1

n+1 = − Gi
n+1, (50)

for the iterative determination of the increments of the solution vector z

∆z i+1
n+1 = z i+1

n+1 − z i
n+1. (51)

This kind of proceeding to solve the initial value problem has an impor-
tant advantage: The consistent material tangent dT /dE necessary for the
generation of the element stiffnes matrices can be calculated very easily. From
the implicit differentiation of equations (45),(39)-(42), cp. (47) and (49), with
respect to the strain tensor E follows

2
dG

dCn+1
=

dG

dEn+1
=

∂ G

∂En+1
+

(
∇zn+1 G

) dzn+1

dEn+1
= 0 . (52)

Because of the Jacobi matrix in equation (52) is always known the consistent
material tangent can be calculated immediately without any further efforts:

(
∇zn+1 G

)




dT
dE
|n+1

dα
dE
|n+1

dT p

dE
|n+1

dEp
v

dE
|n+1

dλ
dE
|n+1




=




D
4

n+1 + M
4

n+1

0
4

0
4

0

0




(53)
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with

M
4

n+1 = 2αλn+1

(
T n+1

∂F

∂T

∣∣∣∣
n+1

Bn+1 I
4

Bn+1

+ Bn+1 I
4

Bn+1
∂F

∂T

∣∣∣∣
n+1

T n+1

)
∆t. (54)

Finally we want to mention that once the numerical implementation of
the initial value problem is accomplished it can be solved not only at the
Gauss points but also at any other point of each element. This fact is used in
the following especially within the context of mesh adaptation because field
variables have to be determined for mesh refinements at the element nodes
(see more in detail in Sect. 3).

3 Hierarchical adaptive strategy

As mentioned in the introduction, the quality of the numerical simulation of
non-linear mechanical problems essentially depends on appropriately designed
FE meshes as well. Within this context, spatial adaptivity becomes a more
and more important feature of modern FE codes allowing local refinement in
regions with large stress gradients. Automated mesh control has significant
influence on the accuracy and the efficiency of the solution of the initial-
boundary value problem as well as on the generation of well adapted meshes
at critical areas of components and structures.

The already mentioned in-house FE code SPC-PM2AdNl implies the fea-
ture of adaptivity for 2D triangular and rectangular elements of the serendipity
class. The implemented mesh adaptation strategy facilitates an improved sim-
ulation of the mechanical behaviour in regions with large stress gradients (e.g.
near cracks, notches and in contact areas) and/or at the boundary between
elastic and plastic zones [9].

Independent of the special material model the strategy for adaptivity of
the space discretization generally consists of the following steps:

• error estimation,
• mesh refinement and/or coarsening,
• transfer of the field variables to newly generated nodes and integration

points.

As shown in Fig. 2 the adaptive FE strategy for geometrically and physically
non-linear problems is characterized by some particular features:

• Non-linear initial-boundary value problems are usually solved subdividing
them into load steps. Within the context of adaptive strategies, each load
increment can be regarded as a separate subproblem which has to be solved
in view of a sufficiently accurate mesh before starting the next load step.
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Fig. 2. General scheme of the adaptive FE algorithm: Non-linear approach

• Therewith the current load step [tn, tn+1] has to be restarted with an
adapted mesh if the error control indicates an unsatisfying solution of the
displacement field.

• Due to the dependence of the non-linear solution on the load history, the
transfer of all field variables at tn is required for the newly generated
elements. This mapping procedure generally leads to a violated equilibrium
state and a possibly not overall satisfied yield condition.

• To overcome these difficulties an iterative correction procedure of the
initial-boundary value problem at tn applying a zero external load in-
crement is proceeded additionally.

Commonly the field variables are known only at the Gauss points result-
ing from the solution of the initial value problem. Different strategies for their
mapping to the Gauss points of newly created son elements have been de-
veloped. Here, the authors present a special mapping algorithm as a crucial
point of their adaptive approach: In contrast to the majority of FE applica-
tions known from the literature the solution of the initial value problem is
performed in SPC-PM2AdNl not only at the Gauss points but supplementary
at the nodes of the elements. As for FE approaches usually only the displace-
ment field is continuous over the element boundaries, this procedure leads to
different values of the field variables at nodes pertaining to several elements.
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Nevertheless, the presented adaptive algorithm is even primarily based on this
non-smoothed nodal data.

3.1 Error control

The field of error estimation is the most important step for the control of the
mesh adaptation. Several residual a posteriori error estimators are realized
in the program SPC-PM2AdNl within the framework of finite elastoplasticity.
Thereby the residua of the equilibrium including the edge jumps of inner forces
between neighbouring elements as well as the residua of the yield condition
are evaluated.

Error estimator with respect to the equilibrium

The used error estimator ηT for an element T

η2T ≈
h2

T

λD

∫
T

|div σ (uh) + f h |2 dΩ +

∑
E∈∂T

hT

λD

∫
E

|[σ (uh)nE ]|2 dsE

(55)

is based on Babuška et al. [4, 5] and further developments of Johnson and
Hansbo [17], Kunert [19–23], Cramer et al. [11], Carstensen and Alberty [10],
Stein et al. [33]. Here uh and f h denote the finite element representation
of the displacement vector and the volume forces respectively, σ the Cauchy
stress tensor, λD an interpolation parameter depending on the material, hT

the characteristic element length and nE the normal vector of the element
edge.

The first part of relation (55) represents the element related residuum and
the second part describes the jumps of tractions over element edges E which
are usually approximated by the midpoint integration rule.

In linear elasticity λD is usually approximated by the Young’s modulus
[1, 14]. In the non-linear case this interpolation parameter can not be given
exactly. It is assumed that its order of magnitude is the same as for linear
problems. For that reason, we approximate λD within the framework of the
presented model by the Young’s modulus too. Using this approach, it can
happen that the error in plastic regions is underestimated. To overcome this,
a supplementary heuristic error indicator with respect to the fulfillment of the
yield condition was implemented (see equation (59)).

Error indicator with respect to the yield condition

In elastoplasticity it is necessary to describe the boundary between elastic
and plastic zones as exact as possible. A special error indicator with respect
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to the yield condition presented in [33] reacts very sensitively in these re-
gions. Therefore, this error indicator was modified for finite deformations and
implemented into the FE-code SPC-PM2AdNl.

Derivating the DAE (27)-(31) from the optimization problem (18) (com-
pare Sect. 2.1), we get additionally the so called Kuhn-Tucker conditions:

λ ≥ 0 (56)

F ≤ 0 (57)

λF = 0 (58)

Because of λ = 0 the condition (58) is always fulfilled in the elastic case, at un-
loading and neutral loading. During loading in the plastic case the algorithms
for the solution of the initial value problem result in an “exact” fulfillment
(with a given numerical accuracy) of the yield condition at the Gauss points
of the applied integration scheme, and in the presented case additionally at
the nodes of the elements. How accurate the plastic zone is mapped with the
current FE mesh can be estimated using the error indicator

η2KT = ‖λF − λhFh‖2L2(T ) = ‖λhFh‖2L2(T ) (59)

with respect to the condition (58).
The integrals (59) are taken for each element over integration points differ-

ing from the Gauss points applied for the solution of the initial value problem.
Within this context the values λh and Fh at these points are approximated
based on the shape functions.

The application of this error indicator leads to refined meshes especially
at the boundary of the plastic zone, while in its core coarsening may appear
up to the coarse mesh.

3.2 Mesh refinement

As mentioned before it is very advantageous for the mesh refinement procedure
that the solution of the initial value problem is performed not only at the
Gauss points but also at the nodes of the elements. This kind of proceeding
facilitates the transfer of the nodal values from the father to the newly created
son elements.

Generally, the refinement procedure passes off like follows:

1. Creation of the son elements (definition of edges and nodes).
2. Direct transfer of the nodal values from the father element to the son

elements for all the points where son nodes coincide exactly with father
nodes.

3. Calculating for newly created son nodes the corresponding nodal values
using the shape functions of the father element. The transfer of the nodal
displacements
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uSonj (ξ, η) =

Nel∑

k=1

hk (ξ, η) uFath
k (60)

is consistent with the basic assumptions of the FE approach, and yields to
continuous functions over the element edges. For all other field variables
yi with y = (y1, y2, ..., yn)

T
the transfer rule

ySonj (ξ, η) =

Nel∑

k=1

hk (ξ, η) yFath
k (61)

is a useful interpolation method as well. In contrast to the transfer of the
nodal displacements the transfer of y results in noncontinuous functions
at the element boundaries.

4. The new Gauss point values of the son elements are determined using the
shape functions of the newly created son elements.

3.3 Mesh coarsening

The feature of mesh adaptation includes not only mesh refinements but also
the possibility of mesh coarsening in regions of the structure in which no high
stress gradients apppear. The FE code SPC-PM2AdNl permits to coarse only
elements which are originated by a former element division. That means a
back tracing from several leafs to branches with respect to the element tree
(see Fig. 3).

1
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Fig. 3. Element tree in the case of triangular elements: Branches and leafs
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Here, the transfer of the element based data from the sons to their common
father has to be especially observed. It can be understood as the adjoint
rule to the refinement procedure mentioned above. In detail, the values of
nodes of the future father element which coincide with a node of only one
son element are transferred directly. In contrast, nodal values of several son
elements belonging to the same node of the father element have to be merged.
In general there are different strategies for the transfer of the nodal results
between son elements and the newly created father element. We investigated
the following two approaches:

• The transfer of the son nodal values to the father element is performed
using the arithmetical mean. This is the simplest way of transferring.

• Using the least squares method an improved algorithm to determine the
father nodal values can be derived. Therewith it is possible to consider all
available nodal values of the son elements. This procedure is supposed to
be more accurate.

Finally, the Gauss point values of the newly created father element have
to be calculated as well. The determination of these new values is executed
using the shape functions of the corresponding element.

4 Numerical examples

In this section we would like to present some numerical examples calculated
with the mentioned in-house code SPC-PM2AdNl. They show the efficiency
of the developed material law and the implemented feature of adaptivity as
well. But before presenting concrete results, we want to specify some other
important characteristics of the Finite Element code under consideration. It
is based on the following assumptions and numerical algorithms:

• Total Lagrangean description
• Damped Newton-Raphson method with a consistent linearization and a

simple load step control for the numerical solution of the boundary value
problem

• Conjugated gradient method with hierarchical preconditioning for the it-
erative solution of the FE-stiffness system

• Elastoplastic material behaviour considering finite deformations based on
the multiplicative decomposition of the deformation gradient and the addi-
tive split of the free energy density, thermodynamically consistent material
law as a system of differential and algebraic equations

• Discretization of the initial value problem with implicit single step stan-
dard methods and solution of the non-linear system of equations with
damped Newton methods

• Efficient determination of the consistent material matrix
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In the following we investigate the example of the tension of a plate with
a hole under plane strain. The boundary conditions and two different coarse
meshes with fully integrated eight node quadrilateral elements utilized for the
presented calculations are shown in Fig. 4.

Fig. 4. Plate with a hole (one quarter of the plate). Boundary conditions. Coarse
meshes with 44 and 176 elements. Edge length h = 100 mm, radius of the hole
10 mm

The elastic part of the material behaviour is described using a compressible
Neo-Hookean hyperelastic approach with the following elastic part of the free
Helmholtz energy density function

ψe = c10(I − ln III − 3) + D2 (ln III)
2

(62)

resulting in

D
4

= 8D2C
−1 ⊗C−1 − 4 [2D2 ln III − c10] C−1I

4
C−1 (63)

Here I and III denote invariants of the elastic strain tensor C̃e = F eT

F e.
The coordinates of the fourth order tensor I

4
are defined as

IIJKL = δIKδJL (64)

For details see [7, 8]. The material parameters c10 and D2 are approximated
with

c10 ≈
E

4(1 + ν)
, D2 ≈

c10
2

ν

1− 2ν
(65)

using a Young’s modulus E = 2.1 · 105 MPa and a Poisson’s ratio ν = 0.3.
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4.1 Numerical results with respect to the substructure approach

The substructure approach offers the possibility to describe plastic anisotropy
using relatively simple formulations. Based on a special yield condition [7, 8],

F =
(
T̀ − ὰ

)
·· K

4
··
(
T̀ − ὰ

)
+ csM S3C ·· M S3C − 2

3
T 2

F = 0 (66)

with M S3 = [(T −T p) Cα + αC (T +T p)] (67)

and on the following evolutional equation for the yield stress TF [34]

TF = TF0 + a [(Ep
v + β)

n
+ βn] (68)

isotropic and kinematic as well as distorsional hardening can be described.
Material parameters appearing in (24), (66) and (68) are c1 = 40 MPa,

TF0 = 200 MPa, a = 100 MPa, β = 1.0 · 10−8, n = 0.3, c2 = 1.0 · 104 MPa,
cs = 5.0·10−3 MPa−2. The internal variables α and T p start with zero values.

IYC

Fig. 5. Plate with a hole: Evolution of the yield condition using a substructure
approach, initial yield condition (IYC) of von Mises type and subsequent yield con-
ditions at different load level

In Fig. 5 the evolution of the yield condition observed at one point near
the hole is presented. It can be seen easily that we have anisotropic material
behaviour because of the changes of the axis ratio of the yield condition, its
rotation and small translation.
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4.2 Numerical results with respect to adaptivity

This subsection shows some examples of adapted meshes. As the proceeding of
mesh adaptation is nearly independent from the applied elastoplastic material
law, for reasons of simplicity we want to neglect in the following the extensive
substructure approach and just focus on a von Mises type formulation for
finite deformations. The yield condition considered is

F =
(
T̀ − ὰ

)
C ··

(
T̀ − ὰ

)
C − 2

3
T 2

F = 0 (69)

Material parameters for the evolution of the yield stress TF ( see (68)) are
chosen as in Sect. 4.1 apart from a = 1000 MPa and the remaining parameter
of equation (24) c1 = 500 MPa.

Fig. 6. Tension of a plate. Undeformed and deformed geometries with meshes.
Distribution of the plastic arc length as contour bands on the deformed geometry

The initial geometry of the plate (right half) with the coarse mesh is
shown in Fig. 6 on the left-hand side. In order to emphasize the performance
of the FE code SPC-PM2AdNl in the case of an adaptive simulation of finite
deformations, on the right-hand side the distribution of the plastic arc length
on the deformed plate including the adaptive mesh after an elongation of 50%
is presented. For the hierarchical adaptive strategy a combination of the error
estimators ηE and ηKT was used.
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The following numerical results are based on the finer coarse mesh with
176 elements.

bln176 - 176 Elemente (Grobgitter)

SFB 393 - TU Chemnitz

elements (coarse mesh) bln176 - 208 Elemente

SFB 393 - TU Chemnitz

elements

bln176 - 278 Elemente

SFB 393 - TU Chemnitz

elements bln176 - 312 Elemente

SFB 393 - TU Chemnitz

elements

bln176 - 407 Elemente

SFB 393 - TU Chemnitz

elements bln176 - 409 Elemente

SFB 393 - TU Chemnitz

elements

Fig. 7. Plate with a hole. Evolution of the mesh based on error indicator ηKT
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A first investigation concerns the mesh evolution if exclusively the yield
condition error indicator ηKT was applied. In Fig. 7 the mesh evolution is pre-
sented to demonstrate particularly that this kind of error estimation results
in a mesh refinement especially at the boundary of the plastic zone. Already
during the first load steps, where only small displacements but locally mod-
erate deformations occur, the plastic zone propagates nearly over the whole
sheet. Large deformations appearing due to a further increase of the external
load do not result in significant changes of the adapted mesh.

Another analysis investigates the different mesh adaptation and its effi-
ciency in dependence from the applied error estimator.

Fig. 8. Plate with a hole. Convergence of the solution in dependence on the mesh
with respect to the example of the the maximum plastic arc length. (Dashed line)
Global mesh refinement; (A) Adaptive remeshing based on edge oriented error es-
timator ηE ; (B) Adaptive remeshing based on element oriented error estimator ηE ;
(C) Adaptive remeshing based on error estimator ηKT ; (D) Adaptive remeshing
based on element oriented error estimators ηE and ηKT
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It can be seen that error estimation with respect to the equilibrium (ηE) yields
to an element refinement at locations with high stress gradients (compare cases
A and B in Fig. 8). In comparison, the yield condition error indicator ηKT leads
to new elements especially at the boundary of the plastic zone. Generally it
can be observed that for all kinds of error estimation the presented hierarchical
adaptive strategy provides the asymptotic values of the field variables already
at much lower element numbers compared with a global remeshing approach.

5 Outlook

Within the framework of the simulation of non-linear problems in continuum
mechanics we focused our activities especially on the development of suitable
material laws for finite elastoplasticity as well as on the implementation of
adaptive hierarchical remeshing strategies.

Future developments will concern the development of a 3D code version
as well as the extension to mixed finite FE approaches. The objective is to
enlarge the application field of our developments to more technical problems
and also to the field of biomechanics.
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1 Introduction

Many mathematical models concerning for example field calculations, flow
simulation, elasticity or visualization are based on operator equations with
global operators, especially boundary integral operators. Discretizing such
problems will then lead in general to possibly very large linear systems with
densely populated matrices. Moreover, the involved operator may have an or-
der different from zero which means that it acts on different length scales in a
different way. This is well known to entail the linear systems to become more
and more ill-conditioned when the level of resolution increases. Both features
pose serious obstructions to the efficient numerical treatment of such prob-
lems to an extent that desirable realistic simulations are still beyond current
computing capacities.

Modern methods for the fast solution of boundary integral equations re-
duce the complexity to a nearly optimal rate or even an optimal rate. Denoting
the number of unknowns byNJ , this means the complexityO(NJ logαNJ) and
O(NJ ), respectively. Prominent examples for such methods are the fast mul-
tipole method [27], the panel clustering [30] or hierarchical matrices [1,29,52].
As introduced by [2] and improved in [13, 17, 18, 47], wavelet bases offer a
further tool for the fast solution of boundary integral equations. In fact, a
Galerkin discretization with wavelet bases results in quasi-sparse matrices,
i.e., the most matrix entries are negligible and can be treated as zero. Dis-
carding these nonrelevant matrix entries is called matrix compression. It has
been shown first in [47] that only O(NJ ) significant matrix entries remain.

Concerning boundary integral equations, a strong effort has been spent
on the construction of appropriate wavelet bases on surfaces [15, 19, 20, 31,
43, 47]. In order to achieve the optimal complexity of the wavelet Galerkin
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scheme, wavelet bases are required that provide sufficiently many vanishing
moments. Our realization is based on biorthogonal spline wavelets derived from
the multiresolution developed in [9]. These wavelets are advantageous since
the regularity of the duals is known [53]. Moreover, the duals are compactly
supported which preserves the linear complexity of the fast wavelet transform
also for its inverse. This is an important task for the coupling of FEM and
BEM, cf. [33, 34]. Additionally, in view of the discretization of operators of
positive order, for instance, the hypersingular operator, globally continuous
wavelets are available [3, 10,19,38].

The efficient computation of the relevant matrix coefficients turned out to
be an important task for the successful application of the wavelet Galerkin
scheme [31, 44, 47]. We present a fully discrete Galerkin scheme based on nu-
merical quadrature. Supposing that the given manifold is piecewise analytic
we can use an hp-quadrature scheme [37,45,49] in combination with exponen-
tially convergent quadrature rules. This yields an algorithm with asymptot-
ically linear complexity without compromising the accuracy of the Galerkin
scheme.

The outline is as follows. First, we introduce the class of problems under
consideration. Then, in Sect. 3 we provide suitable wavelet bases on manifolds.
With such bases at hand we are able to introduce the fully discrete wavelet
Galerkin scheme in Sect. 4. We survey on practical issues like setting up the
compression pattern, assembling the system matrix and preconditioning. Es-
pecially, we present numerical results with respect to a nontrivial domain
geometry in order to demonstrate our scheme. Finally, in Sect. 5 we present
recent developments concerning adaptivity and wavelet Galerkin schemes for
complex geometries.

We shall frequently write a � b to express that a is bounded by a constant
multiple of b, uniformly with respect to all parameters on which a and b may
depend. Then a ∼ b means a � b and b � a.

2 Problem formulation and preliminaries

We consider a boundary integral equation on the closed boundary surface Γ
of an (n+ 1)-dimensional domain Ω

(Au)(x) =

∫

Γ

k(x,y)u(y)dσy = f(x), x ∈ Γ. (1)

Herein, the boundary integral operator A : Hq(Γ ) → H−q(Γ ) is assumed to
be an operator of order 2q. Its kernel function will be specified below.

We assume that the boundary Γ ⊂ R
n+1 is represented by piecewise para-

metric mappings. Let � denote the unit n-cube, i.e., � = [0, 1]n. We subdivide
the given manifold into several patches
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Γ =

M⋃

i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M,

such that each γi : � → Γi defines a diffeomorphism of � onto Γi. The
intersection Γi ∩ Γi′ , i �= i′, of the patches Γi and Γi′ is supposed to be either
∅ or a lower dimensional face.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of
the unit cube into 2nj cubes Cj,k ⊆ �, where k = (k1, . . . , kn) with 0 ≤
km < 2j . This generates 2njM elements (or elementary domains) Γi,j,k :=
γi(Cj,k) ⊆ Γi, i = 1, . . . ,M . In order to get a regular mesh of Γ the parametric
representation is subjected to the following matching condition. A bijective,
affine mapping Ξ : � → � exists such that for all x = γi(s) on a common
interface of Γi and Γi′ it holds that γi(s) = (γi′ ◦ Ξ)(s). In other words, the
diffeomorphisms γi and γi′ coincide at interfaces except for orientation.

The first fundamental tensor of differential geometry is given by the matrix

Ki(s) :=
[(∂γi(s)

∂sj
,
∂γi(s)

∂sj′

)
ℓ2(Rn+1)

]
j,j′=1,...,n

∈ R
n×n.

Since γi is supposed to be a diffeomorphism, the matrix Ki(s) is symmetric
and positive definite. The canonical inner product in L2(Γ ) is given by

(u, v)L2(Γ ) =

∫

Γ

u(x)v(x)dσx =

M∑

i=1

∫

�

u
(
γi(s)

)
v
(
γi(s)

)√
det

(
Ki(s)

)
ds.

The corresponding Sobolev spaces are indicated by Hs(Γ ). Of course, depend-
ing on the global smoothness of the surface, the range of permitted s ∈ R is
limited to s ∈ (−sΓ , sΓ ). In case of general Lipschitz domains we have at least
sΓ = 1 since for all 0 ≤ s ≤ 1 the spaces Hs(Γ ) consist of traces of functions
∈ Hs+1/2(Ω), cf. [11].

The present surface representation is in contrast to the usual approxima-
tion of the surface by panels. It has the advantage that the rate of convergence
is not limited by this approximation. Notice that technical surfaces generated
by CAD tools are represented in this form.

We can now specify the kernel functions. To this end, we denote by α =
(α1, . . . , αn) and β = (β1, . . . , βn) multi-indices of dimension n and define
|α| := α1 + . . .+αn. Moreover, we denote by ki,i′(s, t) the transported kernel
functions, that is

ki,i′(s, t) := k
(
γi(s), γi′(t)

)√
det

(
Ki(s)

)√
det

(
Ki′(t)

)
, 1 ≤ i, i′ ≤M. (2)

Definition 1. A kernel k(x,y) is called standard kernel of the order 2q, if the
partial derivatives of the transported kernel functions ki,i′(s, t), 1 ≤ i, i′ ≤M ,
are bounded by

∣∣∂α
s ∂

β
t ki,i′(s, t)

∣∣ ≤ cα,β

∥∥γi(s)− γi′(t)
∥∥−(n+2q+|α|+|β|)

provided that n+ 2q + |α|+ |β| > 0.
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We emphasize that this definition requires patchwise smoothness but not
global smoothness of the geometry. The surface itself needs to be only Lip-
schitz. Generally, under this assumption, the kernel of a boundary integral
operator A of order 2q is standard of order 2q. Hence, we may assume this
property in the sequel.

3 Wavelets and multiresolution analysis

In general, a multiresolution analysis consists of a nested family of finite di-
mensional subspaces

Vj0+1 ⊂ Vj0+2 ⊂ · · · ⊂ Vj ⊂ Vj+1 · · · ⊂ · · · ⊂ L2(Γ ), (3)

such that dimVj ∼ 2jn and
⋃

j>j0
Vj = L2(Γ ). Each space Vj is defined

by a single-scale basis Φj = {φj,k : k ∈ ∆j}, i.e., Vj = spanΦj , where ∆j

denotes a suitable index set with cardinality |∆j | ∼ 2nj . It is convenient to
identify bases with row vectors, such that, for vj = [vj,k]k∈∆j

∈ ℓ2(∆j), the
function vj = Φjvj is defined as vj =

∑
k∈∆j

vj,kϕj,k. A final requirement

is that the bases Φj are uniformly stable, i.e., ‖vj‖ℓ2(∆j) ∼ ‖Φjvj‖L2(Γ ) for
all vj ∈ ℓ2(∆j) uniformly in j. Furthermore, the single-scale bases satisfy the
locality condition diam suppφj,k ∼ 2−j .

If one is going to use the spaces Vj as trial spaces for the Galerkin scheme
then additional properties are required. The trial spaces shall have approxi-
mation order d ∈ N and regularity γ > 0, that is

γ = sup{s ∈ R : Vj ⊂ Hs(Γ )},
d = sup

{
s ∈ R : inf

vj∈Vj

‖v − vj‖L2(Γ ) � 2−js‖v‖Hs(Γ )

}
.

Note that conformity of the Galerkin scheme induces γ > q.
Instead of using only a single-scale j the idea of wavelet concepts is to keep

track to increment of information between two adjacent scales j and j + 1.
Since Vj ⊂ Vj+1 one decomposes Vj+1 = Vj ⊕Wj with some complementary
spaceWj ,Wj∩Vj = {0}, not necessarily orthogonal to Vj . Of practical interest
are the bases of the complementary spaces Wj in Vj+1

Ψj = {ψj,k : k ∈ ∇j := ∆j+1 \∆j}.

It is supposed that the collections Φj ∪ Ψj are also uniformly stable bases of
Vj+1. If Ψ =

⋃
j≥j0

Ψj , where Ψj0 := Φj0+1, is a Riesz-basis of L2(Γ ), we will
call it a wavelet basis. We assume the functions ψj,k to be local with respect
to the corresponding scale j, i.e., diam suppψj,k ∼ 2−j , and we will normalize
them such that ‖ψj,k‖L2(Γ ) ∼ 1.

At first glance it would be very convenient to deal with a single ortho-
normal system of wavelets. But it was shown in [13, 18, 47] that orthogonal
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wavelets are not completely appropriate for the efficient solution of boundary
integral equations. For that reason we use biorthogonal wavelet bases. Then,
we have also a biorthogonal, or dual, multiresolution analysis, i.e., dual single-
scale bases Φ̃j = {φ̃j,k : k ∈ ∆j} and wavelets Ψ̃j = {ψ̃j,k : k ∈ ∆j} which are

coupled to the primal ones via (Φj , Φ̃j)L2(Γ ) = I and (Ψj , Ψ̃j)L2(Γ ) = I. The

associated spaces Ṽj := span Φ̃j and W̃j := span Ψ̃j satisfy

Vj ⊥ W̃j , Ṽj ⊥Wj . (4)

Also the dual spaces shall have some approximation order d̃ ∈ N and regularity
γ̃ > 0.

Denoting likewise to the primal side Ψ̃ =
⋃

j≥j0
Ψ̃j , where Ψ̃j0 := Φ̃j0+1,

then every v ∈ L2(Γ ) has a representation v = Ψ(v, Ψ̃)L2(Γ ) = Ψ̃(v, Ψ)L2(Γ ).
Moreover, there hold the well known norm equivalences

‖v‖2Ht(Γ ) ∼
∑

j≥j0

22jt‖(v, Ψ̃j)L2(Γ )‖2ℓ2(∇j)
, t ∈ (−γ̃, γ),

‖v‖2Ht(Γ ) ∼
∑

j≥j0

22jt‖(v, Ψj)L2(Γ )‖2ℓ2(∇j)
, t ∈ (−γ, γ̃).

(5)

The relation (4) implies that the wavelets provide vanishing moments of

order d̃ ∣∣(v, ψj,k)L2(Γ )

∣∣ � 2−j(d̃+n/2)|v|W d̃,∞(supp ψj,k). (6)

Here |v|W d̃,∞(Ω) := sup|α|=d̃, x∈Ω |∂αv(x)| denotes the semi-norm inW d̃,∞(Ω).

We refer to [12] for further details.

For the current type of boundary surfaces Γ the Φj , Φ̃j are generated by
constructing first dual pairs of single-scale bases on the interval [0, 1], using
B-splines for the primal bases and the dual components from [9] adapted to
the interval [16]. Tensor products yield corresponding dual pairs on �. Using
the parametric liftings γi and gluing across patch boundaries leads to globally
continuous single-scale bases Φj , Φ̃j on Γ , [3,10,19,38]. For B-splines of order d

and duals of order d̃ ≥ d such that d+ d̃ is even the Φj , Φ̃j have approximation

orders d, d̃, respectively. It is known that the respective regularity indices γ, γ̃
(inside each patch) satisfy γ = d − 1/2 while γ̃ > 0 is known to increase

proportionally to d̃. Appropriate wavelet bases are constructed by projecting a
stable completion into the correct complement spaces (see [4,19,31] for details).
We refer the reader to [31, 36] for the details concerning the construction of
biorthogonal wavelets on surfaces. Some illustrations are given in Fig. 1.

4 The wavelet Galerkin scheme

This section is devoted to a fully discrete wavelet Galerkin scheme for bound-
ary integral equations. In the first subsection we discretize the given boundary
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piecewise constant wavelets

scaling function

+1

wavelet of type i

+ 1
8

−1

+1

− 1
8

wavelet of type ii

− 1
8

+1−1 + 1
8

piecewise bilinear wavelets

wavelet of type i wavelet of type ii

Fig. 1. (Interior) piecewise constant/bilinear wavelets with three/four vanishing
moments

integral equation. In Subsect. 4.2 we introduce the a-priori matrix compres-
sion which reduces the relevant matrix coefficients to an asymptotically linear
number. Then, in Subsect. 4.3 and Subsect. 4.4 we point out the compu-
tation of the compressed matrix. Next, in Subsect. 4.5 we introduce an a-
posteriori compression which reduces again the number of matrix coefficients.
Subsect. 4.6 is dedicated to the preconditioning of system matrices which arise
from boundary integral operators of nonzero order. In the last subsection we
present numerical results with respect to a nontrivial geometry.

In what follows, the collection ΨJ with a capital J denotes the finite wavelet
basis in the space VJ , i.e., ΨJ :=

⋃J−1
j=j0

Ψj . Further, NJ := dimVJ ∼ 2Jn

indicates the number of unknowns.

4.1 Discretization

The variational formulation of the given boundary integral equation (1) reads:



Wavelet Matrix Compression for Boundary Integral Equations 135

seek u ∈ Hq(Γ ) : (Au, v)L2(Γ ) = (f, v)L2(Γ ) for all v ∈ Hq(Γ ). (7)

It is well known, that the variational formulation (7) is equivalent to the
boundary integral equation (1), see e.g. [28, 46] for details.

To gain the Galerkin method we replace the energy space Hq(Γ ) in the
variational formulation (7) by the finite dimensional spaces VJ introduced in
the previous section. Then, we arrive at the problem

seek uJ ∈ VJ : (AuJ , vJ )L2(Γ ) = (f, vJ )L2(Γ ) for all vJ ∈ VJ .

Equivalently, employing the wavelet basis of VJ , the ansatz uJ = ΨJuJ yields
the wavelet Galerkin scheme

AJuJ = fJ , AJ =
(
AΨJ , ΨJ

)
L2(Γ )

, fJ =
(
f, ΨJ

)
L2(Γ )

. (8)

The system matrix AJ is quasi-sparse and might be compressed to O(NJ )
nonzero matrix entries if the wavelets provide enough vanishing moments.

Remark 1. Replacing above the wavelet basis ΨJ by the single-scale basis ΦJ

yields the traditional single-scale Galerkin scheme Aφ
Juφ

J = fφ
J , where Aφ

J :=(
AΦJ , ΦJ

)
L2(Γ )

, fφ
J :=

(
f, ΦJ

)
L2(Γ )

and uJ = ΦJuφ
J . This scheme is related

to the wavelet Galerkin scheme by

Aψ
J = TJAφ

JTT
J , uψ

J = T−T
J uφ

J , fψ
J = TJ fφ

J ,

where TJ denotes the wavelet transform. Since the system matrix Aφ
J is

densely populated, the costs of solving a given boundary integral equation
traditionally in the single-scale basis is at least O(N2

J ).

4.2 A-priori compression

In a first compression step all matrix entries, for which the distances of the
supports of the corresponding ansatz and test functions are bigger than a
level dependent cut-off parameter Bj,j′ , are set to zero. In the second com-
pression step also some of those matrix entries are neglected, for which the
corresponding ansatz and test functions have overlapping supports.

First, we introduce the abbreviation

Θj,k := conv hull(suppψj,k), Ξj,k := sing suppψj,k.

Note that Θj,k denotes the convex hull to the support of ψj,k while Ξj,k

denotes the so-called singular support of ψj,k, i.e., those points where ψj,k is
not smooth.

We define the compressed system matrix AJ by

[AJ ](j,k),(j′,k′) :=





0, dist
(
Θj,k, Θj′,k′

)
> Bj,j′ , j, j′ > j0,

0, dist
(
Ξj,k, Θj′,k′

)
> B′j,j′ , j′ > j,

0, dist
(
Θj,k, Ξj′,k′

)
> B′j,j′ , j > j′,(

Aψj′,k′ , ψj,k

)
L2(Γ )

, otherwise.

(9)
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Herein, choosing
a > 1, δ ∈ (d, d̃+ 2q), (10)

the cut-off parameters Bj,j′ and B′j,j′ are set as follows

Bj,j′ = a max
{

2−min{j,j′}, 2
2J(δ−q)−(j+j′)(δ+d̃)

2(d̃+q)

}
,

B′j,j′ = amax
{

2−max{j,j′}, 2
2J(δ−q)−(j+j′)δ−max{j,j′}d̃

d̃+2q

}
.

(11)

The resulting structure of the compressed matrix is called finger structure,
cf. Fig. 2. It is shown in [13, 47] that this compression strategy does not
compromise the stability and accuracy of the underlying Galerkin scheme.

Theorem 1. Let the system matrix AJ be compressed in accordance with (9),
(10) and (11). Then, the wavelet Galerkin scheme is stable and the error
estimate

‖u− uJ‖H2q−d(Γ ) � 2−2J(d−q)‖u‖Hd(Γ ) (12)

holds, where u ∈ Hd(Γ ) denotes the exact solution of (1) and uJ = ΨJuJ is
the numerically computed solution, i.e., AJuJ = fJ .
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Fig. 2. The finger structure of the compressed system matrix with respect to the
two (left) and three (right) dimensional unit spheres

The next theorem shows that the over-all complexity of assembling the com-
pressed system matrix is O(NJ ) even if each entry is weighted by a logarith-
mical penalty term [13, 31]. Particularly the choice α = 0 proves that the
a-priori compression yields O(NJ ) relevant matrix entries in the compressed
system matrix.
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Theorem 2. The complexity of computing the compressed system matrix AJ

is O(NJ ) if the calculation of its relevant entries (Aψj′,k′ , ψj,k)L2(Γ ) is per-

formed in O
([
J − j+j′

2

]α)
operations with some α ≥ 0.

4.3 Setting up the compression pattern

Checking the distance criterion (9) for each matrix coefficient, in order to as-
semble the compressed matrix, would require O(N2

J ) function calls. To realize
linear complexity, we exploit the underlying tree structure with respect to the
supports of the wavelets, to predict negligible matrix coefficients. We will call a
wavelet ψj+1,son a son of ψj,father if Θj+1,son ⊂ Θj,father. The following observa-
tion is an immediate consequence of the relations Bj,j′ ≥ Bj+1,j′ ≥ Bj+1,j+1′ ,
and B′j,j′ ≥ B′j+1,j′ if j > j′.

Lemma 1. We consider Θj+1,son ⊆ Θj,father and Θj′+1,son ⊆ Θj′,father.

1. If
dist

(
Θj,father, Θj′,father′

)
> Bj,j′

then there holds

dist
(
Θj+1,son, Θj′,father′

)
> Bj+1,j′ ,

dist
(
Θj+1,son, Θj′+1,son′

)
> Bj+1,j+1′ .

2. For j > j′ suppose

dist
(
Θj,father, Ξj′,father′

)
> B′

j,j′

then we can conclude that

dist
(
Θj+1,son, Ξj′,father′

)
> B′j+1,j′

With the aid of this lemma we have to check the distance criteria only
for coefficients which stem from subdivisions of calculated coefficients on a
coarser level, cf. Fig. 3. Therefore, the resulting procedure of checking the
distance criteria is still of linear complexity.

4.4 Computation of matrix coefficients

Of course, the significant matrix entries (Aψj′,k′ , ψj,k)L2(Γ ) retained by the
compression strategy can generally neither be determined analytically nor be
computed exactly. Therefore we have to approximate the matrix coefficients
by quadrature rules. This causes an additional error which has to be controlled
with regard to our overall objective of realizing asymptotically optimal accu-
racy while preserving efficiency. Thm. 2 describes the maximal allowed com-
putational expenses for the computation of the individual matrix coefficients
so as to realize still overall linear complexity.

The following lemma tells us that sufficient accuracy requires only a level
dependent precision of quadrature for computing the retained matrix coeffi-
cients, see e.g. [13, 31,47].
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Fig. 3. The compression pattern are computed successively by starting from the
coarse grids

Lemma 2. Let the error of quadrature for computing the relevant matrix co-
efficients (Aψj′,k′ , ψj,k)L2(Γ ) be bounded by the level dependent accuracy

εj,j′ ∼ min
{

2−|j−j′|n/2, 2
−2n(J− j+j′

2 ) δ−q

d̃+q

}
22Jq2−2δ(J− j+j′

2 ) (13)

with δ ∈ (d, d̃+r) from (10). Then, the Galerkin scheme is stable and converges
with the optimal order (12).

From (13) we conclude that the entries on the coarse grids have to be computed
with the full accuracy while the entries on the finer grids are allowed to have
less accuracy. Unfortunately, the domains of integration are very large on
coarser scales.

According to the fact that a wavelet is a linear combination of scaling func-
tions the numerical integration can be reduced to interactions of polynomial
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Fig. 4. The element-based representation of a piecewise bilinear wavelet with four
vanishing moments
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shape functions on certain elements. This suggests to employ an element-based
representation of the wavelets like illustrated in Fig. 4 in the case of a piece-
wise bilinear wavelet. Consequently, we have only to deal with integrals of the
form

Iℓ,ℓ′(Γi,j,k, Γi′,j′,k′) :=

∫

Cj,k

∫

Cj′,k′

ki,i′(s, t) pℓ(s) pℓ′(t) dt ds (14)

with pℓ denoting the polynomial shape functions. This is quite similar to the
traditional Galerkin discretization. The main difference is that in the wavelet
approach the elements may appear on different levels due to the multilevel
nature of wavelet bases.

Difficulties arise if the domains of integration are very close together rela-
tively to their size. We have to apply numerical integration with some care in
order to keep the number of evaluations of the kernel function at the quadra-
ture nodes moderate and to fulfill the requirements of Thm. 2. The necessary
accuracy can be achieved within the allowed expenses if we employ an expo-
nentially convergent quadrature method.

In [31, 37, 47] a geometrically graded subdivision of meshes is proposed in
combination with varying polynomial degrees of approximation in the integra-
tion rules, cf. Fig. 5. Exponential convergence is shown for boundary integral
operators which are analytically standard.

Definition 2. We call the kernel k(x,y) an analytically standard kernel of the
order 2q if the partial derivatives of the transported kernel functions ki,i′(s, t),
1 ≤ i, i′ ≤M , satsify

∣∣∂α
s ∂

β
t ki,i′(s, t)

∣∣ ≤ (|α|+ |β|)!
(r
∥∥γi(s)− γi′(t)

∥∥)n+2q+|α|+|β|

for some r > 0 provided that n+ 2q + |α|+ |β| > 0.

Generally, the kernels of boundary integral operators are analytically stan-
dard under the assumption that the underlying manifolds are patchwise an-
alytic. It is shown in [31, 37] that an hp-quadrature scheme based on tensor
product Gauß-Legendre quadrature rules leads to a number of quadrature
points satisfying the assumptions of Thm. 2 with α = 2n. Since the proofs are
rather technical we refer the reader to [31,37,44,47,49] for further details.

Since the kernel function has a singularity on the diagonal we are still
confronted with singular integrals if the domains of integration live on the
same level and have some points in common. This happens if the underlying
elements are identical or share a common edge or vertex. When we do not
deal with weakly singular integral operators, the operators can be regularized,
e.g. by integration by parts [41]. So we end up with weakly singular integrals.
Such weakly singular integrals can be treated by the so-called Duffy-trick [22,
31,45] in order to transform the singular integrands into analytical ones.
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��
Γi′,j′,k′

Γi,j,k

Fig. 5. Adaptive subdivision of the domains of integration

4.5 A-posteriori compression

If the entries of the compressed system matrix AJ have been computed, we
may apply an a-posteriori compression by setting all entries to zero, which are
smaller than a level dependent threshold. That way, a matrix ÂJ is obtained
which has less nonzero entries than the matrix AJ . Clearly, this does not
accelerate the calculation of the matrix coefficients. But the requirement to
the memory is reduced if the system matrix has to be stored. Especially if
the linear system of equations has to be solved for several right hand sides,
like for instance in shape optimization (cf. [23, 24]), the faster matrix-vector
multiplication pays off. To our experience the a-posteriori compression reduces
the number of nonzero coefficients by a factor 2–5.

Theorem 3 ([13,31]). We define the a-posteriori compression by

[
ÂJ

]
(j,k),(j′,k′)

=

{
0, if

∣∣[AJ

]
(j,k),(j′,k′)

∣∣ ≤ εj,j′ ,
[
AJ

]
(j,k),(j′,k′)

, if
∣∣[AJ

]
(j,k),(j′,k′)

∣∣ > εj,j′ .

Herein, the level dependent threshold εj,j′ is chosen as in (13) with δ ∈ (d, d̃+
r) from (10). Then, the optimal order of convergence (12) of the Galerkin
scheme is not compromised.

4.6 Wavelet preconditioning

The system matrices arising from operators of nonzero order are ill condi-
tioned since there holds condℓ2 AJ ∼ 22J|q|. According to [12,47], the wavelet
approach offers a simple diagonal preconditioner based on the norm equiva-
lences (5).

Theorem 4. Let the diagonal matrix Dr
J defined by

[
Dr

J

]
(j,k),(j′,k′)

= 2rjδj,j′δk,k′ , k ∈ ∇j , k′ ∈ ∇j′ , j0 ≤ j, j′ < J. (15)
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Then, if γ̃ > −q, the diagonal matrix D2q
J defines an asymptotically optimal

preconditioner to AJ , i.e., condℓ2(D
−q
J AJD−q

J ) ∼ 1.

Remark 2. The entries on the main diagonal of AJ satisfy
(
Aψj,k, ψj,k

)
L2(Γ )

∼
22qj . Therefore, the above preconditioning can be replaced by a diagonal scal-
ing. In fact, the diagonal scaling improves and even simplifies the wavelet
preconditioning.

As the numerical results in [35] confirm, this preconditioning works well
in the two dimensional case. However, in three dimensions, the results are not
satisfactory. Fig. 6 refers to the condition numbers of the stiffness matrices
with respect to the single layer operator on a square discretized by piecewise
bilinears. We employed different constructions for wavelets with four vanishing
moments (spanning identical spaces, cf. [31, 36] for details). In spite of the
preconditioning, the condition numbers with respect to the wavelets are not
significantly better than with respect to the single-scale basis. We mention that
the situation becomes even worse for operators defined on more complicated
geometries.
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Fig. 6. ℓ2-condition numbers for the single layer operator on the unit square

A slight modification of the wavelet preconditioner yields much better
results. The simple trick is to combine the above preconditioner with the mass
matrix which yields an appropriate operator based preconditioning, cf. [31].

Theorem 5. Let Dr
J be defined as in (15) and BJ := (ΨJ , ΨJ)L2(Γ ) denote

the mass matrix. Then, if γ̃ > −q, the matrix C2q
J = Dq

JBJDq
J defines an

asymptotically optimal preconditioner to AJ , i.e.,

condℓ2

((
C2q

J

)−1/2
AJ

(
C2q

J

)−1/2
)
∼ 1.
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This preconditioner decreases the condition numbers impressively, cf. Fig. 6.
Moreover, the condition depends now only on the underlying spaces but not on
the chosen wavelet basis. To our experiences the condition reduces about the
factor 10–100 compared to the preconditioner (15). We like to mention that,
employing the fast wavelet transform, the application of this preconditioner
requires only the inversion of a single-scale mass matrix, which is diagonal in
case of piecewise constant and very sparse in case of piecewise bilinear ansatz
functions.

4.7 Numerical results

Let Ω be the gearwheel shown in Fig. 7, represented by 504 patches. We seek
the function U ∈ H1(Ω) satisfying the interior Dirichlet problem

∆U = 0 in Ω, U = 1 on Γ . (16)

The ansatz

U(x) =
1

4π

∫

Γ

u(y)

‖x− y‖dσy, x ∈ Ω, (17)

yields the Fredholm boundary integral equation of the first kind Vu = 1 for
the unknown density function u. Herein, V : H−1/2(Γ ) → H1/2(Γ ) denotes
the single layer operator given by

(Vu)(x) :=
1

4π

∫

Γ

u(y)

‖x− y‖dσy, x ∈ Γ. (18)

Fig. 7. The mesh on the surface Γ and the evaluation points xi

We discretize the given boundary integral equation by piecewise constant
wavelets with three vanishing moments which is consistent to (10). We com-
pute the discrete solution UJ := [UJ (xi)] according to (17) from the approx-
imated density uJ , where the evaluation points xi are specified in Fig. 7.
If the density u is in H1(Γ ) we obtain for x ∈ Ω the pointwise estimate
|U(x)− UJ(x)| ≤ cx‖u− uJ‖H−2(Γ ) � 2−3J‖u‖H1(Γ ), cf. [54]. Unfortunately,
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Table 1. Numerical results with respect to the gearwheel

J NJ ‖1 − UJ‖∞ a-priori a-posteriori cpu-time #iterations

1 2016 1.4e-2 13% 10% 1 sec. 37

2 8086 8.8e-3 (1.6) 4.6% 3.7% 13 sec. 37

3 32256 4.2e-3 (2.1) 1.5% 1.0% 92 sec. 45

4 129024 7.6e-5 (55) 4.6e-1% 1.9e-1% 677 sec. 44

5 516096 3.9e-5 (2.0) 1.3e-1% 3.9e-2% 3582 sec. 49

we can only expect a reduced rate of convergence since u �∈ H1(Γ ) due to the
presence of corner and edge singularities.

We present in Table 1 the results produced by the wavelet Galerkin scheme.
The 3rd column refers to the absolute ℓ∞-error of the point evaluations UJ .
In the 4th and 5th columns we tabulate the number of relevant coefficients.
Note that on the level 5 only 650 and 200 relevant matrix coefficients per
degree of freedom remain after the a-priori and a-posteriori compression, re-
spectively. One figures out of the 6th column the over-all computing times,
including compressing, assembling and solving the linear system of equations.
Since the single layer operator is of order−1 preconditioning becomes an issue.
Therefore, in the last column we specified the number of cg-iterations, precon-
ditioned by the operator based preconditioner (cf. Thm. 5). The computations
have been performed on a single processor of a Sun Fire V20z Server with two
2.2 MHz AMD Opteron processors and 4 GB main memory per processor.

We remark that the density u coincides with the Neumann data of the
exterior analogue to (16). Therefore, the quantity C(Ω) =

∫
Γ
u(x)dσx is the

capacity of the present domain, which we computed as C(Ω) = 27.02.

5 Recent developments

5.1 Adaptivity

Wavelet matrix compression can be viewed as a non-uniform approximation
of the Schwartz kernel k(x,y) with respect to the typical singularity at x =
y (cf. Defintion 1). If the domain has corners and edges, the solution itself
admits singularities. In this case an adaptive scheme will reduce the number
of unknowns drastically without compromising the overall accuracy. Adaptive
methods for BEM have been considered by several authors, see e.g. [5,25,39,
40, 48] and the references therein. However, we are not aware of any paper
concerning the combination of adaptive BEM with recent fast methods for
integral equations like e.g. the fast multipole method.

A core ingredient of our adaptive strategy is the approximate application
of (infinite dimensional) operators that ensures asymptotically optimal com-
plexity in the following sense. If (in the given discretization framework) the
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unknown solution u can be approximated in the energy norm with an opti-
mal choice of N degrees of freedom at a rate N−s, then the adaptive scheme
matches this rate by producing for any target accuracy ε an approximate so-
lution uε such that ‖u− uε‖Hq(Γ ) ≤ ε at a computational expense that stays

proportionally to ε−1/s as ε tends to zero, see [6, 7]. Notice that N−s, where
s := (d − q)/n, is the best possible rate of convergence, gained in case of
uniform refinement if u ∈ Hd(Γ ). Since the computation of the relevant ma-
trix coefficients is by far the most expensive step in our algorithm, we cannot
use the approach of [6, 7]. In [14] we adopted the strategy of the best N -term
approximation by the notion of tree approximation, as considered in [8, 21].

The algorithm is based on an iterative method for the continuous equation
(1), expanded with respect to the wavelet basis. To this end we assume the
wavelet basis Ψ to be normalized in the energy space. Then, (1) is equivalent
to the well posed problem of finding u = Ψu such that the infinite dimensional
linear system of equations

Au = f , A = (AΨ, Ψ)L2(Γ ), f = (f, Ψ)L2(Γ ), (19)

holds. The application of the operator to a function is approximated by an
appropriate (finite dimensional) matrix-vector multiplication. Given a finitely
supported vector v and a target accuracy ε, we choose wavelet trees τj ac-
cording to

‖v − v|τ‖ℓ2 ≤ 2jsε, j = 0, 1, . . . , J :=

⌈
log2(‖v‖ℓ2/ε)

s

⌉

and define the layers ∆j := τj+1 \ τj . These layers play now the role of the
levels in case of the non-adaptive scheme, i.e. we will balance the accuracy
layer-dependent. We adopt the compression rules defined in [50] to define
operators Aj , having only O(2j(1 + j)−2(n+1)) relevant coefficients per row
and column while satisfying

‖A−Aj‖ℓ2 ≤
2−js̄

(1 + j)2(n+1)
.

Then, the approximate matrix-vector multiplication

w :=

J−1∑

j=0

Ajv|∆j

gives raise to the estimate ‖Av−w‖ℓ2 ≤ ε. Combing this approximate matrix-
vector product with an suitable iterative solver for (19) (cf. [6]) or the adaptive
Galerkin type algorithm from [26] we achieve the desired goal of optimal
complexity. We refer the reader to [14] for the details.
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5.2 Wavelet matrix compression for complex geometries

If the geometry is given as collection {πi}Ni=1 of piecewise polygonal panels,
which is quite common for the treatment of complex geometries, we cannot use
the previous approach since the multiscale hierarchy (3) is realized by refine-
ment. However, following [51], by agglomeration we can construct piecewise
constant wavelets that are orthogonal to polynomials in the space

∫

Γ

ψj,k(x)xαdσx = 0, |α| < d̃. (20)

To this end, we have to introduce a hierarchical non-overlapping subdivision of
the boundary Γ , called the cluster tree T (see Fig. 8). The cluster-tree should
be a balanced 2n tree of depth J , such that that we have approximately 2jn

clusters ν per level j with size diam ν ∼ 2−j . Then, starting on the finest
level J with the piecewise constant ansatz functions Φπi

J := {φi}, we define
scaling functions Φν

j = {φν
j,k} and wavelets Ψν

j = {ψν
j,k} of a cluster ν on

level j recursively via
[
Φν

j , Ψ
ν
j

]
= Φν

j+1

[
Vν

j,Φ,V
ν
j,Ψ

]
. The coefficient matrices

Vν
j,φ and Vν

j,ψ are computed via singular value decomposition of the moment
matrices

Mν
j :=

[∫

Γ

xαΦν
j+1(x)dσ

]

|α|<d̃

= UΣVT = U [S,0]
[
Vν

j,Φ,V
ν
j,Ψ

]T
,

see [51] for details. Therefore, we obtain a multiscale hierarchy with respect to
the spaces Vj := span{Φν

j : ν is cluster of level j}. The spacesWj := span{Ψν
j :

ν is cluster of level j} satisfy Vj+1 = Vj⊕Wj , in particular Vj ⊥Wj due to the
orthogonality of

[
Vν

j,Φ,V
ν
j,Ψ

]
. Hence, we can define an orthonormal wavelet

basis by ΨN := ΦΓ
0 ∪ {Ψν

j : ν ∈ T}. In [32] the authors proved the norm
equivalences (5) in a range (−1/2, 1/2).

The cancellation property (20) is stronger than (6) since no smoothness
of the manifold is required. Therefore, we can weaken the assumptions on the
kernel. The kernel function k(x,y) is supposed to be analytical in the space
variables x,y ∈ R

n+1, apart from the singularity x = y, satisfying the decay
property

|∂α
x ∂

β
y k(x,y)| � α!β!

(r‖x− y‖)n+2q+|α|+|β|

for some r > 0 uniformly in the (n + 1)-dimensional multi-indices α and β.
Of practical interest in our considerations are first kind Fredholm integral
equations for the single layer operator (q = −1/2) and second kind Fredholm
integral equations for the double layer operator (q = 0).

The system matrix becomes again quasi-sparse in wavelet coordinates pro-
vided that d̃ > d− 2q. Since this time the wavelets are not smooth, only the
first compression in (9) applies which results in O(N logN) relevant matrix
coefficients. In Fig. 9 one finds the system matrix (left) and its sparsity pat-
tern (right). In case of the single layer operator the proven norm equivalences
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Fig. 8. The clustering of a given two dimensional boundary

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

Fig. 9. The wavelet system matrix and its compression pattern

imply that the condition number of the diagonally scaled system matrix grows
only polylogarithmically, cf. [42].

By using fast methods, like multipole or H-matrices, it is possible to set
up the sparse system matrix in nearly linear complexity, i.e. linear except
for a polylogarithmical factor. The time consumed for basis transforms of
solution and load vectors as well as for the iterative solution of the linear
system of equations is nearly negligible. Numerical results presented in [32]
demonstrate that we succeeded in extending the wavelet matrix compression
to general geometries.
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1 Introduction

We consider nonlinear parabolic diffusion-convection and diffusion-reaction
systems of the form

∂x

∂t
+∇ · (c(x)− k(∇x)) + q(x) = Bu(t), t ∈ [0, Tf ], (1)

in Ω ∈ R
d, d = 1, 2, 3, with appropriate initial and boundary conditions. Here,

c is the convective part, k the diffusive part and q is an uncontrolled source
term. The state of the system depends on ξ ∈ Ω and the time t ∈ [0, Tf ] and
is denoted by x(ξ, t). The control is called u(t) and is assumed to depend only
on the time t ∈ [0, Tf ].

A control problem is defined as

min
u
J(x,u) subject to (1), (2)

where J(x,u) is a performance index which will be introduced later.
There are two possibilities for the appearance of the control. If the control

occurs in the boundary condition, we call this problem a boundary control
problem. It is called distributed control problem if the control acts in Ω or
a sub-domain Ωu ⊂ Ω. The control problem as in (1) is well-suited to de-
scribe a distributed control problem while boundary control will require the
specification of the boundary conditions as, for instance, given below.

The major part of this article deals with the linear version of (1),

∂x

∂t
−∇. (a(ξ)∇x) + d(ξ)∇x + r(ξ)x = BV (ξ)u(t), ξ ∈ Ω, t > 0, (3)

with initial and boundary conditions
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α(ξ)
∂x(ξ, t)

∂n
+ γ(ξ)x(ξ, t) = BRu(t), ξ ∈ ∂Ω,

x(ξ, 0) = x0(ξ), ξ ∈ Ω,

for sufficiently smooth parameters a, d, r, α, γ,x0. We assume that either
BV = 0 (boundary control system) or BR = 0 (distributed control system).
In addition, we include in our problem an output equation of the form

y = Cx, t ≥ 0,

taking into account that in practice, often not the whole state x is available
for measurements. Here, C is a linear operator which often is a restriction
operator.

To solve optimal control problems (2) with a linear system (3) we interpret
it as a linear quadratic regulator (LQR) problem. The theory behind the LQR
ansatz has already been studied in detail, e.g., in [1–6], to name only a few.

Nonlinear control problems are still undergoing extensive research. We will
apply model predictive control (MPC) here, i.e., we solve linearized problems
on small time frames using a linear-quadratic Gaussian (LQG) design. This
idea is presented by Ito and Kunisch in [7]. We will briefly sketch the main
ideas of this approach at the end of this article.

There exists a rich variety of other approaches to solve linear and nonlinear
optimal control problems for partial differential equations. We can only refer
to a selection of ideas, see e.g. [4, 8–12].

This article is divided into four parts. In the remainder of this section we
will give a short introduction to linear control problems and we present the
model problem used in this article. Theoretical results which justify the nu-
merical implementation of the LQR problem will be pointed out in Sect. 2.
The third section deals with computational methods for the model problem.
There we go into algorithmic and implementation details and present some
numerical results. Finally we give an insight into a method for nonlinear par-
abolic systems in Sect. 4.

1.1 Linear problems

In this section we will formulate the linear quadratic regulator (LQR) problem.
We assume that X ,Y,U are separable Hilbert spaces where X is called the
state space, Y the observation space and U the control space.

Furthermore the linear operators

A : dom(A) ⊂ X → X ,
B : U → X ,
C : X → Y

are given. Such an abstract system can now be understood as a Cauchy prob-
lem for a linear evolution equation of the form
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ẋ = Ax + Bu, x(., 0) = x0 ∈ X . (4)

Since in many applications the state x of a system can not be observed com-
pletely we consider the observation equation

y = Cx, (5)

which describes the map between the states and the outputs of the system.
The abstract LQR problem is now given as the minimization problem

min
u∈L2(0,Tf ;U)

1

2

Tf∫

0

〈y,Qy〉Y + 〈u,Ru〉U dt (6)

with self-adjoint, positive definite, linear, bounded operators Q and R on
Y and U , respectively. Recall that if (4) is an ordinary differential equation
with X = R

n, Y = R
p and U = R

m, equipped with the standard scalar
product, then we obtain an LQR problem for a finite-dimensional system
[13]. For partial differential equations we have to choose the function spaces
X ,Y,U appropriately and we get an LQR system for an infinite-dimensional
system [14, 15].

Many optimal control problems for instationary linear partial differential
equations can be described using the abstract LQR problem above. Addition-
ally, many control, stabilization and parameter identification problems can be
reduced to the LQR problem, see [1–3,15,16].

The infinite time case

In the infinite time case we assume that Tf = ∞. Then the minimization
problem subject to (4) is given by

min
u∈L2(0,∞;U)

1

2

∞∫

0

〈y,Qy〉Y + 〈u,Ru〉U dt. (7)

If the standard assumptions that

• A is the infinitesimal generator of a C0-semigroup T(t),
• B,C are linear bounded operators and
• for every initial value there exists an admissible control u ∈ L2(0,∞;U)

hold then the solution of the abstract LQR problem can be obtained analo-
gously to the finite-dimensional case (see [14,17,18]). We then have to consider
the algebraic operator Riccati equation

0 = ℜ(P) = C∗QC + A∗P + PA−PBR−1B∗P, (8)
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where the linear operator P will be the solution of (8) if P : domA→ domA∗

and 〈x̂,ℜ(P)x〉 = 0 for all x, x̂ ∈ dom(A). The optimal control is then given
as the feedback control

u∗(t) = −R−1B∗P∞x∗(t), (9)

which has the form of a regulator or closed-loop control. Here, P∞ is the
minimal nonnegative self-adjoint solution of (8), x∗(t) = S(t)x0(t), and S(t)
is the C0-semigroup generated by A−BR−1B∗P∞. Using further standard
assumptions it can be shown, see e.g. [5], that P∞ is the unique nonnegative
solution of (8). Most of the required conditions, particularly the restrictive
assumption that B is bounded, can be weakened [1, 2].

The finite time case

The finite time case arises if Tf < ∞ in (6). Then the numerical solution
is more complicated since we have to solve the operator differential Riccati
equation

Ṗ(t) = −(C∗QC + A∗P(t) + P(t)A−P(t)BR−1B∗P(t)). (10)

The optimal control is obtained as

u∗(t) = −R−1B∗P∗(t)x∗(t),

where P∗(t) is the unique solution of (10) in complete analogy to the infinite
time case in (9).

1.2 Discretization

For the discretization of an optimal control problem we can follow different
strategies. In the literature the following two alternatives are often used:

• “Optimize–then–discretize”
That is, we compute the optimal control with methods of optimization
first and discretize afterwards.

• “Discretize–then–optimize”
Here, we discretize at first and optimize the discrete problem.

The literature provides a large amount of approaches which are based on
non-smooth Newton’s methods or sequential quadratic programming (SQP)
methods, see, e.g., [11, 12,19].

In contrast to the strategies above we want to examine the strategy
“semidiscretize–optimize–semidiscretize”. If we semidiscretize in space first,
for instance by using a Galerkin ansatz with finite element ansatz functions,
we obtain a linear finite-dimensional system. The structure and solution of the
resulting system are analogous to those of the infinite dimensional system.
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Fig. 1. Initial mesh with observation nodes (left) and partitioning of the boundary
(right)

Thus, we can formulate the following general strategy for solving LQR
problems, where, of course, the applicability of the described Riccati approach
has to be tested for every situation, in particular the conditions on the regu-
larity of the boundary and the solution play a decisive role.

1. Find a spatial discretization for the partial differential equation using a
Galerkin projection of X on a finite-dimensional subspace XN with matrix
representations AN , BN , CN , QN of the corresponding linear operators
A,B,C,Q.

2. Solve the finite-dimensional LQR problem.
3. Apply the finite-dimensional feedback law to the infinite-dimensional sys-

tem.
4. If necessary, refine the discretization.

1.3 The model problem

The control of the cooling process for a rail profile in a rolling mill serves
as a benchmark problem for our approach. The model has been discussed in
detail in the literature in the context of optimization by Tröltzsch and others
(see [20–22] and references therein). First results concerning the LQR design
for this problem can be found in [23–26].

As in [20–22, 27] the steel profile is assumed to stretch infinitely into the
z-direction. This admits the assumption of a stationary heat distribution in
z-direction. That means we can restrict ourselves to a 2-dimensional heat
diffusion process on cross-sections of the profile Ω ⊂ R

2 as shown in Fig. 1.
Measurements for defining the geometry of the cross-section are taken from
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[20]. As one can see in Fig. 1 the domain exploits the symmetry of the profile
introducing an artificial boundary Γ0 on the symmetry axis.

We will concentrate on the linearized version of the state equation intro-
duced in [20–22]. The linearization is derived by taking means of the material
parameters ρ, λ and c. This is admissible as long as we work in temperature
regimes above approximately 700-800℃ (depending on the kind of steel used)
where changes of ρ, λ and c are small and we do not have multiple phases
and phase transitions in the material. We partition the non-artificial bound-
ary into 7 parts, each of them located between two neighboring corners of the
domain (see Fig. 1 for details). The control u is assumed to be constant with
respect to the spatial variable ξ on each part Γi of the boundary. Thus we
obtain the following model:

cρ∂x(ξ,t)
∂t = ∇.(λ∇x(ξ, t)) in Ω × (0, T ),

−λ∂x(ξ,t)
∂n = gi(t, x, u) on Γi for i = 0, . . . , 7,

x(ξ, 0) = x0(ξ) in Ω.

(11)

We now have to describe the heat transfer across the surface of the mate-
rial, i.e. the boundary conditions. The boundary condition according to New-
ton’s cooling law is given as

−∂x(ξ, t)
∂n

=
κk

λ
(x(ξ, t)− xext,k(t)). (12)

Note that xext,k(t) is assumed to be constant on Γk and therefore does not
depend explicitly on ξ. For a more detailed derivation of this condition see [26].

Here, we will take the external temperature as the control. The mathe-
matical advantage of this choice is that the multiplication of control and state
which would lead to a bilinear control system in case of the heat transfer
coefficient as control is avoided.

2 Theoretical results

2.1 Approximation of abstract cauchy problems

The theoretical fundament for our approach was set by Gibson [18]. The ideas
and proofs used for the boundary control problem considered here closely fol-
low the extension of Gibson’s method proposed by Banks and Kunisch [28]
for distributed control systems arising from parabolic equations. Similar ap-
proaches can be found in [2,26]. Common to all those approaches is to formu-
late the control system for a parabolic system as an abstract Cauchy problem
in an appropriate Hilbert space setting. For numerical approaches this Hilbert
space X is approximated by a sequence of finite-dimensional spaces (XN )N∈N,
e.g., by spatial finite element approximations, leading to large sparse systems
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of ordinary differential equations in R
n. Following the theory in [28] those

approximations do not even have to be subspaces of the Hilbert space of so-
lutions.

Before stating the main theoretical result we will first collect some approx-
imation prerequisites we will need for the theorem. We call them (BK1) and
(BK2) for they were already formulated in [28] (and called H1 and H2 there).
In the following ΠN is the canonical projection operator mapping from the
infinite-dimensional space X to its finite-dimensional approximation XN . The
first and natural prerequisite is:

For each N and x0 ∈ XN there exists an admissible control
uN ∈ L2(0,∞;U) and any admissible control drives the states
to 0 asymptotically.

(BK1)

Additionally one needs the following properties for the approximation as
N → ∞. Assume that for each N , AN is the infinitesimal generator of a
C0-semigroup TN (t), then we require:

(i) For all ϕ ∈ X we have uniform convergence
TN (t)ΠNϕ → T(t)ϕ on any bounded subinterval
of [0,∞).

(ii) For all φ ∈ X we have uniform convergence
TN (t)∗ΠNφ → T(t)∗φ on any bounded subinterval
of [0,∞).

(iii) For all v ∈ U we have BNv → Bv and for all ϕ ∈ X we
have BN ∗

ϕ→ B∗ϕ.

(iv) For all ϕ ∈ X we have QNΠNϕ→ Qϕ.

(BK2)

With these we can now formulate the main result.

Theorem 1 (Convergence of the finite-dimensional approximations).
Let (BK1) and (BK2) hold. Moreover, assume R > 0, Q ≥ 0 and QN ≥ 0.
Further, let PN be the solutions of the AREs for the finite-dimensional systems
and let the minimal nonnegative self-adjoint solution P of (8) for (4), (5) and
(7) exist. Moreover, let S(t) and SN (t) be the operator semigroups generated
by A−BR−1B∗P on X and AN −BNR−1BN ∗

PN on XN , respectively, with
‖S(t)ϕ‖ → 0 as t→∞ for all ϕ ∈ X .

If there exist positive constants M1, M2 and ω independent of N and t,
such that

‖SN (t)‖XN ≤ M1e
−ωt,

‖PN‖XN ≤ M2,
(13)

then
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PNΠNϕ → Pϕ for all ϕ ∈ X ,
SN (t)ΠNϕ → S(t)ϕ for all ϕ ∈ X ,

(14)

converge uniformly in t on bounded subintervals of [0,∞) as N →∞ and

‖S(t)‖ ≤M1e
−ωt for t ≥ 0. (15)

Theorem 1 gives the theoretical justification for the numerical method
used for the linear problems described in this paper. It shows that the finite-
dimensional closed-loop system obtained from optimizing the semidiscretized
control problem indeed converges to the infinite-dimensional closed-loop sys-
tem. Deriving a similar result for the nonlinear problem is an open problem.

The proof of Theorem 1 is given in [26]. It very closely follows that of [28,
Theorem 2.2]. The only difference is the definition of the sesquilinear form on
which the mechanism of the proof is based. It has an additional term in the
boundary control case discussed here, but one can check that this term does
not destroy the required properties of the sesquilinear form.

2.2 Tracking control

In contrast to stabilization problems, where one searches for a stabilizing
feedback K (i.e. a feedback such that the closed loop operator A − BK is
stable), we are searching for a feedback which drives the state to a given
reference trajectory asymptotically. Thus the tracking problem is in fact a
stabilization problem for the deviation of the current state from the desired
state. We will show in this section, that for linear operators A and B tracking
can easily be incorporated into an existing solver for the stabilization problem
with only a small computational overhead.

A common trick (see, e.g., [29]) to handle inhomogeneities in system theory
for ODEs is the following. Given

ẋ = Ax+Bu+ f,

let x̂ be a solution of the uncontrolled system ẋ = Ax+f , such that f = ˙̂x−Ax̂.
Then

ẋ− ˙̂x = Ax+Bu−Ax̂
from which we get a homogenous linear system

ż = Az +Bu where z = x− x̂.

We want to apply this to the abstract Cauchy problem. Assume (x̃, ũ) is a
reference pair solving

˙̃x = Ax̃ + Bũ.

We rewrite the tracking type control system as a stabilization problem for the
difference z = x− x̃ as follows:
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ż = Az + Bv
v=−Kz⇔ ẋ = Ax−BKx + ˙̃x−Ax̃ + BKx̃. (16)

So the only difference between the tracking type and stabilization problems
is the known inhomogeneity f := ˙̃x− (A−BK)x̃. Note that the operators do
not change at all. That means we have to solve the same Riccati equation (8)
in both cases, thus one only has to add the inhomogeneity f (which can be
computed once and in advance directly after the feedback operator is obtained)
to the solver for the closed loop system in the tracking type case provided that
in the cost function (7) y = Cx has been replaced by C (x− x̃).

3 Computational methods and results

In this section we will discuss the computational methods used to achieve an
efficient implementation for the numerical solution of the model problem. In
Subsect. 3.1 we will first explain the algorithms used to solve the problem.
There we will especially review the algorithm employed to solve the large
sparse Riccati equation. We will focus on the case of infinite final time, where
we have to deal with an algebraic Riccati equation (ARE), but we will also
sketch the method used for a differential Riccati equation (DRE) in the finite
final time case. After that we will briefly explain the concrete implementation
in Subsection 3.2 and give an overview of the problems which may be solved
with our implementation at the current stage. In the closing subsection we
will present selected numerical results of our computations for tracking type
control systems. Numerical experiments for the stabilization problem have
already been published in [23–26].

3.1 Algorithmic details

The approach we present here admits two different implementations which can
be seen as implementations of the well known horizontal and vertical methods
of lines from numerical methods for partial differential equations. In the case of
the vertical method of lines we use a finite element semidiscretization in space
to set up the approximate finite-dimensional problems. This approximation
is then used to formulate an LQR system for an ordinary differential equa-
tion. The LQR system for this ordinary differential equation is then solved
by computing the feedback, retrieving the closed loop system and applying
an ODE solver to the closed loop system. The case of the horizontal method
of lines is very similar to the algorithm used when solving the PDE forward
problem. We only have to introduce a step computing the feedback operator
and a step which updates the boundary conditions according to this operator
for the boundary control system.

So in both cases we need to compute the feedback operator for the approxi-
mate finite-dimensional systems. As we use finite element approximations here
we have to deal with matrices of dimension larger than 1000 which makes it
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infeasible to use classical methods for the solution of the Riccati equations as
these are of cubic complexity. In the late 90’s Li and Penzl [30, 31] indepen-
dently proposed a method for the efficient solution of large sparse Lyapunov
equations. These methods are based on earlier work of Wachspress [32] on the
application of an ADI-like method exploiting sparsity and the oftenly encoun-
tered very low numerical rank of their solutions.

The method developed by Li and Penzl can also be used to solve the
large sparse Riccati equations appearing in this approach, since the Fréchet
derivative of the Riccati operator is a Lyapunov operator. Thus we can apply
Newton’s method to the nonlinear matrix Riccati equations and in each step
solve the Lyapunov equations efficiently by the ADI approach.

For the finite final time, it is shown in [33] that backward differentiation
(BDF) methods can be combined with the above Newton-ADI-method to solve
the differential Riccati equation (10) efficiently.

Low rank Cholesky factor ADI Newton method

We will consider a system of the form (4), (5) here to characterize the low
rank Cholesky factor ADI Newton method. It is sufficient to consider this
case, because a finite-dimensional system of the form

Mẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

x(0) = x0

(17)

can easily be transformed into the representation (4), (5) by the following
procedure. First split the matrix M into M = MLMU (where ML = MT

U in
the symmetric positive semidefinite case) and define

z(t) :=MUx(t).

Then
ż(t) = ṀUx(t) +MU ẋ(t) =MU ẋ(t)

and by defining

Ã := M−1
L AM−1

U ,

B̃ := M−1
L B,

C̃ := CM−1
U ,

we can rewrite the system in the form (4), (5). The mass matrix from the fi-
nite element semidiscretization of the heat equation is always symmetric and
positive definite and thus we can always apply the above procedure to the
finite-dimensional systems. There also exists a method which avoids decom-
positions of M by rewriting the linear systems of equation arising inside the
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Fig. 2. Data flow in the horizontal (left) and vertical (right) method of lines imple-
mentations

ADI method instead of the control system (see [34] for details). We discussed
the above method in detail here, because it is used in the LyaPack software
package used to solve the Riccati equations in our implementation.

The low rank Cholesky factor ADI Newton method implemented in Lya-

Pack can be seen as a modification of the classical Newton-like method for
algebraic Riccati equations (Kleinman iteration, [35]), where the Lyapunov
subproblems in each Newton step are solved by the low rank Cholesky factor
ADI method. The most important feature of this method is that it does not
work with the generally full n × n iterates Xi but with low rank Cholesky
factors thereof (ZiZ

T
i = Xi). The rank of Zi is generally full but it has ri ≪ n

columns which drastically reduces memory consumption and computational
complexity. LyaPack also provides functions iterating directly on the rectan-
gular (number of rows = number of system inputs ≪ n) feedback matrix
possibly reducing the complexity even further.

3.2 Implementation details

For the implementation we combine the software packages LyaPack1 (see [36])
and ALBERTA2 (see [37]). LyaPack is a collection of Matlab-routines for
solving large-scale Lyapunov equations, LQR problems, and model reduction
tasks. Therefore we used Matlab to initialize the computation. That means
we setup the initial control parameters and the time measurement routines at
a Matlab-console. After that the finite element discretization is generated
by a mex call to a C-function utilizing the finite element method (fem) library
ALBERTA. Inside this routine the system matricesM , A and B are assembled.
After system assembly the program returns to the Matlab prompt providing
the matrices and problem data like current time and temperature profile. Now
the matrices C, Q, and R are initialized and LyaPack is used to compute the
feedback matrix.

1available from: http://www.tu-chemnitz.de/
2available from: http://www.alberta-fem.de
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Fig. 3. Initial (left) and final (right) temperature distribution for a tracking type
system steering to constant 700℃

In case of the horizontal method of lines the program now returns to
the ALBERTA subroutine providing the feedback and with it the new control
parameters for the boundary conditions. With these it continues the standard
forward computation updating the boundary conditions by use of the feedback
matrix.

In case of the vertical method of lines the feedback is used to generate
the closed-loop system. This is then solved with a standard ODE-solver using
Matlab. After that the program uses the ALBERTA function again to store
the solution on a mass storage device for visualization and post processing
tasks in the same format used in the above case.

Both implementations have their advantages. The horizontal method of
lines implementation can use operator information for the selection of (time)
stepsizes and can easily be generalized to what might be called an adaptive
LQR system, where the idea is to stabilize a system with nonlinear PDE
constraints by systems for local (in time) linearizations of the constraints. This
method is similar to receding horizon- or model predictive control techniques
which will be addressed in Sect. 4. On the other hand the vertical method of
lines implementation is easier to generalize to tracking-type control systems
(see Sect. 2.2).

To close this section on the implementation details we give a table showing
what our current implementation is capable of computing.

xext,k as control in (12) κk

λ as control in (12) tracking

vertical m.o.l. X + X

linear horiz. m.o.l. X + –

nonlin. horiz. m.o.l. O + –
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Fig. 4. Deviation of temperature from the reference (700℃) in maximum norm
(left) and Euclidian norm (right)
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Fig. 5. Evolution of temperature at the outputs (left) and control inputs (right)

In the tabular an X denotes a fully supported feature. That means the
feature is implemented and there exists a rigorous theory for this approach.
An O denotes a feature which is fully implemented but the theoretical back-
ing is not complete. The features marked ‘+‘ already give promising results
although they are not covered by the theory. So under slight changes in the
implementation (e.g. a posteriori error estimates) they might become fully
valid and theoretically confirmed in future research.

3.3 Numerical results

We will now present an example of a tracking control system. We want to
control the state (temperature distribution) to constant 700℃. For the partic-
ular problem considered here one also knows the reference control which has
to be applied to stay at this state. From (12) it is easy to see that we have
to introduce an exterior temperature (cooling temperature) of 700℃, because
(12) then becomes an isolation boundary condition.

It is in general not necessary to know ũ for this approach. We have seen
in Sect. 2.2 that we only need to know that there exists such a control. We do
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not have to know the reference control itself for the computations, because to
calculate the inhomogeneity f we only use x̃ and its derivative with respect
to time. On the other hand we might need ũ to regain the real control u from
the artificial control v.

We start the calculation with the same initial temperature (see Fig. 3 on
the left) distribution we already used e.g. in [26]. The computational time
horizon is equivalent to approximately 7 minutes of real time. The time-bars
in Fig. 3 have to be scaled down by a factor of 100 (see [26] for details on the
scalings) to read real time in seconds. The temperatures are scaled such that
1.0 is equivalent to 1000℃. The isolines in Fig. 3 are plotted at a distance
of 15℃. Thus from Fig. 3 we can conclude that the maximum deviation of
temperatures from 700℃ is smaller than 15℃. In fact it is only 3.84℃ after
approximately 7 minutes. The average deviation at that time is already at
about 0.186℃ (also compare Fig. 4). Figure 5 shows the evolution of the
control parameters (i.e., temperatures of the cooling fluid) on the right. The
plotted values represent the real control temperatures one would have to apply.
In comparison to v = u− ũ in (16) we already added the reference control ũ
of 700℃ to the computed values of v.

4 Nonlinear parabolic systems

Nonlinear problems will arise if the system equation or the boundary condi-
tions are nonlinear. In the following we consider the minimization problem

min
u∈L2(0,Tf ;U)

Tf∫

0

g(y(t),u(t)) dt, 0 < Tf ≤ ∞, (18)

subject to the semilinear equation

ẋ = f(x) + Bu(t), t ∈ [0, Tf ], x(0) = x0. (19)

The idea of receding horizon control (RHC) or model predictive control
(MPC) is to decompose the time interval [0, Tf ] in (19) in smaller subintervals
[Ti, Ti+1] with

0 = T0 < T1 < T2 < . . . < Tℓ−1 < Tℓ = Tf

and
T ≥ max{Ti+1 − Ti | i = 0, 1, . . . , ℓ− 1}

for given T . Now we have to solve optimal control problems on the time frames
[Ti, Ti + T ] successively, that is we replace (18) and (19) by

min
u∈L2(Ti,Ti+T ;U)

∫ Ti+T

Ti

g(y(t),u(t)) dt+ gf (x(Ti + T )) (20)
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subject to the dynamical semilinear system

ẋ(t) = f(x(t)) + Bu(t) for t ≥ Ti, u(t) ∈ U , (21)

and the initial condition
x(Ti) = x∗(Ti). (22)

Here u∗ is the optimal control and x∗ the optimal trajectory for the optimal
control problem on [Ti−1, Ti−1 + T ]. The second term gf (x(Ti + T )) in the
cost functional (20) is called terminal cost and penalizes the states at the end
of the finite horizon. It is required to establish the asymptotic stabilization
property of the MPC scheme. To obtain the approximated optimal control on
[0, Tf ] we have to compose the optimal controls on the subintervals [Ti, Ti+1].

The strategy of MPC/RHC is used successfully in particular for control
problems with ordinary differential equations, e.g. [38,39]. The literature also
provides research into partial differential equations, see [10,40–42], where dif-
ferent techniques are used for solving the subproblems (20)–(22).

We want to present a tracking approach which was introduced in [7,43,44].
In [7] the authors use a linear quadratic Gaussian (LQG) design which allows
to include noise and observers into the model. Therefor we consider equation
(19) as a nonlinear stochastic system

ẋ = f(x) + Bu(t) + d(t), t ∈ [0, Tf ], x(0) = x0, (23)

where d(t) is an unknown Gaussian disturbance process. The observation
process

y(t) = Cx(t) + n(t)

provides partial observations of the state x(t), where n(t) is a measurement
noise process.

Now we consider the time frame [Ti, Ti +T ] and define an operating point,
for example

x̄ =
1

T

Ti+T∫

Ti

x̄∗(t)dt or x̄ = x̄∗(Ti + T ), (24)

where (ū∗, x̄∗) is the reference pair on [Ti, Ti +T ] which is known from appli-
cations or results from an open-loop computation. If we linearize f(x) at x̄,
we will obtain the following linear optimal control problem on [Ti, Ti + T ]:

min
ũ∈L2(Ti,Ti+T ;U)

1

2

Ti+T∫

Ti

〈z,Qz〉Y + 〈ũ,Rũ〉U dt+ gf (x(Ti + T ))

subject to

ż(t) = Az(t) + Bũ(t) + d(t), z(0) = η0,

ỹ(t) = Cz(t) + n(t)
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where
z(t) := x(t)− x̄∗(t), ũ(t) := u(t)− ū∗(t)

and

A :=
d

dx
f(x̄).

It can be shown, see e.g. [39], that if the terminal cost gf bounds the infinite
horizon cost for the nonlinear system (starting from Ti +T ), the cost function
to be minimized is an upper bound for

min
ũ∈L2(Ti,∞;U)

1

2

∞∫

Ti

〈z,Qz〉Y + 〈ũ,Rũ〉U dt. (25)

So we can consider the infinite time case on every time frame. After application
of the minimum principle we have to solve the algebraic Riccati equation (8),
which corresponds to the LQR problem, as well as the dual equation

ℜ̃(W) := AW + WA∗ −WC∗CW + S = 0 (26)

for the state estimation by using a Kalman filter, where S is an appropriate
positive semidefinite operator. The best estimate x̂ can be obtained by solving
the so called compensator equation

˙̂x(t) = A(x̄)(x̂(t)− x̄∗(t)) + f(x̄∗(t)) + Bu(t) + W∗C
∗(y(t)−Cx̂(t)),

x̂(0) = x0 + η0,

where W∗ is the positive semidefinite solution to (26). The associated feedback
law is now given as

u(t) = u∗(t)−R−1B∗P∗(x̂(t)− x̄∗(t))

where P∗ is the positive semidefinite solution to (8).
Now we have computed the solution on the time frame [Ti, Ti+1]. In the

next step we determine the solution on [Ti+1, Ti+2] by repeating the procedure
above, that is linearization, solving the two dual algebraic Riccati equations
and determination of the optimal control. Since the current horizon is mov-
ing forward this strategy is called receding horizon control or moving horizon
control.

The numerical implementation for such problems is similar to that de-
scribed in Sect. 3. We need efficient algorithms to solve the two Riccati equa-
tions and the ordinary differential equation in every time frame. Details can
be found in Sects. 3.1 and 3.2.

It is also possible to linearize along a given (time-dependent) reference
trajectory instead of using a constant operating point as in (24). Then we
have to solve two differential Riccati equations which have the following form
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Ṗ(t) + A(t)∗P(t) + P(t)A(t)−P(t)BR−1B∗P(t) + C∗QC = 0, (27)

Ẇ(t) + A(t)W(t) + W(t)A(t)∗ −W(t)C∗CW(t) + S = 0, (28)

where A(t) ≡ A(x̄∗(t)). For the numerical solution of the differential Riccati
equation we refer to [33].

The numerical implementation of this approach for nonlinear parabolic-
type problems such as semilinear and quasilinear heat, convection-diffusion,
and reaction-diffusion equations is under current investigation. For solving
the sub-problems on each time frame, we make intensive use of the algorithms
developed for the linear case discussed in Sect. 3.
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1 Introduction

Phase transitions in classical and quantum many-particle systems are one of
the most fascinating topics in contemporary condensed matter physics. The
strong fluctuations associated with a phase transition or critical point can
lead to unusual behavior and to novel, exotic phases in its vicinity, with con-
sequences for problems such as quantum magnetism, unconventional super-
conductivity, non-Fermi liquid physics, and glassy behavior in doped semicon-
ductors. In many realistic systems, impurities, dislocations, and other forms of
quenched disorder play an important role. They often modify or even enhance
the effects of the critical fluctuations. An interesting, if intricate, aspect of
phase transitions with quenched disorder are the rare regions. These are large
spatial regions that, due to a strong disorder fluctuation, are either devoid of
impurities or have stronger interactions than the bulk system. They can be
locally in one of the phases even though the bulk system may be in another
phase. The slow fluctuations of these rare regions can dominate the behavior
of the entire system.

Conventional theoretical approaches to many-particle systems such as di-
agrammatic perturbation theory and the perturbative renormalization group
are not particularly well suited for strongly disordered systems. In particu-
lar, they cannot easily account for the rare regions which are nonperturbative
degrees of freedom because their probability is exponentially small in their
volume. For this reason, much of our understanding in this area has been
achieved by large-scale computer simulations. However, computational stud-
ies of disordered many-particle systems come with their own challenges. In
addition to the intrinsic problem of dealing with a macroscopic number of
interacting particles, the presence of impurities and defects requires studying
many samples to determine averages and distribution functions of observable
quantities.

Here, we describe large-scale parallel computer simulation studies of sev-
eral classical, quantum, and nonequilibrium phase transitions with quenched
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disorder. Examples include classical Ising models with extended defects, dis-
ordered quantum magnets, and phase transitions in nonequilibrium spreading
processes. We demonstrate that disorder can have drastic effects on these tran-
sitions ranging from Griffiths singularities in the disordered phase of a classical
magnet to a complete destruction of the phase transition by smearing if the
disorder is sufficiently correlated in space or (imaginary) time. We classify
these phase transition scenarios based on the effective dimensionality of the
rare regions. This chapter is organized as follows. In Sect. 2, we introduce
the main concepts and develop a classification of disorder effects. Computa-
tional results for several phase transitions are presented Sects. 3, 4, and 5.
Sect. 6 is devoted to details of our computational approach and specifics of
our implementations. We conclude in Sect. 7.

2 Phase transitions, disorder, and rare regions

In this section, we give a brief introduction into the effects of impurities and
defects on phase transitions and critical points. For definiteness, we restrict
ourselves to simple order-disorder transitions between conventional phases
such as the transition between the paramagnetic (magnetically disordered)
and ferromagnetic (magnetically ordered) states of a magnetic material.1 We
consider impurities and defects which introduce spatial variations in the cou-
pling strength (i.e., spatial variations in the tendency towards the ordered
phase) but no frustration or random external fields. This type of impurities is
sometimes referred to as weak disorder, random-Tc disorder, or, from analogy
with quantum field theory, random-mass disorder. The two main questions to
be addressed are: (i) Will the phase transition remain sharp in the presence
of disorder? and (ii) If a sharp transition survives, will the critical behavior
change in response to the disorder?

2.1 Average disorder and Harris criterion

The question of how quenched disorder influences phase transitions has a long
history. Initially it was suspected that disorder destroys any critical point be-
cause in the presence of defects, the system divides itself up into spatial regions
which independently undergo the phase transition at different temperatures
(see Ref. [22] and references therein). However, subsequently it became clear
that generically a phase transition remains sharp in the presence of defects,
at least for classical systems with short-range disorder correlations.

The fate of a particular clean critical point under the influence of impuri-
ties is controlled by the Harris criterion [24]: If the correlation length critical

1Note that disorder has two meanings in this field: On the one hand, in disor-
dered phase, it denotes the non-symmetry-broken (paramagnetic) phase even in the
absence of impurities. On the other hand, in quenched disorder it refers to impurities
and defects. Unfortunately, this double meaning is well established in the literature.
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exponent ν fulfills the inequality ν ≥ 2/d where d is the spatial dimensionality,
the critical point is (perturbatively) stable, and quenched disorder should not
affect its critical behavior. At these transitions, the disorder strength decreases
under coarse graining, and the system becomes asymptotically homogeneous
at large length scales. Consequently, the critical behavior of the dirty system
is identical to that of the clean system. Technically, this means the disor-
der is renormalization group irrelevant, and the clean renormalization group
fixed point is stable. In this class of systems, the macroscopic observables are
self-averaging at the critical point, i.e., the relative width of their probability
distributions vanishes in the thermodynamic limit [1, 65]. A prototypical ex-
ample in this class is the three-dimensional classical Heisenberg model whose
clean correlation length exponent is ν ≈ 0.698 (see, e.g., [29]), fulfilling the
Harris criterion.

If the Harris criterion is violated, the clean critical point is destabilized,
and the behavior must change. Nonetheless, a sharp transition can still ex-
ist. Depending on the behavior of the average disorder strength under coarse
graining, one can distinguish two classes. In the first class, the system re-
mains inhomogeneous at all length scales with the relative strength of the
inhomogeneities approaching a finite value for large length scales. The result-
ing critical point still displays conventional power-law scaling but with new
critical exponents which differ from those of the clean system (and fulfill the
Harris criterion). These transitions are controlled by renormalization group
fixed points with a nonzero value of the disorder strength. Macroscopic ob-
servables are not self-averaging, but the relative width of their probability
distributions approaches a size-independent constant [1, 65]. An example in
this class is the classical three-dimensional Ising model. Its clean correlation
length exponent, ν ≈ 0.627 (see, e.g. [18]) does not fulfill the Harris crite-
rion. Introduction of quenched disorder, e.g., via dilution, thus leads to a new
critical point with an exponent of ν ≈ 0.684 [3].

At critical points in the last class, the relative magnitude of the inho-
mogeneities increases without limit under coarse graining. The correspond-
ing renormalization group fixed points are characterized by infinite disorder
strength. At these infinite-randomness critical points, the power-law scaling
is replaced by activated (exponential) scaling. The probability distributions
of macroscopic variables become very broad (even on a logarithmic scale)
with the width diverging with system size. Consequently, averages are often
dominated by rare events, e.g., spatial regions with atypical disorder config-
urations. This type of behavior was first found in the McCoy-Wu model, a
two-dimensional Ising model with bond disorder perfectly correlated in one
dimension [42]. However, it was fully understood only when Fisher [15, 17]
solved the one-dimensional random transverse field Ising model by a version
of the Ma-Dasgupta-Hu real space renormalization group [37]. Since then,
several infinite-randomness critical points have been identified, mainly at
quantum phase transitions since the disorder, being perfectly correlated in
(imaginary) time, has a stronger effect on quantum phase transitions than on
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thermal ones. Examples include one-dimensional random quantum spin chains
as well as one-dimensional and two-dimensional random quantum Ising mod-
els [5, 16,39,46,67].

2.2 Rare regions and Griffiths effects

In the last subsection we have discussed scaling scenarios for phase transitions
with quenched disorder based on the global, i.e., average, behavior of the
disorder strength under coarse graining. In this subsection, we focus on the
effects of rare strong spatial disorder fluctuations. Such fluctuations can lead
to very interesting non-perturbative effects not only directly at the phase
transition but also in its vicinity.

In a quenched disordered system, the presence of random impurities and
defects leads to a spatial variation of the coupling strength. As a result, there
can be rare large spatial regions that are locally in the ordered phase even
though the bulk system is in the disordered phase. The dynamics of such
rare regions is very slow because flipping them requires a coherent change of
the order parameter over a large volume. Griffiths [21] was the first to show
that these rare regions can lead to singularities in the free energy in an entire
parameter region near the critical point which is now known as the Griffiths
region or the Griffiths phase [47].

Recently, a general classification of rare region effects at order-disorder
phase transitions in systems with weak, random mass type, disorder [63] has
been suggested. This classification can be understood as follows. The proba-
bility w for finding a large spatial region of linear size L devoid of impurities
is exponentially small in its volume, w ∼ exp(−cLd). The importance of the
rare regions now depends on how rapidly the contribution of a single region
to observables increases with its size. Three cases can be distinguished.

(i) If the effective dimensionality dRR of the rare regions is below the lower
critical dimensionality d−c of the problem, their energy gap depends on their
size via a power law, ǫL ∼ L−ψ. Thus, the contribution of a rare region to
observables can at most grow as a power of its size. As a result, the low-energy
density of states due to the rare regions is exponentially small. This leads to
exponentially weak rare region effects characterized by an essential singular-
ity in the free energy [4,21]. The leading scaling behavior at the dirty critical
point is of conventional power-law type. To the best of our knowledge, these
exponentially weak thermodynamic Griffiths singularities have not yet been
observed in experiments. In contrast, the long-time dynamics is dominated by
the rare regions. Inside the Griffiths phase, the spin autocorrelation function
C(t) decays as lnC(t) ∼ −(ln t)d/(d−1) for Ising systems [6, 8, 13, 47] and as
lnC(t) ∼ −t1/2 for Heisenberg systems [7, 8]. Examples for the case of expo-
nentially weak Griffiths effects can be found in generic classical equilibrium
systems (where the rare regions are finite in all directions and thus effectively
zero-dimensional).
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Table 1. Classification of rare region (RR) effects at critical points in the presence
of weak quenched disorder according to the effective dimensionality dRR of the rare
regions

RR dimension Griffiths effects Dirty critical point Critical scaling

dRR < d−
c weak exponential conventional power law

dRR = d−
c strong power-law infinite randomness activated

dRR > d−
c RR become static smeared transition no scaling

(ii) In the second class, the rare regions are exactly at the lower critical
dimension, and their energy gap shows an exponential dependence on their
volume Ld. In this case, the contribution of a single rare region to observables
can grow exponentially with its size. The resulting power-law low-energy den-
sity of states of the rare regions leads to a power-law Griffiths singularity with
a nonuniversal continuously varying exponent. The scaling behavior at the
dirty critical point itself turns out to be of exotic activated (exponential) type
instead of conventional power-law scaling. This second case is realized, e.g., in
classical Ising models with perfectly correlated disorder in one direction (lin-
ear defects) [34, 42] and random quantum Ising models (where the disorder
correlations are in imaginary time direction) [15, 17, 39, 46, 67]. In these sys-
tems, several thermodynamic observables including the average susceptibility
actually diverge in a finite region of the disordered phase rather than just at
the critical point. Similar phenomena have also been found in quantum Ising
spin glasses [19,48,56].

(iii) Finally, in the third class, the rare regions can undergo the phase
transition independently from the bulk system, i.e., they are above the lower
critical dimension. In this case, the dynamics of the locally ordered rare regions
completely freezes [40, 41], and they develop a truly static order parameter.
As a result, the global phase transition is destroyed by smearing [60]. This
happens, e.g., for itinerant quantum Ising magnets. In the tail of the smeared
transition, the order parameter is extremely inhomogeneous, with statically
ordered islands or droplets coexisting with the disordered bulk of the system.

A summary of the general classification of rare region effects is given in
table 1. It is expected to apply to all continuous order-disorder transitions
(which can be described by a Landau-Ginzburg-Wilson theory) with short-
range interactions. (Long-range spatial interactions will modify the rare region
effects but it is not yet fully understood how [12]). In the remainder of this
chapter we will present computational results for several such transitions and
discuss them on the basis of the above classification.
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3 Classical Ising magnet with planar defects

3.1 The model

Our first example is a classical equilibrium system, viz. a three-dimensional
classical Ising magnet. The disorder is perfectly correlated in dC = 2 dimen-
sions but uncorrelated in d⊥ = d − dC = 1 dimensions, i.e., the system has
uncorrelated planar defects. The critical behavior of such systems has been
investigated in some detail in the literature, but the consistent picture has
been slow to emerge. Early renormalization group analysis [33] based on a
single expansion in ǫ = 4 − d did not produce a critical fixed point, leading
to the conclusion that the phase transition is either smeared or of first order.
Later work [2] which included an expansion in the number of correlated di-
mensions dC lead to a fixed point with conventional power law scaling. Notice,
however, that the perturbative renormalization group calculations missed all
effects coming form the rare regions. Recently, a theory based on extremal
statistics arguments [61] has predicted that in this system rare region effects
completely destroy the sharp phase transition by smearing. The predictions
of this theory were confirmed in simulations of mean-field type models [61].

Here we report results of large-scale Monte-Carlo simulations aimed at
testing the theoretical predictions for a realistic model with short-range in-
teractions [53]. Our starting point is a three-dimensional Ising model with
planar defects. Classical Ising spins Sijk = ±1 reside on a cubic lattice. They
interact via nearest-neighbor interactions. In the clean system all interactions
are identical and have the value J . The defects are modeled via ’weak’ bonds
randomly distributed in one dimension (uncorrelated direction). The bonds
in the remaining two dimensions (correlated directions) remain equal to J .
The system effectively consists of blocks separated by parallel planes of weak
bonds. Thus, d⊥ = 1 and dC = 2. The Hamiltonian of the system is given by:

H = −
∑

i=1,...,L⊥
j,k=1,...,LC

JiSi,j,kSi+1,j,k

−
∑

i=1,...,L⊥
j,k=1,...,LC

J(Si,j,kSi,j+1,k + Si,j,kSi,j,k+1), (1)

where L⊥(LC) is the length in the uncorrelated (correlated) direction, i, j
and k are integers counting the sites of the cubic lattice, J is the coupling
constant in the correlated directions and Ji is the random coupling constant
in the uncorrelated direction. The Ji are drawn from a binary distribution:

Ji =




cJ with probability p

J with probability 1− p
(2)

characterized by the concentration p and the relative strength c of the weak
bonds (0 < c ≤ 1). The fact that one can independently vary concentration



Parallel Simulations of Phase Transitions 179

and strength of the defects in an easy way is the main advantage of this binary
disorder distribution. The order parameter of the magnetic phase transition
is the total magnetization:

m =
1

V

∑

i,j,k

〈Si,j,k〉, (3)

where V = L⊥L
2
C is the volume of the system, and 〈·〉 is the thermodynamic

average.

3.2 Numerical method

We have performed large scale Monte-Carlo simulations of the Hamiltonian
(1) employing the the Wolff cluster algorithm [66]. It can be used because
the disorder in our system is not frustrated. As discussed above, the expected
smearing of the transition is a result of exponentially rare events. Therefore
sufficiently large system sizes are required in order to observe it. We have
simulated system sizes ranging from L⊥ = 50 to L⊥ = 200 in the uncorrelated
direction and from LC = 50 to LC = 400 in the remaining two correlated
directions, with the largest system simulated having a total of 32 million
spins. We have chosen J = 1 and c = 0.1 in the eq. (2), i.e., the strength of
a ’weak’ bond is 10% of the strength of a strong bond. The simulations have
been performed for various disorder concentrations p = {0.2, 0.25, 0.3}. The
values for concentration p and strength c of the weak bonds have been chosen
in order to observe the desired behavior over a sufficiently broad interval of
temperatures. The temperature range has been T = 4.325 to T = 4.525,
close to the critical temperature of the clean three-dimensional Ising model
T 0

c = 4.511.
To achieve optimal performance of the simulations, one must carefully

choose the number NS of disorder realizations (i.e., samples) and the number
NI of measurements during the simulation of each sample. Assuming full
statistical independence between different measurements (quite possible with
a cluster update), the variance σ2

T of the final result (thermodynamically and
disorder averaged) for a particular observable is given by [3]

σ2
T = (σ2

S + σ2
I/NI)/NS (4)

where σS is the disorder-induced variance between samples and σI is the
variance of measurements within each sample. Since the computational effort
is roughly proportional to NINS (neglecting equilibration for the moment), it
is then clear that the optimum value of NI is very small. One might even be
tempted to measure only once per sample. On the other hand, with too short
measurement runs most computer time would be spent on equilibration.

In order to balance these requirements we have used a large number NS of
disorder realizations, ranging from 30 to 780, depending on the system size and
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Fig. 1. Average magnetization m and susceptibility χ (spline fit) as functions of
T for L⊥ = 100, LC = 200 and p = 0.2 averaged over 200 disorder realizations
(from [53])

rather short runs of 100 Monte-Carlo sweeps, with measurements taken after
every sweep. (A sweep is defined by a number of cluster flips so that the total
number of flipped spins is equal to the number of sites, i.e., on the average each
spin is flipped once per sweep.) The length of the equilibration period for each
sample is also 100 Monte-Carlo sweeps. The actual equilibration times have
typically been of the order of 10-20 sweeps at maximum. Thus, an equilibration
period of 100 sweeps is more than sufficient.

3.3 Results

In this subsection we summarize the results obtained by our simulations, more
details are presented in Ref. [53]. Fig. 1 gives an overview of total magnetiza-
tion and susceptibility as functions of temperature averaged over 200 samples
of size L⊥ = 100 and LC = 200 with an impurity concentration p = 0.2.
We note that at the first glance the transition looks like a sharp phase tran-
sition with a critical temperature between T = 4.3 and T = 4.4, rounded
by conventional finite size effects. In order to distinguish this conventional
scenario from the disorder induced smearing of the phase transition, we have
performed a detailed analysis of the system in a temperature range in the
immediate vicinity of the clean critical temperature T 0

c = 4.511.
In Fig. 2, we plot the logarithm of the total magnetization vs. |T 0

c − T |−ν

averaged over 240 samples for system size L = 200, LC = 280 and three
disorder concentrations p = {0.2, 0.25, 0.3}. Here, ν is the three-dimensional
clean critical Ising exponent. For all three concentrations the data follow a
stretched exponential

m(T ) ∼ e−B|T−T 0
c |−ν

(for T → T 0
c−), (5)
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Fig. 2. Logarithm of the total magnetization m as a function of |T 0
c − T |−ν

(ν = 0.627) for several impurity concentrations p = 0.2, 0.25, 0.3, averaged over
240 disorder realizations. System size L⊥ = 200, LC = 280. The statistical errors
are smaller than a symbol size for all log10(m) > −2.5. Inset: Decay slope B as a
function of − log(1 − p) (from [53])

over more than an order of magnitude in m with the exponent for the clean
Ising model ν = 0.627. The deviation from the straight line for small m
is due to the conventional finite size effects. In the inset we show that the
decay constant B depends linearly on − log(1−p). This stretched exponential
dependence of the magnetization on the distance |T − T 0

c | from the clean
critical point can be easily understood from rare region arguments [61]. The
probability w for finding a large region of linear size L⊥ containing only strong
bonds is, up to pre-exponential factors:

w ∼ (1− p)L⊥ = elog(1−p)L⊥ . (6)

Such a rare region is equivalent to a two-dimensional Ising model in slab
geometry. It undergoes a phase transition, i.e., it develops static long-range
(ferromagnetic) order at some temperature Tc(L⊥) below the clean critical
temperature T 0

c . The value of Tc(L⊥) varies with the length of the rare region;
the longest islands will develop long-rage order closest to the clean critical
point. A rare region is equivalent to a slab of the clean system, we can thus
use finite size scaling to obtain:

T 0
c − Tc(L) = |tc(L)| = AL−φ, (7)

where φ is the finite-size scaling shift exponent of the clean system and A is the
amplitude for the crossover from three dimensions to a slab geometry infinite
in two (correlated) dimension but with finite length in the third (uncorrelated)
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Fig. 3. Local magnetization mi as function of position i in the uncorrelated direction
(system size L = 200, LC = 200 and temperature T = 4.425, one particular disorder
realization). The statistical error is approximately 5·10−3. Lower panel: The coupling
constant Ji in the uncorrelated direction as a function of position i. Inset: Log-linear
plot of the region in the vicinity of the largest ordered island ( [53])

direction. The reduced temperature t = T−T 0
c measures the distance form the

clean critical point. Since the clean 3d Ising model is below its upper critical
dimension (d+c = 4), hyperscaling is valid and the finite-size shift exponent
φ = 1/ν. Combining (6) and (7) we get the probability for finding an island
of length L⊥ which becomes critical at some tc as:

w(tc) ∼ e−B|tc|
−ν

(for tc → 0−) (8)

with the constant B = − log(1 − p)Aν . The total (average) magnetization
m at some reduced temperature t is obtained by integrating over all rare
regions which have tc > t. Since the functional dependence on t of the local
magnetization on the island is of power-law type it does not enter the leading
exponentials but only pre-exponential factors, leading directly to the desired
stretched exponential (5).

Because different rare regions undergo the phase transitions at different
temperatures, the magnetization is spatially very inhomogeneous in the tail
of the smeared phase transition. Close to the clean critical point the system
contains a few ordered islands (rare regions devoid of impurities) typically far
apart in space. The remaining bulk system is essentially still in the disordered
phase. Fig. 3 illustrates such a situation. It displays the local magnetization
mi of a particular disorder realization as a function of the position i in the
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uncorrelated direction for the size L⊥ = 200, LC = 200 at a temperature
T = 4.425 in the tail of the smeared transition. The lower panel shows the
local coupling constant Ji as a function of i. The figure shows that a sizable
magnetization has developed on the longest island only (around position i =
160). One can also observe that order starts to emerge on the next longest
island located close to i = 25. Far form these islands the system is still in its
disordered phase. In the thermodynamic limit, the local magnetization away
from the ordered rare regions should be exponentially small. However, in the
simulations of a finite size system the local magnetization has a lower cut-off
which is produced by finite-size fluctuations of the order parameter. These
fluctuations are governed by the central limit theorem and can be estimated
as mbulk ≈ 1/

√
Ncor ≈

√
L2

cl/L
2
C ≈ 5 · 10−3 in agreement with the typical

off-island value in Fig. 3. Here, Ncor is the number of correlated volumes per
slab as determined by the size off the Wolff cluster. Lcl is a typical linear size
of a Wolff cluster which is, at T = 4.425, Lcl ≈ 10. In the inset of Fig. 3
we zoom in on the region around the largest island. The local magnetization,
plotted on the logarithmic scale, exhibits a rapid drop-off with the distance
from the ordered island. This drop-off suggests a relatively small (a few lattice
spacings) bulk correlation length ξ0 in this parameter region.

In summary, our simulations have shown that the phase transition in an
Ising model with planar defects is destroyed by smearing. This result is in
agreement with the general classification put forward in Sect. 2. The dimen-
sionality of the rare regions is dRR = 2 which is larger than the lower critical
dimension of the Ising model which is d−c = 1. The behavior in the tail of
the resulting smeared transition agrees well with the predictions of extremal
statistics theory [61].

4 Diluted bilayer quantum Heisenberg antiferromagnet

4.1 Model and Method

In this section we discuss the zero-temperature quantum phase transitions in
a diluted bilayer quantum antiferromagnet. The spins in each two-dimensional
layer interact via nearest neighbor exchange J‖, and the interplane coupling
is J⊥. The clean version of this model has been studied extensively [26,38,51].
For J⊥ ≫ J‖, neighboring spins from the two layers form singlets, and the
ground state is paramagnetic. In contrast, for J‖ ≫ J⊥ the system develops
antiferromagnetic (Néel) order. Both phases are separated by a quantum phase
transition at J⊥/J‖ ≈ 2.525. Random disorder is introduced by removing pairs
(dimers) of adjacent spins, one from each layer. The Hamiltonian of the model
with dimer dilution is:

H = J‖
∑

〈i,j〉
a=1,2

ǫiǫjŜi,a · Ŝj,a + J⊥
∑

i

ǫiŜi,1 · Ŝi,2, (9)
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Fig. 4. Phase diagram [59] of the diluted bilayer Heisenberg antiferromagnet, as
function of J⊥/J‖ and dilution p. The dashed line is the percolation threshold, the
open dot is the multicritical point of Refs. [50, 59]. The arrow indicates the QPT
studied here. Inset: The model: Quantum spins (arrows) reside on the two parallel
square lattices. The spins in each plane interact with the coupling strength J‖.
Interplane coupling is J⊥. Dilution is done by removing dimers (from [54])

and ǫi=0 (ǫi=1) with probability p (1− p).
The phase diagram of the dimer-diluted bilayer Heisenberg model has been

studied by Sandvik [50] and Vajk and Greven [59], see Fig. 4. For small J⊥,
magnetic order survives up to the percolation threshold pp ≈ 0.4072, and a
multicritical point exists at p = pp and J⊥/J‖ ≈ 0.16.

We have performed extensive simulations [54] of the critical behavior at the
generic transition occurring for 0 < p < pp and driven by J⊥. To this end we
have first mapped the quantum Hamiltonian (9) onto a classical model. The
low-energy properties of bilayer quantum antiferromagnets are represented by
a (2+1)-dimensional O(3) quantum rotor model [10] with the rotor coordinate
n̂i corresponding to Ŝi,1 − Ŝi,2 and the angular momentum L̂i representing

Ŝi,1 + Ŝi,2 (see, e.g., Chap. 5 of [49]). This quantum rotor model in turn is
equivalent to a three-dimensional classical Heisenberg model with the disorder
perfectly correlated in imaginary time direction, as can be easily seen from
a path integral representation of the partition function. Thus, our classical
Hamiltonian reads:

H = K
∑

〈i,j〉,τ

ǫiǫjni,τ · nj,τ +K
∑

i,τ

ǫini,τ · ni,τ+1, (10)

where ni,τ is an O(3) unit vector. The coupling constant βK of the classical
model is related to the ratio J‖/J⊥ of the quantum model. Here, β ≡ 1/T
where T is an effective “classical” temperature, not equal to the real temper-
ature which is zero. We set K = 1 and drive the classical system through the
transition by tuning the classical temperature T .
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We also note that dimer dilution in the bilayer antiferromagnet (9) does not
introduce random Berry phases because the Berry phase contributions from
the two spins of each unit cell cancel [10,49]. In contrast, for site dilution, the
physics changes completely: The random Berry phases (which have no classical
analogue) are equivalent to impurity-induced moments [52], and those become
weakly coupled via bulk excitations. Thus, for all p < pp the ground state
shows long-range order, independent of J⊥/J‖! This effect is absent for dimer
dilution, and both phases of the clean system survive for small p.

The classical model (10) is studied by Monte-Carlo simulations using the
efficient Wolff cluster algorithm [66]. We investigate linear sizes up to L = 120
in space direction and Lτ = 384 in imaginary time, for impurity concentrations
p = 1

8 , 1
5 , 2

7 and 1
3 . The results are averaged over 103 – 104 disorder realiza-

tions. Each sample is equilibrated using 100 Monte-Carlo sweeps (spin-flips per
site). For large dilutions, p = 2

7 and 1
3 we perform both Wolff and Metropolis

sweeps to equilibrate small dangling clusters. During the measurement period
of another 100-200 sweeps we calculate magnetization, susceptibility, specific
heat and correlation functions.

4.2 Results

A quantity particularly suitable to locate the critical point and to study the
critical behavior is the Binder ratio:

gav =

[
1− 〈|M|4〉

3〈|M|2〉2
]

av

, (11)

where M =
∑

i,τ ni,τ , [. . .]av denotes the disorder average and 〈. . .〉 denotes
the Monte-Carlo average for each sample. It also allows one to distinguish
between power law dynamical scaling (correlation time behaves like a power
of correlation length, ξτ ∼ ξz) and activated dynamical scaling (ln ξτ ∼ ξψ).
Because the Binder ratio has scale dimension 0, its finite-size scaling form is
given by

gav = g̃C(tL1/ν , Lτ/L
z) or (12)

gav = g̃A(tL1/ν , log(Lτ )/Lµ) (13)

for conventional scaling or for activated scaling, respectively. Two important
characteristics follow: (i) For fixed L, gav has a peak as a function of Lτ . The
peak position Lmax

τ marks the optimal sample shape, where the ratio Lτ/L
roughly behaves like the corresponding ratio of the correlation lengths in time
and space directions, ξτ/ξ. At the critical temperature Tc, the peak value gmax

av

is independent of L. Thus, for power law scaling, plotting gav vs. Lτ/L
max
τ at

Tc should collapse the data, without the need for a value of z. In contrast,
for activated scaling the gav data should collapse when plotted as a function
of log(Lτ )/ log(Lmax

τ ). (ii) For samples of the optimal shape (Lτ = Lmax
τ ),

plots of gav vs. temperature for different L cross at Tc. Based on these two
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2

Fig. 5. Upper panel: Binder ratio gav as a function of Lτ for various L (p = 1
5
).

Lower panel: Power-law scaling plot gav/gmax
av vs. Lτ/Lmax

τ . Inset: Activated scaling
plot gav/gmax

av vs. y = log(Lτ )/ log(Lmax
τ ) (from [54])

characteristics, we use a simple iterative procedure to determine both the
optimal shapes and the location of the critical point.

We now turn to our results. To distinguish between activated and power-
law dynamical scaling we perform a series of calculations at the critical tem-
perature. The upper panel of Fig. 5 shows the Binder ratio gav as a function
of Lτ for various L = 5 . . . 100 and dilution p = 1

5 at T = Tc = 1.1955. The
statistical error of gav is below 0.1% for the smaller sizes and not more than
0.2% for the largest systems. As expected at Tc, the maximum Binder ratio for
each of the curves does not depend on L. To test the conventional power-law
scaling form, eq. (12), we plot gav/g

max
av as a function of Lτ/L

max
τ in the lower

panel of Fig. 5. The data scale extremely well, giving statistical errors of Lmax
τ

in the range between 0.3% and 1%. For comparison, the inset shows a plot of
gav as a function of log(Lτ )/ log(Lmax

τ ) corresponding to eq. (13). The data
clearly do not scale which rules out the activated scaling scenario. The results
for the other impurity concentrations p = 1

8 ,
2
7 ,

1
3 are completely analogous.

Having established conventional power-law dynamical scaling, we proceed
to determine the dynamical exponent z. In Fig. 6, we plot Lmax

τ vs. L for all
four dilutions p. The curves show significant deviations from pure power-law
behavior which can be attributed to corrections to scaling due to irrelevant
operators. In such a situation, a direct power-law fit of the data will only
yield effective exponents. To find the true asymptotic exponents we take the
leading correction to scaling into account by using the ansatz Lmax

τ (L) =
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Fig. 6. Lmax
τ /L vs. L for four disorder concentrations p = 1

8
, 1

5
, 2

7
and 1

3
. Solid lines:

Fit to Lmax
τ = aLz(1 + bL−ω1) with z = 1.310(6) and ω1 = 0.48(3) (from [54])

aLz(1+bL−ω1) with universal (dilution-independent) exponents z and ω1 but
dilution-dependent a and b. A combined fit of all four curves gives z = 1.310(6)
and ω1 = 0.48(3) where the number in brackets is the standard deviation of the
last given digit. The fit is of high quality with χ2 ≈ 0.7 per degree of freedom
indicating that the data follow our ansatz without systematic deviations. The
fit is also robust against removing complete data sets or removing points form
the lower or upper end of each set. We thus conclude that the asymptotic
dynamical exponent z is indeed universal. Note that the leading corrections
to scaling vanish very close to p = 2

7 ; the curvature of the Lmax
τ (L) curves in

Fig. 6 is opposite above and below this concentration.
To find the correlation length exponent ν, we perform simulations in the

vicinity of Tc for samples with the optimal shape (Lτ = Lmax
τ ) to keep the

second argument of the scaling function (12) constant. The exponent ν can
be determined from the L-dependence of the scale-factor xL necessary to
collapse the data. A combined fit to the ansatz xL = cL1/ν(1 + dL−ω2) where
ν and ω2 are universal, gives ν = 1.16(3) and ω2 = 0.5(1). As above, the
fit is robust and of high quality (χ2 ≈ 1.2). Importantly, as expected for
the true asymptotic exponent, ν fulfills the Harris criterion [24], ν > 2/d=1.
Note that both irrelevant exponents ω1 and ω2 agree within their error bars,
suggesting that the same irrelevant operator controls the leading corrections
to scaling for both z and ν. We have also calculated total magnetization
and susceptibility. The corresponding exponents β/ν = 0.56(5) and γ/ν =
2.15(10) have slightly larger error bars than z and ν. Nonetheless, they fulfill
the hyperscaling relation 2β+γ = (d+ z)ν which is another argument for our
results being asymptotic rather than effective exponents.

In summary, our computer simulations have shown that the zero-temper-
ature quantum phase transition in the diluted bilayer Heisenberg quantum
antiferromagnet is characterized by a conventional critical point with power-
law dynamical scaling and universal critical exponents that fulfill the Harris
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criterion. These results are in agreement with the general classification sug-
gested in Sect. 2. The effective dimensionality of the rare regions (including
the imaginary time direction which is important for quantum phase transi-
tions) is dRR = 1. The lower critical dimension for an O(3) Heisenberg model
is d−c = 2. Thus, dRR < d

−
c , and the rare region effects are exponentially small.

5 Nonequilibrium phase transitions in the disordered
contact process

5.1 The contact process

The examples discussed in Sects. 3 and 4 concerned systems in thermal equilib-
rium. However, nonequilibrium systems can also undergo “phase” transitions
between different nonequilibrium steady states. These transitions are charac-
terized by large scale fluctuations and collective behavior over large distances
and times very similar to the behavior at equilibrium critical points. Exam-
ples of such nonequilibrium transitions can be found in population dynamics
and epidemics, chemical reactions, growing surfaces, and in granular flow and
traffic jams (for recent reviews see, e.g., Refs. [9, 27,35,44,55,57])

A prominent class of nonequilibrium phase transitions separates active
fluctuating states from inactive, absorbing states where fluctuations cease en-
tirely. Recently, much effort has been devoted to classifying possible univer-
sality classes of these absorbing state phase transitions [27, 44]. The generic
universality class is directed percolation (DP) [23]. According to a conjecture
by Janssen and Grassberger [20, 30], all absorbing state transitions with a
scalar order parameter, short-range interactions, and no extra symmetries or
conservation laws belong to this class.

The contact process [25] is a prototypical system in the directed percolation
universality class. It can be interpreted, e.g., as a model for the spreading of a
disease. The contact process is defined on a d-dimensional hypercubic lattice.
Each lattice site r can be active (occupied by a particle) or inactive (empty).
In the course of the time evolution, active sites can infect their neighbors, or
they can spontaneously become inactive. Specifically, the dynamics is given by
a continuous-time Markov process during which particles are created at empty
sites at a rate λn/(2d) where n is the number of active nearest neighbor sites.
Particles are annihilated at rate µ (which is often set to unity without loss of
generality). The ratio of the two rates controls the behavior of the system.

For small birth rate λ, annihilation dominates, and the absorbing state
without any particles is the only steady state (inactive phase). For large birth
rate λ, there is a steady state with nonzero particle density (active phase).
The two phases are separated by a nonequilibrium phase transition in the
directed percolation universality class at λ = λ0

c . The central quantity in the
contact process is the average density of active sites at time t
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ρ(t) =
1

Ld

∑

r

〈nr(t)〉 (14)

where nr(t) is the particle number at site r and time t, L is the linear system
size, and 〈. . .〉 denotes the average over all realizations of the Markov process.
The longtime limit of this density (i.e., the steady state density)

ρst = lim
t→∞

ρ(t) (15)

is the order parameter of the nonequilibrium phase transition.

5.2 Contact process with point defects

Quenched spatial disorder can be introduced by making the birth rate λ a
random function of the lattice site r. We assume the disorder to be spatially
uncorrelated; and we use a binary probability distribution

P [λ(r)] = (1− p) δ[λ(r)− λ] + p δ[λ(r)− cλ] (16)

where p and c are constants between 0 and 1. This distribution allows us to in-
dependently vary spatial density p of the impurities and their relative strength
c. The impurities locally reduce the birth rate, therefore, the nonequilibrium
transition will occur at a value λc that is larger than the clean critical birth
rate λ0

c .
The investigation of disorder effects on the directed percolation transi-

tion actually has a long history, but a coherent picture has emerged only
recently. The directed percolation universality class violates the Harris crite-
rion dν > 2 in all dimensions d < 4, because the exponent values are ν ≈ 1.097
(1D), 0.73 (2D), and 0.58 (3D) [27]. A field-theoretic renormalization group
study [31] confirmed the instability of the DP critical fixed point. Moreover,
no new critical fixed point was found. Instead the renormalization group dis-
plays runaway flow towards large disorder, indicating unconventional behav-
ior. Early Monte-Carlo simulations [43] showed significant changes in the crit-
ical exponents while later studies [36] of the two-dimensional contact process
with dilution found logarithmically slow dynamics in violation of power-law
scaling. In addition, rare region effects similar to Griffiths singularities were
found to lead to slow dynamics in a whole parameter region in the vicinity
of the phase transition. Recently, an important step towards understanding
spatial disorder effects on the DP transition has been made by Hooyberghs et
al. [28]. These authors used a version of the Ma-Dasgupta-Hu strong-disorder
renormalization group [37] and showed that the transition is controlled by an
infinite-randomness critical point, at least for sufficiently strong disorder.

Numerical method

Here, we report the results of large scale Monte-Carlo simulations of the one-
dimensional disordered contact process [58]. There is a number of different
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ways to actually implement the contact process on the computer (all equiva-
lent with respect to the universal behavior). We follow the widely used algo-
rithm described, e.g., by Dickman [11]. Runs start at time t = 0 from some
configuration of occupied and empty sites. Each event consists of randomly
selecting an occupied site r from a list of all Np occupied sites, selecting a
process: creation with probability λ(r)/[1 + λ(r)] or annihilation with prob-
ability 1/[1 + λ(r)] and, for creation, selecting one of the neighboring sites
of r. The creation succeeds, if this neighbor is empty. The time increment
associated with this event is 1/Np. Note that in this implementation of the
disordered contact process both the creation rate and the annihilation rate
vary from site to site in such a way that their sum is constant (and equal to
one).

Using this algorithm, we have performed simulations for system sizes be-
tween L = 1000 and L = 107. We have studied impurity concentrations
p = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 as well as relative impurity strengths of
c = 0.2, 0.4, 0.6 and 0.8. To explore the extremely slow dynamics associated
with the predicted infinite-randomness critical point, we have simulated very
long times up to t = 109 which is, to the best of our knowledge, at least three
orders of magnitude in t longer than previous simulations of the disordered
contact process. In all cases we have averaged over a large number (at least
480) of different disorder realizations.

Results

A first set of calculations starts from a full lattice and follows the time evo-
lution of the average density. This means, at time t = 0, all sites are active
and ρ(0) = 1. Figure 7 gives an overview of the time evolution of the density
for a system of 106 sites with p = 0.3, c = 0.2, covering the λ range from the
conventional inactive phase, λ < λ0

c all the way to the active phase, λ > λc.
For birth rates below and at the clean critical point λ0

c ≈ 3.298, the density
decay is very fast, clearly faster then a power law. Above λ0

c , the decay be-
comes slower and asymptotically seems to follow a power-law. For even larger
birth rates the decay seems to be slower than a power law while the largest
birth rates give rise to a nonzero steady state density, i.e., the system is in the
active phase.

To test the strong-disorder renormalization group theory of Hooyberghs et
al. [28], we plot the time dependence of the density according to the predicted
activated scaling law

ρ(t) ∼ [ln(t)]−δ̄, (17)

with δ̄ = 0.38197. Fig. 8 shows our data for a system of 104 sites with p = 0.3
and c = 0.2. As before, the data are averages over 480 runs, each with a
different disorder realization. The evolution of the density at λ = 5.24 follows
eq. (17) over almost six orders of magnitude in time. Therefore, we conclude
that the critical point of the disordered contact process is indeed of infinite-
randomness type [28] with λ = λc = 5.24 being the critical birthrate for
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Fig. 7. Overview of the time evolution of the density for a system of 106 sites with
p = 0.3 and c = 0.2. The clean critical point λ0

c ≈ 3.298 and the dirty critical point
λc ≈ 5.24 are specially marked (from [58])
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Fig. 8. ρ−1/δ̄ vs. ln(t) for a system of 104 sites with p = 0.3 and c = 0.2. The filled
circles mark the critical birth rate λc = 5.24, and the straight line is a fit of the
long-time behavior to eq. (17) (from [58])

p = 0.3, c = 0.2. We have performed analogous calculation for two different
sets of parameters. In the first, we kept p = 0.3 but varied c from 0.2 to 0.8;
in the second we kept c = 0.2 and varied p from 0.2 to 0.5. We found that
the critical point is characterized by the logarithmic density decay (17) with
a universal exponent δ̄ = 0.38197 for all parameter sets including the case of
weak disorder.

In addition to the critical point, we have also studied the Griffiths region
between the clean critical birthrate, λ0

c = 3.298 and the dirty critical birthrate
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Fig. 9. Log-log plot of the density time evolution in the Griffiths region for systems
with p = 0.3, c = 0.2 and several birth rates λ. The system sizes are 107 sites for
λ = 3.5, 3.7 and 106 sites for the other λ values. The straight lines are fits to the
power law ρ(t) ∼ t−1/z′

predicted in eq. (18). Inset: Dynamical exponent z′ vs. birth
rate λ (from [58])

λc = 5.24. According to an early prediction by Noest [43], the long-time decay
of the density in the Griffiths region should asymptotically follow a power-law,

ρ(t) ∼ t−d/z′

(18)

where z′ is a customarily used nonuniversal dynamical exponent.
Figure 9 shows a double-logarithmic plot of the density time evolution for

birth rates λ = 3.5 . . . 5.1 and p = 0.3, c = 0.2. The system sizes are between
106 and 107 lattice sites. For all birth rates λ shown, ρ(t) follows (18) over
several orders of magnitude in ρ (except for the largest λ where we could
observe the power law only over a smaller range in ρ because the decay is
too slow). The nonuniversal dynamical exponent z′ can be obtained by fitting
the long-time asymptotics of the curves in Fig. 9 to eq. (18). The inset of
Fig. 9 shows z′ as a function of the birth rate λ. As predicted, z′ increases
with increasing λ throughout the Griffiths region with an apparent divergence
around λ = λc = 5.24.

In summary, our large-scale simulations of the contact process with point
defects have provided strong evidence that the critical point is of infinite-
randomness type with universal critical exponents (even for weak bare disor-
der). The critical point is accompanied by strong Griffiths singularities char-
acterized by non-universal power-law decay of the density. These results are in
excellent agreement with the general classification of dirty phase transitions
suggested in Sect. 2. The dimensionality of the rare regions in the contact
process with point defects is dRR = 0 (they are of finite size). However, the
zero-dimensional contact process is right at its lower critical dimension d−c ,
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Fig. 10. Stationary density ρst as a function of birth rate λ for a clean system and
a system with impurity concentration p = 0.2. System size is L = 1000 (from [14])

because the life time of a cluster depends exponentially on its size. Thus,
dRR = d−c , and the classification predicts power-law Griffiths effects and acti-
vated scaling at the dirty critical point.

5.3 Contact process with extended defects

In this subsection we consider the contact process in the presence of spatially
extended (linear or planar) defects. From the general arguments in Sect. 2, we
expect the disorder correlations to enhance the impurity effects. Indeed, using
optimal fluctuation theory, it has recently been predicted [62], that extended
defects destroy the phase transition in the contact process by smearing.

Here, we report Monte-Carlo simulations of a contact process on a square
lattice [14]. The disorder consists of linear defects, i.e., the local birthrate
λ(r) with r = (x, y) depends only on x (in y-direction, it is perfectly cor-
related). Except for this difference, the simulations proceed analogously to
those described in the last subsection. We have investigated linear system
sizes up to L = 3000 and impurity concentrations p = 0.2, 0.25, 0.3, 0.35 and
0.4. The relative strength of the birth rate on the impurities was c = 0.2 for
all simulations. The data presented below represent averages of 200 disorder
realizations.

Let us first focus our attention on the stationary state of our contact
process. Fig. 10 shows a comparison of the stationary density ρst as a function
of λ between the clean system and a dirty system with p = 0.2. The clean
system (p = 0) has a sharp phase transition with a power-law singularity of
the density, ρst ∼ (λ−λ0

c)
β at the clean critical point λ0

c ≈ 1.65 with β ≈ 0.58
in agreement with the literature [36]. In contrast, in the dirty system, the
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density increases much more slowly with λ after crossing the clean critical
point. This suggests either a critical point with a very large exponent β or
exponential behavior.

In the tail of a smeared phase transition, the stationary density is expected
to behave as

ρst(λ) ∼ exp
(
−B(λ− λ0

c)
−ν⊥

)
. (19)

This can be obtained from an extremal statistics theory [62] for rare regions
with strong local infection rate similar to the theory sketched in section 3.
Here, ν⊥ is the spatial correlation length exponent of the clean system. To
test this prediction, in Fig. 11, we plot ln ρst as a function of (λ − λ0

c)
ν⊥ for

several impurity concentrations p. The data show that the density tail is in-
deed exponential, following the exponential law (19) over at least two orders
of magnitude in ρst. The clean two-dimensional spatial correlation length ex-
ponent is ν⊥ = 0.734 [64]. Fits of the data to eq. (19) can be used to determine
the decay constants B. As predicted by extremal statistics theory, the decay
constants depend linearly on p̃ = − ln(1− p).

In addition to the stationary density, we have also studied its time evo-
lution in the tail of the smeared transition. According to extremal statistics
theory [62], the density decay right at the clean critical point should follow a
stretched exponential

ln ρ(t) ∼ −t1/(1+z) . (20)

where z = 1.76 is the dynamical exponent of the clean two-dimensional con-
tact process [64]. This prediction is tested in Fig. 12 for our two-dimensional
contact process with linear defects. The figure shows that the data follow the
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predicted stretched exponential behavior over more than three orders of mag-
nitude in ρ. The very slight deviation of the curves from a straight line can be
attributed to the pre-exponential factors neglected in the extremal statistics
theory.

We have also simulated the dynamics above the clean critical point, λ > λ0
c .

In this parameter region, the stationary density is nonzero as shown in Fig.
11. The approach of the density to this nonzero stationary value follows a
power-law with a nonuniversal exponent [14,62].

In summary, our large-scale computer simulations have established that the
phase transition in the two-dimensional contact process with linear defects is
smeared because rare regions can undergo the phase transition independently
from the rest of the system. This result agrees with the general classification
of dirty phase transitions suggested in Sect. 2. The dimensionality of the rare
regions in the contact process with linear defects is dRR = 1 which is larger
than the lower critical dimension d−c = 0 of the contact process. Thus, the
global transition must be smeared.

6 Computational implementation

Computational studies of disordered many-particle systems generally require
a very high computational effort. In addition to dealing with a large number
of degrees of freedom, the presence of impurities and defects requires studying
large numbers (from 100 to several 10000) of samples or disorder realizations to
explore the averages or even distribution functions of macroscopic observables.



196 Thomas Vojta

Fortunately, this very complication also makes disordered many-particle
systems ideal candidates for massive parallel simulations. In the simplest case,
one can distribute (farm out) the Nsamp disorder realizations over the NCPU

available processors at the beginning such that each processor is assigned
Nsamp/NCPU samples. This can be done, e.g., by using different random
number seeds in the function that generates the impurities or defects. The
simulations then proceed independently for the different samples, minimiz-
ing the communication requirements. After each processor has carried out
the simulation for all the samples assigned to it, the data are collected and
processed to obtain the desired averages or distribution functions. In this way,
one achieves linear speedup (total time inversely proportional to the number
of available processors) as long as the number of simulated samples is larger
than the number of processors.

The only major drawback of this scheme lies in the fact that depending on
the algorithm, different samples of a strongly disordered system may require
vastly different simulation times. If the number of samples per processor is
fixed from the outset, some idle time is thus unavoidable. To overcome this
problem we have implemented an algorithm that dynamically assigns the sam-
ples to available processors. In the beginning, a master process hands each of
the simulation processes a specific sample (i.e., a random number seed). After
a process finishes the simulation, it sends the results to the master process
and is handed a new sample. This is repeated until all samples have been
simulated. With this modification of the simple farming process, no cycles
are wasted, and the speedup of our simulations is nearly perfect. In all other
aspects, the simulations use established procedures for parallel computing, in
particular, communication is via MPI.

Monte-Carlo simulations of large many-particle systems with quenched dis-
order require huge numbers of (pseudo) random numbers. The quality of the
random number generator (long period, low correlations) is therefore of par-
ticular importance. Our main “work horse” generator has been the combined
linear feedback shift register generator LFSR113 suggested by P. L’Ecuyer [32]
which is very fast and has a long period of about 2113. We have also used other
random number generators for comparison and testing purposes including the
popular RAN2 from Ref. [45].

7 Summary and conclusions

In this chapter we have discussed the results of large-scale parallel Monte-
Carlo simulations of quantum and classical phase transitions with quenched
disorder. We have paid particular attention to the effects of rare strong spa-
tial disorder fluctuations, the so-called rare regions. Our results show that
disorder correlations, either in space or in imaginary time (at quantum phase
transitions) strongly enhance the disorder effects.
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We have focused on what is arguably the simplest type of phase transition
in the presence of impurities and defects, viz., order-disorder transitions with
random-Tc (random mass) type disorder. In this scenario, both phases are
conventional (i.e., disorder is irrelevant at the stable fixed points correspond-
ing to the bulk phases). The only disorder effect is a local variation of the
tendency towards the ordered phase. For such transitions (with short-range
spatial interactions), a general classification of rare region effects has been
suggested, based on the effective dimensionality dRR of the rare regions [63].
Three cases can be distinguished.

(i) If dRR is below the lower critical dimension d−c of the problem, the rare
region effects are exponentially small because the probability of a rare region
decreases exponentially with its volume but the contribution of each region
to observables increases only as a power law. In this case, the critical point is
of conventional power-law type.

(ii) In the second class, with dRR = d−c , the Griffiths effects are of power-
law type because the exponentially rarity of the rare regions in Lr is overcome
by an exponential increase of each region’s contribution. In this class, the
critical point is controlled by an infinite-randomness fixed point with activated
scaling.

(iii) Finally, for dRR > d
−
c , the rare regions can undergo the phase transi-

tion independently from the bulk system. This leads to a destruction of the
sharp phase transition by smearing.

All the examples discussed in this chapter are in agreement with this clas-
sification. The diluted bilayer quantum Heisenberg antiferromagnet falls into
the first class, because dRR = 1 (disorder correlations in imaginary time di-
rection) but d−c = 2 for Heisenberg symmetry. The contact process with point
defects belongs to class (ii) since dRR = d−c = 0. Finally, the classical Ising
model with plane defects and the contact process with line defects have a
smeared transition, case (iii). In the former system, the plane defects lead to
dRR = 2 while d−c = 1 for Ising symmetry; in the latter system dRR = 1 but
d−c = 0. Thus, all our simulation results provide support for the classification
put forward in Ref. [63].

In conclusion, rare regions, i.e. rare strong spatial disorder fluctuations,
can have pronounced effects on phase transitions in systems with quenched
disorder. These effects range from classical Griffiths phenomena to the much
stronger quantum Griffiths singularities, and to a complete destruction of the
sharp phase transition by smearing. The simulation results summarized here
have helped clarifying these rare region effects for order-disorder transitions
between conventional phases. In the future, it will be interesting to see whether
additional new rare region effects [63] can be found for transitions where the
phases themselves are unconventional, such as spin glass or random singlet
phases.
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1 Introduction

Traditionally, condensed matter physics has focused on the investigation of
perfect crystals. However, real materials usually contain impurities, disloca-
tions or other defects, which distort the crystal. If the deviations from the
perfect crystalline structure are large enough, one speaks of disordered sys-
tems. The Anderson model [1] is widely used to investigate the phenomenon of
localisation of electronic states in disordered materials and electronic trans-
port properties in mesoscopic devices in general. Especially the occurrence
of a quantum phase transition driven by disorder from an insulating phase,
where all states are localised, to a metallic phase with extended states, has
led to extensive analytical and numerical investigations of the critical prop-
erties of this metal-insulator transition (MIT) [2–4]. The investigation of the
behaviour close to the MIT is supported by the one-parameter scaling hypoth-
esis [5,6]. This scaling theory originally formulated for the conductance plays
a crucial role in understanding the MIT [7]. It is based on an ansatz inter-
polating between metallic and insulating regimes [8]. So far, scaling has been
demonstrated to an astonishing degree of accuracy by numerical studies of the
Anderson model [9–13]. However, most studies focused on scaling of the local-
isation length and the conductivity at the disorder-driven MIT in the vicinity
of the band centre [9,14,15]. Assuming a power-law form for the d.c. conduc-
tivity, as it is expected from the one-parameter scaling theory, Villagonzalo et
al. [6] have used the Chester-Thellung-Kubo-Greenwood formalism to calcu-
late the temperature dependence of the thermoelectric properties numerically
and showed that all thermoelectric quantities follow single-parameter scaling
laws [16,17].
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In this chapter we will investigate whether the scaling assumptions made
in previous studies for the transition at energies outside the band centre can be
reconfirmed in numerical calculations, and in particular whether the conduc-
tivity σ follows a power law close to the critical energy Ec. For this purpose we
will use the recursive Green’s function method [18, 19] to calculate the four-
terminal conductance of a disordered system for fixed disorder strength at
temperature T = 0. Applying the finite-size scaling analysis we will compute
the critical exponent and determine the mobility edge, i.e. the MIT outside
the band centre. A complementary investigation into the statistics of the en-
ergy spectrum and the states close to the MIT can be found in Chap. [20].
An analysis of the mathematical properties of the so-called binary-alloy or
Bernoulli-Anderson model is done in Chap. [21].

2 The Anderson model of localisation
and its metal-insulator transition

The Anderson model [1, 2] is widely used to investigate the phenomenon of
localisation of electronic states in disordered materials. It is based upon a
tight-binding Hamiltonian in site representation

H =
∑

i

ǫi|i〉〈i|+
∑

i�=j

tij |i〉〈j| , (1)

where |i〉 is a localized state at site i and tij are the hopping parameters, which
are usually restricted to nearest neighbours. The on-site potentials ǫi are ran-
dom numbers, chosen according to some distribution P (ǫ) [22, 23]. In what
follows we take P (ǫ) to be a box distribution over the interval [−W/2,W/2],
thus W determines the strength of the disorder in the system. Other distrib-
utions have also been considered [2, 3, 24].

For strong enough disorder, W > Wc(E = 0), all states are exponentially
localized and the respective wave functions Ψ(r) are proportional to e−|r−r0|/ξ

for large distances |r− r0|. Thus, Ψ is confined to a region of some finite size,
which may be described by the so-called localisation length ξ. In this language
extended states are characterised by ξ −→ ∞. Comparing ξ with the size L
of the system one can distinguish between strong and weak localisation, for
ξ ≪ L and L < ξ, respectively3. Here we also assume that the phase-relaxation
length ℓΦ ≫ L. Otherwise, the effective system size is determined by ℓΦ.

It turns out that the value of the critical disorder strength Wc depends on
the distribution function P (ε) and the dimension d of the system. In absence

3We note that the phrase weak localization in the context of the scaling theory
is often used with a specific meaning, namely the onset of localization in large 2-
dimensional samples, where the conductance decreases logarithmically with scale
[2, 7].
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of a magnetic field and for d≤ 2 all states are localized4, i.e. Wc = 0 [7, 8].
For systems with d = 3 the value of Wc additionally depends on the Fermi
energy E and the curve Wc(E) separates localized states (W > Wc(E)) from
extended states (W < Wc(E)) in the phase diagram [22, 23, 26]. If instead
of E the disorder strength is taken as a parameter, there will be a critical
energy Ec(W ) — also called the mobility edge — and states with |E| < Ec are
extended and those with |E| > Ec localized yielding the same phase boundary
in the (E,W)-plane. At the mobility edge, states are multifractals [27]. The
separation of localized and extended states is illustrated in Fig. 1, which shows
a schematic density of states (DOS) of a three-dimensional (3D) Anderson
model. Since for T = 0 localized states cannot carry any electric current, the
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Fig. 1. Typical DOS of a 3D Anderson model for fixed W < Wc. The states in
the grey regions are localized, otherwise they are extended. The mobility edges are
indicated at ±Ec. Also indicated is the power-law behaviour of σ(E) (dashed lines)
close to ±Ec according to (2)

system shows insulating behaviour, i.e. the electric conductivity σ vanishes
for |E| > Ec or W > Wc. Otherwise the system is metallic. Therefore, the
transition at the critical point is called a disorder-driven MIT.

For the MIT in d = 3 it was found that σ is described by a power law at
the critical point [2],

σ(E) =




σ0

∣∣∣1− E
Ec

∣∣∣
ν

, |E| < Ec

0, |E| > Ec

(2)

with ν being the universal critical exponent of the phase transition and σ0 a
constant. The value of ν has been computed numerically by various methods

4Strictly speaking, this is only true if H belongs to the Gaussian orthogonal
ensemble [25].
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[2,9–11] and was also derived from experiments [28,29]. The results range from
1 to 1.6, depending on the distribution P (ǫ) and the computational method [3]
used.

Moreover, Wegner [30] was able to show that for non-interacting electrons
the d.c. conductivity σ obeys a general scaling form close to the MIT,

σ(ε, ω) = b2−d σ(b1/νε, bzω) . (3)

Here ε denotes the dimensionless distance from the critical point, ω is an
external parameter such as the frequency or the temperature, b is a scaling
parameter and z is the dynamical exponent. For non-interacting electrons
z = d [31]. Assuming a finite conductivity for ω = 0, one obtains from (3)

σ(ε, 0) ∝ εν(d−2), (4)

where ε = |1− E/Ec|. With d = 3 this gives (2).

3 Computational method

An approach to calculate the d.c. conductivity from the Anderson tight-
binding Hamiltonian (1) is the recursive Green’s function method [18,19,23].
It yields a recursion scheme for the d.c. conductivity tensor starting from
the Kubo-Greenwood formula [32]. Moreover, this method allows to com-
pute the density of states and the localization length as well as the full
set of thermoelectric kinetic coefficients [33]. Parallel implementations of the
method are advantageous [34,35]. The method is therefore a companion to the
more widely used transfer-matrix method [36, 37] or iterative diagonalisation
schemes [38,39].

3.1 Recursive Green’s function method

Let H =
∑

ij Hij |i〉〈j| denote our hermitian tight-binding Hamiltonian. The

single particle Green’s function G±(z) is defined as [40] (z±−H)G± = 1 where
z = E ± iγ is the complex energy and the sign of the small imaginary part γ
distinguishes between advanced and retarded Green’s functions, G−(E − i0)
and G+(E + i0), respectively [40]. Equivalently, G± can be represented in the
basis of the functions |i〉,

(z±δij −Hij)G
±
ij = δij , (5)

where G±
ij is the matrix element 〈i|G±|j〉. We note that for a hermitian Hamil-

tonian G−
ij = (G+

ji)
∗.

If H contains only nearest-neighbour hopping matrix elements, (5) can be
simplified using a block matrix notation. This is equivalent to considering the
system as being built up of slices or strips for 3D or 2D, respectively, along
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Fig. 2. Scheme of the recursive Green’s function method for a 3D system. The
new Green’s function G(N+1) can be calculated from the old Hamiltonian HN (light
grey), the new slice Hamiltonian HN+1 (dark grey) and the coupling tN (solid
arrows)

one lattice direction. In what follows all quantities written in bold capitals are
matrices acting in the subspace of such a slice or strip. For 2D and 3D these
are matrices of sizeM×M andM2×M2, respectively, whereM is the lateral
extension of the system (cf. Fig. 2). The left hand side of (5) is then given as




. . .
. . .

. . . 0 0 · · ·
0 −Hi,i−1 (z±I−Hii) −Hi,i+1 0 · · ·
· · · 0 −Hi+1,i (z±I−Hi+1,i+1) −Hi+1,i+2 0

· · · 0 0
. . .

. . .
. . .



×




. . .
...

. . .

· · · G±
i−1,j · · ·

· · · G±
ij · · ·

· · · G±
i+1,j · · ·

. . .
...

. . .




, (6)

where i and j now label the slices or strips. From this expression one can easily
see that (5) is equivalent to

(z±I−Hii)G
±
ij −Hi,i−1G

±
i−1,j −Hi,i+1G

±
i+1,j = Iδij . (7)

Using the hermiticity of H we define the hopping matrix ti ≡ Hi,i+1 (and

hence t†i = Hi,i−1) connecting the ith and the (i+1)st slice. Now, we consider
adding an additional slice to a system consisting of N slices. The Hamiltonian
of this larger system can be written as [19]

H(N+1) −→ Hij + tN + t†N + HN+1,N+1 (i, j ≤ N). (8)
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The first and the last terms describe the uncoupled N -slice and the additional
1-slice system. Using tN as an “interaction” the Green’s function G(N+1) of
the coupled system can be calculated via Dyson’s equation [19,40],

G
(N+1)
ij = G

(N)
ij + G

(N)
iN tNG

(N+1)
Nj (i, j ≤ N). (9)

In particular, we have

G
(N+1)
N+1,N+1 =

[
z±I−HN+1,N+1 − t†NG

(N)
NNtN

]−1

(10a)

G
(N+1)
ij = G

(N)
ij + G

(N)
iN tNG

(N+1)
N+1,N+1t

†
NG

(N)
Nj (i, j ≤ N) (10b)

G
(N+1)
i,N+1 = G

(N)
iN tNG

(N+1)
N+1,N+1 (i ≤ N) (10c)

G
(N+1)
N+1,j = G

(N+1)
N+1,N+1t

†
NG

(N)
Nj (j ≤ N) . (10d)

With (10) the Green’s function can be obtained iteratively. Additionally, there
are two kinds of boundary conditions which must be considered: across each
slice and at the beginning and the end of the stack. The first kind does not
present any difficulty and usually hard wall or periodic boundary conditions
are employed. The second kind of boundary is connected to some subtleties
with attached leads which will be addressed in Sect. 6.

3.2 Density of states and d.c. conductivity

The DOS is given in terms of Green’s function by [40]

ρ(E) = − 1

πΩ
ImTrG+ = − 1

πNM 2
Im

N∑

i=1

TrG+
ii (11)

and the d.c. conductivity σ is

σ =
2e2�

πΩm2
Tr

[
p ImG+ p ImG+

]
. (12)

Here, Ω denotes the volume of the system and m the electron mass. Using
for the momentum the relation p = im

�
[H, x] one can rewrite (12) in position

representation

σ =
e24

hNM2
Tr

{
γ2

N∑

i,j

G+
ij xj G−

ji xi − i
γ

2

N∑

i

(G+
ii −G−

ii ) x 2
i

}
, (13)

where xi is the position of the ith slice.
Starting from these relations and using the iteration scheme (10) one can

derive recursion formulæ to calculate the properties for the (N + 1)-slice sys-
tem. The results are expressed in terms of the following auxiliary matrices
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RN = G+
N,N , (14a)

BN = γt†N




N∑

ij

G
+(N)
Nj xj(2γG

−(N)
ji − iIδij)xiG

+(N)
iN


 tN , (14b)

C+
N = γt†N

[
N∑

i=1

G
+(N)
Ni xiG

−(N)
iN

]
tN = (C+

N )† , (14c)

C−
N = γt†N

[
N∑

i=1

G
−(N)
Ni xiG

+(N)
iN

]
tN = (C−

N )† , (14d)

FN = t†N

[
N∑

i=1

G
+(N)
Ni G

+(N)
iN

]
tN . (14e)

The derivation can be simplified assuming the new slice to be at xN+1 = 0.
This leads, however, to corrections for the matrices BN and C±

N because the
origin of xi has to be shifted to the position of the current slice in each iteration
step. The corrections are

B′
N = BN + iC+

N + iC−
N +

1

2
t†N (RN −R†

N )tN , (15a)

C′±
N = C±

N − i
1

2
t†N (RN −R†

N )tN . (15b)

Here we have used the identity

γ

N∑

i=1

G+
NiG

−
iN = i

1

2
(G+

NN −G−
NN ) = i

1

2
(RN −R†

N ) = −ImRN . (16)

The derivation of the recursion relations is given in Refs. [18, 19, 23, 41], it
yields the following expressions

s(N+1)
ρ = s(N)

ρ + Tr {RN+1(FN + I)} , (17a)

s(N+1)
σ = s(N)

σ + Tr {Re (BNRN+1) + C+
NR†

N+1C
−
NRN+1} , (17b)

RN+1 =
[
z±I−HN+1,N+1 − t†NRNtN

]−1

, (17c)

BN+1 = t†N+1RN+1

[
BN + 2C+

NR†
N+1C

−
N

]
RN+1tN+1 , (17d)

C+
N+1 = t†N+1RN+1C

+
NR†

N+1tN+1 , (17e)

C−
N+1 = t†N+1R

†
N+1C

−
NRN+1tN+1 , (17f)

FN+1 = t†N+1RN+1(FN + I)RN+1tN+1 . (17g)

The DOS and the d.c. conductivity are then given as
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ρ(N+1)(E) = − 1

π(N + 1)M2
s(N+1)

ρ , (18)

σ(N+1)(E) =
e2

h

4

(N + 1)M2
s(N+1)

σ . (19)

For a comparison with the scaling arguments, we convert the conductivity
into the two-terminal conductance as

g2 = σ
M2

L
(20)

with L = N + 1. In distinction to the usual use of the recursive scheme which
constructs a single sample with L ≫ M , we shall have to use many different
cubic samples with L =M .

We note that it is also possible to calculate the localisation length ξ(E) by
the Green’s function method. The value of ξ(E) is connected to the matrix
G+

1N+1,
1

ξ(E)
= − lim

γ→0
lim

N→∞

1

2N
ln
∣∣TrG+

1N (E )
∣∣2 . (21)

The recursion relation for ξ(N+1)(E) is

1

ξ(N+1)(E)
= − 1

N + 1
s
(N+1)
ξ , (22a)

s
(N+1)
ξ = s

(N)
ξ + ln

∣∣∣TrG
+(N+1)
N+1,N+1

∣∣∣ . (22b)

4 Finite-size scaling

For finite systems there can be no singularities induced by a phase transition
and the divergences at the MIT are always rounded off [42]. Fortunately,
the MIT can still be studied using a technique known as finite-size scaling [2].
Here we briefly review the main results taking the dimensionless four-terminal
conductance g4 of a large cubic sample of size L× L× L as an example. We
note that similar scaling ideas can also be applied to the reduced localisation
length ξ/L. In order to obtain g4 of the disordered region only, we have to
subtract the contact resistance due to the leads. This gives

1

g4
=

1

g2
− 1

N . (23)

Here N = N (E) is the number of propagating channels at the Fermi energy
E which is determined by the quantization of wave numbers in transverse
direction in the leads [43,44].

Near the MIT one expects a one-parameter scaling law for the dimension-
less conductance [7, 30,42]
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g4(L, ε, b) = F
[
L

b
, χ(ε)b1/ν

]
, (24)

where b is the scale factor in the renormalisation group, χ is a relevant scaling
variable and ν > 0 is the critical exponent. The parameter ε measures the
distance from the mobility edge Ec as in (2). However, recent advances in
numerical precision have shown that in addition corrections to scaling due to
the finite sizes of the sample need to be taken into account so that the general
scaling form is

g4(L, ε, b) = F
[
L

b
, χ(ε)b1/ν , φ(ε)b−y

]
, (25)

where φ is an irrelevant scaling variable and y > 0 is the corresponding ir-
relevant scaling exponent. The choice b = L leads to the standard scaling
form5

g4(L, ε) = F
[
L1/νχ(ε), L−yφ(ε)

]
(26)

with F being related to F . For E close to Ec we may expand F up to order
nR in its first and up to order nI in its second argument such that

g4(L, ε) =

nI∑

n′=0

φn′

L−n′yFn′

(
χL1/ν

)
with (27a)

Fn′(χL1/ν) =

nR∑

n=0

an′nχ
nLn/ν . (27b)

Additionally χ and φ may be expanded in terms of the small parameter ε up
to orders mR and mI, respectively. This procedure gives

χ(ε) =

mR∑

m=1

bmε
m, φ(ε) =

mI∑

m′=0

cm′εm
′

. (28)

From (26) and (27) one can see that a finite system size results in a systematic
shift of g4(L, ε = 0) with L, where the direction of the shift depends on the
boundary conditions [42]. Consequently, the curves g4(L, ε) do not necessarily
intersect at the critical point ε = 0 as one would expect from the scaling law
(24). Neglecting this effect in high precision data will give rise to wrong values
for the exponents.

Using a least-squares fit of the numerical data to (27) and (28) allows us to
extract the critical parameters ν and Ec with high accuracy. One also obtains
the finite-size corrections and can subtract these to show the anticipated scal-
ing behaviour. This finite-size scaling analysis has been successfully applied to
numerical calculations of the localisation length and the conductance within
the Anderson model [3, 14].

5The choice of b is connected to the iteration of the renormalisation group [42].
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5 MIT at E = 0.5 t for varying disorder

5.1 Scaling of the conductance

We first investigate the standard case of varying disorder at a fixed energy [14].
We choose tij �= 0 for nearest neigbours i, j only, set tij = t and E = 0.5 t
which is close to the band centre. We impose hard wall boundary conditions
in the transverse direction. For each combination of disorder strength W and
system size L we generate an ensemble of 10000 samples. The systems under
investigation are cubes of size L×L×L for L = 4, 6, 8, 10, 12 and 14. For each
sample we calculate the DOS ρ(E,L) and the dimensionless two-terminal con-
ductance g2 using the recursive Green’s function method explained in Section
3. Finally we compute the average DOS 〈ρ(E,L)〉, the average conductance
〈g4(E,L)〉 and the typical conductance exp〈ln g4(E,L)〉.

The results for the different conductance averages are shown in Figs. 3 and
4 together with respective fits to the standard scaling form (26). Shown are the
best fits that we obtained for various choices of the orders of the expansions
(27, 28). The expansion orders and the results for the critical exponent and
the critical disorder are given in Table 1. In Fig. 5 we show the same data as in
Figs. 3 and 4 after the corrections to scaling have been subtracted indicating
that the data points for different system sizes fall onto a common curve with
two branches as it is expected from the one-parameter scaling theory. The
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Fig. 3. Average dimensionless conductance vs disorder strength for E = 0.5 t. Sys-
tem sizes are given in the legend. Errors of one standard deviation are obtained from
the ensemble average and are smaller than the symbol sizes. Also shown (solid lines)
are fits to (26) for L = 8, 10, 12 and 14
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Fig. 4. Logarithm of the typical dimensionless conductance vs disorder strength for
E = 0.5 t. System sizes are given in the legend. Errors of one standard deviation
are obtained from the ensemble average and are smaller than the symbol sizes. The
solid lines are fits to (26)

results for the conductance averages and also the critical values are in good
agreement with transfer-matrix calculations [9, 14].

Table 1. Best-fit estimates of the critical exponent and the critical disorder for
both averages of g4 using (26). The system sizes used were L = 8, 10, 12, 14 and
L = 4, 6, 8, 10, 12, 14 for 〈g〉 and 〈ln g〉, respectively. For each combination of disorder
strength W and system size L we generate an ensemble of 10000 samples

average Wmin/t Wmax/t nR nI mR mI ν Wc/t y

〈g4〉 15.0 18.0 2 0 2 0 1.55 ± 0.11 16.47 ± 0.06 –

〈ln g4〉 15.0 18.0 3 1 1 0 1.55 ± 0.18 16.8 ± 0.3 0.8 ± 1.0

5.2 Disorder dependence of the density of states

The Green’s function method enables us to compute the DOS of the disordered
system. It should be independent of L. Figure 6 shows the average DOS at
E = 0.5 t for different system sizes. There are still some fluctuations present.
These can in principle be reduced by using larger system sizes and increasing
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Fig. 5. Same data as in Figs. 3 and 4 after corrections to scaling are subtracted, plot-
ted vs L/ξ to show single-parameter scaling. Different symbols indicate the system
sizes given in the legend. The lines show the scaling function (26)

the number of samples. The fluctuations will be particularly inconvenient
when trying to compute σ(E).

The reduction of the DOS with increasing disorder strength can be un-
derstood from a simple argument. If the DOS were constant for all energies
its value would be given by the inverse of the band width. In the Anderson
model with box distribution for the on-site energies the band width increases
linearly with the disorder strengthW . The DOS in the Anderson model is not
constant as a function of energy, nevertheless let us assume that for energies
in the vicinity of the band centre the exact shape of the tails is not important.
Therefore,
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Fig. 6. Density of states vs disorder strength for E = 0.5 t and L = 4, 6, 8, 10, 12, 14.
Errors of one standard deviation are obtained from the ensemble average and shown
for every 4th data point only. The solid line shows a fit to (29) for L = 6 to illustrate
the reduction of ρ with increasing disorder strength

ρ(W ) ∝ 1

B + αW
, (29)

shows a decrease of the DOS withW . Here B is an effective band width taking
into account that the DOS is not a constant even for W=0. The parameter α
allows for deviations due to the shape of the tails. In Fig. 6, we show that the
data are indeed well described by (29).

6 Influence of the metallic leads

As mentioned in the introduction most numerical studies of the conductance
have been focused on the disorder transition at or in the vicinity of the band
centre. Let us now set E = −5 t and calculate the conductance averages as
before. The results for the typical conductance are shown in Fig. 7a. Ear-
lier studies of the localization length provided evidence of a phase transition
around W = 16.3 t although the accuracy of the data was relatively poor [23].
Surprisingly, in Fig. 7a there seems to be no evidence of any transition nor of
any systematic size dependence. The order of magnitude is also much smaller
than in the case of E = 0.5 t, although one expects the conductance at the
MIT to be roughly similar.

The origin of this reduction can be understood from Fig. 8, which shows
the DOS of a disordered sample and a clean system (i.e. without impuri-
ties and therefore without disorder) such as in the metallic leads. As already
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Fig. 7. System size dependence of the logarithm of the typical conductance for fixed
energy E = −5 t. Errors of one standard deviation are obtained from the ensemble
average and are smaller than the symbol sizes. The lines are guides to the eye only.
The upper plot was calculated using the metallic leads “as they are”, i.e. the band
centre of the leads coincides with the band centre in the disordered region. In the
lower plot the band centre of the leads was “shifted” to the respective Fermi energy

pointed out in Ref. [19], the difference between the DOS in the leads and in
the disordered region may lead to false results for the transport properties.
Put to an extreme, if there are no states available at a certain energy in the
leads, e.g. for |E| ≥ 6 t, there will be no transport regardless of the DOS
and the conductance in the disordered system at that energy. The DOS of
the latter system becomes always broadened by the disorder. Therefore, using
the standard setup of system and leads, it appears problematic to investigate
transport properties at energies outside the ordered band. Additionally, for
energies 3 t � |E| < 6 t the DOS of the clean system is smaller than the dis-
order broadened DOS. Thus the transport properties that crucially depend
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Fig. 8. DOS of a clean system (full black line) and a disordered system (grey) with
W = 12 t and L = 21, obtained from diagonalising the Hamiltonian (1). The dashed
lines indicate the band edges of the ordered system

on the DOS might be also changed in that energy range. The problems can
be overcome by shifting the energy of the disordered region while keeping the
Fermi energy in the leads in the lead-band centre (or vice versa). This is some-
what equivalent in spirit to applying a gate voltage to the disordered region
and sweeping it — a technique similar to MOSFET experiments. The results
for the typical conductance using this method are shown in Fig. 7(b). One
can see some indication of scaling behaviour and also the order of magnitude
is found to be comparable to the case of E = 0.5 t. Another possibility of
avoiding the DOS mismatch is choosing a larger hopping parameter in the
leads [45], which results in a larger bandwidth, but also a lower DOS.

7 The MIT outside the band centre

Knowing the difficulties involving the metallic leads and using the ”shifting
technique” explained in the last section, we now turn our attention to the less-
studied problem of the MIT at fixed disorder. We set the disorder strength to
W = 12 t and again impose hard wall boundary conditions in the transverse
direction [14]. We expect Ec ≈ 8 t from the earlier studies of the localization
length [23]. Analogous to the transition for varying W we generate for each
combination of Fermi energy and system size an ensemble of 10000 samples
(except for L = 19 and L = 21, where 4000 and 2000 samples, respectively,
were generated) and examine the energy and size dependence of the average
and the typical conductance, 〈g4〉 and exp〈ln g4〉, respectively.
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7.1 Energy dependence of the DOS

Before looking at the scaling behaviour of the conductance we have to make
sure that the ”shifting technique” indeed gives the right DOS outside the
ordered band. Additionally, we have to check the average DOS for being inde-
pendent of the system size. In Fig. 9 we show the DOS obtained from diagonal-
isation of the Anderson Hamiltonian with 30 configurations (using standard
LAPACK subroutines) and the Green’s function calculations. The Green’s
function data agree very well with the diagonalisation results, although there
are still bumps around E = −8.2 t for small DOS values. The average DOS
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E/t

0

0.01

0.02

0.03

0.04

0.05

0.06

ρ
(E

)

Smoothed
Diagonalisation
RGFM

Fig. 9. DOS vs energy for W = 12 t obtained from the recursive Green’s function
method (circles with error bars obtained from the sample average) and from diag-
onalising the Anderson Hamiltonian (histogram), for L3 = 213 = 9261. Also shown
is a smoothed DOS (dashed line) obtained from the diagonalisation data using a
Bezier spline

for different system sizes is shown in Fig. 10. For large energies the DOS is
nearly independent of the system size. However, close to the band edge one
can see fluctuations because in the tails there are only few states and thus
many more samples are necessary to obtain a smooth DOS.

7.2 Scaling behaviour of the conductance

The size dependence of the average and the typical conductance is shown in
Fig. 11. We find that for E/t ≤ −8.2 the typical conductance is proportional
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Fig. 10. DOS vs energy for different system sizes and W = 12 t calculated with
the recursive Green’s function method. The data are averaged over 10000 disorder
configurations except for L = 21 when 2000 samples have been used. The lines are
guides to the eye only. Error bars are obtained from the sample average

to the system size L and the constant of proportionality is negative. This cor-
responds to an exponential decay of the conductance with increasing L and is
characteristic for insulating behaviour. Moreover, the constant of proportion-
ality is the localisation length ξ. We find that ξ(E) diverges at some energy,
which indicates a phase transition. This energy dependence of ξ is shown in
Fig. 12.

For E/t ≥ −8.05, 〈g4〉 is proportional to L. This indicates the metallic
regime and the slope of 〈g4〉 vs L is related to the d.c. conductivity. We fit
the data in the respective regimes to the standard scaling form (26). The
results for the critical exponent and the mobility edge are given in Table 2.
The obtained values from both averages, 〈g4〉 and 〈ln g4〉, are consistent. The

Table 2. Best-fit estimates of the critical exponent and the mobility edge for both
averages of g4 using (26) with nR = mI = 0. The system sizes used are L =
11, 13, 15, 17, 19, 21

average Emin/t Emax/t nR mR ν Ec/t

〈g4〉 −8.2 −7.4 3 2 1.60 ± 0.18 −8.14 ± 0.02

〈ln g4〉 −8.8 −7.85 3 2 1.58 ± 0.06 −8.185 ± 0.012
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Fig. 11. System size dependence of the 4-point conductance averages 〈g4〉 and 〈ln g4〉
for W = 12 t and Fermi energies as given in the legend. Error bars are obtained from
the ensemble average and shown for every second L. The dashed lines in the metallic
regime indicate the fit result to (30) using the parameters of Table 2. In the insulating
regime, linear functions for 〈ln g4〉 = −L/ξ + c have been used for fitting

average value of ν = 1.59± 0.18 is in agreement with results for conductance
scaling at E/t = 0.5 and transfer-matrix calculations [9, 14].

7.3 Calculation of the d.c. conductivity

Let us now compute the d.c. conductivity from the conductance 〈g4(E,L)〉.
From Ohm’s law, one naively expects the macroscopic conductivity to be the
ratio of 〈g4(E,L)〉 and L. There are, however, several complications. First,
the mechanism of weak localisation gives rise to corrections to the classical
behaviour for g4 ≫ 1. Second, it is a priori not known if this relation still
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Fig. 12. Localisation length (for E < Ec) and correlation length (for E > Ec)
vs energy obtained from a linear fit to 〈ln g4〉 = ∓L/ξ + const., respectively. The
error bars close to the transition have been truncated (arrows), because they extend
beyond the plot boundaries

holds in the critical regime. And third, the expansion (27) does not yield a
behaviour of the form g4 ∝ εν .

In order to check our data for consistence with the anticipated power law
(2) for the conductivity σ(E) in the critical regime, we assume the following
scaling law for the conductance,

〈g4〉 = f(χνL) , (30)

which results from setting b = χ−ν in (24). Due to the relatively large error
bars of 〈g4〉 at the MIT as shown in Fig. 11, we might as well neglect the
irrelevant scaling variable. Then we expand f as a Taylor series up to order
nR and χ in terms of ε up to order mR in analogy to (27b) and (28). The best
fit to our data is determined by minimising the χ2 statistic. Using nR = 3
and mR = 2 we obtain for the critical values, ν = 1.58 ± 0.18 and Ec/t =
−8.12 ± 0.03. These values are consistent with our previous fits. The linear
term of the expansion of f corresponds to the conductivity close to the MIT.
To estimate the quality of this procedure we also calculate the conductivity
from the slope of a linear fit to 〈g4〉 throughout the metallic regime, and from
the ratio 〈g4〉/L as well.

The resulting estimates of the conductivity are shown in Fig. 13. We find
that the power law is in good agreement with the conductivity obtained from
the linear fit to 〈g4〉 = σL+ const. for E ≤ −7 t. In this range it is also con-
sistent with the ratio of 〈g4〉 and L for the largest system computed (L = 21).
Deviations occur for energies close to the MIT and for E > −7 t. In the criti-
cal regime one can argue that for finite systems the conductance will always
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Fig. 13. Conductivity σ vs energy computed from 〈g4〉/L for L = 21 (�), a linear
fit with 〈g4〉 = σL + const. (•) and a fit to the scaling law (30) (solid line). The
dashed line indicates Ec/t = −8.12. Error bars of 〈g4〉/L represent the error-of-
mean obtained from an ensemble average and are shown for every third E value.
The dashed line indicates the position of Ec and the inset shows the region close to
Ec in more detail

be larger than zero in the insulating regime because the localisation length
becomes eventually larger than the system size.

8 Conclusions

We computed the conductance at T = 0 and the DOS of the 3D Ander-
son model of localisation. These properties were obtained from the recursive
Green’s function method in which semi-infinite metallic leads at both ends of
the system were taken into account.

We demonstrated how the difference in the DOS between the disordered
region and the metallic leads has a significant influence on the results for the
electronic properties at energies outside the band centre. This poses a big
problem for the investigation of the MIT outside the band centre. We showed
that by shifting the energy levels in the disordered region the mismatch can
be reduced. In this case the average conductance and the typical conductance
were found to be consistent with the one-parameter scaling theory at the
transition at Ec �= 0. Using a finite-size-scaling analysis of the energy depen-
dence of both conductance averages we obtained an average critical exponent
ν = 1.59 ± 0.18, which is in accordance with results for conductance scaling
at E/t = 0.5, transfer-matrix calculations [9, 11, 14, 26] and diagonalisation
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studies [10,12]. However, a thorough investigation of the influence of the leads
is still lacking. It would also be interesting to see if these effects can be related
to studies of 1D multichannel systems with impurities [46].

We calculated the d.c. conductivity from the system-size dependence of
the average conductance and found it consistent with a power-law form at
the MIT [47]. This strongly supports previous analytical and numerical cal-
culations of thermoelectric properties reviewed in Ref. [3]. Similar results
for topologically disordered Anderson models [48–50], random-hopping mod-
els [37,51–53] and the interplay of disorder and many-body interaction [54–57]
have been reported elsewhere.
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37. A. Eilmes, R. A. Römer, and M. Schreiber. The two-dimensional Anderson
model of localization with random hopping. Eur. Phys. J. B, 1:29–38, 1998.

38. U. Elsner, V. Mehrmann, F. Milde, R. A. Römer, and M. Schreiber. The An-
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45. B. K. Nikolić. Statistical properties of eigenstates in three-dimensional meso-
scopic systems with off-diagonal or diagonal disorder. Phys. Rev. B, 64:14203,
2001.

46. D. Boese, M. Lischka, and L.E. Reichl. Scaling behaviour in a quantum wire
with scatterers. Phys. Rev. B, 62:16933, 2000.
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51. A. Eilmes, R. A. Römer, and M. Schreiber. Critical behavior in the two-
dimensional Anderson model of localization with random hopping. phys. stat.
sol. (b), 205:229–232, 1998.
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1 Introduction

Annealing, carried out in simulation, has taken on an existence of its own as
a tool to solve optimization problems of many kinds [1–3]. One of many im-
portant applications is to find local minima for the potential energy of atomic
structures, as in this paper, in particular structures of amorphous carbon at
room temperature. Carbon is one of the most promising chemical elements for
molecular structure design in nature. An infinite richness of different struc-
tures with an incredibly wide variety of physical properties can be produced.
Apart from the huge variety of organic substances, even the two crystalline
inorganic modifications, graphite and diamond, show diametrically opposite
physical properties. Amorphous carbon continues to attract researchers for
both the fundamental understanding of the microstructure and stability of
the material and the increasing interest in various applications as a high per-
formance coating material as well as in electronic devices.

Simulated Annealing (SA) of such systems requires to apply methods of
molecular dynamics (MD) to the ensemble of atoms [4]. The first fundamental
step is to find a suitable approach to the interatomic potentials and forces. In
the spectrum of useful methods there are on the one hand the empirical po-
tential models, for example the Tersoff potential [5]. These are simple enough
to allow computations with many thousands of atoms but are limited in ac-
curacy and chemical transferability to situations, that have not been included
in the parametrization. On the other hand, fully self-consistent quantum me-
chanical approaches for general structures of any kind of atoms [6,7] are, due
to their complexity, limited to short time simulations of only about one hun-
dred atoms. The method used in this paper [8] takes an intermediate position
between the empirical and the ab initio approaches and is briefly outlined in
Sect. 2.

In Sect. 3 we give a short description of how to use parallel computation to
overcome the general problem of the limited computer power by optimizing
and performing SA schedules for any given computational resource and, in
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principle, for any finite system of atoms or molecules. Finally, an example of
the effect of the optimization is shown in Sect. 4, using the new optimized
schedule and comparing its results with old data.

2 Density-functional molecular dynamics

We apply the well established ab initio based non-selfconsistent tight-binding
scheme [8], which, compared with fully self–consistent calculations, reduces the
computational effort by at least two orders of magnitude. The approximate
calculation of the MD interatomic forces is based on the density functional
theory (DFT) within the local density approximation (LDA) using a localized
atomic orbital (LCAO) basis [9]. The scheme includes first-principle concepts
in relating the Kohn-Sham orbitals of the many-atom configuration to a mini-
mal basis of the localized atomic-like valence orbitals of all atoms. We take into
account only two-center Hamiltonian matrix elements h and overlap matrix
elements S in the secular equation resulting in a general eigenvalue problem

∑

µ

ciµ(hµν − ǫiSµν) = 0 (1)

for the eigenvalues ǫi and eigenfunctions ciµ of the system [10]. The total
potential energy of the system as a function of the atomic coordinates {Rl}
can now be decomposed into two parts,

Epot({Rl}) = Ebind({Rl}) + Erep({Rl −Rk}). (2)

The first term Ebind is the sum of all occupied cluster electronic energies and
represents the so-called band-structure energy. The second term, as a repul-
sive energy Erep, comprises the core-core repulsion between the atoms and
corrections due to the Hartree double-counting terms and the non-linearity in
the superposition of exchange-correlation contributions. This term is fitted to
the two-particle self-consistent LDA cohesive energy curves of corresponding
diatomic molecules and crystalline modifications [11].

To apply the scheme to a part of an infinite system we carry out the
simulation for a number of atoms in a fixed-volume cubic supercell using peri-
odic boundary conditions. Furthermore, the temperature has to be controlled
according to a proper function T (t). To adjust the temperature, all atomic
velocities are renormalized after a time step to achieve the correct mean ki-
netic energy per degree of freedom. The so defined temperature as a function
of time has to follow the SA schedule.

A generally unsolved problem in any high performance computation for
density-functional based or fully self-consistently SA of real material prob-
lems is, also in making use of the fastest computers, that it is only possible
to simulate the annealing of 100 or 1000 atoms for timescales of just some
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picoseconds. However, in reality the typical time for cooling down atomic sys-
tems from gas to solid state is about two orders of magnitude larger.

Nevertheless, it is absolutely necessary to simulate this cooling down to
realistic structures, to satisfy the demand of knowledge about the microscopic
structure and properties. Therefore, the only remaining way is to accept the
lack of computational power and at least to design the annealing schedule as
well as possible, as shown in Sect. 3.

3 Optimizing simulated annealing

We give an approximate solution of the problem by performing four steps in
chronological order in the following way.

1. Constructing a small system of atoms, just large enough to model the
microscopic interactions of the atoms sufficiently.

2. Mapping its continuous configuration space to a discrete set of connected
states.

3. Solving the optimization task for the discrete set, which is much simpler
to handle.

4. Applying the so found schedule to any larger system with the same mi-
croscopic properties.

1. We know from practical experience that relatively small systems with
a nearly correct atomic structure are sufficient to reflect the relevant proper-
ties of the configuration space of atomic clusters. Our example systems are
arrangements of 64 carbon atoms in a cubic supercell with periodic boundary
conditions. The mass densities are 2.7 g/cm3, 3.0 g/cm3, and the value of
diamond 3.52 g/cm3, which are of particular interest for practical purposes.

2. For the purpose of step two we have developed a computer algorithm
that is described in detail in [12] and illustrated in Fig. 1. There is one master
process performing a molecular dynamics run at high temperature (distinctly
above the melting point of the system). After a fixed time interval (typically
the time needed to move each atom for a distance larger than the mean bond
length) a worker-process is created which has to
a) find the nearest significant energy minimum by rapidly cooling down the
system without changing the atomic topology,
b) suddenly heat up the system to a fixed temperature given (escape-temperat-
ure) and measure the escape-time tesc, i.e. the time needed by the system
to escape from this minimum (criterion: first modification in the system’s
topology) to a “neighbour minimum” and investigate the properties of the
latter. Subsequently, for the thermodynamic interpretation given below, this
procedure has to be repeated with different escape-temperatures.

Now we divide the energy scale to intervals so that, for each pair of starting
and final energy interval, the number of transitions Nij is counted and a mean
value tescij (T ) can be calculated. The index j characterizes the starting interval
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one dimension of the configuration space

master

worker

worker
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worker
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Fig. 1. A master process is walking through the configuration space at high tem-
perature. After a certain period of time it initializes worker-processes. Each worker
has to find the nearest essential energy minimum and the depth of this minimum

with the average energy Ej , the index i the destination interval respectively.
We stress the suggestion, that for all transitions from the primary minimum
Ej to the new minimum Ei a wall of height ∆Eij has to be overcome. That
wall influences the transition probability according to a Boltzmann factor.
Therefore, we take an ansatz for the mean transition probability per time
unit

λij(T ) =
1

tescij (T )
= C exp(−∆Eij

kT
) (3)

as a function of the temperature. The parameters to be fitted are the common
(for all i, j) constant value C and the set ∆Eij . It turns out that this fit is
successful with a surprisingly small deviation from the original data. Finally,
we derive the transition probabilities Gij(T ) according to

Gij(T ) =
Nij∑
i

Nij
λij(T ) j �= i (4)

Gii = 1−
∑

j �=i

Gij .

The result is some kind of ladder with walls between its steps as shown in Fig. 2
For amorphous systems this ladder of states has some well understandable
properties. Firstly, it is possible to skip one or more steps. Secondly, the lower
the starting energy the higher the walls to be overcome are, because the system
is already in a deeper minimum at the start. And thirdly, for the same starting
energy, if the system will go downwards, this is more difficult with a larger
number of steps to be skipped. Those properties reflect clearly the real thermal
behaviour of an atomic or molecular system. The structures are able to descent
very easily in the upper part of the energy scale. But, once arrived at any
amorphous state with sufficiently low energy (for example in our picture at
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E

Fig. 2. Scheme of the resulting “ladder” system in energy space

the second lowest step of the ladder), it will become troublesome to go still
lower in energy to the ground state or to another distinctly lower amorphous
state.

3. For the third step recent numerical methods exist, which allow the
determination of an optimal annealing schedule, provided that the properties,
e.g. the energies Ej , of the states and all transition probabilities Gij for a
random walker from one state j to another state i within one time step ∆T are
known. The Gij depend on the temperature. With the transition probabilities
Gij the probabilities Pj for being at state j change like

Pi(t+ ∆t) =
∑

j

Gij(T (t))Pj(t) . (5)

Now we can define the optimal annealing schedule T (t) as the time dependent
temperature for which

E =
∑

j

EjPj(tend) = minimum , (6)

for fixed initial Pj(0) and process time tend. This optimal T (t) exists and can
be computed by using a variational principle for E [13].

4. With T (t) now under control, this schedule can be used for any larger
atomic system, provided the microscopic properties, first of all the atomic
density and composition, remains unchanged.

4 Results

4.1 Optimized schedules

The calculations for the scheme discussed in Sect. 3, particularly the most
expensive second step, have been performed using a parallel cluster with up



232 Peter Blaudeck and Karl Heinz Hoffmann

to 36 Dual-Pentium-Boards and the send-receive functions of the common
MPI-software.

In Fig. 3 the new optimized schedules T (t) are displayed for different mass
densities. Note that our LDA scheme generally overestimates forces and po-
tential differences by a factor of about 1.5. Therefore, the mean values of both
the potential and the kinetic energy, and consequently also the temperature
differ from the real scale by this factor. The little time interval with constant
temperature at the end of the schedule has been added artificially to allow
the exact comparison of the final energies.
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Fig. 3. Optimized annealing schedules (solid) for different mass densities, compared
with a previously used schedule (dotted)

The dotted line in Fig. 3 is an artificially constructed schedule used in
previous work. It was constructed based on the idea to find a sensible decreas-
ing function T (t) with a minimal descent at temperatures empirically known
as most important for structure formation processes. The full lines in Fig. 3
show, that this physical purpose has to be fulfilled still more rigorously by
the new optimized schedules. It seems quite clear that, compared with the old
schedules, the decrease in temperature is large at the very beginning of the
annealing process but much weaker in a temperature range where the most
important freezing of the structure is expected to take place. The schedules
depend on the mass density in a very plausible manner. The regions of weak-
est descent consistently follow the temperatures which correspond sequently
to different “melting regions” for different binding energies per atom of these
structures. The lower the mass density, the less the average number of bonds
per atom, and, consequently, the lower the walls between the minima of the
potential energy.
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4.2 Binding energy

In performing the fourth step we have picked out the mass density 3.0 g/cm3

as an example, because of the presence of previous results [14] found by using
the heuristically constructed schedule already mentioned above. As in these
previous investigations, we have now applied the new schedule to an ensemble
of 32 different clusters, with 128 carbon atoms each. The most important
measure for the quality of the SA schedule are the final potential energies per
atom. These energies are collected in Fig. 4 for the members of the old and
new ensemble. Within each ensemble the members are sorted by their energy
values. For most of the newly created structures we can find final energies
lower than for the structures from previous results [14]. The structures we
have generated (see Fig. 5, for example) are clusters of amorphous carbon
with sensible structural properties and suitable for further investigations in
mechanical and electronic properties.

1 32

sorted structures

−219.20

−219.00

−218.80

−218.60

−218.40

E (Hartrees)

Fig. 4. Final potential energies, each set sorted, for the optimized annealing schedule
(stars) compared with a set found by an old schedule (squares)

Fig. 5. Most common type of a resulting structure with mainly threefold or fourfold
bound carbon atoms and formations of rings containing five, six, or seven atoms
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5 Summary

We have found a way how to prepare an optimal simulated annealing schedule
for modelling realistic amorphous carbon structures. Consequently, a scheme
has been developed which can now be applied to any other atomic system of
interest. One can take advantage of it, whenever systems have to be simulated
to determine their structural, mechanical, or electronic properties.
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1 Reactive heterophase interfaces

Heterophase interfaces are boundaries, which join two material types with
different physical and chemical nature. Therefore, heterophase interfaces can
exhibit a large variety of geometric morphologies ranging from atomically
sharp boundaries to gradient materials, in which an interface-specific phase
is formed, which provides a continuous change of the structural parameters
and thus reduces elastic strains and deformations. In addition, also the elec-
tronic properties of the two materials may be different, e.g. at boundaries
between an electronically conducting metal and a semiconductor or an in-
sulating material. Due to the deviations in the electronic structure, various
bonding mechanisms are observed, which span the range from weakly inter-
acting systems to boundaries with strong, directed bonding and further to
reactively bonding systems which exhibit a new phase at the interface. Thus,
both elastic and electronic factors may contribute to the formation of a new,
often amorphous phase at the interface. Numerical simulations based on elec-
tronic structure theory are an efficient tool to distinguish and quantify these
different influence factors, and massively parallel computers nowadays provide
the required numerical power to tackle structurally more demanding systems.
Here, this power has been exploited by the parallelisation over an optimised
set of integration points, which split the solution of the Kohn-Sham equations
into a set of matrix equations with equal matrix sizes. In this way, the analysis
and prediction of material properties at the nanoscale has become feasible.

1.1 Structure and stability of heterophase interfaces

Junctions between two different metals or semiconductors or insulators also
belong to the class of heterophase interfaces and have been studied to elu-
cidate the influence of more subtle differences of the electronic structure.
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The observation of the giant magnetoresistance, for instance, has excited sev-
eral theoretical investigations on metallic multilayers [1], such as Ni|Ru [2],
Pt|Ta [3], Cu|Ta [4], or Ag|Pt [5]. Another active field of research are the phe-
nomena related to the quantised conductance in mixed-metal nanostructures
from materials such as AuPd or AuAg [6–8]. Hetero- and superstructures of
III-V and II-VI semiconductors provide the possibility to generate specific op-
tical properties by adjusting the electronic and elastic properties via the layer
thickness and composition, e.g. the III-V combinations GaAs|AlAs [9, 10],
GaSb|InAs [10], or InAs|GaSb [11], and mixed multilayers of III-V and II-
VI semiconductors like GaAs|ZnSe [12], or of III-V on IV materials, such as
SiC|AlN and SiC|BP [13]. In these and other more covalently bonded systems,
like SiC|Si [14], the main focus of the investigations is on the correlation of
lattice strain and electronic properties. Other insulator-insulator boundaries
come from the heteroepitaxy of ferroic oxides on an oxide template, such as
SrTiO3|MgO [15], or multilayers such as BaTiO3|SrTiO3 [16], or from the
doping of homophase boundaries with electronically active elements, such as
Fe at the Σ3(111)[1-10] boundary in SrTiO3 [17, 18].

The present discussion will focus on contacts between a metal and a
non-metallic material, where the electronic structures of the components dif-
fer most strongly, and an electronic structure theory can best exploit its
modelling power. Nevertheless, it has demonstrated its applicability also for
semiconductor-insulator boundaries such as C|Si [19], Si|SiO2 [20], TiN|MgO
[21], or ZrO2|Si and ZrSiO4|Si [22].

1.2 Interactions at heterophase interfaces

A strong interest in a theory-based microscopic understanding of the interac-
tions at metal-insulator interfaces has developed over the last decades, moti-
vated by the application of ceramic materials in various industrial applications,
for instance as thermal barrier coatings [23], or even as medical implants [24].
The motivation to study metal-semiconductor interfaces stems mostly from
the further miniaturisation of microelectronic devices and the concomitant
need to control interface properties between the semiconductor substrate and
metallic functional layers or the metallisation at the nanoscale.

This interest has lead to various attempts for theoretical modelling of the
relevant contributions which influence the bonding behaviour at the interface.
Theoretical studies span the whole range from finite-element modelling to
understand macroscopic elastic properties [25], over atomistic simulations of
dislocation networks, plasticity, and fracture [26], to the investigation of the
electronic structure with ab-initio band-structure techniques [27–32].

From the theoretical modelling and the experimental observations on
metal-to-non-metal bonding at flat, atomically abrupt interfaces three sce-
narios can be distinguished:

(A) Strong adhesion, which is for instance found for main-group or early
transition metals on oxide-based insulators with a propensity of the metal to
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bind on top of the O atom. This behaviour is, for instance, observed for Ti
on MgO(100) [33], for Al on Al2O3(000.1) [34], for V on MgO(001) [35], and
for Al and Ti on MgAl2O4(001) [37–42]. At reactive interfaces, such as metal-
silicon contacts, the interaction between the two constituents is even larger,
leading to a thermodynamic driving force for the formation of the interface
phase.

(B) Weak adhesion is obtained for late transition metals at non-polar insu-
lator surfaces for instance for Ag|MgO(001) [33,43,44], for Cu|MgO(001) [26],
for the VOx|Pd(111) interface [45], or for Ag|MgAl2O4(001) [37,39,42]. Due to
the also experimentally apparent lack of strong bonding [46], the underlying
adhesion mechanism has been ascribed to image charge interactions [47–51].

(C) A moderately strong bonding is obtained, when additional elastic inter-
actions interfere with the metal-to-oxygen bonding. For the adhesion of Cu on
the polar (111) surface of MgO, however, evidence for a direct metal-oxygen
interaction was given and the occurrence of metal-induced gap states was
postulated [52]. Presently, transition-metal oxides such as BaTiO3, SrTiO3,
or ZnO are studied as substrates for the adhesion of transition metals like Pd,
Pt, or Mo [53, 54]. In contrast, at reactive interfaces the elastic interaction
does not lead to a weakening of the interface, but rather assists the formation
of the interface-specific phase, e.g. by the introduction of misfit dislocations
at the boundary.

Similar adhesive interactions are also monitored for metal-insulator con-
tacts, where the insulator is not an oxide, but a carbide [55,56] or nitride [57].

2 Modelling reactive interfaces

2.1 Macroscopic modelling

From a phenomenological point of view, the three adhesion regimes can be
characterised by the growth mode during metal deposition and by the so-
called wetting angle. If a metal droplet is deposited on an unreactive insulator
surface, the balance of three major energy contributions determine its shape:
the interface energy γmet−ins at the contact area of the two materials, and the
two surface energies of insulator γins and metal γmet in contact with the envi-
ronment (e.g. air). The relation between these quantities is given by Young’s
equation [58]:

γins − γmet−ins = γmet cos(θ). (1)

In this equation, θ is the “contact” or “wetting” angle, which is the inclination
angle between the metal surface and the metal-insulator contact area at the
triple line between metal, insulator and air. If the interface is more stable than
the sum of the two relaxed free surfaces, complete wetting of the ceramic by
a (thin) metal film is achieved, and the wetting angle tends to zero. In this
case, the metal can be deposited in a layer-by-layer or Franck-van-der-Merwe
growth mode. On the other hand, if the free surfaces are more stable than the
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interface, the metal will form (nearly spherical) droplets and thus minimise
the area of the unfavourable interface with the insulator surface. The wetting
angle will approach 180◦, and a Volmer-Weber island growth is obtained.

In the case of reactive wetting, additional factors come into play as out-
lined in detail in [58]. The most important factors are the diffusion of elements
and the formation of additional phases at the metal-insulator interface and
on the metal and insulator surfaces. This phenomenon can even lead to the
formation of a rim at the triple line, where the metal partially dissolves the
insulator underneath the droplet and diffusion above the insulator surface ac-
cumulates material on the other side of the triple line. Also, grain-boundary
grooving has been observed below the metal droplet, where the metal preferen-
tially dissolves material at boundaries (defects) of the substrate. Close to the
wetting-dewetting transition point with θ ≈ 90◦, the growth mode depends
very sensitively on the deposition conditions. Experimentally, it is difficult to
distinguish this phenomenon from the stress-driven mixed-mode growth of is-
lands on a thin wetting layer (Stranski-Krastanov growth) [59], but electronic
structure theory is particularly well suited to elucidate and quantify the differ-
ent contributions. Thus, the basic features of electronic structure theory will
shortly be summarised in the following. More details on mesoscopic modelling
is provided e.g. by Stoneham and Harding [60] or in a recent textbook by
Finnis [61].

2.2 Density-functional-based modelling

Density-functional theory (DFT) has proven an extremely efficient approach
to obtain the properties of a given model system in its electronic ground state.
A more detailed introduction to DFT and its extensions to non-equilibrium
systems is given in review articles such as [62–64] or textbooks such as [65,66].

Generically, the parameter-free or “ab-initio” quantum-mechanical treat-
ment of the electronic properties of a system employs a wave function |Ψ〉
to represent all relevant electronic degrees of freedom. This wave function
depends on the spatial variables of all interacting particles, thus computa-
tions involving the wave function become rather demanding with increasing
system size. As shown by Hohenberg and Kohn [67], in DFT the relevant in-
teraction terms can be expressed as functionals of the electron density, which
is a function of only three spatial variables. Based on the two Hohenberg-
Kohn theorems, the ground state electron density can be obtained from the
minimisation of the total energy functional, and all properties derived from
this density can accordingly be calculated. In the original work these the-
orems were proven only under specific constraints, which were later allevi-
ated by Levy [68]. Other generalisations were introduced for spin-polarised
systems [69], for systems at finite temperature [70], and for relativistic sys-
tems [71,72]. Furthermore, most electronic structure calculations make use of
the Kohn-Sham formalism, in which the original density-based functional is
re-expressed in a basis of non-interacting single-particle states. The resulting
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matrix equation is a generalised eigenvalue problem, the solution of which
yields the ground-state single-particle energies. Excitation spectra have also
become accessible by time-dependent DFT and Bethe-Salpeter formalisms;
detailed descriptions of those developments are available in [64,65].

2.3 Approximative modelling methods

Routine applications of full DFT schemes comprise model systems with up
to a few hundreds of atoms. Larger systems of up to several thousands of
atoms are still tractable with approximations to the full DFT methods, such
as the tight-binding (TB) description. The standard TB method also relies
on a valence-only treatment, in which the electronic valence states are repre-
sented as a symmetry-adapted superposition of atomic orbitals. The Hamilton
operator of the full Kohn-Sham formalism is approximated by a parametrised
Hamiltonian, whose matrix elements are fitted to the properties of reference
systems. A short-range repulsive potential includes the ionic repulsion and
corrections due to approximations made in the band-structure term. It can
be determined as a parametrised function of the interatomic distance, which
reproduces the cohesive energy and elastic constants like the bulk modulus
for crystalline systems.

Although the results of a TB calculation depend on the parametrisation,
successful applications include high accuracy band structure evaluations of
bulk semiconductors [73], band calculations in semiconductor heterostruc-
tures [74], device simulations for optical properties [75], simulations of amor-
phous solids [76], and predictions of low-energy silicon clusters [77, 78] (for
a review, see [79]). Due to the simple parametrisation, the TB methods al-
low routine calculations with up to 1000 to 2000 atoms. Thus they allow an
extension to more irregular interface structures, which have a larger repeat
unit, and a more detailed assessment of the energy landscape, which includes
a larger number of structure models. Another advantage is the simple deriva-
tion of additional quantities from TB data, because the TB approximations
also simplify the mathematical effort for the calculation of material proper-
ties. Even the transport in a nanodevice of conducting and semiconducting
segments along a nanotube could be modelled within a Landauer-Büttiker
approach [80].

2.4 Efficient parallel computing for material properties

In the ground-state electronic-structure treatment the translational symme-
try of a regular crystalline solid can be exploited. Only a small unit cell of
the whole crystal is calculated explicitly, and the properties of the extended
crystal are retrieved by applying periodic boundary conditions in three dimen-
sions. The lattice periodicity suggests plane waves as an optimal basis for the
representation of the electronic states. However, the strongly localised inner
core electrons, such as 1s states of Mg or Al, require a very high number of
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plane waves (or kinetic energy cutoff) for an adequate description of the short-
range oscillations in the vicinity of the nucleus. In the investigations described
here this problem has been overcome by the pseudopotential technique. Only
the valence and semicore states are treated explicitly, while an effective core
potential accounts for the core-valence interaction, as implemented e.g. also
in the Car-Parrinello approach [81]. A very successful compromise between
efficiency and accuracy is provided by the use of norm-conserving pseudopo-
tentials, which by construction exhibit the same electron scattering properties
as the all-electron potentials [82,83].

With a plane-wave basis the terms of the total-energy functional are most
easily evaluated numerically on a grid of k-vectors in reciprocal (or momen-
tum) space, where each plane wave is associated with its wave vector. In stan-
dard DFT band-structure calculations the choice of special integration points
allows one to exploit the crystal symmetry. In this fashion the dimensions of
the matrices, which enter the resulting secular equations at each integration
point are kept small to minimise the computational effort. For the calculations
presented here, however, a different strategy was followed. Since the matrix
equations can be solved independently from each other at each of the inte-
gration points, a parallelisation over the integration grid is the most obvious
choice. Thus, in a (massively) parallel application the integration point with
the largest eigenvalue problem determines the parallelisation time step, and
the gain at the high-symmetry points is not easily retrieved by load-balancing
algorithms. The simplest solution is to redesign the integration grid in such
a manner, that the matrix dimensions at each integration point are roughly
of the same size. The sampling method derived by Moreno and Soler [84]
fulfills this requirement, thus it was chosen for the investigation of the metal-
semiconductor boundary described here.

3 Influence factors for interface reactivity

Reactive metal-to-non-metal interfaces often involve strongly electropositive
metals with a high propensity to release electrons, but also easily accessible d-
type conduction bands for metallic bonding. Thus reactive bonding has been
observed for material combinations in which an early main-group or transi-
tion metal or a rare-earth element is employed as the contact metal or as a
metallic adhesive layer. As mentioned above a mismatch between the lattice
constants a0 of the metal and the non-metallic bonding partner increases the
elastic energy stored at the interface upon epitaxial deposition. This energy
may then be lowered by the formation of periodically repeated misfit disloca-
tions in the vicinity of the interface [43, 46]. In order to distinguish between
the electronic and the elastic driving force for interface reactivity, two model
systems were investigated, in which the same metal reactively bonds to a
non-metallic surface, once in the absence and once in the presence of addi-
tional elastic strains. The early, electropositive transition element titanium is



Amorphisation at Heterophase Interfaces 241

[100] [100]

[0
1
0
]

M

O

Al

Mg

Fig. 1. Interface repeat unit of the AlO2-terminated MgAl2O4 spinel in contact with
the metals M = Ti, Al, Ag. On the left, the top (001) layer of spinel is shown. The
Mg atoms depicted schematically are located by 1/4 a0 below the AlO2 termination
plane. The right panel shows the optimum atom arrangement in the first metal (001)
plane at the interface. As indicated the most stable bonding is obtained for Ti and
Al on top of the spinel O ions. Additional O atoms can be inserted into the metal
film at the sites denoted by the squares

chosen as reactive metal component. A suitable low-misfit non-metallic sub-
strate is the spinel surface MgAl2O4(001), whereas the a high lattice mismatch
is encountered at the interface between Ti and the unreconstructed Si(111)
surface.

3.1 Low lattice mismatch

The interaction of metals with the spinel (001) surface has been extensively
studied both by first-principles DF calculations and by high-resolution trans-
mission electron microscopy experiments [36–39, 85]. Because of the low lat-
tice mismatch of 1% at the utmost, the interface M(001)|MgAl2O4(001) with
M = Al, Ti, Ag can be modelled with a rather small repeat unit parallel to the
interface. The supercells for the study of the M|spinel boundaries are depicted
schematically in Fig. 1.

In accordance with high-resolution transmission electron microscopy ex-
periments [85] DFT band-structure calculations indicate that the termination
of the spinel by a layer composed of Al and O ions is favored over a termi-
nation by a layer sparsely occupied by Mg ions. As outlined in Subsect. 1.2,
Al and Ag, respectively, represent the extreme cases of strong bonding (A)
by directed Al-O electron transfer and weak bonding (B) due to Pauli repul-
sion between the Ag(4d) and O(2p) shells and a slightly larger misfit of 1%.
Additionally, a comparison with M=Ti was performed, because it allows for a
better discrimination of the interaction-determining factors: charge transfer,
Pauli repulsion, and elastic contributions. The relative ordering of the three
metals Ti, Al, and Ag is as follows:

• electronegativity (charge transfer): Ti < Al < Ag
• electron gas parameter (Pauli repulsion): Al ≈ Ti > Ag
• lattice mismatch (elastic contribution): Al < Ag < Ti.



242 Sibylle Gemming et al.

The electronegativity of an atom is a measure for the binding strength of
its valence electrons. At metal-oxide interfaces, metals with a low electroneg-
ativity can act as an electron donor for the undercoordinated oxygen ions of
the contact plane, which enhances the interfacial bonding. The electron gas
parameter is a measure of the local electron density and it is defined as the
radius of a sphere which would contain one valence electron if the electron
density were homogeneous; thus, a low electron gas parameters is characteris-
tic of atoms with a high spatial density of electrons, which exhibit the higher
propensity for Pauli repulsion.

The calculated interface distances of d(Al-O) = 1.9 Å < d(Ti-O) = 1.99 Å

< d(Ag-O) = 2.3 Å indicate, that the Ti-containing adhesion system exhibits
an average position between the two pristine boundaries. The work of sepa-
ration Wsep was calculated as difference of the total energies of the interface
system and the two free component slabs within the same supercell geometry.
The values amount toWsep(Al|Sp) = 2.25 J/m2 >Wsep(Ti|Sp) = 1.81 J/m2 >
Wsep(Ag|Sp) = 1.10 J/m2 and confirm the intermediate nature of the Ti|spinel
boundary. Therefore, the reduction of the Pauli repulsion by the low valence
electron density of the Ti film is the main driving force for the adhesion en-
hancement (titanium effect), whereas the other two contributions balance each
other. A stepwise exchange of Ag atoms by Ti atoms within the first metal
layer indicated that the major stabilisation is already reached, when every
second Ag atom is replaced by Ti.

Thus, the application of Ti as adhesive buffer layer in non-strained systems
is based on its ability to form polar bonds with electronegative partners such
as the O ions in oxide ceramics, but also metallic bonds with electron-rich
elements such as Ag. This high reactivity has also drawbacks as described
in [41, 42]: The high oxygen affinity of Ti can also induce an autocatalytic
uptake of oxygen into a Ti adhesive layer. DFT bandstructure calculations
have shown that the most stable position of the additional O atoms is the
interstitial site indicated by the squares in Fig. 1. In this way, the metallic
adhesive Ti layer is transformed into a brittle titanium suboxide, which ex-
hibits both a higher Pauli repulsion and a stronger elastic strain contribution
than the free metal. In this manner the reactivity of the interlayer degrades
the long-term stability of the interface in an oxidative environment.

3.2 High lattice mismatch

Many examples for reactive interfaces including amorphous phases are found
at heterophase boundaries between metallic and semiconducting materials,
especially at the contacts between a microelectronic device and the bonding
metal. Almost all early transition and rare earth metals bind to the Si(111) or
Si(110) surfaces under the formation of binary and ternary silicides. The most
extensively studied material combination is the interface Co|Si, where DFT-
based modelling has helped to quantify the thermodynamic driving force for
the formation of silicides like CoSi2 [27–29,86,87]. The first steps of the silicide
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formation are the migration of Co atoms to interstitial sites in the Si lattice,
the diffusion of those atoms along grain boundaries in Si, and the growth
of larger CoSi2 crystals from CoSi2 seeds [27]. The interface reconstruction
has also been explained within a DFT framework [28]. Slab calculations of
CoSi2(100)|Si(100) [87], CoSi2(111)|Si(111) [86], and of up to two monolayers
of Co on Si(001) [29] confirm that the formation of the reactive oxide does
not depend on a particular orientation of the substrate. Also the interaction
of Y and Gd [30], Sr [31], Ni [88] and Fe [32] with Si has been investigated
theoretically. A first-principles study of the boundary between Si and an early
transition metal such as Ti is, however, rendered difficult by the large mis-
match of the lattice constants of Ti and Si. With a lattice mismatch of 24%
large interface unit cells have to be employed in the interface modelling. Only
with the application of parallel computing power, such demanding tasks have
lately become feasible.

At elevated temperature a deposited layer of Ti reacts with Si(111) or
Si(110) surfaces to form several stable silicides at the boundary, which lie
within a composition range of Ti3Si to TiSi2 [89–92]. Depending on depo-
sition and preparation conditions, the silicide interlayer is either crystalline
or amorphous, and the structural phase transition between those two states
occurs at a temperature well below the melting point of either of the two con-
stituents or of the resultant silicide phase [89, 91, 93–97]. The structural fea-
tures, thermodynamic stability, and electronic properties of several bulk TiSix
compounds have also been investigated theoretically [98]. Yet, the quantum-
mechanical treatment of the Ti|Si interfaces is difficult, as the lattice para-

meters of hexagonally close-packed Ti (a0 = 2.95 Å) and Si in the diamond

structure (a0 = 3.85 Å) are quite different. Thus, only every third Si atom
roughly coincides with every fourth Ti atom along the close-packed [1-10.0]
direction of Ti. An interface model with low remanent elastic stress can be
constructed, which, however, contains a high number of atoms in the supercell
and is computationally demanding. Yet, with the emergence of carbon nano-
tube integration in Si-based semiconductor devices, the interface between Ti
and Si has become an important topic for investigation, because thin Ti inter-
layers act as adhesion enhancers both for the nanotube growth catalyst and
for Au contacts to the individual tube [99]. Thus, it is of great technological
relevance to study the corresponding interfaces quantitatively, as outlined in
the following section.

4 The Ti(000.1)|Si(111) interface

4.1 Model structures

Due to the considerable lattice mismatch of 26% between the Si(111) and
the Ti(000.1) crystals the appropriate interface supercell spans several lattice
spacings. For this purpose, the so-called coincidence site lattice is constructed
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TiSi[1−100] [11−20]

Fig. 2. Top view on the atom arrangement in the interface region of the supercell
employed for the study of the Ti(000.1)|Si(111) boundary. The interface repeat unit
is shaded grey, and only the Si and Ti planes adjacent to the interface are shown for
clarity. The square denotes the most favourable position of Ti on top of Si. The less
favourable bridging and three-fold hollow sites are indicated by the rectangle and
the hexagon

from a superposition of the atom positions in the layers adjacent to the het-
erophase boundary, a (000.1) plane of Ti and a (111) plane of Si.

The unreconstructed Si crystal is terminated by a buckled honeycomb
layer. This structure element has also been observed in layered silicides, such
as the recently studied CaSi2 [100]. As the rumpling of the Si layer amounts

to 0.79 Å only the upper half of the atoms with a lateral spacing of d(Si-Si) =

3.85 Å are included in the construction of the coincidence site lattice, as
depicted in Fig. 2. The Ti-Ti nearest-neighbour distance d(Ti-Ti) is only

2.95 Å. Figure 2 shows that coincident points occur at every third Si atom and
every fourth Ti atom along the Si 〈110〉 ≈ Ti 〈1-100〉 directions. In-between,
both bridging and hollow-site arrangements occur in the same model struc-
ture, thus, a lateral shift of the two constituents did not lead to any more
favourable local atom arrangements at the interface. The corresponding su-
percell, indicated by the area shaded in grey, contains 16 Ti atoms and 9 Si
atoms per layer (18 Si per buckled double layer) parallel to the boundary.
It is spanned by the vectors a1 = const· [1-12.0] and a2 = const· [1-21.0],
with const = 4 d(Ti-Ti) = 3 d(Si-Si). Along the interface normal, the super-
cell consists of five (000.1) layers of Ti and four buckled (111) layers of Si with
stacking sequences of A-B-A-B-A and B-C-A-B, respectively. A smaller model
with the approximation that 2 d(Si-Si) ≈ 3 d(Ti-Ti) did not yield any interface
binding. The considerable misfit of 33% induces tensile strain for Ti(000.1)
and compressive strain for Si(111) and prevents a bonding interaction.
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4.2 Stability at low temperature

Due to the difference between the real lattice mismatch of 26% and the mis-
match in the model of only 25% there are remanent elastic deformations,
tensile for the Si slab and compressive for the Ti slab. As the bulk elastic
properties of both elements are almost equal, there exists no natural choice
whether the lengths of the in-plane vectors |a1| = |a2| spanning the supercell

ought to amount to 3 d(Si-Si) = 11.55 Å or to 4 d(Ti-Ti) = 11.8 Å. Thus, the
structure optimisation of the interface was carried out for both cases and also
for the arithmetic mean. Within this range of values the total energy of the
system does not significantly depend on the choice of a1 and a2. This effect
is presumably related to the similarity of the bulk moduli (both about 110
GPa), which means that in this range of values the lattice expansion of Si and
the lattice compression of Ti lead to a comparable energy change. Thus, the
results obtained for |a1| = |a2| = 3 d(Si-Si) will be discussed in the following,
because this choice reflects best the experimental setup, where a Ti contact
layer is evaporated onto a comparatively massive Si substrate.

Structure optimisation yields a supercell height of c = 24.06 Å, which
corresponds to an interface contraction of 0.16 Å. On the Si side the buckling
of the double layer next to the interface is strongly diminished by 0.21 Å,
whereas the spacing to the next lower double layer is reduced by only 0.06 Å.
This indicates that all Si atoms of the buckled layer interact with the Ti atoms.
On the Ti side, the last layer is slightly curved by 0.09 Å, and the average
distance between this Ti layer and the next one is reduced by 0.06 Å. The
Ti-Si distances vary from 2.55 Å at the on-top position to 2.71 Å at the hollow
sites. There, an additional Si atom from the lower part of the Si double layer
relaxes towards the interface such that the Ti-Si distance amounts to 2.76 Å,
and the effective coordination number of Ti with respect to Si partners is
enhanced to four.

The work of separationWsep with respect to the free Si(111) and Ti(000.1)
slabs is calculated as the difference of the total energies of the interface,
Etot(Ti(000.1)|Si(111)), and the free slabs, Etot(Ti(000.1)) and Etot(Si(111)).
The obtained low value of Wsep = 0.27 J/m2 reflects the only weakly attrac-
tive interaction at the unreacted interface. The low work of separation is, of
course, related to the low density of only 11% of favourable, on-top interaction
sites at the boundary. When normalised to this low density of binding sites,
an upper bound for the separation energy is obtained, which is of the order of
2 J/m2. This value compares well with the work of separation calculated for
the strain-free M|spinel systems. This argument is corroborated by an analy-
sis of the binding electron density, obtained as difference between the electron
density of the total interface and the densities of the free, unrelaxed slabs.
An electron transfer from Ti to Si takes place, which is limited to the first Si
layer and exhibits the highest accumulation at the Si atom bonded on top of
a Ti atom. Within the Ti slab the density difference decays rapidly as a result
of the very effective metallic screening. In the Si slab, further, but smaller
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electron density oscillations can be monitored also in the second layer below
the interface. This observation reflects the expectation that the screening of
a charge accumulation is less effective in semiconductors. At the interface,
some electron density accumulation occurs also at the bridge and three-fold
hollow-site positions. Thus, of all adhesion sites only the ones with the short-
est Ti-Si distances along the [1-10.0] direction contribute to the binding, while
for the other sites no favourable interaction is detected. These observations
also rationalise the low, rather anisotropic binding energy.

4.3 High-temperature behaviour

Experimental investigations indicate the formation of the modifications Ti5Si3,
TiSi, and TiSi2 at elevated temperatures, therefore full DFT molecular-
dynamics calculations were carried out for the Ti(000.1)|Si(111) interface,
employing the supercell described above. In order to study the amorphisation
process at the interface, the optimised, unreacted structure was employed as
starting geometry. The temperature was raised in one step and controlled by
a velocity rescaling algorithm at constant volume. These simulation condi-
tions resemble best the setup of the laser heating experiments, which yielded
detailed experimental data on the phase transformations at the Ti|Si inter-
face [95].

For T = 300 K initially the stress tensor σ is anisotropic, with compo-
nents σ|| = 13 GPa parallel and σ⊥ = 8 GPa normal to the interface. Even
after several picoseconds of relaxation time the two stress tensor components
do not equilibrate. Therefore, the simulation was also performed at an ele-
vated temperature of T = 600 K, at which the formation of films with the
stoichiometry TiSi has been reported [89]. For this temperature, the initial
stress tensor components exhibit a higher value of about 23 GPa due to the
boundary condition which is given by the lateral lattice periodicity of Si as
substrate material. However, the internal stresses are equilibrated and lowered
to 20 GPa after a relaxation time of only 1 ps. The stress reduction is accom-
panied by the reorientation of atoms in the boundary region. At the higher
temperature the increased kinetic energy of the atoms induces a roughening
of the interface, which now comprises the Ti(000.1) layer and the full Si(111)
double layer adjacent to the interface. In this way, a non-crystalline film is
obtained at the boundary. The area density of atoms within this boundary
film yields indeed a stoichiometry of about Ti : Si = 1 : 1.

Since the supercell is repeated periodically, the model film obtained here is
only an approximant of the structure of the real, amorphous boundary phase.
However, one can evaluate the short-range part of the radial distribution func-
tion within the limits set by the minimum image convention, i.e. one half of
the supercell dimensions. For the cell employed here this amounts to about
5 Å, thus the first coordination sphere can safely be analysed. In order to
cover only the bond lengths at the interface, the bond lengths were calculated
in real space and weigthed according to their frequency of occurence. For the
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Fig. 3. Radial distribution function (RDF) of the Ti-Si bond lengths at the interface.
The upper curve corresponds to the optimised structure, the lower curve gives the
RDF of the interface tempered at 600 K

MD simulation at 600 K, an additional time average over the last picosecond
of the simulation time was performed. Fig. 3 gives a comparison of the radial
distribution function of the Ti-Si bond length between the optimised interface
structure (upper curve) and the structure obtained after the molecular dy-
namics equilibration at 600 K (lower curve). The curves have been broadened

by convolution with a Gaussian function of 0.01 Å full width at half maxi-
mum, and the upper curve is shifted for clarity. For the unreacted interface
structure several maxima of the radial Ti-Si distribution function are obtained
between 2.55 Å and 2.71 Å. These maxima correspond to the bond lengths
at the different adsorption sites as indicated in Fig. 3. The shortest bonds
occur at the on-top and bridge sites, but they are outnumbered by the longer
Ti-Si contacts at the hollow-site position. Additional longer bonds range be-
tween 2.76 and 2.9 Å, but they are not related to the first bonding shell, thus
they are omitted in Fig. 3. For the interface reacted at 600 K, no sharp local
maxima are obtained, but the bond-length distribution is more uniform with
the most pronounced maximum at 2.7 Å. In addition, the average number of
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bonds is by 10% lower than the corresponding number of bonds at the opti-
mised interface. These findings reflect the equilibration of the bond lengths
and the local coordination spheres upon reaction at the interface.

Concomitant with the geometry change, the total energy of the super-
cell relaxed at 600 K is lower than the total energy of the starting structure
obtained from the geometry optimisation (formally at 0 K). This leads to a
doubling of the work of separation to 0.52 J/m2. Thus, the release of the
elastic energy, which is stored in the atomically flat structure model yields a
significant stabilisation of the boundary. The results also confirm experimen-
tal findings that TiSi occurs as an intermediate reaction product towards the
final high-temperature phase, TiSi2. Since the further reaction to a full TiSi2
layer at the boundary would require the use of even larger supercells, fur-
ther investigations are currently carried out on two separate model systems,
Si(111)|TiSi2(000.1) and Ti(000.1)|TiSi2(000.1). Preliminary results from the
structure optimisation indicate that the values of the work of separation will
exceed 1 J/m2. Thus, a further stabilisation of the interface by the formation
of the disilicide is predicted.

5 Conclusions

The detailed description of the stability of and the structure formation at
reactive interfaces requires an electronic-structure based method, which can
properly account for local electron redistributions and subtle changes of the
coordination number. Band-structure calculations based on the DFT provide
the suitable theoretical framework for the investigations of such systems, and
the application of parallel computing supplies the required numerical power.
The most efficient way to exploit this power is provided by parallelisation
over an optimised set of integration points, which split the solution of the
Kohn-Sham equations into a set of matrix equations with equal matrix sizes.
With this approach two reactive systems, both employing the element Ti as
metallic component, have been studied to elucidate and quantify the role,
which electronic and elastic contributions play in interface reactivity.

For an interface with low lattice misfit such as M|MgAl2O4(001) (M = Ti,
Al, Ag) the balance of electronic factors dominates the structure and stability.
If the electronegativity difference between metal and substrate favours electron
transfer, a directed bonding of the metal on top of the O ions is obtained. This
situation occurs for M = Ti and Al. Otherwise, the Pauli repulsion between
the Ag(4d) shell and the O(2p) shell leads to a weaker adhesion on the hollow
sites of the spinel surface. Furthermore, the reactive metal Ti can undergo
an autocatalytic oxygen uptake at the octahedral interstitial site, which then
leads to an oxidative corrosion of Ti interlayers.

Ti(000.1)|Si(111) is a system with a high lattice mismatch and a rich in-
terface chemistry. The ternary interface phase ranges from Ti-rich Ti5Si3 to
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Si-rich TiSi2, which is the thermodynamically most stable phase. DFT in-
vestigations show, that the electron transfer at the unreacted interface leads
to a weakly bonding interaction, because only a small number of favourable
bonding sites can be saturated. DFT molecular-dynamics simulations at an el-
evated temperature of 600 K facilitate the release of elastic stresses still stored
in the unreacted interface. The concomitant interface roughening leads to an
equilibration of the Ti-Si bond lengths and a doubling of the interface stability.
Thus, at this boundary, electron transfer processes and elastic contributions
influence the binding energy equally strongly.

The comparison of the two model cases in which the same metal exhibits
quite different reactivity shows that a realistic material modelling has to ac-
count for both electron transfer across the interface and elastic factors parallel
to the interface equally well. Simplified approaches, neglecting the details of
the electronic structure, may predict the properties of non-reactive boundaries.
However, the fine balance between influence factors at reactive boundaries in-
deed requires the more accurate treatment provided by the density-functional
first-principles modelling.
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38. S. Köstlmeier, C. Elsässer, B. Meyer, M.W. Finnis. Ab initio study of electronic
and geometric structures of metal/ceramic heterophase boundaries. Mat. Res.
Soc. Symp. Proc., 492:97, 1998.
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1 Introduction

Universal aspects of correlations in the spectra and wave functions of closed,
complex quantum systems can be described by random-matrix theory (RMT)
[1]. On small energy scales, for example, the eigenvalues, eigenfunctions and
matrix elements of disordered quantum systems in the metallic regime [2] or
those of classically chaotic quantum systems [3] exhibit universal statistical
properties very well described by RMT. It is now also well established that
deviations from RMT behaviour are often significant at larger energy scales.

In the case of classically chaotic quantum systems, this was first discussed
by Berry using a semiclassical approach and the so-called diagonal approx-
imation (for a review see [3]). In the case of classically diffusive, disordered
quantum systems, non-universal deviations from universal spectral fluctua-
tions (as described by RMT) were first discussed in [4], using diagrammatic
perturbation theory.

Andreev and Altshuler [5] have used an approach based on the non-linear
sigma model to calculate non-universal deviations in the spectral statistics
of disordered quantum systems from RMT behaviour, on all energy scales.
On energy scales much larger than the mean level spacing, the results of di-
agrammatic perturbation theory are reproduced in this way, and thus the
non-universal deviations (from the RMT predictions) derived in [4]. As has
been shown in [6], diagrammatic perturbation theory and semiclassical argu-
ments combined with the diagonal approximation are essentially equivalent in
this regime.

In [5] it was also argued that non-universal corrections affect the spectral
two-point correlation function not only on large energy scales, but also on
small energy scales, of the order of the mean level spacing. This may appear
surprising, but it was explained in [7] that this is just a consequence of the
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fact that the two-point correlation function is well approximated by a sum of
shifted Gaussians.

Turning to eigenfunction statistics, deviations from RMT behaviour in
classically chaotic quantum systems due to so-called scars (that are wave
functions localized in the vicinity of unstable classical periodic orbits [8]) were
analyzed in [9]. In disordered quantum systems, deviations from universal
wave-function statistics from RMT behaviour, due to increased localisation,
have been studied using the non-linear sigma model. For a summary of results
see [10, 11]. The deviations are most significant in the tails of distribution
functions [12], of wave-function amplitudes [13–18], of the local density of
states [13,18], of inverse participation ratios [18], and of NMR line shapes [13].

In the following, exact-diagonalization results for the so-called Anderson
model of localization are reviewed. The exact diagonalizations were made pos-
sible by employing the Lanczos algorithm described in [19]. We concentrate on
deviations from RMT in spectral and wave-function statistics in the quasi-one-
dimensional case. The remainder of this brief review is organized as follows.
In Sect. 2 the Hamiltonian is written down, and the quantities computed are
defined: the distribution of wave-function intensities and the spectral form
factor. Theoretical expectations are briefly summarized in Sect. 3. The mate-
rial in this section is largely taken from [11] and, to some extent, also from [7].
In Sect. 4 the exact-diagonalisation results are described. The numerical re-
sults on wave-function statistics described in this brief review were published
in [9, 20, 21]. The analytical and numerical results on spectral statistics were
obtained in collaboration with M. Wilkinson [7,22]. The problem of analyzing
statistical properties of quantum-mechanical matrix elements is not addressed
in this brief review. Results based on exact diagonalisation and semiclassical
methods can be found in [23–25].

2 Formulation of the problem

2.1 The Hamiltonian

The Anderson model [26] is defined by the tight-binding Hamiltonian on a
d-dimensional hypercubic lattice

Ĥ =
∑

r,r′

trr′c
†
r cr′ +

∑

r

υrc
†
rcr . (1)

Here c†r and cr are the creation and annihilation operators of an electron on
site r, the hopping amplitudes are usually chosen as trr′ = 1 for nearest-
neighbour sites and zero otherwise. Below we summarise the results of exact
diagonalizations for lattices with 64× 4× 4, 128× 4× 4 and 128× 8× 8 sites,
using open boundary conditions in the longitudinal direction and periodic
boundary conditions in the transversal directions. The on-site potentials υr

are Gaussian distributed with zero mean and
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〈υrυr′〉 =
W 2

12
δrr′ . (2)

As usual, the parameterW characterises the strength of the disorder and 〈· · · 〉
denotes the disorder average.

As is well-known, the eigenvalues Ej and eigenfunctions ψj of this Hamil-
tonian, in the metallic regime, exhibit fluctuations described by RMT. De-
pending on the symmetry, Dyson’s Gaussian orthogonal or unitary ensem-
bles [27] are appropriate. The former applies in the absence of magnetic fields
or more generally when the secular matrix is real symmetric. With magnetic
field, complex phases for the hopping matrix elements yield a unitary secular
matrix. We refer to these cases by assigning, as usual, the parameter β = 1
to the former and β = 2 to the latter. The metallic regime is characterized
by g ≫ 1 where g = 2πν0DL

d−2 is the dimensionless conductance. Here
ν0 = 1/(V ∆) is the average density of states per unit volume, ∆ is the mean
level spacing (that is the average spacing between neighbouring energy levels),
and V = Ld is the volume. D = vFτℓ/d is the (dimensionless) diffusion con-
stant, determined by the collision time τℓ = ℓ/vF (here ℓ is the mean free path,
that is the average distance travelled between two subsequent collisions with
the impurity potential), and the Fermi velocity vF. Four length scales are im-
portant: the lattice spacing a, the linear dimension L, the localization length
ξ, and the mean free path ℓ. In the following the diffusive limit is considered,
where ℓ≪ L. We also require that L, ξ, ℓ≫ a.

2.2 Wave-function statistics

By diagonalizing the Hamiltonian Ĥ using the Lanczos algorithm [19], one
obtains the distribution fβ(E, t; r) of normalized wave-function probabilities
t = |ψj(r)|2 V corresponding to the eigenvalues Ej ≈ E

fβ(E, t; r) = ∆
〈∑

j

δ(t−|ψj(r)|2V )
〉

Ej≃E
. (3)

Here 〈· · · 〉E denotes a combined disorder and energy average (over a small
interval of width η centered around E). The spatial structure of the wave
functions is described by means of

gβ(E, t; r) = ∆
〈∑

j

|ψj(r)|2V δ(t−|ψj(r)|2V )
〉

Ej≃E
. (4)

The normalized shape of the wave functions is given by the ratio of g and f
which we denote by 〈V |ψ(r)|2〉t, where 〈· · · 〉t denotes the average over a small
interval around t,

〈V |ψ(r)|2〉t = gβ(E, t; r)/fβ(E, t; r) . (5)
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2.3 Spectral statistics

The spectral two-point correlation function is defined as

Rβ(E, ǫ) = ∆2
〈
ν(E + ǫ/2) ν(E − ǫ/2)

〉
E
− 1 (6)

where ν(E) =
∑

j δ(E − Ej) is the density of states. It is assumed that a
sufficiently small energy window is considered, so that the mean level spacing
∆ is approximately constant within the window. In [7,22] the so-called spectral
form factor was computed, defined as

Kβ(E, τ) =

∫ ∞

−∞

dn e
− 2πinτ

Rβ(E,n∆) . (7)

Here τ is a scaled time, related to the physical time t by τ = 2π�t/∆ ≡ t/tH.
Using the definition of the spectral two-point correlation function, one obtains

Kβ(E, τ) =
〈∫ ∞

−∞

dǫ

∆

[
∆2 ν(E + ǫ/2)ν(E − ǫ/2)− 1

]
exp(−2πiǫτ/∆)

〉
. (8)

For a finite spectral window, the form factor can be expressed as

Kβ(E, τ) =
〈∣∣∣
∑

j

w(E − Ej) exp(2πiEjτ/∆)− ŵ(τ)
∣∣∣
2〉

(9)

where w(E) is a spectral window function centred around zero and normalized
according to ∫

dE

∆
w2(E) = 1 . (10)

Furthermore ŵ is the Fourier transform of w

ŵ(τ) =

∫
dE

∆
w(E) exp(2πiEτ/∆) . (11)

Thus for large τ the form factor converges to unity:

Kβ(E, τ) ≃
∑

j

w2(E − Ej) ≃
∫

dE

∆
w2(E − Ej) = 1 . (12)

In [22] a Hann window [28] was used

w(E) =





√
2/(3η) [1 + cos(2π(E/η)] for |E| ≤ η/2 ,

0 otherwise .
(13)
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3 Summary of theoretical expectations

In this section we briefly summarise the theoretical expectations for wave-
function statistics, fβ(E, t) and gβ(E, t), and for the spectral form factorK(τ)
in quasi-one-dimensional disordered quantum systems. The results in 3.1 are
taken from the review article by Mirlin [11]; they were derived by means of
a non-linear sigma model for a white-noise Hamiltonian. The discussion of
spectral statistics in Sect. 3.2 follows [7].

3.1 Wave-function statistics

The wave-function statistics depends on the index β. For β = 2 one obtains
for a quasi-one-dimensional conductor

f2(E, t;x) =
d2

dt2

[
W(1)(t/X, θ+)W(1)(t/X, θ−)

]
(14)

and (assuming |r| ≡ r ≫ ℓ)

g2(E, t;x)=−X d

dt

[W(2)(t/X, θ1, θ2)W(1)(t/X, θ−)

t

]
(15)

where θ+ = (L − x)/ξ, θ− = x/ξ, θ1 = r/ξ and θ2 = (L − x − r)/ξ. Here,
X = (β/2)L/ξ (see [20]), L is the length of the sample, and ξ is the localisation
length. Moreover, x is the distance of the observation point from the nearest
boundary of the sample in the perpendicular direction. The functionW(1)(z, θ)
obeys the differential equation

∂

∂θ
W(1)(z, θ) =

(
z2
∂2

∂z2
− z

)
W(1)(z, θ) (16)

with initial condition W(1)(z, 0) = 1. The function W(2)(z, θ, θ′) obeys the
same differential equation, but with the initial condition W(2)(z, 0, θ) =
zW(1)(z, θ).

In the case of β = 1, one obtains

f1(E, t;x) =
2
√

2

π
√
t

d2

dt2

∫ ∞

0

dz√
z
W(1)

(
(z+ t/2)/X, θ−

)
W(1)

(
(z+ t/2)/X, θ+

)
.

(17)

In the metallic regime (where X → 0) the usual RMT results f
(0)
1 (t) =

exp(−t/2)/
√

2πt and f
(0)
2 (t) = exp(−t) are obtained. The former distrib-

ution (β = 1) is often referred to as the Porter-Thomas distribution [29].
For increasing localization (finite but still small X), one has approximately

fβ(E, t;x) = f
(0)
β (t)[1 + δfβ(E, t;x)] with

δfβ(E, t;x) ≃ P (x; 0)





3/4−3t/2+t2/4 forβ=1 ,

1−2t+t2/2 forβ=2 ,
(18)
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valid for t≪ X−1/2. Here P (x; t) is the one-dimensional diffusion propagator
[30]. In the tails (t≫ X−1 > 1) of fβ(E, t;x), Eqs. (14,17) simplify to [15]

fβ(E, t;x) ≃ Aβ(x,X) exp(−2β
√
t/X) . (19)

This result may also be obtained within a saddle-point approximation to the
non-linear sigma model [16]. The prefactors Aβ(x,X) for β = 1, 2 are given
in [15,16].

We finally turn to the shape of the wave functions. In close vicinity of the
localisation center, the anomalously localized wave functions exhibit a very
narrow peak (of width less than ℓ). The above expressions apply for r ≫ ℓ
and thus describe the smooth background intensity, but not the sharp peak
itself [18]. For large values of t, for instance, it was suggested by Mirlin [18]
that the background intensity should be given by

〈V |ψ(r)|2〉t ≈
1

2

√
tX

(
1 + r

√
t/(Lξ)

)−2

(20)

where in accordance with the above, ℓ≪ r is assumed, and also r ≪ ξ.
It is necessary to emphasize that the tails of the wave-function amplitude

distribution [see for example (19)] may depend on the details of the model
considered. In the case of two-dimensional Anderson models at the centre
of the spectrum, i.e. at E = 0, for instance, the distribution is of the form
predicted by the non-linear sigma model, albeit with modified coefficients [31].
This could explain anomalies observed in simulations of two- and also in three-
dimensional Anderson models [20,32–34]. In [35] the wave-function amplitude
distributions of random banded matrices near the band centre were analyzed.
It was shown that they agree well with the predictions of the non-linear σ
model for the quasi-one-dimensional case [11,15].

In 4.1, results of exact diagonalisations of the quasi-one-dimensional An-
derson tight-binding Hamiltonian are compared to (14,17-20).

3.2 Spectral statistics

The spectral two-point correlation function Rβ(E, ǫ) may be written as a sum
of two contributions,

Rβ(E, ǫ) = Rav
β (E, ǫ) +Rosc

β (E, ǫ) . (21)

Rav
β (E, ǫ) is defined as

Rav
β (E, ǫ) =

∫
dǫ′ v(ǫ− ǫ′)Rβ(E, ǫ) . (22)

Here v(ǫ) is a Gaussian window centred around zero with variance much larger
than the oscillations of Rβ(E, ǫ) in ǫ, and normalized to∆−1, see [7]. Rosc

β (E, ǫ)
is the remaining oscillatory contribution.
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The smooth contribution Rav
β (E, ǫ) describes correlations on energy scales

much larger than the mean level spacing and may be calculated within a
semiclassical approach (using the diagonal approximation), diagrammatic per-
turbation theory, or Dyson’s Brownian motion model. Rosc

β (E, ǫ) cannot be
calculated in this way.

It was first demonstrated by Andreev and Altshuler [5] that there is a very
simple relation between smooth and oscillatory contributions to the spectral
form factor. This relation describes non-universal deviations from RMT in
disordered metals in terms of the spectral determinant Dβ(ǫ) of the diffusion
propagator P (x, t)

Rav
β (E, ǫ) = − 1

4π2

∂2

∂ǫ2
log Dβ(ǫ) (23)

Rosc
β (E, ǫ) =

1

π2
cos(2πǫ/∆)D2

β(ǫ) . (24)

This relation implies in particular that non-universal corrections affect the
two-point correlation function not only at large energy scales, but also at
small scales (of the order of the mean level spacing). In [7] it was shown that
(23,24) are a consequence of the fact that the two-point correlation function
is well approximated by a sum of shifted Gaussians.

For a quasi-one-dimensional diffusive conductor, the quantity Dβ(ǫ) in
(23,24) is approximately given by Dβ(ǫ) = 4π2 exp[−2π2σ2

β(ǫ)/∆2] with

σ2
β(ǫ) ≃ 2∆2

βπ2

[
log(2πǫ) + sβ −

1

2

∞∑

ν=1

log
(gν2/2)2

(gν2/2)2 + ǫ2

]
. (25)

Here sβ is a β-dependent constant [7]. For the spectral form factor one obtains
(see [11] and references quoted therein)

Kav
β (E, τ) =

2

β
|τ |

∞∑

ν=0

e
− πgν2|τ |

=
2

β
|τ |
{1

2
+

1

2

∞∑

µ=−∞

e
− πµ2/(g|τ |)
√
g|τ |

}
(26)

The asymptotic behaviour (for τ ≪ g−1 ≪ 1) is given by [4–6]

Kav
β (E, τ) =

2

β

√
|τ |
4g

(27)

and [5]

Kosc
β (E, τ) =

∞∑

µ=1

(
e−πgµ2|τ+1| + e−πgµ2|τ−1|

)
(−1)µ 2

gµsinh(πµ)
. (28)

An alternative derivation of (28) was given in [7].
In [22] these behaviours were compared to results of exact diagonalisations

of the quasi-one-dimensional Anderson tight-binding Hamiltonian. The results
of [22] are summarized in Sect. 4.2.
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Fig. 1. (Left) 〈δfβ(E, t; x)〉x (see text) for a lattice with 128 × 8 × 8 sites with
E = −1.7, η = 0.01, 3000 samples, and W = 1.0. For β = 1 (◦) and β = 2 (�), these
results are compared to (14,17) ( ) and (18) ( ). (Right) fβ(E, t; x) for

a lattice with 128 × 4 × 4 sites; for X
<
∼ 1, x ≃ L/2, W = 1.6, E = −1.7, η = 0.01,

5000 samples, and β = 1, 2 compared to (14,17) and (19). Taken from [20]

4 Results of exact diagonalisations

4.1 Wave-function statistics

Figure 1 shows the exact diagonalization results for 〈δfβ(E, t;x)〉x (that is
δfβ averaged over a small region around x) in comparison with (14,17) and
(18). We observe very good agreement. The classical quantity P ≡ 〈P (x; 0)〉x
ought to be independent of β. In Fig. 1 it is determined by a best fit of (18)
to the numerical data and is found to change somewhat with β, albeit weakly
(Fig. 1). For narrower wires (128×4×4) we have observed that the ratio P1/P2

(determined by fitting P ≡ Pβ independently for β = 1, 2) becomes very small
for small values of W (corresponding to X � 0.1) while it approaches unity
for large values ofW . A possible explanation for this deviation is given in [20].
Surprisingly, the form of the deviations is still very well described by (18) (not
shown). The parameter dependence of the ratio P1/P2 in the case of smooth
(correlated) disorder was studied in [36].

Figure 1 also shows the tails of fβ(E, t;x) for weak disorder (X � 1)
in comparison with (14,17) and (19). Since for very small values of X the
tails decay so fast that we cannot reliably compute them, we decreased the
wire cross section and increased the value of W in Fig. 1, thus increasing
X. The quoted values of X were obtained by fitting (14,17). The values thus
determined differ somewhat between β = 1 and 2 (see Fig. 1, right). As
mentioned in [20], this difference was found to depend on the choice of E, W ,
and η.

The numerical results for 〈V |ψ(r)|2〉t in the case β = 2 are summarized in
Fig. 2. Apart from a sharp peak at the localisation center, numerical results
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Fig. 2. Structure of anomalously localised wave functions with t = |ψ(0)|2V . Solid
lines: Numerical results for V = 128 × 4 × 4 sites, disorder W = 1.6 and energy
E ≃ −1.7, averaged over 40 000 wave functions. Dashed lines: Analytical predictions
with X = 0.97. The dash-dotted line shows the asymptotic formula (20) for t = 25.
Taken from [21]

are very well described by (14-16). The asymptotic formula (20) considerably
underestimates 〈V |ψ(r)|2〉t for the values of t shown in Fig. 2.

4.2 The spectral form factor

Figure 3 shows the spectral form factor K(τ) for the Anderson model on a
lattice with 64× 4× 4 sites for W = 1.4, in the metallic regime. As expected,
the data are very well described by RMT for both values of β. The same figure
also shows K(τ) on a logarithmic scale for the same model, but for W = 2.6.
At small times a crossover to (26) is observed. As expected, K(τ) differs by a
factor of two between the models with β = 1 and β = 2. Figure 4 finally shows
δK(τ)= K(τ)−KRMT(τ) on a linear scale. One observes that the singularity
at the Heisenberg time tH is well described by the theory (28).

It was thus demonstrated in [22] that spectral correlations in the quasi-
one-dimensional Anderson model exhibit deviations from RMT behaviour on
the scale of the Heisenberg time (t ≃ tH corresponding to τ ≃ 1).
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Fig. 3. (Left) Ensemble-averaged spectral form factor for a 64 × 4 × 4 Anderson
tight-binding model with W = 1.4 and β = 1 (◦) and β = 2 (�). The form factor
was averaged over 3× 104 samples and an energy window of width η = 0.31 around
E = −2.6. Also shown are the RMT expressions [27] appropriate in the metallic
regime, for β = 1 (- - - -) and β = 2 ( ). (Right) Same as the left plot, but
for W = 2.6, and on a double logarithmic scale in order to emphasize the small-
τ behaviour. Also shown are the small-τ asymptotes according to (27), for β = 1
(−·−·−) and β = 2 (−−−), as well as the result according to (26)( ). Taken
from [22]

5 Summary

In summary, numerical studies of the quasi-one-dimensional Anderson tight-
binding model with Gaussian disorder show that diffusion-driven deviations
from RMT in spectral and wave-function amplitude statistics are of the

0 2
τ

-0.06

-0.04

-0.02

0

0.02
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δK
(τ

)

β=2

 

Times-ISOLatin1

Fig. 4. Deviations of the computed spectral form factor from the RMT result
δK(τ) ≡ K(τ)−KRMT(τ), for the data in Fig. 3 (right) for β = 2 and W = 2.6 (•).
Also shown is the analytical result obtained from (28) (−−−). Taken from [22]
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form predicted by the non-linear sigma model (see [11] for a review) and
the Brownian motion model [7]. In higher spatial dimensions the situa-
tion is likely to be more complicated when the tails of the wave-function
amplitude distribution are considered. In two spatial dimensions for instance,
the non-linear sigma model would predict predict log-normal tails, that is
fβ(t) ≃ Aβ exp[−Cβ(ln t)2]. As mentioned above, this form is consistent with
exact-diagonalisation results of the two-dimensional Anderson tight-binding
model [25]. However, the dependence of Aβ and Cβ on the microscopic para-
meters of the model is likely to be non-universal, that is specific to the model
considered [25,31].
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1 Introduction

Disorder is one of the fundamental topics in science today. A very prominent
example is Anderson’s model [1] for the transition from metal to insulator
under the presence of disorder.

Apart from its intrinsic physical value this model has triggered an enor-
mous amount of research in the fields of random operators and numerical
analysis, resp. numerical physics. As we will explain below, the Anderson
model poses extremely hard problems in these fields and so mathematical
rigorous proofs of many well substantiated findings of theoretical physics are
still missing. The very nature of the problem also causes highly nontrivial
challenges for numerical studies.

The transition mentioned above can be reformulated in mathematical
terms in the following way: for a certain random Hamiltonian one has to
prove that its spectral properties change drastically as the energy varies. For
low energies there is pure point spectrum, with eigenfunctions that decay
exponentially. This energy regime is called localization.

For energies away from the spectral edges, the spectrum is expected to be
absolutely continuous, providing for extended states that can lead to trans-
port. Sadly enough, more or less nothing has been proven concerning the
second kind of spectral regime, called delocalization. An exception are results
on trees [2, 3], and for magnetic models [4]. Anyway, there are convincing
theoretical arguments and numerical results that support the picture of the
metal–insulator transition (which is, in fact, a dimension-dependent effect and
should take place for dimensions d > 2).

In our research we are dealing with a different circle of questions. The
Anderson model is in fact a whole class of models: an important input is the
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measure µ that underlies the random onsite couplings. In all proofs of localiza-
tion (valid for d > 1) one needs regularity of this measure µ. This excludes a
prominent and attractive model: the Anderson model of a binary alloy, i.e. two
kinds of atoms randomly placed on the sites of a (hyper)cubic lattice, known
as Bernoulli–Anderson model in the mathematical community. Basically there
are two methods of proof for localization: multiscale analysis [5], and the frac-
tional moment method [6]. In both cases one needs an a-priori bound on the
probability that eigenvalues of certain Hamiltonians cluster around a fixed
energy, i.e., one has to exclude resonances of finite box Hamiltonians. Equiva-
lently, one needs a weak kind of continuity of the integrated density of states
(IDS). In multiscale analysis this a-priori estimate comes in a form that is
known as Wegner’s estimate [7]. Here we will present both rigorous analytical
results and numerical studies of these resonances. We will take some time and
effort to describe the underlying concepts and ideas in the next Section. Then
we report recent progress concerning analytical results. Here one has to men-
tion a major breakthrough obtained in a recent paper [8] of J. Bourgain and
C. Kenig who prove localization for the continuum Bernoulli–Anderson model
in dimensions d ≥ 2. Finally, we display our numerical studies and comment
on future directions of research.

We conclude this section with an overview over recent contributions in the
physics literature concerning the binary-alloy model. These may be classified
into mainly simulations or mainly theoretical analyses. The former are dis-
cussed in [9], albeit in the restricted setting of a Bethe lattice, providing a de-
tailed analysis of the electronic structure of the binary-alloy and the quantum-
percolation model, which can be derived from the binary alloy replacing one
of the alloy constituents by vacancies. The study is based on a selfconsistent
scheme for the distribution of local Green’s functions. Detailed results for the
local density of states (DOS) are obtained, from which the phase diagram
of the binary alloy is constructed. The existence of a quantum-percolation
threshold is discussed. Another study [10] of the quantum site-percolation
model on simple cubic lattices focuses on the statistics of the local DOS and
the spatial structure of the single particle wave functions. By using the kernel
polynomial previous studies of the metal–insulator transition are refined and
the nonmonotonic energy dependence of the quantum-percolation threshold
is demonstrated. A study of the three-dimensional binary-alloy model with
additional disorder for the energy levels of the alloy constituents is presented
in [11]. The results are compared with experimental results for amorphous
metallic alloys. By means of the transfer-matrix method, the metal–insulator
transitions are identified and characterized as functions of Fermi-level posi-
tion, band broadening due to disorder and alloy composition. The latter is
also investigated in [12], which discusses the conditions to be put on mean-
field-like theories to be able to describe fundamental physical phenomena in
disordered electron systems. In particular, options for a consistent mean-field
theory of electron localization and for a reliable description of transport prop-
erties are investigated. In [13] the single-site coherent potential approximation
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is extended to include the effects of non-local disorder correlations (i.e. alloy
short-range order) on the electronic structure of random alloy systems. This
is achieved by mapping the original Anderson disorder problem to that of
a selfconsistently embedded cluster. The DOS of the binary-alloy model has
been studied in [14], where also the mobility edge, i.e. the phase boundary
between metallic and insulating behaviour was investigated. The critical be-
haviour, in particular the critical exponent with which the localization length
of the electronic states diverges at the phase transition was analyzed in [15]
in comparison with the standard Anderson model.

2 Resonances and the integrated density of states

2.1 Wegner estimates, IDS, and localization

In this Section we sketch the basic problem and introduce the model we want
to consider. A major point of the rather expository style is to make clear, why
the problem is as difficult as it appears to be. This also sheds some light on
why it is intrinsically hard to study numerically. Let us first write down the
Hamiltonian in an analyst’s notation:

On the Hilbert space ℓ2(Zd) we consider the random operator

H(ω) = −∆+ Vω,

where the discrete Laplacian incorporates the constant (nonrandom) off-
diagonal or hopping terms. It is defined, for ψ ∈ ℓ2(Zd) by

∆ψ(i) =
∑

〈i,j〉

ψ(j)

for i ∈ Z
d. The notation reflects 〈·, ·〉 that we are dealing with a nearest neigh-

bor interaction, where the value of the wave function at site i is only influenced
by those at the 2 d neighbors on the integer lattice. Here we neglect the di-
agonal part ψ(i) which would only contribute a shift of the energy scale. The
random potential Vω is, in its simplest form, given by independent identically
distributed (short: i.i.d.) random variables at the different sites. A convenient
representation is given in the following way:

Ω =
∏

i∈Zd

R, P =
∏

i∈Zd

µ, Vω(i) = ωi

where µ is a probability measure on the real line. This function Vω(i) gives
the random diagonal multiplication operator acting as

Vωψ(i) = ωiψ(i).

For simplicity we assume that the support of the so-called single-site measure
µ is a compact setK ⊂ R. Put differently, for every site i we perform a random
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experiment that gives the value ωi distributed according to µ. In physicist’s
notation we get

H(ω) =
∑

〈i,j〉

|i〉〈j|+
∑

i

ωi|i〉〈i|,

where |i〉 denotes the basis functions in site representation.
In principle, one expects that the spectral properties should not depend

too much on the specific distribution µ (apart from the very special case that
µ reduces to a point mass, in which case there is no disorder present). Let us
take a look at two very different cases. In the Bernoulli–Anderson model we
have the single-site measure µ = 1

2δ0 + 1
2δ1. In that case the value ωi ∈ {0, 1}

is determined by a fair coin. We will also consider a coupling parameter W in
the random part, in which case we have either ωi = 0 or ωi = W each with
probability 1

2 . The resulting random potential is denoted by V B
ω . In the second

case the potential value is determined with respect to the uniform distribution
so that we get µ(dx) = χ[0,1](x)dx. We write V U

ω for this case.
Let us point out one source of the complexity of the problem: The two

operators that sum up to H(ω) are of very different nature:

• The discrete Laplacian is a difference operator. It is diagonal in Fourier
space L2([0, 2π]d), where it is given by multiplication with the function

d∑

k=1

2 cosxk.

Therefore, its spectrum is given by the range of this function, so that

σ(−∆) = [−2d, 2d],

the spectrum being purely absolutely continuous.
• The random multiplication operator Vω is diagonal in the basis {δi|i ∈ Z

d}.
The spectrum is hence the closure of the range of Vω, which is just the
support K of the measure for P–a.e.ω ∈ Ω (a.e. stands for almost every,
i.e., for all but a set of measure zero). In the aforementioned special cases
we get

σ(V B
ω ) = {0, 1}

for the Bernoulli–Anderson model and

σ(V U
ω ) = [0, 1],

both for a.e. ω ∈ Ω. Clearly, the spectral type is pure point with perfectly
localized eigenfunctions for every ω, the set of eigenvalues being given by
{ωi|i ∈ Z

d}.
One major problem of the analysis as well as the numerics is now obvious:
We add two operators of the same size with completely different spectral type
and there is no natural basis to diagonalize the sum H(ω) = −∆+ Vω, since
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one of the two terms is diagonal in position space while the other is diagonal
in momentum space (the Fourier picture).

Another cause of difficulties is the expected spectral type of H(ω). In
the localized regime it has a dense set of eigenvalues. These eigenvalues are
extremely unstable. Rank-one perturbation theory gives the following fact
which illustrates this instability: If we fix all values ωj except one, say ωi and
vary the latter continuously in an interval, the resulting spectral measures
will be mutually singular and for a dense set of values of ωi the spectrum will
contain a singular continuous component, cf. [16].

Moreover, the qualitative difference between the Bernoulli–Anderson model
and the model with uniform distribution is evident: V U

ω displays the spectral
type we want to prove for H(ω): it has a dense set of eigenvalues for a.e. ω. If
one can treat −∆ in some sense as a small perturbation we arrive at the de-
sired conclusion. In view of the preceding paragraph, this cannot be achieved
by standard perturbation arguments. In the Bernoulli–Anderson model V B

ω

has only eigenvalues 0 and 1, each infinitely degenerate.
In typical proofs of localization an important tool is the study of box

Hamiltonians. To explain this, we consider the cube ΛL(i) of side length L
centered at i. We restrict H(ω) to the sites in ΛL(i) which constitutes a
subspace of dimension |ΛL(i)| = Ld. We denote the restriction by HL(ω) and
suppress the boundary condition, since it does not play a role in asymptotic
properties as L→∞.

These box Hamiltonians enter in resolvent expansions and it is important
to estimate the probability that their resolvents have a large norm, i.e., we are
dealing here with small-denominator problems. Since the resolvent has large
norm for energies near the spectrum one needs upper bounds for

P{σ(HL(ω)) ∩ [E − ǫ, E + ǫ] �= ∅} = p(ǫ, L).

In fact, one wants to show that p(ǫ, L) is small for large L and small ǫ. At the
same time, there is a clear limitation to such estimates: In the limit L → ∞
the spectra of HL(ω) converge to the spectrum of H(ω). This means that for
fixed ǫ > 0 and E ∈ σ(H(ω)) (and only those energies E are of interest),

p(ǫ, L)→ 1 for L→∞.

The famous Wegner estimate [7] states that for absolutely continuous µ we
get

p(ǫ, L) ≤ CǫLd, (1)

where the last factor is the volume of the cube |ΛL(i)| = Ld. This estimate is
sufficient for a proof of localization for energies near the spectral edges. The
proof is not too complicated for the discrete model. To see why it might be
true, let us include a very simple argument in the case that there is no hopping
term.

Then
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P{σ(Vω) ∩ [E − ǫ, E + ǫ] �= ∅} = P{∃j ∈ ΛL s.t. Vω(j) ∈ [E − ǫ, E + ǫ]}
≤ |ΛL| · µ[E − ǫ, E + ǫ]

≤ C · |ΛL| · ǫ,

if µ is absolutely continuous. Here we see that the situation is completely
different for the Bernoulli–Anderson model for which µ[E − ǫ, E + ǫ] ≥ 1

2
whenever E ∈ {0, 1}. Also, it is clear that a Wegner estimate of the type (1)
above cannot hold. Since in

P{σ(HL(ω)) ∩ [E − ǫ, E + ǫ] �= ∅}

only 2|ΛL| Bernoulli variables are comprised, this probability must at least be
2−|ΛL|, unless it vanishes.

The Wegner estimate is intimately related to continuity properties of the
integrated density of states (IDS), a function N : R → [0,∞) that measures
the number of energy levels per unit volume:

N(E) = lim
L→∞

1

|ΛL|
E(Trχ(−∞,E](HL(ω))).

Here E denotes the expectation value and χ(−∞,E](HL(ω)) is the projection
onto the eigenspace spanned by the eigenvectors with eigenvalue below E
and the trace determines the dimension of this space, i.e., the number of
eigenvalues below E counted with their multiplicity. Since we are dealing with
operators of rank at most |ΛL|, we get

N(E + ǫ)−N(E − ǫ) ≈ 1

|ΛL|
E(Trχ(E−ǫ,E+ǫ](HL(ω)))

≤ P{σ(HL(ω)) ∩ [E − ǫ, E + ǫ] �= ∅}.

This means that Wegner estimates lead to continuity of the IDS. Although
that is not clear from the above rather crude reasoning, the Wegner estimate
for absolutely continuous µ yields differentiability of the IDS.

2.2 Recent rigorous analytical results

In this section we will mainly be dealing with continuum models,

H(ω) = −∆+ Vω,

where −∆ is now the unbounded Laplacian with domain W 2,2(Rd), the
Sobolev space of square integrable functions with square integrable second
partial derivatives. The random multiplication operator Vω is defined by

Vω(x) =
∑

i∈Zd

ωiu(x− i),
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with a single-site potential u(x) ≥ 0 bounded and of compact support (for
simplicity reasons), and random coupling like above. Some results we mention
are valid under more general assumptions, as can be seen in the original papers.
For results concerning localization of these models we refer to [5] for a survey
of the literature up to the year 2000. More recent results concerning the IDS
and its continuity properties can be found in [17]. Here we will report on more
recent developments. The first result is partly due to one of us [18].

Theorem 1. Let H(ω) be an alloy-type model and u ≥ κχ[−1/2,1/2]d for some
positive κ. Then for each E0 ∈ R there exists a constant CW such that, for all
E ≤ E0 and ε ≤ 1/2

E{Tr[χ[E−ε,E+ε](HL(ω))]} ≤ CW s(µ, ε) (log 1
ε )d |ΛL|, (2)

where
s(µ, ε) = sup{µ([E − ε,E + ε]) | E ∈ R}. (3)

The mentioned alloy-type models include the models we introduced as
well as additional periodic exterior potentials and magnetic vector potentials.
The idea of the proof is to combine methods from [19] with a technique to
control the influence of the kinetic term: the estimate in [19] is quadratic in the
volume of the cube and so it cannot be used to derive continuity of the IDS.
On the other hand, there had been recent progress for models with absolutely
continuous µ [20–22] using the spectral shift function. In [18] we present an
improved estimate of the spectral shift function and apply it to arrive at the
estimate (2). Of course, the latter is not really helpful, unless the measure µ
shares a certain continuity. Still it is interesting in so far that it yields that N
is nearly as continuous as µ with a logarithmically small correction. For more
details we refer to [18], where the reader can also find a detailed account of
how our result compares with recent results in this direction.

We now mention a major breakthrough obtained in the recent work [8]
where the continuum Bernoulli–Anderson model is treated. For this model,
the authors set up a multi-scale induction to prove a Wegner estimate of the
following type:

Theorem 2. For the Bernoulli–Anderson model and α, β > 0 there exist
C, γ > 0 such that

P{σ(HL(ω)) ∩ [E − ǫ, E + ǫ] �= ∅} ≤ CL− 1
2 d+α

for
ǫ ≤ exp(−γL 4

3+β).

This can be found as Lemma 5.1 in [8]. It is important to note that the proof
does not so far extend to the discrete case. The reason is that a major step in
the proof is a quantitative unique continuation result that does not extend to
the discrete setting. Therefore, Wegner estimates for the discrete Bernoulli–
Anderson model are still missing.
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3 Numerical studies

Most numerical studies have been performed for the standard Anderson model
of localization with uniform distribution of the potential values. In this model
the DOS changes smoothly with increasing disorder from the DOS of the
Laplacian with its characteristic van Hove singularities to one featureless
band [23]. If the distribution is chosen as usual with mean 0 and width W,
then the theoretical band edges are given by ±(2d +W /2). Numerically these
values are of course reached with vanishing probability. If the box distribution
is replaced by an unbounded distribution like the Gaussian or the Lorentzian,
then the band tails in principle extend to infinity, although numerically no
significant change can be observed from the box-distribution case [24]. A dra-
matically different situation occurs in a binary alloy, where with increasing
disorder W the DOS separates into two bands of width 4 d each. Choosing
the measure µ = 1

2δ0 + 1
2δW as discussed in the previous section, the split-

ting of the band into subbands occurs theoretically for W = 4 d, although the
again numerically very small DOS in the tails of the subbands leads to the ap-
pearance of separated subbands already for smaller disorder values [14]. This,
however, is not the topic of the current investigation. We rather concentrate
on unexpected structures that we have found near the centre of the subbands.

The DOS is defined as usual

ρ(E) =

〈 Ld∑

i=1

δ(E − Ei)

〉

where Ei are the eigenvalues of the box Hamiltonian discussed in the previous
section, and 〈· · · 〉 indicates the average over an ensemble of different configu-
rations of the random potential, i.e. the disorder average. For the numerical
diagonalization we use the Lanczos algorithm [25] which is very effective for
sparse matrices. In the present case the matrices are extremely sparse, be-
cause except for the diagonal matrix element with the potential energy there
are only 2 d elements in each row and column of the secular matrix due to the
Laplacian. In fact, for the standard model of Anderson localization which is of
course as sparse as the Bernoulli–Anderson Hamiltonian matrix the Lanczos
algorithm has been shown to be most effective also in comparison with more
modern eigenvalue algorithms [26, 27]. One of the reasons for the difficulties
which all eigenvalue algorithms encounter is our use of periodic boundary
conditions in all directions, making a transformation of the secular matrix to
a band matrix impossible. However, a severe problem arises for the Lanczos
algorithm, because numerical inaccuracies due to finite precision arithmetics
yield spurious eigenvalues which show up as incorrectly multiple eigenener-
gies. In principle these can be detected and eliminated in a straightforward
way. The respective procedure, however, becomes ineffective in those parts
of the spectrum where the Hamiltonian itself has multiple eigenvalues or an
unusually large DOS. This happens to be the case in our investigation and
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Fig. 1. DOS of the upper half of the spectrum for several disorder strengths W and
system sizes L = 30 averaged over 250 configurations of disorder except for W = 32,
where the system size is L = 15 and 2000 configurations have been used. The inset
shows the DOS for W = 2, L = 15 and 30

turned out to be more significant for larger disorder and system sizes. As a
consequence we have missed up to .09% of all eigenvalues in the data pre-
sented below. In general, the performance of the Lanczos algorithm is much
better in the band tails, because the convergence is much faster. Therefore
it turned out to be advantageous to calculate the DOS in the centre of the
subbands separately with different settings of the parameters which control
the convergence of the algorithm.

Our results are shown in Fig. 1 for various disorders. Here we have chosen a
symmetric binary distribution, i.e. µ = 1

2δ−W/2+ 1
2δW/2. The spectrum is thus

symmetric with respect to E = 0 and only the upper subband is displayed in
Fig. 1. With increasing disorder strength W , the subband moves of course to
larger energies. Already for W = 8 the subbands appear to be separated, as
the DOS is numerically zero around E = 0. We have also calculated the DOS
for the system size L = 15 for disorders between W = 4 and W = 22.6. The
data are not shown in Fig. 1, because they do not significantly differ from the
data for the larger system size L = 30 shown in the plot. Only forW = 2 there
are significant deviations due to finite-size effects: for vanishing disorder the
finite size of the system with its periodic boundaries would yield only very few
but highly multiple eigenvalues. Remnants of such structures can be seen in
the inset of Fig. 1 for the smaller system size as somewhat smeared-out peaks.
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Fig. 2. DOS of the upper subband from Fig. 1 with all eigenvalues scaled by W .
The DOS has been normalized after rescaling

For the larger system size L = 30 the DOS in the inset reflects the DOS of
the pure Laplacian with only a weak smearing of the van Hove singularities.

The prominent feature of the spectra is a strong peak in the centre of the
subband accompanied by a distinguished minimum on the low energy side
and a side peak on the right hand shoulder. In order to study the emergence
of these features we have plotted the central region of the subbands in Fig. 2
versus scaled energy thus eliminating the shift of subbands with increasing
disorder. One can clearly see, that the peak and the minimum close to it
approach the centre of the subband. The maximum and minimum values of
the DOS can be described by power laws

ρmax ∝ W β , β = 1.79± .03

ρmin ∝ W β , β = 0.75± .03

as demonstrated in Fig. 3 where the data have been fitted by power laws for
large W. The exponent β > 1 implies that in the limit of large disorder the
DOS diverges. This is not surprising for the scaled DOS, because the scaled
width of the subband shrinks. We note, however, that also in the unscaled plot
the height of the peak increases with disorder W. It turns out that the ap-
proach of the peak and the minimum towards the exact centre of the subband
at E/W = 1

2 can also be described by power laws (see Fig. 4):
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Fig. 3. Scaling of ρmin and ρmax with W for L = 15(o) and L = 30(x). The lines are
least-squares linear fits for L = 15. Error bars are related to the number of missed
eigenvalues

E(ρmax)/W − 1/2 ∝ W−γ , γ = 2.02± .05

E(ρmin)/W − 1/2 ∝ W−γ , γ = 1.80± .04

Both exponents are close to the value 2 and might be explained by perturba-
tion theory [28].

In summary, we have seen that the DOS of the Bernoulli–Anderson model
for sufficiently strong disorder shows two separate subbands with a strong
sharp peak near the centre in a striking contrast to the standard Anderson
model with box distribution or other continuous distributions for the poten-
tial energies. A more detailed analysis of these structures will have to be
performed. It is reasonable to assume that they may be connected with cer-
tain local structures of the configuration like independent dimers and trimers
or other clusters separated from the rest of the system by a neighbourhood
of atoms of the other kind. In such a situation where all neighbouring atoms
belong to the other subband, the wave function at those sites would approach
zero for large disorder, i.e. the space related to those sites becomes inaccessible
for the electrons from the other subband. This is exactly what happens also
in the quantum percolation model.

We note that there are other smaller peaks to be seen in the DOS which
might be related to larger separate clusters. A more detailed analysis of these
structures is under investigation. If an additional disorder is applied random-
izing the potential energy as in the standard Anderson model of localization,



278 Peter Karmann et al.

8 16 32 64
W

0.0001

0.001

0.01

0.1

E
/W

γ=2.02±.05
γ=1.80±.04

Fig. 4. Distance of the minimum (lower data) and the maximum (upper data) of
the DOS from the centre of the subband. The lines are least-squares linear fits for
L = 15. Error bars are related to the bin size of the histogram

then the peaks are quickly smeared out already for small values of this addi-
tional disorder [11].

Recently an efficient preconditioning algorithm has been proposed for the
diagonalization of the Anderson Hamiltonian [29]. Previously respective shift-
and-invert techniques had been shown to be significantly faster than the stan-
dard implementation of the Lanczos algorithm, but the memory requirements
where prohibitively large for moderate system sizes already, even when only
a very small number of eigenvalues and eigenvectors was calculated. The new
implementation reduces this problem considerably, although the memory re-
quirement is still larger than for the standard implementation [29]. It remains
an open question whether that algorithm is also superior when the calculation
of the complete spectrum is required.
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11. I. V. Plyushchay, R. A. Römer and M. Schreiber. Three-dimensional Anderson
model of localization with binary random potential. Phys. Rev. B, 68:064201,
2003.
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1 Introduction

Spin glasses are a paradigm for complex systems. They show a wealth of
different phenomena including metastability and aging. Especially in the low
temperature regime they reveal a very complex dynamical behaviour. For
temperatures below the spin glass transition temperature one finds a variety
of features connected to the inability of the systems to attain thermodynamic
equilibrium with the ambient conditions on the observation time scale: aging
and memory effects have been observed in many experiments [1–11]. Spin
glasses are good model systems as their magnetism provides an easy and
very accurate experimental probe into their dynamic behavior. In order to
investigate such features different experimental techniques have been applied.
Complicated setups including temperature and field changes with subsequent
relaxation phases lead to more interesting effects such as age reinitialization
and freezing [12,13].

In order to understand the observed phenomena a number of different
concepts have been advanced. They include real space models, such as the
droplet model [14–17], mean field theory approaches [18–21], as well as state
space approaches [22–28].

The latter are based on the picture of a mountainous energy landscape,
with valleys separated by barriers of varying heights, containing other valleys
of varying depth, which again contain other valleys and so forth. The concept
of energy ‘landscapes’ is a powerful tool to describe phenomena in a number
of different physical systems. All these systems are characterized by an energy
function which possesses many local minima separated by barriers as a func-
tion of the state variables. If graphically depicted, the energy function thus
looks very much like a mountainous landscape.

The thermal relaxation process on the energy landscape is modelled as
a diffusion over the many different energy barriers, which often show a self
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States

E

Fig. 1. A sketch of a complex state space. The energy is depicted as a function of a
sequence of neighboring states. It resembles a cut through a mountainous landscape
and thus the energy function is sometimes referred to as the energy landscape

similar structure of valleys inside valleys inside valleys etc. As a consequence
one finds slow relaxation processes at low temperatures and a sequence of
local equilibrations in the state space.

Here we present the steps which we took to map the path from basic
spin glass models to modelling successfully the complex aging experiments
performed over the last two decades. We start our presentation by studying the
state space properties of microscopic Hamiltonians [29–34], then we investigate
coarse graining procedures of such systems, as well as coarse grained dynamics
on those state spaces. We present a dynamical study of aging experiments
based on state spaces computed from an underlying microscopic Ising spin
glass Hamiltonian. Finally we show that (even coarser) tree models provide not
only an intuitive understanding of the observed dynamical features, but allow
to model aging experiments astonishingly well. As becomes apparent in the
following presentation only increased computational power and appropriate
serial and especially parallel algorithms allowed us to execute this research
effort.

2 Aging experiments

In the context discussed here ‘aging’ means that physical properties of the
spin glass depend on the time elapsed since its preparation. The preparation
time is the time at which the temperature of the spin glass was quenched
below its glass temperature. The fact that aging occurs leads to the conclu-
sion, that the spin glass is in thermal non-equilibrium during the observation
time, which can last several days in experiments. Such aging effects have been
observed in a large number of spin-glass experiments [1–4, 6, 7, 12, 13, 35–38],
but are not confined to spin glasses. They have also been measured in high Tc

superconductors [39] and CDW systems [40].



Modelling Aging Experiments in Spin Glasses 283

2.1 ZFC-experiments

A typical spin glass experiment is the so-called ZFC (Zero Field Cooled) ex-
periment (see Fig.2). In this experimental setup the spin glass is quenched
below its glass temperature. After a waiting time tw an external magnetic
field H is switched on and the magnetization M is measured as a function of
measurement time t, which is counted from the application of the magnetic
field. If the measurement is repeated for different waiting times, the results
change: the magnetization depends on the waiting time tw [5].

time t

time t

T

Tglass

0
t w

H

Fig. 2. Time schedule of a simple ZFC experiment. The probe is cooled below its
glass temperature Tglass where no external magnetic field is applied. After a waiting
time tw a weak field is switched on. The magnetization is subsequently measured

Fig. 3. Time dependent magnetization M(t) and the corresponding relaxation rate
S(t) = ∂M/∂log t measured in a ZFC experiment [5]. The results of this measure-
ment depend on the waiting time

In Fig. 3 the magnetization and the relaxation rate (the derivative of the
magnetization with respect to the logarithm of time) are plotted versus the
logarithm of the time after the application of the field. We see a kink in the
magnetization M(t, tw) plotted as a function of logarithmic time at t = tw or
equivalently, a maximum in the derivative S(t, tw) of the magnetization with
respect to the logarithm of the time at t = tw. This effect can be observed
over a wide range of magnitudes of the waiting time.
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2.2 ZFC-experiments with temperature step

In a second experimental setup, the temperature during the waiting time tw
is lowered to TM−∆T during the measurement time t [13]. At the end of the
waiting time, when the external magnetic field is applied and the measurement
of the magnetization is started, the temperature is increased in a steplike
fashion to the measurement temperature TM. The result of the temperature
step is that the curves with a lower temperature during the waiting time seem
to be ‘younger’, i.e. the maximum of the relaxation rate is shifted towards
lower times.

Fig. 4. Time dependent magnetization M(t) and the corresponding relaxation rate
S(t) = ∂M/∂log t measured in a ZFC experiment [13] as a function of the tempera-
ture decrease during the waiting time. Note the shift of the maxima of the relaxation
rate

2.3 TRM-experiments with temperature steps

There is a number of further experiments which measure the response as
temperatures are changed during the waiting time. This leads to partial reini-
tialization effects as observed in the work of Vincent et al. [41], who studied
temperature cycling in thermoremanent magnetization experiments. In these
experiments the sample is quenched in a magnetic field, which is turned off
after time tw. Then the decay of the thermoremanent magnetization is mea-
sured. The temperature cycling consists of a temperature pulse added during
the waiting time tw.

The data of Vincent et al. [41] are shown in the left part of Fig. 5, for
tw = 30 and tw = 1000 min. On top of this reference experiment, a very short
temperature variation ∆T is imposed on the system 30 min before cutting the
field. The important feature is that increasing ∆T shifts the magnetization
decay data from the curve corresponding to the 1000 min curve to the 30 min
curve. Thus the reheating appears to reinitialize the aging process.

Figure 5 right shows the results for a negative temperature cycle. The
important feature here is that a temporary decreasing of the temperature
leads to a ‘freezing’ of the relaxation. In other words the effect of the time
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Fig. 5. Effect of a positive (left) and negative (right) temperature cycle on the ther-
moremanent magnetization (thin lines). The bold lines are reference curves without
temperature cycling. The procedure is shown in the inset. These experimental results
are taken from Vincent et al. [41]

spent at the lower temperature diminishes and eventually disappears as ∆T
decreases.

3 Basic spin glass models

Starting point of our modelling are Ising spin glass models [42]. As an example
let us consider a short range Edwards-Anderson Hamiltonian on a square grid
with periodic boundary conditions of size L x L

H =
∑

<i,j>

Jij si sj −
∑

i

Hsi , (1)

where the sum is to be performed over all pairs of neighboring Ising spins si
which can only take the values +1 or −1. H denotes a weak external magnetic
field which can be applied to the spin glass according to the experimental
setup. The interaction constants Jij are uniformly distributed with a zero
mean and standard deviation normalized to unity. This assumption defines
the units of energy.

The interaction constants are randomly chosen using a random number
generator. Each set of interaction constants is one spin glass realization. To
obtain reliable data, which is not dependent on a single choice of interaction
constants, we have to perform an average over many spin glass realizations.
Such an analysis heavily depends on the availability of appropriate computing
power.

The number of states is 2N if N is the number of spins and grows exponen-
tially with the system size, a feature common to the systems we are interested
in. Thus either only small systems can be considered or a coarse graining
procedure needs to be applied in order to reduce the number of states. The
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latter approach leads directly to the concept of an energy landscape with the
thermal relaxation process painted as a random hopping process.

4 Energy landscapes

4.1 Branch and bound

In a first step we need to map out the state space of our system, and due to the
excessively large number of states we restrain ourselves to the energetically
low lying part of the state space, which is important for the low temperature
regime. We use a recursive Branch-and-Bound algorithm to determine all en-
ergetically low-lying states up to a given cut-off energy Ecutoff [32,33,43]. The
main idea of this method is to search a specific binary tree of all states. The
search can be restricted by finding lower bounds for the minimal reachable
energy inside of a subtree (branch). If this lower bound is higher than the
energy of a suboptimal state already found, it is not necessary to examine
the corresponding subtree. A first good suboptimal state can be found by
recursively solving smaller subproblems.

We start with the smallest possible subsystem: one spin. This system has
only two states with zero energy, corresponding to the spin up or down. In the
next step we consider one additional spin. Now there exist four configurations,
each with a certain energy. Thereafter spins are added one at a time, and every
time the number of configurations is doubled.

+

+ -

+

+ -

+

-

+

.

-

Spin 1 

Spin 2

Spin 3

-

-

+ -

.

.

Fig. 6. Configuration tree for the Branch-and-Bound algorithm

This can be visualized by a so-called configuration tree (see Fig. 6). In
the first level (from the top) there is only one spin with two configurations.
In the next level spin 2 is added and there are four configurations and so
on. Each node in the configuration tree has a certain energy corresponding
to the interactions between the already considered spins. But in all nodes,
except the lowest-level nodes, there are terms in (1) for spins which have not
been considered yet. From this knowledge we can derive a lower bound for
all nodes which are located in the subtree below. This lower bound is found
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by assuming that each of the lacking terms in (1) will sum up in a way such
that (1) is minimized. If all states below a cut-off energy should be found,
then only those subtrees are excluded from the further consideration, whose
lower bound of the reachable minimum energy is larger than the energy of the
known local minimum plus the cut-off energy. Due to the exclusion of large
subtrees from consideration, the Branch-and-Bound algorithm provides a very
efficient way to find the low-energy region of a discrete state-space.

Several interesting features can be observed in the data obtained. A first
important result of this Branch-and-Bound algorithm is that the number of
states grows sub-exponentially with the cut-off energy. A further careful analy-
sis showed that the deviation from an exponential increase can be parameter-
ized in different ways, for details see [32,34].

4.2 Thermal relaxation dynamics

We now turn to the dynamics in the enumerated state space. The states α
of our model system are defined by the configuration of all spins {si}, and
each state has its energy E(α) as given by the Hamiltonian (1). Neighboring
states are obtained from each other by flipping one of the spins, and N(α)
will denote the set of neighbors of a state α.

The thermal relaxation in contact with a heat bath at temperature T
can be modelled as a discrete time Marcov process. The thermally induced
hopping process induces a probability distribution in the state space. The time
development of Pα(k), the probability to be in state α at step k, can then be
described by a master equation [44]

Pα(k + 1) =
∑

β

Γαβ(T )Pβ(k). (2)

The transition probabilities Γαβ(T ) depend on the temperature T . They
have to insure that the stationary distribution is the Boltzmann distribution
P eq

α (T ) = gα exp(−Eα/T )/Z, where Z =
∑

α P
eq
α is the partition function

and gα is the degeneracy of state α. The latter is needed if the states α al-
ready represent quantities which include more than one micro state. Possible
choices for the transition probabilities are the Glauber dynamics [45], and the
Metropolis dynamics [46]. Here we use:

Γβα =





Πβα exp(−∆E/T ) if ∆E > 0, α �= β
Πβα if ∆E ≤ 0, α �= β
1−∑

ξ �=α Γξα if α = β,

(3)

where ∆E = E(β) − E(α), Πβα equals 1/|N(α)| if the states α and β are
neighbors and equals zero otherwise, and |N(α)| is the number of neighbors
of state α. The Boltzmann factor in (3) makes the transition over an energy
barrier a slow process compared to the relaxation within a valley of the energy
landscape.



288 Karl Heinz Hoffmann et al.

5 Cluster models

5.1 Structural coarse graining

The number of states found by the branch-and-bound algorithm grows nearly
exponentially with the cut-off energy [32]. In order to handle larger systems
we thus need to coarse grain our description by collecting sets of microscopic
states into larger clusters. Our aim is to obtain a reduced model such that the
macroscopic properties of the dynamics will not be altered. In order to obtain a
good approximation for the dynamical properties of the system on macroscopic
time scales it is important that the inner relaxation in a cluster is faster than
the interaction with the surrounding clusters. To fulfill this condition for low
temperatures a cluster must not contain any energy barriers. The idea of
such a coarse graining was advanced already in 1988 [24] and a practical
implementation of the above mentioned criteria is described in [31,34].

The clustering algorithm which we refer to as the NB-clustering (No-
Barrier-clustering) in the following proceeds as follows:

1. Sort all states according to ascending energy

2. Start with one of the lowest-energy states

-- create a cluster to which this state belongs

-- the reference energy of the cluster is the energy of this state

-- create a new valley to which the cluster and the state belong

3. Consider one of the states with equal energy, or if not present, the state

with next higher energy

4. If the new state is

4.1 not neighbored to states considered yet ⇒
-- create a new cluster to which the new state belongs

-- the reference energy of the cluster is the energy of the new state

-- create a new valley to which the new cluster and the new state

belong

4.2 neighbored to states which belong to different valleys (such states we

call barrier states) ⇒
-- link the connected valleys to one new large valley

-- create a new cluster to which the new state belongs

-- the new cluster belongs to the new large valley

4.3 neighbored to states which belong to one valley and

4.3.1 one cluster ⇒ the state is added to this cluster

4.3.2 different clusters ⇒ the state is added to the cluster with the

highest reference energy

5. go to step 3 until all states have been considered

This algorithm produces clusters without any internal barrier. In Fig. 7
(left) this structural coarse graining has been applied to a small subsystem
with 28 states for demonstration purposes. The subsystem shown is actually
a low energy subset of the states of an Ising spin glass. The resulting coarse
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grained system is shown in Fig. 7 (right), where the numbers inside a cluster
are the numbers of the states which are lumped into the cluster. The figure
shows two kinds of clusters: local minimum clusters are those which contain a
local minimum of the energy, energy barrier clusters are those which connect
two energetically lower clusters.
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Fig. 7. Left: Microscopic states with connections. Right: Coarse grained state space
obtained from the microscopic states using the algorithm. The number in a square
at a connection is the number of the corresponding microscopic connections

In order to gain an understanding of the structure of the energy landscape
and the resulting coarse grained clusters we studied [34] several different fea-
tures, of which we here report only a few: First we analysed the number of
local minimum clusters Ngs

lmc, which are accessible from the ground state with-
out exceeding an energy barrier of Eb. This data is obtained by applying a lid
energy which is initially set to the energy of the global minimum and is sub-
sequentially raised until the cutoff energy is reached. For each lid energy we
search the data base for accessible local minimum clusters without climbing
above the given lid energy. The summed-up results for 88 spin glass realiza-
tions of size 8 x 8 are shown in Fig. 8. One sees that the number of local
minimum clusters accessible from the ground state Ngs

lmc increases fast with
the energy, but not exponentially as a function of the barrier energy. This
behavior agrees well with the subexponential growth in the density of states
seen for such systems [32]. Interestingly a power law Ngs

lmc ∝ E3.9
b fits the

resulting curve quite well.
While the subexponential increase of Ngs

lmc indicates that a binary tree
with its exponential increase does not reflect exactly the results from the
enumerated state space of our spin glass Hamiltonian the increase in Ngs

lmc

seems strong enough to warrant the use of the binary trees as simple models.
But based on our investigation one can now take a step towards a more realistic
tree concept.

To obtain more information about the Edwards-Anderson state space
structure we refined the analysis of accessible local minimum clusters by
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Fig. 8. The number of local minimum clusters Ngs
lmc in the NB-clustered state

space which are accessible from the global minimum without crossing energy barriers
higher than Eb. The dashed line corresponds to a power fit which is ∝ E3.9

b

distinguishing between the local minimum clusters at different energies. We
start again in the global minimum but we count only those destination local
minimum clusters with an energy which is lower than 1, 2, 3 or 4, respectively
(Fig. 9).
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Fig. 9. The number of local minimum clusters in the NB-clustered state space which
are accessible from the global minimum without crossing energy barriers higher than
Eb. For the different curves only those local minimum clusters are counted which
have an energy difference to the global minimum less than 1,2,3 or 4, respectively

Again we find that at a given barrier energy the number of accessible lo-
cal minimum clusters increases (sub-)exponentially with energy. Interestingly
most of the barriers lead into energetically high lying local minima, and paths
from the global minimum over a high energy barrier back to an energetically
low lying local minimum cluster are relatively rare.

Further information is obtained by studying the dependence of the number
of accessible local minimum clusters N lm

lmc when starting in a local minimum
cluster. We counted the number of all accessible local minimum clusters when
climbing a certain barrier energy relative to the starting point. In Fig. 10 we
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show the number of accessible local minimum clusters N lm
lmc(Erb) as a function

of the relative barrier energy Erb summed over 88 spin glass realizations.
Here each pair of local minimum clusters contributed twice to this number,
but (generically) at two different barrier energies depending on the depth of
the local minima on each side. We find that N lm

lmc(Erb) grows slower than
exponentially, but it still shows a strong increase.
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Fig. 10. The number of local minimum clusters N lm
lmc accessible from another local

minimum by crossing energy barriers which are not higher than Erb. The energy is
counted relative to the energy of the starting point (local minimum). The data is
taken from each path between two local minima in 88 spin glass realizations of size
8x8

Fig. 11. Possible coarse grained state space structure compatible with the data
obtained from NB-clustering. Note the similarity to the LS-tree shown in Fig. 17
(right)

The results found in our investigation indicate, that a hierarchical structure
depicted in Fig. 11 is compatible with the structure of the enumerated state
space under NB-clustering. It is quite similar to a modified LS-tree, which is
discussed below, where the subtrees below the short edges are smaller than
those below the long edges. This picture captures the sub-exponential growth
of accessible local minima with the barrier energy as well as the significant
growth of the number of local minimum clusters with increasing energy.
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5.2 Dynamical coarse graining

Consider now the thermal hopping on the complex energy landscape. Rather
than calculating the full time dependence of the probability distribution in
the enumerated state space, we can choose to monitor the presence or ab-
sence from a cluster of the coarse grained system. We have hereby defined a
stochastic process, which in general will not be a Marcov process [47], because
the induced transition probability from cluster to cluster might depend on the
internal (microscopic) distribution within one cluster. However, it turns out
that inside a coarse grained area very quickly a kind of local equilibrium distri-
bution is established, which then makes the coarse grained relaxation process
(at least approximately) marcovian. The result is that Marcov processes on
the coarse grained systems are good modelling tools for the thermal relaxation
of complex systems [23,24,48].

Using this insight, the proper transition rates of the coarse grained system
can be determined. To find the structure of this rates let us start with the
exact calculation of the transition probability between two neighboring clus-
ters based on the microscopic picture. The probability flux from the states
belonging to cluster Cν to the states belonging to cluster Cµ is given by

Jµν = GµνPν =
∑

α∈Cµ,β∈Cν

Γαβpβ , (4)

where Pν is the total probability to be in cluster Cν , i.e. the sum of the
probabilities of all states in cluster Cν , and Gµν is the transition rate from
cluster Cν to cluster Cµ. Again we assume that the internal relaxation in-
side the clusters is fast compared to the relaxation between different clus-
ters. For the time scale of interest all clusters are in internal equilibrium,
i.e. pβ ∝ exp(−Eβ/T ). As the microscopic transition rates have the form
Γαβ ∝ exp(−max(Eα − Eβ , 0)/T ), the coarse grained transition rate is

Gµν =

∑
α∈Cµ,β∈Cν

Παβexp(−max(Eα, Eβ)/T )
∑

α∈Cν
exp(−Eα/T )

. (5)

The roughest simplification (here referred to as procedure A) would be to
consider all states of a cluster as one state with a certain energy Êµ which is
chosen as the mean energy of the microscopic states. Following this idea the
sums in (5) can be simplified to

Ĝµν =
T̂µνmin(exp(−(Êµ − Êν)/T ), 1)

n̂ν
, (6)

where T̂µν is related to the number of connections between cluster Cν and
cluster Cµ, and n̂ν is the number of states collected in cluster Cν . A better
approximation can be achieved if each cluster is modelled by a two-level sys-
tem, which is in internal equilibrium (procedure B). For a detailed description
of these procedures see Klotz et al. [31].
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Fig. 12. Smoothed relaxation time densities versus the logarithm of the relaxation
time for T = 1 (left) and T = 0.25 (right) for the microscopic system and the two
procedures

In order to check the quality of the approximations made by the coarse
graining of the energy landscape one can for instance look at the density of
relaxation times. Fig. 12 shows this density of relaxation times for T = 1 and
T = 0.25 respectively. The spectra have been computed with a resolution of 0.2
on the logarithmic τ -scale. In the case of high temperatures (Fig. 12 (left))
we see a good agreement of the two procedures compared to the original
microscopic system in the range of large relaxation times, while for lower
temperature (Fig. 12 (right)) procedure B provides the better approximation.
For short times the microscopic system has many more eigenvalues, which
are neglected in the coarse grained system. Thus the dynamics in the coarse
grained state space is a good approximation of the dynamics in the microscopic
system for slow processes which are the important ones for the analysis of low
temperature relaxation phenomena.

In a more detailed analysis [34] of the kinetic factors Tµν we required that
the coarse grained dynamics reflects the microscopic one at a given tempera-
ture. Then we find that the connections with a small energy difference have
(on average) a larger kinetic factor. This is especially important for the dy-
namics following a temperature quench. Then the occupation probability of
the system moves to lower energy states. As the connections with low energy
differences are faster, the system will preferably end up in a local minimum
with a comparably high energy. The equilibration towards the global minimum
states is then driven by the slow modes of relaxation.

The above algorithm for the coarse graining of complex state spaces shows
in which way the idea of an energy landscape can help in modelling complex
systems. This technique is independent of the model and can not only be
used for Ising spin-glass models as demonstrated, but also for other complex
systems such as Lennard-Jones systems or proteins.
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6 Aging in the enumerated state space

We now turn to the modelling of the aging experiments. If the concepts pre-
sented above are valid, then one should be able to simulate the aging behavior
based on the coarse grained dynamics. First we investigate a simple ZFC ex-
periment where the spin glass is quenched below its glass temperature with no
external magnetic field. We perform the analysis on the low-energy part of an
enumerated and coarse grained state space derived from our spin glass Hamil-
tonian. In this approach we directly access the properties of the state space
(e.g., the energy and magnetization of the clusters) and perform a dynamics
following the Metropolis algorithm.

To model experiments with an external magnetic field we set H �= 0 in
the second term of the Hamiltonian (1). While in principle the external field
changes the state space structure and the coarse graining procedure should
be redone for the state space in the external field, we here assume that the
magnetic field is weak and that it changes only slightly the structure of the
state space. Thus we just change the energies of the already coarse grained
system

ÊH
µ = Êµ −HM̂µ , (7)

for all Clusters p. M̂µ is the effective magnetization of the cluster Cµ, which
is computed from the magnetizations of the micro-states in this cluster and
the assumption of internal equilibration at the given temperature, and

Êµ = −T ln


 1

n̂µ

∑

α∈Cµ

e−Eα/T


 . (8)

Technically we solve the eigenvalue problem of the corresponding master
equation determining eigenvalues and eigenvectors. Then macroscopic proper-
ties of the spin glass can be obtained by performing the thermal average and
the average over many spin glass realizations (ensemble average). We simu-
lated the ZFC procedure in 500 spin glass realizations with altogether more
than 17 million micro-states. They can be reduced to coarse grained state
spaces with about 276.000 clusters. Our choice for the external magnetic field
was H = 0.1 and for the temperature T = 0.2.

The averaged results of these calculations are shown in Fig. 13. The mag-
netization increases after the application of the magnetic field, since the spins
tend to align with the direction of the external field. States with positive mag-
netization become energetically favored. However, we find that the magneti-
zation increases slower in the curves with a larger waiting time. This system
clearly shows aging features. The corresponding curves of the relaxation rate
S(t) = dM(t)/d log(t) in Fig. 14 display maxima at times which are roughly
equal to the waiting time.

This remarkable result indicates that the considered coarse grained state
space still represents all ingredients necessary for aging effects. We find that
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Fig. 13. Magnetization of a simple ZFC procedure averaged over 500 spin glass
realizations. The probes are cooled to a low temperature T=0.2 with no external
field. After the waiting time tw a weak external field H = 0.1 is applied. We clearly
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Fig. 14. Relaxation rate S(t) = dM(t)/d log(t) for the magnetization shown in
Fig. 13. As in the experiment we find maxima in the relaxation rate at measurement
times which correspond to the waiting time

the appropriate dynamics on the coarse grained state space is able to repro-
duce the effects observed in spin glass experiments and also in the dynamics
of model state spaces.

The second set of experiments we simulated were the ZFC experiment with
temperature step [13], in which the temperature during the waiting time tw
is ∆T lower than during the measurement time t. The experimental results
show that in the curves with a lower temperature during the waiting time
the maximum of the relaxation rate is shifted towards smaller times. In our
simulations we find excellent agreement with the experimental results: the
maxima of the relaxation rate are shifted towards earlier times for increasing
size of the temperature step (Fig. 15). This behaviour is easily understood.
The systems relax slower during the waiting time due to the lower temperature
which leads to decreased transition probabilities over the energy barriers. Thus
the effect of the waiting time is reduced.
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Fig. 15. Relaxation rate S(t) = dM(t)/dlog(t) of the procedure with temperature
step, where the temperature during the waiting time is ∆T lower than during the
measurement time. The measurement temperature is T = 0.2, the external magnetic
field is H = 0.1 and the waiting time for all curves is tw = 1000. The ensemble
average is performed over the same 500 spin glass realizations used in the previous
figure

Using the fact that the measurement time at which the relaxation rate
is maximum equals the waiting time for the simple ZFC-experiment we can
introduce the apparent waiting time of a curve by the position of the maximum
of their relaxation rate on the time axis. In Fig. 16 we plot the logarithm of
the apparent waiting time as a function of the temperature step ∆T . These
results are in a good agreement with the experiments [13] for different waiting
times and also with simulations on heuristical models [26].
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Fig. 16. The logarithm of the apparent waiting time as a function of the temperature
step ∆T (symbols) for different waiting times tw. The apparent waiting time is
defined by the maximum of the relaxation rate, which is shifted to lower times in
experiments with temperature step. The lines are linear fits. In the case of tw = 10000
the fit is restricted to ∆T ≤ 0.04

We find increasing deviations from the linear behavior for large tempera-
ture steps for the longest waiting time. They are due to the coarse grained dy-
namics used, which does depend on the temperature for which it is determined.
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We here used the measurement temperature T = 0.2 in the coarse graining
procedure, which we also used for the dynamics during the waiting time due
to computational restrictions. This approximation is only valid for small ∆T
and leads to the observed deviations for large ∆T .

7 Tree models

The above reported results on enumerated state spaces suggest that hierar-
chical structures like the one shown in Fig. 11 could be good models for aging
dynamics. Historically it was already shown long before detailed studies of
spin glass state spaces were performed that tree models show typical features
of spin glasses [26, 49–51]. One basic reason for their success is that they ef-
ficiently model a hierarchy of time scales by a sequence of energy barriers
at increasing heights [24, 25], which allows to reproduce the aging effects ob-
served over many magnitudes of time, i.e. these tree models possess the many
relaxation time scales seen in aging.

Fig. 17. Tree models for the state space structure of spin glasses

Early work dealt with the simple symmetric tree model shown on the left
in Fig. 17. Experimental results as shown in Fig. 18 can be reproduced suc-
cessfully [25, 26] using such symmetric tree models. However, those simple
model state-spaces cannot reproduce the age-reinitialization and freezing ef-
fects observed in the temperature-cycling experiments of Vincent et al [12].
For this reason a so-called LS-tree as displayed in Fig. 17 (right) was intro-
duced [27,28,50].

All nodes but those at the lowest level have two ‘daughters’ connected to
their mother by a ‘Long’ and a ‘Short’ edge (which explains the name LS-tree),
such that the energy differences become ∆E = L and S < L respectively. The
dynamics is given by a nearest neighbor random walk on this structure. The
nondiagonal elements of the transition matrix Γµν are zero except for states
connected by an edge, in which case they can all be expressed in terms of up
and down rates along the edge:

Γup = fjκje
−∆Ej/T Γdown = fj . (9)

The index j distinguishes between L- and S-edges, and κj is the ratio between
the degeneracy of a node and that of the corresponding daughter node. The
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Fig. 18. A comparison between the experimental data for ZFC-experiments and
the tree model data. Note that the latter reproduces very well the maxima in the
relaxation rate at times which correspond to the waiting times

diagonal elements of the transition matrix are given by the condition that
each column sum vanish to ensure conservation of probability.

The most important feature of this model are the kinetic factors fj control-
ling the relaxation speed along each edge. As detailed balance only prescribes
the ratios of the hopping rates between any two neighbors the fj can be freely
chosen without affecting the equilibrium properties of the model. The expo-
nents of the slow algebraic relaxation [50] are not affected by any arbitrary
choice of these parameters, as numerically demonstrated by Uhlig et al. [27].
Nevertheless, non-uniform kinetic factors have a decisive effect on the dynam-
ics following temperature steps, which destroy local equilibrium on short time
scales [52].

To qualitatively understand how the competition comes about, consider
the extreme case where the system, initially at high temperature, is quenched
to zero temperature. Since upward moves are forbidden, the probability flows
downwards through the system, splitting at each node in the ratio fL : fS,
independently of energy differences. Thus, if fS is larger than fL, the prob-
ability is preferably funnelled through the short edges, and ends up mainly
in high lying metastable states. If the system is heated up even so slightly
after the quench, thermal relaxation sets in and redistributes the probability.
Eventually the distribution of probability becomes independent of the values
of fL and fS, and the low energy states are favored.

The above description is now easily extended to a many level tree. An
initial quench creates a strongly non-equilibrium situation mainly determined
by the relaxation speeds, whereupon the slow relaxation takes over. At any
given time subtrees of a certain size will have achieved internal equilibration,
while larger ones will have not.

A temperature cycle – that is temperature increase followed by a decrease
of the same size or vice versa – always destroys this internal equilibration
as it induces a fast redistribution of probability. In positive temperature cy-
cles probability is pumped up to energetically higher nodes which leads to a
partial reset when the temperature is lowered. By way of contrast negative
temperature cycles push probability down the fast edges, a process which is
readily reversed when the temperature is raised again.
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In the following we compare our model predictions to the thermorema-
nent magnetization experiments of Vincent et al. [41], which we discussed in
Sect. 2.3. The important feature was that increasing ∆T shifts the magneti-
zation decay data from the curve corresponding to the 1000 min curve to the
30 min curve. The corresponding effect in our model is shown in the left part
of the Fig. 19. The parallels between model and experiment are obvious. In
both cases the reheating appears to reinitialize the aging process.

Figure 5 (right) shows the results for a negative temperature cycle. The
important feature here is that a temporary decreasing of the temperature
leads to a ‘freezing’ of the relaxation. This is seen in the model data as well
as, see Fig. 19 (right).
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Fig. 19. Model results corresponding to the experimental results above

8 Summary and outlook

Our aim was to model spin glass aging experiments starting from a microscopic
spin glass Hamiltonian. We enumerated the energetically low lying parts of
the state space of an Edwards-Anderson spin glass. We obtained the states
as well as their connectivity which allowed us to analyse features such as
density of states. A coarse graining procedure reduced the vast amount of
states such that a reduced description became possible without loosing the
main features of the relaxation dynamics. The NB-clustering scheme produced
coarse grained nodes (clusters) which have no internal barriers thus being
effectively very close to thermal equilibrium at all times. Based on a direct
simulation of the aging experimental set-up we could show that our approach
captures the essential features of the experiments. Finally we showed that
even coarser models such as the LS-tree already model the quite complicated
re-initialization experiments successfully.
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This research program was only possible because we could make use of the
compute power available to us. This rested partly on the the hardware in form
of parallel machines as well as compute clusters but to an even larger extent
on the efficient algorithms and their implementation we developed over the
years.
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1 Introduction

Porous materials such as aerogel, porous rocks or cements exhibit a fractal
structure for a range of length scales [1]. Diffusion processes in such disordered
media are widely studied in the physical literature [2, 3]. They exhibit an
anomalous behavior in terms of the asymptotic time scaling of the mean square
displacement of the diffusive particles,

〈r2(t)〉 ∼ tγ , (1)

where r(t) is the distance of the particle from its origin after time t. In porous
media the diffusion exponent γ is less than one, describing a slowed down
diffusion compared to the linear time behavior known for normal diffusion.
The random walk dimension is defined via equation (1) as

dw = 2/γ, (2)

which on fractals has a value greater than 2.
This kind of diffusion can be modelled by random walks on fractal latices,

as for instance the Sierpinski carpet family. Here three efficient methods are
represented for calculating the random walk dimension on Sierpinski carpets:
First, for finitely ramified regular fractals a resistance scaling algorithm can
be used yielding a resistance scaling exponent. This exponent is related to
the random walk dimension via the Einstein relation, using analogies between
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(a) (b) (c)

Fig. 1. Example of a Sierpinski carpet generator (a) and the result of the second
(b) and third (c) construction step of the resulting carpet

random walks on graphs and resistor networks. Secondly, random walks are
simulated. Thirdly, the master equation describing the time evolution of the
probability distribution is iterated. The last two methods can also be applied
on random fractals, which are a more realistic model for real materials.

At the end we shortly discuss differential equation approaches to anom-
alous diffusion. When going from the time-discrete random walks to time-
continuous diffusion processes, different kinds of differential equations describ-
ing such processes have been investigated. Fractional diffusion equations are
a bridging regime between irreversible normal diffusion and reversible wave
propagation. For this regime a counter-intuitive behavior of the entropy pro-
duction is found, and ways for solving this paradox are shown.

2 Sierpinski carpets

Sierpinski carpets are determined by a so-called generator, i.e. a square, which
is divided into n × n subsquares, and m of the subsquares are black and
the remaining n2 − m are white. The construction procedure for a regular
Sierpinski carpet described by this generator is as follows: Starting with a
square in the plane, divide it into n× n smaller congruent squares and erase
all the squares corresponding to the white squares in the generator. Every one
of the remaining smaller squares is again divided into n×n smaller subsquares,
and again the ones marked white in the generator are erased (see Fig. 1 for
an example). This procedure is continued ad infinitum resulting in a fractal
called Sierpinski carpet with a fractal dimension df = ln(m)/ ln(n) [4]. The
result of finitely many construction steps is called a pre-carpet or pre-fractal.

Sierpinski carpets can be finitely ramified or infinitely ramified. For finitely
ramified carpets, every part can be separated from the rest by cutting a finite
number of connections. This property can be checked in the generator: The
carpet is finitely ramified, if the first and last row of the generator coincide
in exactly one black subsquare, and the same holds true for the first and last
column. Sierpinski carpets, which are not finitely ramified, are called infinitely
ramified.
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The diffusion process on Sierpinski carpets can be modelled by random
walks on pre-carpets. A random walker is at every time step on one of the black
subsquares. In the next time step it can either move to one of the neighboring
black squares, where subsquares are called neighbors if they coincide in one
edge, or it stays on the spot. The transition probabilities depend on whether
the ‘blind ant’ or ‘myopic ant’ algorithm is used [2]. The blind ant can choose
each direction with the same probability. If the chosen direction is ‘forbidden’,
i.e. there is no black square in this direction, it stays on its position. In contrast
the myopic ant chooses the direction with equal probability from the permitted
ones for each time step.

Equivalently to the description by squares, we can assign a graph to the
pre-carpet by placing the vertices at the midpoints of the black squares and
connecting vertices corresponding to neighboring squares by an edge, and
perform random walks on this graph.

For random walks on such graph structures, a variety of methods for de-
termining the random walk dimension dw will be presented.

3 Resistance scaling

Random walks on graph structures and the current flow through an adequate
resistor network are strongly connected [5]. Assigning a unit resistance to
every edge of the graph representation of a Sierpinski pre-carpet we get the
corresponding resistor network. For finitely ramified Sierpinski carpets the
Einstein relation [3, 6–8]

dw = df + ζ (3)

holds, where ζ is the scaling exponent of the resistance R with the linear
length L of the network: R ∼ Lζ .

Since the fractal dimension df of the Sierpinski carpet is known (see
Sect. 1) it remains to determine the resistance scaling exponent ζ in order
to get the random walk dimension dw via equation (3). To achieve this, we
developed an algorithm, which

1. converts the resistor network corresponding to the Sierpinski carpet gen-
erator into a triangular or rhomboid network,

2. replaces the nodes of the generator network with these triangles or rhombi,
3. converts the resulting network again into a triangle or rhombus,
4. repeats steps 2 and 3, until convergence is reached, i.e. successive networks

differ by a constant scaling factor.

Whether the resistor network will be converted into a triangular or rhomboid
network depends on how many contact points a resistor network has. That
are squares in the carpet, where one generator network may be connected to a
neighboring one. Every resistor network with three or four contact points can
be converted into a triangular or rhomboid network by the use of Kirchhoff’s
laws.
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Further details of this algorithm and its implementation using computer
algebra methods can be found in [9, 10]. This algorithm yields the resistance
scaling exponent and hence the random walk dimension for finitely ramified
Sierpinski carpets with arbitrary accuracy. Therefore it is a powerful tool for
investigating random walk properties on finitely ramified fractals.

Similar methods can give other scaling exponents for fractals as the chem-
ical dimension, which describes the scaling of the shortest path between two
points with the linear distance [11]. The pore structure of finitely and even infi-
nitely ramified Sierpinski carpets can be described by a hole-counting polyno-
mial, from which scaling exponents for the distribution of holes with different
areas and perimeters can be determined [12]. Furthermore, we can compute
the fractal dimension of the external boundary and the boundaries of inter-
nal cavities [13]. Such exponents are important parameters to characterize
the fractal properties and may have a decisive influence on the anomalous
diffusion behavior.

4 Effective simulation of random walks

The direct way of studying the time behavior of the mean square displacement
of random walkers on pre-fractals is the simulation of the random walks it-
self. This method is not restricted to finitely ramified fractals. The asymptotic
scaling behavior is reached when the log-log-plot of the mean square displace-
ment over time reaches a straight line. According to equation (1) the slope
of the curve is equivalent to γ and can be approximated by linear regression.
Normally long times and hence large pre-fractals have to be considered in
order to reach this linear behavior.

For finitely ramified Sierpinski carpets we developed an efficient storing
scheme, which only takes the generator as input and represents the actual
walker position by a hierarchical coordinate notation (see [14] for a detailed
description of this scheme). In this way we are able to perform long random
walks on effectively unbounded pre-fractals. In order to get good statistics,
the number of walkers has to be sufficiently large, too. Since the memory
requirements for storing the Sierpinski pre-carpet are negligible, the simplest
way for parallelizing the random walk algorithm is to start random walkers
on each available CPU separately and collect the results after a given number
of time steps.

Real materials often exhibit a fractal structure for a certain range of length
scales only, they appear uniform at larger scales. In order to get more realistic
models for porous materials, we investigated repeated Sierpinski carpets, i.e.
we applied the construction procedure for Sierpinski carpets over a few itera-
tions (the number of applied iterations is referred to as stage of the carpet) and
repeated these pre-carpets periodically in order to construct a homogeneous
structure at large length scales [15]. In the log-log-plot in Fig. 2 a cross-over
can be observed from the anomalous diffusion regime at small length scales
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Fig. 2. Mean square displacement for the myopic ant random walk on repeated
Sierpinski carpet resulting from the show generator for stages 3 (diamonds), 4 (stars)
and 5 (squares), together with linear fits (solid and dotted lines) and the theoretical
crossover values (dashed lines)
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df and dw we can observe a decrease of 〈dw〉 with increasing disorder

to the normal diffusion regime at large length scales. Furthermore, we investi-
gated the diffusion constant D, which is an additional quantity to characterize
the speed of diffusive particles. One important result of this research was, that
carpets with same dw and same df might have quite different values of D, de-
pending on the repeated carpet stage of the considered iterator and also on
the diffusion constant of the starting regime [15].

A step further in the direction of modelling real disordered materials is
shown in [16]. There we constructed random fractals by combining several
(not necessarily finitely ramified) Sierpinski carpet generators. Our simula-
tions show that random walkers on such mixed structures are also charac-
terized by a specific random walk dimension 〈dw〉. We noticed that even if
the different generators have the same dw and df there are variations in their
observed effective 〈dw〉. We found that increasing disorder leads to a slower
diffusion in several cases. But on the other hand for some carpet configura-
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(a) (b) (c) (d)

Fig. 4. Four examples of Sierpinski carpet generators

tions a decrease of the random walk dimension (corresponding to an enhanced
diffusion speed) can be observed with increasing disorder (see Fig. 3), contrary
to the expected behavior for regular structures like crystals.

5 Master equation approach

The random walk investigated in the previous section can be characterized by
a master equation

P (t+ 1) = Γ · P (t), (4)

where P (t) denotes the probability distribution that a walker is at a certain
position at time t = 0, 1, 2, . . . and Γ is the transition matrix. Compared to
performing random walks, iterating (4) has the advantage that a statistical
average over a large number of walkers is not necessary any more. But of
course now memory is needed for every position in the pre-fractal covered by
a non-vanishing probability. In the case of finitely ramified Sierpinski carpets
we used a dynamic storing scheme in order to keep the memory requirements
as small as possible [17].

For more general fractals we investigated possibilities for a parallelization
on a compute cluster to circumvent memory restrictions. The communica-
tion requirements increase with ongoing time, hence the connectivity between
parts of the pre-fractal has to be carefully associated with the communication
between the compute nodes in order to ensure efficiency.

The master equation approach yields the whole probability distribution for
every time step, which contains much more information than just the scaling
behavior of the mean square displacement over time. Thus the results of the
master equation algorithm may be a starting point for the investigation of the
scaling properties of the probability distribution itself.

We applied all three methods (resistance scaling, random walk, master
equation) to get estimates for the random walk dimension of the four 4 × 4
carpets investigated in [18] (see Fig. 4). For random walks and the master
equation approach we calculated 10,000 time steps, in addition we averaged
over 10,000,000 walkers. The resulting data for the carpet pattern given in
Fig. 4(a) are shown in Fig. 5.
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Fig. 5. Log-log-plots of 〈r2〉 over t for the random walk algorithm (i) and the master
equation iteration (ii) for carpet pattern shown in Fig. 4(a)

Table 1 shows the resulting dw from the regression together with confidence
intervals of 95%, the theoretical values resulting from the resistance scaling
method and in the last column the values of [18].

Table 1. Estimates for dw for the four carpet patterns of Fig. 4 resulting from our
three methods and from [18]

Random walk Master equation Resistance Dasgupta et. al.

a 2.68 ± 0.02 2.71 ± 0.05 2.66 2.538 ± 0.002

b 2.52 ± 0.02 2.52 ± 0.06 2.58 2.528 ± 0.002

c 2.47 ± 0.02 2.49 ± 0.05 2.49 2.524 ± 0.002

d 2.47 ± 0.02 2.50 ± 0.09 2.51 2.514 ± 0.002

The data from the resistance scaling method can be taken as reference val-
ues as they have been computed to very high accuracy. As can be seen from
Table 1, the values for dw can be really different although all four example
carpets have the same fractal dimension. We remark that the small oscilla-
tions showing up in the master equation data (Fig. 5) can be reduced by an
additional average over starting points, which is included in the random walk
data.

6 Corresponding differential equations

Going from the time-discrete processes considered in the previous sections to
a time-continuous description gives us the transition from random walks to
diffusion processes. Many suggestions [19–21] have been advanced to generalize
the well-known Euclidean diffusion equation

∂

∂t
P (r, t) =

∂2

∂r2
P (r, t) (5)
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Fig. 6. The cloud G(η) for the diffusion on a Sierpinski gasket. It is generated by
taking the data P (r, t) for many times t and transforming them using equation (6)

to anomalous diffusion. All these approaches are only partially successful,
either they give a good approximation for small or for large r. The difficulty
rests with the fact that fractals, by definition, are ‘spiky’ or ‘rough’. This leads
to the problem that they do not lend themselves to description by differential
or integral equations.

A more promising starting point for describing diffusion processes on frac-
tals is the use of the natural similarity group [22,23]

P (r, t) = t−dw/dfG(η), (6)

where η = rt−1/dw is the similarity variable and the function G(η) is the
natural invariant representation of the probability density function P (r, t). By
using (6) we investigated structures in G(η) on the Sierpinski gasket, which
we called ‘clouds’, ‘fibres’ and ‘echoes’ [24]. The clouds accrue as a result of
plotting the G(η) density function (GDF) against η seen in Fig. 6 and they
exhibit the multivalued and even self-similar character of these functions.

This structure appears to be the assembly of a number of curves, which we
named fibres. All of them can be explained in terms of sets of ‘echo points’,
where every fibre belongs to a certain ‘echo class’ (see Fig. 7). Using these echo
classes we are able, at least in principle, to produce smoothGDF [24]. In case of
the Koch curve we derived an ordinary differential equation describing random
walks on it as a representative of one of the simplest fractal structures [25].

Furthermore, the time fractional diffusion equation

∂γ

∂tγ
P (r, t) =

∂2

∂r2
P (r, t) (7)
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Fig. 7. A few members of three different classes of echo points xk, zk, ẑk are repre-
sented on a gasket schematic. The xk are situated along a symmetry line, while the
points zk and ẑk are reflections of each other about that line

can be considered, which for γ = 1 coincides with the normal diffusion equa-
tion (5) describing an irreversible process and for γ = 2 corresponds to the re-
versible wave propagation. Hence the regime 1 < γ < 2 forms a bridge between
irreversible and reversible processes, which should be visible in the entropy
production. We found a counter-intuitive increase of the entropy production
as γ rises towards 2 [22]. This holds true not only for the Shannon entropy,
but also for the Tsallis and Rényi entropies [26]. Other bridging schemes be-
tween the normal diffusion equation and the wave equation can be described
by the space fractional diffusion equation or the telegraphers equation [27]
and show, at least partially, the same counter-intuitive behavior. Looking at
the microscopic random processes behind all these equations, the entropy pro-
duction paradox can be partially explained by the fact, that the walkers in
the diffusion equation move with an infinite speed (Brownian motion), while
the walkers in the wave equation move with a finite speed. Hence the entropy
time derivative is not a suited measure for comparing different γ regimes, but
the basis for comparison should be the first moment [22].

7 Conclusions

Fractals are used as a simple model for porous media in order to describe dif-
fusive processes. In contrast to uniform media, the mean square displacement
of diffusive particles, modelled by random walkers, does not scale linearly with
time t, but with t2/dw , where the random walk dimension dw is usually greater
than 2. For a better understanding of anomalous diffusion encountered in a
number of experimental contexts, different methods for investigating random
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walks on fractals were studied. We determined the scaling exponent of the
mean square displacement of the walkers with time as an important quantity
to characterize diffusion properties. Furthermore we developed techniques to
calculate further properties of diffusion on fractals, i.e. the resistance scaling
exponent, chemical dimension or the pore structure.

Some of the methods additionally yield the whole probability distribution
for every time step, containing much more information than just the scaling
behavior of the mean square displacement. Going to a time-continuous de-
scription, the time evolution of the probability distribution can be described
by differential equations. In case of fractional differential equations, they are
a bridging scheme between the irreversible normal diffusion equation and the
reversible wave equation. However, the entropy production is no adapted quan-
tity characterizing this regime.
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1 Introduction

One of the most successful theories in modern science is statistical mechanics,
which allows us to understand the macroscopic (thermodynamic) properties
of matter from a statistical analysis of the microscopic (mechanical) behav-
ior of the constituent particles. In spite of this, using certain probabilistic
assumptions such as Boltzmann’s Stosszahlansatz causes the lack of a firm
foundation of this theory, especially for non-equilibrium statistical mechanics.
Fortunately, the concept of chaotic dynamics developed in the 20th century [1]
is a good candidate for accounting for these difficulties. Instead of the proba-
bilistic assumptions, the dynamical instability of trajectories can make avail-
able the necessary fast loss of time correlations, ergodicity, mixing and other
dynamical randomness [2]. It is generally expected that dynamical instability
is at the basis of macroscopic transport phenomena and that one can find cer-
tain connections between them. Some beautiful theories in this direction were
already developed in the past decade. Examples are the escape-rate formalism
by Gaspard and Nicolis [3, 4] and the Gaussian thermostat method by Nosé,
Hoover, Evans, Morriss and others [5,6], where the Lyapunov exponents were
related to certain transport coefficients.

Very recently, molecular dynamics simulations on hard-core systems re-
vealed the existence of regular collective perturbations corresponding to the
smallest positive Lyapunov exponents (LEs), named hydrodynamic Lyapunov
modes [7]. This provides a new possibility for the connection between Lya-
punov vectors, a quantity characterizing the dynamical instability of trajec-
tories, and macroscopic transport properties. A lot of work [8–14] has been
done to identify this phenomenon and to find out its origin. The appearance
of these modes is commonly thought to be due to the conservation of certain
quantities in the systems studied [8–12]. A natural consequence of this expec-
tation is that the appearance of such modes might not be an exclusive feature
of hard-core systems and might be generic to a large class of Hamiltonian
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systems. However, until very recently, these modes have only been identified
in the computer simulations of hard-core systems [8, 14].

Here we review our current results on Lyapunov spectra and Lyapunov
vectors (LVs) of various extended systems with continuous symmetries, espe-
cially on the identification and characterization of hydrodynamic Lyapunov
modes. The major part of our discussion is devoted to the study of Lennard-
Jones fluids in one- and two-dimensional spaces, wherein the HLMs are, for
the first time, identified in systems with soft-potential interactions [15, 16].
By using the newly introduced LV correlation functions, we demonstrate that
the LVs with λ ≈ 0 are highly dominated by a few components with low
wave numbers, which implies the existence of hydrodynamic Lyapunov modes
(HLMs) in soft-potential systems. Despite the wave-like character of the LVs,
no step-like structure exists in the Lyapunov spectrum of the systems studied
here, in contrast to the hard-core case. Further numerical simulations show
that the finite-time Lyapunov exponents fluctuate strongly. Studies on dy-
namical LV structure factors conclude that HLMs in Lennard-Jones fluids
are propagating. We also briefly outline our current results on the universal
features of HLMs in a class of spatially extended systems with continuous
symmetries. HLMs in Hamiltonian and dissipative systems are found to differ
both in respect of spatial structure and in the dynamical evolution. Details of
these investigations can be found in our publications [17–19].

2 Numerical method for determining Lyapunov
exponents and vectors

2.1 Standard method

The equations of motion for a many-body system may always be written as
a set of first order differential equations Γ̇ (t) = F (Γ (t)), where Γ is a vector
in the D-dimensional phase space. The tangent space dynamics describing
infinitesimal perturbations around a reference trajectory Γ (t) is given by

δΓ̇ =M(Γ (t)) · δΓ (1)

with the Jacobian M = dF
dΓ . The time averaged expansion or contraction

rates of δΓ (t) are given by the Lyapunov exponents [1]. For a D−dimensional
dynamical system there exist in total D Lyapunov exponents for D different
directions in tangent space. The orientation vectors of these directions are the
Lyapunov vectors e(α)(t), α = 1,· · · ,D.

For the calculation of the Lyapunov exponents and vectors the offset
vectors have to be reorthogonalized periodically, either by means of Gram-
Schmidt orthogonalization or QR decomposition [20, 21]. To obtain scientif-
ically useful results, one needs large particle numbers and long integration
times for the calculation of certain long time averages. This enforces the use
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of parallel implementations of the corresponding algorithms. It turns out that
the repeated reorthogonalization is the most time consuming part of the al-
gorithm.

2.2 Parallel realization

As parallel reorthogonalization procedures we have realized and tested several
parallel versions of Gram-Schmidt orthogonalization and of QR factorization
based on blockwise Householder reflection. The parallel version of classical
Gram-Schmidt (CGS) orthogonalization is enriched by a reorthogonalization
test which avoids a loss of orthogonality by dynamically using iterated CGS.
All parallel procedures are based on a 2-dimensional logical processor grid and
a corresponding block-cyclic data distribution of the matrix of offset vectors.
Row-cyclic and column-cyclic distributions are included due to parameterized
block sizes, which can be chosen appropriately. Special care was also taken to
offer a modular structure and the possibility for including efficient sequential
basic operations, such as that from BLAS [22], in order to efficiently exploit
the processor or node architecture. For comparison we consider the standard
library routine for QR factorization from ScaLAPACK [23].

Performance tests of parallel algorithms have been done on a Beowulf clus-
ter, a cluster of dual Xeon nodes, and an IBM Regatta p690+. Results can be
found in [24]. It is shown that by exploiting the characteristics of processors
or nodes and of the interconnections network of the parallel hardware, an effi-
cient combination of basic routines and parallel orthogonalization algorithms
can be chosen, so that the computation of Lyapunov spectra and Lyapunov
vectors can be performed in the most efficient way.

3 Correlation functions for Lyapunov vectors

In previous studies, certain smoothing procedures in time or space were ap-
plied to the Lyapunov vectors, in order to make the wave structure more
obvious. For a 1d hard-core system with only a few particles, these proce-
dures have been shown to be quite useful in identifying the existence of hy-
drodynamic Lyapunov modes [13]. For soft-potential systems, the smoothing
procedures are no longer helpful in detecting the hidden regular modes and
can even damage them [14]. Here we will introduce a new technique based
on a spectral analysis of LVs, which enables us to identify unambiguously the
otherwise hardly identified HLMs and to characterize them quantitatively.

In the spirit of molecular hydrodynamics [25], we introduced in [15, 16] a
dynamical variable called LV fluctuation density,

u(α)(r, t) =

N∑

j=1

δx
(α)
j (t) · δ(r − rj(t)), (2)
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where δ(z) is Dirac’s delta function, rj(t) is the position coordinate of the j-th

particle, and {δx(α)
j (t)} is the coordinate part of the α-th Lyapunov vector at

time t. The spatial structure of LVs is characterized by the static LV structure
factor defined as

S(αα)
u (k) =

∫
〈u(α)(r, 0)u(α)(0, 0)〉e−ik·rdr, (3)

which is simply the spatial power spectrum of the LV fluctuation density.
Information on the dynamics of LVs can be extracted via the dynamic LV
structure factor, which is defined as

S(αα)
u (k, ω) =

∫ ∫
〈u(α)(r, t)u(α)(0, 0)〉e−ik·reiωtdrdt. (4)

With the help of these quantities the controversy [7,8] about the existence of
hydrodynamic Lyapunov modes in soft-potential systems has been successfully
resolved [15].

4 Numerical results for 1d Lennard-Jones fluids

4.1 Models

The Lennard-Jones system studied has the Hamiltonian

H =

N∑

j=1

mv2j /2 +
∑

j<l

V (xl − xj). (5)

where the interaction potential among particles V (r) = 4ǫ
[
(σ

r )12 − (σ
r )6

]
−Vc

if r ≤ rc and V (r) = 0 otherwise with Vc = 4ǫ
[
( σ

rc
)12 − ( σ

rc
)6
]
. Here the

potential is truncated in order to lower the computational burden.
The system is integrated using the velocity form of the Verlet algorithm

with periodic boundary conditions [26]. In our simulations, we set m = 1,
σ = 1, ǫ = 1 and rc = 2.5. All results are given in reduced units, i.e., length
in units of σ, energy in units of ǫ and time in units of (mσ2/48ǫ)1/2. The time
step used in the molecular dynamics simulation is h = 0.008. The standard
method invented by Benettin et al. and Shimada and Nagashima [20, 21] is
used to calculate the Lyapunov characteristics of the systems studied. The
time interval for periodic re-orthonormalization is 30h to 100h. Throughout
this paper, the particle number is typically denoted by N , the length of the
system by L and the temperature by T .
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Fig. 1. Left: Time evolution of temperature T ≡ 〈mv2〉 and total energy.
Right: a) Snapshot of the particle positions xi vs. index of particles i and b) pair
distribution function G(r) obtained from the distances between all particles (upper
panel) and from nearest neighbors only (lower panel) for the stationary state shown
in the left part (see [25] for the definition of G(r)). The sharp peaks in G(r) imply
that the state is a broken-chain state [27]. The parameter setting used here is:
N = 100, L = 1000 and T = 0.2

4.2 The stationary state

The time evolution of state variables like temperature T and total energy for
a case with parameter setting N = 100, L = 1000 and T = 0.2 is shown in
Fig. 1. At the beginning of our molecular dynamics simulation, the particles
are placed randomly in the interval [0, L] . Their velocities are chosen randomly
from a Boltzmann distribution. In order to equilibrate the system, it is coupled
to a stochastic heat bath with the given temperature T . In Fig. 1, the stage
with thermal bath is omitted and only the part of the evolution with constant
total energy is shown. The almost constant value of the temperature means
that the system has already reached a stationary state and one can start the
calculation of the Lyapunov instability of the system.

The pair distribution function G(r) shown in Fig. 1 tells us that the sta-
tionary state for T = 0.2 is a broken-chain state with short range order. This
is generic for 1d Lennard-Jones systems with not too high density [27].

4.3 Smooth Lyapunov spectrum with strong short-time
fluctuations

The Lyapunov spectrum for the case N = 100, L = 1000 and T = 0.2 is
shown in Fig. 2. Only half of the spectrum is shown here, since all LEs of
Hamiltonian systems come in pairs according to the conjugate-pairing rule.
In the enlargement shown in the inset of Fig. 2 for the part near λ(α) ≈ 0, one
can not see any step-wise structure in the Lyapunov spectrum, in contrast to
the case of hard-core systems [8]. This is the typical result obtained for our
soft potential system.

The fluctuations in local instabilities of trajectories are demonstrated
by means of the distribution of finite-time LEs. By definition, finite-time
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Fig. 2. Left: Lyapunov spectrum of the state shown in Fig. 1. The enlargement
of the part in the regime λ(α) ≈ 0 shows that no step-wise structure exists here
in contrast to the case of hard-core systems. This is the typical result for our soft
potential systems. Right: Distribution of the finite-time Lyapunov exponent λ

(α)
τ

where τ is equal to the period of re-orthonormalization. The strong fluctuations of
λ

(α)
τ are one of the possible reasons for the disappearance of the step-wise structures

in the Lyapunov spectrum

Lyapunov exponents λτ measure the expansion rate of trajectory segments
of the duration τ . In Fig. 2, such distributions are presented for some LEs
in the regime λ ≈ 0. Fluctuations of the finite time Lyapunov exponents
are quite large compared to the difference between their mean values, i.e.,

σ(λ
(α)
τ ) ≡

√
〈λ(α)

τ

2
〉 − 〈λ(α)

τ 〉
2
≫ |λ(α)− λ(α+1)|. Here, 〈· · · 〉 means time aver-

age. The strong fluctuations in local instabilities constitute one of the possi-
ble reasons for the disappearance of the step-wise structures in the Lyapunov
spectra. They could also cause the mixing of nearby Lyapunov vectors. The
mixing may be at the basis of the intermittency observed in the time evolution
of the spatial Fourier transformation of LVs (see Sect. 4.4).

4.4 Spatial structure of LVs with λ(α) ≈ 0

LV fluctuation density

Another quantity used to characterize the local instability of trajectories are
Lyapunov vectors δΓ (α), which represent expanding or contracting directions
in tangent space. In the study of hard-core systems, Posch et al. found that
the coordinate part of the Lyapunov vectors corresponding to λ ≈ 0 are
of regular wave-like character [7, 8]. They are referred to as hydrodynamic
Lyapunov modes. Here, we are searching for the counterpart of these modes
in our soft-potential system.

Remember that each of the LVs consists of two parts: the displacement δxi

in coordinate space and δvi in momentum space. In past studies of hydrody-
namic Lyapunov modes in hard-core systems, only the coordinate part δxi was
considered. This is due to an interesting feature of hydrodynamic Lyapunov
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Fig. 3. Left: u(α)(x, t) for LVs with index α = 1, 10, 90, and 95 respectively. Note
that the LVs with α = 1 and 10 are more localized while those with α = 90 and 95
are more distributed. Right: Time evolution of u(95)(x, t) for the same parameters
as in Fig. 3. No clear wave structure can be detected

modes found in [10], which states that the angles between the coordinate part
and the momentum part are always small, i.e, the two vectors are nearly par-
allel. Therefore, it is sufficient to use only δxi for the study of δΓ . For our
soft potential systems, we find that the angles between the coordinate part
and the momentum part are no longer as small as in the hard-core systems.
However, we will still follow the tradition and study the coordinate part of LV
first, before coming to the momentum part.

For the one-dimensional Lennard-Jones fluids treated here, the LV fluctu-
ation density defined in (2) is reduced to

u(α)(x, t) =

N∑

j=1

δx
(α)
j (t) · δ(x− xj(t)) (6)

where δx
(α)
j (t) constitutes the coordinate component of the Lyapunov vector

with index α, and xj(t) represents the instantaneous position of the j-th
particle.

The profiles of u(α)(x, t) for some typical LVs of the 1d Lennard-Jones
system are presented in Fig. 3. It can be seen that u(α)(x, t) for LVs corre-
sponding to the largest Lyapunov exponents are highly localized, for example
u(1)(x, t) and u(10)(x, t), while those for LV90 and LV95 are more distributed.
The temporal evolution of u(95)(x, t) is also shown in Fig. 3, in order to make
the possibly existing wave-like structure more evident. A wave structure, how-
ever, cannot unambiguously be detected here with the naked eye.

Intermittency in time evolution of instantaneous static LV
structure factors

Based on the spatial Fourier transformation of u(α)(x, t)

ũ
(α)
k (t) =

∫
u(α)(x, t)e−ikxdx =

N∑

j=1

δx
(α)
j · e−ik·xj(t) (7)
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we introduce a quantity called instantaneous static LV structure factor, which
reads

s(α)
uu (k, t) ≡ |ũ(α)

k (t)|2. (8)

It is nothing but the instantaneous spatial power spectrum of u(α)(x, t). The
quantity will be used to characterize the dynamical evolution of Lyapunov

vectors. The long time average (and ensemble average) of s
(α)
uu (k, t) recovers

the static LV structure defined in (3). We expect that in S
(α)
uu (k) ≡ 〈s(α)

uu (k, t)〉
the contribution of stochastic fluctuations will be averaged out while the in-
formation on the collective modes will remain and accumulate. The following
results show that this technique is quite successful in detecting the vague
collective modes.
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Fig. 4. Left: Intermittent behaviors of the peak wave-number k∗ and spectral
entropy Hs(t) for the spatial Fourier spectrum of u(95)(x, t). Right: a) Variation of
the peak wave number k∗ with time. b),c) Two typical snapshots of LV95, off and
on state at t = 44 and 176 respectively. d),e) their spatial Fourier transform. The
spectrum for the off state has a sharp peak at small k∗, while that for the on state
has no dominant peak

The time evolution of the instantaneous static LV structure factor s
(95)
uu (k, t)

for Lyapunov vector No. 95 is shown in Fig. 4 as an example. Two quanti-
ties are recorded as time goes on. One is the peak wave-number k∗, which

marks the position of the highest peak in the spectrum s
(α)
uu (k, t) (see Fig. 4).

The other is the spectral entropy Hs(t) [28], which measures the distribution

property of the spectrum s
(α)
uu (k, t). It is defined as:

Hs(t) = −
∑

ki

s(α)
uu (ki, t) ln s(α)

uu (ki, t). (9)

A smaller value of Hs(t) means that the spectrum s
(α)
uu (k, t) is highly concen-

trated on a few values of k, i.e., these components dominate the behavior of
the LV. Both of these quantities behave intermittently, as shown in Fig. 4.
Large intervals of nearly constant low values (off state) are interrupted by
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short period of bursts (on state) where they have large values. Details of typ-
ical on and off states are shown in the right part of Fig. 4. One can see that
the off state is dominated by low wave-number components (see the sharp
peak at low wave-number k∗), while the on state is more noisy and there are
no significant dominant components. This intermittency in the time evolution
of the instantaneous static LV structure factors is a typical feature of soft
potential systems. It is conjectured that this is a consequence of the mixing
of nearby LVs caused by the wild fluctuations of local instabilities. Due to the
mutual interaction among modes, the hydrodynamic Lyapunov modes in the
soft potential systems are only of finite life-time. In the dynamic Lyapunov
structure function estimated, the peak representing the propagating (or oscil-
lating) Lyapunov modes is of finite width. This is support for our conjecture
that the hydrodynamic Lyapunov modes are of finite life-time.

Dispersion relation of hydrodynamic Lyapunov modes

Now, we consider the static LV structure factor S
(α)
uu (k), which is the long-time

average of the instantaneous quantity s
(α)
uu (k). Two cases with L = 1000 and

2000 are shown in Fig. 5. It is not hard to recognize the sharp peak at λ ≈ 0
in the contour plot of the spectrum. With increasing Lyapunov exponents,
the peak shifts to the larger wave number side. A dashed line is plotted to
make clear how the wave number of the peak kmax changes with λ(α). To
further demonstrate this point, the value of the Lyapunov exponent λ(α) is
plotted versus kmax of corresponding LVs in Fig. 6. We call this the dispersion
relation of the hydrodynamical Lyapunov modes. The numerical fitting of the
data shows that for λ ≈ 0, λ(α) ∼ kγ

max with the exponent γ ≈ 1.2. We
presume that a linear dispersion relation λ(α) ∼ kmax may be obtained as the
thermodynamic limit is approached and the deviation from the linear function
of the data shown in Fig. 6 could be due to finite-size effects.

In order to show that the peak in S
(α)
uu (k) is not a result of the highly

regular packing of particles in the broken-chain state, the static structure
function [25]

S(k) ≡
∫
G(r)e−ikrdr (10)

for the case L = 2000 is plotted in the same figure as S
(α)
uu (k), where G(r)

is the pair correlation function shown in Fig. 1. Obviously, S(k) is nearly
constant in the regime k ≈ 0, the place where a sharp peak was observed in

S
(α)
uu (k). The regular packing of particles causes the formation of a peak at
k/2π ≈ 0.9 in S(k). This corresponds to a tiny peak at the same k-value in

S
(α)
uu (k) for those LVs with λ ≈ 0. These facts show clearly that the collective

modes observed in the LVs are not caused by the regular packing of particles.

All of our results shown above provide strong evidence to the fact that
the Lyapunov vectors corresponding to the smallest positive LEs in our 1d
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Fig. 5. Contour plot of the spectra S
(α)
uu (k) for L = 1000 and 2000. A ridge structure

can easily be recognized in the regime k ≈ 0 and λ ≈ 0. To guide the eyes, a dashed
line is plotted to show how the peak wave-number kmax changes with λ. The sudden
jump in kmax is marked with an arrow
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Fig. 6. Left: λ(α) vs. kmax for a case with L = 1000 and T = 0.2. The dashed line
has the form λ(α) ∼ k1.2

max. Right: Dispersion relation λ(α) vs. kmax for cases with
various densities and temperatures. Note that in the regime λ ≈ 0, the data from
all simulations collapse to a single curve. Fitting the low wave-number part to a
power-law function λα ∼ kγ

max gives γ ≈ 1.2 ± 0.1. Here, N = 100
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Lennard-Jones system are highly dominated by a few components with small
wave numbers, i.e, they are similar to the Hydrodynamic Lyapunov modes
found in hard-core systems. The wave-like character becomes weaker and
weaker as the value of the LE is increased gradually from zero.

Influence of density and temperature

To study how the change in density influences the behavior of LVs, we increase
the length L of the system from 200 to 4000, while the particle number N
remains fixed at 100. From the time evolution of k∗ shown in Fig. 7, one
can see that, with increasing the density ρ = N/L, the occurrence of the
on-state becomes more frequent, i.e., the domination of low wave-number
components is much weaker. The spatial Fourier spectra for LVs with LEs
in the regime λ(α) ≃ 0, however, are always dominated by certain low wave-
number components irrespective of the density (see Fig. 7).
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Fig. 7. Left: Time evolution of k∗ as shown in Fig. 4, but with different density
(a) ρ = 1/2, (b) 1/4 and (c) 1/8 respectively. Right: kmax vs. α for simulation with
different densities. Here, T = 0.2 and the particle number N = 100

An important point to note is the collapse of data of dispersion relations
from simulations with various densities and temperatures to a single curve
(see Fig. 7). For hydrodynamic Lyapunov modes in our system this means
that the dispersion function λα(k) is universal for the particle densities and
the system temperatures studied. Fitting the data to a power-law function
λα ∼ kγ

max states that the value of the exponent γ is 1.2 ± 0.1 which is not
far from the expected linear dispersion. Since our simulations are limited to
cases with relatively low density, the possibility of a density-dependence of
the dispersion relation can not be ruled out for high densities.

Searching for HLMs in momentum components of LVs

We will now turn to investigations on the spatial Fourier spectrum of the
momentum part of LVs. Unfortunately, all the spectra are more or less ho-
mogeneously distributed over all wave-numbers. For all the cases tested, no
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wave-like structure as in the coordinate part can be identified. One may won-
der why no mode-like collective motion is observed in the momentum part.
There are two possibilities: one is that the momentum part does contain in-
formation similar to the coordinate part but because of the strong noise it is
too weak to be detected. The other is that there is no similarity between the
two parts at all and regular long wave-length modes exist only in the coordi-
nate part. The results of our current investigation on simple model systems
support the former possibility [18].

4.5 Dynamic LV structure factors

More detailed information about the dynamical evolution of Lyapunov vec-

tors can be obtained from the dynamic LV structure factors S
(αα)
u (k, ω),

which encode in addition to the structural also the temporal correlations.
As usual, the equal time correlations can be recovered by a frequency inte-

gration S
(αα)
u (k) =

∫
S

(αα)
u (k, ω)dω. In Fig. 8 we show typical examples for
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S
(αα)
u (k, ω). It consist of a central “quasi-elastic” peak with shoulders result-

ing from dynamical excitations quite similar to the dynamic structure factor
S(k, ω) of fluids [25]. In order to extract the dynamical information we use

a 3-pole approximation for S
(αα)
u (k, ω), which amounts to fitting the latter

by a superposition of three Lorentzians, one central peak at ω = 0 and two
symmetric peaks located at ω = ±ωu(k). The fits are also shown in Fig. 8.

They describe the frequency dependence of S
(αα)
u (k, ω) quite well. Such a de-

pendence arises naturally e.g. from continued fraction expansions based on
Mori-Zwanzig projection techniques [25], which may also be applied to this
problem. These fits allow us to extract the dispersion relations ω(α)(k) for
each of the hydrodynamic Lyapunov modes with index α. The results are
shown in Fig. 9 for several of the Lyapunov modes. Clearly, this tells us that a
Lyapunov mode corresponding to exponent λ is characterized, apart from the
dominating wave number k(λ), by a typical frequency ω(k(λ)). Because dω

dk
is non-vanishing, this implies propagating wave-like excitations. The origin of
the characteristic frequency ω(k(λ)) is not yet fully understood. Probably, it
reflects the rotational motion of the orthogonal frame formed by LVs around
its reference trajectory [29]. The full LV dynamics of the soft-potential system
treated here, however, is more complex than that of the hard-core systems.

For instance, the peaks in S
(αα)
u (k, ω) are of finite width (see Fig. 8). This

fact is consistent with our observation that several quantities characterizing
the dynamical aspect of Lyapunov vectors evolve erratically in time (see Sec.
4.4), which implies that the coherent wave-like motion is switched on and off
intermittently. These facts suggest that the hydrodynamic Lyapunov modes
in soft-potential systems have finite life-times.

5 Lyapunov modes in 2D Lennard-Jones fluids

In isotropic fluids with d > 1 the static LV structure factor S
(αα)
u (k) becomes

a second rank tensor. Cartesian components S
(αα)
µν (k) of S

(αα)
u (k) can be ex-

pressed in terms of longitudinal and transverse correlation functions S
(αα)
L and

S
(αα)
T as S

(αα)
µν (k) = k̂µk̂νS

(αα)
L (k) + (δµν − k̂µk̂ν)S

(αα)
T (k) with k̂µ = (k/k)µ.

As an example, we present in Fig. 10 the contour plot of the two correla-
tion functions SL and ST for LV No. 140 of a two-dimensional Lennard-Jones
system with N = 100, T = 0.8 and Lx × Ly = 20 × 20. The difference be-
tween the two components is quite obvious. However, as can be seen from

Fig. 11, S
(αα)
L (k) and S

(αα)
T (k) for two-dimensional cases behave similar to

the one-dimensional case shown in Fig. 5. The fact implies the existence of
hydrodynamic Lyapunov modes also in two-dimensional cases. In addition,
both the longitudinal and transverse components are characterized by a lin-
ear dispersion relation, which has been found to be typical for Hamiltonian
systems [18,19]. Further numerical simulations show that the transverse modes
are non-propagating, in contrast to the longitudinal components.



328 Hong-liu Yang and Günter Radons

Fig. 11. Contour plots of S
(αα)
L (k) and S

(αα)
T (k) (upper row). As in Fig. 5 the cor-

responding dispersion relation λ(kmax) (lower row) of the hydrodynamic Lyapunov
modes in a 2D system is extracted (N = 100, T = 0.8 and Lx × Ly = 5 × 120)
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6 Universal features of Lyapunov modes in spatially
extended systems with continuous symmetries

Relying on the LV correlation function method, we have up to now successfully
identified the existence of HLMs in the following spatially extended systems:

Coupled map lattices (CMLs) with either Hamiltonian or dissipative local
dynamics

vl
t+1 = (1− γ)vl

t + ǫ[f(ul+1
t − ul

t)− f(ul
t − ul−1

t )] (11)

ul
t+1 = ul

t + vl
t+1 (12)

and
ul

t+1 = ul
t + ǫ[f(ul+1

t − ul
t)− f(ul

t − ul−1
t )] (13)

where f(z) is a nonlinear map, t is the discrete time index, l = {1, 2, · · · , L}
is the index of the lattice sites and L is the system size. We set the damping
coefficient γ = 0 and use periodic boundary conditions {u0

t = uL
t , u

L+1
t = u1

t},
unless it is explicitly stated otherwise.

Dynamic XY model [30] with the Hamiltonian

H =
∑

i

θ̇i + ǫ
∑

ij

[1− cos(θj − θi)]. (14)

Kuramoto-Sivashinsky equation [31]

ht = −hxx − hxxxx − h2
x. (15)

A common feature of these systems is that they all hold certain continuous
symmetries and conserved quantities, which have been shown to be essential
for the occurrence of Lyapunov modes [18]. Our numerical simulations and
analytical calculations indicate that these systems fall into two groups with
respect to the nature of hydrodynamic Lyapunov modes. To be precise, the
dispersion relations are characterized by λ ∼ k and λ ∼ k2 in Hamiltonian
and dissipative systems respectively, as Fig. 12 indicates. Moreover, the HLMs
in Hamiltonian systems are propagating, whereas those in dissipative systems
show only diffusive motion. Examples of dynamic LV structure factors for two
CMLs are presented in the right row of Fig. 12. In a), each spectrum has
two sharp symmetric side-peaks located at ±ωu. Furthermore, ωu ≃ ±cuk
for k ≥ 2π/L. These facts suggest that the HLMs in coupled standard maps
are propagating. The spectrum of coupled circle maps in b) has only a single
central peak and can be well approximated by a Lorentzian curve [18], which
implies that the HLMs in this system fluctuate diffusively. In addition, no
step structures in Lyapunov spectra have been found in contrast to the hard-
core systems. The quantities characterizing the dynamical evolutions of LVs
in these systems exhibit intermittent behaviors.
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Fig. 12. Left: The λ-k dispersion relations for various extended systems with
continuous symmetries. The normalized data for different systems collapse on two
master curves. These results strongly support our conjecture that there are two
classes of systems with λ ∼ k and λ ∼ k2 respectively. Systems in the group with
λ ∼ k include (11) with f(z) = 1

2π
sin(2πz) (SM), (11) with f(z) = 2z (mod 1)

(HBM) and the 1d XY model (XY) [30]. Systems belonging to class λ ∼ k2 are
(13) with f(z) = 1

2π
sin(2πz) (CM), (13) with f(z) = 2z (mod 1) (BM), (11) with

f(z) = 1
2π

sin(2πz) and γ = 0.7 (SM-D), (11) with f(z) = 2z (mod 1) and γ = 0.7
(HBM-D) and the 1d Kuramoto-Sivashinsky equation (KS). Right: Dynamic LV

structure factors S
(αα)
u (k, ω) for a) coupled standard maps, (11) with ǫ = 1.3; b)

coupled circle maps, (13) with ǫ = 1.3

7 Conclusion and discussion

We have presented numerical results for the Lyapunov instability of Lennard-
Jones systems. Our simulations show that the step-wise structures found in the
Lyapunov spectrum of hard-core systems disappear completely here. This is
presumed to be the result of the strong fluctuations in the finite-time LEs [8].
A new technique based on the spatial Fourier spectral analysis is employed to
reveal the vague long wave-length structure hidden in LVs. In the resulting
spatial Fourier spectrum of LVs with λ ≃ 0, a significantly sharp peak with
low wave-number is found. This serves as strong evidence for the fact that
hydrodynamic Lyapunov modes do exist in soft-potential systems [32]. The
disappearance of the step-structures and the survival of the hydrodynamic
Lyapunov modes show that the latter are more robust and essential than the
former. Studies on dynamical LV structure factors conclude that longitudinal
HLMs in Lennard-Jones fluids are propagating. Going beyond many-particle
systems, we have shown that, for a large class of extended systems, HLMs
of Hamiltonian and dissipative cases are different both in respect of spatial
structure and in the dynamical evolution.

The intermittency in the temporal evolution of certain quantities charac-
terizing LVs indicates that the coherent wave-like excitations in LVs switch
on and off erratically, which suggests that the HLMs in soft-potential systems
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have finite life-times. This finding is consistent with the observation that in
dynamic LV structure factors the side-peaks representing the dynamical exci-
tations have finite widths. This may also be related to the strong fluctuations
in the finite-time LEs.

Until now, only the coordinate part of LVs is used in most of the studies
on hydrodynamic Lyapunov modes. For the case of hard-core systems, this is
reasonable due to an interesting feature of those LVs corresponding to near-
zero LEs found in [10], namely the fact that the angles between the coordinate
part and the momentum part are always small, i.e, the two vectors are nearly
parallel. For our soft potential systems, we find that the angles between the
coordinate part and the momentum part are no longer as small as in hard-core
systems. However, we failed to detect any long wave-length structures in the
momentum part of LVs. This could be explained by our current results on the
simple model system of coupled map lattices (CMLs) [18].

The standard method of [20] was employed to calculate Lyapunov expo-
nent and vectors quantities for our many-particle (N = 100− 1000) Lennard-
Jones system in d dimension. A set of 2dN × 2dN linear and 2dN nonlinear
ordinary differential equations have to be integrated simultaneously in order
to obtain the dynamics of 2dN offset vectors in tangent space and the refer-
ence trajectory in phase space, respectively. This enforces the use of parallel
implementations of the corresponding algorithms. Performance tests of our
parallel algorithms were executed on clusters with different hardware proper-
ties. An efficient combination of basic routines and parallel orthogonalization
algorithms make our exploration of the challenge field of Lyapunov instabili-
ties of large dynamical systems feasible with the state art of computer power
and yields the reported interesting results.
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1 Introduction

Characterizing fluid flow by the ratio of mean free path and a characteristic
flow length (the Knudsen number Kn) we have two extremes: dense gases
(Kn ≪ 1) where modeling by Euler or Navier-Stokes equations is valid
and rarefied gases (Kn ≫ 1) for which modeling by the Boltzmann equa-
tion is necessary. Developing models for the intermediate transition regime is
subject to active current research because despite the tremendously growing
increase in computational and algorithmic computing performance, numerical
simulation of flows in the transition regime remains a challenging problem.
Thus there is a considerable gap in the ability to model flows where mean
free path and characteristic flow lengths are comparable. However, efficient
methods for simulating transition regime flows will be an important design
tool for micro-scale machinery, where dense gas models become invalid.

As can be learned from the tremendous advances of computational meth-
ods for the Navier-Stokes equations, an important key for the efficient solu-
tion is the use of (structured) adaptivity and parallel methods of solution. For
an efficient parallel implementation with good speedup, the resulting numer-
ical scheme should require only local operations and require only moderate
communication. Adaptivity, however, has so far mainly been used for grid re-
finement to achieve the accuracy goals for numerical solution. To obtain the
necessary gain in efficiency for the transition regime flows, it seems natural
to extend the concept of adaptivity also to physical modelling (that is, the
‘detail’ of the equations of motion to be solved in a certain flow regime). This
requires a consistent theory of how these equations are related to each other,
and how the coupling could be achieved consistently.

The derivation of reduced, but nevertheless consistent equations of motion
for fluid flow is therefore an interesting question of current research. The goal is
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do develop a description of fluid flow which can be adjusted in detail between
that of the Boltzmann equation and that of Euler equations. Here we
present some results from our work on physical models for these flows, trying
to shed more light on the question how properly chosen physical models might
allow for such adaptivity not only in numerical solution but also in physical
modelling.

Two schemes that try to successively approximate the Boltzmann equa-
tion to include more and more detail are moment methods [1–3] and the
cumulant method [4–6]. Commonly a rather small number of moments or cu-
mulants is used and thus these methods do not capture the full information
available with the phase space density, but focus on physically interesting
macroscopic quantities, such as density, flow velocity, mean kinetic energy,
shear stress and heat flux.

This work is intended to give a review of the theory and results for the cu-
mulant method, in order to serve as a starting point for the interested reader.
The first part of the review gives a short introduction to kinetic theory, namely
the Boltzmann equation, the interaction model, and the space-homogeneous
case. The second part discusses the basic concepts and differences of the var-
ious moment methods known from the literature. The last part presents the
cumulant method, results on properties of the resulting equations, a simple
numerical scheme to solve them and possible boundary conditions. A summary
and outlook to possible future research closes this review.

2 Kinetic theory

Considering flow of an inert mixture of gases we assume the fluid is composed
of Ns different species, enumerated by the set Ns with each species having its
own set of associated properties. For a species s, these are the particle mass
ms and the laws of interaction with particles of any other species r. We let the
phase space density fs(t, x, cs) denote the density of particles of species s at
time t and position x, moving with absolute velocity c. The fs are normalized
such that

ns(t, x) =

∫
dc fs(t, x, c) (1)

are the partial particle number densities of the various species (integrals are
taken over the whole velocity space Rd).

2.1 The Boltzmann equation

The fs have to satisfy the Boltzmann equation. Considering a sufficiently
dilute gas in an inertial frame, where accounting only for binary collisions is
sufficient, this integro-differential equation in the fs takes the form [7]

∂t fs + c · ∂x fs + as · ∂c fs =
∑

r∈Ns

Srs[fr, fs] ; ∀s ∈ Ns (2)
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where Srs denotes the collision operator and as denotes the acceleration of
a s-particle due to external forces as a function of time t, particle position x
and particle velocity c. We regard forces exerted on particles due to particle-
particle interaction as internal and any other (e.g. gravity) as external. The
functional Srs[fr, fs] occurring in equation (2) describes the change of fs due
to interaction of particles of species r with particles of species s. By restric-
tion to the description of a sufficiently dilute gas it may be assumed that: I)
contributions by other than binary collisions may be neglected; II) the range
of interaction is much less than the mean free path; III) particle trajectories
before and after the collision are approximately rectilinear; IV) the distribu-
tion functions are constant over the range of interaction; V) particles about
to collide are not correlated. With these assumptions Srs can be written as
the integral operator

Srs[fr, fs] =
∑

r

∫
dcr dn σrs ‖crs‖ (f̂rf̂s − frfs) (3)

with scattering cross section σrs = σrs(n, ‖crs‖), relative collision velocity
crs = cr−cs, ‖crs‖ =

√
crs · crs denoting the usual quadratic vector norm and

the collision parameter vector n. The integral over dn covers the d-dimensional
sphere ‖n‖ = 1. f̂r and f̂s are the phase-space densities evaluated at the
velocities ĉr and ĉs after the collision.

For a gas at standard conditions, these assumptions are justified: with
a typical molecule diameter of about 0.3 nm and a particle density of n ≈
2.7 · 1025 m−3 the average distance of the particles is about ten times the
molecule diameter, making the first assumption hold. The mean free path is
≈ 10 nm, so it is about 10 times longer than the range of interaction, which
makes the second assumption reasonable. This allows to abstract from the par-
ticular particle trajectories during an encounter to states ‘before’ and ‘after’
a collision. With intermolecular forces generally several powers of ten larger
than external forces (e.g. gravity) the third assumption allows to neglect the
effect of external forces during a collision. The fourth assumption is certainly
valid if there are no steep gradients in density or kinetic temperature. The last
assumption does not have any obvious justification but is postulated to hold
for dilute gases (where particles participating in a collision stem from regions a
few mean free path lengths apart), but it is supported by excellent agreement
of the results of kinetic theory of dilute gases with known experiments.

2.2 The Enskog equation of change

Describing the evolution of mixtures of gases on a macroscopic scale we are
interested in partial quantities, such as the partial pressure, density, etc. of
each species. Given a phase space density fs(t, x, c), the density of a partial
macroscopic thermodynamic quantity (Φ)s(t, x) can be obtained as the mean
of an associated microscopic function Φ(t, x, c)
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(Φ)s(t, x) =

∫
dc Φ(t, x, c) fs(t, x, c) . (4)

Multiplying (2) with Φ and integrating over c we obtain [8] a balance equation
for the quantity (Φ)s (also known as Enskog’s general equation of change)

∂t (Φ)s + ∂x · (c Φ)s =
(
∂tΦ + ∂x · cΦ + ∂c · asΦ

)
s
+

∑

r∈Ns

∫
dc Φ Srs , (5)

where we made use of partial integration and the property fs → 0 for ‖c‖ → ∞
due to (1).

2.3 The Maxwell gas model

Throughout this work we will assume the particular interaction model of so-
called Maxwell molecules, for which the particles repel each other with a
force inversely proportional to the (2d − 1)th power of their distance. As
has been known for quite a long time [9], this simplifies the collision integral
considerably. Since the Boltzmann-type collision operator (3) is similar to
a convolution integral, the simplifications are even greater when employing
a Fourier-transformation with regard to particle velocity. This method of
transformation of the Boltzmann equation into an equation for the charac-
teristic function [10] has been proposed and extensively studied by Bobylev

et al. [11] with a review of the method and results given in [12]. It can be
applied also for other interaction models (i.e. hard spheres and the BGK ap-
proximation) but here we restrict our considerations to Maxwell interaction.

Setting Φ = 1
(2 π)d/2 e

iχ·c we find the associated (Φ)s to be the character-

istic function ϕs(t, x, χ) with the equation of motion

∂tϕs + ∂x · ∂iχ ϕs = Γs +
∑

r∈Ns

Ξrs[ϕr, ϕs] ,

collision term Ξrs[ϕr, ϕs] = 1
(2π)d/2

∫
dc Srs e

iχ·c

and force term Γs[ϕs] = 1
(2 π)d/2

∫
dc fs ∂c · as e

iχ·c .

(6)

After a straightforward calculation following the idea of Bobylev [11] we find

Ξ2D
rs [ϕr, ϕs] =

√
2 κrs

µrs
(2π)2

∫
dε Ω[ϕr, ϕs]

Ξ3D
rs [ϕr, ϕs] =

√
2 κrs

µrs
(2π)3

∫
dεdϕ εΩ[ϕr, ϕs]

(7)

for the 2D and 3D Maxwell gas respectively. Here ε is a dimensionless col-
lision parameter, ϕ (without any index) is the tilt of the scattering plane and
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κrs is the parameter controlling the strength of interaction between particles
of species r and s. The integral kernel Ω[ϕr, ϕs] is given by

Ω[ϕr, ϕs] = ϕr(χ · D+

+
)ϕs(χ · D−

+
)− ϕr(0)ϕs(χ) (8)

with

D+

+
=
[
1+∆rs

2 1− 1+∆rs

2 S−1
]

D−
+

=
[
1−∆rs

2 1 + 1+∆rs

2 S−1
]
, (9)

where S−1 denotes the inverse of the scattering matrix S that rotates crs to
ĉrs. Note that this choice is a bit different from the common notation in kinetic
theory, where the mapping from crs to ĉrs is chosen as an unitary, symmetric
matrix. The common notation makes the mapping between crs and ĉrs self-
inverse, but here we prefer the given notation for easier calculation of the
integrals occurring in the production terms. ∆rs and µrs are calculated from
mr and ms, the masses of r- and s-particles, as

µrs =
mrms

mr +ms
∆rs =

mr −ms

mr +ms
. (10)

From the actual kinematics of a collision we find in 2D

ϑ2D(ε) = π

(
1− ε√

1 + ε2

)
and S(ε) =


 cosϑ(ε) − sinϑ(ε)

sinϑ(ε) cosϑ(ε)


 . (11)

with the collision angle ϑ given as a function of the dimensionless collision
parameter ε.

For convenient numerical implementation we use a system of units such
that the relations and equations given remain unchanged but with kB = 1
and the atomic mass unit mu = 1. That is, choosing a reference temperature,
pressure and volume as that of 1mol of an ideal gas at the ice point of water
and using the atomic mass as unit for particle masses, we have determined the
units for length, time, energy etc. by the condition kB = 1. We can establish
such a system of units for the 2D-case considered here as well and give any
numerical results, plots etc. in dimensionless form.

2.4 Spatially homogeneous Boltzmann equation

Let us now examine the spatially homogeneous case [13] for equation (2).
All points x in space are assumed equal, so fs(t, x, c) does not depend on x
and further the effect of external forces is neglected (a = 0). Thus we are
concerned with the temporal relaxation of a set of Ns phase space densities
fs(t, ·, c) : R+ × Rd → R+ from initial non-equilibrium densities fs(0, ·, c)
to equilibrium densities f eq

s (c) = f(∞, ·, c). According to (2) and (6), this
relaxation is determined by the equation
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∂t fs =
∑

r

Srs[fr, fs] or ∂tϕs =
∑

r

Ξrs[ϕr, ϕs] . (12)

In general quite many different solutions to the non-linear equation (12) can
be studied [12] regarding their properties but they are all expressed in the form
of converging series, whose coefficients are calculated recurrently. However, it
appears that there exists a (so far unique) non-trivial (e.g. non-equilibrium)
solution to the non-linear equations (12) that can be given in finite, analytic
form using elementary functions. Reported by Bobylev [12,14] and Krook

and Wu [15,16] this solution can be found by assuming that a dimensionless
time scale

τ = 1− θ e−λ t (13)

can be introduced and is common to all species s. λ denotes a relaxation
rate to be determined. The arbitrary parameter θ ∈ [0, 2

d+2 ] allows to control
the initial deviation of f from equilibrium (θ = 0), and is limited by the
requirement that fs(t, ·, c) ≥ 0 for all species, times t and particle velocities c.
In addition to the common time scale the mean kinetic energies are assumed
to be the same for each species, so the specific energies εs = d

2
kB

ms
T are given

by a common temperature T. Inserting equations (7), (8), (9), the ansatz

ϕs(t, ·, χ) = ns

exp
(
−τ εs

d χ
2
)

(2π)d/2

(
ps(τ) + qs(τ) τ

εs
d
χ2
)

(14)

with χ = ‖χ‖ into (12) and equating coefficients for equal powers of χ allows to
derive three conditions on ps(τ), qs(τ) and λ: an ordinary differential equation
for ps(τ) from the χ0 term; another ordinary differential equation for ps(τ)

and qs(τ) from the χ2 term and finally an algebraic relation from the χ4 term.
From the ordinary differential equations a solution can be determined as

ϕs(t, ·, χ) = ns

exp
(
−τ εs

d χ
2
)

(2π)d/2

(
1 + (τ − 1)

εs
d
χ2
)

(15)

fs(t, ·, c) = ns

exp
(
− 1

τ
d

2 εs

c2

2

)

(π τ 4 εs/d)d/2

[
1 +

τ − 1

τ

(
d

2
− 1

τ

d

2 εs

c2

2

)]
(16)

with particle density ns, particle massms and specific energy εs. The algebraic
relation obtained from the χ4 term determines λ. Fig. 1 depicts the initial
(t = 0) and final (t = ∞) phase space density, and real parts of the first
and second characteristic function (also known as the cumulant generating
function)

κs(χ) = ln
(
(2π)d/2 ϕs(χ)

)
(17)

for a mono-atomic gas with κ11 = 1, m1 = 1, ε1 = 1 and θ = 1
2 .

While the phase-space-density is a strictly non-negative function, the char-
acteristic function, though real-valued for real χ, appears to have a zero in
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Fig. 1. Radial cross sections of the initial (dashed) and final (solid) phase space
density (top), the characteristic function (center) and the real part of the second
characteristic function (bottom) for the 2D case. The phase space density is non-
negative, the characteristic function, however, has two zeros which move to larger χ
with time. These zeros result in two poles for the second characteristic function and
a non-continuous imaginary part

the radial part, which results in a singularity for the real part and a non-
continuous, but piecewise constant imaginary part of the cumulant generat-
ing function (we restrict our considerations to the main branch of ln). With
time advancing, the zero moves toward larger χ converging to the equilibrium
solution.

In the following we will restrict our considerations to the 2D-case, for which
we obtain

λ =
∑

r

nr

√
2κrs

µrs

1−∆rs
2

2

ω2 −∆rs
2 (ω2 − 4ω1)

4
(18)

where the ωn are constants given by

ωn =

+∞∫

−∞

dε 1− cos
(
nϑ2D(ε)

)
. (19)

In general relation (18) is not satisfied for all species s if we allow for an
arbitrary choice of the species parameters µrs, ∆rs and κrs. Thus it should
be read as one rule for determination of λ and (Ns − 1) constraints on the
species parameters.
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3 Mesoscopic fluid modelling

For simulating transition regime flows it becomes essential to extend the well
known macroscopic models to include a more detailed description of the fluid
flow. This is because models for rather dense gases, such as the Euler or
Navier-Stokes equations become invalid and methods of solving the Boltz-

mann equation become too expensive in this regime. Such flow conditions are
mainly characterized by the mean free path being in the order of a characteris-
tic flow length. Thus the flow conditions for the transition regime are between
dense gases (Kn ≪ 1) where modeling by Euler or Navier-Stokes equa-
tions is valid and rarefied gases (Kn≫ 1) for which the Boltzmann equation
is an adequate description.

3.1 Moment equations

By repeated differentiation of (6) with regard to χ and setting χ = 0 after-
wards we find an infinite system of coupled, nonlinear balance equations

∂tM
0
s + ∂x ·M1

s = G0
s +

∑
r P

0
rs

∂tM
1
s + ∂x ·M2

s = G1
s +

∑
r P

1
rs

...

∂tM
α
s + ∂x ·Mα+1

s = Gα
s +

∑
r P

α
rs

...

with

Mα
s = (2π)d/2 ∂α

iχ ϕs

∣∣∣
χ=0

Gα
s = (2π)d/2 ∂α

iχ Γs

∣∣∣
χ=0

Pα
rs = (2π)d/2 ∂α

iχ Ξrs

∣∣∣
χ=0

(20)
for the so-called moments Mα

s = (cα)s. For powers of the particle velocity c
or the partial derivative ∂iχ with respect to imaginary unit i times inverse

velocity χ a scalar exponent α denotes the tensorial power of order α, while a
multi-index will denote the appropriate element of such a tensor. Similarly, for
the moments Mα

s , force terms Gα
s and productions Pα

rs, a scalar superscript
α denotes the full tensor (of rank α) and a multi-index the corresponding
element.

Moments have been of particular interest, because the low order moments
are related to particle number density, momentum and energy density, all of
which are conserved quantities. And further, if one assumes the phasespace
density fs describes a local equilibrium state (where equilibrium parameters
may vary with t and x), the low order moment equations give actually the
Euler equations.

The advection term for equation α couples moments of order α and α+1, as
the flux in one equation appears as density in the equation of next higher order
and vice versa. In general we must assume that production terms may couple
between any orders α, but for the particular interaction model considered here
we observe only coupling towards lower orders. Currently it appears to be not
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even known whether the quantities appearing in equation (20) are well-defined
functions for every solution of (2). E.g. boundedness of the appearing integrals
or proper differentiability of the moments are by no means obvious for non-
equilibrium solutions. Anyhow, moments have been shown to be well-defined
at least for the spatially homogeneous [17] and the nearly homogeneous [18]
case, so it might be more generally true.

3.2 The closure problem

One promising approach to modelling mesoscopic fluid flow is to consider finite
subsets of (20) as approximations of (2) by taking only equations of order
α = 0, . . . , Nα, where the ‘level of detail’ can be adjusted by Nα. Truncation
of (20) at some order Nα imposes the so-called closure problem, which consists
in expressing the moments Mα

s , the force terms Gα
s and the productions Pα

s

as a function of some set of variables (traditionally the moments themselves)
so that the finite subsystem is closed. This is achieved by making an ansatz –
or imposing physical principles to determine a suitable ansatz – for the phase
space density fs or the characteristic function ϕs with some ansatz parameters.
Given the functional form of the ansatz, a relation of the parameters and the
moments is determined by the condition that the first Nα moments of the
ansatz should equal those of the ‘true’ (but unknown) solution. Solving this
relation for the parameters as a function of the moments allows to express the
ansatz for fs in terms of the moments and in turn to determine MNα+1

s , Gα
s

and Pα
s as a function of the moments so that (20) is closed.

There are various criteria proposed in the literature on how to achieve
this closure. It turns out that moment method(s), regardless of the particular
closure employed, give results in good agreement with kinetic theory [19–
22], where phenomenological descriptions of gases (like Navier-Stokes) fail.
Nevertheless equations (20) are in general hard to obtain – even for states
close to equilibrium – and become quickly very complicated with increasing
order Nα. In the following we give a short overview of the most important
proposals. There are more closure procedures discussed in the literature (see,
for instance [23], [24]) but for the scope of this work we would like to restrict
to the following approaches which are conceptually different.

In the method proposed by Grad [1], fs is factored into a (local) equi-
librium part and a non-equilibrium part, the latter being expanded in a se-
ries of Hermite polynomials ortho-normalized with regard to the (t, x)-local
equilibrium part as weight function. From a slightly different point view, the
method of Grad may be viewed as an expansion of the phase space den-
sity in terms of Hermite functions. As the Hermite functions, however, are
the eigenfunctions of the Fourier-transform this means that we may as well
view Grad’s approach as an expansion of the first characteristic function in
terms of Hermite-functions. Truncating the expansion at some arbitrary or-
der Nα, this approach allows to determine the closure exactly but it appears
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to be difficult to give useful expressions for the entropy density, its flux or
production rate.

Waldmann [25] observed that – for states close to thermal equilibrium
where a linear approximation of the collision operator holds – expressing fs
as a sum of a (local) equilibrium and a small deviation-from-equilibrium part
leads to a linear integro-differential equation for the deviation from equilib-
rium. Assuming a space-homogeneous gas with a solution where the deviation
from equilibrium decays exponentially in time leads to an eigenvalue prob-
lem for the function describing the deviation from equilibrium. An analytical
solution can be given for the special case of a Maxwell gas where an ortho-
normal system of eigenfunctions can be constructed as a product of Sonine

polynomials and spherical harmonics when using spherical coordinates in ve-
locity space. These correspond to irreducible homogeneous tensors when using
cartesian coordinates in velocity space, which is why Waldmann considers
an expansion of the deviation from equilibrium with regard to these eigen-
tensors of the linearized collision operator. Similar to Grad’s method, exact
expressions for the entropy density, it’s flux or production rate are difficult to
obtain.

Existence of a properly defined entropy density is, however, the main em-
phasis in the framework of Extended Irreversible Thermodynamics (EIT) by
Mueller et al. [2]. There a particular ansatz form is obtained by applying a
local formulation of the second law of thermodynamics. Unfortunately, closure
is a very hard problem, as the ansatz function is an exponential of a tensor
polynomial in c. Nevertheless entropy density and flux can be given but it
appears to be difficult to give an analytic form of the entropy production.
Usually one resorts to an expansion of the exponential close to equilibrium,
which leads to a closure similar to the one by Grad [26].

The entropy production is payed more attention to by the modified mo-
ment method [27] proposed by Eu, where it is regarded a direct measure of
energy dissipation. So the ansatz for fs is chosen such that the entropy produc-
tion takes a simple form, making the connection of evolution of non-conserved
variables and entropy production quite obvious. But again: neither is there
a method for exact closure nor is it simple to give an analytic form of the
entropy density.

4 The cumulant method

For the cumulant method we make a Taylor expansion of the logarithm of
the characteristic function, which simplifies the deriviation of the equations
satisfied by the ansatz parameters. The resulting equations are considerably
simpler than the equations obtained by the Method of Grad, however, it
becomes difficult to give an equivalent procedure of expansion for the phase
space density. We find the low order Grad coefficients to be equivalent to
the cumulants [4], but there are additional nonlinear terms in the relation
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between the ansatz parameters and the moments beginning with order α = 6,
which we suspect to be the reason for the resulting simplicity of the cumulant
equations.

The cumulant method is based on the idea that – being interested in
‘macroscopic’ quantities – we are also interested in changes on macroscopic
(slow) time scales. This allows to assume that fast relaxation processes have
(almost) reached their equilibrium state and that their dynamics can be ne-
glected if we are only interested in the slower processes. If we choose cumulants
as macroscopic parameters for the description this means that we may assume
equilibrium values (which are conveniently zero) for the high-order cumulants.

4.1 Cumulant-Ansatz

Thus our ansatz is a polynomial approximation of the second characteristic
function κs = ln

(
(2π)d/2 ϕs

)
so that we have

ϕCM
s =

1

(2π)d/2
exp

(
Nα∑

α=0

iα

α!
χα · Cα

s

)
(21)

with some arbitrary truncation numberNα. A closed set of equations of motion
– or alternatively the relations between moments Mα

s , productions Pα
s and

force terms Gα
s and the cumulants Cα

s – can be directly obtained by (20).
We obtain the following relations between the first order moments and

cumulants:

M0 = eC
0

Mx = eC
0

Cx

My = eC
0

Cy

Mxx = eC
0

(Cx Cx + Cxx)

Mxy = eC
0

(Cx Cy + Cxy)

Myy = eC
0

(Cy Cy + Cyy)

Mxxx = eC
0

(Cx Cx Cx + 3Cx Cxx + Cxxx)

Mxxy = eC
0

(Cx Cx Cy + 2Cx Cxy + Cy Cxx + Cxxy) =Mxyx =Myxx

Mxyy = eC
0

(Cx Cy Cy + Cx Cyy + 2Cy Cxy + Cxyy) =Myxy =Myyx

Myyy = eC
0

(Cy Cy Cy + 3Cy Cyy + Cyyy)
(22)

The equations obtained this way from (20) are in balance form. It is clear
from their definition that the moments and cumulants of order α have only(
α+d
d−1

)
linearly independent components, because the product between velocity

components is commutative. Denoting the reduced, linear independent vari-
ables with a tilde, writing (20) in its reduced from and making use of the
chain rule we may derive equations with the cumulants as basic fields, be-

cause the Jacobi-matrix
(
∂

C̃s

M̃s

)
is not singular for the reduced variables

and so its inverse is defined. The result is a set of equations in convection (or
quasi-linear) form, stated for the reduced cumulants as the set of primitive
variables
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∂t C̃s +As · ∂x C̃s = Ẽs +
∑

r∈Ns

B̃rs (23)

with

convection tensor As =
(
∂

C̃s

M̃s

)−1

·
(
∂

C̃s

F̃ s

)
,

production terms B̃rs =
(
∂

C̃s

M̃s

)−1

· P̃rs ,

and force term Ẽs =
(
∂

C̃s

M̃s

)−1

· G̃s ,

(24)

which takes a particularly simple form, namely Ẽs = (0 as 0 0 . . .)
T
.

4.2 Symbolic derivation of Cumulant equations

To obtain (23) we mainly have to calculate derivatives of the characteristic
function and the collision terms as well as integrate over the collision parame-
ters. Using symbolic formula manipulation systems like Mathematica [28],
this process can be automated and equations up to high truncation orders Nα

can be obtained. In [29] we give a detailed description of a possible Mathe-

matica implementation. Except for some technicalities the program proceeds
in the sequence determined by (24): First the relation between cumulants and
moments is derived for both the densities and fluxes in the balance equa-
tions (20) (steps reducedCumulant, reducedMoment, reducedFlux). Next the
Jacobian and its inverse, and the convection tensor are calculated (steps
jacobiMomentC, jacobiCMoment, convectionTensor). Once the moment pro-
ductions are known (momentProd), integration over the collision parameters
can be carried out by simple substitution according to (19) once the powers
of trigonometric expressions that stem from (11) have been put in a reduced
form (momentProdTrigReduced, momentProdRelative). As can be seen from
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figure 2, this step takes most of the time required to obtain the cumulant
equations. As a result, one obtains symbolic expressions for the advection
tensor, as well as the production terms. However, this calculation has to be
carried out only once in order to obtain the equations in symbolic form and
to generate code for a numerical solver. Fig. 2 shows the scaling of CPU time
and memory requirements to derive equation (23) with the truncation number
Nα. The results shown are for the most complicated case (considered here) of
an inert mixture. For the single component case, expressions and requirements
simplify considerably and equations can be derived up to much higher orders.

4.3 Eigensystem of linearized productions

The production terms B̃α
rs(C̃r, C̃s), calculated from (7) by (20) and (24), are in

general highly nonlinear functions of the cumulants C̃α
r and C̃α

s . The resulting
expressions are much simpler if we rewrite the production terms as B̃rs =
B̃rs(C̃s + C̃rs, C̃s) with the ‘relative cumulants’ Cα

rs = Cα
r −Cα

s and C0
rs = 0.

For states close to thermodynamic equilibrium the production terms may be
linearized by making a Taylor-expansion of B̃s,rs around the equilibrium
state. The linearized production terms then read

B̃lin
rs = B̃s ·∆C̃s + B̃rs ·∆C̃rs (25)

with ∆C̃ = C̃ − C̃eq,

B̃s =
(
∂

C̃s
B̃s,rs

)eq
and B̃rs =

(
∂

C̃rs
B̃s,rs

)eq
. (26)

For the case of Maxwell pseudo-molecules both B̃s and B̃rs have block-

diagonal structure [5], thus for the linearized production terms only cumulants
of the same order α are coupled. Performing a Jordan decomposition B̃s =

S ·J ·S−1 with the normal form J and similarity matrix S we can calculate the

eigenvariables Eαri as components of Ẽ = S−1 · C̃ of the linearized production
terms for the single component gas [30]:

(
E00

s

)
=

(
C0

)

(
E11

s

E12
s

)
=

(
Cx

Cy

)




E20
s

E211
s

E212
s


 = 1

2




Cxx + Cyy

Cxx − Cyy

2Cxy







E311
s

E312
s

E321
s

E322
s


 = 1

4




Cxxx + Cxyy

Cyyy + Cxxy

Cxxx − 3 Cxyy

Cyyy − 3 Cxxy







E40
s

E411
s

E412
s

E421
s

E422
s




= 1
8




Cxxxx + 2 Cxxyy + Cyyyy

4 Cxxxx − 4 Cyyyy

4 Cxxxy + 4 Cxyyy

Cxxxx − 6 Cxxyy + Cyyyy

4 Cxxxy − 4 Cxyyy




. . .

(27)
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In the notation used for the indices, α enumerates the cumulant order, r enu-
merates the rate of relaxation in ascending order and i enumerates eigenvari-
ables with degenerate relaxation rates and is omitted if there is only a single
one. For those eigenvariables the space-homogeneous equations of motion (23)
decouple into separate equations

∂tE
αri = −ωαriE

αri (28)

with some relaxation rate ωαri given by the corresponding main diagonal
element of the normal form J [5].

The spectrum of the eigenvalues is shown in figure 3 for the first ap-
proximation orders. We observe that eigenvalues appear pairwise except for
the lowest eigenvalue for even α. The pairs of eigenvariables for odd α are
‘symmetric’ with regard to interchange of x and y and could thus be charac-
terized as flux-like specific quantities. For even α we have one scalar and pairs
of ‘asymmetric’ eigenvariables we could characterize as energy- and stress-
like specific quantities. The terminology chosen for characterization is derived
from the relation of the first few eigenvariables to classical thermodynamic
quantities. It appears that the first eight eigenvariables can be related [5, 6]
one-to-one to well-known thermodynamic quantities which have the three ap-
pearing symmetry-properties observed for the eigenvariables of the linear ap-
proximation of the production terms:

energy-like energy ε, log-density lnn

flux-like velocity v , flux of specific energy j

stress-like (shear/normal) stress σ

Thus the relaxation behavior of the cumulants for the space homogeneous
Boltzmann equation provides the key to match the cumulants with the
macroscopic thermodynamic variables density n, specific energy ε, velocity
v , shear stress σ⇋ and normal stress σ◦ as well as heat flux j :
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n = eC
0

ε = 1
2 (Cxx + Cyy)

v =
(
Cx

Cy

)
j = 1

2

(
Cxxx + Cxyy

Cyyy + Cxxy

)

σ = 1
2

(
Cxx − Cyy 2Cxy

2Cxy Cyy − Cxx

)
=
(
σ◦ σ⇋

σ⇋ −σ◦
)

(29)

The motivating assumption (that high-order cumulants decay more quickly
than low-order cumulants), seems to hold in principle, at least for the
Maxwell interaction model. But there is considerable overlap between the
spectra for various approximation orders. This poses the question whether a
simple truncation as in (21) is a proper ansatz for the characteristic function
ϕs. It is reasonable to expect a one-to-one correspondence of the eigensystem
(27) to the eigenfunctions discussed by Waldmann [25]. Thus it should be
possible to construct a “consistent order of magnitude” closure for the cumu-
lants similar to [24]. This could be achieved by rewriting (23) in terms of the
eigenvariables and performing a Maxwell iteration in order to assign the
orders of magnitude to the various terms. The first step of this procedure
has already been used to clarify the relation of (23) to the Navier-Stokes

equations.

4.4 Application to the space-homogeneous Boltzmann equation

So how does the cumulant method apply to a single component gas in two
dimensions (d = 2) with only one species (Ns = 1)? Let us assume the space-
homogeneous case and the species parameters be given by specific energy
ε1 = ε, density n1 = n, particle mass m1 = 2µ and interaction strength
κ11 = κ; all chosen unity for the numerical calculations. From equation (18)
we find (∆11 = 0)

λ = n

√
2κ

µ

ω2

8
. (30)

Using the solution (15) we can calculate an analytic solution for the time-
development of the cumulants and eigenvariables. Due to simplicity and high
symmetry of the solution we find that only a few eigenvariables are non-zero,
namely

E00 = C0

E20 = 1
2 (Cxx + Cyy)

E40 = 1
8 (Cxxxx + 2Cxxyy + Cyyyy)

E60 = 1
32 (Cxxxxxx + 3Cxxxxyy + 3Cxxyyyy + Cyyyyyy)

E80 = 1
64 (Cxxxxxxxx + 4Cxxxxxxyy + 6Cxxxxyyyy + 4Cxxyyyyyy + Cyyyyyyyy)

...

(31)
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for which the time evolution is determined by solution (15) as

E00 = ln(n)

E20 = ε

E40 = − [ε θ exp (−λ t)]2

E60 = 3 [ε θ exp (−λ t)]3

E80 = −18 [ε θ exp (−λ t)]4 .

(32)

Thus, for the particular (isotropic) Bobylev/Krook-Wu solution, the only
nonvanishing eigenvariables are those of even order α with the slowest relax-
ation rates, which are not degenerate.

Fig. 4 shows the time evolution of the eigenvalues for the single component
Maxwell gas. We observe an excellent agreement for the numerical results
and the analytic solution. This is the case for all three non-trivial eigenvalues
if the nonlinear production terms are used in the numerical calculation. If
the linearized productions are used, we observe a slower relaxation for E80

than predicted by equation (32). The other two non-trivial eigenvalues are as
predicted by the solution. The reason for this becomes obvious when we write
the equations of motion for the eigenvariables:

∂tE
00 = 0

∂tE
20 = 0

∂tE
40 = ω2

2 (2 (E211)2 + 2 (E212)2 − E40)

∂tE
60 = 3ω2

4

(
3 ((E311)2 + (E312)2 + (E321)2 + (E322)2)+

2E211E411 + 4E212E412 − E60
)
.

(33)
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Even though the productions are linear in the cumulants only up to order
α = 3, the production term for E40 is linear in this particular case because
E211 and E212 vanish for the particular initial conditions. However, E80 is
‘truly’ nonlinear even for the particular case of the Bobylev/Krook-Wu

solution, in which we have

∂tE
80 =

1

32

(
36 (4ω2 − ω4) (E40)2 − (28ω2 + ω4)E

80
)
. (34)

Thus we expect such deviations to occur for eigenvalues for larger α too when
linearized productions are used in the simulation.

4.5 Eigenstructure of the advection tensor

The convection tensor As is sparsely populated and has a particularly simple

structure, as can be seen from the x-component of As. For the 2D case we

have

[
As

]
x

=




Cx
s 1 0 0 0 0 0 0 0 0

Cxx
s Cx

s 0 1 0 0 0 0 0 0

Cxy
s 0 Cx

s 0 1 0 0 0 0 0

Cxxx
s 2Cxx

s 0 Cx
s 0 0 1 0 0 0

Cxxy
s Cxy

s Cxx
s 0 Cx

s 0 0 1 0 0

Cxyy
s 0 2Cxy

s 0 0 Cx
s 0 0 1 0

Cxxxx
s 3Cxxx

s 0 3Cxx
s 0 0 Cx

s 0 0 0
. . .

Cxxxy
s 2Cxxy

s Cxxx
s Cxy

s 2Cxx
s 0 0 Cx

s 0 0

Cxxyy
s Cxyy

s 2Cxxy
s 0 2Cxy

s Cxx
s 0 0 Cx

s 0

Cxyyy
s 0 3Cxyy

s 0 0 3Cxy
s 0 0 0 Cx

s

. . .
. . .

. . .
. . .




. (35)

Remember that multi-index superscripts refer to the actual cumulant tensor
components. By taking the limit Nα → ∞ equation (23) may be considered
an infinite system just as (20). For a truncation of finite order Nα, however,
the bottom left block in (35) vanishes.

Fig. 5 shows the spectrum of As(C̃ ) as a function of the approximation

order Nα. This spectrum has been obtained by inserting the equilibrium val-
ues [4] for the cumulants in (35) and determining the eigenvalues of the result-
ing matrix numerically using Mathematica [28]. As for EIT [2], the eigen-
value spectrum for a given orderNα contains all eigenvalue spectra for approx-
imations of lower order. Further we observe finite but monotonically growing
maximum and minimum eigenvalues. These advection tensor eigenvalues can
be related to the (finite) speeds of propagation of weak discontinuities and
should be real (so that (23) is hyperbolic). Consistent with EIT, growth of
the maximal magnitude of the eigenvalues slows down with increasing trun-
cation order. These eigenvalues corresponding to the highest characteristic
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speeds evaluated in equilibrium play an important role in modeling shock
structures, as for shock speeds beyond that value unphysical sub-shocks ap-
pear in the solutions of the approximate equations [31, 32]. This implies that
many moments or cumulants have to be considered for fast shocks and might
be considered a drawback of the cumulant method and moment methods in
general.

Solving (29) for the (low-order) cumulants, and inserting these into (35),
we can calculate [33] the dependence of the convection tensor eigen-spectrum
on the classical variables. For this, one variable has been varied and for the
others equilibrium values have been assumed. We find that demanding hy-
perbolicity of the cumulant equations, which requires real eigenvalues for all
components of As, imposes different possible constraints on the domain of

allowed eigenvariable values. The first case is that no constraints are imposed,
as is the case for vx and vy. An arbitrary mean velocity just produces a shift
of the eigenvalue spectrum of As, as we would expect from a set of equations

with Galileian invariance. The same situation is observed for the shear stress
σ⇋, which does not influence the spectrum at all. The second case is observed
for the energy density ε, where the spectra for both the x and y component
impose a lower bound on ε, independent of Nα. With the third case, bounded-
ness of the normal stress σ◦, jx and jy is imposed but for two different reasons:
for σ◦, the x and y component of As impose either an upper or a lower bound

which are the same for any Nα. For j , however, one As component imposes
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both upper and lower bounds and the other component of As does not impose

any bounds. But we also observe the paradoxical situation that the interval
of allowed jx-values for (23) to be hyperbolic becomes smaller with increasing
Nα. Whether the allowed interval remains finite or converges to the empty set
for Nα → ∞ remains an open question. We note that this might not be the
case in real flow situations, where other cumulants may have non-equilibrium
values, thereby possibly compensating this effect. Thus, ‘not too far’ from
equilibrium, (23) might be characterized as a hyperbolic system of partial
differential equations.

4.6 Numerical scheme

There are several modern, robust numerical methods for solving a time-
dependent hyperbolic system of partial differential equations (see, for in-
stance [34–38]). However, most of them rely on a conservation or balance law
formulation of the governing equations. Unfortunately we are not able to find
a balance law formulation for the cumulants directly, as the convection tensor
components are not Jacobian matrices. The moment equations are equations
in balance form, so this might be a possible set of equations to use with these
methods. But, this would ultimately require (re-)construction of the fluxes
from moment values: We would have to calculate the cumulant values from
moments and then the fluxes from the cumulants. Though theoretically possi-
ble (from (22) and the inverse relation) this could lead to numerical difficulties
due to introduction of round-off errors in each iteration step [26].

If we would like to use finite element methods for discretization and nu-
merical solution the problem appears that the required variational forms are
usually not symmetric and therefore require stabilization [39]. On the other
hand it is well known [40] that for systems where an analytic form of the
entropy density is exists, the equations of motion become symmetric in a
particular set of ‘entropic’ variables. Applying finite element discretizations
to these symmetric hyperbolic equations it can be shown that the numeri-
cal solution will have the same (thermodynamic) stability properties as the
continuous equations [41]. Except for necessary conditions, existence and con-
struction of entropy functionals operating on the characteristic function has
not been discussed in the literature so far.

We therefore choose an explicit finite difference approximation of (23), but
should be aware that these methods are known not to be suited for problems
with discontinuous solutions, such as shocks. We start by choosing a regular,
orthogonal grid of spacing dt in time and dr in space to discretize the space and
time domain. Let (t, x) denote a grid point and ei the unit vector in direction i.
Then we may approximate the derivatives using the following finite difference
ratios of first and second order. Thus we approximate the differentials in (23)
by
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∂t C̃s ≈ 1
dt δ

(1)
t C̃s = 1

dt

(
C̃s(t+ dt, x)− C̃s(t, x)

)

∂xi
C̃s ≈ 1

2 dr δ
(2)
xi
C̃s = 1

2 dr

(
C̃s(t, x+ ei dr)− C̃s(t, x− ei dr)

)
.

(36)

Solving for C̃s(t + dt, x) we obtain the following simple, explicit iteration
scheme with a typical finite-difference stencil

C̃s(t+ dt, x) = C̃s

+ dt
(
Ẽs +

∑
r B̃rs

)

− dt
2 dr As(C̃s) · δ(2)x C̃s

dr

dr

t

y

x

t + dt

(37)

where the time and position arguments (t, x) have been omitted on the right
hand side. The scheme (37) is known to be unconditionally unstable. It can
be stabilized by using the average over the values used for approximation of
the derivatives in space instead of C̃s(t, x) [42].

4.7 Boundary conditions

As important as the details of the modeling, however, are boundary conditions.
In order to formulate well-posed problems we need to give conditions for the
cumulants at the boundaries ∂Ω of the flow domain Ω, e.g. if we want to
describe flows past solid bodies or between solid walls. In macroscopic models
these conditions need to be formulated in terms of gradients normal to the
wall or in terms of the values at the wall. In kinetic theory, however, we
need to give conditions in terms of the phase space density. These conditions
reflect a model of interaction of the gas particles with the walls. It is due to
this interaction that forces are exerted on and heat may be transferred across
boundary surfaces. In order to give physically correct boundary conditions,
detailed knowledge about the processes taking place at boundaries is required.
As we do not possess this knowledge, difficulties in theoretical modeling arise;
mainly due to lack of knowledge concerning an effective interaction potential
of the gas with the surface. For a more detailed introduction to the subject,
the reader is referred to [7, 43–46].

In theory, arbitrarily complex boundary conditions may be derived, if they
can be formulated as conditions for the distribution function fs according to
(21). In practice we might run into difficulties as there may be conditions where
the required class of functions cannot be approximated well by the class of
ansatz functions: Assume particles moving to the boundary are immediately
re-emitted ‘equilibrated’ (e.g. particles leaving the wall have distribution f eq

s

with boundary velocity, temperature and density such that the density is
conserved). These distribution functions would be discontinuous in velocity
along a plane orthogonal to the wall orientation. With a continuous ansatz
this could only be approximated by steep gradients, possibly requiring high
order approximations.
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Fig. 6. The four types of boundary conditions discussed in the text: (a) adiabatic
slip conditions, (b) with adiabatic no-slip conditions, (c) thermal no-slip conditions
and (d) Navier-Stokes conditions

Adiabatic boundary conditions

The simplest conditions are adiabatic slip conditions, which can be modeled
by an ideally reflecting boundary. In [4] we have discussed these boundary
conditions already in detail, however, we give a short summary here. An ideally
reflecting boundary (Fig. 6a) with orientation n at rest interacts with gas

particles such that for particles moving with velocity c the normal component
n · c of the particle velocity relative to the surface is inverted and the tangential
component relative to the surface remains unchanged in an interaction with
the boundary. Thus with this kind of interaction, the gas cannot exert shear
stress on the boundary and there will be no heat exchange across the wall. The
velocity tangential to the surface is arbitrary, so this poses an idealized ‘slip’
condition. An ideally retro-reflecting boundary (Fig. 6b) with orientation n
interacts with gas particles such that for particles moving towards the surface
the normal component as well as the tangential component of the particle
velocity relative to the surface are reverted. This fixes the relative tangential
velocity component to that of the wall (no-slip) and allows the fluid to exert
shear forces on the boundary. These microscopic fluid-wall interaction models
allow to derive conditions for the cumulants and their gradients at the wall,
which has been discussed in [4]. Denoting the cumulant values at the node
adjacent to the boundary with Cα

+, the conditions to employ for the moving,
adiabatic slip boundary read

δ
(2)
x C0 = 0 δ

(2)
y C0 = 0

Cx
0 = 0 δ

(2)
x C1 = 1

drC
1
+ δ

(2)
y C1 = 0

Cxy
0 = 0 δ

(2)
x C2 = 0 δ

(2)
y C2 = 0

Cxxx
0 = Cxyy

0 = 0 δ
(2)
x C3 = 1

drC
3
+ δ

(2)
y C3 = 0

(38)

and the conditions to employ for the moving, adiabatic no-slip boundary read
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δ
(2)
x C0 = 0 δ

(2)
y C0 = 0

C1
0 = w δ

(2)
x C1 = 1

drC
1
+ δ

(2)
y C1 = 0

δ
(2)
x C2 = 0 δ

(2)
y C2 = 0

C3
0 = 0 δ

(2)
x C3 = 1

drC
3
+ δ

(2)
y C3 = 0

(39)

where w denotes the wall velocity.

Thermal no-slip conditions

An important drawback of the adiabatic boundary conditions is the fact that
heat dissipated in the flow region may not be transported out of the flow
region. This is a considerable deficiency as almost all steady flow regimes
require some kind of transport of the heat generated by dissipation out of
the flow region. The main problem is that – for the two kinds of ideally
reflective wall – we cannot prescribe wall velocity and temperature and have
the gas develop stress and heat flux in response to the flow conditions at the
wall with the (quite academic) boundary conditions presented above. For the
thermal no-slip boundary conditions (Fig. 6c) used in the simulations we treat
boundary nodes just as interior fluid nodes. The gradients in n-direction are
approximated by (first-order) one-sided differences. In each update, the wall
velocity and the wall temperature substitute the value of C1 and the trace
of C2. Otherwise the node is updated according to (37). This prescribes wall
temperature and wall velocity at the boundary node. Shear stress at the wall
and heat flux across the wall develop due to the gradients in the cumulants
building up.

Navier-stokes conditions

In [5] we have demonstrated calculation of the production terms for the
Maxwell gas. By considering states close to equilibrium for a single-component
gas we found that the Jacobian of the production terms with regard to the cu-
mulants is block-diagonal. This allows the definition of a set of eigenvariables
of the linearized production terms. It turns out that the first eigenvariables can
be related one by one to well-known macroscopic quantities, namely particle
density n, mean particle velocity v , mean energy ε, stress σ and flux of specific
energy j . Performing the fist step of a Maxwell iteration [47], we recover the
well-known constitutive relations for a Newtonian fluid with heat conduction
according to Fouriers law. This motivates the Navier-Stokes boundary condi-
tions (Fig. 6d): First we calculate the (classical) eigenvariables for the bound-
ary node and the fluid node next to the boundary. Then, for the boundary
node, replace v and specific ε by the wall velocity w and specific energy given
by the wall temperature T . Further we approximate the gradients in velocity
and energy by one-sided differences and calculate σ and q from their constitu-
tive relations. Now the corresponding cumulant values for the boundary node
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are obtained by the relation between the cumulants and the eigenvariables
as obtained from the Maxwell iteration (given in [5]). With these boundary
conditions employed for the numerical scheme (37) we can simulate various
flow conditions that result in a stationary, non-equilibrium regime. However,
in some cases properties of flows in the Navier-Stokes regime are reproduced,
in other cases qualitative features of a rather dilute gas, depending on the
boundary conditions employed.

5 Summary

We gave a comprehensive overview of the theory behind the cumulant method,
the main results about the resulting equations and their properties, as well
as a simple numerical scheme and possible boundary conditions to apply. The
main ansatz is a Taylor expansion of the second characteristic function. From
that ansatz, a set of moment equations can be derived by symbolic calcula-
tion up to (in principle) arbitrary high orders of approximation. Applying the
method of deriving equations for the cumulants for the special case of a space-
homogeneous gas close to a equilibrium state we can linearize the production
terms and determine an eigensystem of the production terms. The low order
eigen-variables can be related one-to-one to classic thermodynamic quantities.
Next we have compared a numerical solution of the space-homogeneous equa-
tions to the exact Boblev/Krook-Wu solution. We find that the numerical
solution coincides with the exact solution if the fully non-linear production
terms are used. For the linearized production terms, relaxation rates may be
under-estimated. The eigensystem of the advection tensor characterizes the
system as hyperbolic as long as the system is not too far from equilibrium.
The application of modern numerical methods appears to be difficult as the
cumulant equations are not in symmetric form. Construction of symmetric
equations would be possible if an entropy density could be given as a func-
tion of the cumulants. How this can be achieved remains an open question, as
so far entropy functionals that operate on the first (or second) characteristic
function have not been discussed extensively in the literature. Despite that,
a simple finite difference scheme and microscopically or phenomenologically
motivated boundary conditions have been given that can be used to obtain
numerical solutions for simple flow problems.
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