
OPTIMIZATION
Algorithms and
Applications

© 2015 by Taylor & Francis Group, LLC

© 2015 by Taylor & Francis Group, LLC

OPTIMIZATION
Algorithms and
Applications

Rajesh Kumar Arora
Senior Engineer
Vikram Sarabhai Space Centre
Indian Space Research Organization
Trivandrum, India

© 2015 by Taylor & Francis Group, LLC

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150205

International Standard Book Number-13: 978-1-4987-2115-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2015 by Taylor & Francis Group, LLC

Dedicated to my mother

© 2015 by Taylor & Francis Group, LLC

© 2015 by Taylor & Francis Group, LLC

vii

Contents

Preface ..xi
Author ...xv

 1. Introduction ...1
1.1 Historical Review ..1
1.2 Optimization Problem ..3
1.3 Modeling of the Optimization Problem ..5
1.4 Solution with the Graphical Method .. 11
1.5 Convexity ... 13
1.6 Gradient Vector, Directional Derivative, and Hessian Matrix 16
1.7 Linear and Quadratic Approximations ...23
1.8 Organization of the Book ...25
Chapter Highlights .. 27
Formulae Chart ..28
Problems .. 29

 2. 1-D Optimization Algorithms ...35
2.1 Introduction ...35
2.2 Test Problem ... 37
2.3 Solution Techniques ..38

2.3.1 Bisection Method ...38
2.3.2 Newton–Raphson Method ...40
2.3.3 Secant Method ..42
2.3.4 Cubic Polynomial Fit ...44
2.3.5 Golden Section Method ..46
2.3.6 Other Methods ... 47

2.4 Comparison of Solution Methods ... 49
Chapter Highlights .. 51
Formulae Chart .. 52
Problems .. 52

 3. Unconstrained Optimization ...55
3.1 Introduction ...55
3.2 Unidirectional Search ... 57
3.3 Test Problem ... 59
3.4 Solution Techniques ..60

3.4.1 Steepest Descent Method .. 62
3.4.2 Newton’s Method ...63
3.4.3 Modified Newton’s Method ...66
3.4.4 Levenberg–Marquardt Method ...66

© 2015 by Taylor & Francis Group, LLC

viii Contents

3.4.5 Fletcher–Reeves Conjugate Gradient Method68
3.4.6 DFP Method .. 70
3.4.7 BFGS Method ..72
3.4.8 Powell Method ... 74
3.4.9 Nelder–Mead Algorithm ..75

3.5 Additional Test Functions .. 78
3.5.1 Rosenbrock Function ... 78
3.5.2 Quadratic Function .. 79
3.5.3 Nonlinear Function ... 81
3.5.4 Wood’s Function... 82

3.6 Application to Robotics ..83
Chapter Highlights ..85
Formulae Chart ..86
Problems .. 87

 4. Linear Programming .. 93
4.1 Introduction ... 93
4.2 Solution with the Graphical Method .. 95
4.3 Standard Form of an LPP ... 98
4.4 Basic Solution ... 103
4.5 Simplex Method .. 105

4.5.1 Multiple Solutions .. 112
4.5.2 Degeneracy ... 114
4.5.3 Two-Phase Method .. 116
4.5.4 Dual Simplex Method ... 121

4.6 Interior-Point Method ... 125
4.7 Portfolio Optimization ... 127
Chapter Highlights .. 131
Formulae Chart .. 133
Problems .. 133

 5. Guided Random Search Methods ... 139
5.1 Introduction ... 139
5.2 Genetic Algorithms ... 140

5.2.1 Initialize Population .. 142
5.2.2 Fitness Evaluation .. 143
5.2.3 Reproduction .. 143
5.2.4 Crossover and Mutation ... 147
5.2.5 Multimodal Test Functions .. 148

5.3 Simulated Annealing .. 154
5.4 Particle Swarm Optimization .. 157
5.5 Other Methods .. 160

5.5.1 Ant Colony Optimization ... 160
5.5.2 Tabu Search ... 163

Chapter Highlights .. 164

© 2015 by Taylor & Francis Group, LLC

ixContents

Formulae Chart .. 165
Problems .. 166

 6. Constrained Optimization ... 169
6.1 Introduction ... 169
6.2 Optimality Conditions ... 171
6.3 Solution Techniques .. 175

6.3.1 Penalty Function Method ... 176
6.4 Augmented Lagrange Multiplier Method 182
6.5 Sequential Quadratic Programming .. 184
6.6 Method of Feasible Directions .. 190

6.6.1 Zoutendijk’s Method ... 191
6.6.2 Rosen’s Gradient Projection Method 192

6.7 Application to Structural Design .. 195
Chapter Highlights .. 196
Formulae Chart .. 197
Problems .. 199

 7. Multiobjective Optimization ... 203
7.1 Introduction ... 203
7.2 Weighted Sum Approach ... 205
7.3 ε-Constraints Method ... 210
7.4 Goal Programming ... 212
7.5 Utility Function Method .. 214
7.6 Application ... 215
Chapter Highlights .. 220
Formulae Chart .. 220
Problems .. 221

 8. Geometric Programming ..223
8.1 Introduction ...223
8.2 Unconstrained Problem ... 224
8.3 Dual Problem ...229
8.4 Constrained Optimization .. 231
8.5 Application ...235
Chapter Highlights ..238
Formulae Chart ..238
Problems .. 240

 9. Multidisciplinary Design Optimization ... 243
9.1 Introduction ... 243
9.2 MDO Architecture .. 245

9.2.1 Multidisciplinary Design Feasible 247
9.2.2 Individual Discipline Feasible ... 248
9.2.3 Simultaneous Analysis and Design 249

© 2015 by Taylor & Francis Group, LLC

x Contents

9.2.4 Collaborative Optimization .. 251
9.2.5 Concurrent Subspace Optimization 252
9.2.6 Bilevel Integrated System Synthesis 252

9.3 MDO Framework ..253
9.4 Response Surface Methodology ..254
Chapter Highlights .. 257
Formulae Chart ..258
Problems .. 259

 10. Integer Programming .. 263
10.1 Introduction ... 263
10.2 Integer Linear Programming ..264

10.2.1 Gomory’s Cutting Plane Method 265
10.2.2 Zero-One Problems ... 272

10.3 Integer Nonlinear Programming ..277
10.3.1 Branch-and-Bound Method .. 278
10.3.2 Evolutionary Method ..284

Chapter Highlights .. 286
Formulae Chart .. 286
Problems .. 287

 11. Dynamic Programming ... 289
11.1 Introduction ... 289
11.2 Deterministic Dynamic Programming.. 289
11.3 Probabilistic Dynamic Programming .. 294
Chapter Highlights .. 296
Formula Chart .. 297
Problems .. 297

Bibliography .. 299

Appendix A: Introduction to MATLAB® ..309

Appendix B: MATLAB® Code ... 321

Appendix C: Solutions to Chapter Problems ... 401

Index ... 437

© 2015 by Taylor & Francis Group, LLC

xi

Preface

There are numerous books on the subject of optimization, attributable to a
number of reasons. First, the subject itself is mathematically rigorous and
there are a number of solution methods that need to be examined and under-
stood. No single solution method can be applied to all types of optimization
problems. Thus a clear understanding of the problem, as well as solution
techniques, is required to obtain a proper and meaningful solution to the
optimization problem. With the progression of time, optimization prob-
lems have also become complex. It is necessary not only to obtain the global
optimum solution, but to find local optima as well. Today’s problems are
also of the multiobjective type, where conflicting objective functions are to
be handled. There is also a need to simultaneously handle objective func-
tions and constraints of different disciplines, resulting in multidisciplinary
design optimization (MDO) problems that are handled using different archi-
tectures. Gradient-based methods were popular until the 1990s. At pres-
ent, a large number of complex problems are solved using guided random
search methods such as genetic algorithm, simulated annealing, and particle
swarm optimization (PSO) techniques. Even hybrid algorithms, that use a
combination of gradient-based and stochastic methods, are also very popu-
lar. Different authors have addressed these issues separately, resulting in a
number of books in this area.

So how does this book differ from the others? The solution techniques
are detailed in such a way that more emphasis is given to the concepts and
rigorous mathematical details and proofs are avoided. It is observed that a
method can be understood better if different parameters in the algorithm are
plotted or printed over different iterations while solving a problem. This can
be accomplished by writing a software code for the method or the algorithm.
It is often difficult for a newcomer to write a software code if the algorithm
such as, say, Broyden–Fletcher–Goldfarb–Shanno (BFGS) or PSO is given to
him or her. In this book, a step-by-step approach is followed in developing
the software code from the algorithm. The codes are then applied to solve
some standard functions taken from the literature. This creates understand-
ing and confidence in handling different solution methods. The software
codes are then suitably modified to solve some real-world problems. A few
books on optimization have also followed this approach. However, the soft-
ware code in these books is hard to correlate with the corresponding algo-
rithms mentioned in the book and readers are forced to use them as black
box optimization tools. The codes presented in this book are user friendly in
the sense that they can be easily understood. A number of practical problems
are solved using these codes.

© 2015 by Taylor & Francis Group, LLC

xii Preface

The codes are written in the MATLAB® environment and the use of ready-
made optimization routines available in MATLAB is avoided. The algorithms
are developed right from computing the gradient or Hessian of a function to
a complex algorithm such as for solving a constraint optimization problem.
MATLAB is a software package for technical computing that performs both
computing and visualization with ease. It has a number of built-in func-
tions that can be used by an individual’s application. The main advantage
of MATLAB is the ease with which readers can translate their ideas into an
application.

The book covers both gradient and stochastic methods as solution tech-
niques for unconstrained and constrained optimization problems. A sepa-
rate chapter (Chapter 5) is devoted to stochastic methods, where genetic
algorithm, PSO, simulated annealing, ant colony optimization, and tabu
search methods are discussed. With simple modifications of the basic PSO
code, one can also solve nonconvex multiobjective optimization problems.
This is probably the first optimization book in which MDO architectures
are introduced (Chapter 9). Software codes are also developed for the sim-
plex method and affine-scaling interior point method for solving linear pro-
gramming problems. Gomory’s cutting plane method, branch-and-bound
method, and Balas’ algorithm are also discussed in the chapter on integer
programming (Chapter 10). A number of real-world problems are solved
using the MATLAB codes given in the book. Some applications that are
included in this book are solving a complex trajectory design problem of a
robot (Chapter 3), multiobjective shape optimization problem of a reentry
body (Chapter 7), portfolio optimization problem (Chapter 4), and so forth.

I thank my organization, Vikram Sarabhai Space Centre (a lead center of
Indian Space Research Organisation [ISRO]), for giving permission to pub-
lish this book. The book has been reviewed internally by Dr. Mohankumar
D., Head, Computer Division. I thank him for his suggestions and correc-
tions. I thank Mr. Pandian, S., Deputy Director, VSSC for supporting the idea
to write this book. I am ever grateful to Prof. M Seetharama Bhat from IISc,
Bangalore and Dr. Adimurthy, V. for their support during the last ten years.
I thank my colleagues Dr. Jayakumar K., Mr. Priyankar, B., Mr. Sajan Daniel
and Mr. Amit Sachdeva for many hours of discussions on book-related
aspects.

I am grateful to Taylor & Francis Group for agreeing to publish this book
and agreeing to most of my suggestions. Much credit should be given to
Ms. Aastha Sharma, Editor, for her prompt actions and follow-up with the
reviewers. Thanks are also due to three anonymous reviewers for their criti-
cal remarks, corrections, and suggestions. I thank Mr. Sarfraz Khan, assistant
to Ms. Aastha Sharma, for providing online support in signing the contract.
I also thank Mr. David Fausel for coordinating and reviewing the style and
art files of the book. My sincere thanks to Mr. Ed Curtis and Ms. Amor Nanas
for language corrections, copyediting, and other production related works.
The cover page is designed by Mr. Kevin Craig.

© 2015 by Taylor & Francis Group, LLC

xiiiPreface

I thank the MATLAB book program for supporting the idea of this book
on optimization with MATLAB codes. They have also agreed to give wide
publicity to this book on their website, for which I am grateful.

I thank my wife, Manju, and children, Abhinav and Aditi, for their patience
during the last two years. In fact my whole family—father, brothers, sister,
and in-laws—are eagerly waiting for the launch of this book.

This is the first edition of this book. Some errors and omissions are
expected. The MATLAB codes are validated with a number of test problems
taken from the literature. It is still possible that some pathways in the codes
would not have been exercised during this validation. As a result, no claim is
made that these codes are bug-free. I request readers to report corrections and
suggestions on this book at rk_arora@vssc.gov.in or arora_rajesh@rediffmail
.com.

The MATLAB codes mentioned in this book can be downloaded from the
weblink http://www.crcpress.com/product/isbn/9781498721127.

Rajesh Kumar Arora, PhD, MBA, FIE

MATLAB® is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

© 2015 by Taylor & Francis Group, LLC

© 2015 by Taylor & Francis Group, LLC

xv

Author

Rajesh Kumar Arora is a senior engineer with the Indian Space Research
Organization (ISRO), where he has been working for more than two decades.
He earned his PhD in aerospace engineering from the Indian Institute of
Science, Bangalore. He has published a book titled Fundamentals of Aerospace
Engineering. His area of research includes mission design, simulation of
launch vehicle systems, and trajectory optimization. He also has a master’s
degree in business administration and is a Fellow of Institution of Engineers
(India).

© 2015 by Taylor & Francis Group, LLC

© 2015 by Taylor & Francis Group, LLC

1

1
Introduction

1.1 Historical Review

Optimization means finding the best solution among many feasible solu-
tions that are available to us. Feasible solutions are those that satisfy all the
constraints in the optimization problem. The best solution could be mini-
mizing the cost of a process or maximizing the efficiency of a system. Some
simple optimization problems that come to mind are machine allocation
and diet problems. In the machine allocation problem, one has to find how
jobs are to be allocated to different machines of different capacities and with
different operating costs so as to meet the production target with minimum
cost. In the diet problem, different food types are available with different
nutritional contents at different costs. The aim is to estimate different quan-
tities of food so that nutritional requirements are met for an individual at
minimum cost.

Though rigorous mathematical analysis of the optimization problems was
carried out during the 20th century, the roots can be traced back to about
300 b.c., when the Greek mathematician Euclid evaluated the minimum dis-
tance between a point and a line. Another Greek mathematician, Zenedorous,
showed in 200 b.c. that a figure bounded by a line that has a maximum area
for a given perimeter is a semicircle.

In the 17th century, Pierre de Fermat, a French mathematician, laid the
foundation of calculus. He showed that the gradient of a function vanishes
at the maximum or minimum point. Moving further in the timeline, Newton
and Leibniz laid mathematical details for the calculus of variations. This
method deals with maxima or minima of functionals. The foundation for the
calculus of variations is credited to Euler and Lagrange (in the 18th century),
as they provided rigorous mathematical details on this topic. Subsequently,
Gauss and Legendre developed the least squares method, which is exten-
sively used even today. Cauchy used the steepest descent method to solve
unconstrained optimization problems.

© 2015 by Taylor & Francis Group, LLC

2 Optimization: Algorithms and Applications

The first textbook on optimization was authored by Harris Hancock and
published in 1917. In 1939, Leonid Kantorovich presented the linear pro-
gramming (LP) model and an algorithm for solving it. A few years later in
1947, George Dantzig presented a simplex method for solving LP problems.
Kantorovich and Dantzig are regarded as pioneers who provided break-
throughs in the development of optimization techniques. The conditions
for constrained optimization were brought together by Harold Kuhn and
Albert Tucker in 1951 and also earlier by William Karush in 1939. Richard
Bellman laid the principles of dynamic programming problems in which a
complex problem is broken down into smaller subproblems. Ralph Gomory’s
contribution to the development of integer programming is worth noting,
as in this type of optimization problem, design variables can take integer
values such as 0 and 1.

With the advent of computers in the 1980s, subsequently many large-scale
problems were solved. Present-day problems in the optimization area are
of the multidisciplinary and multiobjective type. The solution techniques
that are employed today to solve complex optimization problems are not just
gradient-based algorithms, but also include nontraditional methods such as
genetic algorithms, ant colony optimization, and particle swarm optimiza-
tion that mimic natural processes.

Today, optimization methods are required to solve problems from all dis-
ciplines, whether economics, sciences, or engineering. As a result of stiff
competition in virtually all disciplines, the role of optimization has become
still more substantial as one aims to minimize the cost of a product or wants
to allocate resources judiciously. A simple example from the subject field of
aerospace engineering can prove this point. The cost of putting 1 kilogram
of payload in a low Earth orbit is typically about US$15,000. The fuel and
structural weight of the different stages of the rocket strongly influence the
payload mass, as does the trajectory of the rocket. Of course, one can reduce
the structural weight of a stage only to the extent it should not fail because of
aerodynamic and other loads. The optimization problem that aims at maxi-
mizing the payload mass is highly complex and requires algorithms that run
on high-speed computers. Even if the optimization technique results in few
extra kilograms in payload, it represents large revenue for the space agency.

In the next section, we introduce to the optimization problem design vari-
ables, constraints, and applications of optimization in different domains.
Further in the chapter, modeling aspects of a physical problem are explained
that convert the verbal problem to a mathematical form. The solution of sim-
ple optimization problems with up to two design variables is explained by
the graphical method. The importance of convex function in optimization
is then explained. The chapter concludes with an introduction to the math-
ematical preliminaries of the gradient vector, Hessian matrix, directional
directive, and linear and quadratic approximation of the function. The road
map of this chapter is given in Figure 1.1.

© 2015 by Taylor & Francis Group, LLC

3Introduction

1.2 Optimization Problem

In an optimization problem, a function is to be maximized or minimized.
The function that is being optimized is referred to as the objective function
or the performance index. The function is a quantity such as cost, profit,
efficiency, size, shape, weight, output, and so on. It goes without saying that
cost minimization or profit maximization are prime considerations for most
organizations. Certain types of equipment, such as air conditioners or refrig-
erators, are designed with different optimization criteria to have higher effi-
ciency in terms of reducing energy consumption requirements of the user.
However, this higher efficiency evidently comes at a higher cost to the user.
Weight minimization is a prime consideration for aerospace applications.

The variables in the objective function are denoted the design variables
or decision variables. Typically it could be the dimensions of a structure or
its material attributes, for a structure optimization problem. From practical
considerations, design variables can take values within a lower and an upper
limit only. For instance, the maximum capacity of a machine is limited to a
certain value. The design variables can be a real or a discrete number, binary,
or integer type. Though a majority of the design variables in the optimi-
zation problems are real, some variables can also be discrete. For example,
pipe sizes come in standard numbers such as 1, 2, or 5 inches. If pipe size is

Optimization problem

Modeling of the problem

Convexity

Gradient vector, Hessian matrix, and
directional derivative

Linear and quadratic
 approximation

Solution with graphical method

Book layout

FIGURE 1.1
Road map of Chapter 1.

© 2015 by Taylor & Francis Group, LLC

4 Optimization: Algorithms and Applications

used as a design variable in an optimization problem, it has to be treated as
discrete only. There is no point in selecting it as a real number and getting a
solution such as, say, 3.25 inches, a pipe dimension that really does not exist.
See Table 1.1 for some typical objective functions and design variables for
optimization problems from different disciplines.

The optimization problem can be mathematically expressed as follows.

Minimize

 f(x) (1.1)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m < n (1.2)

 hj(x) = 0 j = 1, 2,…, r < n (1.3)

 xl ≤ x ≤ xu

where x is a vector of n design variables given by

 x =





















x

x

xn

1

2



The functions f, gi, and hj are all differentiable. The design variables are
bounded by xl and xu. The constraints gi are called inequality constraints and

TablE 1.1

Typical Optimization Problems

Discipline Design Variables Objective Function

Manufacturing Productivity from different machines Minimize cost
Corporate Different capitals from projects Maximize the net present value
Airline Different aircrafts, different routes Maximize the profit
Aerospace Propellant fraction in different stages Maximize the payload
Agriculture Different crops Maximize the yield
Biology Gene interaction Network stability
Electronics Size of the devices Minimize the power consumption
Portfolio Investment in stocks/bonds Maximize the return
Thermal Dimensions and material properties Minimize the heat load

© 2015 by Taylor & Francis Group, LLC

5Introduction

hj are called equality constraints. An example in the aerospace industry is
to restrict the dimensions of the spacecraft so that in can be accommodated
inside the payload fairing of a rocket. These restrictions are the constraints of
the optimization problem. The constraints are functions of the design vari-
ables. In addition, the number of equality or inequality constraints is lower
than the number of design variables (n). If the design variables satisfy all
the constraints, they represent a feasible set and any element from the set
is called a feasible point. The design variables at which the minimum of f(x)
is reached are given by x*. If the optimization problem does not have any
constraints, it is referred to as an unconstrained optimization problem. If the
objective function and constraints are linear functions in x then the optimi-
zation problem is termed a linear programming problem (LPP).

1.3 Modeling of the Optimization Problem

Modeling refers to expressing observations about a problem in mathemati-
cal form using basic building blocks of mathematics such as addition, sub-
traction, multiplication, division, functions, and numbers with proper units.
Observations refer to data obtained for the problem in hand, by varying cer-
tain parameters of the problem through experiments. Further, mathemati-
cal models provide predictions of the behavior of the problem for different
inputs. If the model does not yield expected results, it has to be refined by
conducting further experiments. The mathematical model is not unique for
different problems, as observed data can be discrete (defined at select inter-
vals) or continuous and can vary in different fashion (say, linear or quadratic)
with change in input parameters. Some simple mathematical models of dif-
ferent physical phenomena are presented next.

The pressure (P), volume (V), and temperature (T) relationship of a gas is
given by Boyle’s law as

 PV = kT (1.4)

where k is a constant. Using this mathematical model, the behavior of a gas
can be predicted (say, pressure) for the different input parameters (say, tem-
perature), keeping the volume of the gas constant.

An example from economics could be constructing a mathematical model
for the demand–supply problem. The price of a product is to be calculated so
as to maximize the profit. It is well known that if the price of the merchan-
dise is kept high, profit per unit will increase but then demand for the prod-
uct may be low. Likewise, if the price of the product is kept low, profit per
unit will decrease, but then demand for the product may be higher. Typically,
demand (D) varies with price (P) as

© 2015 by Taylor & Francis Group, LLC

6 Optimization: Algorithms and Applications

 D
c

c P
=

+
1

2
2 (1.5)

where c1 and c2 are constants.
Some problems can be written mathematically in differential equation form.

A differential equation contains an unknown function and its derivatives.
As the derivative represents the rate of change of a function, the differen-
tial equation represents the continuously varying quantity and its rate of
change. For example, the temperature change (with respect to time) of an
object is proportional to the difference between the temperature (T) of the
object and that of its surroundings (Ts) and can be represented in differential
equation form as

dT
dt

k T T= − −()s (1.6)

Equation 1.6 is also referred to as Newton’s law of cooling. The solution of the
differential equation is a function that satisfies the differential equation for
all values of the independent variable in the domain. As the name suggests,
independent variables are changed during an experiment and the dependent
variable responds to this depending on on the type of the experiment being
conducted. A differential equation can have many solutions (referred to as
general solution). A particular solution is one such solution. Often, a differ-
ential equation has a closed form solution. For example, the solution for the
differential equation representing Newton’s law of cooling is

 T(t) = Ts + (To − Ts)e−kt (1.7)

Not all problems have closed form solutions and such problems have to be
numerically simulated to arrive at the solutions.

Therefore, using modeling, one can construct the objective function as well
as the constraint functions for the optimization problem. One can then use
different optimization techniques for solving such problems. The following
examples illustrate how to formulate an optimization problem by construct-
ing the objective and constraint functions.

Example 1.1

In a diet problem, an individual has to meet his daily nutritional require-
ments from a menu of available foods at a minimum cost. The avail-
able food items are milk, juice, fish, fries, and chicken. The nutrient
requirements to be met are for proteins, vitamins, calcium, calories, and
carbohydrates. Table 1.2 shows the cost in dollars of the food items per
serving, nutrient values are shown in rows against their names (such as

© 2015 by Taylor & Francis Group, LLC

7Introduction

proteins, vitamins, etc.) per serving, and the last column indicates the
minimum daily requirements of the nutrients.

The first step is to select the design variables for the problem. It appears
obvious to select quantities of food items such as fish, fries, and so on as
the design variables. Let us represent the design variables by x1, x2, x3, x4,
and x5 for quantities in milk, juice, fish, fries, and chicken respectively.
As discussed earlier, the objective function and constraints are a func-
tion of these design variables. In this particular problem, the objective
function is to minimize the cost of the food items purchased. If x3 is
the quantity of fish ordered and $2 is its unit price, then the total cost
of the fish item is 2x3. In a similar way, we can evaluate the cost of other
items such as milk, juice, and so on. Hence the total cost of the food
items is

 1.1x1 + 1.2x2 + 2x3 + 1.3x4 + 3x5

Note that the cost function or the objective function is linear; that is, x1
is not dependent on x2 or any other variable. Having defined the objec-
tive function, let us define the constraints for the problem. In the prob-
lem it is clearly mentioned that the nutritional needs of the individual
have to be met. For example, a minimum protein requirement of 60 units
is to be met. Similarly, minimum requirements of other nutrients such
as vitamins, calcium, and so forth are also to be met. Now, we can write
the first constraint as

 8x1 + 2x2 + 15x3 + 4x4 + 30x5 ≥ 60 (1.8)

Note that this constraint is an inequality. In a similar fashion, we can
write other constraints. We are now ready to write the objective function
and constraints for the diet problem.

Minimize

 1.1x1 + 1.2x2 + 2x3 + 1.3x4 + 3x5 (1.9)

TablE 1.2

Data for the Diet Problem

Milk Juice Fish Fries Chicken Required

Cost 1.1 1.2 2.0 1.3 3.0
Proteins 8 2 15 4 30 60
Vitamins 9 3 3 1 9 100
Calcium 35 3 17 1 16 120
Calories 100 90 350 200 410 2100
Carbohydrates 10 20 40 25 40 400

Note: Construct the objective function and the constraints for this optimization problem.

© 2015 by Taylor & Francis Group, LLC

8 Optimization: Algorithms and Applications

subject to

 8x1 + 2x2 + 15x3 + 4x4 + 30x5 ≥ 60 (1.10)

 9x1 + 3x2 + 3x3 + x4 + 9x5 ≥ 100 (1.11)

 35x1 + 3x2 + 17x3 + x4 + 16x5 ≥ 120 (1.12)

 100x1 + 90x2 + 350x3 + 200x4 + 410x5 ≥ 2100 (1.13)

 10x1 + 20x2 + 40x3 + 25x4 + 40x5 ≥ 400 (1.14)

Once the optimization problem is defined, one has to use standard
optimization techniques in evaluating the design variables x1, x2, x3, x4,
and x5. These methods are described in the later chapters. In this chapter,
we are focusing on the formulation of the optimization problem.

Example 1.2

A soft drink manufacturer needs to produce a cylindrical can that can
hold 330 mL of a soft drink. He wants to make the dimensions of the
container such that the amount of material used in its construction is
minimized. Formulate the optimization problem by writing down the
objective function and the constraint.

The design variables for the optimization problem are the radius and
the height of the can. Let these variables be denoted by x1 and x2 with
units in millimeters (Figure 1.2). The cylindrical can consists of a curved
portion and two circular ends. The area of the curved portion is given by
2πx1x2 and the area of two circular lids is given by 2 1

2πx . Hence, the total
area that needs to be minimized is 2 21 2 1

2π πx x x+ . The volume of the can
is given by πx x1

2
2. This volume is to be limited to 330 mL or 330,000 mm3.

Now we are ready to formulate the optimization problem.

Minimize

 2 21 2 1
2π πx x x+ (1.15)

x1

x2

FIGURE 1.2
Cylindrical can.

© 2015 by Taylor & Francis Group, LLC

9Introduction

subject to

 πx x1
2

2 330 000= , (1.16)

Note that in this optimization problem, the constraint is an equality.

Example 1.3

The shape of a reentry body is a spherical nose, a conical body, and a flared
bottom (see Figure 1.3). The design variables through which the configura-
tion of the reentry body can be altered are nose radius (Rn), cone length (l1),
cone angle (θ1), flare length (l2), and flare angle (θ2). By varying the design
variables, the area (A) of the reentry capsule is to be minimized. As the
reentry capsule has to house electronic packages and other instruments,
it must have a certain minimum volume (V), which is specified as 1 m3.

The design variables are bounded between a minimum and maximum
value. Rn can take a value between 0.4 and 0.6 m, l1 and l2 can take a value
between 0.4 and 0.8 m, θ1 can take a value between 22 and 27 degrees,
and θ2 can take a value between (θ1 + 5) and (θ1 + 10) degrees. Formulate
the shape optimization problem of the reentry capsule.

The total surface area and volume of the capsule are computed using
the equations

A R R R R R l

R R

n

B

= − + + − +

+ +

2 12
1 1 2 2 1

2
1
2

2

π θ π

π

()sin () ()

() (RR R l RB B− + +2
2

2
2 2) π (1.17)

V

R
R R

l R R

n= − + −()

+ +

π θ θ

π

()sin
(sin)

1
6

3 1

1
3

1
1
2

1
2

1
2

1 1
2

2
22

1 2 2
2

2
2

2
1
3

+() + + +()R R l R R R RB Bπ

(1.18)

Flare

Conical body

Spherical nose

θ1

θ2
l2

l1

R

FIGURE 1.3
Reentry capsule.

© 2015 by Taylor & Francis Group, LLC

10 Optimization: Algorithms and Applications

where

 R1 = Rn cos θ1 (1.19)

 R2 = Rn cos θ1 + l1 tan θ1 (1.20)

 RB = R2 + l2 tan θ2 (1.21)

The optimization problem can now be written as

Minimize

2 12
1 1 2 2 1

2

1
2

2

π θ π

π

R R R R R l

R R R

n

B B

()sin ()

()

− + + −() +

+ + − RR l RB2

2

2
2 2() + + π (1.22)

subject to

π θ θ πR
R R l R Rn()sin

(sin)
1

6
3 1

1
3

1
1
2

1
2

1
2

1 1
2

2
2− + −() + + + RR R

l R R R RB B

1 2

2
2

2
2

2
1
3

1

()

+ + +() ≥π

(1.23)

 0.4 < Rn < 0.6 (1.24)

 22 < θ1 < 27 (1.25)

 θ1 + 5 < θ2 < θ1 + 10 (1.26)

 0.4 < l1 < 0.8 (1.27)

 0.4 < l2 < 0.8 (1.28)

Example 1.4

It is required to find the optimum diameter (d) of a solid steel shaft
whose mass (M) is to be minimized and the first cantilever frequency
has to be greater than 20 Hz. Formulate this as an optimization problem
by writing down the objective function and the constraint.

If L is the length of the rod (Figure 1.4) and ρ is its density, then the
mass of the rod is given by

 M d L= π ρ
4

2 (1.29)

© 2015 by Taylor & Francis Group, LLC

11Introduction

For this problem, L = 1 m and ρ = 7800 kg/m3. The first cantilever fre-
quency is given by

 f
L

EI
k1 2

1
2

3 5156=
π

. (1.30)

where E is Young’s modulus of steel and its value is 2 × 1011 N/m2. The
variable k is mass per unit length. The moment of inertia I for the rod is
given by

 I d= π
64

4 (1.31)

The optimization problem can be written as follows.

Minimize

π ρ
4

2d L (1.32)

subject to

 1
2

3 5156
202π

.
L

EI
k

≥ (1.33)

1.4 Solution with the Graphical Method

Having formulated the optimization problems in the previous section, it
is tempting for readers to get solutions for these problems. The graphical
method is a simple technique for locating the optimal solution for problems
with up to two to three design variables. Beyond three variables, the rep-
resentation of the optimization problem through graphs becomes complex.

L

d

FIGURE 1.4
Cantilever rod.

© 2015 by Taylor & Francis Group, LLC

12 Optimization: Algorithms and Applications

The optimization problem mentioned in Example 1.2 requires two design
variables, x1 and x2, to be evaluated such that it minimizes the total surface
area and at the same time satisfying the equality constraint. A MATLAB®
code, graph_examp12.m, given at the end of this book, is used for drawing the
graph for this problem. For a quick introduction to MATLAB, see Appendix A.

The variable x1 is varied from 1 to 100 mm and the variable x2 is varied
from 1 to 200 mm in the code. The surface area is calculated based on the val-
ues x1 and x2 and contour of the objective function is plotted (Figure 1.5) for
different values of x1 and x2. The constraint function is then plotted (marked
with *). Because this is an equality constraint optimization problem, the min-
imum value of the objective function is the contour curve that touches the
constraint curve and has the lowest value. The minimum value of the objec-
tive function is 26,436 mm2 corresponding to design variables x1 as 37.45 mm
and x2 as 74.9 mm. Note that the length of the can is two times its radius at the
minimum point. This can be proved analytically using elementary calculus.

Similarly, the optimization problem mentioned in Example 1.4 has only
one design variable, the diameter d of the rod. Again, we can use a graphical
method to solve this problem. A MATLAB code, graph_examp14.m, is written
for this problem.

On executing the code, the output is in the form of a graph or a plot as
shown in Figure 1.6. The value of the objective function (along the y-axis)
decreases with the reduction in the value of the design variable (along the
x-axis). However, the constraint value (also plotted along the y-axis) also
decreases with the reduction in the value of the design variable. In the opti-
mization problem, it is given that the constraint should have a value that is
equal to or greater than 20 Hz. Hence the optimum solution corresponds to

90,000

70,00026,436

15,000

50,00015,000

50,000

70,000

90,000

15,000

50,000

70,000

26,436

90000

x1 (mm)

x 2
 (m

m
)

10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

160

180

200
Objective function
Constraint

26,436

FIGURE 1.5
Function contours for the optimization problem in Example 1.2.

© 2015 by Taylor & Francis Group, LLC

13Introduction

d = 0.0283 m, where the value of the objective function mass is 4.94 kg and the
constraint value is 20 Hz.

1.5 Convexity

Consider two design points, x1 and x2, that belong to a set S. If the line join-
ing these two points is also within the set S, then the set S is a convex set. If
the line joining the design points x1 and x2 does not belong to the set S, then
the set S is a nonconvex set. See Figure 1.7 for convex and nonconvex sets. In
optimization, often we have to check a function for its convexity. Consider a
single variable function f(x) as shown in Figure 1.8 and two points x1 and x2
at which the value of the function is f(x1) and f(x2) respectively. Consider any
point x on the line joining x1 and x2. If f x() is less than the value of the func-
tion at the corresponding point x̀ on the line joining f(x1) and f(x2) then f(x) is
a convex function, that is, for convexity

 f x f x
() ≤ ()` (1.34)

Examples of convex functions are x2, ex, etc. If f(x) is a convex function then
ef(x) is also a convex function. Hence, ex2

 and eex
 are also convex functions.

Let us plot (Figure 1.9) these functions in MATLAB (convexity.m) to show that
these functions are indeed convex.

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

30

35

40

d (m)

O
bj

ec
tiv

e
fu

nc
tio

n
(k

g)
, c

on
st

ra
in

t (
H

z) Objective function
Constraint

(0.0283, 4.94)

FIGURE 1.6
Objective function and constraint plot for the problem in Example 1.4.

© 2015 by Taylor & Francis Group, LLC

14 Optimization: Algorithms and Applications

The concept of convexity is important in declaring that a function has one
minimum only. A convex function thus has a global minimum. If a function
is nonconvex, the optimum reached might be a local one (see Figure 1.10).
Such functions with more than one minimum or maximum are referred to as
multimodal functions. Traditional gradient-based algorithms have difficulty
in locating a global optimum solution. In addition, a designer often has to
look for an alternative solution to a global optimum because of the pres-
ence of the constraints. For example, at a global optimum solution, the design
variables may be such that it might be difficult to manufacture the product or
the particular material might be very costly. The task of the designer is thus
difficult. He not only has to find a global optimum solution, but also locate
local optimum solutions.

x2

S

S

Convex set

Nonconvex set

x1
x1

x2

FIGURE 1.7
Convex and nonconvex sets.

x1 x2x~

~

f (x2)

f (x1)

f (x̀)

f (x)

FIGURE 1.8
Convex function.

© 2015 by Taylor & Francis Group, LLC

15Introduction

If f(x) is a convex function, then −f(x) is a concave function. Similarly, if f(x)
is a concave function, then −f(x) is a convex function. Figure 1.11 shows both
convex and concave functions for y = ex.

Typically, optimization algorithms are developed to minimize the objec-
tive function. As discussed earlier, convexity plays an important role for
functions where their minima are to be located. However, there can be opti-
mization problems where one needs to maximize the objective function f(x).
The maximization problem can be converted to the minimization type by
changing the sign of the objective function to −f(x). Mathematically,

–2 0 2 –2 0 2

–2 0 2 –2 0 2

0

2

4

0

5

10

0

1000

2000

0

20

40

60

y = x2 y = e x

y = e x 2 y = e ex
y

y

y

y

x x

x x

FIGURE 1.9
Examples of convex functions.

Local optimum

Global optimum

x1 x2

FIGURE 1.10
Local and global optima for a nonconvex function.

© 2015 by Taylor & Francis Group, LLC

16 Optimization: Algorithms and Applications

Maximize

 f(x)

is the same as
Minimize

 −f(x)

1.6 Gradient Vector, Directional Derivative,
and Hessian Matrix

The derivative or gradient of a function f(x) at a point x, generally denoted by
f′(x), is the slope of the tangent (see Figure 1.12) at that point. That is,

 f′(x) = tan θ (1.35)

where θ is the angle measured by the tangent with respect to the horizon-
tal. Along the gradient direction, there is the maximum change in the value
of the function. Thus, gradient information provides the necessary search
direction to locate the maximum or minimum of the function.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−8

−6

−4

−2

0

2

4

6

8

x

y

Convex

Concave

y = e x

y = −e x

FIGURE 1.11
Concave and convex functions.

© 2015 by Taylor & Francis Group, LLC

17Introduction

In most optimization problems, which are generally nonlinear, f′(x) has to
be evaluated numerically. We can use forward difference, backward difference,
and central difference methods to find the derivative of a function at a point. If
the value of a function f(x) is known at a point x, then the value of the func-
tion at its neighboring point x + Δx can be computed using Taylor’s series as

 f x x f x xf x
x

f x
x

f x() () ()
!

()
!

()+ = + + + +′ ′′ ′′′∆ ∆
∆ ∆2 3

2 3
 (1.36)

Rearranging Equation 1.36 gives

f x x f x

x
f x

x
f x

x
f x

() ()
()

!
()

!
()

+ − = + + +′ ′′ ′′′∆
∆

∆ ∆
2 3

2

 (1.37)

The forward difference formula for evaluating the derivative of a function
can be written as

 ′ = + − +f x
f x x f x

x
O x()

() ()
()

∆
∆

∆ (1.38)

The quantity O(Δx) represents that this formula is first-order accurate. In a
similar fashion, the backward difference formula can be written as

 ′ = − − +f x
f x f x x

x
O x()

() ()
()

∆
∆

∆ (1.39)

Tangent

f (x)
x

0
θ

FIGURE 1.12
Concept of derivative.

© 2015 by Taylor & Francis Group, LLC

18 Optimization: Algorithms and Applications

Using the forward and backward difference formulas, one can derive the
central difference formula as

 ′ = + − − +f x
f x x f x x

x
O x()

() ()
()

∆ ∆
∆

∆
2

2 (1.40)

Because the central difference formula for computing the derivative of
a function is of second order, it is more accurate than forward/backward
difference method. Again, the second derivative can be evaluated using the
equation

 ′′ = + − + −
f x

f x x f x f x x
x

()
() () ()∆ ∆

∆
2

2 (1.41)

Let us take a function

 f(x) = 2 sin 5x + 3x3 − 2x2 + 3x − 5 (1.42)

and compute the first and second derivatives using the central difference
formula for x ranging from 0.1 to 1.0 with Δx as 0.01. A MATLAB code,
derivative.m, is written and the output is plotted in Figure 1.13.

The top plot in the Figure 1.13 is f(x) varying with x. Note that the function
has one maximum and one minimum and these points are shown with *.
The derivative of the function is plotted in the second plot. Note that f′(x) = 0
at the maximum and minimum of the function. From the third plot, observe

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

–4

–3

–2

f (
x)

–20

–100

0

20

f ´
(x

)

0

100

x

f ˝
(x

)

FIGURE 1.13
Plot of a function with its first and second derivative.

© 2015 by Taylor & Francis Group, LLC

19Introduction

that f″(x) ≥ 0 at the minimum and f″(x) ≤ 0 at the maximum of the function.
The second derivative provides curvature information of the function.

For certain functions such as f(x) = x3, both f′(x) = f″(x) = 0 at x* = 0. In such
instances, one has to look for higher order derivatives. Here f‴(x) = 6, which
is nonzero. If the first nonzero higher order derivative is denoted by n, then
x* is an inflection point (or a saddle point) if n is odd and x* is local optimum if
n is even. Therefore, x* is an inflection point for the function f(x) = x3, as the
first nonzero higher order derivative is odd (third derivative). Similarly, it
can be shown that the function f(x) = x4 has a local minimum at x* = 0. These
two functions are plotted in Figure 1.14.

So far we considered the derivative of a function with one variable only.
The gradient is a vector that contains partial derivatives of the function with
respect to the design variables (x1, x2, ⋯, xn) and is mathematically written as

 ∇ =

∂
∂
∂

∂

∂
∂































f

f
x

f
x

f
xn

1

2



 (1.43)

Let us plot a tangent and gradient at a given point (x1, x2) on the function
contours for Example 1.2. For a single-variable case, we observed that the
tangent at any point for a function and its gradient are the same (Figure 1.12).

–2 0 2
–8

–6

–4

–2

0

2

4

6

8

0

2

4

6

8

10

12

14

16

y y

x
–2 0 2

x

y = x 3 y = x 4

FIGURE 1.14
Saddle point and local minimum functions.

© 2015 by Taylor & Francis Group, LLC

20 Optimization: Algorithms and Applications

However, for a two-variable case, the tangent for each function contour is
different and the value of the function remains the same along the tangent,
that is, along a tangent

 ∆ ∆ ∆f
f
x

x
f
x

x=
∂

∂
+

∂
∂

=
1

1
2

2 0 (1.44)

The gradient is normal to the tangent. A MATLAB code, grad.m, is written
that on execution gives an output shown in Figure 1.15. On the function con-
tour with a value of 15,000, a point (25, 70.493) is located where we desire to
plot the tangent and gradient. Using Equation 1.44, we can write

 ∆ ∆ ∆x

f
x
f
x

x
x x

x
x2

1

2

1
1 2

1
1

2= −

∂
∂
∂

∂

= − +
 (1.45)

Using the incremental Equation 1.45, a tangent can be drawn at the point
(25, 70.493). If the slope of the tangent is given by mt, then the slope of the
gradient mg can be computed from the relation

 mgmt = −1 (1.46)

Consider three functions, f1(x1, x2, x3), f2(x1, x2, x3), and f3(x1, x2, x3), which
are functions of three variables, x1, x2, and x3. The gradient of these functions

5000

5000
5000

15,000

15,000

15,000

30,000

30,000

30,000

50,000

50,000

50,000

70,000

70,000

70000

90,000

90000

x1 (mm)

x 2
 (m

m
)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
Objective function
Tangent
Gradient

FIGURE 1.15
Tangent and gradient for the objective function given in Example 1.2.

© 2015 by Taylor & Francis Group, LLC

21Introduction

can be put in a single matrix referred to as a Jacobian J and is expressed in
mathematical form as

 []J =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

f
x

f
x

f
x

f
x

f
x

f
x

f
x

1

1

1

2

1

3

2

1

2

2

2

3

3

1

ff
x

f
x

3

2

3

3∂
∂
∂



























 (1.47)

For constrained optimization problems, it is possible that moving in the
gradient direction can result in moving into the infeasible region. In such an
instance one wishes to move in some other search direction and would like
to know the rate of change of function in that direction. The directional deriva-
tive provides information on the instantaneous rate of change of a function
in a particular direction. If u is a unit vector, then the directional derivative
of a function f(x) in the direction of u is given by

 ∇f(x)T u

The Hessian matrix H represents the second derivative of a function with
more than one variable. For a function f(x1, x2, x3) with three variables, the
Hessian matrix is written as

 []H =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

1
2

2

1 2

2

1 3

2

2 1

2

2
2

2

f
x

f
x x

f
x x

f
x x

f
x

f
x22 3

2

3 1

2

3 2

2

3
2

x

f
x x

f
x x

f
x

∂
∂

∂
∂

∂
∂



























 (1.48)

The Hessian matrix should be positive definite at the minimum of the func-
tion. A matrix is positive definite if its eigenvalues are positive. For a square
matrix, there exists a nonzero vector such that when multiplied with the
square matrix it results in a vector that differs from the original by a multipli-
cative scalar. The nonzero vector is termed the eigenvector and the multipli-
cative scalar the eigenvalues. Let us check the eigenvalues for the following
matrix by executing a MATLAB code, positive_definite.m:

 H =
















2 1 1
1 2 1
0 2 3

 (1.49)

© 2015 by Taylor & Francis Group, LLC

22 Optimization: Algorithms and Applications

The eigenvalues of the matrix are 1, 1.5858, and 4.4142. Because all the
eigenvalues are positive, the matrix is positive definite.

Example 1.5

Write a gradient and Hessian matrix for the function

 f x x x x x x x()x = + + + −1
2

1 2 2
2

3
2

2 32 3 4 5

Also find the directional derivative of the function at (1, 1, 1) in the
direction

 d =
















1
2
3

The gradient is given by

 ∇ =
+

+ −
−



















f

x x

x x x

x x

()x

2 2

2 6 5

8 5

1 2

1 2 3

3 2

The Hessian is given by

 H = −
−

















2 2 0
2 6 5
0 5 8

The unit vector in direction d is given by

 u
d
d

= =
+ +

















=











1

1 2 3

1
2
3

1 14

2 14

3 14
2 2 2

/

/

/ 






Now, the directional derivative of the function at (1, 1, 1) in the direc-
tion of the unit vector u is given by

 ∇ =  



















=f T()x u 4 3 3

1 14

2 14

3 14

19 14

/

/

/

/

© 2015 by Taylor & Francis Group, LLC

23Introduction

1.7 Linear and Quadratic Approximations

A quadratic approximation of a function is often desired in optimization, as
certain solution methods such as Newton’s method show faster convergence
for these functions. The Taylor series approximation, as discussed in an ear-
lier section, is used to make linear or quadratic approximations of a function
by appropriately considering the number of terms in the series. A MATLAB
code, quadr.m, is written that demonstrates linear and quadratic approxima-
tions (Figure 1.16) of a function e−x.

The Taylor series approximation can be easily extended to a function with
n variables and is given by the expression

 f f f T T() () ()x x x x x x H x+ = + ∇ + +∆ ∆ ∆ ∆
1
2

 (1.50)

For a linear approximation of the function, only the gradient term is used
and the Hessian term is ignored. For a quadratic approximation of the func-
tion, the Hessian term is considered along with the gradient term.

For a function with two variables, as in Example 1.2, a MATLAB code,
quadr_examp12.m, is written to make a quadratic approximation of the func-
tion. On executing the code, quadratic approximations are plotted (Figure
1.17) along with the function contours. The gradient and Hessian for this
function are

 ∇ =
+











f
x x

x
()x

2 4

2
2 1

1

π π
π (1.51)

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–1

0

1

2

3

4

5

6

7

8

x

f (
x)

Exp(−x)
Linear
Quadratic

FIGURE 1.16
Linear and quadratic approximation of the function e–x.

© 2015 by Taylor & Francis Group, LLC

24 Optimization: Algorithms and Applications

 H =










4 2
2 0

π π
π

 (1.52)

Example 1.6

Construct linear and quadratic approximations for the function

 f x
x
x

()x = −3 2
1

2

at a point (2, 1).
The gradient is given by

 ∇ =
−

+





















∇ = −


f

x

x
x

f() ; ()

x x

1

3

1
5

2

1

2
2

0 





The Hessian is given by

H =

−





















=
−











0
1

1 2
0 1
1 4

2
2

2
2

1

2
3

x

x
x

x

150,000

150,000

200,000

200,000

200000

x1 (mm)
20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200
Objective function
Quadratic approx.

x 2
 (m

m
)

50,000
60,000
70,000
80,000
90,000

50,000
60,000
70,000
80,000
90,000

50,000
60,000
70,000
80,000
90,000

15,000
15,000

15,000

150,000

FIGURE 1.17
Quadratic approximation of the objective function in Example 1.2.

© 2015 by Taylor & Francis Group, LLC

25Introduction

The linear approximation of the function is given by

l f f

x

x

T() () () ()x x x x x= + ∇ −

= + − 
−
−









0 0 0

1

2

1 1 5
2

1 



= − + −x x1 25 2

The quadratic approximation of the function is given by

 q f f T T() () () () ()()x x x x x x x H x x= + ∇ − + − −0 0 0 0 0
1
2

 q x x
x

x
x x

x
x()

()
(

()
x = − − + − − −








−5 2
2

2
1

12 1
1

2
2

1 2

2
3 2))

()()+ − −x x
x

1 2

2
2

2 1
2

1.8 Organization of the Book

The book is organized into 11 chapters. Chapter 2 discusses 1-D algorithms
such as the bisection, Newton–Raphson, secant, and golden-section methods.
These algorithms form the building blocks for the unconstrained optimiza-
tion methods such as the steepest descent, Newton, Levenberg–Marquardt,
conjugate gradient, Davidon–Fletcher–Powell (DFP), and Broyden–Fletcher–
Goldfarb–Shanno (BFGS) methods, which are discussed in Chapter 3. The
direct search Powell’s method is used to solve a complex robotics problem.
Chapter 4 elaborates on linear programming where simplex, dual simplex,
and interior-point methods are discussed. A practical portfolio optimiza-
tion problem is also solved in this chapter. Genetic algorithm, simulated
annealing, and particle swarm optimization techniques are elaborated in
Chapter 5. Ant colony optimization and the tabu search method are also
briefly introduced here. Solution techniques such as penalty function, aug-
mented Lagrangian, sequential quadratic programming, and methods of
feasible directions are discussed in Chapter 6 for constrained optimization
problems. Multiobjective optimization methods are discussed in Chapter 7.
The shape design of a reentry body is optimized and discussed in this chap-
ter. In Chapter 8, both unconstrained and constrained problems are solved
using geometric programming techniques. Chapter 9 discusses multidisci-
plinary design optimization (MDO), where different architectures are con-
sidered. The importance of response surface methodology is highlighted for

© 2015 by Taylor & Francis Group, LLC

26 Optimization: Algorithms and Applications

MDO problems. Gomory’s cutting plane method, zero-one problem, Balas’
method, branch-and-bound method, and so forth are discussed in Chapter 10
on integer programming. Both deterministic and probabilistic aspects of
dynamic programming are discussed in Chapter 11. See Figure 1.18 for a
quick glance at the organization of the book.

Chapter 2
1-D optimization

•
•
•

Test problem
Solution techniques
Comparison

Chapter 3
Unconstrained optimization

Chapter 4
Linear programming•

•
•

•

Genetic algorithm
Simulated annealing
Particle swarm
optimization
ACO and tabu search

•
•
•
•
•
•

Graphical method
Standard form
Basic solution
Simplex method
Interior-point method
Portfolio optimization

Chapter 6
Constrained optimization

Chapter 7
Multiobjective optimization

•

•
•
•
•

Weighted sum
approach
Goal programming
ε-constraints method
Utility function method
Application

•
•
•

Optimality conditions
Solution techniques
Application

Chapter 5
Random search methods

Chapter 8
Geometric programming

Chapter 9
MDO

Chapter 11
Dynamic programming

•
•
•

Architecture
Framework
Response surface

•
•
•

Gomory’s method
Balas’ method
Branch-and-bound
method

•
•
•
•

Unconstrained problem
Dual problem
Constrained problems
Application

Chapter 10
Integer programming

•
•

Deterministic
Probabilistic

•
•
•
•
•

Unidirectional search
Test problem
Solution techniques
Additional test functions
Application to robotics

Chapter 1
Introduction

FIGURE 1.18
Organization of the book.

© 2015 by Taylor & Francis Group, LLC

27Introduction

Chapter Highlights

•	 In an optimization problem, we write the objective function that is to
be maximized or minimized along with inequality and equality con-
straints. The objective function and constraints are a function of the
design variables that need to be evaluated by the optimization methods.

•	 The design variables can be a real number or could be of the discrete,
binary, or integer type.

•	 Modeling refers to writing down the observations of a problem in
mathematical form using basic building blocks of mathematics such
as addition, subtraction, multiplication, division, functions, and
numbers with proper units.

•	 The gradient at a point is the slope of the tangent at that point.
•	 If the objective function and constraints are linear functions of the

design variables, it is referred to as a linear programming problem.
These functions do not contain terms such as x1x2 and x1

2.
•	 The graphical method can be applied to solve the optimization prob-

lem with up to three design variables.
•	 Functions with more than one minimum or maximum are referred

to as multimodal functions.
•	 The concept of convexity is important in declaring a function to have

one minimum only. A convex function thus has a global minimum.
•	 Typically, optimization algorithms are written to minimize a func-

tion. If the objective function is to be maximized, it is negated and
then solved as a minimization problem.

•	 The necessary condition for optimality (either maximum or mini-
mum) is that the gradient vanishes at the point of consideration.

•	 At the point of optimality, if the second derivative of the objective
function is positive, it is a case of the minimum and if the second
derivative is negative, it is case of the maximum.

•	 The derivative of a function can be numerically evaluated using for-
ward, backward, and central difference methods. The central differ-
ence method is more accurate than forward or backward difference
methods.

•	 The directional derivative provides information on the instanta-
neous rate of change of a function in a particular direction.

•	 The Hessian matrix H represents the second derivative of a function
with more than one variable.

•	 The Hessian matrix should be positive definite at the minimum of the
function. A matrix is positive definite if its eigenvalues are positive.

© 2015 by Taylor & Francis Group, LLC

28 Optimization: Algorithms and Applications

•	 A quadratic approximation of a function is often desired in optimi-
zation, as certain solution methods such as Newton’s method show
faster convergence for these functions.

•	 Taylor’s series approximation is used to make linear or quadratic
approximations of a function by appropriately considering the num-
ber of terms in the series.

Formulae Chart

Forward difference:

 ′ = + −
f x

f x x f x
x

()
() ()∆

∆

Backward difference:

 ′ = − −
f x

f x f x x
x

()
() ()∆

∆

Central difference:

 ′ = + − −
f x

f x x f x x
x

()
() ()∆ ∆

∆2

Central difference formula for the second derivative:

 ′′ = + − + −
f x

f x x f x f x x
x

()
() () ()∆ ∆

∆
2

2

Jacobian of three functions with three variables:

 []J =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

f
x

f
x

f
x

f
x

f
x

f
x

f
x

1

1

1

2

1

3

2

1

2

2

2

3

3

1

ff
x

f
x

3

2

3

3∂
∂
∂



























© 2015 by Taylor & Francis Group, LLC

29Introduction

Hessian for a three-variable function:

 []H =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

1
2

2

1 2

2

1 3

2

2 1

2

2
2

2

f
x

f
x x

f
x x

f
x x

f
x

f
x22 3

2

3 1

2

3 2

2

3
2

x

f
x x

f
x x

f
x

∂
∂

∂
∂

∂
∂



























Quadratic approximation:

 f f f T T() () ()x x x x x x H x+ = + ∇ +∆ ∆ ∆
1
2

∆

Problems

 1. An airline company in India uses A320 aircraft to fly passengers
from New Delhi to Mumbai. Though the maximum seating capacity
of the aircraft is 180, the airline observes that on average it flies only
130 passengers per flight. The regular fare between the two cities
is Rs. 15,000. From the market survey, the company knows that for
every Rs. 300 reduction in fare, it would attract an additional four
passengers. The company would like to find a fare policy that would
maximize its revenue. Formulate this as an optimization problem.

 2. The average yield in a farm is 300 apples per tree, if 50 apple trees
are planted per acre. The yield per tree decreases by 3 apples for each
additional tree planted per acre. How many additional trees per acre
should be planted to maximize the yield? Formulate this as an opti-
mization problem.

 3. Determine the area of the largest rectangle that can be inscribed in
a circle of radius 5 cm. Formulate this as an optimization problem
by writing down the objective function and the constraint. Solve the
problem using the graphical method.

 4. A field needs to be enclosed with a fence, with a river flowing on one
side of the field. We have 300 m of fencing material. Our aim is to use
the available fencing material and cover the maximum area of the field.
Formulate this as an optimization problem by writing down the objec-
tive function and the constraint and clearly stating the design variables.

 5. A traveling salesman has to start from city A, cover all other n number
of cities, and then come back to city A. The distance between the ith

© 2015 by Taylor & Francis Group, LLC

30 Optimization: Algorithms and Applications

and jth cities is given by yij. How could he plan the route so to cover
the minimum distance? Formulate this as an optimization problem.

 6. A company has initial wealth W and would like to invest this to get
maximum returns. It can get higher returns (rr) if it invests in risky
assets, but the return is not guaranteed. A return (rs) is guaranteed if
it invests in safe assets. How much should the company invest in risky
assets (R), to maximize its wealth at the end of a stipulated period?
Formulate the objective function for the optimization problem.

 7. In an experiment, the following observations (see Table 1.3) are made
where x is an independent variable and y is a dependent variable. It
is desired to fit these data with a straight line

 ŷ mx c= +

 where m and c are to be determined. The data are to be fitted in the
least squares sense, that is, y yi −()∑ ˆ 2

 is to be minimized. Formulate
this as an optimization problem.

 8. The cost of a solar energy system (King 1975) is given by

 U = 35A + 208V

 where A is the surface area of the collector and V is the volume of the
storage (Figure 1.19). Owing to energy balance considerations, the
following relation between A and V is to be satisfied:

 A
V

290
100

5833 3−




 = .

TablE 1.3

Data Observed from an Experiment

xi 1 2 3 4 5
yi 45 55 70 85 105

Energy
storage tank
of volume V

Solar flux

Solar collector
of area A

FIGURE 1.19
Solar energy problem.

© 2015 by Taylor & Francis Group, LLC

31Introduction

 The design variable T is related to V as

 V
T

=
−
50

20

 The variable T has to be restricted between 40°C and 90°C. The cost
U is to be minimized. Formulate this as an optimization problem.

 9. Write the gradient and Hessian matrix for the function

 f x x x x() lnx = + +()5 2 31 2 1
2

2
2

 10. A company manufactures three products: A, B, and C. Each product
requires time for three processes: 1, 2, and 3, and this information is
given in Table 1.4.

 The maximum available capacity on each process is given in
Table 1.5.

 The profit per unit for the product is given in Table 1.6.
 What quantities of A, B, and C should be produced to maximize

profit? Formulate this as an optimization problem.
 11. A company has three factories and five warehouses. The warehouse

demand, factory capacity, and the cost of shipping are given in
Table 1.7.

 Determine the optimal shipment plan to minimize the total cost of
transportation. Formulate the optimization problem.

TablE 1.4

Time Required for Each Process

Product

Time Required (minute)/Unit

A B C

Process 1 12 25 7
Process 2 11 6 20
Process 3 15 6 5

TablE 1.5

Maximum Capacity of Each Process

Process Capacity (minutes)

1 28,000
2 35,000
3 32,000

© 2015 by Taylor & Francis Group, LLC

32 Optimization: Algorithms and Applications

 12. Plot the function

 f(x) = (x + 3)(x − 1)(x + 4)

 and locate minimum and maximum of the function in [–4, 0].
 13. An oil refinery company blends four raw gasoline types (A, B, C,

and D) to produce two grades of automobile fuel, standard and pre-
mium. The cost per barrel of different gasoline types, performance
rating and number of barrels available each day is given in Table 1.8.

 The premium should have a rating greater than 90 while the stan-
dard fuel should have a performance rating in excess of 80. The
selling prices of standard and premium fuel are 90 dollars and 100
dollars per barrel respectively. The company should produce at least
6000 barrels of fuel per day. How much quantity of fuel (of each

TablE 1.6

Profit per Unit of Each Product

Product Profit/Unit

A 5
B 7
C 4

TablE 1.7

Cost per Unit of Shipment from Factory to Warehouse

From Factory

Warehouse

Capacity (No. of Units)

A B C D E

Cost per Unit of Shipment

P 3 7 4 6 5 150
Q 5 4 2 5 1 110
R 6 3 2 2 4 90
Demand 50 100 70 70 60

TablE 1.8

Cost, Performance Rating, and Production Level of Different Gasoline Types

Cost/Barrel in Dollars Performance Rating Barrels/Day

A 60 75 3000
B 65 85 4000
C 70 90 5000
D 80 95 4000

© 2015 by Taylor & Francis Group, LLC

33Introduction

type) should be produced to maximize profit? Formulate this as an
optimization problem.

 14. Check whether the following functions are convex or not.

a.

b.

c.

2 3 5 4 4

2 4 10 3 1
1

1

2

3 2

x x x

x x x x

− + ∈ −
− + − ∈ −

[,]

[,]

−−
∈ − −

+ + ∈ −

x
x

x x x

2

2

1 6 0 8

2 5 5 5

[. , .]

[,]d.

 15. Write the first three terms of the Taylor series for the function

 f(x) = ln(x − 1)

 at x = 3.
 16. Find the linear approximation of the function

 f(x) = (1 + x)50 + (1 − 2x)60

 at x = 1.
 17. Write the Taylor series expansion (up to four terms) for the function

ex centered at x = 3.
 18. Write the Taylor series expansion (up to three terms) for the function

ecos x centered at x = π.
 19. Find the quadratic approximation of the function

 f(x) = ln(1 + sin x)

 at x = 0.
 20. Find the directional derivative of the function

 f x x x x x x x()x = + −1
2

2 2
2

3 1 2 3
2

 at (1, 1, −1) in the direction
1
2
3
















.

 21. Using MATLAB, plot the functions x4 and x and check whether
these functions are convex.

© 2015 by Taylor & Francis Group, LLC

34 Optimization: Algorithms and Applications

 22. Solve the following optimization problems using the graphical
method.

 i. Maximize z = 125x1 + 150x2

 subject to 6x1 + 11x2 ≤ 66
 8x1 + 9x2 ≤ 72
 x1, x2 ≥ 0

 ii. Maximize z = 3x1 + 4x2

 subject to 2x1 + x2 ≤ 30
 x1 + 3x2 ≥ 40
 x1, x2 ≥ 0

 23. Calculate the Jacobian of the following system of equations:

x x x

x x x

x x x x x x

1 2
2

3
3

1
2

2 3
2

1 2 1 3 2 3

2 3

3 2 4

+ +

− +



















© 2015 by Taylor & Francis Group, LLC

35

2
1-D Optimization Algorithms

2.1 Introduction

The one-dimensional (1-D) optimization problem refers to an objective func-
tion with one variable. In practice, optimization problems with many vari-
ables are complex, and rarely does one find a problem with a single variable.
However, 1-D optimization algorithms form the basic building blocks for
multivariable algorithms. As these algorithms form a subproblem of mul-
tivariable optimization problems, numerous methods (or algorithms) have
been reported in the literature, each with some unique advantage over the
others. These algorithms are classified into gradient-based and non–gradient-
based algorithms. Some popular algorithms are discussed in this chapter.

As an example, a single-variable objective function could be

 f(x) = 2x2 − 2x + 8

This is an unconstrained optimization problem where x has to be deter-
mined, which results in minimization of f(x). If we have to restrict x within
a ≤ x ≤ b, where a and b are real numbers, then it becomes a constrained
optimization problem. If the function f(x) is either continuously increasing
or decreasing between two points a and b, then it is referred to as a monotonic
function (see Figure 2.1). In a unimodal function, the function is monotonic
on either side of its minimum point (x*). The function f(x) = 2x2 − 2x + 8 is
plotted in Figure 2.2, in which we observe that f(x) is a unimodal function.
Using the property of the unimodal function that it continuously decreases
or increases on either side of the minimum point, the single-variable search
algorithms can be devised in such a way that they eliminate certain regions
of the function where the minimum is not located.

In the next section, a test problem in a solar energy system is defined. Both
gradient-based and direct search methods are discussed and tested for this
problem. Subsequently, these solution techniques will also be tested on some
more standard optimization problems. The performances of these methods
are compared toward the end of the chapter. The road map of this chapter is
given in Figure 2.3.

© 2015 by Taylor & Francis Group, LLC

36 Optimization: Algorithms and Applications

 f (a) < f (b)

a b a
x x

b

f (a) > f (b)

FIGURE 2.1
Monotonic increasing and decreasing functions.

–5 0 5
0

10

20

30

40

50

60

70

x

f(
x)

FIGURE 2.2
Unimodal function.

1-D optimization algorithms

Gradient-based methods Direct search methods

Golden section method
Other methods

Bisection method
Newton–Raphson method
Secant method
Cubic polynomial fit

Test problem (solar energy)

Solution techniques

Comparison of solution methods

FIGURE 2.3
Road map of Chapter 2.

© 2015 by Taylor & Francis Group, LLC

371-D Optimization Algorithms

2.2 Test Problem

Before we discuss the optimization algorithms, let us set a problem on which
we will be testing these algorithms. The solar energy problem is defined in
Problem 8 of Chapter 1. In this cost minimization problem, the cost is a func-
tion of the volume of the storage system and the surface area of the collector.
The volume and surface area are functions of the design variable tempera-
ture T. Let us rewrite the cost function in terms of T alone as

 U
T T

=
−

+
−

204 165 5
330 2

10 400
20

, ,.
 (2.1)

The variable T is restricted between 40°C and 90°C. The function U is plot-
ted as a function of T in Figure 2.4. The minimum occurs at T* = 55.08 and
the minimum value of the function is U* = 1225.166. Observe from the figure
that the cost function is unimodal. A MATLAB® code, exhaustive.m, is used
to plot the cost function by varying the design variable T from 40 to 90 in
steps of 0.01. One may ask why, if this method is able to locate the minimum
and is also simple, there is a need to discuss other algorithms. It may be
noted that the number of function evaluations by this particular method is
(90 – 40)/0.01 = 5000. For more complex problems, the time required for the
function evaluation is at a premium and it may not be practical to evaluate
the function so many times. This necessitates exploring new algorithms that
require fewer function evaluations to reach the minimum of any function.

On executing this code, the output obtained is

Minimum cost = 1225.17
Occurs at T = 55.08

40 50 60 70 80 90
1200

1250

1300

1350

1400

1450

1500

1550

T

U

FIGURE 2.4
Cost function for the test problem.

© 2015 by Taylor & Francis Group, LLC

38 Optimization: Algorithms and Applications

2.3 Solution Techniques

As mentioned previously, the solution techniques for one-dimensional opti-
mization problems can be classified into gradient-based and non–gradient-
based algorithms. As the name suggests, gradient-based algorithms require
derivative information. These methods find applications to problems in
which derivatives can be calculated easily. In the search processes of these
algorithms, the derivative of the function is driven to zero. The algorithm is
terminated when the derivative of the function is very close to zero and the
corresponding x is declared as the point (x* = x) at which minimum of the
function occurs. The following gradient-based methods are discussed in this
section:

•	 Bisection method
•	 Newton–Raphson method
•	 Secant method
•	 Cubic polynomial fit

For certain types of optimization problems, the variable x may not be real,
but can take only certain discrete values. Recall the pipe size problem dis-
cussed in Chapter 1, where pipe size comes in some standard sizes such as
1, 2 inches, and so forth. For such discontinuous functions, gradient infor-
mation will not be available at all points, and the search algorithm has to
proceed using the function evaluations alone to arrive at the minimum of the
function. The golden section method is a very effective solution technique
for such problems and is discussed later in this section. The golden sec-
tion method can also be applied to continuous functions. Some other direct
search methods such as dichotomous search, the interval halving method,
and the Fibonacci method are also briefly discussed.

2.3.1 Bisection Method

In Chapter 1, we discussed that at the maximum or minimum of a function,
f′(x) = 0. Because in these problems we are considering a unimodal function
of minimization type, the condition that the gradient vanishes at the mini-
mum point still holds. The gradient function changes sign near the optimum
point. If f′(x1) and f′(x2) are the derivatives of a function computed at points
x1 and x2, then the minimum of the function is located between x1 and x2 if

 f′(x1)f′(x2) < 0 (2.2)

Based on this condition, certain regions of the search space can be elimi-
nated. The algorithm is described in Table 2.1.

© 2015 by Taylor & Francis Group, LLC

391-D Optimization Algorithms

In this algorithm a and b are the bounds of the function, and Δx is used
in the central difference formula for computing the derivative and ε is a
small number required for terminating the algorithm when |a − b| < ε. See
Figure 2.5, which gives physical insight into this method. The algorithm is
coded in MATLAB (bisection.m). The objective function is coded in MATLAB
file (func.m). Users can change the function in this file to minimize another
objective function that may be of interest to them. In doing so, they also need
to give appropriate bounds for the function, given by a and b in the main
program (bisection.m).

TABLE 2.1

Algorithm for the Bisection Method

Step 1: Given a, b, ε, and Δx

Step 2: Compute α = +a b
2

, f′(a) and f′(α)

 If f′(a) f′(α) < 0
 then b = α
 else a = α

 If |a – b| > ε
 then goto Step 2
 else goto Step 3
Step 3: Converged. Print x* = a, f(x*) = f(a)

Region eliminated

f (x)

f ' (x)

a xα

αa

x

x

b

b

f ' (b) f ' (α) < 0

FIGURE 2.5
Bisection method.

© 2015 by Taylor & Francis Group, LLC

40 Optimization: Algorithms and Applications

On executing the code for the test problem, the output obtained is

 a b

 40.000 90.000
 40.000 65.000
 52.500 65.000
 52.500 58.750
 52.500 55.625
 54.063 55.625
 54.844 55.625
 54.844 55.234
 55.039 55.234
 55.039 55.137
 55.039 55.088
 55.063 55.088
 55.076 55.088

x* = 55.082 Minimum = 1225.166
Number of function calls = 52

The minimum obtained from this method matches very closely with the
exhaustive search method. But the number of function evaluations in the
bisection method is only 52 as compared to 5000 in the exhaustive search
method. For this test problem, Figure 2.6 shows the regions that are elimi-
nated in the first two iterations.

2.3.2 Newton–Raphson Method

Isaac Newton evaluated the root of an equation using a sequence of poly-
nomials. The method in the present form was given by Joseph Raphson in
1960, with successive approximation to x given in an iteration form. The

40 50 60 70 80 90
1200

1250

1300

1350

1400

1450

1500

1550

T
40 50 60 70 80 90

T

U

1200

1250

1300

1350

1400

1450

1500

1550

U

Region
eliminated
after first
iteration

Region
eliminated
after second
iteration

FIGURE 2.6
Region elimination with iterations (bisection method).

© 2015 by Taylor & Francis Group, LLC

411-D Optimization Algorithms

Newton–Raphson method is a root finding technique in which the root of
the equation f′(x) = 0 is evaluated. Using the Taylor series, the function f′(x)
can be approximated as

 f′(xk) + f″(xk)Δx (2.3)

where the gradient is approximated at point xk. Setting Equation 2.3 to zero,
the next approximation point can then be given as

 x x
f x
f xk k

k

k
+ = − ′

′′1
()
()

 (2.4)

Figure 2.7 illustrates the steps of this method. The method shows quadratic
convergence. That is, if x* is the root of the equation, then

x x

x x
c c

k

k

+ −

−
≤ ≥1

2
0

*

*
, (2.5)

The Newton–Raphson algorithm is described in Table 2.2.
The algorithm is coded in MATLAB (newtonraphson.m). On executing the

code, the output obtained is

 x f(x) Deriv. Second deriv.

45.000 1266.690 -9.551 1.449
51.590 1229.340 -2.485 0.800
54.697 1225.214 -0.249 0.650
55.079 1225.166 -0.003 0.636
55.084 1225.166 -0.000 0.635

Number of function calls = 25

Tangents

xk

xk+1

xk+2

f ' (x)

x

FIGURE 2.7
Newton–Raphson method.

© 2015 by Taylor & Francis Group, LLC

42 Optimization: Algorithms and Applications

The minimum obtained by this method is in agreement with the earlier
methods. The number of function evaluations in this method is 25 as com-
pared to those in the bisection method, for which 52 function evaluations were
required. The Newton–Raphson method has the following disadvantages:

•	 The convergence is sensitive to the initial guess. For certain initial
guesses, the method can also show divergent trends. For example
(Dennis and Schnabel 1983), the solution to the function tan–1 x con-
verges when the initial guess, |x| < a, diverges when |x| > a and
cycle indefinitely if the initial guess is taken as |x| = a, where a =
1.3917452002707.

•	 The convergence slows down when the gradient value is close to
zero.

•	 The second derivative of the function should exist.

2.3.3 Secant Method

In the bisection method, the sign of the derivative was used to locate zero of
f′(x). In the secant method, both the magnitude and the sign of the derivative
are used to locate the zero of f′(x). The first step in the secant method is the
same as in the bisection method, That is, if f′(x1) and f′(x2) are the derivatives
of a function computed at point x1 and x2, then the minimum of the function
is located between x1 and x2 if

 f′(x1)f′(x2) < 0 (2.6)

Further, it is assumed that f′(x) varies linearly between points x1 and x2. A
secant line is drawn between the two points x1 and x2. The point α where the
secant line crosses the x-axis is taken as the improved point in the next itera-
tion (see Figure 2.8).

One of the points, x1 or x2, is then eliminated using the aforementioned
derivative condition. Thus, either the (x1, α) or the (α, x2) region is retained

TABLE 2.2

Algorithm for the Newton–Raphson Method

Step 1: Given x and Δx

Step 2: Compute, f′(x) and f″(x)
 Store, xprev = x

 Update x xprev
f x
f x

= − ′
′′
()
()

 If |x − xprev|> ε
 then goto Step 2
 else goto Step 3

Step 3: Converged. Print x* = x, f(x*) = f(x), f′(x*), f″(x*)

© 2015 by Taylor & Francis Group, LLC

431-D Optimization Algorithms

for the next iteration. The iteration continues until f′(α) is close to zero. The
algorithm is coded in MATLAB (secant.m) and is described in Table 2.3.

On executing the code for the test problem, the output obtained is

 Alpha Deriv.

 65.000 5.072
 59.832 2.675
 57.436 1.402
 56.265 0.726
 55.680 0.373
 55.385 0.190
 55.237 0.097
 55.161 0.049
 55.123 0.025
 55.104 0.013
 55.094 0.006
 55.089 0.003
 55.086 0.002

x* = 55.085 Minimum = 1225.166
Number of function calls = 82

The secant method is able to locate the minimum of the function, but with
a higher number of function evaluations as compared to other gradient-
based methods.

Secant

f ' (x)

f ' (a)

a α
bx*

x

f ' (b)

FIGURE 2.8
Secant method.

© 2015 by Taylor & Francis Group, LLC

44 Optimization: Algorithms and Applications

2.3.4 Cubic Polynomial Fit

In this method, the function f(x) to be minimized is approximated by a cubic
polynomial P(x) as

 P(x) = a0 + a1x + a2x2 + a3x3 (2.7)

If the function f(x) is evaluated at four different points, then the polynomial
coefficients a0, a1, a2, and a4 can be evaluated by solving four simultaneous
linear equations. Alternatively, if the value of the function and its derivatives
are available at two points, the polynomial coefficients can still be evaluated.
Once a polynomial is approximated for the function, the minimum point can
be evaluated using the polynomial coefficients.

The first step in this search method is to bracket the minimum of the func-
tion between two points, x1 and x2, such that the following conditions hold:

 f′(x1)f′(x2) < 0 (2.8)

Using the information of f(x1), f′(x1), f(x2), and f′(x2), the minimum point of
the approximating cubic polynomial can be given as

 x

x

x x x

x

=
<

− − ≤ ≤
>













2

2 2 1

1

0

0 1

0

if

if

if

µ
µ µ

µ
()







 (2.9)

TABLE 2.3

Algorithm for the Secant Method

Step 1: Given a, b, ε, and Δx, flag = 0;

Step 2: Compute α = +a b
2

, f′(a) and f′(α)

 If f′(a) f′(α) < 0
 then b = α
 set flag = 1(zero is bracketed)
 else a = α
 If flag = 1
 then goto Step 3
 else goto Step 2

Step 3: Compute α = −
−() −

′
′ ′

x
f x

f x f x x x
2

2

2 1 2 1

()
() () ()

/

 If f′(α) > 0
 then b = α
 else a = α
 If |f′(α)|< ε
 then goto Step 4
 else goto Step 3
Step 4: Converged. Print x* = α, f(x*) = f(α)

© 2015 by Taylor & Francis Group, LLC

451-D Optimization Algorithms

where

 µ =
+ −

− +
′

′ ′
f x w z

f x f x w
()

() ()
2

2 1 2
 (2.10)

 z
f x f x

x x
f x f x=

−()
−

+ +′ ′
3 1 2

2 1
1 2

() ()
() () (2.11)

 w
x x
x x

z f x f x= −
−

+ − ′ ′2 1

2 1

2
1 2() () (2.12)

The algorithm for this method is coded in MATLAB (cubic.m) and is described
in Table 2.4.

On executing the code for the test problem, the output obtained is

 a b

 40.000 65.000
 54.109 65.000
 54.109 55.120

x* = 55.084 Minimum = 1225.166
Number of function calls = 28

This method is able to capture the minimum point of the function with the
number of function evaluations comparable to that in the Newton–Raphson
method.

TABLE 2.4

Algorithm for Cubic Polynomial Fit

Step 1: Given x, ε, and Δx

Step 2: Compute α = +a b
2

, f′(a) and f′(α)

 If f′(a) f′(α) < 0
 then b = α
 else a = α

Step 3: Repeat Step 2 until f′(a) f′(α) < 0
Step 4: Using f(a), f′(a), f(b), f′(b), compute μ, z, and w
Step 5: Compute x

 If ′ <f x() ε goto Step 6

 If ′ ′ <f a f x() () 0

 then b x=
 else a x=
 goto Step 4

Step 6: Converged. Print x x* = , f x f x(*) ()=

© 2015 by Taylor & Francis Group, LLC

46 Optimization: Algorithms and Applications

2.3.5 Golden Section Method

Two numbers, p and q, are in a golden ratio if

p q

p
p
q

+ = = τ (2.13)

Equation 2.13 can be written as

 1 + =q
p

τ (2.14)

or

 1
1+ =
τ

τ (2.15)

On solving the quadratic equation

 τ2 − τ − 1 = 0 (2.16)

we get

 τ = + =1 5
2

1 618033. (2.17)

τ is called the golden number, which has a significance in aesthetics (e.g., the
Egyptian pyramids).

Gradient information was required in the search methods that were dis-
cussed earlier. In the golden section method, the search is refined by elimi-
nating certain regions based on function evaluations alone. No gradient
computation is required in the golden section method. This method has two
significant advantages over other region elimination techniques:

•	 Only one new function evaluation is required at each step.
•	 There is a constant reduction factor at each step.

The algorithm is coded in MATLAB (golden.m) and is described in
Table 2.5.

© 2015 by Taylor & Francis Group, LLC

471-D Optimization Algorithms

On executing the code for the test problem, output obtained is

 a b

 40.000 90.000
 40.000 70.902
 40.000 59.098
 47.295 59.098
 51.803 59.098
 51.803 56.312
 53.526 56.312
 54.590 56.312
 54.590 55.654
 54.590 55.248
 54.841 55.248
 54.996 55.248
 54.996 55.152
 55.056 55.152
 55.056 55.115
 55.056 55.092

x* = 55.077 Minimum = 1225.166
Number of function calls = 18

2.3.6 Other Methods

In addition to the golden section method, there are other direct search meth-
ods that can be used to solve the one-dimensional optimization problems,
including

•	 Dichotomous search
•	 Interval halving method
•	 Fibonacci method

TABLE 2.5

Algorithm for the Golden Section Method

Step 1: Given x, ε, and τ
Step 2: Compute
 α1 = a(1 − τ) + bτ
 α2 = aτ + b(1 − τ)
Step 3: If f(α1) > f(α2)
 then a = α1, α1 = α2, α2 = aτ + b(1 − τ)
 else a = α2, α2 = α1, α1 = a(1 − τ) + bτ
Step 4: Repeat Step 3 until |f(α1) − f(α2)| < ε
Step 5: Converged. Print x* = α1, f(x*) = f(α1)

© 2015 by Taylor & Francis Group, LLC

48 Optimization: Algorithms and Applications

In the dichotomous search, a function is evaluated at two points, close to the
center of the interval of uncertainty. Let these two points be xa and xb given by

 x
L

a = −
2 2

δ
 (2.18)

 x
L

b = +
2 2

δ
 (2.19)

where δ is a small number and L is the region of uncertainty. Depending
on the computed value of the function at these points, a certain region is
eliminated. In Figure 2.9, the region toward the right-hand side of xb is elimi-
nated. In this method, the region of uncertainty after n function evaluations
is given by

L
n n2

1
1

22 2/ /+ −




δ (2.20)

In the interval halving method, half of the region of uncertainty is deleted
in every iteration. The search space is divided into four equal parts and func-
tion evaluation is carried out at x1, x2, and x3. Again, a certain region gets
eliminated based on the value of the functions computed at three points. In
Figure 2.10, the region toward the right-hand side of x2 is eliminated. In this
method, the region of uncertainty after n function evaluations is given by

1
2

1
2





−n

L (2.21)

2δ

L

x
xa xb

FIGURE 2.9
Dichotomous search.

© 2015 by Taylor & Francis Group, LLC

491-D Optimization Algorithms

A Fibonacci sequence is given by

 Fn = Fn−1 + Fn−2 (2.22)

where

 F0 = F1 = 1 (2.23)

In the Fibonacci method, the functions are evaluated at points

 xa = a + L* (2.24)

 xb = b − L* (2.25)

where [a, b] define the region of uncertainty and L* is given by

L

F
F

Ln

n

* = −2

 (2.26)

In this method n has to be defined before the start of the algorithm.

2.4 Comparison of Solution Methods

Having defined a number of solution methods to find the minimum of a
function, it is natural to ask the question of which solution method to use for
a given problem. The answer is quite straightforward: no single method can

f (x)

x

L

x1 x2 x3

FIGURE 2.10
Interval halving method.

© 2015 by Taylor & Francis Group, LLC

50 Optimization: Algorithms and Applications

be used for all types of problems. Different methods may have to be tried for
different problems.

Let us evaluate the efficiency of each of the methods for the test case problem
that we discussed in an earlier section. One way of defining efficiency of an
optimization method could be to show how x approaches x* with increasing
iterations. Because the number of function evaluations in each iteration is dif-
ferent for different methods, we can plot |x − x*| versus number of function
evaluations for a meaningful comparison. Figure 2.11 shows this plot for differ-
ent solution methods for the solar energy test problem. It is observed from this
figure that the cubic polynomial fit and Newton–Raphson approach x* with 25
number of function evaluations. The bisection and secant methods take a much
larger number of function evaluations to reach the minimum. The golden sec-
tion method takes a minimum number of function evaluations.

Let us further evaluate these methods for some well-known test problems
(Philips et al. 1976; Reklaitis et al. 1983). Table 2.6 summarizes the number
of function evaluations required by each of the methods in reaching the
minimum of the function. The golden section, cubic polynomial fit, and
Newton–Raphson methods perform well for all the test problems except for
the function

 2 3 0 1002 0 5 2
() .x e xx− + ≤ ≤

which is highly skewed. The Newton–Raphson method requires a good ini-
tial guess for convergence. It takes 275 function evaluations for convergence
with an initial guess of x = 5. The method takes fewer function evaluations
for convergence with x < 5. However, the method diverges for x > 10. The
cubic polynomial fit did not converge for this particular function. The golden

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

Number of function evaluations

|x
 −

 x
*|

Newton–Raphson
Golden section
Bisection
Cubic
Secant

FIGURE 2.11
Comparing different solution methods.

© 2015 by Taylor & Francis Group, LLC

511-D Optimization Algorithms

and bisection methods converged for all the test functions. The solution to
these problems is obtained by modifying the func.m routine and executing
the code for the corresponding method.

Chapter Highlights

•	 The one-dimensional (1-D) optimization problems refer to an objec-
tive function that has one variable. 1-D optimization algorithms
form the basic building blocks for the multivariable algorithms.

•	 If a function is either continuously increasing or decreasing between
two points, then it is referred as a monotonic function.

•	 In a unimodal function, the function is monotonic on either side of
its minimum point.

•	 The solution techniques for one-dimensional optimization problems
can be classified into gradient-based and non–gradient-based algo-
rithms. Some popular gradient-based algorithms are bisection, cubic
polynomial fit, secant, and Newton–Raphson methods. The golden sec-
tion algorithm does not require derivative information of the function.

•	 The Newton–Raphson method requires the second derivative of the
function, and convergence of this method is strongly dependent on
a good initial guess.

•	 In the bisection method, the sign of the derivative is used to locate
the zero of f′(x). In the secant method, both magnitude and sign of
the derivative are used to locate the zero of f′(x).

TABLE 2.6

Comparing Different Solution Techniques for Different Problems

Minimize x* f(x*)

Number of Function Evaluations

Golden Bisection Cubic Newton Secant

3x4 + (x − 1)2

 0 ≤ x ≤ 4
0.451 0.426 16 36 36 35 346

−4x sin x
 0 ≤ x ≤ π

2.029 –7.28 14 36 24 20 32

2 3
0 100

2 0 5 2
() .x e

x

x− +
≤ ≤

1.591 7.516 14 36 – 275 –

3
12

5

0 5 2 5

2
3

x
x

x

+ −

≤ ≤. .

1.431 5.238 14 32 28 20 604

2
16

1 5

2x
x

x

+

≤ ≤

1.587 15.12 12 36 28 25 70

© 2015 by Taylor & Francis Group, LLC

52 Optimization: Algorithms and Applications

•	 In the golden section method, the search is refined by eliminating
certain regions based on function evaluations only. No gradient
computation is required in the golden section method. This method
derives its name from the number 1.61803, referred to as the golden
number, which has significance in aesthetics.

Formulae Chart

Newton–Raphson method:

x x

f x
f xk k

k

k
+ = − ′

′′1
()
()

Secant method:

 α = − ′
− −′ ′

x
f x

f x f x x x2
2

2 1 2 1

()
(() ()) ()

/

Problems

 1. For a lifting body, lift (L) to drag (D) ratio varies with angle of attack
(α) as

L
D

= − + +0 004 0 16 0 112. . .α α

 where α lies between 0 and 35 degrees. Find the α at which L/D is
maximum. Use different algorithms presented in this chapter to
arrive at the optimum.

 2. Use golden section, cubic polynomial fit, bisection, and secant meth-
ods to minimize the following functions:

 a. 3ex − x3 + 5x −3 ≤ x ≤ 3

 b. −x3 + 4x2 − 3x + 5 −2 ≤ x ≤ 2

 c. e x xx2
2 0 5 23− − ≤ ≤.

 d. 2
10

0 42x
x

x+ ≤ ≤

© 2015 by Taylor & Francis Group, LLC

531-D Optimization Algorithms

 3. Find the maximum value of the function

 f x
x

x
x

x() tan = −
+

−














 ≤ ≤−1

2
1

1
1

1
2

0 32
1

 4. Find the maximum value of the function

 f(x) = 5x2 − ex 0 ≤ x ≤ 5

 5. Find the maximum and minimum of the function

f x x xx() ln(cos)cos= + ≤ <1 0

2
π

 6. The strength of a beam varies as the product of its breadth and
square of its depth. Find the dimension of the strongest beam that
can be cut from a circular log of diameter 1 m.

 7. A car burns petrol at the rate of
300

3x
x+





 liters per 100 km where

x is the speed in km/h. The cost of petrol is one dollar per liter and
the chauffeur is paid $7 per hour. Find the steady speed that will
minimize the total cost of the trip of 600 km.

 8. A swimmer in the sea is at a distance of 5 km from the closest point
C on the shore on a straight line. The house of the swimmer is on the
shore at a distance of 7 km from point C. He can swim at a speed of
2 km/h and run at a speed of 6 km/h. At what spot on the shore should
he land so that he reaches his house in the shortest possible time?

 9. The following data are given for an aircraft that is flying at an alti-
tude of 5 km:
Weight = W = 700,000 N
Reference area = S = 140 m2

Aspect ratio = AR = 8
Efficiency factor = e = 0.82
Drag coefficient = CD = 0.018
Atmospheric density = ρ = 0.73612 kg/m3

 The thrust (T) of the aircraft is related to its velocity (v) by the
equation

T v SC

W
v S eAR

v= + ≤ ≤1
2

2 1
100 3002

2

2ρ
ρ πD m/s

 Find the velocity of the aircraft at which the thrust requirement is
minimum.

© 2015 by Taylor & Francis Group, LLC

54 Optimization: Algorithms and Applications

 10. Plot the function

 f(x) = x4 + x3 − x2 − 5 −2 ≤ x ≤ 2

 and identify the region where the function is concave and convex.
Identify the local and global minima for this function.

 11. The consumer demand function is given by

f x

k
p

x
p
p

x() = −
2

1

2

2

 where k = 90, p1 = 10, and p2 = 5. Maximize the function f(x).
 12. Minimize the function

f x x

x
x() . .= −() + ≤ ≤2 3

100
0 3 0 6

 13. A cone-shaped biscuit cup is to be designed for minimum surface
area so that it can hold 130 mL of ice cream. Determine the dimen-
sions of the cone.

 14. Microorganisms such as bacteria have an elongated shape (see
Figure 2.12). The frictional coefficient τ relates the force on a particle
and its velocity when moving through a viscous fluid:

τ πρ=




 −

4
2 1

2

a
a

b
ln

 where ρ is fluid viscosity (for water this value is 1 (μg/s)/μm). For
a short axis of b = 1 μm, find the value of a that corresponds to the
minimum in the friction coefficient in water (King and Mody 2011).

b

a

FIGURE 2.12
Elliptical shape of a bacterium.

© 2015 by Taylor & Francis Group, LLC

55

3
Unconstrained Optimization

3.1 Introduction

The solution techniques for unconstrained optimization problems with mul-
tiple variables are dealt in this chapter. In practice, optimization problems
are constrained, and unconstrained optimization problems are few. One
example of an unconstrained optimization problem is data fitting, where
one fits a curve on the measured data. However, the algorithms presented in
this chapter can be used to solve constrained optimization problems as well.
This is done by suitably modifying the objective function, which includes a
penalty term in case constraints are violated.

The solution methods for unconstrained optimization problems can
be broadly classified into gradient-based and non–gradient-based search
methods. As the name suggests, gradient-based methods require gradi-
ent information in determining the search direction. The gradient-based
methods discussed in this chapter are steepest descent, Davidon–Fletcher–
Powell (DFP), Broyden–Fletcher–Goldfarb–Shanno (BFGS), Newton, and
Levenberg–Marquardt methods. The search direction computed by these
methods uses the gradient information, Hessian information, or a combina-
tion of these two. Some methods also make an approximation of the Hessian
matrix. Once the search direction is identified, one needs to evaluate how
much to move in that direction so as to minimize the function. This is a
one-dimensional problem. We will be using the golden section method, as
discussed in Chapter 2, for solving the one-dimensional problem. The non–
gradient-based method does not require derivatives or second derivative
information in finding the search direction. The search direction is guided
by the function evaluations as well as the search directions computed from
earlier iterations. Powell’s conjugate direction method, a non–gradient-based
method, is elaborated in this chapter as it is much superior (shows quadratic
convergence) to other non-gradient methods such as simplex and pattern
search methods. The simplex method (Nelder–Mead algorithm) is also
discussed in Section 3.4.9 on the direct search method. In the last section,
Powell’s method is used to solve a complicated motion design problem of a
robot. The road map of this chapter is shown in Figure 3.1.

© 2015 by Taylor & Francis Group, LLC

56 Optimization: Algorithms and Applications

For a single-variable function, it was discussed earlier that the derivative
of the function vanishes at the optimum and the second derivative of the
function is greater than zero at the minimum of the function. The same can
be extended to a multivariable function. The necessary conditions for x* to
be a minimum are that

 ∇f(x*) = 0 (3.1)

and xT Hx is positive definite (xT Hx > 0). To ensure this, eigenvalues of H are
to be positive. Consider a two-variable function

 f x x x()x = + −1
2

2
2

12 (3.2)

Test problem
(spring system)

Gradient-based methods Direct search method

Powell’s method
Nelder–Mead algorithm

Steepest descent method
Newton’s method
Modified Newton’s method
Marquardt’s method
Conjugate gradient method
DFP method
BFGS method

Multivariable
optimization methods

Unconstrained
optimization

Application to robotics

Additional test functions
Rosenbrock’s function
Wood’s function
Quadratic function
Nonlinear function

FIGURE 3.1
Road map of Chapter 3.

© 2015 by Taylor & Francis Group, LLC

57Unconstrained Optimization

The gradient is

 ∇ =
−











f
x

x
()x

2 2

2
1

2
 (3.3)

Equating the gradient to zero, the optimum is at (1, 0). For this function
xT Hx > 0. Hence, the point (1, 0) is the minimum of f(x). The surface-contour
plot of this function is shown in Figure 3.2.

For a two-variable function

 f x x()x = −1
2

2
2 (3.4)

the optimum is at (0, 0) from the first-order condition. Checking the second-
order condition, we find that xT Hx = 0. Therefore, the point (0, 0) represents
saddle point (see Figure 3.3).

3.2 Unidirectional Search

The unidirectional search refers to minimizing the value of a multivariable
function along a specified direction. For example, if xi is the initial starting
point of the design variables for minimizing a multivariable function and Si

−5

0

5

−5

0

5
−20

0

20

40

60

x1
x2

f (
x 1

, x
2)

Minimum point

FIGURE 3.2
Surface-contour plot of the function.

© 2015 by Taylor & Francis Group, LLC

58 Optimization: Algorithms and Applications

is the search direction, then we need to determine a scalar quantity α such
that the function

 f(α) = xi + αSi (3.5)

is minimized. The value of α at which this function reaches a minimum is
given by α*. This is a one-dimensional optimization problem and we can use
the golden section technique to minimize this function. The golden section
method is modified to handle multivariable functions and the MATLAB®
code golden_funct1.m is given.

Let us perform a unidirectional search on the Rosenbrock function given by

 f x x x x() ()= −() + −100 12 1
2

2

1
2 (3.6)

with different starting values of x and with different search directions.
The results are summarized in Table 3.1. It is observed from this table that

−5

0

5

−5

0

5
−40

−20

0

20

40

x1
x2

f (
x 1

, x
2)

Saddle point

FIGURE 3.3
Surface-contour plot of the function with saddle point.

TablE 3.1

Unidirectional Search for a Multivariable Function

xi f(xi) Si α* f(α*)

(3, 0.5) 7229 (2, 1) –1.3731 88.45
(3, 0.5) 7229 (2, 3) –1.1249 1181.7
(1, 1) 0 (2, 2) 0 0
(2, 2) 401 (1, 1) –1 0

© 2015 by Taylor & Francis Group, LLC

59Unconstrained Optimization

performing a linear search in the direction (2, 1) from the starting point
(3, 0.5) results in f(α*) = 88.45 as compared to initial function value of 7229.
This can be easily shown on the MATLAB command prompt as

>> x = [3 0.5];
>> search = [2 1];
>> [alpha1,falpha1] = golden_funct1(x,search)

alpha1 =
 -1.3731

falpha1 =
 88.4501

The function has to be appropriately coded in func_multivar.m. Note that
this function has a minimum at (1, 1) and the minimum value of the function
is zero. If we are at minimum point, then any search direction should not
improve the function value. It is the reason why search in the direction (2, 2)
from the point (1, 1) results in f(α*) = 0 with α* = 0. Similarly, search in the
direction (1, 1) from the point (2, 2) results in f(α*) = 0 with α* = −1. This func-
tion is plotted in Figure 3.4 and is constructed by executing the MATLAB
code (rosenbrock.m).

3.3 Test Problem

Let us define a spring system as a test problem on which we will apply multi-
variable optimization algorithms such as the steepest descent, DFP, BFGS,

2

1

0
–5

0

5 4 2 0 –2

Minimum point

x1

f (
x 1

, x
2)

x2

× 104

–4

FIGURE 3.4
Rosenbrock function.

© 2015 by Taylor & Francis Group, LLC

60 Optimization: Algorithms and Applications

Newton, and Levenberg–Marquardt methods. Consider two springs of unit
length and with stiffness k1 and k2, joined at the origin. The other two ends
of the springs are fixed on a wall (see Figure 3.5). On applying a force, the
spring system will deflect to an equilibrium position, which we are inter-
ested in determining. The potential of the spring system is given by

 U k x x k x x F xx= + + −() + + − −() − +1 1
2

2
2

2

2 1
2

2
2

2

11 1 1 1
1

() () (FF xx2 2) (3.7)

where F Fx x1 2
,() is the force applied at the origin due to which it moves to a posi-

tion (x1, x2). Assuming k1 = 100 N/m, k2 = 90 N/m, and F Fx x1 2
20 40, (,)() = , our

aim is to evaluate (x1, x2) such that U is minimized.
A MATLAB code (springsystem.m) is used to find the minimum of the

potential function by varying the design variables from –1 to 1 in steps of
0.01. On executing this code, the output obtained is

Minimum Potential = -9.6547

occurs at x1,x2 = 0.5000 0.1200

3.4 Solution Techniques

Similar to 1-D optimization algorithms, solution techniques for multivari-
able, unconstrained optimization problems can be grouped into gradi-
ent- and non–gradient-based methods. Gradient-based methods require
derivative information of the function in constituting a search. The first and

Fx2

Fx1

k1

k2

FIGURE 3.5
Spring system.

© 2015 by Taylor & Francis Group, LLC

61Unconstrained Optimization

second derivatives can be computed using the central difference formula as
given below.

∂

∂
=

+ − −f
x

f x x f x x
xi

i i i i

i

() ()∆ ∆
∆2

 (3.8)

∂
∂

=
+ − + −2

2 2

2f

x

f x x f x f x x

xi

i i i i i

i

() () ()∆ ∆
∆

 (3.9)

∂
∂ ∂

= + + − + −

−

2 f
x x

f x x x x f x x x x

f

i j
i i j j i i j j(,) (,)∆ ∆ ∆ ∆

((,) (,) ()x x x x f x x x x x xi i j j i i j j i j− + + − − ∆ ∆ ∆ ∆ ∆ ∆4

(3.10)

The computation of first derivative requires two function evaluations with
respect to each variable. So for an n variable problem, 2n function evalua-
tions are required for computing the gradient vector. The computation of the
Hessian matrix requires O(n2) function evaluations. Note that in the Hessian
matrix

∂

∂ ∂
=

∂
∂ ∂

2 2f
x x

f
x xi j j i

 (3.11)

Alternatively, one can also compute the derivative of a function using com-
plex variables as

 ′ =
+ f x

f x i x x

x
()

()Imaginary /∆ ∆

∆
 (3.12)

The gradient-based methods such as steepest descent, DFP, BFGS, Newton,
and Levenberg–Marquardt methods are discussed next followed by Powell’s
conjugate direction method, which is a direct search method. The efficiency
of solution methods can be gauged by three criteria:

•	 Number of function evaluations.
•	 Computational time.
•	 Rate of convergence. By this we mean how fast the sequence xi, xi+1,…

converges to x*. The rate of convergence is given by the parameter n
in the equation

© 2015 by Taylor & Francis Group, LLC

62 Optimization: Algorithms and Applications

x x

x x

i

i

n
c c n

+ −

−
≤ ≥ ≥1 0 0

*

*
, , (3.13)

•	 For n = 1 and 0 ≤ c ≤ 1 the method is said to have linear convergence.
For n = 2, the method is said to have quadratic convergence. When the
rate of convergence is higher, the optimization method is better. A
method is said to have superlinear convergence if

 lim , ,
i

i

i

n
c c n

→∞

+ −

−













≤ ≥ ≥
x x

x x

1 0 0
*

* (3.14)

3.4.1 Steepest Descent Method

The search direction Si that reduces the function value is a descent direction.
It was discussed earlier that along the gradient direction, there is the maxi-
mum change in the function value. Thus, along the negative gradient direc-
tion, the function value decreases the most. The negative gradient direction
is called the steepest descent direction. That is,

 Si = −∇f(xi) (3.15)

In successive iterations, the design variables can be updated using the
equation

 xi+1 = xi − α∇f(xi) (3.16)

where α is a positive scalar parameter that can be determined using the line
search algorithm such as the golden section method.

The steepest descent method ensures a reduction in the function value at
every iteration. If the starting point is far away from the minimum, the gra-
dient will be higher and the function reduction will be maximized in each
iteration. Because the gradient value of the function changes and decreases
to a small value near the optimum, the function reduction is uneven and
the method becomes sluggish (slow convergence) near the minimum. The
method can therefore be utilized as a starter for other gradient-based algo-
rithms. The algorithm for the steepest descent method is described in Table
3.2 and a MATLAB code of its implementation is given in steep_des.m.

On executing the code with a starting value of x as (–3, 2), following output
is produced for the test problem. After the first iteration, the function value
decreases from 1452.2619 to –2.704. Notice from the output that as the gradi-
ent value decreases, the reduction in function value at each iteration also

© 2015 by Taylor & Francis Group, LLC

63Unconstrained Optimization

decreases. The steepest descent algorithm converges to the minimum of the
test problem in 15 iterations. Observe the sluggishness of the algorithm as it
approaches the minimum point. The convergence history is shown pictorially
in Figure 3.6 along with the function contours of the test problem. The func-
tion contours can be plotted using the MATLAB code contour_testproblem.m.

Initial function value = 1452.2619
No. x-vector f(x) Deriv. ___

1 0.095 0.023 -2.704 1006.074
2 0.170 0.141 -5.278 37.036
3 0.318 0.048 -7.369 23.451
4 0.375 0.138 -8.773 26.656
5 0.448 0.092 -9.375 14.021
6 0.470 0.127 -9.583 10.071
7 0.491 0.114 -9.639 4.403
8 0.497 0.123 -9.652 2.509
9 0.501 0.120 -9.655 1.050
10 0.503 0.122 -9.656 0.554
11 0.504 0.122 -9.656 0.236
12 0.504 0.122 -9.656 0.125
13 0.504 0.122 -9.656 0.047
14 0.504 0.122 -9.656 0.027
15 0.504 0.122 -9.656 0.016___

3.4.2 Newton’s Method

The search direction in this method is based on the first and second deriva-
tive information and is given by

 Si = −[H]−1∇f(xi) (3.17)

TablE 3.2

Algorithm for the Steepest Descent Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi) and ∇f(xi) (function and gradient vector)
 Si = −∇f(xi) (search direction)
 Minimize f(xi+1) and determine α (use golden section method)
 xi+1 = xi + αSi (update the design vector)
 If f fi i() ()x x+ − >1 1ε or ∥∇f(xi)∥ > ε2

 then goto Step 2
 else goto Step 3
Step 3: Converged. Print x* = xi+1, f(x*) = f(xi+1)

© 2015 by Taylor & Francis Group, LLC

64 Optimization: Algorithms and Applications

where [H] is the Hessian matrix. If this matrix is positive definite, then Si
will be a descent direction. The same can be assumed true near the vicinity
of the optimum point. However, if the initial starting point is far away from
the optimum, the search direction may not always be descent. Often a restart
is required with a different starting point to avoid this difficulty. Though
the Newton’s method is known for converging in a single iteration for a qua-
dratic function, seldom do we find functions in practical problems that are
quadratic. However, Newton’s method is often used as a hybrid method in
conjunction with other methods.

The algorithm for the Newton’s method is described in Table 3.3 and a
MATLAB code of its implementation is given in newton.m. A MATLAB code
that computes Hessian matrix is given in hessian.m.

−4
−2

0
2

4

−4
−2

0
2

4

−1000

0

1000

2000

3000

4000

x1
x2

f (
x 1

, x
2)

Convergence steps
Minimum point

Minimum point

Zoomed view

FIGURE 3.6
Function contours of the test problem and convergence history.

© 2015 by Taylor & Francis Group, LLC

65Unconstrained Optimization

On executing the code with a starting value of x as (–3, 2), the following
output is displayed in the command window for the test problem. Note that
in some iteration, the search direction is not a descent as the function value
increases instead of monotonically decreasing. The method, however, con-
verges to the minimum point.

Initial function value = 1452.2619
No. x-vector f(x) Deriv.___

1 -0.754 0.524 44.244 1006.074
2 -0.362 -0.010 8.398 116.281
3 0.094 0.125 -3.920 50.597
4 11.775 0.324 22007.14 21.420
5 1.042 0.093 14.533 4076.916
6 0.640 0.142 -8.479 102.745
7 0.524 0.122 -9.635 18.199
8 0.505 0.122 -9.656 2.213
9 0.504 0.122 -9.656 0.059
10 0.504 0.122 -9.656 0.000___

Let us restart the method with x as (1, 1). The output is given below. If the
starting value is closer to the minimum, the function value reduces mono-
tonically in all the iterations and eventually converges to the minimum.

Initial function value = 92.7864
No. x-vector f(x) Deriv.__

1 0.818 0.041 -1.428 202.492
2 0.569 0.138 -9.386 56.085
3 0.510 0.122 -9.655 8.516
4 0.504 0.122 -9.656 0.602
5 0.504 0.122 -9.656 0.004__

TablE 3.3

Algorithm for Newton’s Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi), ∇f(xi), and [H] (function, gradient, and Hessian)
 Si = −[H]−1∇f(xi) (search direction)
 xi+1 = xi + Si (update the design vector)
 If f fi i() ()x x+ − >1 1ε or ∥∇f(xi)∥ > ε2

 then goto Step 2
 else goto Step 3
Step 3: Converged. Print x* = xi+1, f(x*) = f(xi+1)

© 2015 by Taylor & Francis Group, LLC

66 Optimization: Algorithms and Applications

3.4.3 Modified Newton’s Method

The method is similar to Newton’s method with a modification that a unidi-
rectional search is performed in the search direction Si of the Newton method.
The algorithm for the modified Newton method is described in Table 3.4 and
a MATLAB code of its implementation is given in modified_newton.m.

On executing the code with a starting value of x as (–3, 2), the following
output is displayed in the command window for the test problem. For the
same starting point, the modified Newton’s method converges to the mini-
mum point in just six iterations as compared to Newton’s method, which
converges in ten iterations.

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
──
1 0.006 0.025 -1.010 1006.074
2 0.498 0.026 -8.227 36.392
3 0.496 0.121 -9.653 29.839
4 0.504 0.122 -9.656 0.873
5 0.504 0.122 -9.656 0.018
6 0.504 0.122 -9.656 0.003
──

3.4.4 levenberg–Marquardt Method

The advantage of the steepest descent method is that it reaches closer to the
minimum of the function in a few iterations even when the starting guess
is far away from the optimum. However, the method shows sluggishness
near the optimum point. On the contrary, Newton’s method shows a faster
convergence if the starting guess is close to the minimum point. Newton’s
method may not converge if the starting point is far away from the optimum
point.

TablE 3.4

Algorithm for Modified Newton’s Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi), ∇f(xi), and [H] (function, gradient, and Hessian)
 Si = −[H]−1∇f(xi) (search direction)
 Minimize f(xi+1) and determine α (use golden section method)
 xi+1 = xi + αSi (update the design vector)
 If f fi i() ()x x+ − >1 1ε or ∥∇f(xi)∥ > ε2

 then goto Step 2
 else goto Step 3
Step 3: Converged. Print x* = xi+1, f(x*) = f(xi+1)

© 2015 by Taylor & Francis Group, LLC

67Unconstrained Optimization

The Levenberg–Marquardt method is a kind of hybrid method that com-
bines the strength of both the steepest descent and Newton’s methods. The
search direction in this method is given by

 Si = −[H + λI]−1∇f(xi) (3.18)

where I is an identity matrix and λ is a scalar that is set to a high value at the start
of the algorithm. The value of λ is altered during every iteration depending on
whether the function value is decreasing or not. If the function value decreases
in the iteration, λ it decreases by a factor (less weightage on steepest descent
direction). On the other hand, if the function value increases in the iteration,
λ it increases by a factor (more weightage on steepest descent direction). The
algorithm for the Levenberg–Marquardt method is described in Table 3.5 and a
MATLAB code of its implementation is given in levenbergmarquardt.m.

On executing the code with a starting value of x as (–3, 2), following output
is displayed at the command window for the test problem.

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
───
1 -2.384 1.604 815.738 1006.074
2 -1.680 1.139 325.925 733.709
3 -1.104 0.705 102.059 429.113
4 -0.740 0.327 28.673 201.554
5 -0.444 0.133 8.324 86.884
6 -0.164 0.105 1.186 34.005
7 0.546 0.091 -9.390 20.542
8 0.508 0.122 -9.655 11.361
9 0.505 0.122 -9.656 0.409
10 0.504 0.122 -9.656 0.016
───

TablE 3.5

Algorithm for the Levenberg–Marquardt Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi), ∇f(xi), and [H] (function, gradient, and Hessian)
 Si = −[H + λI]−1∇f(xi) (search direction)
 xi+1 = xi + Si (update the design vector)
 If f(xi+1) < f(xi)
 then change the value of λ as λ/2
 else change the value of λ as 2λ
 If f fi i() ()x x+ − >1 1ε or ∥∇f(xi)∥ > ε2

 then goto Step 2
 else goto Step 3
Step 3: Converged. Print x* = xi+1, f(x*) = f(xi+1)

© 2015 by Taylor & Francis Group, LLC

68 Optimization: Algorithms and Applications

3.4.5 Fletcher–Reeves Conjugate Gradient Method

The Levenberg–Marquardt method uses the strengths of both steepest
descent and Newton’s method for accelerating the convergence to reach the
minimum of a function. The method is a second-order method, as it requires
computation of the Hessian matrix. On the other hand, the conjugate gra-
dient method is a first-order method, but shows the property of quadratic
convergence and thus has a significant advantage over the second-order
methods. Two directions, S1 and S2, are said to be conjugate if

 S HST
1 2 0= (3.19)

where H is a symmetric matrix. For example, orthogonal directions are con-
jugate directions. In Figure 3.7, starting from point x1a, the search direction S1
results in the minimum point xa

*. Similarly, starting from point x1b, the search
direction S1 results in the minimum point xb

*. The line joining xa
* and xb

* is the
search direction S2. Then, S1 and S2 are conjugate directions.

The steepest descent method was modified by Fletcher and Reeves in the
conjugate gradient method. Starting with the search direction

 S1 = −∇f(x1) (3.20)

the subsequent search direction is taken as a linear combination of S1 and
−∇f(x2). That is,

 S2 = −∇f(x2) + αS1 (3.21)

S2

S1
S1

xa xb

x1a

x1b

FIGURE 3.7
Conjugate directions.

© 2015 by Taylor & Francis Group, LLC

69Unconstrained Optimization

Using the property S HS1 2 0T = of conjugate directions, α can be evaluated as

 α =
∇

∇

+f

f

i

i

()

()

x

x

1

2

2 (3.22)

Starting with S1 = −∇f(x1), the search direction in every iteration is calcu-
lated using the equation

 S x
x

x
Si i

i

i

if
f

f
+

+= −∇ +
∇

∇
1

1

2

2
()

()

()
 (3.23)

The algorithm for the conjugate gradient method is described in Table 3.6
and a MATLAB code of its implementation is given in conjugate.m.

On executing the code with a starting value of x as (–3, 2), the following
output is displayed at the command window in the test problem. The effi-
ciency of conjugate gradient method can be seen from Figure 3.8, where it

TablE 3.6

Algorithm for Fletcher–Reeves’s Conjugate Gradient Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi) ∇f(xi) (function and gradient)
 Si = −∇f(xi) (search direction)
 Minimize f(xi+1) and determine α (use the golden section method)
 xi+1 = xi + αSi (update the design vector)

Step 3: S x
x

x
Si i

i

i

if
f

f
+ +

+
= −∇ +

∇

∇
1 1

1

2

2
()

()

()

 Minimize f(xi+2) and determine α (use the golden section method)
 xi+2 = xi+1 + αSi+1

 Minimize f(xi+2) and determine α (use the golden section method)
 If f fi i() ()x x+ +− >2 1 1ε or ∥∇f(xi+1)∥ > ε2

 then goto Step 3
 else goto Step 4
Step 4: Converged. Print x* = xi+2, f(x*) = f(xi+2)

© 2015 by Taylor & Francis Group, LLC

70 Optimization: Algorithms and Applications

is compared with the first-order, steepest descent method. The conjugate
method does not show sluggishness in reaching the minimum point.

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
───
1 0.095 0.023 -2.704 1006.074
2 0.178 0.145 -5.404 37.036
3 0.507 0.136 -9.627 23.958
4 0.510 0.123 -9.655 4.239
5 0.505 0.121 -9.656 0.605
6 0.504 0.122 -9.656 0.340
7 0.504 0.122 -9.656 0.023
───

3.4.6 DFP Method

In the DFP method, the inverse of the Hessian is approximated by a matrix
[A] and the search direction is given by

 Si = −[A]∇f(xi) (3.24)

The information stored in the matrix [A] is called as the metric and because
it changes with every iteration, the DFP method is known as the variable
metric method. Because this method uses first-order derivatives and has the

Steepest descent

Conjugate gradient

Minimum point

FIGURE 3.8
Convergence plot of conjugate gradient/steepest descent method.

© 2015 by Taylor & Francis Group, LLC

71Unconstrained Optimization

property of quadratic convergence, it is referred to as a quasi-Newton method.
The inverse of the Hessian matrix can be approximated as

 [] []
[] []

[]
A A

x x
x

A A
Ai i

T

T
i

T
i

T
ig

g g
g g+ = +

∇
− ∇ ∇

∇ ∇1
∆ ∆
∆

 (3.25)

where

 Δx = Δxi − Δxi−1 (3.26)

 ∇g = ∇gi − ∇gi−1 (3.27)

The matrix [A] is initialized to the identity matrix. The algorithm for the
DFP method is described in Table 3.7 and a MATLAB code of its implementa-
tion is given in dfp.m.

On executing the code with a starting value of x as (–3, 2) the following
output is displayed in the command window for the test problem. Observe
that in the second and the third iterations, search points are similar in this
method and the conjugate gradient method, indicating that search directions
were similar. In further iterations, however, the search direction is differ-
ent. Further, on typing inv(A) in the MATLAB command prompt and then

TablE 3.7

Algorithm for the DFP Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
 [A] (initialize to identity matrix)
Step 2: Compute f(xi) and ∇f(xi) (function and gradient vector)
 Si = −∇f(xi) (search direction)
 xi+1 = xi + αSi (update the design vector)
 Minimize f(xi+1) and determine α (use the golden section method)
Step 3: Compute Δx and ∇g

 [] []
[] []

[]
A A

x x
x

A A
Ai i

T

T
i

T
i

T
ig

g g
g g+ = +

∇
− ∇ ∇

∇ ∇1
∆ ∆
∆

 Si+1 = −[A]i+1∇f(xi+1)
 xi+2 = xi+1 + αSi+1

 Minimize f(xi+2) and determine α (use the golden section method)
 If f fi i() ()x x+ +− >2 1 1ε or ∥∇f(xi+1)∥ > ε2

 then goto Step 3
 else goto Step 4
Step 4: Converged. Print x* = xi+2, f(x*) = f(xi+2)

© 2015 by Taylor & Francis Group, LLC

72 Optimization: Algorithms and Applications

printing the Hessian matrix at the converged value of x, it is observed that
[A] approaches [H]−1.

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
───
1 0.095 0.023 -2.704 1006.074
2 0.179 0.145 -5.418 37.036
3 0.508 0.145 -9.576 23.983
4 0.501 0.122 -9.656 7.004
5 0.504 0.122 -9.656 0.396
6 0.504 0.122 -9.656 0.053
7 0.504 0.122 -9.656 0.038
8 0.504 0.122 -9.656 0.028
9 0.504 0.122 -9.656 0.005
───

>> A
A =
 0.0091 0.0005
 0.0005 0.0033
>> inv(hessian(x,delx,n_of_var))
ans =
 0.0091 0.0005
 0.0005 0.0033

3.4.7 bFGS Method

In the BFGS method, the Hessian is approximated using the variable metric
matrix [A] given by the equation

 [] []
() ()

()
A A

x
x x

x S
i i

T

T
i i

T

i
T

i

g g
g

f f
f

+ = +
∇

∇
+

∇ ∇
∇1 ∆

 (3.28)

It is important to note that whereas the matrix [A] converges to the inverse
of the Hessian in the DFP method, the matrix [A] converges to the Hessian
itself in the BFGS method. As the BFGS method needs fewer restarts as com-
pared to the DFP method, it is more popular than the DFP method. The algo-
rithm for the BFGS method is described in Table 3.8 and a MATLAB code of
its implementation is given in BFGS.m.

On executing the code with a starting value of x as (–3, 2) the following
output is displayed in the command window for the test problem. Again, it
is observed that in the second and third iterations, search points are similar
to this method as compared to DFP and the conjugate gradient methods,
indicating that search directions were similar. Further, on typing A in the

© 2015 by Taylor & Francis Group, LLC

73Unconstrained Optimization

MATLAB command prompt and then printing the Hessian matrix at the
converged value of x, it is observed that [A] approaches [H].

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
───
1 0.095 0.023 -2.704 1006.074
2 0.179 0.145 -5.418 37.036
3 0.508 0.145 -9.578 24.017
4 0.501 0.122 -9.655 6.900
5 0.504 0.122 -9.656 0.471
6 0.504 0.122 -9.656 0.077
7 0.504 0.122 -9.656 0.056
8 0.504 0.122 -9.656 0.040
9 0.504 0.122 -9.656 0.007
───

>> A
A =
 110.5001 -16.9997
 -16.9997 306.7238
>> hessian(x,delx,n_of_var)
ans =
 111.0981 -15.9640
 -15.9640 308.5603

TablE 3.8

Algorithm for the BFGS Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
 [A] (initialize to identity matrix)
Step 2: Compute f(xi) and ∇f(xi) (function and gradient vector)
 Si = −∇f(xi) (search direction)
 xi+1 = xi + αSi (update the design vector)
 Minimize f(xi+1) and determine α (use golden section method)
Step 3: Compute Δx and ∇g

 [] []
() ()

()
A A

x
x x

x Si i

T

T
i i

T

i
T

i

g g
g

f f
f+ = + ∇

∇
+ ∇ ∇

∇1 ∆

 Si+1 = −[[A]i+1]−1∇f(xi+1)
 xi+2 = xi+1 + αSi+1

 Minimize f(xi+2) and determine α (use the golden section method)
 If f fi i() ()x x+ +− >2 1 1ε or ∥∇f(xi+1)∥ > ε2

 then goto Step 3
 else goto Step 4
Step 4: Converged. Print x* = xi+2, f(x*) = f(xi+2)

© 2015 by Taylor & Francis Group, LLC

74 Optimization: Algorithms and Applications

3.4.8 Powell Method

The Powell method is a direct search method (no gradient computation is
required) with the property of quadratic convergence. Previous search direc-
tions are stored in this method and they form a basis for the new search
direction. The method makes a series of unidirectional searches along these
search directions. The last search direction replaces the first one in the new
iteration and the process is continued until the function value shows no
improvement. A MATLAB code (powell.m) is written in which this method is
implemented and the algorithm is described in Table 3.9.

On executing the code with a starting value of x as (–3, 2), following output
is displayed at the command window for the test problem.

Initial function value = 1452.2619
No. x-vector f(x)
─────────────────────────────────
1 0.504 0.122 -9.656
2 0.505 0.122 -9.656
3 0.504 0.122 -9.656
4 0.504 0.122 -9.656
5 0.505 0.122 -9.656
─────────────────────────────────

TablE 3.9

Algorithm for the Powell Method

Step 1: Given xi (starting value of design variable)
 ε (tolerance of function value from previous iteration)
 Si (linearly independent vectors)
 f(Xprev) = f(xi)
Step 2: X = xi + αSi

 Minimize f(X) and determine α (use the golden section method)
Step 3: Set Y = X, i = 1
 do
 Minimize f(X) and determine α (use the golden section method)
 X = X + αSi

 i = i + 1
 while i < (number of variable) + 1
 If f f() ()X X− <prev ε
 then goto Step 4
 else continue
 Si = X − Y
 X = X + αSi

 f(Xprev) = f(X)
 goto Step 3
Step 4: Converged. Print x* = X, f(x*) = f(X)

© 2015 by Taylor & Francis Group, LLC

75Unconstrained Optimization

3.4.9 Nelder–Mead algorithm

Simplex refers to a geometric figure formed by n + 1 points in an n dimension
space. For example, in a two-dimensional space, the figure formed is a trian-
gle. The Nelder–Mead algorithm is a direct search method and uses function
information alone (no gradient computation is required) to move from one
iteration to another. The objective function is computed at each vertex of the
simplex. Using this information, the simplex is moved in the search space.
Again, the objective function is computed at each vertex of the simplex. The
process of moving the simplex is continued until the optimum value of the
function is reached. Three basic operations are required to move the simplex
in the search space: reflection, contraction, and expansion.

In an optimization problem with two dimensions, the simplex will be a
triangle, whose vertices are given by (say) x1, x2, and x3. Of these, let the worst
value of the objective function be at x3 = xworst. If the point xworst is reflected
on the opposite face of the triangle, the objective function value is expected
to decrease. Let the new reflected point be designated as xr. The new simplex
(see Figure 3.9) is given by the vertices x1, x2, and xr. The centroid point xc is
computed using all the points but with the exclusion of xworst. That is,

 x xc i

i

n

n
i

=

≠

+

=
∑1

1

1

worst

 (3.29)

The reflected point is computed as

 xr = xc + α(xc − xworst) (3.30)

where α is a predefined constant. Typically, α = 1 is taken in the simulations.
If the reflected value does not show improvement, the second worst value is
taken and the process as discussed earlier is repeated. Sometimes reflection

x1

x2

xc

xr

x3 = xworst

FIGURE 3.9
Reflection operation.

© 2015 by Taylor & Francis Group, LLC

76 Optimization: Algorithms and Applications

can lead to cycling with no improvement in the objective function value.
Under such conditions, a contraction operation is performed.

If xr results in a new minimum point, then it is possible to further expand
the new simplex (see Figure 3.10) in the hope of further reducing the objec-
tive function value. The expanded point is computed as

 xe = xc + γ(xc – xworst) (3.31)

where γ is a predefined constant. Typically, γ = 2 is taken in the simulations.
If xe results in the new minimum point, it replaces the xworst point. Else, xr
replaces the xworst point.

The contraction operation is used when it is certain that the reflected point
is better than the second worst point (xsecond worst). The contracted point is
computed as

 xcontr = xc + ρ(xc − xworst) (3.32)

where ρ is a predefined constant. Typically, ρ = −0.5 is taken in the simulations.
The preceding operations are continued until the standard deviation of

the functions computed at the vertices of the simplex becomes less than ε.
That is,

f f

n
i c

i

n () ()x x− 
+

≤
=

+

∑
2

1

1

1
ε (3.33)

The Nelder–Mead algorithm is described in Table 3.10 and a MATLAB
code (neldermead.m) is written in which this method is implemented.

x1

x2

xc

xe

xr

x3 = xworst

FIGURE 3.10
Expansion operation.

© 2015 by Taylor & Francis Group, LLC

77Unconstrained Optimization

On executing the code with a random value of x, the following output is
displayed at the command window for the test problem.

Iteration Deviation f(x)
────────────────────────────────────
1 72.2666 -0.733
2 36.7907 -0.733
3 6.8845 -0.733
4 9.7186 -8.203
5 5.0965 -8.203
6 3.8714 -8.426
7 1.3655 -8.426
8 0.7944 -9.351
9 0.6497 -9.509
10 0.2242 -9.509
11 0.1083 -9.509
12 0.1068 -9.641
13 0.0794 -9.641
14 0.0299 -9.641

TablE 3.10

Nelder–Mead Algorithm

Step 1: Given xi (randomly select starting value of design variables)
 α, γ, ρ, σ, ε (value of constants)
 Compute f(xi), f(xbest) ≤ … ≤ f(xsecond worst) ≤ f(xworst)
Step 2: Compute the centroid as

 x xc i

n

i
n

=

≠
=

∑1

1
i worst

+1

Step 3: Reflection
 xr = xc + α(xc − xworst)
 If f(xbest) ≤ … ≤ f(xr) ≤ f(xsecond worst) then replace xworst with xr and goto Step 1
Step 3: Expansion
 If f(xr) ≤ f(xbest) then
 xe = xc + γ(xc − xworst)
 If f(xe) ≤ f(xr) then replace xworst with xe and goto Step 1
 Else
 replace xworst with xr

 Else
 goto Step 5
Step 4: Contraction
 xcontr = xc + ρ(xc − xworst)
 If f(xcontr) ≤ f(xworst) then replace xworst with xc and goto Step 1
Step 5: If

f f

n
i c

i

n () ()x x− 
+

≤
=

+

∑
2

1

1

1
ε

 then converged,
 else
 goto Step 1

© 2015 by Taylor & Francis Group, LLC

78 Optimization: Algorithms and Applications

15 0.0173 -9.641
16 0.0126 -9.653
17 0.0079 -9.653
18 0.0034 -9.654
19 0.0025 -9.654
20 0.0021 -9.656
21 0.0011 -9.656
22 0.0003 -9.656
23 0.0004 -9.656
24 0.0003 -9.656
────────────────────────────────────

xc =
 0.5028 0.1219

3.5 Additional Test Functions

Different solution techniques were applied to the test problem on the spring
system in the previous section. In this section, some additional test prob-
lems such as Rosenbrock’s function, Wood’s function, quadratic function,
and so forth are taken, on which different solution methods will be tested.
The performance of each method is compared in terms of the computational
time. The MATLAB functions tic and toc can be used to estimate the compu-
tational time.

3.5.1 Rosenbrock Function

The two-variable function is given by

 f x x x() ()x = −() + −100 12 1
2

2

1
2 (3.34)

The minimum of this “banana valley” function is zero (see Figure 3.11
where the minimum is marked with *) and occurs at (1, 1). Different solution
methods are applied from the same starting point (–1.5, 1.5) and their per-
formances are summarized in Table 3.11. All methods are able to track the
minimum of the function. The steepest descent method takes a maximum
computational time as compared to all other methods. The computational
time required by other methods is comparable. The convergence history of
the steepest descent method is plotted in Figure 3.12 and marked with °.
Because of the particular nature of the problem, the method dwells in the
region with a low gradient value. The Nelder–Mead method is not compared
here as it uses more than one starting point.

© 2015 by Taylor & Francis Group, LLC

79Unconstrained Optimization

3.5.2 Quadratic Function

The two-variable function is given by

 f(x) = (1 − x1)2 + (2 − x2)2 (3.35)

The minimum of this function is zero (see Figure 3.13, where the minimum
is marked with *) and occurs at (1, 2). Different solution methods are applied
from a starting point (2, –3) and their performances are summarized in
Table 3.12. All methods are able to track the minimum of the function. The

20 2

2 2

220

20

20

20

20

20

50

50

50

50

50

50

50
100

100

100

10
0

10
0

100

100

200

200

200

20
0

20
0200 20
0

300

300

300

30
0

30
0

300 30
0400

400

400 40
0

40
0

40
0

400

x1

x 2

–2 –1 0 1 2
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

FIGURE 3.11
Contours of Rosenbrock function.

TablE 3.11

Performance Comparison of Different
Solution Methods for Rosenbrock’s Function

Method
Computational Time

(ms)

Steepest descent 49.7
Newton 8.04
Modified Newton 11.9
Marquardt 9.4
Conjugate gradient 18.8
DFP 11.23
BFGS 10.34
Powell 10.52

© 2015 by Taylor & Francis Group, LLC

80 Optimization: Algorithms and Applications

1

2

2

5

5

10

10

10

20

20

20

20

50

50

50

50

50 50

50

10
0

100

100

100

100

100

x1

–10 –5 0 5 10
–10

–5

0

5

10

x 2

FIGURE 3.13
Contours of a quadratic function.

2

2 2

220

20

20

20

20

20

20

50

50

50

50

50

50

50
100

100

100

10
0

10
0

100

100

200

200

200

20
0

20
0200 20
0

300

300

300

30
0

30
0

300 30
0400

400

400 40
0

40
0

40
0

400

x1

x 2

–2 –1 0 1 2
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

FIGURE 3.12
Behavior of steepest descent method on Rosenbrock function.

© 2015 by Taylor & Francis Group, LLC

81Unconstrained Optimization

conjugate gradient method takes minimum computational time compared to
other solution methods.

3.5.3 Nonlinear Function

The two-variable function is given by

 f x x x x x()x = − + +4 4 31
2

1 2 2
2

1 (3.36)

The minimum of this function is –0.09375 (see Figure 3.14, where the mini-
mum is marked with *) and occurs at (–3/16, –1/8). Different solution meth-
ods are applied from a starting point (4, 3) and their performances are

TablE 3.12

Performance Comparison of Different Solution Methods
for a Quadratic Function

Method
Computational Time

(ms)

Steepest descent 6.06
Newton 7.5
Modified Newton 10.38
Marquardt 9.72
Conjugate gradient 5.79
DFP 7.69
BFGS 7.45
Powell 7.26

2

2

10

10

10

10

20

20

20

20

20

50

50

50

50 50

50

50

50

100

10
0

100

10
0

x1

–5 0 5–5

0

5

x 2

FIGURE 3.14
Contours of a nonlinear function.

© 2015 by Taylor & Francis Group, LLC

82 Optimization: Algorithms and Applications

summarized in Table 3.13. All methods are able to track the minimum of
the function. The conjugate gradient method takes minimum computational
time compared to other solution methods.

3.5.4 Wood’s Function

The two-variable function is given by

 f x
x

x
x x

x x
()

()
x = + + + + +





1

10
12

1 100
1
2 1

2

1
2

1
2

2
2

1 2
4 (3.37)

The minimum of this function is 1.744 (see Figure 3.15, where the minimum
is marked with *) and occurs at (1.743, 2.03). Different solution methods are

2
2

2

2
2

3
3

3 3
3

3

4
4

4 4
4

4

6
6

6

6

6
6

6

8
8

8
8 8

8
8

10
10

10

10 10

10
10

10

x1

x 2

0 2 4 6 8 10
0

2

4

6

8

10

FIGURE 3.15
Contours of Wood’s function.

TablE 3.13

Performance Comparison of Different Solution Methods
for a Nonlinear Function

Method
Computational Time

(ms)

Steepest descent 11.19
Newton 7.67
Modified Newton 10.51
Marquardt 10.0
Conjugate gradient 6.27
DFP 7.85
BFGS 7.70
Powell 8.32

© 2015 by Taylor & Francis Group, LLC

83Unconstrained Optimization

applied from a starting point (0.5, 0.5) and their performances are summa-
rized in Table 3.14. All methods are able to track the minimum of the func-
tion. The conjugate gradient method takes minimum computational time
compared to other solution methods.

3.6 Application to Robotics

An industrial robot typically comprises a number of mechanical links with
one end fixed and the other end-effector free to move. If the joint angles (θ1, θ2,
and θ3) are known, then the trajectory of the end-effector can be calculated
using kinematic relationships. Often a predefined motion of the end-effector
is given for which we have to evaluate the joint angles. This can be stated as
an unconstrained optimization problem (Andreas 2007).

The design variables for the optimization problem are

 x =



















θ
θ
θ

1

2

3

 (3.38)

The kinematic equations are

 f1(x) = c1(a2c2 + a3c23 − d4s23) − d3s1 − px (3.39)

TablE 3.14

Performance Comparison of Different Solution
Methods for Wood’s Function

Method
Computational Time

(ms)

Steepest descent 7.16
Newton 9.46
Modified Newton 12.1
Marquardt 10.6
Conjugate gradient 6.22
DFP 9.54
BFGS 8.33
Powell 12.75

© 2015 by Taylor & Francis Group, LLC

84 Optimization: Algorithms and Applications

 f2(x) = s1(a2c2 + a3c23 − d4s23) + d3s1 − py (3.40)

 f3(x) = d1 − a2s2 − a3s23 − d4c23 − pz (3.41)

where

 c1 = cos(θ1)

 c2 = cos(θ2)

 c23 = cos(θ2 + θ3)

 s1 = sin(θ1)

 s2 = sin(θ2)

 s23 = sin(θ2 + θ3)

 d1 = 66.04, d3 = 14.91, d4 = 43.31, a2 = 43.18, a3 = 2.03

The desired trajectory equation is given by

p

p

p

t
t

t

x

y

z



















=
+









30
100

10 66 04

cos
sin

. 





 (3.42)

The unconstrained optimization problem is

 Minimize
i

if
=

∑
1

3

2 ()x (3.43)

Here –π ≤ t ≤ π. t is divided into 100 parts. It means there are 100 variables for
θ1, 100 variables for θ2, and 100 variables for θ3. The unconstrained problem
thus has 300 variables that need to be determined. The optimization problem
is solved using the Powell method.

Go to the Robotics directory in Chapter 3 and type powell in the command
prompt. Then generate the optimized trajectory by executing the MATLAB
code generate_optimized_traj(x). Give a hold on command and then execute

© 2015 by Taylor & Francis Group, LLC

85Unconstrained Optimization

robotics_nominal_traj.m. The desired (nominal shown by solid line) and opti-
mized (shown by *) trajectories are compared in Figure 3.16. It is observed
that in some regions, the motion of the end-effector is not exactly matched
with the desired profile. Similar results are also seen in Andreas (2007),
where the reason for the difference is attributed to “beyond manipulators
reach.”

Chapter Highlights

•	 The unidirectional search refers to minimizing the value of a multi-
variable function along a specified direction.

•	 Solution techniques for multivariable, unconstrained optimization
problems can be grouped into gradient- and non–gradient-based
methods.

•	 The negative gradient direction is addressed as the steepest descent
direction.

•	 The steepest descent method ensures a reduction in the function
value at every iteration. If the starting point is far away from the
minimum, the gradient will be higher and function reduction will
be maximum in each iteration. Because the gradient value of the
function decreases near the optimum, the method becomes sluggish
(slow convergence) near the minimum.

–40
–20

0
20

40

–100
–50

0
50

100
20

40

60

80

100

px
py

p z

Nominal

FIGURE 3.16
Comparison of manipulator’s trajectories (optimized with nominal).

© 2015 by Taylor & Francis Group, LLC

86 Optimization: Algorithms and Applications

•	 Newton’s method requires computation of the Hessian matrix,
which is computationally expensive. Newton’s method is known
for converging in one iteration for a quadratic function. The method
requires a restart if the starting point is far away from optimum.

•	 In the modified Newton method, a line search is performed in the
search direction computed by the Newton method.

•	 The Levenberg–Marquardt method is a sort of hybrid method that
combines the strength of both the steepest descent and Newton
methods.

•	 The conjugate gradient method is a first-order method, but shows
the property of quadratic convergence and thus has a significant
advantage over the second-order methods.

•	 DFP and BFGS methods are called the variable metric methods.
•	 It is important to note that whereas the matrix [A] converges to the

inverse of the Hessian in the DFP method, it converges to the Hessian
itself in the BFGS method.

•	 The Powell method is a direct search method (no gradient computa-
tion is required) with the property of quadratic convergence.

•	 In the Nelder–Mead algorithm, the simplex is moved using reflec-
tion, expansion, and contraction.

Formulae Chart

Necessary conditions for minimum of a function:

 ∇f(x*) = 0

 ∇2f(x*) ≥ 0

Unidirectional search:

 f(α) = xi + αSi

Search direction in steepest descent method:

 Si = −∇f(xi)

Search direction in the Newton method:

 Si = −[H]−1∇f(xi)

© 2015 by Taylor & Francis Group, LLC

87Unconstrained Optimization

Search direction in the Levenberg–Marquardt method:

 Si = −[H + λI]−1∇f(xi)

Search direction in the conjugate gradient method:

S x
x

x
Si i

i

i

if
f

f
+

+= −∇ +
∇

∇
1

1

2

2
()

()

()

Search direction in the DFP method:

 Si = −[A]∇f(xi)

[] []

[] []
[]

A A
x x
x

A A
A

i i

T

T
i

T
i

T
ig

g g
g g

+ = +
∇

−
∇ ∇

∇ ∇1
∆ ∆
∆

Search direction in the BFGS method:

 Si = −[A]−1∇f(xi)

[] []

() ()
()

A A
x

x x

x S
i i

T

T
i i

T

i
T

i

g g

g

f f

f
+ = +

∇
∇

+
∇ ∇

∇1
∆

Problems

 1. Find the steepest descent direction for the function

 f x x x x()x = + +1
2

1 2 2
23 2

 at point (1, 2).
 2. Minimize the function

 f x x e ex x() , .x = + + −− −10 000 2 00011 2
1 2

 from a starting value of (2, 2) using the BFGS, DFP, and steepest
descent methods.

 3. Minimize the function

f x x x x()x = + −() + + −()1

2
2

2

2
2

1

2
11 7

© 2015 by Taylor & Francis Group, LLC

88 Optimization: Algorithms and Applications

 from a starting value of (2, 3) using the following methods:
 i. Steepest descent
 ii. Newton
 iii. Modified Newton
 iv. Levenberg–Marquardt
 v. DFP
 vi. BFGS
 vii. Powell
 viii. Nelder–Mead
 4. Show that in the DFP method, the variable metric [A] approaches

the inverse of the Hessian matrix for the following function which
needs to be minimized.

 f x x x x()x = + +1
2

1 2 2
23 5

 Take starting value as (1, 1).
 5. Show that in the BFGS method, the variable metric [A] approaches the

Hessian matrix for the following function which needs to be minimized.

 f x x x x()x = + +1
2

1 2 2
23 5

 Take the starting value as (1, 1).
 6. Minimize the function using the DFP method with a starting value

of (1, 1)

 f x x x xx x() sin(())x = + + − − ++e 1
2

2
2

1 2 1 23 3

 7. Minimize the function

f x x x x() ()x = − + + −() +100 10 100 13

2
1
2

2
2

2

3
2θ

 where

2 01 2

1
1πθ =







>−tan
x
x

x

2 01 2

1
1πθ π= +







<−tan
x
x

x

 Take the starting value as (–1, 0, 0).

© 2015 by Taylor & Francis Group, LLC

89Unconstrained Optimization

 8. Instead of using the central difference formula for computing the
derivative of a function, use the complex variable formula

′ =

+ f x
f x i x x

x
()

()Imaginary /∆ ∆

∆

 The MATLAB code grad_vec.m can be modified as

%%%
% MATLAB code grad_vec.m
%%%
%
function deriv = grad_vec_complex(x,delx,n_of_var)
xvec = x;
h = 1e-14;
for j = 1:length(x)
xvec = x;
c = complex(xvec(j),h);
xvec(j) = c;
deriv(j) = imag(func_multivar(xvec)/h);
end
%
%%%

 Now use the steepest descent method to optimize the test function
given in the main text.

 9. Compare the accuracy of the derivative computation using the cen-
tral difference formula and the complex variable formula against the
analytical value of the derivative of the test function

 f(x) = sin x + ln x

 at = 0.1.
 10. Use the line search algorithm to minimize the function

 f x x x x()x = + −() + + −()1
2

2

2

2
2

1

2
11 7

 starting from different initial points and different search directions:
 i. Starting point (1, 1) and search direction (2, 4)
 ii. Starting point (0, 0) and search direction (1, 2)
 iii. Starting point (3, 2) and search direction (1, 1)

© 2015 by Taylor & Francis Group, LLC

90 Optimization: Algorithms and Applications

 11. Minimize the function

f x x()x = +()1

2
81

2
2
2

 from the starting point (1, 2) using the steepest descent method.
Observe the sluggishness of this method. Again, solve the function
by the conjugate gradient method and compare the performance
with the steepest descent method.

 12. A manufacturing firm wants to divide its resources suitably between
capital (x1) and labor (x2) so as to maximize the profit function given by

 f(x) = p{ln(1 + x1) + ln(1 + x2)} − wx2 − vx1

 where p is the unit price of the product, w is the wage rate of labor,
and v is the unit cost of capital.

 i. By computing the gradient vector of the above function with
respect to x1 and x2 and then equating it to zero, compute the
design variables x1 and x2 as a function of p, v, and w.

 ii. Using the second-order condition, check whether the solution
corresponds to a maximum of the function.

 iii. Compute numerical values of x1 and x2 by assuming suitable val-
ues of p, v, and w (p > w, v).

 iv. Starting with an initial guess of (0, 0) and using the values of p,
v, and w as assumed in (iii), find the maximum of the function
using the steepest descent method. Compare the values of x1 and
x2 with those obtained from (iii).

 13. The stable equilibrium configuration (Haftka and Gurdal 1992) of a
two-bar unsymmetrical shallow truss (Figure 3.17) can be obtained

l1 l2

h

p

FIGURE 3.17
Two-bar truss.

© 2015 by Taylor & Francis Group, LLC

91Unconstrained Optimization

by minimizing the potential energy function of the nondimensional
displace variables x1 and x2 as

f m x x x x x

x
()x = − + +





 + − + −1

2
1
2

1
2

1
21 1 1

2
2

2

1 1 1
2 2γ α α

γγ
γ γ







−4
1p x

 where m, γ, α, and p are the nondimensional quantities defined as

m

A
A

l
l

h
l

p
p

EA
= = = =1

2

1

2
1

1 2

γ α

 where E is the elastic modulus and A1 and A2 are the cross-sectional
areas of the bars. Take m = 5, γ = 4, α = 0.02, and p = 0 00002. . Staring
with an initial guess of (0, 0), minimize the function using the DFP
and BFGS methods.

© 2015 by Taylor & Francis Group, LLC

© 2015 by Taylor & Francis Group, LLC

93

4
Linear Programming

4.1 Introduction

Linear programming refers to an optimization problem that has the objec-
tive and the constraints as a linear function of the design variables. The con-
straints could be of an equality or inequality type or both. Mathematically, a
linear function satisfies the following properties:

 f(x + y) = f(x) + f(y) (4.1)

 f(kx) = kf(x) (4.2)

where x and y are the variables and k is a scalar. A practical linear program-
ming problem (LPP) might contain hundreds of design variables and con-
straints and thus require special solution techniques that are different from
the methods that were described in the previous chapters. A number of
applications of LPP can be found in the literature, some of which include

•	 An airline company would like to assign crews to different flights
in an optimal way so that total cost is minimized while covering its
entire network.

•	 In a portfolio optimization problem, an investor would like to know
the investment allocation to different assets that would maximize
the return.

•	 An oil company blends different qualities of oil to produce differ-
ent grades of gasoline, which need to be shipped to users who are
located in different places. The quantity of gasoline that can be pro-
duced is fixed at a certain maximum and so is the input oil quantity.
The company would like to maximize its profit.

•	 A company produces a number of products and this requires a num-
ber of processes on different machines. The profit from each prod-
uct is known and the maximum time available for each machine

© 2015 by Taylor & Francis Group, LLC

94 Optimization: Algorithms and Applications

is fixed. The company would like to determine the manufacturing
policy that would maximize its profit.

•	 A government-run bus company has to cover different places in a
metro city. As a government company, it has an obligation to cover
all parts of the city, irrespective of whether a particular route is prof-
itable or not. The company would like to find the number of routes
and allocate a number of buses for each of these routes in such a way
that it can maximize its profit.

The next section discusses the solution to LPP using the graphical method
and its limitations. The need to convert an LPP into the standard form
along with procedural details is discussed next. Basic definitions of linear
programming such as feasible solutions, basic solutions, basic feasible solu-
tions, and optimal solution are further introduced. The simplex method is
discussed in detail for solving LPPs. The degeneracy problem in the simplex
method and how it can be overcome is also discussed. The importance of
converting a primal problem into a dual problem is explained followed by
the dual-simplex method to solve such problems. In the simplex method, the
algorithm moves from one feasible point to another feasible point. For a large
LPP, this can be time consuming. As an alternate, interior point methods
move inside the feasible region to reach the optimum. The road map of this
chapter is given in Figure 4.1.

Solution with graphical method

Standard form of LPP

Simplex method
Multiple solutions
Degeneracy
Two-phase method
Dual simplex method

Interior-point method

Portfolio optimization

Basic solution

Figure 4.1
Road map of Chapter 4.

© 2015 by Taylor & Francis Group, LLC

95Linear Programming

4.2 Solution with the Graphical Method

The graphical method is a simple technique for locating the optimal solu-
tion of problems with up to two to three design variables only. Beyond three
variables and with many constraints, the representation of the optimization
problem through graphs becomes complex. Consider the LPP

Maximize

 z = x + 2y (4.3)

subject to

 2x + y ≥ 4 (4.4)

 −2x + 4y ≥ −2 (4.5)

 −2x + y ≥ −8 (4.6)

 −2x + y ≤ −2 (4.7)

 y ≤ 6 (4.8)

The intersection of five constraints leads to a feasible region ABCDE as
shown in Figure 4.2. To make this plot, first type MuPad in the MATLAB®
command prompt. Open a new window in MuPad and then type the follow-
ing commands:

k := [{2*x + y >= 4, -2*x + 4*y >= -2, -2*x + y >= -8,
-2*x + y <= -2, y <= 6}, x + 2*y]:
g := linopt::plot_data(k, [x, y]):
plot(g, Color = RGB::Grey)

The coordinate value of the vertex is given in the brackets. The values of
the objective function at points A, B, C, D, and E are given as 9, 13/5, 7/2, 16
and 19 respectively. In an LPP, the optimal value of the objective function
occurs at the edge of the convex polyhedron. Thus, the maximum value of
the objective function is 19 and the values of the variables x and y are 7 and
6 respectively at the optimal point. Note that the objective function z = x +
2y, also referred to as the cost equation represents, a family of parallel lines
(shown by the dashed line in Figure 4.2) called equicost lines. The value of
the objective function is constant along this line.

© 2015 by Taylor & Francis Group, LLC

96 Optimization: Algorithms and Applications

An LPP need not have a unique solution. For example, if we change the
previous LPP to

Minimize

 z = 2x + y (4.9)

subject to

 2x + y ≥ 4 (4.10)

 −2x + 4y ≥ −2 (4.11)

 −2x + y ≥ −8 (4.12)

 −2x + y ≤ −2 (4.13)

 y ≤ 6 (4.14)

Open a new window in MuPad and then type the following command and
observe the plot in Figure 4.3.

k := [{2*x + y >= 4, -2*x + 4*y >= -2, -2*x + y >= -8,
-2*x + y <= -2, y <= 6}, -2*x - y]:
g := linopt::plot_data(k, [x, y]):
plot(g, Color = RGB::Grey)

1 2 3 4 5 6 7 8
–1

0

1

2

3

4

5

6

7

x

y
D (4, 6)

E (7, 6)

A (5, 2)

z = 16 z = 19

z = 9
C (, 1)3

2
B (,)9

5
2
5

Figure 4.2
Feasible region (ABCDE) for the LPP.

© 2015 by Taylor & Francis Group, LLC

97Linear Programming

The equicost line z = 4 passes through points B and C. The minimum value
of the objective function is 4 and occurs at (3/2, 1) and (9/5, 2/5). In fact, for
infinite number of points in the line joining points B and C, the objective
function value is 4. That is, in the given LPP, the solution is not unique.

Now consider the LPP in which one of the constraints is removed. The LPP
is given by

Maximize

 z = x + 2y (4.15)

subject to

 2x + y ≥ 4 (4.16)

 −2x + 4y ≥ −2 (4.17)

 −2x + y ≥ −8 (4.18)

 −2x + y ≤ −2 (4.19)

The constraints are plotted in Figure 4.4. Observe that the value of the
objective function can be increased to an infinitely large value, without leav-
ing the feasible region. The solution of the LPP, in this case, is said to be
unbounded.

1 2 3 4 5 6 7 8
–1

0

1

2

3

4

5

6

7

x

y
z = 20

z = 4

D (4, 6)

E (7, 6)

A (5, 2)

C (, 1)3
2

B (,)9
5

2
5

Figure 4.3
Infinite solutions for the LPP.

© 2015 by Taylor & Francis Group, LLC

98 Optimization: Algorithms and Applications

In addition, there can be inconsistent constraints in a LPP or the constraints
may be such that no feasible solution exists for the problem. The solution of
the LPP, in this case, is said to be infeasible. From the discussion so far, we can
say that an LPP can have

•	 A unique solution
•	 Infinite solutions
•	 An unbounded solution
•	 An infeasible solution

4.3 Standard Form of an LPP

In the previous section, the graphical method was used to find the optimal
solution of a two-variable LPP. In practice, LPP would contain several vari-
ables and constraints. Thus, there is a need to put LPP in a standard form.
For an n variable LPP, the scalar form is given as

Minimize

 z = c1x1 + c2x2 + ⋯ + cnxn (4.20)

y

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
x

Unbounded

Figure 4.4
Unbounded solution for the LPP.

© 2015 by Taylor & Francis Group, LLC

99Linear Programming

subject to

 a11x1 + a12x2 + ⋯ + a1nxn = b1 (4.21)

 a21x1 + a22x2 + ⋯ + a2nxn = b2 (4.22)

 ⋮

 am1x1 + am2x2 + ⋯ + amnxn = bm (4.23)

 xj, bm ≥ 0 (4.24)

where aij(i = 1, 2, ⋯, m; j = 1, 2, ⋯, n), bj, cj are constants and xj are the design
variables. LPP can also be put in matrix form as

Minimize

 z = cT x (4.25)

subject to

 Ax = b (4.26)

 x, b ≥ 0 (4.27)

where A is an m × n constraint matrix given by

 A =





















a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

�
�

�
�

 (4.28)

and b, c, and x are column vectors given by

b c=























=



















b

b

b

c

c

cm n

1

2

1

2

 

, 




=























, x

x

x

xn

1

2



© 2015 by Taylor & Francis Group, LLC

100 Optimization: Algorithms and Applications

The following important points are to be noted when an LPP is written in
standard form.

•	 The objective function needs to be in the minimization type.
•	 All of the design variables should be nonnegative.
•	 All of the components of the vector b are to be nonnegative.
•	 All of the constraints are of the equality type.

If the objective function is the maximization type, it can be converted to
the minimization type by multiplying the cost coefficients by –1. For exam-
ple, if the objective function is

 Maximize z = x1 + 2x2

Then it can be converted to the minimization type as

 Minimize −z = −x1 − 2x2

If a ≤ type constraint is present, then it can be converted into an equality
constraint by adding a slack variable. For example, the inequality constraint

 4x1 − 5x2 + 6x3 + 9x4 ≤ 20

can be converted to an equality constraint by the addition of the slack variable s1

 4x1 − 5x2 + 6x3 + 9x4 + s1 = 20

where s1 ≥ 0. If a ≥ type constraint is present, then it can be converted into an
equality constraint by subtracting it with a surplus variable. For example, the
inequality constraint

 2x1 + 4x2 − 6x3 + 7x4 ≥ 8

can be converted to an equality constraint by subtracting it with a surplus
variable e1

 2x1 + 4x2 − 6x3 + 7x4 − e1 = 8

An unrestricted or free variable (without any specified bounds) can be
replaced by a pair of nonnegative variables. If x1 is an unrestricted variable,
then it can be replaced by

 x x x1 1 1= ′ − ′′

with ′ ≥x1 0 and ′′ ≥x1 0.

© 2015 by Taylor & Francis Group, LLC

101Linear Programming

Example 4.1

Transform the following LPP into the standard form.

Maximize

 z = −4x1 − 2x2 + x3 − 3x4

subject to

 2x1 + 3x2 − x3 − 3x4 = 5

 −5x1 − 2x2 + 4x3 − 7x4 ≤ 8

 4x1 − x2 − 2x3 + 5x4 ≤ −6

 x1 ≥ −1, 0 ≤ x2 ≤ 3, x3 ≥ 0, x4 free

Since the objective function is of the maximization type, it needs to be
converted into the minimization type. This can be done by multiplying
the objective function by –1, that is,

Minimize

 −z = 4x1 + 2x2 − x3 + 3x4

The right-hand side of the third constraint is negative (–6). In standard
form, this has to be positive. Hence, the third constraint has to be multi-
plied by –1 throughout. Third constraint thus becomes

 −4x1 + x2 + 2x3 − 5x4 ≥ 6

Note that inequality type also changes during this operation.
Now transforming the variables

 ′ = +x x1 1 1

 x x x4 4 4= ′ − ′′

and substituting these variables in the LPP, we get

Minimize

 ′ = ′ + − + ′ − ′′ −z x x x x x4 2 3 3 41 2 3 4 4

subject to

 2 3 3 3 71 2 3 4 4′ + − − ′ + ′′ =x x x x x

© 2015 by Taylor & Francis Group, LLC

102 Optimization: Algorithms and Applications

 − ′ − + − ′ + ′′ ≤5 2 4 7 7 31 2 3 4 4x x x x x

 − ′ + + − ′ + ′′ ≥4 2 5 5 21 2 3 4 4x x x x x

 x2 ≤ 3

 ′ ′ ′′ ≥x x x x x1 2 3 4 4 0, , , ,

Using the slack and surplus variables, inequality constraints can be
converted into equality constraints. Thus, the LPP problem converted
into standard form is

Minimize

 ′′ = ′ + = ′ + − + ′ − ′′z z x x x x x4 4 2 3 31 2 3 4 4

subject to

 2 3 3 3 71 2 3 4 4′ + − − ′ + ′′ =x x x x x

 − ′ − + − ′ + ′′ + =5 2 4 7 7 31 2 3 4 4 2x x x x x s

 − ′ + + − ′ + ′′ − =4 2 5 5 21 2 3 4 4 3x x x x x e

 x2 + s4 = 3

 ′ ′ ′′ ≥x x x x x s e s1 2 3 4 4 2 3 4 0, , , , , , ,

In matrix form, the LPP in standard form can be written as

Minimize

 z″ = cTx

subject to

 Ax = b

 x ≥ 0

© 2015 by Taylor & Francis Group, LLC

103Linear Programming

where

A =

− −
− − −
− − −









2 3 1 3 3 0 0 0
5 2 4 7 7 1 0 0
4 1 2 5 5 0 1 0

0 1 0 0 0 0 0 1










=

−

−































; ;c

4
2
1

3
3

0
0
0

b x=



















=

′

′
′′







7
3
2
2

1

2

3

4

4

2

3

4

;

x

x

x

x

x

s

e

s






























4.4 Basic Solution

Consider an LPP in the standard form

Minimize

 z = cTx (4.29)

subject to

 Ax = b (4.30)

 x, b ≥ 0 (4.31)

with n variables and m constraints. If m = n, then the solution is given by
satisfying the constraint equations Ax = b and there is no need for optimiza-
tion. For m > n, there will be m − n redundant equations. The case m < n will
correspond to an underdetermined system of linear equations that will have
infinite solutions. The solution technique of LPP is to determine the optimal
solution among many solutions.

A solution that satisfies the constraints is called the feasible solution. If we
set n − m variables to zero and solve the constraint equations Ax = b, we
get the basic solution. The corresponding variable x obtained from the basic
 solution is termed the basis. A basic solution that also satisfies x ≥ 0 is called
the basic feasible solution. It may be noted that every basic feasible solution is
an extreme point of the convex set of feasible solutions. If the basic feasible
solution is optimal then it is said to be the optimal basic solution.

© 2015 by Taylor & Francis Group, LLC

104 Optimization: Algorithms and Applications

Example 4.2

Find all the basic solutions for the system of equations:

 3x1 − 4x2 + 2x3 + x4 = 0

 x1 + 3x2 + 2x3 + x4 = 500

 7x1 + x2 + x3 − x4 = 700

Writing the above equations in matrix form

 Ax = b

where

 A x=
















=















−

−

3 4 2 1
1 3 2 1
7 1 1 1

1

2

3

4

;

x

x

x

x






=
















; b
0

500
700

Let x1, x2, and x3 be the basic variables and x4 be the nonbasic variable.
Since the nonbasic variable(s) take the value zero in the basic solution,
we can rewrite the matrix equation as

 Bx = b

where

 B x b=
−















=



















=
3 4 2
1 3 2
7 1 1

01

2

3

; ;
x

x

x
5500
700

















The matrix B corresponds to the basic variable columns of A. If B is
invertible, then we can evaluate x as

 x = B−1b

 x =



















=
−















−
x

x

x

1

2

3

1

3 4 2
1 3 2
7 1 1

0
500
7700

6800 89
8300 89
6400 89

















=
















/
/
/

© 2015 by Taylor & Francis Group, LLC

105Linear Programming

Since x1, x2, and x3 are all greater than zero, the solution obtained is a
basic feasible solution.

Similarly, we can take x1, x2, and x4 as the basic variables and x3 as the
nonbasic variable. Then,

 x =



















=
−

−

















−
x

x

x

1

2

4

1

3 4 1
1 3 1
7 1 1

0
5000
700

100
100
100

















=
















Again, the basic variables obtained have a value greater than zero, cor-
responding to a basic feasible solution.

If we take x1, x3, and x4 as the basic variables and x2 as the nonbasic
variable, then

 x =



















=
−

















−
x

x

x

1

3

4

1

3 2 1
1 2 1
7 1 1

0
500
7700

250
3200 3
4150 3

















=
−

−

















/
/

Since some of the basic variables are negative, the basic solution is not
feasible.

Now take x2, x3, and x4 as the basic variables and x1 as the nonbasic
variable. Then,

 x =



















=
−

−

















−
x

x

x

2

3

4

1

4 2 1
3 2 1
1 1 1

0
5000
700

500 7
6400 21
6800 21

















=
−

















/
/
/

Since some of the basic variables are negative, the basic solution is not
feasible.

4.5 Simplex Method

In the previous example, we examined four basic solutions for a system of
equations with four variables and three constraints. The number of basic
solutions that need to be inspected for an n variable problem with m con-
straints is given by

n
n m m

!
()! !−

© 2015 by Taylor & Francis Group, LLC

106 Optimization: Algorithms and Applications

For a large LPP, the number of basic solutions could be very high. For
example, for a 15-variable problem with 10 constraints, number of basic solu-
tions is 3003.

In the simplex method, all the basic solutions are not evaluated. Rather,
this is an iterative method that moves from one basic feasible solution to
another until the basis becomes optimal. To begin with, the simplex method
requires an initial basic feasible solution for the problem. This can be accom-
plished by the introduction of artificial variables in the problem. The coeffi-
cient matrix associated with the artificial variables will be an identity matrix.
The artificial variables can provide initial bases since the columns of an iden-
tity matrix are linearly independent.

Consider an LPP

Maximize

 z = 6x1 + 7x2

subject to

 3x1 + x2 ≤ 10

 x1 + 2x2 ≤ 8

 x1 ≤ 3

 x1, x2 ≥ 0

Writing the problem in standard form

Minimize

 z = −6x1 − 7x2

subject to

 3x1 + x2 + x3 = 10

 x1 + 2x2 + x4 = 8

 x1 + x5 = 3

 x1, x2, x3, x4, x5 ≥ 0

© 2015 by Taylor & Francis Group, LLC

107Linear Programming

Writing the constraints in matrix form

 Ax = b

where

 A x=
















=











3 1 1 0 0
1 2 0 1 0
1 0 0 0 1

1

2

3

4

5

;

x

x

x

x

x















=
















; b
10
8
3

Taking x3, x4, and x5 as basic variables, we can evaluate them as

 x B bB

x

x

x

=



















= =
















−

−
3

4

5

1
1 0 0
0 1 0
0 0 1

11

10
8
3

10
8
3

















=
















The solution obtained is a basic feasible solution since all the elements of x are
positive. This is not surprising since all the elements of the vector b are positive
(problem already written in the standard form) and B is an identity matrix. In
this way, a basic feasible solution is ensured at the start of the simplex method.
Now we need to check whether the basic feasible solution is optimal.

Since nonbasic variables (x1 and x2) have zero values, the objective function

 z = −6x1 − 7x2

takes the value zero. That is,

 z = 0

The value of z will decrease if x1 or x2 is increased from zero. Thus, the cur-
rent basis is not optimal. In the simplex method, we can add or remove only
one variable from the basis. So we can bring either x1 or x2 into the basis. Since
the coefficient of x2 is most negative (−7 < −6), we bring x2 into the basis. The
idea is that z decreases more rapidly when x2 is brought into the basis.

Keeping the other nonbasic variable x1 equal to zero, let us write the basic
variable equations in terms of x2 as

 x3 = 10 − x2

 x4 = 8 − 2x2

 x5 = 3

© 2015 by Taylor & Francis Group, LLC

108 Optimization: Algorithms and Applications

To maintain nonnegativity of the basic variables x3, x4, and x5, the variable
x2 can take a maximum value of 10 in the equation

 x3 = 10 − x2

and x2 can take a maximum value of 4 in the equation

 x4 = 8 − 2x2

Though we would like to take x2 as large as possible to minimize the objec-
tive function, it can take a maximum value of 4 without making x4 negative.
Thus, x4 is the leaving basic variable. Note that if the coefficients of x2 on
the left-hand side of the constraint equations were negative, then x2 can be
increased to any larger value without violating the nonnegativity constraint
of the basic variable. The preceding discussion can be put in a ratio test for
determining the leaving basic variable. In this test we compute the mini-
mum of the ratios

b
a

ai

ij
ij; > 0

In the present example, since x2 is the new basic variable, j becomes 2. So
the ratios are

10
1

10
8
2

4= =;

Since the second row has the minimum value (4 < 10), the second basic
variable (x4) leaves the basis. The new basic feasible solution is

xB

x

x

x

=



















=
















2

3

5

4
6
3

Rewriting the objective function in terms of the new nonbasic variables x1
and x4 by using the second constraint equation, we get

z x x= − − +28

5
2

7
21 4

In the first iteration of the simplex method, the objective function is mini-
mized to –28 and since the coefficient of the nonbasic variable x1 is nega-
tive, the basic feasible solution obtained is not optimal. The steps described

© 2015 by Taylor & Francis Group, LLC

109Linear Programming

earlier are to be repeated until the cost coefficients associated with nonbasic
variables in the objective function are all nonnegative. Based on the discus-
sion, let us write the algorithm for the simplex method (see Table 4.1) and
corresponding MATLAB code (simplex.m).

The initial simplex tableau is written as follows:

•	 A vector of basic variables
•	 A vector of nonbasic variables
•	 The matrix []ˆB N b , and
•	 The cost coefficients []c cB

T T
N

The simplex tableau at the end of each iteration is written as follows:

•	 A vector of basic variables
•	 A vector of nonbasic variables
•	 The matrix []I B N B b− −1 1 , and
•	 The cost coefficients []ˆc cB

T
N
T z−

Table 4.1

Algorithm for Simplex Method

Step 1: Write the LPP in the canonical form

 Minimize z = cTx

 subject to Ax = b

 x ≥ 0

 Compute matrices B and N from matrix A, corresponding to basic and nonbasic variable
sets. cN and cB are the cost coefficients. Print the initial simplex tableau.

Step 2: Compute the minimum(cN), which gives ith entering basic variable
 Compute the entering column as Â B Ai i= −1

Step 3: For all components of Âi that are greater than zero, compute the ratios bi

iÂ
.

From the minimum of these ratios decide the leaving basic variable.
Step 4: Using the updated basic and nonbasic variable sets, update the B and N matrix along
with cN and cB.

Step 5: Compute

 x b B bB = = −ˆ 1

 y c BT = −
B
T 1

 ĉ c y NN N
T TT = −

 z B
T= −c xB

 If ĉN
T ≥ 0

 then goto Step 6
 else print simplex tableau and goto Step 2

Step 6: Print the optimal basis, value of basic variables, and the objective function value.
The components of the vector y are called simplex multipliers.

© 2015 by Taylor & Francis Group, LLC

110 Optimization: Algorithms and Applications

Let us execute the code for the LPP

Minimize

 z = −6x1 − 7x2

subject to

 3x1 + x2 + x3 = 10

 x1 + 2x2 + x4 = 8

 x1 + x5 = 3

 x1, x2, x3, x4, x5 ≥ 0

The output obtained is

basic_set = 3 4 5
nonbasic_set = 1 2
Initial_Table =
1 0 0 3 1 10
0 1 0 1 2 8
0 0 1 1 0 3
Cost =
0 0 0 -6 -7 0

basic_set = 3 2 5
nonbasic_set = 1 4
Table =
 1 0 0 5/2 -1/2 6
 0 1 0 1/2 1/2 4
 0 0 1 1 0 3
Cost =
 0 0 0 -5/2 7/2 28

basic_set = 1 2 5
nonbasic_set = 3 4
Table =
 1 0 0 2/5 -1/5 12/5
 0 1 0 -1/5 3/5 14/5
 0 0 1 -2/5 1/5 3/5
Cost =
 0 0 0 1 3 34
— — — SOLUTION — — —
basic_set = 1 2 5
xb =
 12/5
 14/5
 3/5
zz =
 -34

 (x3, x2, x5)

 (x1, x2, x5)

(x1, x4)

© 2015 by Taylor & Francis Group, LLC

111Linear Programming

Since the reduced cost coefficients (1 and 3) of the nonbasic variables are
nonnegative, the basis is optimal. The basis for the optimal solution is x1, x2,
and x5 and their values are

x1

12
5

=

x2

14
5

=

x5

3
5

=

and the objective function is minimized to

 z = −34

Let us graph the constraints (see Figure 4.5) for this problem. The initial
basic feasible solution in the simplex method corresponds to point A (0, 0). In
the first iteration, the method moved to point B (0, 4) as the next basic feasible
solution where objective function value was reduced to –28. The basis here is
x3, x2, and x5 and their values are

 x2 = 4

 x3 = 6

 x5 = 3

–1.0 –0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

–1

1

2

3

4

5

x2

C (,)12
5

14
5

Feasible region

B (0, 4)

A (0, 0)

x1

Figure 4.5
Feasible region for the problem solved by the simplex method.

© 2015 by Taylor & Francis Group, LLC

112 Optimization: Algorithms and Applications

In the second iteration, the simplex method moved to point C
12
5

14
5

,






as the next basic feasible solution where the objective function value was
reduced to –34. Since all the cost coefficients corresponding to the nonbasic
variable were nonnegative, the basic feasible solution was optimal and fur-
ther iterations were terminated.

4.5.1 Multiple Solutions

Let us modify the objective function of the previous problem and rewrite
LPP as

Minimize

 z = −6x1

subject to

 3x1 + x2 + x3 = 10

 x1 + 2x2 + x4 = 8

 x1 + x5 = 3

 x1, x2, x3, x4, x5 ≥ 0

The MATLAB code (simplex.m) is executed again with the following
modification:

c = [-6;0;0;0;0];

The output obtained is

__
basic_set =
 3 4 5
nonbasic_set =
 1 2
Initial_Table =
1 0 0 3 1 10
0 1 0 1 2 8
0 0 1 1 0 3
Cost =
0 0 0 -6 0 0

© 2015 by Taylor & Francis Group, LLC

113Linear Programming

__
basic_set =
 3 4 1
nonbasic_set =
 2 5
Table =
1 0 0 1 -3 1
0 1 0 2 -1 5
0 0 1 0 1 3
Cost =
0 0 0 0 6 18
 ------SOLUTION------
basic_set =
 3 4 1
xb =
 1
 5
 3
zz =
 -18

The simplex method converges to the optimal solution in one iteration and
the minimum value of the objective function is –18. Observe from the output
that at the end of the first iteration the cost coefficient corresponding to the
nonbasic variable x2 is zero as compared to another nonbasic variable x5 that
has a value of 6. Allow the MATLAB code (simplex.m) to be executed for one
more iteration by commenting the terminating criterion as follows:

% if cn_cap >=0
% break;
% end

The output obtained in the second iteration is
__
basic_set = 2 4 1
nonbasic_set = 3 5
Table =
1 0 0 1 -3 1
0 1 0 -2 5 3
0 0 1 0 1 3
Cost =
0 0 0 0 6 18
 ------SOLUTION------
basic_set =
 2 4 1
xb =
 1
 3
 3
zz =
 -18

© 2015 by Taylor & Francis Group, LLC

114 Optimization: Algorithms and Applications

Observe that this basis is also optimal. An LPP is said to have multiple solu-
tions when the cost coefficient of a nonbasic variable is zero in the optimal
basis. This is also shown in Figure 4.6, where these points correspond to an
edge of the convex polyhedron.

4.5.2 Degeneracy

Sometimes, during the course of the simplex procedure, the method can
become cyclic with no further improvement in the objective function. This
occurs when the entering basic variable becomes zero in a basis. That is, com-
ponent of vector bi becomes zero during the iteration. Let us show this with
an example for the following LPP:

Minimize

 z = −3x1 − 3x2

subject to

 x1 ≤ 4

 x1 + 2x2 ≤ 4

 x1, x2 ≥ 0

–1.0 –0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

–1

1

2

3

4

5

Multiple solutions

x1

x2

Figure 4.6
Concept of multiple solutions.

© 2015 by Taylor & Francis Group, LLC

115Linear Programming

Modify the simplex.m code with the following changes:

A =[1 0 1 0;
 1 2 0 1];
b = [4;4];
c = [-3;-3;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

On executing the code, the following output is displayed on the command
window.

__
basic_set = 3 4
nonbasic_set = 1 2
Initial_Table =
 1 0 1 0 4
 0 1 1 2 4
Cost =
 0 0 -3 -3 0
__
basic_set = 1 4
nonbasic_set = 2 3
Table =
 1 0 0 1 4
 0 1 2 -1 0
Cost =
 0 0 -3 3 12
__
basic_set = 1 2
nonbasic_set = 3 4
Table =
 1 0 1 0 4
 0 1 -1/2 1/2 0
Cost =
 0 0 3/2 3/2 12

Note that in the first iteration, the basic variable x4 becomes zero. The value
of the objective function does not improve during the second iteration. The
problem can be avoided by adding a small perturbation on the b vector and
the same can be implemented in the simplex.m code as

b = [4;4];
pertb = [1e-2;1e-3];
b = b+pertb;

On executing the modified code, the following output is displayed on the
command window.

© 2015 by Taylor & Francis Group, LLC

116 Optimization: Algorithms and Applications

──
basic_set = 3 4
nonbasic_set = 1 2
Initial_Table =
 1 0 1 0 401/100
 0 1 1 2 4001/1000
Cost =
 0 0 -3 -3 0
──
basic_set = 3 1
nonbasic_set = 2 4
Table =
 1 0 -2 -1 9/1000
 0 1 2 1 4001/1000
Cost =
 0 0 3 3 3997/333
__
basic_set = 3 2
nonbasic_set = 1 4
Table =
 1 0 1 0 401/100
 0 1 1/2 1/2 4001/2000
Cost =
 0 0 -3/2 3/2 4003/667
 ------SOLUTION------
basic_set = 3 2
xb =
 401/100
 4001/2000
zz =
 -4003/667

Note that by making a small perturbation on b, we are able to achieve the
minimum value of the objective function as –6.0015 at (x1, x2) = (0, 2.0005). The
exact minimum value of the objective function is –6 and occurs at (x1, x2) = (0, 2).

4.5.3 Two-Phase Method

As discussed earlier, to start a simplex method, a basic feasible solution is
required. A basic feasible solution may not be readily available for an LPP.
For example, the addition of a negative slack variable in a ≥ type constraint
will not lead to the canonical form of equations. By addition of artificial vari-
ables, this problem can be overcome. The original LPP gets modified as a
result of the introduction of the artificial variables. In phase I of the simplex
method, we solve the modified LPP to get a basic feasible solution. Once a
basic feasible solution is available from phase I, phase II involves solving the
original LPP. Let us explain the two-phase simplex method with an example.

© 2015 by Taylor & Francis Group, LLC

117Linear Programming

Consider a LPP

Minimize

 z = 3x1 + 4x2

subject to

 3x1 + 2x2 = 10

 2x1 − 4x2 ≥ 3

 3x1 + 4x2 ≤ 16

 x1, x2 ≥ 0

Writing the LPP with slack (x3, x4) and artificial variables (y1, y2) as

Minimize

 z = 3x1 + 4x2

subject to

 3x1 + 2x2 + y1 = 10

 2x1 − 4x2 − x3 + y2 = 3

 3x1 + 4x2 + x4 = 16

 x1, x2, x3, x4, y1, y2 ≥ 0

The objective function in the phase I problem is

Minimize

 ′ = = +∑z y y yi 1 2 (4.32)

The constraints of the phase I problem remain same as in the original LPP.
The variables y1, y2, and x4 can be taken as the basic variables. The objective
function in the phase I problem is not a function of the nonbasic variables.

© 2015 by Taylor & Francis Group, LLC

118 Optimization: Algorithms and Applications

Writing the modified objective function in terms of the nonbasic variables
using the first and second constraint equations:

 y1 + y2 = 13 − 5x1 + 2x2 + x3

This can also be done using the formula

 ĉ c y NN
T

N
T T= − (4.33)

where

 y c BT
B
T= −1

 (4.34)

By executing the MATLAB code (initial_cost.m), the cost coefficients for the
nonbasic variables can be obtained as

(-5, 2, 1)

With a minor modification of the MATLAB code (simplex.m), phase I code is
written in phase1.m. On executing the code, the following output is displayed
on the command window.

───
basic_set = 5 6 4
nonbasic_set = 1 2 3
Initial_Table =
1 0 0 3 2 0 10
0 1 0 2 -4 -1 3
0 0 1 3 4 0 16
Cost =
0 0 0 -5 2 1 -13
───
basic_set = 5 1 4
nonbasic_set = 2 3 6
Table =
1 0 0 8 3/2 -3/2 11/2
0 1 0 -2 -1/2 1/2 3/2
0 0 1 10 3/2 -3/2 23/2
Cost =
0 0 0 -8 -3/2 5/2 -11/2

The variable number 6 (y2) has left the basis and so can be removed from
the basis. A MATLAB code (remove_variable.m) removes the user-specified
column from the nonbasic set. Note that this variable corresponds to the
third column in the nonbasic set. On executing the code, the following out-
put is displayed on the command window.

© 2015 by Taylor & Francis Group, LLC

119Linear Programming

 ----Table after removing artificial variable------
basic_set = 5 1 4
nonbasic_set = 2 3
Initial_Table =
1 0 0 8 3/2 11/2
0 1 0 -2 -1/2 3/2
0 0 1 10 3/2 23/2
Cost =
0 0 0 -8 -3/2 -11/2

Now rerun the phase I code without initializing the A and b matrix. This
can be done by modifying the code phase1.m to phase1_without_ initialization.m.
On executing the code phase1_without_initialization.m, the following output is
displayed on the command window.

 __
basic_set = 2 1 4
nonbasic_set = 3 5
Table =
1 0 0 3/16 1/8 11/16
0 1 0 -1/8 1/4 23/8
0 0 1 -3/8 -5/4 37/8
Cost =
0 0 0 0 1 0

Again, the variable number 5 (y1) has left the basis and so can be removed
from the basis. This corresponds to the second column in the nonbasic set.
Make the following modification in the code remove_variable.m and then
rerun this code.

remove_column = 2;

----Table after removing artificial variable------
basic_set = 2 1 4
nonbasic_set = 3
Initial_Table =
 1 0 0 3/16 11/16
 0 1 0 -1/8 23/8
 0 0 1 -3/8 37/8
Cost =
 0 0 0 0 0

This basis does not involve any artificial variable and the value of the objective
function is zero. So this is the feasible solution for the original problem. In case
the objective function value was greater than zero, the solution would be infea-
sible. This is the end of phase I. The objective function of the original problem is

 z = 3x1 + 4x2

© 2015 by Taylor & Francis Group, LLC

120 Optimization: Algorithms and Applications

The objective function has to be written in terms of the nonbasic variable.
Again using the code initial_cost.m, with the following modifications, the
cost coefficients for the nonbasic variable can be computed.

cb = [3 4 0];
cn = [0];
N = [3/16;
 -1/8;
 -3/8];
B = [0 1 0;1 0 0;0 0 1];

In phase II of the simplex method, execute the phase1.m code with follow-
ing modifications.

A =[0 1 3/16 0;
 1 0 -1/8 0;
 0 0 -3/8 1];
b = [11/16;23/8;37/8];
c = [0;0; -3/8; 0];
basic_set = [2 1 4];
nonbasic_set = [3];
zz1 = 91/8;

On executing the phase1.m code the following output is printed on the com-
mand window.

__
basic_set = 2 1 4
nonbasic_set = 3
Initial_Table =
 1 0 0 3/16 11/16
 0 1 0 -1/8 23/8
 0 0 1 -3/8 37/8
Cost =
 0 0 0 -3/8 -91/8
__
basic_set = 3 1 4
nonbasic_set = 2
Table =
 1 0 0 16/3 11/3
 0 1 0 2/3 10/3
 0 0 1 2 6
Cost =
 0 0 0 2 -10

Since all the cost coefficients are nonnegative, the basis is optimal. The

minimum value of the objective function is 10 and occurs at (,) ,x x1 2
10
3

0=




 .

© 2015 by Taylor & Francis Group, LLC

121Linear Programming

4.5.4 Dual Simplex Method

Every LPP, called the primal, is associated with another LPP, called its dual.
The optimal solution of the primal problem and its dual remain the same. In
the dual problem, the components of the b vector (right-hand side of the con-
straint equation in the primal problem) become the cost coefficients in the
objective function and vice versa. If there are n variables and m constraints
in the primal problem, then there will be m variables and n constraints in the
dual problem. If the objective function in the primal problem is of the mini-
mization type, then it becomes a maximization type in the dual problem. All
constraints are to be written as ≤ in the dual problem. An equality constraint
x = b can be converted into two ≤ constraints by writing it as x ≤ b and −x ≤
−b. For a primal LPP

Maximize

 z = cTx

subject to

 Ax ≥ b

 x ≥ 0

Its corresponding dual is

Minimize

 w = bT y

subject to

 AT y ≤ c

 y ≥ 0

The transformation rules from primal to dual problems are given in
Table 4.2. In the primal LPP, the simplex method moves from one feasible
solution to another. The dual simplex method moves from one primal infea-
sible solution to another with reduced infeasibility. On reaching the primal
feasibility conditions, the method stops as the solution obtained is the opti-
mal one. One may argue the need for a dual problem and its solution. It is
observed that some of the LPPs show degeneracy when used with the pri-
mal problems. The corresponding dual problems are much easier to solve in

© 2015 by Taylor & Francis Group, LLC

122 Optimization: Algorithms and Applications

such cases. Further, dual methods are more suited for mixed-integer type
problems.

Let us write the algorithm for the dual-simplex method (Table 4.3) and the
corresponding MATLAB code is written in the file dual.m.

Consider the primal LPP

Maximize

 z = 3y1 + 4y2 + 25y3 + 26y4

subject to

 y1 + 2y3 + y4 ≤ 9

 y2 + y3 + 3y4 ≤ 8

 y1, y2, y3, y4 ≥ 0

Its dual is

Minimize

 z = 9x1 + 8x2

subject to

 x1 ≥ 3

 x2 ≥ 4

 2x1 + x2 ≥ 25

 x1 + 3x2 ≥ 26

 x1, x2 ≥ 0

Table 4.2

Transformation Rules from Primal to
Dual Conversion

Primal Dual

aix ≥ bi yi ≥ 0
aix ≤ bi yi ≤ 0
aix = bi yi free
xi ≥ 0 a y cj

T
j≤

xi ≤ 0 a y cj
T

j≥

xi free a y cj
T

j=

© 2015 by Taylor & Francis Group, LLC

123Linear Programming

Since the constraints are of ≥ type, the dual problem is not in standard
form. Writing the constraints in the canonical form,

 Ax = b

where

 A x=



















=

−
−

− −
− −

1 0 1 0 0 0
0 1 0 1 0 0
2 1 0 0 1 0
1 3 0 0 0 1

;

xx

x

x

x

x

x

1

2

3

4

5

6

3
4
25
26



























=

 −
−

−
−

; b

















Table 4.3

Algorithm for the Dual-Simplex Method

Step 1: Write the dual LPP in canonical form

Minimize z = cTx

subject to Ax = b

x ≥ 0

 Compute matrices B and N from matrix A, corresponding to basic and nonbasic variable sets.
cN and cB are the cost coefficients of basic and nonbasic variables. Print the initial tableau.

Step 2: Compute minimum(bi), which gives the ith leaving basic variable.
Compute the pivot row as Â B Ai i= −1

Step 3: For all components of Âi which are less than zero, compute the ratios −
c

A
j

ˆ
i

.
Minimum of these ratios decide the entering basic variable.

Step 4: Using the updated basic and nonbasic variable sets, update B and N matrix along
with cN and cB.

Step 5: Compute

x b B bB = = −ˆ 1

y c BT
B
T= −1

ĉ c y NN
T

N
T T= −

z B
T

B= −c x

 If b̂ ≥ 0
 then goto Step 6
 else print the simplex tableau and goto Step 2

Step 6: Print the optimal basis, value of basic variables and the objective function value.

© 2015 by Taylor & Francis Group, LLC

124 Optimization: Algorithms and Applications

On executing the code dual.m, the following output is printed on the
MATLAB command window.

──
basic_set = 3 4 5 6
nonbasic_set = 1 2
Initial_Table =
1 0 0 0 -1 0 -3
0 1 0 0 0 -1 -4
0 0 1 0 -2 -1 -25
0 0 0 1 -1 -3 -26
Cost =
0 0 0 0 9 8 0
__
basic_set = 3 4 5 2
nonbasic_set = 1 6
Table =
1 0 0 0 -1 0 -3
0 1 0 0 1/3 -1/3 14/3
0 0 1 0 -5/3 -1/3 -49/3
0 0 0 1 1/3 -1/3 26/3
Cost =
0 0 0 0 19/3 8/3 -208/3
__
basic_set = 3 4 1 2
nonbasic_set = 5 6
Table =
1 0 0 0 -3/5 1/5 34/5
0 1 0 0 1/5 -2/5 7/5
0 0 1 0 -3/5 1/5 49/5
0 0 0 1 1/5 -2/5 27/5
Cost =
0 0 0 0 19/5 7/5 -657/5
 ------FINAL SOLUTION------
basic_set = 3 4 1 2
xb =
 34/5
 7/5
 49/5
 27/5
zz =
 657/5

Since all the bi are nonnegative, the basis is optimal. The minimum value

of the objective function is
657

5
 and occurs at (,) ,x x1 2

49
5

27
5

=




 .

© 2015 by Taylor & Francis Group, LLC

125Linear Programming

4.6 Interior-Point Method

In the simplex method, one moves along the boundary of the feasible region
to arrive at the optimum. For an LPP with a large number of constraints, this
may be time consuming if the initial guess is far from the optimal. On the
other hand, interior-point methods move inside the feasible region to reach
the optimal solution. Narenndra Karmarkar proposed a new polynomial-
time algorithm (Karmarkar 1984) that claimed to be up to 50 times faster as
compared to the simplex method for large LPP. His algorithm did create fur-
ther interest in such methods. Interior point methods can be classified into

•	 Barrier function methods
•	 Potential-reduction methods
•	 Affine scaling methods

The affine scaling method is very simple to implement and has been suc-
cessful in solving large LPP. The method is due to Barnes and Vanderbei
(Barnes 1986; Vanderbei et al. 1986). In this method, we start with a point
inside the feasible region (see Figure 4.7) and then use the projected steepest-
descent direction to get the next improved point. Note that if the point (xc)
is close to the central position, a considerable improvement in the objective
function can be made. On the other hand, if the point (xa) is away from the
central position, the improvement in the objective function would be less.
The affine scaling method transforms LPP to another equivalent problem so
that the point is closer to the central position.

Let us write an algorithm for the affine scaling method (Table 4.4) and the
corresponding MATLAB code is written in the file interior.m.

Let us take the same problem that was solved by the simplex method. The LPP

Maximize

 z = 6x1 + 7x2

xa

xc

x*

Figure 4.7
Interior-point method.

© 2015 by Taylor & Francis Group, LLC

126 Optimization: Algorithms and Applications

subject to

 3x1 + x2 ≤ 10

 x1 + 2x2 ≤ 8

 x1 ≤ 3

 x1, x2 ≥ 0

On executing the code, the maximum value of the objective function
obtained is 34, which occurs at (x1, x2) = (2.4, 2.8). This matches with the result
that was obtained by the simplex method. The convergence history of the
affine scaling method is shown in Figure 4.8.

Table 4.4

Algorithm for the Interior-Point Method

Step 1: Write the LPP in the form

Maximize z = cTx

subject to Ax = b

x ≥ 0

 Give inputs A, b, c, x0 (initial feasible point), γ (accelerating parameter), and ε (tolerance
parameter).

Step 2: Compute vi = b − Axi

D = diag(vi)

hx = (ATD−2A)−1c

hv = −Ahx

α γ= ⋅ − <








min v
h

hi

v
v 0

xi+1 = xi + αhx

Step 3: If z zi i() ()x x+ − >1 ε
 then goto Step 2
 else goto Step 4

Step 4: Print x and z.

© 2015 by Taylor & Francis Group, LLC

127Linear Programming

4.7 Portfolio Optimization

Let us solve a 10-variable portfolio optimization problem using some of
the techniques described earlier in this chapter. A company has to invest
$600,000 in different financial products such that its earnings are maxi-
mized. The expected return on investment for different financial products
is given in Table 4.5.

–1.0 –0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

–1

1

2

3

4

5

Feasible region

x1

x2

B (0, 4)

A (0, 0)

C (,)12
5

14
5

Figure 4.8
Convergence history for the affine scaling method.

Table 4.5

Portfolio Optimization Problem Description

Financial Product Market Return (in %)

x1 Trucks—Germany 9.5
x2 Cars—Japan 11.2
x3 Laptops—USA 10.5
x4 Computers—USA 11.9
x5 Appliances—Australia 11.7
x6 Appliances—Europe 13.2
x7 Insurance—Germany 10.5
x8 Insurance—USA 10.9
x9 Currency carry trade 5.5
x10 Others 5.1

© 2015 by Taylor & Francis Group, LLC

128 Optimization: Algorithms and Applications

The following constraints are specified on the investment.

•	 No more than $140,000 in the transport segment
•	 No more than $160,000 in the computer segment
•	 No more than $120,000 in the appliances segment
•	 No more than $230,000 in the German segment
•	 No more than $220,000 in the USA segment

The LPP can be written mathematically as

Maximize

 z = 0.095x1 + 0.112x2 + 0.105x3 + 0.119x4 + 0.117x5 + 0.132x6 + 0.105x7

 + 0.109x8 + 0.055x9 + 0.051x10

subject to

 x1 + x2 ≤ 140

 x3 + x4 ≤ 160

 x5 + x6 ≤ 120

 x1 + x7 ≤ 230

 x3 + x4 + x8 ≤ 220

 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 600

 x1, x2, x3, x4, x5, x6, x7, x8, x91, x10 ≥ 0

Writing the problem in standard form

Minimize

 z = −0.095x1 − 0.112x2 − 0.105x3 − 0.119x4 − 0.117x5 − 0.132x6

 −0.105x7 − 0.109x8 − 0.055x9 − 0.051x10

subject to

 x1 + x2 + x11 = 140

© 2015 by Taylor & Francis Group, LLC

129Linear Programming

 x3 + x4 + x12 = 160

 x5 + x6 + x13 = 120

 x1 + x7 + x14 = 230

 x3 + x4 + x8 + x15 = 220

 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x16 = 600

 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16 ≥ 0

The variables x1, x2, and so on are in thousands of dollars. Update the fol-
lowing input data in the code simplex.m and then execute the code.

A =[1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0;
 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0;
 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0;
 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0;
 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0;
 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1];
b = [140;160;120;230;220;600];
c = [-0.095;-0.112;-0.105;-0.119;-0.117;-0.132;-0.105;-0.109;-0.055;
 - 0.051;0;0;0;0;0;0];
basic_set = [11 12 13 14 15 16];
nonbasic_set = [1 2 3 4 5 6 7 8 9 10]

The following output is displayed on the command window.

basic_set = 11 12 13 14 15 16
nonbasic_set = 1 2 3 4 5 6 7 8 9 10
Initial_Table =
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 140
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 160
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 120
0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 230
0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 220
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 600
Cost =
0 0 0 0 0 0 -19/200 -14/125 -21/200 -119/1000 -117/1000 -33/250
 -21/200 -109/1000 -11/200 -51/1000 0

basic_set = 11 12 6 14 15 16
nonbasic_set = 1 2 3 4 5 7 8 9 10 13
Table =
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 140
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 160

© 2015 by Taylor & Francis Group, LLC

130 Optimization: Algorithms and Applications

0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 120
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 230
0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 220
0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 -1 480
Cost =
0 0 0 0 0 0 -19/200 -14/125 -21/200 -119/1000 3/200 -21/200
-109/1000 -11/200 -51/1000 33/250 396/25

basic_set = 11 4 6 14 15 16
nonbasic_set = 1 2 3 5 7 8 9 10 12 13
Table =
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 140
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 160
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 120
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 230
0 0 0 0 1 0 0 0 0 0 0 1 0 0 -1 0 60
0 0 0 0 0 1 1 1 0 0 1 1 1 1 -1 -1 320
Cost =
0 0 0 0 0 0 -19/200 -14/125 7/500 3/200 -21/200 -109/1000
 -11/200 -51/1000 119/1000 33/250 872/25

basic_set = 2 4 6 14 15 16
nonbasic_set = 1 3 5 7 8 9 10 11 12 13
Table =
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 140
0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 160
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 120
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 230
0 0 0 0 1 0 0 0 0 0 1 0 0 0 -1 0 60
0 0 0 0 0 1 0 0 0 1 1 1 1 -1 -1 -1 180
Cost =
0 0 0 0 0 0 17/1000 7/500 3/200 -21/200 -109/1000 -11/200
 -51/1000 14/125 119/1000 33/250 1264/25

basic_set = 2 4 6 14 8 16
nonbasic_set = 1 3 5 7 9 10 11 12 13 15
Table =
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 140
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 160
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 120
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 230
0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 1 60
0 0 0 0 0 1 0 0 0 1 1 1 -1 0 -1 -1 120
Cost =
0 0 0 0 0 0 17/1000 7/500 3/200 -21/200 -11/200 -51/1000
 14/125 1/100 33/250 109/1000 571/10

basic_set = 2 4 6 14 8 7
nonbasic_set = 1 3 5 9 10 11 12 13 15 16

© 2015 by Taylor & Francis Group, LLC

131Linear Programming

Table =
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 140
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 160
0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 120
0 0 0 1 0 0 1 0 0 -1 -1 1 0 1 1 -1 110
0 0 0 0 1 0 0 0 0 0 0 0 -1 0 1 0 60
0 0 0 0 0 1 0 0 0 1 1 -1 0 -1 -1 1 120
Cost =
0 0 0 0 0 0 17/1000 7/500 3/200 1/20 27/500 7/1000
 1/100 27/1000 1/250 21/200 697/10
------SOLUTION------
basic_set = 2 4 6 14 8 7
xb =
 140
 160
 120
 110
 60
 120
zz =
 –697/10

The optimal solution for the LPP is

 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 = (0, 140, 0, 160, 0, 120, 120, 60, 0, 0)

Again notice that the variables x1, x2, and so on are in thousands of dol-
lars. Since the maximization problem was converted into the minimization
problem, the optimal solution has to be multiplied by –1. Thus the maximum
earnings are $69,700.

Chapter Highlights

•	 An optimization problem that has the objective and the constraints
as a linear function of the design variables is a linear programming
problem.

•	 The graphical method is a simple technique for locating the optimal
solution for problems with up to two or three design variables only.

•	 Inequalities can be plotted in MATLAB in the MuPad command
window.

•	 In an LPP, the optimal value of the objective function occurs at the
edge of the convex polyhedron.

© 2015 by Taylor & Francis Group, LLC

132 Optimization: Algorithms and Applications

•	 When the objective function can be increased to an infinitely large
value, without leaving the feasible region, the solution of the LPP is
said to be unbounded.

•	 In the standard form of an LPP, the objective function is of mini-
mization type, all the design variables should be nonnegative, all
the constraints should be of the equality type, and all the num-
bers on the right-hand side of the constraint equation should be
nonnegative.

•	 A ≤ type constraint can be converted into an equality constraint by
adding a slack variable.

•	 A ≥ type constraint can be converted into an equality constraint by
subtracting it with a surplus variable.

•	 An unrestricted or free variable (without any specified bounds) can
be replaced by a pair of nonnegative variables.

•	 A solution that satisfies the constraints is called a feasible solution.
•	 The variables x obtained from the basic solution are termed the

basis. A basic solution that also satisfies x ≥ 0 is called the basic
feasible solution. It may be noted that every basic feasible solution
is an extreme point of the convex set of feasible solutions. If the
basic feasible solution is optimal then it is called the optimal basic
solution.

•	 The simplex method is an iterative method that moves from one
basic feasible solution to another until the basis becomes optimal.
The method requires an initial basic feasible solution for the prob-
lem. This can be achieved by the introduction of artificial variables
in the problem. The coefficient matrix associated with the artificial
variables will be an identity matrix. The artificial variables can pro-
vide initial bases because the columns of an identity matrix are lin-
early independent.

•	 An LPP is said to have multiple solutions when the cost coefficient of
a nonbasic variable is zero in the optimal basis.

•	 The simplex method can become cyclic with no improvement in the
objective function during iterations. This occurs when the entering
basic variable becomes zero in a basis.

•	 The degeneracy problem in the simplex method can be avoided by
adding a small perturbation on the b vector.

•	 In phase I of the simplex method, we solve the modified LPP to get
a basic feasible solution. Once a basic feasible solution is available
from phase I, phase II involves solving the original LPP.

•	 Every LPP, called the primal, is associated with another LPP, called
its dual. The optimal solution of the primal problem and its dual
remain the same.

© 2015 by Taylor & Francis Group, LLC

133Linear Programming

•	 It is observed that some of the LPPs show degeneracy when used
with the primal problems. The corresponding dual problems are
much easier to solve in such cases.

•	 Interior-point methods move inside the feasible region to reach the
optimal solution.

Formulae Chart

LPP in the standard matrix form:

Minimize

 z = cTx

subject to

 Ax = b

 x ≥ 0

Simplex tableau:

 x b B bB = = −ˆ 1

 y c BT
B
T= −1

 ĉ c y NN
T

N
T T= −

 z B
T

B= −c x

Problems

 1. A manufacturer produces two components, X and Y. Component X
requires 2 hours of machining and 3 hours of polishing. Component
Y requires 3 hours of machining and 4 hours of polishing. Every
week, 42 hours of machining and 48 hours of polishing can be done.
The company makes a profit of $5 on X and $7 on Y. Assume that
whatever is produced gets sold in the market. Formulate the LPP
and solve it using the graphical method.

© 2015 by Taylor & Francis Group, LLC

134 Optimization: Algorithms and Applications

 2. Solve the following LPP using the graphical method.
 i. Minimize

 z = 3x1 − 2x2

 subject to

 x1 + 2x2 ≤ 10

 2x1 − x2 ≤ 5

 −4x1 + 3x2 ≥ 5

 x1, x2 ≥ 0

 ii. Maximize

 z = 2x1 + 5x2

 subject to

 3x1 + x2 ≤ 11

 x1 + x2 ≥ 6

 2x1 + x2 ≤ 10

 x1, x2 ≥ 0

 iii. Maximize

 z = 4x1 + 5x2

 subject to

 2x1 + x2 ≤ 20

 −3x1 + 2x2 ≤ 25

 −x1 + x2 ≤ 30

 x1, x2 ≥ 0

© 2015 by Taylor & Francis Group, LLC

135Linear Programming

 iv. Maximize

 z = −x1 + 2x2

 subject to

 2x1 + x2 ≥ 5

 4x1 + x2 ≥ 10

 2x1 + 3x2 ≤ 8

 x1, x2 ≥ 0

 3. Determine all the basic solutions (feasible and infeasible) for the fol-
lowing system of linear equations.

 x1 − 2x2 − x3 + 4x4 = 3

 x1 + 2x3 + 2x4 = 4

 2x1 − x2 + x3 + x4 = 5

 4. Find the value of k so that the following LPP has an optimal solution

at
−





44
7

48
7

, .

 Minimize

 z = −3x1 + 2x2

 subject to

 −x1 + 2x2 ≥ 10k

 2x1 + x2 ≤ 5k

 2x1 + 3x2 ≤ 4k

 x1, x2 ≥ 0

 5. Convert the following LPP into standard form with matrix notations:
 i. Minimize

 z = 2x1 + 3x2 − x3

© 2015 by Taylor & Francis Group, LLC

136 Optimization: Algorithms and Applications

 subject to

 −x1 + 2x2 − 3x3 ≤ 5

 2x1 − x2 + 4x3 ≤ −5

 3x1 − 2x2 − 5x3 ≥ −7

 x1, x2, x3 ≥ 0

 ii. Maximize

 z = 2x1 − 3x2 + 4x3

 subject to

 3x1 − 2x2 − 3x3 ≥ 11

 −4x1 − 3x2 + x3 ≥ −6

 x1 + 2x2 + x3 ≤ 10

 x1 ≥ 2, x2 ≤ 5, x3 free

 6. Consider the system of equations Ax = b, x ≥ 0 where

 A x=
















=











2 3 1 0 0
2 1 0 1 0
4 2 0 0 1

1

2

3

4

5

;

x

x

x

x

x















=
















; b
7
8
5

 Find the initial basic solution.
 7. Solve the following LPP using the simplex method.

 Minimize

 z = 3x1 − 2x2

 subject to

 x1 + 2x2 ≤ 10

 2x1 − x2 ≤ 5

© 2015 by Taylor & Francis Group, LLC

137Linear Programming

 −4x1 + 3x2 ≥ 5

 x1, x2 ≥ 0

 8. Using the simplex method check whether the following LPP has
multiple solutions

 Minimize

 z = x1 − 2x2

 subject to

 2x1 − 4x2 ≤ 2

 −x1 + x2 ≤ 3

 x1 ≤ 4

 x1, x2 ≥ 0

 9. Use Phase I of the simplex method to find a basic feasible solution for
the system of equations

 2x1 − 4x2 + x3 ≥ 2

 −3x1 + 2x2 + 2x3 ≥ 4

 x1, x2, x3 ≥ 0

 10. Write the dual of the following LPP:
 Maximize

 z = 4y1 + 5y2 + 23y3 + 24y4

 subject to

 y1 + 2y3 + y4 ≤ 7

 y2 + y3 + 3y4 ≤ 6

 y1, y2, y3, y4 ≥ 0

 Solve the dual problem. Show that the optimal solution is same for
the primal and the dual problem.

© 2015 by Taylor & Francis Group, LLC

138 Optimization: Algorithms and Applications

 11. Use the affine scaling method to solve the following LPP.
 Maximize

 z = x1 + x2

 Ax ≤ b

 where

 A =

0 1 1
0 2 1
0 4 1
0 6 1
0 8 1
1 0 1
1 2 1
1 4 1
1 6 1
1 8 1
2 0 1

.

.

.

.

.

.

.

.

.

.

.



































=












; x
x

x
1

2

;;

.

.

.

.

.

.

.

.

.

.

.

b =

1 00
1 01
1 04
1 09
1 16
1 25
1 36
1 49
1 64
1 81
2 000







































 Take initial x as (0, 0) and γ = 0.9.

© 2015 by Taylor & Francis Group, LLC

139

5
Guided Random Search Methods

5.1 Introduction

The solution techniques for unconstrained optimization problems that have
been described in earlier chapters invariably use the gradient information
to locate the optimum. Such methods, as we have seen, require the objec-
tive function to be continuous and differentiable, and the optimal solution
depends on the chosen initial conditions. These methods are not efficient in
handling discrete variables and are more likely to stay at a local optimum for
a multimodal objective function. Gradient-based methods often have to be
restarted to ensure that the local optimum reached is indeed the global one.

In this chapter we explore five different types of solution techniques that
do not require the objective function to be either continuous or differentia-
ble. The solution techniques are

•	 Genetic algorithms (GAs)
•	 Particle swarm optimization (PSO)
•	 Simulated annealing (SA)
•	 Ant colony optimization (ACO)
•	 Tabu search

All these methods are based on random searches in locating the optima.
However, these methods are different from pure “random walk” methods
in the sense that they use information from the previous iteration in locat-
ing the next best point(s). These methods are hence classified under guided
random search methods. The guided random search techniques can be
subclassified into evolutionary methods. GA and PSO methods fall under
the heading of evolutionary methods. Instead of using a single point in the
search space, both GA and PSO techniques use population of points in the
search space and hence have a better chance of locating the global optima.
The GA technique mimics the biological process (genetics) whereas the PSO
technique is based on the idea of natural phenomena such as birds flocking
together or school of fishes moving together. The SA method is based on

© 2015 by Taylor & Francis Group, LLC

140 Optimization: Algorithms and Applications

the physical analogy of the annealing process of a material that is heated to a
high temperature and then slowly cooled in a controlled manner. The prop-
erties of the material get improved through this process. In a similar way,
using the SA technique, the transformation is made from the nonoptimal
solution for an optimized solution. Some other popular methods such as ant
colony optimization and tabu search, which are used for solving combinato-
rial problems, are briefly discussed in the last section. The road map of this
chapter is shown in Figure 5.1.

5.2 Genetic Algorithms

Genetic algorithms (GAs) are search algorithms based on the mechanism
of natural selection. They rely on one of the most important principles of
Darwin: survival of the fittest. Globally the population is submitted to many
transformations. After some generations, when the population is enduring
no more, the best individual in the population is assumed to represent the
optimal solution. GA mimics the genetic process in which hereditary char-
acteristics are transmitted from a parent to an offspring. The basic unit of
inheritance is a gene. Several such genes, encoding specific characteristics
(eye color, height, etc.) are present on a chromosome. For example, humans

Guided random search methods

Genetic algorithm
Initialize population
Fitness evaluation
Reproduction
Crossover
Mutation
Multimodal test function

Particle swarm optimization

Simulated annealing

Other methods
Ant colony optimization
Tabu search

FIGURE 5.1
Road map of Chapter 5.

© 2015 by Taylor & Francis Group, LLC

141Guided Random Search Methods

have 23 pairs of chromosomes. One chromosome in each pair is derived from
the maternal and and one from the paternal parent. As a result of the crossover
operation, some characteristics of each parent can be seen in the offspring.
In the natural hereditary process, some genes also randomly mutate. For
instance, if the gene corresponding to eye color mutates, the offspring can
have blue eyes even if both of the parents’ eyes are brown. The mutation in
a sense brings variety into the offspring and improves his survivability in a
changing environment.

In gradient-based methods, the solution moves from one point to another
using the gradient and the Hessian information. In GA, one works with a
population of points rather than a single point. The fitness (value of the objec-
tive function) of each individual in the population (corresponding to a point
in the search space) is then computed. Individuals who have high fitness
value undergo crossover and mutation with the hope that they produce bet-
ter offspring. By better offspring, we mean that they have higher fitness value
as compared to their parents. To facilitate the easy working of the genetic
operators on the design variables x, these are often coded into binary strings.
Once these variables have undergone genetic operations, the new values of
the variables can be computed by decoding the binary strings. Using the
decoded value of the variables, the fitness of the each individual in the new
population is computed. This completes one generation (iteration) of the GA.
The working principle of a GA is depicted through a flow chart (Figure 5.2).

Begin

Initialize population

Stop

Cont.

Fitness

Reproduction

Crossover

Mutation

Increment generation

No

Yes

FIGURE 5.2
Working principle of a genetic algorithm.

© 2015 by Taylor & Francis Group, LLC

142 Optimization: Algorithms and Applications

Let us take the solar energy test problem (see Problem 8 in Chapter 1) in
which the following cost function (U) is to be minimized and the variable to
be evaluated is temperature T, which is restricted between 40°C and 90°C.

 U
T T

=
−

+
−

204 165 5
330 2

10 400
20

, ,.

Each step of the GA will be explained for the solar energy test problem.

5.2.1 Initialize Population

The variable T has to be restricted within [40, 90]. Since the variable T has to
be coded into a binary string, we have to first decide on the number of bits in
the string (also called as the string length). Because each bit can take a value
of 0 or 1, for a 5-bit string, the minimum value will be 00000 and maximum
value will be 11111. This corresponds to a decimal value of 0 and 32 (25). If
this is linearly mapped into the search space, the variable T will have an
accuracy of

90 40

2
1 56255

− = °. C

Because we require a finer value of the variable T as 0.001 degrees, the
required string length will be 15. The initial population of variables (in
binary form) will be generated randomly. A uniform random number gen-
erator can be used that generates a random number between 0 and 1. If the
random number values are less than 0.5 we take the bit value as 0; else it is
taken as 1. To generate a string length of 15, we have to generate the same
quantity of random numbers. The following random numbers are generated
using the rand command in MATLAB®. The corresponding bit string is men-
tioned in the second row.

0.81 0.90 0.13 0.91 0.63 0.09 0.28 0.54 0.96 0.15 0.35 0.47 0.74 0.19 0.8
1 1 0 1 1 0 0 1 1 0 0 0 1 0 1

Therefore, the first individual in the population will be 110110011000101.
Repeat the step for the number of individuals in the population. For a popu-
lation size of 10, the following strings are randomly generated:

110110011000101
100001010111010
000110101110101
100000110011101
000011100100111
100100101011000

© 2015 by Taylor & Francis Group, LLC

143Guided Random Search Methods

010110100110001
100110101110011
111100100011010
001111100111001

In the next step, we decode these strings and compute their fitness.

5.2.2 Fitness Evaluation

The binary string (genotype) has to be decoded to its real value (phenotype)
using the equation

 T T
T T DV s

i i
i i i

li
= + −

−min
max min() ()

()2 1
 (5.1)

where Timin and Timax are the lower and upper bounds of the variable Ti, DV(si)
is the decoded value of the string si, and li is the string length used to code
the ith parameter. The binary string 110110011000101 can be decoded as

1 1 0 1 1 0 0 1 1 0 0 0 1 0 1
214 213 211 210 27 26 22 20

Assuming the leftmost bit as the most significant bit, the real value of the
string is

 214 + 213 + 211 + 210 + 27 + 26 + 22 + 20 = 27,845

The value of the variable for this string will be

 T T
T T DV s

i i
i i i

li
= + −

−
= + −

min
max min() ()

()
()

2 1
40

90 40 277 845
2 1

82 489415

,
()

.
−

=

To get fitness value of this string, simply compute the objective function
value corresponding to Ti = 82.4894. That is,

 f
T Ti

i i

=
−

+
−

=204 165 5
330 2

10 400
20

1403 6
, ,.

.

Table 5.1 summarizes the decoded and fitness value of all 10 strings.

5.2.3 Reproduction

In reproduction, good and bad chromosomes (strings) are identified based
on their fitness value. More copies of good chromosomes are made and bad

© 2015 by Taylor & Francis Group, LLC

144 Optimization: Algorithms and Applications

ones are eliminated. This can be achieved using Roulette wheel or tournament
selection. In the first approach, roulette wheel slots are sized in proportion to
the fitness value of each string. The wheel is spun and the string to which it
is pointed is picked up. This is repeated until all the population is filled up.
The roulette wheel selection procedure is suited for objective functions of
the maximizing type. Because in the test problem the objective function is to
be minimized, we have to suitably convert the fitness values so that roulette
wheel selection procedure can be used. This is a two-step procedure.

In the first step, identify whether there are any negative values in the fit-
ness value. If the answer is yes, identify the minimum value and scale up the
remaining fitness values by that number. For example, if the fitness values
are –5, –1, 2, and 7, then the fitness values after scaling will be 0, 4, 7, and 12.

In the second step, convert the fitness values fi into Fi using the equation

 F
fi
i

=
+
1

1
 (5.2)

The fitness values 0, 4, 7, and 12 now become 1, 0.2, 0.1429, 0.0833.
The fitness values for the test problem do not have any negative values. So,

we can ignore the first step and compute the fitness Fi and some other terms
as given in Table 5.2.

Let us make a pie chart with the data corresponding to last column of
Table 5.2. The probability of picking strings 7 and 10 (denoted by S-7 and
S-10) for the next generation is highest (11%). The next step in the selection
process is to make slots (see Figures 5.3 and 5.4) of the roulette wheel using
the cumulative values of the data corresponding to last column of the table.
Generate 10 random numbers (corresponding to the population size) between

TablE 5.1

Fitness Evaluation for Different Strings

Name String Decoded Value Fitness fi

S1 110110011000101 82.4894 1403.6
S2 100001010111010 66.0659 1257.6
S3 000110101110101 45.2568 1264.3
S4 100000110011101 65.6310 1255.2
S5 000011100100111 42.7940 1291.6
S6 100100101011000 68.6508 1273.3
S7 010110100110001 57.6534 1227.2
S8 100110101110011 70.2545 1284.4
S9 111100100011010 87.3067 1468.4
S10 001111100111001 52.1967 1228.0

© 2015 by Taylor & Francis Group, LLC

145Guided Random Search Methods

0 and 1, and select corresponding strings where these random numbers lie in
the slots. Thus, two copies each of strings S-2, S-7, and S-8, and one copy each
of strings S-4, S-5, S-6, and S-10 are made in the reproduction process. These
strings will participate in the crossover and mutation operations.

The convergence rate of GA is determined largely by the selection pressure
(degree to which better individuals are favored), with larger selection pres-
sure resulting in better convergence. However, if the selection pressure is too
high, there are increased chances of GA prematurely converging to a subop-
timal solution. Roulette wheel selection methodology is known for providing
high selection pressure and this often results in premature convergence. An

TablE 5.2

Modified Fitness Evaluation for Different Strings

String Fitness fi

F
fi

i

==
++
1

1

F

F

i

i∑∑
110110011000101 1403.6 0.00071195 0.0924
100001010111010 1257.6 0.00079453 0.1031
000110101110101 1264.3 0.00079033 0.1026
100000110011101 1255.2 0.00079605 0.1033
000011100100111 1291.6 0.00077363 0.1004
100100101011000 1273.3 0.00078474 0.1019
010110100110001 1227.2 0.00081420 0.1057
100110101110011 1284.4 0.00077797 0.1010
111100100011010 1468.4 0.00068055 0.0883
001111100111001 1228.0 0.00081367 0.1056

∑ =Fi 0 0077.

S-1
9%

S-9
9%

S-2
10%

S-3
10%

S-4
10%

S-5
10%

S-6
10%

S-7
11%

S-10
11%

S-8
10%

FIGURE 5.3
Pie chart showing probability of a string to be picked up during reproduction.

© 2015 by Taylor & Francis Group, LLC

146 Optimization: Algorithms and Applications

alternative method is the tournament selection, in which a number of individu-
als (say, 2) are chosen randomly from the population and the best individual
(in terms of fitness value) from the group is selected as a parent. The process is
repeated once for every individual in the new population. This methodology
ensures that the best string is always retained and the worst string always gets
eliminated from the selection process. It is important to note that whereas rou-
lette wheel selection is used for maximization type objective functions, tour-
nament selection is used for minimization type objective functions. Because
the test problem’s objective function is of the minimization type, we had to
modify the function suitably for the roulette wheel selection methodology.
The modification of the function is not required in the tournament selection
methodology because the objective function is already of minimization type.

In the tournament selection methodology, we begin with the first indi-
vidual of the population. Then any other individual from the population is
selected randomly. The fitness values of the two individuals are then com-
pared. The individual with lower fitness value is declared the “winner.” The

0.2 0.4 0.6 0.8 1.0

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10

FIGURE 5.4
Slots of roulette wheel.

TablE 5.3

Tournament Selection

String Competitor Fitness Comparison Winner

110110011000101 (S-1) S-8 1403.6 < 1284.4 (No) S-8
100001010111010 (S-2) S-4 1257.6 < 1255.2 (No) S-4
000110101110101 (S-3) S-2 1264.3 < 1257.6 (No) S-2
100000110011101 (S-4) S-9 1255.2 < 1468.4 (Yes) S-4
000011100100111 (S-5) S-10 1291.6 < 1228.0 (No) S-10
100100101011000 (S-6) S-7 1273.3 < 1227.2 (No) S-7
010110100110001 (S-7) S-8 1227.2 < 1284.4 (Yes) S-7
100110101110011 (S-8) S-1 1284.4 < 1403.6 (Yes) S-8
111100100011010 (S-9) S-4 1468.4 < 1255.2 (No) S-4
001111100111001 (S-10) S-2 1228.0 < 1257.6 (Yes) S-10

© 2015 by Taylor & Francis Group, LLC

147Guided Random Search Methods

process is repeated for all individuals in the population. All the winners are
selected for the next step of the GA (crossover and mutation). Table 5.3 illus-
trates the tournament selection methodology for the test problem.

5.2.4 Crossover and Mutation

In the reproduction step of the GA, we have merely copied the strings that
will participate in the crossover and mutation operation. The strings were
not altered in the reproduction step. In the crossover operation, two par-
ents are taken randomly from the mating pool (previous step of GA using
roulette wheel or tournament selection) and bits are exchanged between the
parents to generate new children (strings). The idea behind the crossover
operation is that good parents will mate to form better offspring. Let us take
strings S-2 and S-4, which are randomly selected as parents from the mating
pool (both of these strings are present in the selection procedure specified
by roulette wheel and tournament selection). The next step is to generate the
crossover site (position) randomly along the string length. Let the ninth posi-
tion (from the left side or most significant bit side) is the crossover site. Then
strings S-2 and S-4 after mating become

Parent S-2 100001010 111010 100001010 011101
Parent S-4 100000110 011101 100000110 111010

In this operation we have assumed a single crossover site. It is observed
in nature that crossover can occur at one or more sites also. The number
of crossovers follows a Poisson distribution (Hartl 1991) with mean as 2.
Mutation is used to keep diversity in the population. The mutation operator
changes the bit 1 to 0 and vice versa with a small probability.

Let us use the crossover (single-point) and mutation operation (with a
probability of 0.02) for the test problem in which the mating pool is taken
from tournament selection. The new population is given in Table 5.4.

This completes one generation (iteration) of the GA. The fitness of the new
population is then computed and the cycle (reproduction, crossover, and
mutation) is repeated. It is possible in GA that the objective function need
not improve in a few successive generations.

The mathematical explanation of the GA is given as the Schema theorem

 m H t m H t
f H

f
p

H
l

o H p(,) (,)
()

()

()+ ≥ ⋅ −
−

−






1 1
1c m

δ
 (5.3)

where m(H, t) represents m examples of a particular schema H at time t.
f(H) is the average fitness of the strings represented by the schema H; f is
the average fitness of the entire population; pc and pm are the probabilities
of occurrence of crossover and mutation; δ(H) is the defining length of the
schema H, which is the distance between the first and last specific string

© 2015 by Taylor & Francis Group, LLC

148 Optimization: Algorithms and Applications

position; o(H) is the order of a schema defined by the number of fixed posi-
tions in a template; and l is the length of the string. The schema theorem
states that the short, low-order, above average schemata receives increasing
trials in subsequent generations.

The MATLAB code prob.m is the main program of the genetic algorithm.
Its subroutines are given in in.m, roulette.m, tournament.m, and func.m. On
executing the genetic algorithm code for the test problem, the output is dis-
played in Table 5.5. It is to be noted that each of the rows in the table cor-
responds to a separate optimization run. From Table 5.5 it is observed that
minima are reached in most of the runs. However, the number of generations
varies in each run. This is expected because each run of the genetic algo-
rithm starts with a random set of the population. See Figure 5.5, which plots
the minimum of the objective function achieved until that generation. The
step region in the plot indicates that there is no reduction in the value of the
objective function for a certain number of generations until in a particular
generation, where there is a reduction in the value of the objective function.

5.2.5 Multimodal Test Functions

The main advantage of GA over gradient-based methods is that it does not
get stuck at local optima. Let us take some multimodal test functions such

TablE 5.4

New Population

Mating Pool Crossover Site Children Mutation New Population

100000110011101 (S-4) 9 100000110111010 No 100000110111010
100001010111010 (S-2) 100001010011101 No 100001010011101
010110100110001 (S-7) 6 010110100111001 No 010110100111001
001111100111001 (S-10) 001111100110001 No 001111100110001
100001010111010 (S-2) 11 100001010110001 Yes 101001010110001
010110100110001 (S-7) 010110100111010 No 010110100111010
100000110011101 (S-4) 5 100000101110011 No 100000101110011
100110101110011 (S-8) 100110110011101 Yes 100110110010101
100110101110011 (S-8) 13 100110101110001 No 100110101110001
001111100111001 (S-10) 001111100111011 No 001111100111011

TablE 5.5

Different Optimization Runs with GA

No. of Generations T U

505 55.95 1225.58
501 53.99 1225.55
1029 55.08 1225.166
751 55.08 1225.166

© 2015 by Taylor & Francis Group, LLC

149Guided Random Search Methods

as Rastrigin and Schwefel’s function to demonstrate that GA can locate the
global minimum for these functions.

The two-variable Rastrigin’s function (see Figure 5.6) is given by

f x x x x

x

() cos() cos()

.

x = + − + −

− ≤

20 10 2 10 2

5 12

1
2

1 2
2

2

1

π π

,, .x2 5 12≤

The function has a number of local optima and the global minimum value
of the function is f(x*) = 0 and occurs at x* = (0, 0). The function can be plotted
in MATLAB using the following commands.

0 200 400 600 800 1000
1225

1225.05

1225.1

1225.15

1225.2

1225.25

1225.3

1225.35

1225.4

Generation number

U

FIGURE 5.5
Variation of objective function value with increase in number of generations.

–10
–5

0
5

10

–10
–5

0
5

10
0

20

40

60

80

100

FIGURE 5.6
Rastrigin’s function.

© 2015 by Taylor & Francis Group, LLC

150 Optimization: Algorithms and Applications

[X,Y] = meshgrid(-5.12:.1:5.12, -5.12:.1:5.12);
Z = 20 + (X.^2-10*cos(2*pi.*X) + Y.^2-10*cos(2*pi.*Y));
surfc(X,Y,Z)
shading interp

The input files for GA can be modified for the two-variable function as

%%%
% File name func.m
% Enter the function to be optimized
%%%
%
function [y,constr] = func(x)
y = 20 + (x(1)*x(1)-10*cos(2*pi*x(1))+ x(2)*x(2)-

10*cos(2*pi*x(2)));
constr(1) = 10;% This is used with constraints.
% For unconstrained problems, define constr()with
% any positive value
%%%

%%%
% File name in.m
% Input parameters for Genetic algorithm
%%%
%
problem = 'min'; % used with roulette wheel
n_of_v = 2; % number of variables
n_of_g = 10000; % maximum number of generations
n_of_p = 40; % population size
range(1,:) = [-5.12 5.12]; % variable bound
range(2,:) = [-5.12 5.12];
n_of_bits(1) = 20; % number of bits
n_of_bits(2) = 20;
cross_prob = 0.9; % crossover probability
multi_crossover = 0;% use multi-crossover
mut_prob = 0.1; % mutation probability
tourni_flag = 0; % use roulette wheel
epsilon = 1e-7; % function tolerance
flag = 0; % stall generations flag
flag1 = 0; % scalin flag
stall_gen = 500; % stall generations for termination
n_of_c = 0; % for constraint handling
%
%%%

The above file uses a roulette wheel as the selection methodology. To
change it to tournament selection simply change

tourni_flag = 1;

© 2015 by Taylor & Francis Group, LLC

151Guided Random Search Methods

Both selection criteria are able to locate the global minimum solution and
the convergence to the optimum value by two selection methodologies given
in Figures 5.7 and 5.8 respectively.

The two-variable Schwefel’s function (see Figure 5.9) is given by

f x x x x

x x

() sin sin

,

x = − −

− ≤ ≤

1 1 2 2

1 2500 500

0 100 200 300 400 500 600 7000

2

4

6

8

10

12

14

16

Generation number

f (
x)

FIGURE 5.7
Convergence of genetic algorithm for Rastrigin function with roulette wheel selection.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

Generation number

f (
x)

FIGURE 5.8
Convergence of genetic algorithm for Rastrigin function with tournament selection.

© 2015 by Taylor & Francis Group, LLC

152 Optimization: Algorithms and Applications

–500

0

500

–500

0

500
–1000

–500

0

500

1000

FIGURE 5.9
Schwefel’s function.

0 200 400 600 800 1000 1200 1400
–840

–820

–800

–780

–760

–740

–720

–700

Generation number

f (
x)

FIGURE 5.10
Convergence of genetic algorithm for Schwefel’s function.

© 2015 by Taylor & Francis Group, LLC

153Guided Random Search Methods

The function has a number of local optima and the global minimum value
of the function is f(x*) = −837.9658 and occurs at x* = (420.9867, 420.9867).

The input files for GA can be modified for the two-variable function as

%%%
% File name func.m
% Enter the function to be optimized
%%%
%
function [y,constr] = func(x)
y = -x(1)*sin(sqrt(abs(x(1)))) -x(2)*sin(sqrt(abs(x(2))));
constr(1) = 10;
%%%

%%%
% File name in.m
% Input parameters for Genetic algorithm
%%%
%
problem = 'min'; % used with roulette wheel
n_of_v = 2; % number of variables
n_of_g = 10000; % maximum number of generations
n_of_p = 80; % population size
range(1,:) = [-500 500]; % variable bound
range(2,:) = [-500 500];
n_of_bits(1) = 20; % number of bits
n_of_bits(2) = 20;
cross_prob = 0.9; % crossover probability
multi_crossover = 0; % use multi-crossover
mut_prob = 0.1; % mutation probability
tourni_flag = 1; % use roulette wheel
epsilon = 1e-7; % function tolerance
flag = 0; % stall generations flag
flag1 = 0; % scalin flag
stall_gen = 500; % stall generations for termination
n_of_c = 0; % for constraint handling
%
%%%

The GA code is able to achieve the global minimum and the convergence
history is shown in Figure 5.10.

© 2015 by Taylor & Francis Group, LLC

154 Optimization: Algorithms and Applications

5.3 Simulated Annealing

Simulated annealing (SA) is an optimization technique that has derived its
name from the process of annealing of solids where the solid is heated and
then allowed to cool slowly until its molecules reach the minimum energy
state. The solid in this state will be free from defects. In a similar manner,
the optimization problem is transformed into an “ordered state” or a desired
optimized state (solution). In the high-energy state, the molecules are free
to move and their freedom gets restricted as the temperature is reduced
(cooled). In a similar manner, SA methodology allows “hill climbing” when
the temperature is high. That is, those points that are in the near vicinity
of the search point, but have a higher objective function value can still be
selected with certain probability. This allows the algorithm to escape from
local optima. Thus, simulation methodology is a powerful technique in
locating the global optimum solution.

The algorithm starts by picking any random value of the variable xi using
the equation

 xi = xi,min + (xi,max − xi,min)ui (5.4)

where xi,min and xi,max are the bounds of the variable xi and ui is random num-
ber generated between 0 and 1 (uniform distribution). The energy (Eold) of
this variable is given by its objective function value. That is,

 Eold = f(xi) (5.5)

The next step in the algorithm is to perturb xi in its neighborhood. The
perturbation Δxi can be computed as

 Δxi = εxiui (5.6)

where ε is a small number fixed at the start of the simulation. The next search
point is therefore given by

 xi+1 = xi + Δxi (5.7)

In case the variables xi+1 exceeds their bounds they are artificially brought
back into the feasible design space using the equation

 xi+1 = xi,min + (xi,max − xi,min)ui (5.8)

The energy state for the new point is given by

 Enew = f(xi+1) (5.9)

© 2015 by Taylor & Francis Group, LLC

155Guided Random Search Methods

If the new energy state Enew is lower than Eold, the objective function has
improved and we replace the value of Eold with Enew. In case Enew is higher
than Eold the following condition is checked

 e u
E E

E
− −



 >

new old

old (5.10)

If this condition is satisfied we allow for the “hill climbing” and replace
Eold with Enew. If this condition is not satisfied previous value of x is restored.
That is,

 xi+1 = xi − Δxi (5.11)

The iterations are repeated until there is no improvement in the objective
function value for a fixed number of moves. The steps of simulation algo-
rithm can thus be summarized in Table 5.6 and the MATLAB code simann.m
is given subsequently.

The two-variable Rastrigin’s function

f x x x x

x

() cos() cos()

.

x = + − + −

− ≤

20 10 2 10 2

5 12

1
2

1 2
2

2

1

π π

,, .x2 5 12≤

is optimized and it does not converge to the global minimum of f(x*) = 0
at x* = (0, 0). The convergence history is given in Figure 5.11. By modifying
the subroutine func.m other functions such as Schwefel’s function and test

TablE 5.6

Algorithm for Simulated Annealing

Step 1: Initialize ε and variable bounds xi,min and xi,max

Step 2: Compute starting value of the variables as

xi = xi,min + (xi,max − xi,min)ui

Step 3: Compute Eold = f(xi)
Step 4: Compute Δxi+1 = εxiui and xi+1 = xi + Δxi

If xi+1 exceeds bounds then xi+1 = xi,min + (xi,max − xi,min)ui

Step 5: Compute Enew = f(xi+1)
Step 6: If Enew < Eold

then Eold = Enew

 else if e u
E E

E
−

−



 >

new old

old

then Eold = Enew

 else xi+1 = xi − Δxi

Step 7: Go to Step 4 until termination criterion (function not improving
for certain number of iterations) is satisfied.

© 2015 by Taylor & Francis Group, LLC

156 Optimization: Algorithms and Applications

problem on spring system (mentioned in Chapter 3) can also be optimized.
See Figures 5.12 and 5.13, where the convergence history of these functions
is shown. In all the plots, observe the hill-climbing region shown by the
oscillatory nature of the curve. Because the algorithm starts from a random
point, the convergence history will vary in each simulation run for each of
the functions. The performance of the algorithm will also vary by choosing
a different ε for a given function.

0 500 1000 1500
–800

–700

–600

–500

–400

–300

–200

–100

0

100

200

Iteration number

f (
x)

FIGURE 5.12
Convergence of simulated annealing for Schwefel’s function.

0 500 1000 1500 2000 2500 3000
10

15

20

25

30

35

40

Iteration number

f (
x)

FIGURE 5.11
Convergence of simulated annealing for Rastrigin function.

© 2015 by Taylor & Francis Group, LLC

157Guided Random Search Methods

5.4 Particle Swarm Optimization

In the particle swarm optimization (PSO) technique, a number of search
points are simultaneously explored in the iteration, similar to a search car-
ried out by GA. The PSO technique is inspired by the collective wisdom of
a group of individuals such as a flock of birds, animals moving in herds, or
schools of fish moving together. The PSO algorithm keeps track of the best
position of the individual as well as that of the population in terms of the
objective function. The best objective function of the individual and that of
the group is denoted by pbest and gbest respectively. Each individual in the
group moves with a velocity that is a function of pbest, gbest and its initial
velocity. The new position of the individual is updated based on its initial
position and the velocity. The objective function value is again computed
for the new positions and the PSO steps are repeated. Now, each step of the
algorithm is described.

The initial position of the kth individual in the population is given by

 xi,k = xi,min + (xi,max − xi,min)ui (5.12)

where xi,min and xi,max are the bounds of the variable xi and ui is the random
number generated between 0 and 1 (uniform distribution). Here i is the itera-
tion number. Compute the fitness of the kth individual as

 pi,k = f(xi,k) (5.13)

0 200 400 600 800 1000
–10

–8

–6

–4

–2

0

2

4

Iteration number

f (
x)

FIGURE 5.13
Convergence of simulated annealing for the test problem on the spring system (Chapter 3).

© 2015 by Taylor & Francis Group, LLC

158 Optimization: Algorithms and Applications

Since this is the initialization step, the best fitness of each individual is pk
itself. That is,

 pbesti,k = pi,k (5.14)

The global best fitness is computed as

 gbesti = minimum(pbesti,k) (5.15)

The location of pbestk and gbest is given by pxik and gix. Starting with an
initial velocity of vi,k, the velocity of the individual is updated using the
equation

 vi+1,k = w1vi,k + ϕ1(pxik − xi,k)ui + ϕ2(gix − xi,k)ui (5.16)

where w1, ϕ1, and ϕ2 are the tuning factors of the algorithm. The position of
each individual can be updated as

 xi+1,k = xi,k + vi+1,k (5.17)

In case the variables xi+1 exceeds their bounds they are artificially brought
back into the feasible design space using the equation

 xi+1 = xi,min + (xi,max − xi,min)ui (5.18)

Based on the new position, the fitness of the kth individual is computed as

 pi+1,k = f(xi+1,k) (5.19)

If this fitness is lower than pbesti,k, then replace pbesti,k with pi+1,k. Compute
the global best fitness as

 gbesti+1 = minimum(pbesti+1,k) (5.20)

The steps are repeated for a finite number of iterations. The algorithm is
given in Table 5.7 and the MATLAB code pso.m is given subsequently.

The two-variable Schwefel’s function (see Figure 5.9)

f x x x x

x x

() sin sin

,

x = − −

− ≤ ≤

1 1 2 2

1 2500 500

is optimized and it converges to the global minimum of is f(x*) = −837.9658
and occurs at x* = (420.9867, 420.9867). The convergence history of the PSO
algorithm for Schwefel’s function is shown in Figure 5.14.

© 2015 by Taylor & Francis Group, LLC

159Guided Random Search Methods

TablE 5.7

Algorithm for Particle Swarm Optimization

Step 1: Initialize imax, w1, ϕ1, ϕ2, n (population size), xi,min, and xi,max.
Step 2: Initialize the starting position and velocities of the variables as

 xi,k = xi,min + (xi,max − xi,min)ui k = 1 ⋯ n

 vi,k = 0
Step 3: Compute pi,k = f(xi,k) k = 1 ⋯ n
Step 4: Compute pbesti,k = pi,k and gbesti = minimum(pbesti,k)
 The location of pbestk and gbest is given by pxik and gix.
Step 5: Update velocity

vi+1,k = w1vi,k + ϕ1(pxik − xi,k)ui + ϕ2(gix − xi,k)ui

Step 6: Update position xi+1,k = xi,k + vi+1,k

Step 7: Update fitness pi+1,k = f(xi+1,k)
Step 8: If pi+1,k < pbesti,k

then pbesti+1,k = pi+1,k

Step 9: Update gbesti+1 = minimum(pbesti+1,k)
Step 10: If i < imax then increment i and go to Step 5, else stop.

–500

0

500

–500

0

500
–1000

–800

–600

–400

–200

0

x1x2

f (
x)

–500

0

500

–500

0

500
–1000

–800

–600

–400

–200

0

x1x2

f (
x)

–500

0

500

–500

0

500
–1000

–800

–600

–400

–200

0

x1
x2

f (
x)

–500

0

500

–500

0

500
–1000

–800

–600

–400

–200

0

x1x2

f (
x)

Initialization Iteration: 20

Iteration: 50 Iteration: 100

Global minimum

FIGURE 5.14
Convergence of particle swarm optimization for Schwefel’s function.

© 2015 by Taylor & Francis Group, LLC

160 Optimization: Algorithms and Applications

5.5 Other Methods

In addition to the three methods (GA, SA, and PSO) that were discussed in
the previous sections, there are numerous other optimization methods that
have mimicked natural processes or some other physical analogies. Some of
these methods are the bees algorithm, differential algorithm, evolutionary
programming, tabu search, ant colony optimization (ACO), and so forth. Of
these, ACO and tabu search are widely used for solving combinatorial prob-
lems (such as the traveling salesman problem or the job scheduling problem).
As the name suggests, ACO mimics the behavior of ants in locating the mini-
mum of a function. It may be noted that in a complex combinatorial problem,
searching all the combinations is computationally expensive. Both ACO and
tabu search provide a heuristic approach for such problems. These two tech-
niques are briefly explained in this section.

5.5.1 ant Colony Optimization

While on lookout for food, ants deposit a substance called a pheromone on the
path. Other ants follow this favorable path to reach the food. The ant colony opti-
mization (ACO) technique mimics the behavior of ants in solving the optimi-
zation problems. The ACO technique was proposed in the early 1990s (Dorigo
1992) and since then has been applied to solve a number of problems such as

•	 Protein folding problem (Shmygelska and Hoos 2005)
•	 Traveling salesman problem (Dorigo et al. 1996)
•	 Project scheduling (Merkle et al. 2002)
•	 Vehicle routing (Reimann et al. 2004)

In the ACO technique, the optimization problem is defined in terms of a
number of layers and nodes. Each layer corresponds to the design variable
and each node corresponds to the discrete values of the design variables. The
ants have to pass through different “best” nodes to reach the destination,
which is the minimum of the function. Let there be N ants in the colony. If
the kth ant is at ith node, then the probability of choosing jth node is given by

 pij
k ij

j N
ij

i
k

()

()

=
∑

τ

τ
ε

 (5.21)

where Ni
k() indicates the set of neighborhood nodes of ant k at node i. Here τij

represents the pheromone trail and is given by the expression

 τij = τij + Δτ(k) (5.22)

© 2015 by Taylor & Francis Group, LLC

161Guided Random Search Methods

The pheromone content also evaporates according to the relation

 τij = (1 − ρ)τij (5.23)

where ρ is the evaporation rate. The typical value of ρ is 0.5. The pheromone
content is updated using the relation

 τ ρ τ τij ij

k

N

ij
k= − +

=
∑() ()1

1

∆ (5.24)

where the quantity ∆τij
k() is given by

 ∆τ φ
ij
k f

f
() = best

worst

 (5.25)

where fbest and fworst are the best and worst values of the objective function for
the paths taken by the ants and ϕ is a scaling parameter. Let us explain the
procedure of ACO to minimize the function

 f x x
x

x() . .= −() + ≤ ≤2 3
100

0 3 0 6

The problem has only one layer because there is there is only one design
variable for the problem. Let there be seven nodes of this problem. Thus,

 x11 = 0.30

 x12 = 0.35

 x13 = 0.40

 x14 = 0.45

 x15 = 0.50

 x16 = 0.55

 x17 = 0.60

Let us take the number of ants in the colony to be 5. To begin with, there
is an equal probability of selection of any of the nodes. Using roulette

© 2015 by Taylor & Francis Group, LLC

162 Optimization: Algorithms and Applications

wheel selection (as mentioned in Section 5.2), the following five nodes are
selected:
 x14 = 0.45

 x16 = 0.55

 x12 = 0.35

 x17 = 0.60

 x11 = 0.30

The corresponding function values are

 f(x14) = −4.6517

 f(x16) = −4.5093

 f(x12) = −4.8109

 f(x17) = −4.4310

 f(x11) = −4.8990

The best (fifth ant) and worst values of the objective function are

 fbest = f(x11) = −4.8990

 fworst = f(x17) = −4.4310

Taking ϕ = 5, the pheromone information is updated as

 ∆τ φ() (.)
.

.k f
f

= = = × −
−

=5 5 4 899
4 431

5 528best

worst

Now,

 τ ρ τ τij ij

k

N

ij
k= − + = − × + =

=
∑() (.) . .()1 1 0 5 1 5 528 6 028

1

∆ (()for j = 1

The probability of selecting this node in the next iteration is

 p11
6 028
9 028

0 6677= =.
.

.

© 2015 by Taylor & Francis Group, LLC

163Guided Random Search Methods

and the probability of selecting other nodes is

 p j1
0 5

9 028
0 0554= =.

.
.

Again using the roulette wheel selection, the following nodes are selected:

 x11(3 copies)

 x15(1 copy)

 x17(1 copy)

The iterations are repeated until all the ants follow the best path. The mini-
mum value of the objective function is –4.899 and occurs at x* = 0.3.

5.5.2 Tabu Search

The tabu search is a heuristic technique in which an approximate solution
is used to tackle complex combinatorial problems such as job scheduling
and traveling salesman problems. The method (Glover 1986) allows nonim-
proving moves whenever a local optimum is reached. However, the method
prevents visiting earlier solutions by keeping a list of the search history. The
list is called the tabu (or forbidden) list. To avoid stagnation of search pro-
cess due to tabu, it is mandatory to modify tabu lists frequently. One such
example is to allow a tabu move when the objective function value improves
from the best value. Such moves are called as aspiration criteria. The follow-
ing notation is used (Gendreau and Potvin 2010) in the algorithm to follow
(Table 5.8).

TablE 5.8

Algorithm for Tabu Search

Step 1: Start with an initial set S0.
f * = f(S0)
S* = S0

T = Φ
Step 2: Select ′ ∈S N S () and find f(S′).

If f(S′) < f *
f * = f(S′)
S* = S′
Record current move in T.

Step 3: Go to Step 2 if termination criteria are not satisfied, else stop.
 (Termination criteria are set if the objective function does not
show improvement for some fixed number of iterations.)

© 2015 by Taylor & Francis Group, LLC

164 Optimization: Algorithms and Applications

S current solution
S* best solution
f* best value of the objective function
N(S) neighborhood of S
N S() admissible subset
T tabu list

Chapter Highlights

•	 GA and PSO work with a population of points in a search space
whereas SA propagates through iterations with a single search point.

•	 GA mimics the genetic process in which hereditary characteristics
are transmitted from a parent to an offspring.

•	 GA variables are coded into binary strings.
•	 In the reproduction step, the best individuals in the population are

selected for mating.
•	 The diversity in the population is created using crossover and muta-

tion operations.
•	 The mutation operator changes the bit 1 to 0 and vice versa with a

small probability.
•	 SA is an optimization technique that has derived its name from the

process of annealing of solids, in which the solid is heated and then
allowed to cool slowly until its molecules reach a minimum energy
state.

•	 SA allows points with higher objective functions to be selected with
certain probability. It is often called a “hill-climbing” algorithm.

•	 The PSO technique is inspired by the collective wisdom of a group
of individuals such as a flock of birds or animals moving in herds or
schools of fish moving together.

•	 The PSO algorithm keeps track of the best position of the individual
as well as that of the population in terms of the objective function.

•	 In the ACO technique, the optimization problem is defined in terms
of a number of layers and nodes. Each layer corresponds to the
design variable and each node corresponds to the discrete values of
the design variables. The ants have to pass through different “best”
nodes to reach the destination, which is the minimum of the function.

•	 The tabu search method allows nonimproving moves whenever a
local optimum is reached. However, the method prevents visiting

© 2015 by Taylor & Francis Group, LLC

165Guided Random Search Methods

earlier solutions by keeping a list of the search history. The list called
as the tabu (or forbidden) list.

•	 To avoid stagnation of a search process due to tabu, it is mandatory
to modify tabu lists frequently. One such example is to allow a tabu
move when the objective function value improves from the best
value. Such moves are called aspiration criteria.

Formulae Chart

Decoding of string from binary to real value:

 x x
x x DV s

i i
i i i

li
= + −

−min
max min() ()

()2 1

Schema theorem:

 m H t m H t
f H

f
p

H
l

o H p(,) (,)
() ()

()+ ≥ ⋅ −
−

−






1 1
1c m

δ

Velocity update in PSO:

 vi+1,k = w1vi,k + ϕ1(pxik − xi,k)ui + ϕ2(gix − xi,k)ui

ACO:

 pij
k ij

j N
ij

i
k

()

()

=
∑

τ

τ
ε

 τ ρ τ τij ij

k

N

ij
k= − +

=
∑() ()1

1

∆

 ∆τ φ
ij
k f

f
() = best

worst

© 2015 by Taylor & Francis Group, LLC

166 Optimization: Algorithms and Applications

Problems

 1. What is the minimum string length required to code the variable
range (–3, 5) with an accuracy of 0.0001?

 2. An optimization problem has three design variables that are to be
coded in binary strings. The range of variables is (–100, 50), (0, 1), and
(3, 7) and the accuracy required is 0.01, 0.00001, and 0.001 respec-
tively. Compute the minimum length of the string required.

 3. By modifying the input (tuning) parameters in GA (population size,
crossover, and mutation probabilities), SA (ε), and PSO (population
size, w1, ϕ1, ϕ2), rerun the codes for the test problem on spring system
(mentioned in Chapter 3), Rastragin and Schwefel’s functions.

 4. In a given generation of GA, the following fitness values are obtained
for ten strings (S-1 to S-10) for a maximization problem. Find the
number of copies that will be generated for each string using
Roulette wheel selection.

String Fitness

S-1 25
S-2 16
S-3 74
S-4 8
S-5 99
S-6 45
S-7 12
S-8 65
S-9 22
S-10 19

 5. If instead, tournament selection is used for reproduction, find
strings (see previous problem) that get selected in the mating pool.
Compare the results with those obtained from the roulette wheel
selection.

 6. Minimize the two variable Griewangk’s function

f

x x
x

x

x x

() cos cos

,

x = + − +

− ≤ ≤

1
2

2
2

2

1 2

4000 2
1

600 600

 using GA, SA, and PSO techniques.

© 2015 by Taylor & Francis Group, LLC

167Guided Random Search Methods

 7. Minimize the two-variable Ackley’s function

 f e e a e
b x x x x

()

.

(cos cos)
x = − − + +

−

− +() +
a

1
2

1
2 11

2
2
2

1 2

32 7768 32 7681 2≤ ≤x x, .

 using GA, SA, and PSO techniques. Take a = 20, b = 0.2, and c = 2π.
 8. Minimize the function

f x x x x

x x

()

,

x = + −() + + −()
− ≤ ≤

1
2

2

2

2
2

1

2

1 2

11 7

5 5

 using GA, SA, and PSO techniques.
 9. Minimize the function

 f x x x xx x() sin ()x = + + − − +()+e 1
2

2
2

1 2 1 23 3

 using GA, SA, and PSO techniques.
 10. Optimize the minmax function

Minimize F(x)
 where

 F(x) = max{fi(x)}

 f x x1 1
2

2
4()x = +

 f2(x) = (2 − x1)2 + (2 − x2)2

f e

x x

x x
3

1 2

2

50 50

1 2()

,

x =

− ≤ ≤

− +

 using GA, SA, and PSO techniques.
 11. Optimize the minmax function

min.max ,

,

x x x x

x x

1 2 1 2

1 2

2 7 2 5

50 50

+ − + −{ }
− ≤ ≤

 using GA, SA, and PSO techniques.

© 2015 by Taylor & Francis Group, LLC

168 Optimization: Algorithms and Applications

 12. Minimize the Eggcrate function

f x x x x

x x

() sin sin

,

x = + + +()
− ≤ ≤

1
2

2
2 2

1
2

2

1 2

25

5 5

 using GA, SA, and PSO techniques.

© 2015 by Taylor & Francis Group, LLC

169

6
Constrained Optimization

6.1 Introduction

Invariably all optimization problems carry constraints, and examples can be
given from any area one can think of. The supply of a product is constrained
by the capacity of a machine. The trajectory of a rocket is constrained by the
final target as well as the maximum aerodynamic load it can carry. The range
of an aircraft is constrained by its payload, fuel capacity, and its aerodynamic
characteristics. So how does a constrained optimization problem differ from
an unconstrained problem? In constrained optimization problems, the feasi-
ble region gets restricted because of the presence of constraints. This is more
challenging because for a multivariable problem with several nonlinear con-
straints, arriving at any feasible point itself is a daunting task.

The constrained optimization problem can be mathematically stated as

Minimize

 f(x) (6.1)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m < n (6.2)

 hj(x) = 0 j = 1, 2,…, r < n (6.3)

 xl ≤ x ≤ xu

where x is a vector of n design variables given by

x =





















x

x

xn

1

2



© 2015 by Taylor & Francis Group, LLC

170 Optimization: Algorithms and Applications

The functions f, gi, and hj are all differentiable. The design variables are
bounded by xl and xu. The constraints gi are called as inequality constraints
and hj are called equality constraints.

Consider the following constrained optimization problem.

Minimize

 (x1 − 2)2 + (x2 − 3)2

subject to

 x1 ≥ 3

If we apply the first-order optimality condition on the objective function,
the function minimum is obtained at (2, 3). However, in the presence of a
constraint, the minimum occurs at (3, 3). See Figure 6.1, where the function
contours are plotted along with the constraint. Note that the gradient of the
function (∇f) and the gradient of the constraint (∇g) are parallel to each other
at the optimum point. At other points on the constraint (say, point A), the
gradients are not parallel to each other. More of the optimality conditions
for the constrained optimization problems are discussed in the next section.

The road map of this chapter is shown in Figure 6.2. After a discussion on
optimality conditions, different solution techniques such as penalty func-
tion, augmented Lagrangian, sequential quadratic programming (SQP), and
method of feasible directions are discussed. In the penalty function method,

0.1

1

1

1

2

2

2

2

3

3

3

3

3

4

4

4

4

4

6

6

6

6

6

10

10

10 10

10

10

15

15

15
15

1520

20
20

2025

25
25

25

x1
–2 –1 0 1 2 3 4 5

–2

–1

0

1

2

3

4

5

Feasible region

Infeasible region

A

Optimum point

x 2

∇f

∇f

∇g

∇g

FIGURE 6.1
Constrained optimization problem.

© 2015 by Taylor & Francis Group, LLC

171Constrained Optimization

a constrained optimization problem is transformed into an unconstrained
problem by penalizing the objective function for any violation of the con-
straints. The augmented Lagrangian method is a blend of both penalty
function and Lagrangian multipliers methods. In the SQP method, the qua-
dratic subproblem is solved in every iteration where the objective function
is approximated by a quadratic function and the constraints are linearized.
Some optimization problems require constraints to be satisfied in every iter-
ation to ensure the meaningful value of the objective function. The method
of feasible directions ensures meeting the constraints in every iteration.

6.2 Optimality Conditions

Let us define the Lagrange function for the constrained optimization prob-
lem with the equality and inequality constraints

 L f h g
j

r

j j

i

m

i i(, ,) () () ()x x xxλ µ λ µ= + +
= =

∑ ∑
1 1

 (6.4)

The optimality conditions are given by

 ∇xL = 0

 ∇λL = 0

 ∇μL = 0

Constrained optimization

Optimality conditions

Solution techniques
Penalty function method
Augmented Lagrangian method
Sequential quadratic programming
Method of feasible directions

Application to structural design

FIGURE 6.2
Road map of Chapter 6.

© 2015 by Taylor & Francis Group, LLC

172 Optimization: Algorithms and Applications

The first optimality condition results in the equation

 ∇ = ∇ + ∇ + ∇ =
= =

∑ ∑x x x xL f h g
j

r

j j

i

m

i i() () ()
1 1

0λ µ (6.5)

If a particular inequality constraint is inactive (gi(x) ≤ 0), corresponding
μi = 0. This condition can also be written as

 −∇ = ∇ + ∇
= =

∑ ∑f h g
j

r

j j

i

m

i i() () ()x x x
1 1

λ µ (6.6)

That is, negative of the gradient of the objective function can be expressed
as a linear combination of the gradient of the constraints.

For any feasible point x, the set of active inequality constraints is denoted
by

 A(x) = {i|gi(x) = 0}

The second and third optimality conditions result in the constraints them-
selves. The multipliers λj and μi are called as Lagrange multipliers and these
must be ≥0 at the optimum point. The optimality conditions of the con-
strained optimization problem are referred to as Karush–Kuhn–Tucker (KKT)
conditions. These conditions are valid if x is a regular point. A point is regular
if the gradient of active inequality and all equality constraints are linearly
independent. It is important to note that KKT conditions are necessary but
not sufficient for optimality. That is to say, there may be other local optima
where KKT conditions are satisfied. The sufficient condition for f(x) to be
minimum is that ∇xx

2 L must be positive definite.
Let us take the example mentioned in the previous section and write the

Lagrangian as

 L(x, μ) = (x1 − 2)2 + (x2 − 3)2 + μ(−x1 + 3)

The KKT conditions are given by the equations

 2(x1 − 2) − μ = 0

 2(x2 − 3) = 0

 −x1 + 3 = 0

© 2015 by Taylor & Francis Group, LLC

173Constrained Optimization

Solving these equations gives the solution as x1 = 3 and x2 = 3, which is the
optimum point with μ = 2. The minimum value of the function is 1.

The Lagrange multipliers provide information on the sensitivity of the
objective function with respect to sensitivity of the right-hand side of the
constraint equation (say, b). Then,

 Δf = μΔb = 2Δb

Therefore,

 f ≈ 1 + 2Δb

If the right-hand side of the constraint is changed by +1 unit, then a new
value of the function minimum is 3 (approximately).

Example 6.1

Consider the optimization problem.

Minimize

 f(x) = (x1 − 1)2 + (x2 − 5)2

subject to

 g x x1 1
2

2 4 0()x = − + − ≤

 g2(x) = −(x1 − 2)2 + x2 − 3 ≤ 0

Plot the function contours along with constraints. Check whether KKT
conditions are satisfied at point A (0.75, 4.5625).

The function contours are given in Figure 6.3 along with the con-
straints. The gradient of the function and the constraints are given by

 ∇ =
−
−













=
−

−
f

x

x
()

()

()
(.)

(.
x

2 1

2 5
2 0 75 1

2 4 5625
1

2 55
0 5

0 875)
.

.













= −
−











 ∇ = −











= −







g x

1
12

1
1 5
1

() .x

 ∇ = − −











=








g x

2
12 2

1
2 5
1

() () .x

© 2015 by Taylor & Francis Group, LLC

174 Optimization: Algorithms and Applications

Let us check for the optimality condition

 −∇f(x) = μ1∇g1(x) + μ2∇g2(x)

for some μ1 and μ2 which are ≥0.
It can be shown that at point A

0 5

0 875
0 4218 1 5

1
0 4531 2 5

1
.

.
. . . .







 ≈ −







 +











Thus, for positive value of multipliers (μ1 = 0.4218 and μ2 = 0.4513), the
negative of the gradient of the objective function can be expressed as a
linear combination of the gradient of the constraints. KKT conditions are
satisfied at point A. Thus, point A is a candidate for the minimum of the
function. Let us check the second-order condition as

 ∇ = − +











=








2 1 22 2 0

0 2
0 25 0

0 2
L

() .µ µ

As this matrix is positive definite, the minimum of the function occurs
at point A.

0.
25

0.25
0.25

0.25

1

1

1
1

1

1
1

1

3

3 3

3

x1
0 0.5 1 1.5 2

3

3.5

4

4.5

5

5.5

6

g1 = 0

g2 = 0
∇g2

∇g1–∇f

Feasible region

Infeasible region

A

x 2

FIGURE 6.3
Function contours with the constraints for the test problem.

© 2015 by Taylor & Francis Group, LLC

175Constrained Optimization

6.3 Solution Techniques

For a simple optimization problem (say, with two variables) with one equal-
ity constraint, the simplest approach would be to use a variable substitution
method. In this method, one variable is written in the form of another variable
using the equality constraint. Then it is substituted in the objective function
to make it an unconstrained optimization problem that is easier to solve. For
instance, consider the optimization problem

Minimize

 (x1 − 2)2 + (x2 − 3)2

subject to

 −x1 + x2 = 4

Substituting x2 = 4 + x1 in the objective function, we can rewrite the opti-
mization problem as

Minimize

 (x1 − 2)2 + (x1 + 1)2

Using the first-order condition, it is easy to show that minimum of this
function occurs at (1/2, 9/2). The main disadvantage of this method is that it
is difficult to implement when there is a large number of variables and con-
straints are nonlinear.

Another way of converting a constrained optimization problem to an
unconstrained problem is to penalize the objective function when con-
straints are violated. Such methods are termed are termed penalty function
methods and are very easy to implement. Once the unconstrained problem
is formed using the penalty functions, it can be solved using both gradi-
ent- and non–gradient-based methods described in previous chapters. The
method, however, has one serious drawback. The original objective function
gets distorted when modified with the penalty terms. The modified function
may not be differentiable at all points. Non–gradient-based solution tech-
niques for unconstrained problems (converted by penalty functions) are sug-
gested for such cases.

The Lagrange function and multipliers were discussed in the previ-
ous section. In the augmented Lagrange multiplier (ALM) method, both
the Lagrange multiplier and the penalty function methods are combined.
Lagrange multipliers are updated on each iteration. One significant advan-
tage of this method is that it provides an optimal value of the multipliers in

© 2015 by Taylor & Francis Group, LLC

176 Optimization: Algorithms and Applications

addition to the solution of the optimization problem. This helps in generat-
ing a quick solution for the same optimization problem whose right-hand
sides of the constraint equations are changed.

The most popular method to date is sequential quadratic programming
(SQP) method for handling nonlinear objective function and constraints. In
this method the objective function is approximated by a quadratic function
and constraints are approximated by linear functions. The quadratic sub-
problem is then solved at each iteration. Hence, the method derives the name
SQP.

In some optimization problems, the meaningful value of an objective func-
tion can be generated only if constraints are satisfied. The method of feasible
directions ensures that design variables are always in the feasible region.
Zoutendijk’s method of feasible directions and Rosen’s gradient projection
method are discussed in this chapter.

6.3.1 Penalty Function Method

The motivation of the penalty function method is to solve the constrained
optimization problem using algorithms for unconstrained problems. As the
name suggests, the algorithm penalizes the objective function in case con-
straints are violated. The modified objective function with penalty terms is
written as

F f r h r gk

j

r

j k

i

m

i() () () ()x x x x= + +
= =

∑ ∑
1

2

1

2

(6.7)

where rk (>0) is a penalty parameter and the function

 〈gi(x)〉 = max[0, gi(x)] (6.8)

In case constraints are satisfied (gi(x) ≤ 0), 〈gi(x)〉 will be zero and there
will be no penalty on the objective function. In case constraints are violated
(gi(x) ≥ 0), 〈gi(x)〉 will be a positive value resulting in a penalty on the objective
function. The penalty will be higher for higher infeasibility of the constraints.
The function F(x) can be optimized using the algorithms for unconstrained
problems. The penalty function method of this form is called the exterior
penalty function methods.

The parameter rk has to be appropriately selected by the algorithm. If rk
is selected as a small value (say, 1), constraints may not be fully satisfied at
the termination of the algorithm. If rk is selected as a large value, there is a
danger of ill-conditioning the objective function (see Figure 6.4). The correct
approach would be to start the algorithm with a small rk and increase it to

© 2015 by Taylor & Francis Group, LLC

177Constrained Optimization

a larger value for the purpose of tightening the constraints. The following
strategy is suggested to take appropriate value of rk during an iteration:

r
g h

k

i j

=
 













max ,
 () ()

1
1

x x

(6.9)

Let us use the Davidon– Fletcher–Powell (DFP) method to solve the uncon-
strained problem. To account for varying penalty terms in each iteration, the
MATLAB® code DFP.m is modified and reproduced at the end of the book.

On executing the MATLAB code DFP.m for the optimization problem

Minimize

 f(x) = (x1 − 1)2 + (x2 − 5)2

subject to

 g x x1 1
2

2 4 0()x = − + − ≤

 g2(x) = −(x1 − 2)2 + x2 − 3 ≤ 0

with a starting value of x of (–1, 1), following output is displayed. Note
from the output that penalty parameter becomes larger as constraints are
tightened.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

x

F(
x)

Infeasible region

Optimization problem

Modified objective function

f (x) = 2x1
g (x) = 3 – x1 ≤ 0

F (x) = f (x) + rk g(x) 2

f
rk = 1
rk = 2
rk = 3

FIGURE 6.4
Exterior penalty function method.

© 2015 by Taylor & Francis Group, LLC

178 Optimization: Algorithms and Applications

Initial function value = 20.0000
No. x-vector f(x) |Constr| Penalty param.

1 0.812 4.624 0.2219 11.70470 1
2 0.751 4.643 0.2501 0.21589 5
3 0.739 4.602 0.2544 0.11436 9
4 0.742 4.572 0.2574 0.05665 18
5 0.745 4.562 0.2589 0.02322 43
6 0.751 4.562 0.2540 0.01459 69
7 0.750 4.562 0.2543 0.00180 555
8 0.750 4.562 0.2542 0.00109 915
9 0.750 4.562 0.2541 0.00092 1082
10 0.750 4.562 0.2540 0.00052 1913
11 0.750 4.562 0.2540 0.00021 4720
12 0.750 4.562 0.2540 0.00018 5495
13 0.750 4.562 0.2542 0.00015 6526
14 0.750 4.563 0.2539 0.00056 1801
15 0.750 4.563 0.2541 0.00029 3435
16 0.750 4.562 0.2539 0.00030 3309
17 0.750 4.562 0.2539 0.00007 14692
18 0.750 4.562 0.2539 0.00006 15596
19 0.750 4.562 0.2539 0.00001 70933___

The main advantages of the penalty function method are

•	 It can be started from an infeasible point.
•	 Unconstrained optimization methods can be directly used.

The main disadvantages of the penalty function method are

•	 The function becomes ill-conditioned as the value of the penalty
terms is increased. Owing to abrupt changes in the function value,
the gradient value may become large and the algorithm may show
divergence.

•	 As this method does not satisfy the constraints exactly, it is not suit-
able for optimization problems where feasibility must be ensured in
all iterations.

So far we have discussed the exterior penalty function method, which can
be started even from an infeasible point. Some problems require feasibility
to be maintained in all the iterations. In the interior penalty function method,
a feasible point is first selected. The objective function is modified in such
a way that it does not leave the feasible boundary. They are therefore fre-
quently referred to as barrier function methods. The modified objective func-
tion in the interior penalty function approach would be

© 2015 by Taylor & Francis Group, LLC

179Constrained Optimization

 F f r
gk

i

m

i

() ()
()

x x
x

= −
=

∑
1

1
 (6.10)

See Figure 6.5, where we observe that modified function remains feasible
for different values of rk.

Example 6.2

A welded beam (Ragsdell and Philips 1976) has to be designed at mini-
mum cost whose constraints are shear stress in weld (τ), bending stress
in the beam (σ), buckling load on the bar (P), and deflection of the beam (δ).
The design variables (see Figure 6.6) are

x

x

x

x

h

l
t
b

1

2

3

4











































=

The optimization problem is

Minimize

 f x x x x x() . . ()x = + +1 10471 0 04811 141
2

2 3 4 2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

x

F(
x)

f
rk = 0.1
rk = 0.2

rk = 1

Feasible region

FIGURE 6.5
Interior penalty function method.

© 2015 by Taylor & Francis Group, LLC

180 Optimization: Algorithms and Applications

subject to

 g1(x) = τ(x) − τmax ≤ 0

 g2(x) = σ(x) − σmax ≤ 0

 g3(x) = x1 − x4 ≤ 0

 g x x x x4 1
2

3 4 20 10471 0 04811 14 5 0() (). .x = + + − ≤

 g5(x) = 0.125 − x1 ≤ 0

 g6(x) = δ(x) − δmax ≤ 0

 g7(x) = P − Pc(x) ≤ 0

 0.1 ≤ x1, x4 ≤ 2.0

 0.1 ≤ x2, x3 ≤ 10.0

where

 τ τ τ τ τ()x = ′ + ′ ′′ + ′′2 2 22
2
x
R

 ′ =τ P

x x2 1 2

 ′′ =τ MR
J

h

P

t

b

L
l

FIGURE 6.6
Welded beam.

© 2015 by Taylor & Francis Group, LLC

181Constrained Optimization

 M P L
x= +







2

2

 R
x x x= + +





2
2

1 3

2

4 2

 J
x x x x x= + +




























1 2 2

2
1 3

2

2 12 2

 τ()x = 6

4 3
2

PL
x x

 δ()x = 4 3

4 3
3

PL
Ex x

 P
EGx x

L
x
L

E
Gc()

.
x = −







4 013 36
1

2 4
3
6

4
6

2
3/

 P = 6000 lb, L = 14 in., E = 30 × 106 psi, G = 12 × 106 psi, τmax = 13,600 psi,
σmax = 30,000 psi, δmax = 0.25 in.

To give equal weightage to all the constraints, the first step is to nor-
malize all the constraints. For example, the constraint

 τ(x) − τmax ≤ 0

can be normalized as

τ
τ
()x

max

− ≤1 0

The penalty function method is used and the unconstrained optimi-
zation technique used is particle swarm optimization (PSO). The PSO
code along with cost and constraint functions is given at the end of the
book. On executing the code, the optimum value of objective function
obtained is 2.381 and the corresponding variables are

x

x

x

x

h

l
t
b

1

2

3

4

0
*

.






















=





















=

2244

6 212
8 299
0 244

.

.

.





















© 2015 by Taylor & Francis Group, LLC

182 Optimization: Algorithms and Applications

The termination criterion for the algorithm is the point at which the
maximum number of iterations are completed. The output is reproduced
below.

No. x-vector f(x)

1 0.379 4.305 9.021 0.427 4.081
2 0.319 4.211 9.862 0.363 3.611
3 0.291 4.149 9.603 0.317 3.050
4 0.177 3.941 3.820 0.171 3.050
5 0.107 3.814 6.680 1.358 3.050
6 1.674 3.800 1.484 0.920 3.050
7 1.658 3.787 5.360 0.479 3.050
8 1.532 3.804 9.572 1.449 3.050
9 0.293 4.130 7.868 1.764 3.050
10 0.781 4.472 8.763 1.174 3.050
11 0.976 4.771 9.202 1.250 3.050
12 1.214 4.987 2.249 0.375 3.050
13 0.301 5.758 7.995 0.307 2.909
 …
2993 0.244 6.212 8.299 0.244 2.381
2994 0.244 6.212 8.299 0.244 2.381
2995 0.244 6.212 8.299 0.244 2.381
2996 0.244 6.212 8.299 0.244 2.381
2997 0.244 6.212 8.299 0.244 2.381
2998 0.244 6.212 8.299 0.244 2.381
2999 0.244 6.212 8.299 0.244 2.381
3000 0.244 6.212 8.299 0.244 2.381___

6.4 Augmented Lagrange Multiplier Method

As the name suggests, the augmented Lagrange multipliers (ALM) method
combines both Lagrange multipliers and penalty function methods. For an
optimization problem with both equality and inequality constraints, the
augmented Lagrangian function is given by

 A r f h rk

j

r

j j

i

m

i i k

j

r

(, , ,) () ()x x xλ β λ β α= + + +
= = =

∑ ∑ ∑
1 1 1

hh rj k

i

m

i
2

1

2()x +
=

∑α (6.11)

where λj and βi are the Lagrange multipliers, rk is a penalty parameter fixed
at the start of the iteration and

© 2015 by Taylor & Francis Group, LLC

183Constrained Optimization

 α β
i i

i

k

g
r

= −







max ,()x
2

 (6.12)

The Lagrange multipliers are updated in each iteration (k) using the
expressions

 λ λj j
k k

k jr h() () ()+ = +1 2 x (6.13)

 β β β
i i
k k

k i
i

k

r g
r

() () max ,()+ = + −







1 2
2

x (6.14)

The augmented Lagrange function can be minimized using algorithms
for unconstrained optimization. Here the DFP method is used for uncon-
strained minimization. Consider again the optimization problem

Minimize

 f(x) = (x1 − 1)2 + (x2 − 5)2

subject to

 g x x1 1
2

2 4 0()x = − + − ≤

 g2(x) = −(x1 − 2)2 + x2 − 3 ≤ 0

The MATLAB code ALM.m solves the constrained optimization problem
using the ALM method with starting point as (0, 1). On executing the code the
following output is displayed on the command window.

 Initial function value = 17.0000
No. x-vector rk f(x) |Cons.|
__
1 0.887 4.547 1.000 0.218 0.308
2 0.887 4.547 1.000 0.249 0.146
3 0.685 4.613 1.000 0.254 0.022
4 0.739 4.569 1.000 0.220 0.059
5 0.751 4.594 1.000 0.240 0.029
6 0.757 4.576 1.000 0.253 0.013
7 0.756 4.562 1.000 0.265 0.000
8 0.752 4.551 1.000 0.252 0.012
9 0.746 4.568 1.000 0.252 0.018
10 0.743 4.569 1.000 0.254 0.003

© 2015 by Taylor & Francis Group, LLC

184 Optimization: Algorithms and Applications

11 0.748 4.564 1.000 0.253 0.003
12 0.750 4.563 1.000 0.253 0.002
13 0.750 4.563 1.000 0.254 0.001
14 0.750 4.563 1.000 0.254 0.000
15 0.750 4.561 1.000 0.252 0.002
16 0.750 4.563 1.000 0.253 0.002__

 KKT conditions are satisfied

 Lagrange multipliers
 0 0.4201 0.4500

Since there are no equality constraints, the first Lagrange multiplier is zero.
The other two positive multipliers correspond to the inequality constraints.
Since the multipliers are positive, both inequality constraints are active.

6.5 Sequential Quadratic Programming

We discussed in the earlier section that for a constrained optimization
problem

Minimize

 f(x)

subject to

 h(x) = 0

the corresponding Lagrangian function would be

 L(x, λ) = f(x) + λh(x) (6.15)

and the first-order optimality condition would be

 ∇xL(x, λ) = 0 (6.16)

The variables x and λ are updated using the equation

 x x xk

k

k

k

+

+













=












+










1

1λ λ λ
∆
∆

 (6.17)

© 2015 by Taylor & Francis Group, LLC

185Constrained Optimization

where ∆
∆

x
λ









 can be obtained by solving the linear system of equations

 ∇ ∇
∇





















 = − ∇

∇










2

0
L h
h

L
h

∆
∆

x
λ

 (6.18)

This is equivalent to solving a quadratic problem with linear constraints.
Thus a nonlinear optimization problem with both equality and inequality
constraints can be written as a quadratic problem.

Minimize

 Q f LT T= ∇ + ∇∆ ∆ ∆x x x x()
1
2

2 (6.19)

subject to

 hj(x) + ∇hj(x)TΔx = 0 (6.20)

 gi(x) + ∇gi(x)TΔx = 0 (6.21)

The SQP method approximates the objective function to a quadratic form
and linearizes the constraints in each iteration. The quadratic programming
problem is then solved to get Δx. The value of x is updated with Δx. Again
the objective function is approximated with a quadratic function and con-
straints are linearized with new value of x. The iterations are repeated until
there is no further improvement in the objective function.

Trust region approach is a useful technique for solving quadratic prob-
lems. In this approach, a region around x has to be evaluated (Δx) where a
quadratic approximation of the function holds. The region is adjusted so that
f(x + Δx) < f(x). Refer to Byrd et al. (1988, 2000) and Moré and Sorensen (1983)
for more details.

The Lagrangian function is often replaced by an augmented Lagrangian
function in the SQP method. Let us show the steps of SQP for the constrained
optimization problem

Minimize

 f(x) = (x1 − 1)2 + (x2 − 2)2

© 2015 by Taylor & Francis Group, LLC

186 Optimization: Algorithms and Applications

subject to

 h1(x) = 2x1 − x2 = 0

 g1(x) = x1 ≤ 5

from a starting point (10, –5).
Iteration 1

f f h g() ; () ; ;x x= ∇ =

−








 ∇ =

−








 ∇ =




130 18

14
2
1

1
0





 ∇ = −

−








; 2 12 4

4 4
L

The quadratic problem is

Minimize

Q T T=

−








 + −

−








∆ ∆ ∆x x x18

14
1
2

12 4
4 4

subject to

 25 + [2 −1]Δx = 0

 5 + [1 0]Δx = 0

The solution of the quadratic problem is

∆x = −









7 5
10

.

Now x is updated as

x x x= + =

−








 + −







 =









∆ 10

5
7 5
10

2 5
5

. .

Iteration 2

f f h g() . ; () ; ;x x= ∇ =









 ∇ =

−








 ∇ =




11 25 3

6
2
1

1
0




 ∇ = −

−








; 2 10 4

4 4
L

© 2015 by Taylor & Francis Group, LLC

187Constrained Optimization

The quadratic problem is

Minimize

Q T T=









 + −

−








∆ ∆ ∆x x x3

6
1
2

10 4
4 4

subject to

 0 + [2 −1]Δx = 0

 −2.5 + [1 0]Δx = 0

The solution of the quadratic problem is

∆x = −

−










1 5
3 0
.
.

Now x is updated as

x x x= + =









 + −

−








 =









∆ 2 5

5
1 5
3 0

1
2

. .
.

Iteration 3

f f h g() ; () ; ; ;x x= ∇ =









 ∇ =

−








 ∇ =









0 0

0
2
1

1
0

∇∇ = −
−









2 10 4

4 4
L

Thus minimum of the function is at 1
2









 . The value of multiplier is zero for

the inequality constraint. That is, the inequality constraint is inactive at the
optimum point. The MATLAB code sqp.m solves the constrained optimiza-
tion problem using SQP method.

Example 6.3

Solve the welded beam constrained optimization problem using the SQP
method with an initial guess of (0.4, 6.0, 8.0, 0.5). Which constraints are
active at the optimum point?

© 2015 by Taylor & Francis Group, LLC

188 Optimization: Algorithms and Applications

On executing the SQP code, the following output is displayed on the
command screen.

No. x-vector f(x) |Cons.|

1.0000 0.1250 10.0000 7.3810 0.1250 1.2379 7.2894
2.0000 0.1562 9.4551 8.6532 0.1562 1.7806 2.7531
3.0000 0.1920 7.1120 9.2150 0.1920 2.0868 0.9222
4.0000 0.2215 5.7879 9.4825 0.2215 2.3129 0.2302
5.0000 0.2352 5.5031 9.4865 0.2352 2.4297 0.0259
6.0000 0.2377 5.5289 9.3717 0.2377 2.4386 0.0006
7.0000 0.2385 5.6017 9.2434 0.2385 2.4308 0.0002
8.0000 0.2392 5.6751 9.1197 0.2392 2.4234 0.0002
9.0000 0.2399 5.7473 9.0011 0.2399 2.4166 0.0002
10.0000 0.2405 5.8180 8.8876 0.2405 2.4102 0.0002
11.0000 0.2412 5.8871 8.7793 0.2412 2.4044 0.0002
12.0000 0.2418 5.9543 8.6761 0.2418 2.3991 0.0001
13.0000 0.2425 6.0194 8.5781 0.2425 2.3942 0.0001
14.0000 0.2431 6.0822 8.4853 0.2431 2.3897 0.0001
15.0000 0.2436 6.1426 8.3977 0.2436 2.3856 0.0001
16.0000 0.2442 6.2004 8.3151 0.2442 2.3819 0.0001
17.0000 0.2444 6.2175 8.2914 0.2444 2.3809 0.0000
18.0000 0.2444 6.2175 8.2915 0.2444 2.3810 0.0000
19.0000 0.2444 6.2175 8.2915 0.2444 2.3810 0.0000___

The minimum function value is 2.3810 and occurs at

x

x

x

x

1

2

3

4

0 2444

6 2175
8 2915
0 24























=

.

.

.

. 444





















On typing BETA at the command prompt, the following values are
displayed.

1.4584 0.9876 0.0000 0 0 0 22.0248 0
0 0 0 0 0 0 0

The positive value of multipliers for the first, second, and seventh con-
straints indicate that these are active constraints at the optimum point.

Example 6.4

A cylindrical pressure vessel capped at both ends by hemispherical
heads is to be designed for minimum cost (Sandgren 1990) whose design
variables are the thickness of the shell (x1), thickness of the head (x2),
inner radius (x3), and length of the cylindrical section of the vessel (x4).

© 2015 by Taylor & Francis Group, LLC

189Constrained Optimization

The optimization problem is

Minimize

 f x x x x x x x()x = + + +0 6224 1 7781 3 1661 19 841 3 4 2 3
2

1
2

4 xx x1
2

3

subject to

 g1(x) = −x1 + 0.0193x3 ≤ 0

 g2(x) = −x2 + 0.00954x3 ≤ 0

 g x x x3 3
2

4 3
34

3
1 296 000 0() , ,x = − − + ≤π π

 g4(x) = x4 − 240 ≤ 0

where

 0 ≤ x1, x2 ≤ 10, 10 ≤ x3, x4 ≤ 200

Solve the constrained optimization problem using the SQP method
with an initial guess of (4, 4, 100, 100).

On executing the SQP code, the function minimum obtained is
5885.3407 and occurs at (0.7782, 0.3848, 40.3196, 200). The convergence
history is shown in the following table.

No. x-vector f(x) |Cons.|

1.0000e+000 1.2397e+000 6.1277e-001 6.4231e+001 2.0000e+002 1.7338e+004 7.2861e-012
2.0000e+000 8.8933e-001 4.3960e-001 4.6079e+001 2.0000e+002 7.9846e+003 3.1070e-012
3.0000e+000 7.8712e-001 3.8908e-001 4.0784e+001 2.0000e+002 6.0404e+003 0
4.0000e+000 7.7823e-001 3.8468e-001 4.0323e+001 2.0000e+002 5.8865e+003 0
5.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 0
6.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 5.5511e-017
7.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 0
8.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 5.5511e-017
9.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 6.9849e-010

Example 6.5

The optimized production rate (Thygeson and Grossmann 1970) of a
through-circulation system for drying catalyst pellets depends on the
fluid velocity (x1) and bed depth (x2).

The optimization problem is

Minimize

 f x x x() . . .x = −() − 0 0064 0 184 11 1
0 3

2exp

© 2015 by Taylor & Francis Group, LLC

190 Optimization: Algorithms and Applications

subject to

 g x x x1 1 1
2

2
133000 1 2 10 0() () .x = + − × ≤

 g x x2 1
0 3

20 184 4 1 0() . ..x = () − ≤exp

where

 0 ≤ x1 ≤ 40,000, 0 ≤ x2 ≤ 1

Solve the constrained optimization problem using the PSO method.
On executing the PSO code, the function minimum obtained is

–153.716 and occurs at (31,766, 0.342). The convergence history is shown
in the following table.

No. x-vector f(x)

1 31475.978 0.340 -151.749
2 31532.201 0.341 -152.112
3 32464.351 0.321 -152.958
4 37080.697 0.262 -152.958
5 38808.857 0.240 -152.958
6 39261.784 0.234 -152.958
7 33844.159 0.303 -152.958
8 27509.668 0.384 -152.958
9 26009.433 0.404 -152.958
 …
992 31766.001 0.342 -153.716
993 31766.001 0.342 -153.716
994 31766.001 0.342 -153.716
995 31766.001 0.342 -153.716
996 31766.001 0.342 -153.716
997 31766.001 0.342 -153.716
998 31766.001 0.342 -153.716
999 31766.001 0.342 -153.716
1000 31766.001 0.342 -153.716_____________________________________

6.6 Method of Feasible Directions

Some optimization problems require constraints to be satisfied in every itera-
tion. For example, consider the shape optimization problem of a body whose
drag is to be minimized. The drag force is computed using computational
fluid dynamics (CFD) analysis for a given shape of the body. It is obvious

© 2015 by Taylor & Francis Group, LLC

191Constrained Optimization

that CFD analysis will provide reliable results if only there is a meaningful
shape of the body. This can be achieved by not only giving a proper defini-
tion of the constraints, but also satisfying them at each iteration. Consider a
constrained optimization problem

Minimize

 f(x)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m

A direction S is feasible at point x if

 ST∇gi(x) < 0 (6.22)

If the objective function also has to be reduced, then the following inequal-
ity must also be satisfied:

 ST∇f(x) ≤ 0 (6.23)

Zoutendijk’s method of feasible directions and Rosen’s gradient projection
method are two popular methods of feasible directions that are explained in
this section.

6.6.1 Zoutendijk’s Method

The method starts with a feasible point x. That is, gi(x) ≤ 0 are satisfied. Set the
search direction as the steepest descent direction. That is,

 S = −∇f(x)

If at least one of the constraint is active gi(x) = 0, then the following optimi-
zation subproblem is to be solved with respect to S.

Minimize

 β (6.24)

subject to

 ST∇gi(x) + β ≤ 0 (6.25)

© 2015 by Taylor & Francis Group, LLC

192 Optimization: Algorithms and Applications

 ST∇f(x) + β ≤ 0 (6.26)

 −1 ≤ sk ≤ 1 k = 1, 2,…, n (6.27)

where n denotes number of variables and sk are the components of the search
direction. A line search algorithm can be used to determine the next point
x as

 x x S= + α

such that

 f(x + αS) = f(x)

 gi(x + αS) ≤ 0

In case constraints are not met with x, the optimization subproblem has to
be solved again with x to obtain new S. The algorithm is terminated if any of
the following criteria are met:

•	 The objective function value does not show improvement over suc-
cessive iterations.

•	 Design variables do not change over successive iterations.
•	 β is close to zero.

6.6.2 Rosen’s Gradient Projection Method

In this method, the search direction (negative of the gradient of the objective
function) is projected into the subspace tangent of the active constraints. This
condition of projection is sufficient for linear constraints. However, if the
constraints are nonlinear, the projected search direction moves away from
the search boundary (see Figure 6.7). A restoration move is carried out in
case nonlinear constraints are present.

Let the matrix N denote gradient of active constraints. That is,

 N = [∇g1, ∇g2,⋯, ∇gm] (6.28)

The projected matrix is given by

 P = I − N(NTN)−1NT (6.29)

© 2015 by Taylor & Francis Group, LLC

193Constrained Optimization

The search direction is given by

 S = −P∇f(x) (6.30)

The restoration move is given by

 −N(NTN)−1gi(x) (6.31)

Combining the projection and restoration move, the design variable can
be updated as

 x x S N N N g x= + − −α () ()T
i

1 (6.32)

where

 α γ= −
∇
f

fT

()
()
x

S x
 (6.33)

and γ specifies the desired reduction in the objective function (Haug and
Arora 1979).

Example 6.6

Show all the important variables in the first iteration of the Rosen’s gra-
dient projection method for the following optimization problem from a
starting value of (2, 1).

Minimize

 f(x) = (x1 − 1)2 + (x2 − 2)2

Restoration
move

Projection
move

gi = 0

FIGURE 6.7
Rosen’s gradient projection method with restoration move.

© 2015 by Taylor & Francis Group, LLC

194 Optimization: Algorithms and Applications

subject to

 g1(x) = 2x1 − x2 ≤ 0

 g2(x) = x1 ≤ 5

At x = (2, 1)

 f(x) = 2

 ∇ =
−
−













=
−









f

x

x
()

()

()
x

2 1

2 2
2
2

1

2

The constraint g1(x) is also violated. Therefore,

 N =
−











2
1

The projection matrix is given by

 P I N N N N= − =








−()T T1 1

5
1 2
2 4

Therefore, the search direction is given by

 S P x= − ∇ =








f () 1

2

Taking γ = 0.1,

 α γ= −
∇

=f
fT

()
()

.
x

S x
0 1

The value of x can now be updated as

 x x S N N N x= + − =








 +









 −

−
−α () . .()T

ig1 2
1

0 1 1
2

1 2
0..

.

.6
0 9
1 8









 =











© 2015 by Taylor & Francis Group, LLC

195Constrained Optimization

At x = (0.9, 1.8)

 f(x) = 0.05

Both the constraints are also feasible at this point.

6.7 Application to Structural Design

A structure is to be designed that has members with square cross sections
(Figure 6.8). The design variables are the cross-sectional sizes of the columns
(x1) and beam (x2). The objective function is to minimize the volume of the
structure. The stresses are to be restricted at three critical sections: top of
the column and end and midspan of the beam. The optimization problem
(Horowitz et al. 2008) is stated as

Minimize

 V lx lx= +2 1
2

2
2α

subject to

g

ql
x

ql x
x x1

1
2

2
1

1
4

2
4 12

3
6 4

0()x ≤ +
+

− ≤
α

σ

g

x x l

x x x

ql
2

1
4

2

2
3

1
4

2
4 2

6

6 4 2
0()

()
x ≤ +

+() − ≤α
α α

σ

l

αl

FIGURE 6.8
Structural frame.

© 2015 by Taylor & Francis Group, LLC

196 Optimization: Algorithms and Applications

g

x x l x x

x x x

ql
3

1
4

2 1
4

2
4

2
3

1
4

2
4

3 6

6 4 2
()x ≤

+ +()
+() −

α α
α α

σ33 0≤

 0 ≤ x1, x2 ≤ 40

where

 q = 15 kgf/cm

 l = 550 cm

 σ1 = σ2 = σ3 = 103 kgf/cm2

The constrained optimization problem has two optima. It is desired to
achieve a global optima for this problem. We use stochastic algorithm PSO
for this purpose. On executing MATLAB code pso.m the following output is
obtained.

 No. x1 x2 f(x)

 1 10.881 31.486 597348.396
 2 18.732 31.907 597348.396
 3 25.175 32.252 597348.396
 4 22.256 32.096 597348.396
 5 11.958 31.131 595963.381
 …
 96 9.294 31.083 569385.788
 97 9.294 31.083 569385.788
 98 9.294 31.083 569385.788
 99 9.294 31.083 569385.788
 100 9.294 31.083 569385.788

The global optimum value of the design variable is (x1, x2) = (9.294, 31.083)
and optimum value of the objective function is 569,385 cm3.

Chapter Highlights

•	 A point is regular if the gradient of active inequality and all equality
constraints are linearly independent.

© 2015 by Taylor & Francis Group, LLC

197Constrained Optimization

•	 The optimality conditions for constrained optimization problems
are frequently referred to as Karush–Kuhn–Tucker (KKT) conditions.
KKT conditions are necessary but not sufficient for optimality.

•	 The Lagrange multiplier provides information on the sensitivity of
the objective function with respect to the sensitivity of the right-
hand side of the constraint equation.

•	 A constrained optimization problem can be converted to an uncon-
strained problem by penalizing the objective function when con-
straints are violated. Such methods are termed penalty function
methods and are very easy to implement.

•	 The motivation of using the penalty function method is to solve
the constrained optimization problem using algorithms for uncon-
strained problems.

•	 The augmented Lagrange multiplier (ALM) method combines both
Lagrange multiplier and penalty function methods.

•	 The sequential quadratic programming (SQP) method approximates
the objective function to a quadratic form and linearizes the con-
straints in each iteration.

•	 The method of feasible directions ensures meeting the constraints
in every iteration.

•	 In Rosen’s gradient projection method, the search direction (nega-
tive of the gradient of the objective function) is projected into the
subspace tangent of the active constraints.

Formulae Chart

Lagrange function:

L f h g
j

r

j j

i

m

i i(, ,) () () ()x x x xλ µ λ µ= + +
= =

∑ ∑
1 1

Optimality condition:

−∇ = ∇ + ∇
= =

∑ ∑f h g
j

r

j j

i

m

i i() () ()x x x
1 1

λ µ

© 2015 by Taylor & Francis Group, LLC

198 Optimization: Algorithms and Applications

Penalty function:

f f r h r gk

j

r

j k

i

m

i() () () ()x x x x= + +
= =

∑ ∑
1

2

1

2

 〈gi(x)〉 = max[0, gi(x)]

Augmented Lagrangian function:

A x x x(, , ,) () ()λ β λ β αr f h rk

j

r

j j

i

m

i i k

j

r

= + + +
= = =

∑ ∑ ∑
1 1 1

hh r g

g

j k

i

m

i i

i

2

1

2

0

() ()

max , ()

x x

x

+

=

=
∑α

[]

α β

i i
i

k

g
r

= −







max ,()x
2

Quadratic problem:
Minimize

Q f LT T= ∇ + ∇∆ ∆ ∆x x x x()

1
2

2

subject to

 hj(x) + ∇hj(x)TΔx = 0

 gi(x) + ∇gi(x)TΔx = 0

Rosen’s gradient projection method:

 P = I − N(NTN)−1NT

 x x S N N N x= + − −α () ()T
ig1

α γ= −

∇
f

fT

()
()
x

S x

© 2015 by Taylor & Francis Group, LLC

199Constrained Optimization

Problems

 1. For the following optimization problem
Minimize

 f(x) = 2x1 + x2

subject to

 1 01
2

2+ − ≤x x

check whether the following points are feasible
i. (0, 0)

ii. (1, 2)
iii. (2, 1)
iv. (1, 3)

 2. For the following optimization problem
Minimize

 f x x() () ()x = − + − +1
2

2
23 4 2

subject to

 1 01
2

2+ − ≤x x

check which of the constraints are active at the following points
i. (2, –1)

ii. (1, 2)
iii. (1, 1)
iv. (13/5, 1/5)

 3. Solve the following optimization problem using the variable-elimination
method.
Minimize

 f(x) = (3x1 − 2x2)2 + (x1 + 2)2

subject to

 x1 + x2 = 7

© 2015 by Taylor & Francis Group, LLC

200 Optimization: Algorithms and Applications

 4. Write the Lagrangian for the problem
Minimize

 f(x) = (3x1 − 2x2)2 + (x1 + 2)2

subject to

 x1 + x2 = 7

 and then write down the optimality conditions. Find the optimal
value of x1 and x2. Also compute the value of multiplier and com-
ment whether the constraint is active at the optimal point. What is
the approximate change in the optimal value of f(x) if the right-hand
side of the constraint equation is changed to 6 from 7.

 5. Solve the following optimization problem
Minimize

f

x
x

x
x

()x = +5 1

2

2

1
2

subject to

 x1x2 − 2 = 0

 x1 + x2 ≥ 1

 using the SQP method with an initial guess of (1, 1). Define the qua-
dratic sub-problem at each step.

 6. Solve the previous optimization problem using the PSO method.
Compare the results obtained from the SQP method.

 7. The welded beam constrained optimization problem was solved
using PSO and SQP methods in this chapter. For the SQP method,
the initial guess for the design variables was taken as (0.4, 6.0, 8.0,
0.5), which was close to the optimum point. Using different initial
guesses for the design variables, execute the SQP code and observe
the sensitivity of the convergence.

 8. Solve the pressure vessel problem using the PSO method and Rosen’s
gradient projection method.

 9. Solve the through-circulation dryer problem using the SQP method
with different initial guesses of the design variables.

© 2015 by Taylor & Francis Group, LLC

201Constrained Optimization

 10. Solve the spring design problem (Rao 2009), which minimizes the
weight of a spring subject to constraints on deflection, shear stress,
and frequency. The design variables are the mean coil diameter (x1),
the wire diameter (x2), and the number of active coils (x3).
Minimize

 f x x x() ()x = +3 2 1
22

subject to

g

x x
x1

2
3

3

1
41

71 785
0()

,
x = − ≤

g

x x x

x x x x2
2
2

1 2

2 1
3

1
4

1
2

4

12 566

1
5108

1 0()
,

x = −
−() + − ≤

g

x
x x3

1

2
3

3

1
140 45

0()
.

x = − ≤

g

x x
3

1 2

1 5
1 0()

.
x = + − ≤

 where

 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

© 2015 by Taylor & Francis Group, LLC

© 2015 by Taylor & Francis Group, LLC

203

7
Multiobjective Optimization

7.1 Introduction

In previous chapters, optimization problems with a single objective function
were discussed and these problems were with or without constraints. Typical
single-variable objective functions are cost minimization, efficiency maximiza-
tion, weight minimization, and so on. The solution to single-variable optimiza-
tion problems results in a single point in the design space and the corresponding
objective function value at that point gives the minimum value of the function.

In the multiobjective optimization problem, two or more objective func-
tions are to be simultaneously optimized. For example, the criteria in manu-
facturing a product could be cost minimization and efficiency maximization.
The general form of a multiobjective optimization problem can be mathe-
matically stated as

Minimize

 fk(x) k = 1, 2,…, K (7.1)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m < n (7.2)

 hj(x) = 0 j = 1, 2,…, r < n (7.3)

 xl ≤ x ≤ xu (7.4)

where x is a vector of n design variables given by

 x =





















x

x

xn

1

2



© 2015 by Taylor & Francis Group, LLC

204 Optimization: Algorithms and Applications

The solution to a multiobjective problem results in a number of points
in the objective function space referred to as Pareto optimal solutions. For a
multiobjective problem with two objective functions (the first function is
efficiency maximization and the second function is cost minimization), a
typical Pareto optimal front is shown in Figure 7.1. The first objective (f1)
function “efficiency” is along the x-axis of this figure and the y-axis contains
the second objective (f2) function “cost.” The Pareto optimal front is obtained
using the principle of domination. In this concept, each solution is compared
to check whether it dominates another solution or not.

A solution x1 is said to dominate another solution x2 if the following condi-
tions are satisfied

•	 The solution x1 is no worse than x2 in all objectives.
•	 The solution x1 is better than x2 in at least one objective.

Consider points A and C for domination. Clearly, point C dominates point
A in both the objective functions. However, point C is itself dominated by
at least one of the points in the Pareto optimal front. The points along the
Pareto optimal front are referred to as nondominated solutions. In Figure 7.1,
the Pareto optimal front is convex. However, this front can be concave, par-
tially convex/concave or discontinuous. The trade-off between the objective
functions defines the shape of the Pareto front.

In this chapter, we discuss the methods for obtaining the nondominated
solutions for a multiobjective optimization problem. These methods will be
applied on some well-known test functions. The road map of this chapter
is shown in Figure 7.2. The weighted sum approach, ε-constraint method,
goal programming, and utility function method are explained as the tech-
niques for solving multiobjective problems. In the weighted sum approach,

C
B

A

Pareto optimal front

f2

f1

Nondominated solutions

FIGURE 7.1
Pareto optimal front.

© 2015 by Taylor & Francis Group, LLC

205Multiobjective Optimization

different objectives are combined into a single objective function using dif-
ferent weights. This method is simple and easy to implement. However, it
can locate one Pareto point in one optimization run using the gradient-based
method. The particle swarm optimization (PSO) technique, which works
with a number of solution points, can locate the Pareto front on one single
run. In the ε-constraint method, one objective function is minimized and
remaining objective functions are transformed into constraints which are
to be specified by the user. The transformed problem is then solved using
the gradient-based method. The method can locate the Pareto fronts of the
nonconvex problems. In goal programming, a target is set for each of the
objective functions and the optimizer aims to minimize the deviations from
the set goals. In the utility function method, all the objectives are combined
into a single function which is then solved along with the constraints. In
the last section, shape optimization of a reentry body is carried out that has
two conflicting objectives: weight minimization and stability maximization,
along with constraints.

7.2 Weighted Sum Approach

The simplest approach to solve a multiobjective optimization problem is to
combine all the objective functions into a single objective function, which
then can be solved using any of the methods described in previous chap-
ters. Different objective functions can be combined into a single objective

Multiobjective optimization

Weighted sum approach

ε-Constraints method

Goal programming

Utility function method

Application

FIGURE 7.2
Road map of Chapter 7.

© 2015 by Taylor & Francis Group, LLC

206 Optimization: Algorithms and Applications

function using user-supplied weights and the optimization problem can
be stated as

Minimize

 w k Kk k

k

K

f x() , , ,
=

∑ =
1

1 2  (7.5)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m < n (7.6)

 hj(x) = 0 j = 1, 2,…, r < n (7.7)

 xl ≤ x ≤ xu (7.8)

where wk is a nonnegative weight of the kth objective function such that

 wk

k

K

=
=

∑ 1
1

 (7.9)

The value of weight to be selected for an objective function depends on the
relative importance of that objective function over the other objective func-
tions. For example, in the cost-efficiency multiobjective problem discussed
in the previous section, a weight of 0.2 for the objective function “cost” and a
weight of 0.8 for the other objective function efficiency will result in an opti-
mized solution given by a single point. To obtain the Pareto optimal front,
the procedure has to be repeated with different weights.

Consider the following multiobjective optimization problem whose Pareto
optimal front is to be obtained.

Minimize

 f x x1 1
2

2
21

2
()x = +()

Minimize

 f x x2 1
2

2
21

2
1 3() () ()x = − + − 

© 2015 by Taylor & Francis Group, LLC

207Multiobjective Optimization

Using the weighted sum approach, two objective functions can be com-
bined to form a single objective function as given below

Minimize

 F w x x w x x() () ()x = +() + − + − 
1
2

1
2

1 31 1
2

2
2

2 1
2

2
2

The above function is optimized by varying the weight w1 from 0 to 1 in
steps of 0.01. The other weight w2 is selected using the following equality,

 w2 = 1 − w1 (7.10)

For each value of [w1, w2], the above function will be optimized to obtain
the optimal solution. Thus, different values of [w1, w2] will result in a number
of optimal solutions that result in the Pareto optimal front. Let us use the
sequential quadratic programming (SQP) method, as discussed in the previ-
ous chapter, to solve the multi-objective problem. The MATLAB® code sqp.m
is modified so that in a single execution, the Pareto optimal front can be
obtained. Only the modified main program and functions are listed under
the heading of this chapter in Appendix B. Other routines remain the same
as previous chapters. On executing the code, the Pareto optimal front is
obtained and is shown in Figure 7.3. The shape of the Pareto front is convex.
The tangent line at point A represents the equal-cost line for the function F(x)
and its slope depends on the choice of weights w1 and w2.

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f1

f 2

w1
w2

Pareto front

Objective space

A

FIGURE 7.3
Pareto front.

© 2015 by Taylor & Francis Group, LLC

208 Optimization: Algorithms and Applications

Let us check the performance of the weighted sum method for multiobjec-
tive problems that have a nonconvex Pareto front. Consider the following
multiobjective optimization problem:

Minimize

 f1(x) = x1

Minimize

 f x x x2 2
2

1 11 0 1 3() . sin()x = + − − π

subject to

 0 ≤ x1≤ 1, −2 ≤ x2 ≤ 2

On executing the modified SQP code for these functions, an incomplete
Pareto front is generated and is shown in Figure 7.4. The weighted sum
approach, though simple to implement, has difficulty in locating the Pareto
front of the nonconvex type. Another disadvantage of the weighted sum
approach is that even if weights are uniformly distributed, it may not result
in uniform distribution of Pareto optimal solutions (see Figure 7.4). The
advantages and disadvantages of this method are

Advantages

•	 It is simple and easy to use.
•	 It ensures a solution for convex problems.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

FIGURE 7.4
Incomplete Pareto front.

© 2015 by Taylor & Francis Group, LLC

209Multiobjective Optimization

Disadvantages

•	 The computational burden is higher.
•	 Different weights may lead to the same solution.
•	 A solution is not obtained for nonconvex problems.
•	 All problems have to be converted to the same type (min or max type).

An interesting alternative is to use evolutionary algorithms (such as
genetic algorithm or PSO) to locate the Pareto optimal front because it works
simultaneously on a number of points. In one such strategy using the PSO
technique (Parsopoulos and Vrahatis 2002), the weights are updated on each
iteration using the equation

 w t
t

F1
2

() sin=






π

where t is the iteration index and F is the weights’ change frequency. The
dynamic change of weights during the iterations forces the PSO algorithm to
keep the solutions on the Pareto front. The PSO algorithm given in Chapter 5
is modified with the dynamic weight strategy and the revised MATLAB code
is given in pso.m. On executing the code for the multiobjective problem, the
Pareto optimal front is obtained and is shown in Figure 7.5. It is important to
note that the modified PSO algorithm is able to locate the nonconvex Pareto
front where weigthed sum approach failed to achieve the full Pareto front.

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

FIGURE 7.5
Nonconvex Pareto front generated with particle swarm optimization.

© 2015 by Taylor & Francis Group, LLC

210 Optimization: Algorithms and Applications

Example 7.1

Consider the multiobjective optimization problem:

Minimize

 f x x1 1
3

2
2()x = +

Minimize

 f x x2 2
2

12 3()x = −

subject to

 0 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 2

Modify the PSO code for these functions and obtain the Pareto opti-
mal front.

The tuning parameters for PSO algorithm are changed to different val-
ues. On executing the code with one such change in tuned parameters,
the Pareto optimal front is obtained and given in Figure 7.6.

7.3 ε-Constraints Method

In this method, the decision-maker chooses one objective out of K objectives
that needs to be minimized and the remaining objectives are put as con-
straints to some target values (which are to be defined by the decision-maker).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

FIGURE 7.6
Pareto front for the test problem.

© 2015 by Taylor & Francis Group, LLC

211Multiobjective Optimization

If we select f3(x) as the objective function that needs to be minimized, then
the ε-constraint problem is

Minimize

 f3(x) (7.11)

subject to

 f k K kk k() ,x ≤ = … ≠ε 1 3 (7.12)

For a simple multiobjective problem with two objectives, the concept of this
method is explained through Figure 7.7. Using different values of ε, Pareto opti-
mal solutions can be obtained. The method can also provide solutions for mul-
tiobjective problems with nonconvex Pareto fronts. The disadvantage of this
method is that prior information on ε is required to obtain a proper solution.

Let us solve the following problem using this method.

Minimize

 f1(x) = x1

Minimize

 f x x x2 2
2

1 11 0 1 3() . sin()x = + − − π

subject to

 0 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 2

Pareto point

Pareto front
(to be determined)

f2

f1
f1(x) ≤ ε

FIGURE 7.7
Concept of ε-constraints method.

© 2015 by Taylor & Francis Group, LLC

212 Optimization: Algorithms and Applications

The second objective function f2(x) is used as an objective function and the
first objective function f1(x) is put as a constraint:

 f1()x ≤ ε

The optimization problem is solved for different ε using the SQP method.
The ε is varied from 0.01 to 0.99, resulting each time in an optimization prob-
lem with different constraints. The solution of each of these problems results
in a single Pareto point. The SQP code, mentioned in Chapter 6, is suitably
modified and the Pareto front obtained is shown in Figure 7.8.

7.4 Goal Programming

In goal programing, a target or goal is set for each objective function. Then
the optimization problem is to minimize the deviation from the set targets.
For example, if the functions fk(x) are to be minimized and we set a goal for
this function as τk, then the optimization problem becomes

Minimize

 w p w n k Kk k k k

k

K

1 2

1

1 2, , , , ,+ =
=

∑  (7.13)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

FIGURE 7.8
Nonconvex Pareto front generated using ε-constraints method.

© 2015 by Taylor & Francis Group, LLC

213Multiobjective Optimization

subject to

 fk(x) + pk − nk = τk (7.14)

 pk, nk ≥ 0 (7.15)

where w1,k and w2,k are the weights of the kth goal and pk and nk are the under-
achievement and overachievement for the kth goal. The main advantage of
goal programming is that multiobjectives are transformed into the con-
straints of a single-objective optimization problem.

Let us consider the following multiobjective optimization problem.

Minimize

 f x x1 1
2

2()x = +

Minimize

 f x x2 2
2

1()x = −

subject to

 −5 ≤ x1 ≤ 5, −3 ≤ x2 ≤ 3

Assuming goals for the two objective functions as 1 and 2, the goal pro-
gramming problem can be written as

Minimize

 f1(x) = w11p1 + w12p2 + w21n1 + w22n2

subject to

 x x p n1
2

2 1 1 1 0+ + − − =

 x x p n2
2

1 2 2 2 0− + − − =

 −5 ≤ x1 ≤ 5, −3 ≤ x2 ≤ 3

where the design variables for this problem are x1, x2, p1, p2, n1, and n2. For
the user-supplied value of the weight variables, the optimization problem
is solved. The optimal value of the design variables is substituted in the

© 2015 by Taylor & Francis Group, LLC

214 Optimization: Algorithms and Applications

original multiobjective problem to obtain the values of f1 and f2. The Pareto
front can be obtained by repeating the procedure with different weights.

In the lexicographic goal programming method, different objectives of the multi-
objective problem are to be ranked in the order of importance or priority. The
most important objective is selected first and it is solved to obtain x*. The next
objective function in the order of priority is then selected and solved with the
additional constraint being the value of the objective function obtained from
the first step. The process is repeated until all the objectives are covered. Let
f1(x) be the most important objective function selected by the designer; then
the first step is to solve the optimization problem:

Minimize

 f1(x)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m

The optimal solution for this problem is denoted by x*. In the next step of
lexicographic goal programming, the second most important objective func-
tion f2(x) is selected for optimization and the problem can be stated as

Minimize

 f2(x)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m

 f1(x) = f1(x*)

The process is repeated until all the objectives are covered and let the opti-
mum solution obtained for the multiobjective problem be denoted by x*. It is
important to note that if the priorities of the objective functions are changed,
the optimal solution obtained will be a different x*.

7.5 Utility Function Method

In this method a utility function U is defined that combines all the objective
functions of the multiobjective optimization problem. The utility function
then becomes the objective function of the optimization problem that can

© 2015 by Taylor & Francis Group, LLC

215Multiobjective Optimization

be solved along with the constraints. Mathematically, the utility function
method can be described as

Minimize

 U(fk(x)) k = 1, 2,…, K (7.16)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m < n (7.17)

 hj(x) = 0 j = 1, 2,…, r < n (7.18)

7.6 Application

Reentry bodies enter the Earth’s atmosphere with high velocities. The large
kinetic energy possessed by these bodies has to be dissipated by appropri-
ately designing the shape of these bodies. The shape design of the reentry
body is a typical multiobjective optimization problem with conflicting objec-
tives (Adimurthy et al. 2012; Arora and Pradeep 2003). The weight of the reen-
try body is to be minimized and its stability is to be maximized. The weight
minimization is the same as minimizing the surface area of the reentry body.
The stability of the body is dictated by its location of center of pressure and is
denoted by Xcp. An aerodynamic body is more stable if its Xcp is located as aft
as possible. Thus, for aerodynamic stability Xcp is to be maximized.

The shape of a reentry body is typically a spherical nose-cone-flare type
(Figure 7.9). The design parameters for the multiobjective optimization are the

Flare

Conical body

Spherical nose

l1

R

l2θ2

θ1

FIGURE 7.9
Design variables of the reentry body.

© 2015 by Taylor & Francis Group, LLC

216 Optimization: Algorithms and Applications

nose radius (Rn), first conical flare angle (θ1), and its length (l1) and second con-
ical flare angle (θ2) and its length (l2). During the launch phase of the reentry
body, it has to be accommodated inside the payload fairing of the rocket. So
there are restrictions on the dimensions of the nose radius and flare lengths.
In addition, to avoid flow separation, variable θ2 is linked to θ1. Further, elec-
tronic packages and other equipment have to be housed inside the reentry
body, leading to volume (V) constraint in the optimization problem.

The constraints of the problem are

 V ≥ 1

 0.4 < Rn < 0.6

 22 < θ1 < 27

 θ1 + 5 < θ2 < θ1 + 10

 0.4 < l1 < 0.8

 0.4 < l2 < 0.8

The surface area and volume are computed using the expressions

A = − + + − +

+ +

2 12
1 1 2 2 1

2
1
2

2

π θ π

π

R R R R R l

R R

n

B

()sin () ()

() (RR R l RB B− + +2
2

2
2 2) π

V
R

R R l R Rn= − + −() + +π θ θ π()sin
(sin)

1
6

3 1
1
3

1
1
2

1
2

1
2

1 1
2

2
22

1 2

2
2

2
2

2
1
3

+()

+ + +()

R R

l R R R RB Bπ

where

 R1 = Rn cos θ1

 R2 = Rn cos θ1 + l1 tan θ1

 RB = R2 + l2 tan θ2

The other objective function Xcp is computed using the expression

 X
C
Ccp

m

n

=

© 2015 by Taylor & Francis Group, LLC

217Multiobjective Optimization

where Cm and Cn are pitching moment coefficient and the normal force coef-
ficient respectively. The value of Xcp is computed for a unit reference length.
The value of aerodynamic coefficients can be computed using the flow field
analysis for different geometrical shapes. As an alternate, one can build
a response surface for Cm and Cn as a function of input parameters Rn, θ1,
l1, θ2 and l2. The responses are generated using modified Newtonian flow
(Chernyi 1961), which is valid for hypersonic (Mach>5) flows. The analysis
is valid for a small angle of attack. The response matrix is generated for an
angle of attack of 5 degrees and is shown in Table 7.1.

The response surface model is then generated with MATLAB using the
regstats function. For example,

>> regstats(cm,inputparam,’purequadratic’)
>> beta

will generate the polynomial coefficients (beta) of the respective input
parameters. The response surface of the aerodynamic coefficients is thus
given as

TablE 7.1

Response Surface Matrix

Input Parameters Responses

Rn m θ1 degrees θ2 degrees l1 m l2 m Cm Cn

0.5 20 25 0.65 0.65 0.07954 0.12198
0.5 20 25 1.00 0.65 0.12409 0.15979
0.5 20 25 0.20 0.65 0.03992 0.08037
0.5 20 25 0.65 1.00 0.13359 0.16864
0.5 20 25 0.65 0.20 0.03420 0.072529
0.2 20 25 0.65 0.65 0.03848 0.06818
0.2 20 25 1.00 0.65 0.06647 0.09546
0.2 20 25 0.20 0.65 0.01552 0.03951
0.2 20 25 0.65 1.00 0.07245 0.10236
1.0 20 25 0.65 0.65 0.01974 0.23620
1.0 20 25 1.00 0.65 0.27559 0.29093
1.0 20 25 0.20 0.65 0.12147 0.17304
1.0 20 25 0.65 1.00 0.29286 0.30292
1.0 20 25 0.65 0.20 0.10818 0.16111
0.5 15 20 0.65 0.65 0.05917 0.09790
1.2 15 25 0.20 0.65 0.12767 0.17713
0.2 15 20 1.00 0.65 0.04339 0.06695
0.5 25 35 0.65 0.65 0.11970 0.15591
0.5 25 30 0.65 1.00 0.17626 0.20450

© 2015 by Taylor & Francis Group, LLC

218 Optimization: Algorithms and Applications

 C R l l R ln nm 1
2= + + + + + + + +β β β θ β β θ β β β θ β0 1 2 1 3 1 4 2 5 2 6

2
7 8 1

22
9 10 2

2+ +β θ β2
2 l

 C R l l Rn nn = + + + + + + +′ ′ ′ ′ ′ ′ ′ ′β β β θ β β θ β β β0 1 2 1 3 1 4 2 5 2 6
2

7 θθ β β θ β1
2

2
2+ + +′ ′ ′8 1

2
9 2

2
10l l

where the polynomial coefficients are given by

β
β
β
β
β
β
β
β
β
β
β

0

1

2

3

4

5

6

7

8

9

10













































=

−0 2785277
0 07575931
0 00138183
0

.
.
.
..
.
.
.
.

00582562
0 08788085
0 07978807
0 10309911
0 000091141

0 0000837
0 02437810
0 05287244

−















 .

.

.
























′

′

′

′

′

′

′

′

and

β
β
β
β
β
β
β
β

0

1

2

3

4

5

6

7

ββ
β
β

′

′

′











































8

9

10



=

−

−

0 3142861
0 15013042

0 0039655
0 01401952
0 1

.
.

.
.
. 00363958

0 10800186
0 04790623
0 00018685

0 000219

.

.

.
.− 99

0 0004853
0 01629809
−
































.
.









The response surface model is validated by using some arbitrary values of input
parameters, but within their constraint bounds and generating the responses
for these parameters. The accuracy of responses is checked by comparing them
with those generated by flow field analysis for the same input parameters. The
accuracy of the response surface model is within 5% of those generated by the
flow field analysis. Let us summarize the multiobjective problem:

Minimize

A R R R R R R Rn B= − + + − + + +2 12

1 1 2 2 1
2

1 2π θ π π()sin () () () (l2 RR R RB B− + +2
2 2) l2

2 π

Maximize

 Xcp

subject to

 V ≥ 1

 0.4 < Rn < 0.6

 22 < θ1 < 27

© 2015 by Taylor & Francis Group, LLC

219Multiobjective Optimization

 θ1 + 5 < θ2 < θ1 + 10

 0.4 < l1 < 0.8

 0.4 < l2 < 0.8

The multiobjective optimization problem is solved using the ε-constraints
method. The objective function Xcp is taken as the function to be optimized
and the other objective function A becomes a constraint. Since Xcp is to be
maximized, it is put as −Xcp in the SQP method which is written for minimi-
zation of a function. The area is varied from 6.4 m2 to 16.3 m2. This is put as
a constraint in the optimization problem:

 A < ε

where ε is varied from 6.4 to 16.3 in steps of 0.2 resulting in different con-
straint optimization problems. Each of these problems is then solved using
the SQP method. The MATLAB code for the objective functions is given in
func.m and func1.m. On executing the MATLAB code sqp.m the Pareto front
is obtained and is given in Figure 7.10. The shape of the reentry body for
the extreme cases of Pareto front is also shown in this figure. For achieving
higher stability, the flare lengths are higher and for achieving lower surface
area, flare lengths are smaller. Along the Pareto front, the maximum Xcp that
can be obtained is 0.87 where A is 16.3 m2. For area of 6.4 m2, the Xcp achieved
will be 0.58.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
6

8

10

12

14

16

18

Xcp

A

Pareto front

FIGURE 7.10
Pareto front of reentry test body.

© 2015 by Taylor & Francis Group, LLC

220 Optimization: Algorithms and Applications

Chapter Highlights

•	 In the multiobjective optimization problem, two or more objective
functions are to be simultaneously optimized.

•	 The solution to a multiobjective problem results in a number of
points in the objective function space referred to as Pareto optimal
solutions.

•	 The Pareto front can be concave, partially convex/concave or
discontinuous.

•	 The points along the Pareto optimal front are referred to as non-
dominated solutions.

•	 In the weighted-sum approach, different objective functions are com-
bined into a single objective function using user-supplied weights.

•	 The weighted sum approach, though simple to implement, has dif-
ficulty in locating the Pareto front of the nonconvex type.

•	 In the ε-constraint method, the decision-maker chooses one objec-
tive out of K objectives that needs to be minimized and the remain-
ing objectives are put as constraints to some target values.

•	 Evolutionary algorithms (such as genetic algorithm or particle
swarm optimization) are often used to locate the Pareto optimal
front since they work simultaneously on a number of points.

•	 In goal programing, a target or goal is set for each objective function.
Then the optimization problem is to minimize the deviation from
the set targets.

Formulae Chart

Multiobjective problem:
Minimize/maximize

 fk(x) k = 1, 2,…, K

Weighted sum approach:
Minimize

 w k Kk k

k

K

f x() , , ,
=

∑ =
1

1 2 

© 2015 by Taylor & Francis Group, LLC

221Multiobjective Optimization

 wk

k

K

=
=

∑ 1
1

Goal programming:
Minimize

 f3(x)
subject to

 f k K kk k() ,x ≤ = ≠ε 1 3

Goal programming:
Minimize

w p w n k Kk k k k

k

K

1 2

1

1 2, , , , ,+ =
=

∑ 

subject to

 fk(x) + pk − nk = τk

Utility function method:
Minimize

 U(fk(x))

Problems

 1. Find the convex Pareto front for the multiobjective optimization
problem (Parsopoulos and Vrahatis 2002):
 Minimize f1 = x2

 Minimize f2 = (x − 2)2

 where x ∈ − 10 105 5, .
 2. Find the concave Pareto front for the multiobjective optimization

problem (Zitzler et al. 2000).
 Minimize f1 = x1

 Minimize f g
f
g2
1

2

1= −
















© 2015 by Taylor & Francis Group, LLC

222 Optimization: Algorithms and Applications

 where g
n

xi

i

n

= +
−

=
∑1

9
1

2

 and xi ∈[,]0 1 . Take n = 30.

 3. Find the convex Pareto front for the multiobjective optimization
problem (Zitzler et al. 2000).
 Minimize f1 = x1

 Minimize f g
f
g2
11= −











 where g
n

xi

i

n

= +
−

=
∑1

9
1

2

 and xi ∈[,]0 1 . Take n = 30.

 4. Find the convex/concave Pareto front for the multiobjective optimi-
zation problem (Zitzler et al. 2000).
 Minimize f1 = x1

 Minimize f g
f
g

f
g2

1

4

141= −






−










 where g
n

xi

i

n

= +
−

=
∑1

9
1

2

 and xi ∈[,]0 1 . Take n = 30.

 5. Find the concave Pareto front for the multiobjective optimization
problem (Deb 2002):

 Minimize f x ni

i

n

1

2

1

1 1= − − −()









=
∑exp /

 Minimize f x ni

i

n

2

2

1

1 1= − − +()









=
∑exp /

 where x ∈ −[,]4 4 . Take n = 2.
 6. Find the convex Pareto front for the constrained multiobjective opti-

mization problem (Binh and Korn 1997):
 Minimize f x x1 1

2
2
24 4= +

 Minimize f2 = (x1 − 5)2 + (x2 − 5)2

 subject to ()x x1
2

2
25 25− + ≤

 (x1 − 8)2 + (x2 + 3)2 ≥ 7.7
 where x x1 20 5 0 3∈ ∈[,], [,].

© 2015 by Taylor & Francis Group, LLC

223

8
Geometric Programming

8.1 Introduction

Geometric programming can be applied to optimization problems in which
the objective function and constraints have a special structure. The conven-
tional format of the objective function and constraints can be converted into the
format required for geometric programming. Once the problem is written in
the required format, it is much easier to solve the optimization problem using
geometric programming than using nonlinear programming (NLP) methods
described in previous chapters. The geometric programming technique pro-
posed by Zener, Duffin, and Peterson can solve large-scale optimization prob-
lems with high reliability and efficiency. Geometric programming is applied to
various disciplines such as inventory model (Abuo-El-Ata et al. 2003), structural
optimization (Hajela 1986), communication systems (Chiang 2005), very-large-
scale integration (VLSI) design (Chu and Wong 2001), and so on.

In geometric programming, the objective function is written in posynomial
form:

 f cx x x xa a a
n
an()x = …1 2 3

1 2 3 (8.1)

where c is a positive constant, the exponents ai are real numbers, and xi are
the design variables that can take positive values. It is important to note that
in polynomials, c can take both positive and negative values. For example,

 f x x x x()x = − −5 2 31
2

2
2

1 2

is a polynomial, while

 f x x x x()x = + + − −2 5 41
2

2
2

1
2

2
1

is a posynomial.
If the objective function is obtained in polynomial form, then it has to be

transformed into a posynomial before geometric programming techniques
can be used. For example, the maximization function f x x()x = 1

2
2 can be

© 2015 by Taylor & Francis Group, LLC

224 Optimization: Algorithms and Applications

transformed into a posynomial form minimization function f x x()x = − −
1

2
2

1.
It is very interesting to note that in geometric programming, the objective
function is evaluated first and then optimal design variables are obtained.
That is, the optimized value of the objective function can be obtained with-
out knowing the optimal value of design variables. Thus, the solution to
geometric programming problems does not depend on the initial guess. In
this chapter, both unconstrained and constrained optimization problems are
solved using geometric programming. The chapter concludes with a practi-
cal application of geometric programming. The road map for this chapter is
given in Figure 8.1.

8.2 Unconstrained Problem

Consider minimization of the function

f U c xj

j

N

j i
a

j

N

i

n
ij() ()x x= =











= = =
∑ ∑ ∏

1 1 1

(8.2)

where xi, cj > 0. The minimum or maximum of the function can be obtained
using the first-order condition

∂

∂
=f

xi

0 (8.3)

Unconstrained problems

Dual problem

Constrained optimization

Application

Geometric programming

FIGURE 8.1
Road map of Chapter 8.

© 2015 by Taylor & Francis Group, LLC

225Geometric Programming

The solution of this equation leads to the orthogonality condition

 j

N

j ijw a
=

∑ =
1

0*

(8.4)

and the normality condition

 j

N

jw
=

∑ =
1

1*

(8.5)

where

 w
U

fj
j*

*()
=

x
*

 (8.6)

The procedure for obtaining the optimal value of the objective function is
to write the function as

 f
U

w

U

w

U

w

w w

n

n

*
*

*

*

*

*

*

* *

=
























…



1

1

2

2

1 2









wn*

 (8.7)

where the values wj
* are obtained by solving the orthogonality and normal

equations.
The quantity N − (n + 1) is called as the degree of difficulty in geometric pro-

gramming, where n is the number of design variables and N is the number
of posynomial terms in the objective function. If the degree of difficulty is
zero, then the problem has a unique solution. If the degree of difficulty is
positive (number of equations obtained through orthogonality and normal-
ity condition being less than the number of variables), some variables have to
be expressed in terms of other variables to obtain the solution. In geometric
programming, we do not have the negative degree of difficulty.

Using f* and U j
*, optimal values of the design variables can be evaluated

using the expression

 U w f cj j

i

n

i
aij* * (*)= =

=
∏1

1

* x (8.8)

© 2015 by Taylor & Francis Group, LLC

226 Optimization: Algorithms and Applications

For a zero degree of difficulty problem, the above equation can be reduced
to a set of simultaneous equations, which are easier to solve. This can be
done by taking logarithms on both the sides, that is,

 ln
*

ln * ln * ln *w f
c

a x a x a x
j

j j nj n
1

1 1 2 2

*
= + + … + (8.9)

and then letting

 k xi i= ln * (8.10)

The design variables can be obtained as

 x ei
ki* = (8.11)

The main advantage of using log summation terms is that the transformed
function becomes a convex one.

The above procedure is explained by following examples that are of zero
degree of difficulty.

Example 8.1

Solve the optimization problem using geometric programming:

Minimize

 f x x x x x x x x x()x = + + +− − − −3 4 5 61
1

2
3

1
2

2 3
2

1 2
4

3
1

3

The degree of difficulty of this problem is 4 − (3 + 1) = 0. Also given are

a a a a

a a a a

a a a a

a a a a

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 444

1 2 1 0
3 1 4 0
0 2 1 1
1 1 1 1





















=

















−
−

− − 






















=



















 and

c

c

c

c

1

2

3

4

3
4
5
6

Writing the normality and orthogonality conditions in matrix form

−
−

− −




























1 2 1 0
3 1 4 0
0 2 1 1
1 1 1 1

1

2

3

4

w

w

w

w











=



















0
0
0
1

© 2015 by Taylor & Francis Group, LLC

227Geometric Programming

Solving the above equation gives

w

w

w

w

1

2

3

4

7 20
1 20
1 4

7 20





















=















/
/
/
/







Substituting these values in the following equation gives the optimal
value of the objective function.

 f
w w w w

w w w w

* =
























3 4 5 6

1 2 3 4

1 2 3 4

== =3865
256

15 1.

The next step is to obtain the value of the design variables. The follow-
ing equations are solved simultaneously to obtain ki.

− −
−
−





































1 3 0
2 1 2
1 4 1
0 0 1

1

2

3

k

k

k

==

×

×

×

×





ln
.

ln
.

ln
.

ln
.

15 1
7
20

3

15 1
1

20
4

15 1
1
4

5

15 1
7
20

6





































These values of ki are substituted in the equation x ei
ki* = to obtain the

design variables as

x

x

x

1

2

3

0 4201
1 1407
0 8995

*

*

*

.

.

.





















=
















Example 8.2

The treatment of waste is accomplished by chemicals and dilation to
meet effluent requirements (Stoecker 1971). The total cost is the sum of
the treatment plant, pumping power requirements, and piping costs.
This cost is given by the equation

© 2015 by Taylor & Francis Group, LLC

228 Optimization: Algorithms and Applications

 C D
Q

D Q
= + +150

972 000 4322

5

,

where C is in dollars, D is in inches, and Q is in cubic feet per second.
Find the minimum cost and best values of D and Q by geometric
programming.

The degree of difficulty of this problem is 3 − (2 + 1) = 0. Also given are

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

1 5 0
0 2



















=
−

−11
1 1 1

150
972 000

1

2

3



































=and
c

c

c
,

4432

















Writing the normality and orthogonality conditions in matrix form

1 5 0
0 2 1
1 1 1

0
0
1

1

2

3

−
−



































=





w

w

w











Solving the above equation gives

w

w

w

1

2

3

5 8
1 8
1 4



















=
















/
/
/

Substituting these values in the following expression gives the opti-
mal value of the objective function.

 C
w w w

w w w

* =


















=150 972 000 432

1 2 3

1 2 3,
11440

The next step is to obtain the value of the design variables. The follow-
ing equations are solved simultaneously to obtain ki.

1 0
5 2
0 1

1440
5
8

150

141

2
−

−





























=

×

k

k

ln

ln
440

1
8

972 000

1440
1
4

432

×

×



























,

ln






© 2015 by Taylor & Francis Group, LLC

229Geometric Programming

This values of ki are substituted in the equation x ei
ki* = to obtain the

design variables as

D
Q

*
*













=










6
1 2.

8.3 Dual Problem

Similar to linear programming, there is a dual problem in geometric pro-
gramming. The minimization problem discussed in the previous section in
this chapter is referred to as the primal problem. The corresponding maximum
of the primal problem is referred to as the dual problem. The dual problem
structure is helpful in solving geometric programming problems that have a
degree of difficulty greater than zero. In the primal problem, the minimiza-
tion of the function

 f c x
j

N

j

i

n

i
aij()x =













= =
∑ ∏

1 1

 (8.12)

is replaced by maximization of the function

 F
c

w
j

N
j

j

wj

()w =





=
∏

1

 (8.13)

in the dual problem. Because it is easy to solve an objective function that has
summation terms rather than product terms, the logarithm is taken on both
sides of Equation 8.13.

 ln () lnF w
w

c
j

N

j
j

j

w = −





=
∑

1

 (8.14)

This function is maximized subject to normality and orthogonality con-
ditions, mentioned in the previous section. It is significant to note that the
solution obtained from the dual problem (maximization) is the same as the
solution of the primal problem (minimization).

© 2015 by Taylor & Francis Group, LLC

230 Optimization: Algorithms and Applications

Example 8.3

Solve the optimization problem:

Minimize

 f x x x x x x()x = + + +− −
1
2

2
2

1
1

2
1

1 22 3 2

The degree of difficulty of this problem is 4 − (2 + 1) = 1. Writing the
minimization problem in dual form as

Maximize

 f
w w w w

w w w

()w =
























1 2 3 2

1 2 3 4

1 2 3 ww4

subject to orthogonality and normality conditions

2 0 1 1
0 2 1 1
1 1 1 1

1

2

3

4

−
−





































w

w

w

w

==



















0
0
0
1

In the above matrix notation, four unknowns are to be determined
from three equations. One can write the three variables in the form of a
fourth variable as

 w
w

1
41 2

4
= −

 w
w

2
41 2

4
= −

 w3
1
2

=

Substituting these values in the dual objective function and taking the
logarithm on both sides:

ln () lnF w
w w w

4
4 4 41 2

4
1 2

4
1 2

4
= − −





−



 + −





−



 + +









ln ln ln

1 2
8

1
3

1
6 4

4
4

4w
w

w

© 2015 by Taylor & Francis Group, LLC

231Geometric Programming

Differentiating the above equation with respect to w4:

 ln ln ln() lnw w4 4
22

1
2

1 2 32 0− − − −  =

Solving the above equation gives w4 = 0.20711. Substituting the value
of w4 gives

 w w
w

1 2
41 2

4
0 146445= = − = .

This optimum value of the objective function can now be obtained as

 f
w w w w

w w w w

* =
























1 2 3 2

1 2 3 4

1 2 3 4

== 7 6119.

The next step is to determine the design variables x1 and x2. Now,

 U w f x1 1 1
20 146445 7 6119* . .= = × =*

 U w f x2 2 2
20 146445 7 6119 2* . .= = × =*

This gives

 x1 1 0558* .=

 x2 0 7466* .=

8.4 Constrained Optimization

In the constrained optimization problems, both the objective function and
the constraints are given as posynomials. Consider minimization of the
function

f g c x
j

N

j

i

n

i
aij() ()x x= =













= =
∑ ∏0

1 1

(8.15)

© 2015 by Taylor & Francis Group, LLC

232 Optimization: Algorithms and Applications

subject to k constraints

g c xk

j

N

kj

i

n

i
akij()x =













≤
= =

∑ ∏
1 1

1

(8.16)

where xi, cj, ′ >cj 0. This the primal problem in standard form and its dual
(maximization function) is given by

 F
c

w
w

k

m

j

N
kj

kj
l

N

kl

wkl

()w =












= = =
∏∏ ∑

0 1 1

 (8.17)

subject to orthogonality and normality conditions

 k

m

j

N

kij kla w
= =

∑∑ =
0 1

0

(8.18)

 j

N

kjw k
=

∑ = =
1

0 0,

(8.19)

The problem is then solved in a manner similar to the unconstrained opti-
mization problem. If the right-hand side of the constraints are given as posy-
nomials such as

 gk(x) ≤ v(x) (8.20)

the same can be transformed into the standard form as

g
v

k()
()

x
x

≤ 1 (8.21)

Example 8.4

Solve the optimization problem:

Minimize

 f g x x x x x() ()x x= = +− − −
0 1

1
2

1
3

1
2 330 30

© 2015 by Taylor & Francis Group, LLC

233Geometric Programming

subject to

 g x x x x1 1 3 1 20 5 0 25 1() . .x = + ≤

The degree of difficulty of this problem is 3 − (2 + 1) = 0. Writing the
minimization problem in dual form as

Maximize

 f
w w w w

w w w

()
. .

w =


















30 30 0 5 0 25

1 2 3

1 2 3

44
3 4

4

3 4






+ +
w

w ww w()

subject to orthogonality and normality conditions

−
−
−





























1 0 1 1
1 1 0 1
1 1 1 0
1 1 0 0

1

2

3

4

w

w

w

w











=



















0
0
0
1

Solving the above equation gives

−
−
−





























1 0 1 1
1 1 0 1
1 1 1 0
1 1 0 0

1

2

3

4

w

w

w

w











=



















−
−
−

−
1 0 1 1
1 1 0 1
1 1 1 0
1 1 0 0

0
0
0
1

1

















=





















2 3
1 3
1 3
1 3

/
/
/
/

This optimum value of the objective function can now be obtained as

 f f
w w w

w w w

* = =


















()
. .

w
30 30 0 5 0

1 2 3

1 2 3 225
45

4
3 4

4

3 4

w
w w

w
w w





+ =+()

The next step is to determine the design variables x1 and x2. Now,

 U w f x x x1 1 1
1

2
1

3
130 30* *= = = − − −

 U w f x x2 2 2 315 30* *= = =

This gives

 x1 2* =

© 2015 by Taylor & Francis Group, LLC

234 Optimization: Algorithms and Applications

 x2 1* =

 x3
1
2

* =

Example 8.5

Solve the optimization problem (Dembo 1976):

Minimize

 f g x x x x() ()x x= = + − −
0 1 2 1

1
2

1

subject to

 g x x1 1
1 2

20 25 1() .x = + ≤/

The degree of difficulty of this problem is 4 − (2 + 1) = 1. Writing the
minimization problem in dual form as

Maximize

 f
w w w w

w w w

()
.

w =





















1 1 0 25 1

1 2 3 4

1 2 3 


+ +
w

w ww w
4

3 4
3 4()

subject to orthogonality and normality conditions

1 1 0 5 0
1 1 0 1
1 1 0 0

1

2

3

4

−
−



































.

w

w

w

w



=



















0
0
0
1

In the above matrix notation, four unknowns are to be determined
from three equations. One can write the three variables in the form of a
fourth variable as

 w
w

1
41

2
= −

 w
w

2
41

2
= +

 w3 = 2w4

© 2015 by Taylor & Francis Group, LLC

235Geometric Programming

Substituting these values in the dual function

 f
w w w

w w

()
.

w =
−





 +










− +

2
1

2
1

0 25
24

1
2

4

1
2

4

4 4










+ +
w w

w w

w
w w

4 4

4 4
1

2
4

4 4
2()

Taking the logarithm on both sides of the above equation and then dif-
ferentiating it with respect to w4 and equating it to zero one gets w4 = 0.
Therefore,

 w
w

1
41

2
1
2

= − =

 w
w

2
41

2
1
2

= + =

 w3 = 2w4 = 0

This optimum value of the objective function can now be obtained as

 f f
w w w w

w w w

* = =


















()
.

w
1 1 0 25 1

1 2 3 4

1 2 3 





+ =+
w

w ww w
4

3 4
3 4 2()

Now,

 U w f x x1 1 1 21* *= = =

 U w f x x2 2 1
1

2
11* *= = = − −

The above equation is satisfied for a number of combinations of x1 and x2.

8.5 Application

A two-bar structure (Figure 8.2) is to be designed so as to minimize its weight
(Dey and Roy 2013) while tolerating certain maximum tensile and compres-
sive stresses. The optimization problem is written as

Minimize

 W A x l y A x yB B B B= + − + +()ρ 1
2 2

2
2 2()

© 2015 by Taylor & Francis Group, LLC

236 Optimization: Algorithms and Applications

subject to

P x l y

lA
B B

t

2 2

1

+ −
≤

()
,σ max

P x y

lA
B B

c

2 2

2

+
≤ σ ,max

 0.5 ≤ yB ≤ 1.5

 A1, A2 ≥ 0

where

Load = P = 105 N
Density = ρ = 77 kN/m3

Length = l = 2 m
Width = xB = 1 m
Maximum tensile stress = σt,max = 150 Mpa
Maximum compressive stress = σc,max = 100 Mpa

The design variables are A1, A2, and yB.
The nonlinear optimization problem can be transformed into geometric

programming problem with the following substitutions:

 x1 = A1

 x2 = A2

xB

yB

l

P

C

B
A

FIGURE 8.2
Two-bar truss.

© 2015 by Taylor & Francis Group, LLC

237Geometric Programming

 1 2 2
3+ − ≤()y xB

 1 2
4+ ≤y xB

 x5 = yB

 x x x6 5 3
21 4= + −

The geometric programming problem becomes

Minimize

 W = 77(x1x3 + x2x4)

subject to

1
3

13 1
1x x− ≤

1
2

14 2
1x x− ≤

 x x x4
2

4
2

5
2 1− −+ ≤

 5 13
2

6
1

3
2

3
2

6
1x x x x x− − − −+ ≤

1
2

15
1x− ≤

2
3

15x ≤

 x x x x6
1

3
2

5 6
14 1− − −+ =

The degree of difficulty is 12 − (6 + 1) = 5. The problem can be converted
into a dual problem and then solved. The solution is given by

 x1 0 52068* .=

© 2015 by Taylor & Francis Group, LLC

238 Optimization: Algorithms and Applications

 x2 0 640312* .=

 x3 1 56205* .=

 x4 1 280625* .=

 x5 0 8* .=

 x6 2 31147* .=

 W = 125.7667

Chapter Highlights

•	 In geometric programming, the objective function and constraints
are written in posynomial form.

•	 In geometric programming, the objective function is determined
first and then design variables are evaluated. The initial guess of the
variables has no role in geometric programming.

•	 The degree of difficulty refers to the number of unknowns minus
the number of equations (orthogonality and normal conditions).

•	 The dual problem structure is helpful in solving geometric pro-
gramming problems that have a degree of difficulty greater than
zero.

•	 The solution obtained from the dual problem (maximization) is the
same as the solution of the primal problem (minimization).

Formulae Chart

Posynomial:

 f cx x x xa a a
n
an()x = …1 2 3

1 2 3

© 2015 by Taylor & Francis Group, LLC

239Geometric Programming

Unconstrained minimization:
Minimize

f U c x
j

N

j

j

N

j

i

n

i
aij() ()x x= =













= = =
∑ ∑ ∏

1 1 1

Normality and orthogonality conditions:

 j

N

j ijw a
=

∑ =
1

0*

 j

N

jw
=

∑ =
1

1*

Optimal function value:

 f
U

w

U

w

U

w

w w

n

n

*
*

*

*

*

*

*

* *

=
























…



1

1

2

2

1 2










wn*

 where

 w
U

fj
j*

*()
=

x
*

Dual problem (unconstrained):

 F
c

w
j

N
j

j

wj

()w =





=
∏

1

Dual problem (constrained):

 F
c

w
w

k

m

j

N
kj

kj
l

N

kl

wkl

()w =












= = =
∏∏ ∑

0 1 1

© 2015 by Taylor & Francis Group, LLC

240 Optimization: Algorithms and Applications

Problems

 1. Minimize (Ojha and Biswal 2010)

 10 40 401
3

2
2

3
1

1 2 1 2 3x x x x x x x x− − + +

 subject to

 2 11
2

2
2

2
5

3
1x x x x− − − −+ ≤

 x1, x2, x3 ≥ 0

 2. Minimize (Ojha and Biswal 2010)

 x x x x x x x1
4

2
1

3 4
1

1
2

2
3

3
23− − − − − −+

 subject to

2 3

3 1

1
3

3 1
1

3
1

2
1

3
1

4
2

1
2

2 4

x x x x

x x x x x x

+ ≤

+ ≤

− −

− − −

 x1, x2, x3, x4 ≥ 0

 3. Minimize (Rao 2009)

 x1

 subject to

 − + ≤4 4 11
2

2x x

 x1 + x2 ≥ 1

 x1, x2 ≥ 0

 4. In a certain reservoir pump installation (Rao 2009), the first cost of
the pipe is given by (100D + 50D2), where D is the diameter of the pipe
in centimeters. The cost of the reservoir decreases with an increase
in the quantity of fluid handled and is given by 20/Q, where Q is the
rate at which the fluid is handled (m3/s). The pumping cost is given
by (300Q2/D5). Find the optimal size of the pipe and the amount of
fluid handled for minimum overall cost.

© 2015 by Taylor & Francis Group, LLC

241Geometric Programming

 5. A hydraulic power system (Stoecker 1971) must provide 300 W of
power, where the power is the product of volume flow rate Q m3/s
and the pressure build up Δp Pa. The cost of the hydraulic pump is a
function of both the flow rate and pressure buildup.

 Cost dollars= + × −1200 10 100 4 4Q p. ()∆

 Convert to a single-variable unconstrained problem and use geo-
metric programming to determine the minimum cost of the pump
and the optimum values of Q and Δp.

 6. A newly harvested grain system (Stoecker 1971) has a high moisture
content and must be dried to prevent spoilage. The drying can be
achieved by blowing it with air. The seasonal operating cost in dol-
lars per square meter of the grain bed for such a dryer consists of the
cost of heating of the air.

 Heating cost = 0.002QΔt

 and

 Blower cost = 2.6 × 10−9Q3

 where Q is air quantity delivered through the bed, m3/m2 of bed
area and Δt is the rise in temperature through heater in °C. The val-
ues of Q and Δt also influence the time required for adequate drying
of the grain according to the equation

 Drying time days= ×80 106

2Q t∆

 Using the geometric programming method, compute the mini-
mum operating cost and optimum values of Q and Δt that will
achieve adequate drying in 60 days.

 7. The torque T (Nm) developed by an internal combustion engine is
represented by

 T = 23.6ω0.7 − 3.17ω

 where ω is the rotational speed in rad/s. Determine the maximum
power of this engine and the ω at which this occurs (Stoecker 1971).

© 2015 by Taylor & Francis Group, LLC

© 2015 by Taylor & Francis Group, LLC

243

9
Multidisciplinary Design Optimization

9.1 Introduction

In Chapter 7 on multiobjective optimization, a number of objective functions
were simultaneously handled along with constraints for a given discipline.
In multidisciplinary design optimization (MDO), two or more disciplines
are simultaneously optimized. For example, in rocket design, the disciplines
could be structures, aerodynamics, propulsion, control, and mission. Each
of these disciplines can have separate optimal requirements. For example,
the propulsion discipline can have a constraint on chamber pressure, the
structural discipline can have constraints on stresses on the members, and
the mission can have trajectory constraints such as on dynamic pressure and
heat loads. Further, in MDO there are interactions among the disciplines. For
example, the variable dynamic pressure in the trajectory discipline has an
effect on load computation in the structural discipline. The idea of MDO is
to optimize the design in a global sense. This has the following advantages:

•	 The time required in the design cycle can be significantly reduced.
For example, a given aerodynamic shape will give a certain higher
load distribution of certain structural members that may require
reworking of these members, which in turn can change the aerody-
namic shape. The cycle is iterative and time consuming if the indi-
vidual disciplines are optimized sequentially. In addition, sequential
optimization of disciplines may lead to a suboptimal solution for
the whole system. For example, lift distribution along the wing span
changes if the aerodynamic and structure disciplines are optimized
together instead of considering the aerodynamic discipline alone
(Figure 9.1).

•	 Disciplines with conflicting objectives can be resolved. For exam-
ple, to minimize wave drag on a supersonic aircraft, optimizing
the aerodynamics discipline alone will result in thin wings. This,
on the other hand, could result in aero-elastic problems (structure
discipline).

© 2015 by Taylor & Francis Group, LLC

244 Optimization: Algorithms and Applications

Here one may argue that when optimizing even a single discipline is highly
time consuming, how can so many disciplines be optimized together? For
example, the aerodynamic discipline has to generate lift and drag coefficients
for a number of configurations through computational fluid dynamics (CFD)
that requires a large computational time. Similarly, the structural discipline
has to make finite element models and compute stresses on different mem-
bers, which again are computationally intensive. In MDO, this problem can
be alleviated by considering simplified mathematical models for each disci-
pline. One such technique is response surface methodology (RSM). In RSM,
one generates a response surface to variation in design variables by carrying
out a limited number of tests. For example, aerodynamic response surface
models can be generated with a limited number of CFD or wind tunnel tests
carried out at certain Mach numbers and certain angles of attack only. The
response surface model can then generate aerodynamic coefficients at any
Mach number and angle of attack.

MDO is often used for aerospace problems (Balesdent et al. 2010;
Manokaran et al. 2009; Xiaoqian et al. 2006; Yushin et al. 2006) as they are
highly complex in nature owing to the presence of a large number of con-
straints in various disciplines, and even if optimization results in increas-
ing only a few kilograms of payload, revenue can be increased by a few
thousand dollars. However, MDO can also be applied to other areas (Geyer
2009; He and McPhee 2005) such as automobiles, where one can simultane-
ously optimize different disciplines such as body, engine, hydraulics, and
so on. The road map of this chapter is shown in Figure 9.2. Through MDO
architecture, the MDO problem is transformed into a series of optimization
problems. A number of such architectures are discussed in this section
along with their advantages and disadvantages. A very brief introduc-
tion is given about MDO framework that provides a platform for compar-
ing different architectures. As MDO requires working with a number of

Wing

Optimization with
aerodynamics discipline
alone

Lift

Optimization with aerodynamics
and structure discipline

FIGURE 9.1
Optimization of a single versus two disciplines.

© 2015 by Taylor & Francis Group, LLC

245Multidisciplinary Design Optimization

disciplines simultaneously, simplified but accurate models are required for
each discipline. This is done through response surface methodology, which
is explained in the last section.

9.2 MDO Architecture

Through MDO architecture, the multidisciplinary problem is transformed
into a series of standard optimization problems that can be solved through
either a gradient-based solver (Fletcher 1981) such as sequential quadratic
programming (SQP) or through a non–gradient-based solver such as genetic
algorithm (GA; Goldberg 1989) or particle swarm optimization (PSO). In
the literature, different architectures are reported that transform the prob-
lems differently. It is quite obvious that each MDO architecture has certain
advantages and disadvantages. The efficiency of different architectures can
be measured in terms of number of disciplines or number of global/local
variables. Some well-known MDO architectures are multidisciplinary fea-
sible (MDF), individual discipline feasible (IDF), simultaneous analysis and
design (SAND), collaborative optimization (CO), current subspace optimi-
zation (CSSO), and bilevel integrated system synthesis (BLISS). Excellent
details of these architectures are mentioned in Martins and Lambe (2013)
and Tedford and Martins (2006). Important highlights of these architectures
are presented in this section. Let us define an MDO problem with two dis-
ciplines with xi as the local variables, zi as the global variables, and yi as the
coupling variables. See Figure 9.3 for more clarity. Each discipline solves the
governing equations and provides feasible states and outputs in the form
of coupling variables to the other discipline. The variables that belong to

MDO architecture
MDF
IDF
SAND
CO
CSSO
BLISS

MDO framework

Response surface methodology

FIGURE 9.2
Road map of Chapter 9.

© 2015 by Taylor & Francis Group, LLC

246 Optimization: Algorithms and Applications

a single discipline are called local variables. The variables that affect more
than one discipline are called global variables.

For example, discipline 1 could be aerodynamics, which feeds aerody-
namic forces to discipline 2, where vehicle dynamics is simulated. Altitude
and velocity information from discipline 2 is then fed to discipline 1 for
computing aerodynamic forces. Here, angle of attack and bank angle are the
global variables. The set of discipline analyses is repeated until a change in
values of coupling variables becomes negligible. Mathematically, this can be
stated as

 y yi
n

i
n+ =1 (9.1)

where yi
n represents the value of ith discipline coupling variables after n

iterations. The optimization problem can be stated as

Minimize

 f(z, x) (9.2)

subject to

 gj(z, x) ≤ 0 j = 1, 2,…, m < n (9.3)

 hk(z, x) = 0 k = 1, 2,…, r < n (9.4)

 y yi
n

i
n+ − =1 0 (9.5)

zi, xi

Aerodynamics
(Discipline 1)

y1, y2

y1

y2

Vehicle dynamics
(Discipline 2)

FIGURE 9.3
Multidisciplinary design analysis (MDA).

© 2015 by Taylor & Francis Group, LLC

247Multidisciplinary Design Optimization

9.2.1 Multidisciplinary Design Feasible

In this architecture, the design variables are iterated until coupling variables
become consistent. The objective function and constraints are then computed
and supplied to the optimizer (Figure 9.4). The procedure is said to converge
if the coupling variables remain constant over successive iterations.

The main advantage of MDF is that it ensures feasible solution at each iter-
ative step. By this we mean that constraints are satisfied with every iteration,
but the optimum solution is not yet reached. The disadvantage of MDF is
that it cannot be parallelized and computation of gradients for the coupled
system is difficult. The MDF problem can be mathematically stated as

Minimize

 f(z, x, y(x, z)) (9.6)

subject to

 g(z, x, y(x, z)) ≤ 0 (9.7)

 y yi
n

i
n+ − =1 0 (9.8)

Optimizer
(e.g., SQP)

f, g
x, z

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

Control system
(Discipline 3)

FIGURE 9.4
Multidisciplinary feasible (MDF) analysis.

© 2015 by Taylor & Francis Group, LLC

248 Optimization: Algorithms and Applications

9.2.2 Individual Discipline Feasible

In IDF architecture, discipline feasibility is ensured whereas a multidisci-
plinary feasible solution may not be present. The advantage of the IDF is
that different disciplines can be evaluated in parallel. Further discipline
computations are fewer as compared to MDF, and this can be a significant
advantage because discipline evaluations are often time consuming. In IDF
architecture, coupling variables are handled by the optimizer (Figure 9.5),
which in turn provides design and coupling variables to different disci-
plines. This architecture is recommended for those MDO problems that have
a small number of coupling variables.

The IDF problem can be mathematically stated as

Minimize

 f(z, x, yt) (9.9)

with respect to z, x, yt

subject to

 g(z, x, y(x, yt, z)) ≤ 0 (9.10)

 y y x y zi
t

i
t− =(), , 0 (9.11)

where yt are the estimates of coupling variables by the optimizer, yi are the
coupling variable output of the discipline i, and yi

t are the estimates of the
nonlocal coupling variables. The last constraint ensures that at the optimum,
the coupling variables computed by the discipline and the optimizer are
matched.

Optimizer
(e.g., SQP)f, g, y

x, y*, z

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

FIGURE 9.5
Individual discipline feasible (IDF) architecture.

© 2015 by Taylor & Francis Group, LLC

249Multidisciplinary Design Optimization

9.2.3 Simultaneous Analysis and Design

In SAND architecture, the optimizer is given freedom to design (optimize)
the system and solve the governing equations simultaneously. The residuals
obtained from the discipline analyses are treated as equality constraints in
the optimization problem. As compared to MDF and IDF, SAND architecture
(Figure 9.6) does not maintain even discipline feasibility at different iterations.

The SAND problem can be mathematically stated as

Minimize

 f(z, x, y(x, z, u)) (9.12)

with respect to z, x, u
subject to

 g(z, x, y(x, u, z)) ≤ 0 (9.13)

 R(z, x, y(x, z, u), u) ≤ 0 (9.14)

where u is the state variable of the discipline and R represents the residuals
of the discipline equations.

Example 9.1

Consider the MDO problem with two disciplines.

Minimize

 x x y e y
1
2

2 1
2+ + + −

Optimizer
(e.g., SQP)

z, x1, u

y1

y2

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

z, x2, u

FIGURE 9.6
Simultaneous analysis and design (SAND) architecture.

© 2015 by Taylor & Francis Group, LLC

250 Optimization: Algorithms and Applications

with respect to x1, x2, z1

subject to

 1 − y1/3.16 ≤ 0

 y2/24 − 1 ≤ 0

 0 ≤ x1 ≤ 10

 0 ≤ x2 ≤ 10

 −10 ≤ z1 ≤ 10

Discipline 1

 y z x x y1 1
2

1 2 20 2= + + − .

Discipline 2

 y y z x2 1 1 2= + +

Solve the MDO problem (Tedford and Martins 2010) using SAND
architecture.

The MDO problem is solved using the SQP method. The MATLAB®
codes from Chapter 6 are suitably modified to solve this problem. The
starting value of the design variables is taken as (x1, x2, z1, y1, y2) = (1, 2,
5, 1, 0). The design variables y1, y2 are to be matched with the discipline
outputs. The optimizer carries out this task by defining two additional
equality constraints. On executing the sqp.m code, the following output
is obtained.

No. x-vector f(x) |Cons.|
__
1.0000 13.0989 0.000 5.3084 36.3832 24.0000 207.9656 12.6601

2.0000 0.0000 0 4.6986 19.8331 9.3585 19.8332 0.4254

3.0000 0.0000 0 3.7071 11.3189 7.2047 11.3197 0.9920

4.0000 0.0000 0.0000 3.2572 9.1468 6.2987 9.1487 0.2032

5.0000 0.0000 0.0000 2.8631 6.9373 5.5221 6.9413 0.1573

6.0000 0.0000 0.0000 2.5514 5.4328 4.8997 5.4403 0.0987

© 2015 by Taylor & Francis Group, LLC

251Multidisciplinary Design Optimization

7.0000 0.0000 0.0000 2.2985 4.3400 4.3949 4.3523 0.0653

8.0000 0.0000 0.0000 2.0899 3.5283 3.9783 3.5471 0.0447

9.0000 0.0000 0.0000 1.9809 3.1600 3.7613 3.1833 0.0122

10.0000 0.0000 0.0000 1.9776 3.1600 3.7553 3.1834 0.0000

11.0000 0.0000 0.0000 1.9776 3.1600 3.7553 3.1834 0.0000

12.0000 0.0000 0.0000 1.9776 3.1600 3.7553 3.1834 0.0000__

The optimal values of the design variables are x x z1 2 1 0 0 1 9776* , * , * (, , .)() = .
The converged values of the coupling variables are (y1, y2) = (3.16, 3.7553). The
minimum value of the objective function is 3.1834.

9.2.4 Collaborative Optimization

In CO architecture, optimization is carried out at discipline and system lev-
els. Thus, discipline feasibility is guaranteed throughout the optimization
process. The MDO problem is decomposed into a number of subproblems
corresponding to each discipline (Figure 9.7). The discipline optimization is
carried out in a conventional way in which local constraints to that discipline
are satisfied. The system level is optimized with respect to global, coupling,
and local variables. The constraints at the system level consist of global con-
straints as well as compatibility constraints of the discipline. The discipline

Discipline optimizer
(e.g., genetic algorithm)

Discipline optimizer
(e.g., particle swarm optimization)

System optimizer
(e.g., SQP)

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

J1, J2

z*, x*, y*z*, x*, y*

y1 y2z, x, y2 z, x, y1

FIGURE 9.7
Collaborative optimization (CO) architecture.

© 2015 by Taylor & Francis Group, LLC

252 Optimization: Algorithms and Applications

optimizer, on the other hand, reduces the discrepancy between the system
level variables and the discipline variables. One significant advantage of CO
architecture is that each discipline can be optimized in parallel. Further,
different optimization techniques (gradient- or non–gradient-based) can be
used by different disciplines. The disadvantage of CO architecture is that the
dimensionality of the system-level optimization problem increases signifi-
cantly with increase in coupling variables.

The CO architecture at system level can be mathematically stated as

Minimize

 f(z, y, xobj) (9.15)

with respect to z, y, xobj

subject to

 J z z x x y yi i, *, , * , ,obj obj *() = 0 (9.16)

where xobj is the local variable affecting the objective function.

9.2.5 Concurrent Subspace Optimization

So far in MDO architecture, we have assumed discipline computations are
easy to evaluate. This is far from true. As explained in the introduction, aero-
dynamic analysis through CFD and structural analysis through the finite-
element method are time consuming. In this particular architecture, the
problem of extensive computing is alleviated by making simplified math-
ematical models for each discipline. One such technique is RSM. In RSM, one
generates a response surface to variation in design variables by carrying out
a limited number of tests.

In CSSO architecture, RSM is used to provide information for the disci-
pline subspace optimization. The response surface is constructed by carry-
ing out a discipline analysis at a few design points. Thus, response surfaces
provides state variables of each discipline for the given design variables. The
CSSO architecture is depicted in Figure 9.8.

9.2.6 Bilevel Integrated System Synthesis

BLISS architecture is designed to suit a parallel computing environment. It
is a bilevel architecture where each discipline optimization is fully auton-
omous and coordination is done at the system level to ensure multidisci-
plinary feasibility. In this architecture, discipline response levels are used

© 2015 by Taylor & Francis Group, LLC

253Multidisciplinary Design Optimization

by the system optimizer (Figure 9.9). A major difference between BLISS and
CSSO is that subspace optimization is not carried out in BLISS.

9.3 MDO Framework

Different MDO architectures were presented in the previous section. One
question that arises here is, how do we know which architecture is more effi-
cient? To answer this, one needs a platform in which different MDO archi-
tectures can be compared. The MDO framework provides this platform. The
MDO problem is first input in standard form. The user then has to select the
architecture through which the problem needs to be solved. The framework
then casts the MDO problem into the specified architecture form, which is
then solved to get the solution.

Subspace optimizations

Aerodynamics
(Discipline 1)

Vehicle dynamics
(Discipline 2)

y1

Generation of response surface
Aerodynamics:

Structure: Using FEM and testing

Using synthesized CFD
and wind tunnel data

Aerodynamics
(Discipline 1)

Vehicle dynamics
(Discipline 2)

MDA

MDA

System optimizer
(e.g., SQP)

Optimizer
(e.g., PSO)

Optimizer
(e.g., GA)

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

y2

y1

y2

FIGURE 9.8
Current subspace optimization (CSSO) architecture.

© 2015 by Taylor & Francis Group, LLC

254 Optimization: Algorithms and Applications

The standard MDO form is to define the objective function, constraints,
design variables, coupled variables, state variables, and analysis functions.
The following are some typical requirements of an ideal framework.

•	 It should be able to handle large problems.
•	 A majority of operations should be handled by the graphical user

interface (GUI).
•	 It should support a collaborative design.
•	 It should support different optimizers on different disciplines.
•	 It should provide debugging support.
•	 It should offer feasibility of parallel processing.
•	 Data exchange between different modules should be possible.
•	 Visualization of intermediate and final results should be possible.

9.4 Response Surface Methodology

The motivation behind the use of RSM is that expensive computational
procedures such as finite element methods, CFD, or experimentation are
minimized. RSM is an empirical model building technique in which the
objective is to generate one or more outputs (responses) from a system that

System optimizer
(e.g., SQP)

z, y*, w y

Use response surface
of respective

discipline

Generation of response surface using design of experiments
Aerodynamics:
Structure: Using FEM and testing

Using synthesized CFD and wind tunnel data

Convergence
check

System optimization

FIGURE 9.9
Bilevel integrated system synthesis (BLISS) architecture.

© 2015 by Taylor & Francis Group, LLC

255Multidisciplinary Design Optimization

has several input parameters (Cornell and Khuri 1996). The empirical model
is built using simulations and experiments in which the output is computed
or measured by changing the inputs, which are also known. For example, lift
coefficient (CL) for a wing varies with angle of attack (α) and Mach number
(M). Here, response surface of parameter lift coefficient can be generated as
a function of angle of attack and Mach number. That is,

 CL = f(α, M) (9.17)

A typical response surface plot is shown in Figure 9.10. One should have
some idea of the relationship between the responses and input parameters.
Typically, one can use the first- or second-order polynomial approximation
between the output and input variables. For example, for a single input x, the
estimated output ŷ is given by the relationship

 ŷ a a x a x= + +0 1 2
2 (9.18)

The aim is to estimate the coefficients a0, a1, and a2 so that output ŷ can be
estimated for any given x. These coefficients can be estimated by minimizing
the function

 ŷ y
j

N

−()
=

∑ 2

1

 (9.19)

where y is the actual measurement made through experiments or through
high-fidelity simulations such as CFD and finite element analysis. These

0
2

4
6

1
2

3
4
0

0.5

1

1.5

2

Mach numberAngle of attack (deg)

Li
ft

co
effi

ci
en

t

FIGURE 9.10
Response surface of lift coefficient as a function of α and M.

© 2015 by Taylor & Francis Group, LLC

256 Optimization: Algorithms and Applications

measurements are made for N cases. A question that needs to be asked here
is, at what values of x should the experiments be performed? The answer to
this is given by design of experiments (DoE). The accuracy and computa-
tional cost of constructing the response surface is given by DoE (Anderson
and McLean 1974).

A number of design models are available that can capture the interactions
among variables, with each having an advantage in either having a lower
number of points or having higher accuracy. In one such model, called full
factorial design, 3N points are selected at which experiments need to be car-
ried out. For a two-variable problem, nine experimental points are required
(Figure 9.11). In this figure, the subscripts l and u stand for lower and upper
bound of the input variable.

Let us assume the input variable angle of attack (α) varies from 1 to 10
degrees and Mach number (M) varies from 0.3 to 2.0. Then the design matrix
at which experiments need to be carried out is given in Table 9.1.

TABlE 9.1

Design Matrix

Experiment
Number α M

1 1 0.3
2 1 1.15
3 1 2.0
4 5.5 0.3
5 5.5 1.15
6 5.5 2.0
7 10 0.3
8 10 1.15
9 10 2.0

x1l x1u

x2u

x2l

x1

x2

FIGURE 9.11
Full factorial design.

© 2015 by Taylor & Francis Group, LLC

257Multidisciplinary Design Optimization

In a central composite design, the corner points are augmented with cen-
tral and axial points (Figure 9.12). This design is preferred for a second-order
model. For more such design models refer to Cornell and Khuri (1996).

Chapter Highlights

•	 In multidisciplinary design optimization, two or more disciplines
are simultaneously optimized with interaction among them.

•	 The main advantage of MDO is that the time required in the design
cycle can be significantly reduced. In addition, disciplines with con-
flicting objectives can be resolved.

•	 Through MDO architecture, the multidisciplinary problem is trans-
formed into a series of standard optimization problems that can
be solved through either a gradient-based solver such as SQP or
through a non–gradient-based solver such as GA or PSO.

•	 The main advantage of MDF architecture is that it ensures a feasible
solution at each iterative step.

•	 The main advantage of the IDF is that different disciplines can be
evaluated in parallel.

•	 In CO architecture, optimization is carried out at a discipline and
system level. Thus, discipline feasibility is guaranteed throughout
the optimization process. The MDO problem is decomposed into a
number of subproblems corresponding to each discipline.

•	 BLISS architecture is designed to suit a parallel computing environ-
ment. It is a bilevel architecture in which each discipline optimiza-
tion is fully autonomous and coordination is done at the system level

x1l x1u

x2l

x2u

FIGURE 9.12
Central composite design.

© 2015 by Taylor & Francis Group, LLC

258 Optimization: Algorithms and Applications

to ensure multidisciplinary feasibility. In this architecture, disci-
pline response levels are used by the system optimizer.

•	 RSM is an empirical model building technique in which the objec-
tive is to generate one or more outputs (responses) from a system
that has several input parameters. The empirical model is built using
simulations and experiments in which the output is computed or
measured by changing the inputs, which are also known.

•	 The accuracy and computational cost of constructing the response
surface is given by design of experiments (DoE).

•	 Full factorial and central composite design are two such DoE
techniques.

Formulae Chart

Multidisciplinary analysis:
Minimize

 f(z, x)

subject to

 gj(z, x) ≤ 0 j = 1, 2,…, m < n

 hk(z, x) = 0 k = 1, 2,…, r < n

 y yi
n

i
n+ − =1 0

Multidisciplinary feasible:
Minimize

 f(z, x, y(x, z))

 subject to

 g(z, x, y(x, z)) ≤ 0

 y yi
n

i
n+ − =1 0

IDF:
Minimize

 f(z, x, yt)

© 2015 by Taylor & Francis Group, LLC

259Multidisciplinary Design Optimization

 subject to

 g(z, x, y(x, yt, z)) ≤ 0

 y y x y zi
t

i
t− =(), , 0

SAND:
Minimize

 f(z, x, y(x, z, u))

 subject to

 g(z, x, y(x, z, u)) ≤ 0

 R(z, x, y(x, z, u), u) ≤ 0

CSSO:
Minimize

 f(z, y, xobj)

 subject to

J z z x x y yi i, *, , * , ,obj obj *() = 0

Problems

 1. A DoE has to be carried out for a process that has three inputs and
one output. The lower and upper bounds for the three inputs are
[0.5, 2.0], [5, 10], and [0.01, 0.1] respectively. How many experiments
are to be carried out using a full factorial design, and at what values
of input variables?

 2. A DoE has to be carried out for a process that has two inputs and
one output. The lower and upper bounds for the two inputs are [0.5,
2.0] and [5, 10]. How many experiments are to be carried out using
central composite design, and at what values of input variables?

 3. A linear model

 ŷ a a x= +0 1

 is to be used for a system where the following measurements are
made.

© 2015 by Taylor & Francis Group, LLC

260 Optimization: Algorithms and Applications

x y
0.1 0.3
0.5 0.4
1.0 0.7
2.0 1.2
3.0 2.0
5.0 3.0

 Estimate the coefficients a0 and a1 by minimizing the function

 ŷ y
j

N

−()
=

=

∑ 2

1

6

 4. The response variable y in a chemical process is a function of four
variables: temperature (x1), pressure (x2), time (x3), and stoichiometric
ratio (x4). The lower and upper limits of input variables are [350, 450],
[5, 10], [10, 40], and [0.1, 0.5]. A full factorial design is used to fit a first-
order model. The input variable combinations and corresponding
response values are given in Table 9.2.

 Fit a first-order model for this problem.

TABlE 9.2

Responses for Different Inputs

x1 x2 x3 x4 y

–1 –1 –1 –1 47.5
1 –1 –1 –1 73.2
–1 1 –1 –1 59.4
1 1 –1 –1 75.1
–1 –1 1 –1 74.0
–1 1 1 –1 72.0
1 1 1 –1 73.2
–1 –1 –1 1 82.3
1 –1 –1 1 61.9
–1 1 –1 1 63.8
1 1 –1 1 70.5
–1 –1 1 1 83.2
1 –1 1 1 69.7
–1 1 1 1 80.5
1 1 1 1 81.7

© 2015 by Taylor & Francis Group, LLC

261Multidisciplinary Design Optimization

 5. The speed reducer optimization problem is written in MDO form
(Tedford and Martins 2010) as

 Minimize
C y z C z C z C C y y y C y y1 1 1

2
2 2

2
3 2 4 5 2

2
3
2

1 6 2
2

3
2+ −() − +() + +()) + +()C x y x y1 1 2

2
2 3

2

 with respect to x1, x2, z1, z2

 subject to 1 − z1x2/C7 ≥ 0
 0.7 ≤ z1 ≤ 0.8
 17 ≤ z2 ≤ 28
 7.3 ≤ x1 ≤ 8.3
 7.3 ≤ x2 ≤ 8.3

 Discipline 1

 y1 = max(g1, g2, g3, g4)

 subject to 1 − y1/(C8z1) ≥ 0
 1 − y1/C9 ≥ 0

 where g C z z1 10 1
2

2= /

 g C z z2 11 1
2

2
2= /

 g3 = C12z1

 g4 = C13

 Discipline 2

 y2 = max(g5, g6, g7)

 subject to 1 − y2/(C14) ≥ 0
 1 − y2C15C16/x1 ≥ 0

 where g C x z z5 17 1
3

1 2

1 4
= ()/

/

 g C C C x z z C6 18 19 20
2

1
2

1
2

2
2

21

1 3

1= () +()/ /
/

 g7 = C22

 Discipline 3

 y3 = max(g8, g9, g10)

 subject to 1 − y3/(C23) ≥ 0
 1 − y3C24C16/x2 ≥ 0

 where g C x z z8 25 2
3

1 2

1 4
= ()/

/

© 2015 by Taylor & Francis Group, LLC

262 Optimization: Algorithms and Applications

 g C C C x z z C9 26 19 20
2

2
2

1
2

2
2

27

1 3

1= () +()/ /
/

 g10 = C28

The values of constants for this problem are

C1 0.7854 C15 1.5

C2 3.3333 C16 1.9

C3 14.9334 C17 1.93

C4 43.0934 C18 1100

C5 1.5079 C19 0.1

C6 7.477 C20 1.69 × 109

C7 40 C21 745

C8 12 C22 2.9

C9 3.6 C23 5.5

C10 27 C24 1.1

C11 397.5 C25 1.93

C12 5 C26 850

C13 2.6 C27 1.575 × 108

C14 3.9 C28 5

© 2015 by Taylor & Francis Group, LLC

263

10
Integer Programming

10.1 Introduction

In the previous chapters, decision variables in optimization problems were
considered to be continuous and they could take any fractional values such
as 10.5, 5.64, etc. Some optimization problems require design variables to
be integers. For example, the number of cars produced in a day, number of
maneuvers required by a spacecraft in an orbit, number of rivets required,
amount of manpower required, and so forth, all have to be integers. It does
not make much sense to get a solution such as 8.4 rivets for butting two
plates. It is important to note that rounding off the decision variable to the
nearest integer may not yield the optimum solution or may violate some of
the constraints. Therefore, it is desirable to give a special formulation to inte-
ger programming problems.

Integer programming can be of different types. An all-integer programming
problem contains design variables that can take integer values only. In mixed-
integer programming problems, some decision variables are of an integer type
and some can take fractional values or are of a continuous type. Optimization
problems in which design variables can take only discrete values are referred
to as discrete programming problems. For example, pipe sizes come in standard
sizes such as 0.5, 0.8, 1.0, 1.4, 1.8, . . . inch. If pipe size is a decision variable,
then it can take these discrete values only. There is also a special type of inte-
ger programming called a zero-one programming problem in which design
variables can take a value of 0 or 1. For example, suppose we want to set up
two plants from five candidate locations. If variable Si corresponds to the
setup of plant at ith location, then Si = 1, else it takes the value 0.

Cutting plane and branch-and-bound methods are two popular techniques
for solving integer programming problems. Gomory’s cutting plane method
is well suited for linear integer programming problems. The linear program-
ming problem is first solved using the simplex method. If integer solutions
are not obtained, additional constraints called “cuts” are added to the prob-
lem. The modified linear programming is then solved using the dual method.
The procedure is repeated until the integer solutions are obtained. In the
branch-and-bound method, the nonlinear integer optimization problem is

© 2015 by Taylor & Francis Group, LLC

264 Optimization: Algorithms and Applications

first solved as a continuous variable problem. Then the method branches into
subproblems in which additional constraints are added to the problem to
get integer solutions. The subproblems are again solved as continuous vari-
able problems and the procedure is repeated until a feasible integer solution
is obtained. The Balas algorithm is popular in solving the zero-one integer
programming problems. This method selects few solutions from the pos-
sible 2n enumerated solutions, where n is the number of binary variables in
the problem. In this chapter, we also explore a particle swarm optimization
(PSO) method for solving integer programming problems. The road map of
this chapter is shown in Figure 10.1.

10.2 Integer Linear Programming

Consider the following integer programming problem.

Minimize

 f(x) = −3x1 − 2x2

subject to

 x1 − x2 ≤ 5

 4x1 + 7x2 ≤ 50

 x1, x2 ≥ 0

where x1 and x2 are integers.

Integer linear programming
Gomory’s cutting plane method
Balas’ method

Integer programming

Integer nonlinear programming
Branch-and-bound method
Evolutionary method

FIGURE 10.1
Road map of Chapter 10.

© 2015 by Taylor & Francis Group, LLC

265Integer Programming

Let us plot the objective function and the constraints (Figure 10.2) and
for the time being ignore the integer aspects of the problem. The minimum

of the optimization problem is −28
7
11

 and occurs at x1 7
8
11

= and x2 2
8
11

= ,

which is shown by point A in Figure 10.2. Let us round off the values of
x1 and x2 to obtain an integer solution. The truncated point (8,3) becomes
an infeasible point where the constraint 4x1 + 7x2 ≤ 50 is not satisfied. The
optimal point of this integral programming problem is B(7, 3) and the
value of the objective function at this point is –27. It is important to note
that rounded off values of the decision variables obtained by solving the
optimization problem as continuous variables may or may not lead to an
optimal solution.

10.2.1 Gomory’s Cutting Plane Method

To start with, the linear integer programming problem is solved using the
simplex method described in Chapter 4 by ignoring the integer requirement
of the variables. If the variables at the optimal solution happen to be inte-
gers, the algorithm is terminated. Otherwise, some additional constraints
are imposed on the problem. The modified problem is then solved to obtain
an integer solution (Gomory 1960).

Let us explain the procedure for this problem. The matrices A, b, and c are
modified as follows.

A = [1 -1 1 0;
 4 7 0 1];
b = [5;50];

1 2 3 4 5 6 7 8 9
−1

1

2

3

4

5

6

7

8

A 7 , 2

B(7, 3)

7
11

8
11

8
11

f = –27

f = –28

−1
x1

x2

()

FIGURE 10.2
Continuous/integer variable solution.

© 2015 by Taylor & Francis Group, LLC

266 Optimization: Algorithms and Applications

c = [-3;-2;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

The MATLAB® code (simplex.m) is executed with these initializations and
the following output is obtained.

__
basic_set =
 3 4
nonbasic_set =
 1 2
Initial_Table =
 1 0 1 -1 5
 0 1 4 7 50
Cost =
 0 0 -3 -2 0
__
basic_set =
 1 4
nonbasic_set =
 2 3
Table =
 1 0 -1 1 5
 0 1 11 -4 30
Cost =
 0 0 -5 3 15
__
basic_set =
 1 2
nonbasic_set =
 3 4
Table =
 1 0 7/11 1/11 85/11
 0 1 -4/11 1/11 30/11
Cost =
 0 0 13/11 5/11 315/11
— — —SOLUTION— — —
basic_set =
 1 2
xb =
 85/11
 30/11
zz =
 -315/11

The minimum of the optimization problem is −28
7
11

 and occurs at x1 7
8
11

=

and x2 2
8
11

= . Because the decision variables are nonintegers, a Gomory

© 2015 by Taylor & Francis Group, LLC

267Integer Programming

constraint is to be added. This requires the addition of another slack variable,
x5. We have to select a variable from x1 or x2 that is to be made an integer. The
one with the largest fractional value is selected. As both x1 and x2 have the

same fractional value 8
11





 , we select x1 randomly as the variable that has to

be made an integer. The Gomory constraint is written as

x x x5 3 4

7
11

1
11

8
11

− − = −

The Gomory constraint is written in the following manner. First, consider
the row corresponding to the variable that is to be made an integer. Because
it is x1 for this problem, the final row from the simplex table is selected as

1 0 7/11 1/11 85/11

Take the negative for the nonbasic variables and add it to the new slack
variable x5, which then becomes the left-hand side of the Gomory constraint.
The right-hand side of the Gomory constraint is given by the negative of

the fractional value corresponding to 85
11





 , which is −







8
11

. When this con-

straint is added to the primal problem, it becomes infeasible because one of
bi is negative. The problem can be solved using the dual simplex method. The
MATLAB code (dual.m) is executed with following initialization.

A = [1 0 7/11 1/11 0;
 0 1 -4/11 1/11 0;
 0 0 -7/11 -1/11 1];
b = [85/11;30/11;-8/11];
c = [0;0;13/11;5/11;0];
basic_set = [1 2 5];
nonbasic_set = [3 4];
zz = -315/11;

On executing the code the following output is obtained.

__
basic_set =
 1 2 5
nonbasic_set =
 3 4
Initial_Table =
 1 0 0 7/11 1/11 85/11
 0 1 0 -4/11 1/11 30/11
 0 0 1 -7/11 -1/11 -8/11
Cost =
 0 0 0 13/11 5/11 -315/11

© 2015 by Taylor & Francis Group, LLC

268 Optimization: Algorithms and Applications

__
basic_set =
 1 2 3
nonbasic_set =
 4 5
Table =
 1 0 0 0 1 7
 0 1 0 1/7 -4/7 22/7
 0 0 1 1/7 -11/7 8/7
Cost =
 0 0 0 2/7 13/7 191/7
— — —FINAL SOLUTION— — —
basic_set =
 1 2 3
xb =
 7
 22/7
 8/7
zz = -191/7

The variable x1 has taken an integer value (x1 = 7). The variables x2 and x3
are still not integers. A Gomory constraint is to be added. This requires the
addition of another slack variable x6. Picking the row

0 1 0 1/7 -4/7 22/7

The Gomory constraint is given by

x x x6 3 4

1
7

4
7

1
7

− + = −

The MATLAB code (dual.m) is again executed with following initialization.

A = [1 0 0 0 1 0;
 0 1 0 1/7 -4/7 0;
 0 0 1 1/7 -11/7 0;
 0 0 0 -1/7 4/7 1];
b = [7;22/7;8/7;-1/7];
c = [0;0;0;2/7;13/7;0];
basic_set = [1 2 3 6];
nonbasic_set = [4 5];
zz = -191/7

On executing the code the following output is obtained.

__
basic_set =
 1 2 3 6
nonbasic_set =
 4 5

© 2015 by Taylor & Francis Group, LLC

269Integer Programming

Initial_Table =
 1 0 0 0 0 1 7
 0 1 0 0 1/7 -4/7 22/7
 0 0 1 0 1/7 -11/7 8/7
 0 0 0 1 -1/7 4/7 -1/7
Cost =
 0 0 0 0 2/7 13/7 -191/7
__
basic_set =
 1 2 3 4
nonbasic_set =
 5 6
Table =
 1 0 0 0 1 0 7
 0 1 0 0 0 1 3
 0 0 1 0 -1 1 1
 0 0 0 1 -4 -7 1
Cost =
 0 0 0 0 3 2 27
— — —FINAL SOLUTION— — —
basic_set =
 1 2 3 4
xb =
 7
 3
 1
 1
zz =
 -27

The minimum of the optimization problem is −27 and occurs at x1 = 7 and
x2 = 3. Observe that other basic variables x3 and x4 have also achieved integer
values at the optimum point for an all-integer problem.

Consider the following mixed-integer programming problem.

Minimize

 f(x) = −3x1 − 2x2

subject to
 x1 + x2 ≤ 6

 5x1 + 2x2 ≤ 20

 x1, x2 ≥ 0

where x2 is an integer.

© 2015 by Taylor & Francis Group, LLC

270 Optimization: Algorithms and Applications

The first step is to solve the linear programming problem by neglecting the
integer constraint. The matrices A, b, and c are modified as below.

A = [1 1 1 0;
 5 2 0 1];
b = [6;20];
c = [-3;-2;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

The MATLAB code (simplex.m) is executed with these initializations and
the following output is obtained.
__
basic_set =
 3 4
nonbasic_set =
 1 2
Initial_Table =
 1 0 1 1 6
 0 1 5 2 20
Cost =
 0 0 -3 -2 0
__
basic_set =
 3 1
nonbasic_set =
 2 4
Table =
 1 0 3/5 -1/5 2
 0 1 2/5 1/5 4
Cost =
 0 0 -4/5 3/5 12
__
basic_set =
 2 1
nonbasic_set =
 3 4
Table =
 1 0 5/3 -1/3 10/3
 0 1 -2/3 1/3 8/3
Cost =
 0 0 4/3 1/3 44/3
— — —SOLUTION— — —
basic_set =
 2 1
xb =
 10/3
 8/3
zz =
 -44/3

© 2015 by Taylor & Francis Group, LLC

271Integer Programming

Because the variable x2 is noninteger
10
3





 , we have to add the Gomory

constraint. The Gomory constraint is written as

x x x5 3 4

5
3

1
3

1
3

− + = −

The MATLAB code (dual.m) is executed with the following initialization.

A = [1 0 -2/3 1/3 0;
 0 1 5/3 -1/3 0;
 0 0 -5/3 1/3 1];
b = [8/3;10/3;-1/3];
c = [0;0;4/3;1/3;0];
basic_set = [1 2 5];
nonbasic_set = [3 4];
zz = -44/3

On executing the code the following output is obtained.

__
basic_set =
 1 2 5
nonbasic_set =
 3 4
Initial_Table =
 1 0 0 -2/3 1/3 8/3
 0 1 0 5/3 -1/3 10/3
 0 0 1 -5/3 1/3 -1/3
Cost =
 0 0 0 4/3 1/3 -44/3
__
basic_set =
 1 2 3
nonbasic_set =
 4 5
Table =
 1 0 0 1/5 -2/5 14/5
 0 1 0 0 1 3
 0 0 1 -1/5 -3/5 1/5
Cost =
 0 0 0 3/5 4/5 72/5
— — —FINAL SOLUTION— — —
basic_set =
 1 2 3
xb =
 14/5
 3
 1/5

© 2015 by Taylor & Francis Group, LLC

272 Optimization: Algorithms and Applications

zz =
 -72/5

The minimum of the optimization problem is − 72
5

 and occurs at x2 = 3 and

x1
14
5

= .

10.2.2 Zero-One Problems

In these problems, the decision variables can only take the values 0 or 1. For
example, if a plant is to be located at a particular site, the variable takes a value
1, else it takes the value 0. If there are n integer variables to be evaluated, an
enumerated search would require 2n evaluations of the objective function
and constraints. For a problem with a few variables, an explicit enumerated
search should be good enough. However, for a problem with a large number
of variables, an enumerated search will be computationally expensive. For
example, for a 20-variable problem, the number of function (and constraints)
evaluations would be 1,048,576. Balas’ method uses an implicit enumeration
(Balas 1965) technique to find the optimal solution.

The standard form of linear programming problem where Balas’ method
can be applied is given by

Minimize

 z = cTx (10.1)

subject to

 Ax b x= ∈, { , }0 1 (10.2)

 c ≥ 0 (10.3)

where A is m × n constraint matrix given by

A =





















a a

a a

a

a

a a a

n

n

m m mn

11 12

21 22

1

2

1 2

�
�

�
� 



and b, c, and x are column vectors given by

© 2015 by Taylor & Francis Group, LLC

273Integer Programming

b c=























=



















b

b

b

c

c

cm n

1

2

1

2

 

, 




=























, x

x

x

xn

1

2



If some of the cost coefficients (xi) are negative, they can be put in the stan-
dard form by the substitution

 x y yi i i= − ∈1 0 1, { , } (10.4)

For example, the following problem

Minimize

 f(x) = x1 − x2

subject to

 −2x1 − 3x2 ≤ −5

is written in standard form as

Minimize

 f(x) = x1 + y2

subject to

 −2x1 + 3y2 ≤ −2

 x y1 2 0 1, { , }∈

Let us explain Balas’ method through an example. Consider the following
zero-one integer programming problem (Bricker 1999).

Minimize

 f(x) = 4x1 + 8x2 + 9x3 + 3x4 + 4x5 + 10x6

© 2015 by Taylor & Francis Group, LLC

274 Optimization: Algorithms and Applications

subject to

 4x1 − 5x2 − 3x3 − 2x4 − x5 + 8x6 ≤ −8

 −5x1 + 2x2 + 9x3 + 8x4 − 3x5 + 8x6 ≤ 7

 8x1 + 5x2 − 4x3 + x5 + 6x6 ≤ 6

 x ∈ {0, 1}

Start with the solution

 x1 = x2 = x3 = x4 = x5 = x6 = 0

This is an initial solution and no variable is fixed. Thus the solution vector
is a null set and is given by

 S = { }

On substituting these values of variables, second and third constraints are
satisfied, whereas the first constraint is infeasible. The violated constraint is
denoted as

 V = {1}

To check the sensitivity of different variables on the feasibility of the first
constraint, we observe that if variables x1 and x6 become 1, they only increase
the infeasibility of the first constraint. These two variables are not helpful.
The helpful variables are therefore given by

 H = {2, 3, 4, 5}

At the end of the first iteration we can write

 S1 = { }

 V1 = {1}

 H1 = {2, 3, 4, 5}

© 2015 by Taylor & Francis Group, LLC

275Integer Programming

We must select a helpful variable for branching. The variable x2 will reduce
infeasibility in the first constraint and therefore can be selected for branch-
ing. The solution vector is therefore written as

 S2 = {2}

This means that variable x2 is now fixed at 1. The first constraint is, how-
ever, still violated. That is,

 V2 = {1}

Again, we observe that variables x3, x4, and x5 are helpful. Therefore, at the
end of second iteration we can write

 S2 = {2}

 V2 = {1}

 H2 = {3, 4, 5}

The variable x5 will reduce more infeasibility in the constraints as com-
pared to the variables x3 and x4. Therefore the variable x5 is also fixed at 1.
Hence,

 S3 = {2, 5}

The first constraint is still violated. Therefore, at the end of third iteration,
we can write

 S3 = {2, 5}

 V3 = {1}

 H3 = {3, 4}

Similarly, at the end of the fourth iteration, we can write

 S4 = {2, 5, 4}

 V4 = { }

 H4 = { }

© 2015 by Taylor & Francis Group, LLC

276 Optimization: Algorithms and Applications

Thus, if the variables x2, x5, and x4 are fixed at 1, no constraints are violated
and the value of the objective function is given by 15. Because a violated
constraint set is a null set, we backtrack and fix x4 to zero. This is written as

 S5 2 5 4= { }, ,

Therefore, at the end of the fifth iteration, we can write

 S5 2 5 4= { }, ,

 V5 = {1}

 H5 = {3}

In the next iteration, x5 is fixed at 0 and variable x4 is removed from the
solution set. Therefore,

 S6 2 5= { },

 V6 = {1}

 H6 = {3, 4}

Similarly, the last node is written as

 S7 2= { }

 V7 = {1}

 H7 = {3, 4, 5}

Thus the optimal value of variables, as obtained in the fourth iteration, is
given by

 x1 = x3 = x5 = 0 and x2 = x4 = x5 = 1

© 2015 by Taylor & Francis Group, LLC

277Integer Programming

The optimal value of the objective function is 15. The different steps of the
Balas method can be understood with the tree diagram (Figure 10.3).

10.3 Integer Nonlinear Programming

The branch-and-bound method is one of the popular methods of solving both
integer linear and nonlinear programming. The technique was developed by
Land and Doig and can also be used for mixed-integer programming. We
will also explore the utility of the PSO technique in solving mixed-integer
nonlinear problems. The constrained mixed-integer optimization problem
can be mathematically stated as

Minimize

 f(x) (10.5)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m < n (10.6)

 hj(x) = 0 j = 1, 2,…, r < n (10.7)

 xk = integers k = 1, 2,…, p < n (10.8)

7 2

6 3

5 4

1

x2 = 0 x2 = 1

x5 = 1
x5 = 0

x4 = 0 x4 = 1

FIGURE 10.3
Tree diagram for the test problem.

© 2015 by Taylor & Francis Group, LLC

278 Optimization: Algorithms and Applications

where there are n variables to be determined out of which p are integers and
the remaining variables are continuous.

10.3.1 Branch-and-Bound Method

In this method (Land and Doig 1960), the optimization problem is solved
with continuous variables, and the integer constraints are relaxed. If the
solution obtained is integers, the algorithm is terminated as it represents the
optimal solution of the integer problem. If one of the integer variables xk
is continuous, then one has to solve two additional subproblems with the
upper bound constraint

 xk ≤ [xk] (10.9)

and lower bound constraint

 xk ≥ [xk] + 1 (10.10)

This process of the branching ensures that feasible integer solutions are
not eliminated. The branching problem is again solved (as continuous vari-
ables) with these additional constraints. The process is continued until an
integer solution is obtained. This solution corresponds to the upper bound
of the objective function for a minimization problem. During the course of
further branchings, if any of the branches have the value of the objective
function greater than this upper bound value then that node is terminated or
fathomed. If a lower value of the objective function is reached than the upper
bound value, then the upper bound value is updated. The method continues
to branch until all the nodes have been evaluated or fathomed. The lowest
value of the objective function corresponding to the integer feasible solution
gives the optimal value of the objective function.

Consider the following integer programming problem that is solved using
the branch-and-bound method.

Minimize

 f(x) = −4x1 − 5x2

subject to

 2x1 + 5x2 ≤ 16

 2x1 − 3x2 ≤ 7

 x1, x2 ≥ 0

where x1 and x2 are integers.

© 2015 by Taylor & Francis Group, LLC

279Integer Programming

As a first step, integer constraints are relaxed and the linear programming
problem is solved with continuous variables. The MATLAB code (simplex.m)
is executed with the initializations

A = [2 5 1 0;
 2 -3 0 1];
b = [16;7];
c = [-4;-5;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

and following output is obtained:
__
basic_set =
 3 4
nonbasic_set =
 1 2
Initial_Table =
 1 0 2 5 16
 0 1 2 -3 7
Cost =
 0 0 -4 -5 0
__
basic_set =
 2 4
nonbasic_set =
 1 3
Table =
 1 0 2/5 1/5 16/5
 0 1 16/5 3/5 83/5
Cost =
 0 0 -2 1 16
__
basic_set =
 2 1
nonbasic_set =
 3 4
Table =
 1 0 1/8 -1/8 9/8
 0 1 3/16 5/16 83/16
Cost =
 0 0 11/8 5/8 211/8
— — —SOLUTION— — —
basic_set =
 2 1
xb =
 9/8
 83/16
zz =
 -211/8

© 2015 by Taylor & Francis Group, LLC

280 Optimization: Algorithms and Applications

The optimal value of the objective function is −26
3
8

 and occurs at x1 5
3

16
=

and x2 1
1
8

= (Figure 10.4).

Because both variables are not integers, we branch and create two
subproblems:

NODE 1
Subproblem 1

Minimize f(x) = −4x1 − 5x2

subject to 2x1 + 5x2 ≤ 16
 2x1 − 3x2 ≤ 7
 x1 ≤ 5

Subproblem 2
Minimize f(x) = −4x1 − 5x2

subject to 2x1 + 5x2 ≤ 16
 2x1 − 3x2 ≤ 7
 x1 ≥ 6

The MATLAB code (subproblem1.m) is executed with the initializations

A = [2 5 1 0 0;
 2 -3 0 1 0;
 1 0 0 0 1];
b = [16;7;5];
c = [-4;-5;0;0;0];

–1 1 2 3 4 5 6

–1

1

2

3

4

x2

x1

3
8

f = –26

A 5 , 1 3
16

1
8()

FIGURE 10.4
Optimal noninteger solution.

© 2015 by Taylor & Francis Group, LLC

281Integer Programming

basic_set = [3 4 5];
nonbasic_set = [1 2];

and the following output is obtained.

basic_set =
 3 4 5
nonbasic_set =
 1 2
Initial_Table =
 1 0 0 2 5 16
 0 1 0 2 -3 7
 0 0 1 1 0 5
Cost =
 0 0 0 -4 -5 0
__
basic_set =
 2 4 5
nonbasic_set =
 1 3
Table =
 1 0 0 2/5 1/5 16/5
 0 1 0 16/5 3/5 83/5
 0 0 1 1 0 5
Cost =
 0 0 0 -2 1 16
__
basic_set =
 2 4 1
nonbasic_set =
 3 5
Table =
 1 0 0 1/5 -2/5 6/5
 0 1 0 3/5 -16/5 3/5
 0 0 1 0 1 5
Cost =
 0 0 0 1 2 26
— — —SOLUTION— — —
basic_set =
 2 4 1
xb =
 6/5
 3/5
 5
zz =
 -26

The optimal value of the objective function is −26 and occurs at x1 = 5 and

x2 1
1
5

= (Figure 10.5). As x2 has a noninteger value, we need to branch here

© 2015 by Taylor & Francis Group, LLC

282 Optimization: Algorithms and Applications

(node 2). In a similar way, subproblem 2 can be solved (node 3). The solution
to subproblem 2 results in an infeasible solution. No further branching is
therefore required from subproblem 2.

Two further nodes (4 and 5) are created from node 2. Two new subprob-
lems are

NODE 2
Subproblem 1

Minimize f(x) = −4x1 − 5x2

subject to 2x1 + 5x2 ≤ 16
 2x1 − 3x2 ≤ 7
 x2 ≤ 1

Subproblem 2
Minimize f(x) = −4x1 − 5x2

subject to 2x1 + 5x2 ≤ 16
 2x1 − 3x2 ≤ 7
 x2 ≥ 2

A = [2 5 1 0 0;
 2 -3 0 1 0;
 0 1 0 0 1];
b = [16;7;1];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];

–1 1 2 3 4 5 6

–1

1

2

3

4

x2

f = –26

 5, 1

x1

1
5()

FIGURE 10.5
Noninteger solution.

© 2015 by Taylor & Francis Group, LLC

283Integer Programming

and the following output is obtained.

basic
 3 4 5
nonbasic_set =
 1 2
Initial_Table =
 1 0 0 2 5 16
 0 1 0 2 -3 7
 0 0 1 0 1 1
Cost =
 0 0 0 -4 -5 0
__
basic_set =
 3 4 2
nonbasic_set =
 1 5
Table =
 1 0 0 2 -5 11
 0 1 0 2 3 10
 0 0 1 0 1 1
Cost =
 0 0 0 -4 5 5
__
basic_set =
 3 1 2
nonbasic_set =
 4 5
Table =
 1 0 0 -1 -8 1
 0 1 0 1/2 3/2 5
 0 0 1 0 1 1
Cost =
 0 0 0 2 11 25
— — —SOLUTION— — —
basic_set =
 3 1 2
xb =
 1
 5
 1
zz =
 -25

The optimal value of the objective function is −25 and occurs at x1 = 5 and
x2 = 1 (Figure 10.6). Because this subproblem has an integer feasible solution,
we fathom the node here and do not branch from here. Similarly, the solution
of the second problem gives an objective function value of −22 and occurs

© 2015 by Taylor & Francis Group, LLC

284 Optimization: Algorithms and Applications

at x1 = 3 and x2 = 2 (Figure 10.7). Because the value of objective function in
subproblem 2 is greater than the value of the objective function in subprob-
lem 1, we also fathom the node 5. The optimal value of the original integer
programming problem is therefore –25 and occurs at x1 = 5 and x2 = 1. The
tree diagram for this problem is shown in Figure 10.8.

10.3.2 Evolutionary Method

The particle swarm optimization (PSO) method can be successfully used to solve
integer programming problems. The method was elaborated in Chapter 5 and
it successfully solved nonlinear constraint optimization problems (Chapter 6)

1

2

3

4

f = –22

x2

x1
(3, 2)

FIGURE 10.7
Feasible integer solution.

–1 1 2 3 4 5 6

–1

1

2
f = –25

(5, 1)

x2

x1

FIGURE 10.6
Feasible integer solution (optimal).

© 2015 by Taylor & Francis Group, LLC

285Integer Programming

as well as multiobjective problems (Chapter 7). In this method, the velocity
of individual vi,k is updated using the equation

 vi+1,k = w1vi,k + ϕ1(pxik − xi,k)ui + ϕ2(gix − xi,k)ui (10.11)

where w1, ϕ1, and ϕ2 are the tuning factors of the algorithm. The position of
each individual is updated as

 xi+1,k = xi,k + vi+1,k (10.12)

For integer variables in the problem, we can round off the variable to the
nearest integer (Laskari et al. 2002) as

 xi+1,k = round(xi+1,k) (10.13)

The rest of the procedure remains same and is mentioned in Chapter 5.
The constrained welded beam optimization problem (see Chapter 6) is again
considered with a modification that some of the variables take integer values
only. The optimal solution obtained using the PSO method for different ver-
sions of this problem is mentioned in Table 10.1.

4 5

2 3

1

Infeasible

Optimal x1 = 3, x2 = 2, f = –22
x1 = 5, x2 = 1, f = –25

1
5

x1 = 5, x2 = 1 , f = –26

3
16

11
8

1
8

x1 = 5 , x2 = 1 , f = –25

FIGURE 10.8
Tree diagram for the test problem.

TaBlE 10.1

Optimal Solution to Different Welded Beam Problems

Welded
Beam

Integer Variable
Constraint

Optimal Solution

x1
* x2

* x3
* x4

* f *

Problem 1 None 0.244 6.212 8.299 0.244 2.381
Problem 2 x3, x4 0.681 2.794 5 1 5.471
Problem 3 x3 0.263 5.869 8 0.263 2.461
Problem 4 x4 0.645 3.734 4.099 1 5.211
Problem 5 x2 0.241 6 8.644 0.242 2.399
Problem 6 x2, x4 0.614 4 4.099 1 5.213

© 2015 by Taylor & Francis Group, LLC

286 Optimization: Algorithms and Applications

Chapter Highlights

•	 An all-integer programming problem contains design variables that
can take integer values only.

•	 In mixed-integer programming problems, some decision variables
are of the integer type and some can take fractional values or are of
the continuous type.

•	 Optimization problems in which design variables can take only dis-
crete values are referred to as discrete programming problems.

•	 There is also a special type of integer programming called a zero-
one programming problem in which design variables can take a
value of 0 or 1.

•	 In Gomory’s cutting plane method, the linear integer program-
ming problem is first solved using the simplex method by ignor-
ing the integer requirement of the variables. If the variables at the
optimal solution happen to be integers, the algorithm is termi-
nated. Otherwise, some additional constraints are imposed on the
problem.

•	 If there are n integer variables to be evaluated in a zero-one problem,
an enumerated search would require 2n evaluations of the objective
function and constraints. Balas’ method uses an implicit enumera-
tion technique to find the optimal solution.

•	 In the branch-and-bound method, the optimization problem is solved
with continuous variables, and the integer constraints are relaxed.
If the solution obtained is integers, the algorithm is terminated as it
represents the optimal solution of the integer problem. If one of the
integer variables is continuous, then one has to solve two additional
subproblems with additional constraints.

•	 The PSO method can be used to solve nonlinear mixed-integer pro-
gramming problems with minor modifications.

Formulae Chart

Standard form of linear integer programming where Balas’ method is
used:
Minimize

 z = cTx

© 2015 by Taylor & Francis Group, LLC

287Integer Programming

subject to

 Ax = b

 x ∈ {0, 1}

 c ≥ 0

Problems

 1. Solve the following integer programming problem using the graphi-
cal method.
 Minimize f(x) = −3x1 − 2x2

 subject to 2x1 + x2 ≤ 17
 2x1 + 3x2 ≤ 40
 3x1 + 3x2 ≤ 26
 x1, x2 ≥ 0

 where x1 and x2 are integers.
 2. Solve the following integer programming problem using Gomory’s

cutting plane method.
 Minimize f(x) = −x1 + 2x2

 subject to 2x1 + 2x2 ≤ 4
 6x1 + 2x2 ≤ 9
 x1, x2 ≥ 0

 where x1 and x2 are integers.
 3. A small wooden furniture manufacturer has specialized in two

types of furniture: chairs and tables, both requiring two types of
raw material. Chairs require 6 and 7 units of the first and second
kind of raw material whereas tables require 14 and 7 units of the first
and second kind of raw material. In a day, the manufacturer has a
supply of 42 units and 35 units of two types of raw material. Profit
analysis indicates that every unit of chair contributes Rs. 100 and
every unit of table contributes Rs. 160. The manufacturer would like
to know the optimum number of chairs and tables to be produced
so as to maximize the profit (Shenoy et al. 1986). Formulate this as an
integer-programming problem and solve it.

 4. Solve the following zero-one programming problem (Shenoy et al.
1986) using Balas’ method.

© 2015 by Taylor & Francis Group, LLC

288 Optimization: Algorithms and Applications

 Minimize 16x1 + 15x2 + 17x3 + 15x4 + 40x5 + 12x6 + 13x7 + 9x8 +
12x9

 subject to 13x1 + 50x2 + 7x3 + 6x4 + 36x5 + 6x6 + 46x7 + 38x8 +
18x9 ≤ 50

 3x1 + 8x2 + 6x3 + 2x4 + 34x5 + 6x6 + 4x7 + 7x8 + 3x9 ≤
20

 x ∈ {0, 1}
 5. Solve the following integer programming problem using Gomory’s

cutting plane method.
 Minimize f(x) = −3x1 − 5x2

 subject to 2x1 + 5x2 ≤ 15
 2x1 − 2x2 ≤ 5
 x1, x2 ≥ 0

 where x1 and x2 are integers.
 6. Solve the following integer programming problem using Gomory’s

cutting plane method.
 Minimize f(x) = −4x1 − 7x2

 subject to x1 + x2 ≤ 6
 5x1 + 9x2 ≤ 50
 x1, x2 ≥ 0

 where x1 and x2 are integers.
 7. Solve the following integer programming problem using Gomory’s

cutting plane method
 Maximize f(x) = 3x1 + 2x2

 subject to 2x1 + x2 ≤ 5
 2x1 − 7x2 ≤ 4
 x1, x2 ≥ 0

 where x1 and x2 are integers.
 8. Solve the following integer programming problem using the branch-

and-bound method.
 Maximize f(x) = x1 + 2x2

 subject to 2x1 + x2 ≤ 4
 3x1 + 4x2 ≤ 5
 x1, x2 ≥ 0

 where x1 and x2 are integers.

© 2015 by Taylor & Francis Group, LLC

289

11
Dynamic Programming

11.1 Introduction

Dynamic programming is an optimization technique in which a complex opti-
mization problem is divided into a number of stages (or subproblems) in which
a policy decision has to be taken at each stage. The stages are solved sequen-
tially, one by one. The stages generally represent a time-varying phenomenon
such as the amount of inventory in a store. Dynamic programming thus refers
to planning of a time-varying system. The series of interrelated decisions taken
at each stage is done using the state information associated with that stage and
has to be suitably linked with the next stage. The dimensionality of the prob-
lem increases with an increase in the number of states. The series of best policy
decisions taken at each stage is referred to as the optimal policy of the optimi-
zation problem. The principle of optimality in dynamic programming states that
the optimal decision at a given stage is independent of the optimal decisions
taken in the previous stages. Typically in dynamic programming, the optimal
decision pertaining to the last stage is taken first and then moved backward to
the next stage and the process is continued until the first stage is reached. The
technique of dynamic programming was developed by Richard Bellman in the
1950s. The method is used to solve a number of problems in different areas
(Edwin and Gruber 1971; George 1963; Leondes and Smith 1970). The method,
though easy to implement, has a serious drawback: the complexity of the prob-
lem increases with an increase in the number of variables. This is frequently
referred to as the curse of dimensionality in dynamic programming. This chapter
discusses aspects of deterministic and probabilistic dynamic programming.

11.2 Deterministic Dynamic Programming

In dynamic programming, when the current policy decision and the state
completely determine the state of the next stage, it is called deterministic
dynamic programming. Let the state at stage n be denoted by sn. The policy

© 2015 by Taylor & Francis Group, LLC

290 Optimization: Algorithms and Applications

decision xn transforms this state to sn+1 at the next stage n + 1. The function
f sn n+ +1 1
* () is the optimal value of the objective function to which the contri-

bution made by xn decision is to be added (Figure 11.1). This provides the
contribution of n stages and is given by fn (sn, xn). This function is optimized
with respect to xn to give f s f s xn n n n n

* , * .() ()= The procedure is repeated by
moving back one stage.

Let us take an example to explain the concept of dynamic programming.
A person in a remote place A has to reach city I to withdraw money from an
ATM. Though he has the option to select different paths to reach his goal, he
is interested in finding the path that has a minimum distance to be covered.
The intermediate villages where he can change his path are given by B, C,
D, E, F, G, and H. The distance between the villages is given in Figure 11.2.

Before using dynamic programming, let us select the path that results in
the minimum distance from one city to another. From village A, the mini-
mum distance is 3 to village C. From village C, the minimum distance is 6 to
village F. In this way the total distance traveled is 16 and the path is

 A → C → F → G → I

Stage n Stage n + 1

Sn

xn
Sn+1

f *n+1(Sn+1)fn(Sn , xn)

FIGURE 11.1
Structure of deterministic dynamic programming.

4

5

3

2

5

3

4

3

6

7

4

5

3

4

5

A

D

C

B

F

E G

H

I

FIGURE 11.2
Distance (not to scale) between the villages.

© 2015 by Taylor & Francis Group, LLC

291Dynamic Programming

For an n stage problem in dynamic programming, the current stage is des-
ignated as n and the current state is sn. The policy decision variable is given
by xn and the optimal policy is given by the recursive relationship

 f c f xsn sx n nn n
* *() ()= +{ }+min 1 (11.1)

where csxn
 is the cost for stage n and f xn n+1

* () is the cost for stages n + 1 and
higher. Equation 11.1 is minimized with respect to xn. This is a four-stage
problem and we start from the last stage (n = 4), as shown in Figure 11.3.

At this stage, a person can be either at G or H. If he is at G, the shortest
distance (in fact, it is the only path) to reach the destination (I) is 5. Similarly,
if he is at H, the shortest distance to reach the destination is 4. The results of
stage 4 are summarized in Table 11.1.

Let’s go back one stage (n = 3). At stage 3, a person can be either at E or F.
If he is at E, he has two paths, to go either to G or H, and the distance to be
covered is 3 and 5 respectively. The additional distance from G (or H) to I,
which is computed in the last stage, is to be added at this stage. The distance
covered for the route E–G–I is 8 and for E–H–I it is 9 (Figure 11.4). Similarly,
one can compute distance for the path F–G–I and F–H–I. The results of stage
3 are given in Table 11.2.

Let’s go back one more stage (n = 2). At stage 2, a person can be at B, C, or D.
From here, his immediate destination can be E or F. The minimum distance
from E and F to the destination was already computed in Table 11.1. The
results for stage 2 are mentioned in Table 11.3.

In a similar manner results for stage 1 are summarized in Table 11.4.

G

H
4

5

n = 4

I

FIGURE 11.3
Stage 4.

TablE 11.1

Stage 4

s f4(s) x4
*

G 5 I
H 4 I

© 2015 by Taylor & Francis Group, LLC

292 Optimization: Algorithms and Applications

Thus the minimum distance from A to destination I is 15. There are three
optimal paths for this problem:

A D E G I
A D F G I
A D F H I

→ → → →
→ → → →
→ → → →

TablE 11.2

Stage 3

s

f s x c f xsx3 3 4 43
() (), *== ++

f s3
*() x3

*G H

E 8 9 8 G
F 7 7 7 G, H

TablE 11.3

Stage 2

s

f s x c f xsx2 2 3 32
() (), *== ++

f s2
*() x2

*E F

B 12 12 12 E, F
C 15 13 13 F
D 11 11 11 E, F

G

H

3

n = 3

5

E

5

4

FIGURE 11.4
Stage 3.

TablE 11.4

Stage 1

s

f s x c f xsx1 1 2 21
() (), *== ++

f s1
*() x1

*B C D

A 17 16 15 15 D

© 2015 by Taylor & Francis Group, LLC

293Dynamic Programming

Example 11.1

Solve the following linear programming problem (LPP) using dynamic
programming.

Maximize z = 2x1 + 3x2

subject to x1 ≤ 3
 2x2 ≤ 11
 2x1 + 3x2 ≤ 12
 x1 ≥ 0, x2 ≥ 0

This is a two-stage problem because it contains two interacting vari-
ables. The states in the problem are the right-hand side of the inequality
constraints. For the first stage, the resources available for the first activity
(x1) are

 s1 = {3, 11, 12}

When x1 is allocated, the remaining resources for the next state (Figure
11.5) will be

 s2 = {3 − x1, 11, 12 − 2x1}

The stage 2 problem can be written

Maximize z = 3x2

subject to 2x2 ≤ 11
 3x2 ≤ 12

Thus maximum allocation of x2 is limited by

min

11
2

12 2
3

1,
−








x

Stage 1 Stage 2

f1(s1, x1) f *2(s2)

s1 = {3, 11, 12} s2 = {3 − x1, 11, 12 − 2x1}

FIGURE 11.5
Two-stage problem.

© 2015 by Taylor & Francis Group, LLC

294 Optimization: Algorithms and Applications

Clearly, the minimum of the two terms is

12 2

3
01

1
− ≥x

x

Thus,

f

x
xs2

1
12 3

11
2

12 2
3

12 2* , () = −







= −min

Therefore,

f s x

x
1 1 1

12 3
11
2

12 2
3

* , () = + −


















=min 22 12 2 121 1x x+ − =

Thus, the maximum value of the function is 12 and occurs at x1 0* = .
Substituting the value of x1 in one of the constraint equations gives x2 4* = .

11.3 Probabilistic Dynamic Programming

In deterministic dynamic programming, the state and decisions of the pres-
ent stage completely determine the state of the next stage. In probabilistic
dynamic programming, the state of the next stage is determined with some
probability distribution. Let us take the following example, which is solved
using the concept of probabilistic dynamic programming.

A milk vendor purchases six cases of milk from a dairy farm for Rs. 900
per case. He has three booths where he can sell the milk at Rs. 2000 per case.
Any unsold milk of the day can be returned back to the dairy farm at a rate
of Rs. 500 per case. The demand at the three booths has certain probabilities
and is given in Table 11.5.

Find the optimal policy in allocating six cases of milk to different booths
so as to maximize the profit.

To maximize profits, we need to maximize the revenue as cost is fixed.
Like previous problems, the first step in the dynamic programming is to
identify the stages, states, and decision policies. In this problem, number of
stages refers to the number of booths. Thus, it is a three-stage problem. The
state at each stage is the number of milk cases available for allocation and let
it be denoted by si for the ith stage. Let the decision policy of allocating num-
ber of cases of milk to a particular booth be denoted by xi. Let ri(xi) represent
the revenue earned by allocating xi cases to ith store and fi(si) represent the
maximum expected revenue earned by assigning xi cases to the ith store. As
with the earlier problems, we will start with the last stage. Before that, let
us compute the elements of the revenue table ri(xi) for 0 ≤ xi ≤ 3 as maximum

© 2015 by Taylor & Francis Group, LLC

295Dynamic Programming

demand at any store is 3. Let us illustrate this by taking a case for booth 1
where two cases of milk are to be allocated. This is denoted by r1(2).

 r1(2) = 0.5 × 2500 + 0.4 × 4000 + 0.1 × 4000 = 3250

In a similar manner, other elements of ri(xi) can be constructed and are
given in Table 11.6.

The state and decision policies for different stages are summarized in
Tables 11.7 through 11.9.

TablE 11.5

Demands from Different Booths

Demand (in Number of Cases) Probability

Booth 1 1 0.5
2 0.4
3 0.1

Booth 2 1 0.5
2 0.3
3 0.2

Booth 3 1 0.6
2 0.2
3 0.2

TablE 11.6

Revenue Earned by Allocating Resources

xi r1(x1) r2(x2) r3(x3)

0 0 0 0
1 2000 2000 2000
2 3250 3250 3500
3 3900 4050 3900

TablE 11.7

Stage 3

s3

r3(x3)

f s3 3
*() x3

*0 1 2 3

0 0 – – – 0 0
1 0 2000 – – 2000 1
2 0 2000 3500 – 3500 2
3 0 2000 3500 3900 3900 3
4 0 2000 3500 3900 3900 3
5 0 2000 3500 3900 3900 3
6 0 2000 3500 3900 3900 3

© 2015 by Taylor & Francis Group, LLC

296 Optimization: Algorithms and Applications

The optimal policy is to allocate three cases of milk to booth 1, one case of
milk to booth 2, and two cases of milk to booth 3.

Chapter Highlights

•	 Dynamic programming refers to planning of time-varying systems.
•	 In dynamic programming, a complex optimization problem is divided

into a number of stages (or subproblems) in which a policy decision
has to be taken at each stage.

•	 The series of interrelated decisions taken at each stage is done using
the state information associated with that stage and has to be suit-
ably linked with the next stage.

•	 The principle of optimality in dynamic programming states that the
optimal decision at a given stage is independent of the optimal deci-
sions taken in the previous stages.

•	 In dynamic programming, when the current policy decision and the
state completely determine the state of the next stage, it is called deter-
ministic dynamic programming.

TablE 11.8

Stage 2

s2

r2(x2) + f3(s2 − x2)

f s2 2
*() x2

*0 1 2 3

0 0 – – – 0 0
1 2000 2000 – – 2000 0, 1
2 3500 4000 3250 – 4000 1
3 3900 5500 5250 4050 5500 1
4 3900 5900 6750 6050 6750 2
5 3900 5900 7150 7550 7550 3
6 3900 5900 7150 7950 7950 3

TablE 11.9

Stage 1

s1

r1(x1) + f2(s1 − x1)

f s1 1
*() x1

*0 1 2 3

6 7950 9550 10,000 9400 10,000 3

© 2015 by Taylor & Francis Group, LLC

297Dynamic Programming

Formula Chart

Recursive relationship:

 f c fs xn sx nn nn
* *() ()= +{ }+min 1

Problems

 1. Solve the following LPP using dynamic programming.
 i. Minimize z = 3x1 − 2x2

 subject to x1 + 2x2 ≤ 10
 2x1 − x2 ≤ 5
 −4x1 + 3x2 ≥ 5
 x1, x2 ≥ 0

 ii. Maximize z = 2x1 + 5x2

 subject to 3x1 + x2 ≤ 11
 x1 − x2 ≤ 6
 −2x1 + x2 ≤ 10
 x1, x2 ≥ 0

 iii. Maximize z = 4x1 + 5x2

 subject to 2x1 + x2 ≤ 20
 −3x1 + 2x2 ≤ 25
 −x1 + x2 ≤ 30
 x1, x2 ≥ 0

 2. Solve the following integer programming problem using dynamic
programming.
 Minimize f(x) = −3x1 − 2x2

 subject to 2x1 + x2 ≤ 17
 2x1 + 3x2 ≤ 40
 3x1 + 3x2 ≤ 26
 x1, x2 ≥ 0

 where x1 and x2 are integers.
 3. Find the optimal policy of the stagecoach problem (Figure 11.6) to

minimize the distance from A to I.

© 2015 by Taylor & Francis Group, LLC

298 Optimization: Algorithms and Applications

 4. A system consists of three components (R1, R2, and R3) arranged in
series. The reliability of the system is given by

 R = R1 R2 R3

 The reliability of each component can be increased by arranging (in
parallel) itself to a similar component. If ri is the reliability of each
component, then reliability of the subsystem in parallel is given by

 R ri i
ni= − −1 1()

 where ni is the number of components arranged in parallel. The
costs of various components along with their reliabilities are given
in Table 11.10.

 Maximize the reliability of the system if an amount of $700 is
available for investment.

9

7

4

5

3

6

2

5

4

8

6

4

4

5

6

A

D

C

B

F

E G

H

I

FIGURE 11.6
Stagecoach problem.

TablE 11.10

Cost and Reliability of Various Components

Component Cost ($) Reliability of Each Component

1 100 0.93
2 150 0.96
3 190 0.98

© 2015 by Taylor & Francis Group, LLC

299

Bibliography

Chapter 1

Agnew, R.P. 1960. Differential Equations. New York: McGraw-Hill.
Arora, R.K., and Pradeep, K. 2003. Aerodynamic Shape Optimization of a Re-Entry

Capsule. In AIAA Atmospheric Flight Mechanics Conference and Exhibit. AIAA-
5394-2003, Texas.

Ashok, D.B., and Tirupathi, R.C. 2011. Optimization Concepts and Applications in
Engineering. Cambridge, UK: Cambridge University Press.

Bellman, R. 1953. An Introduction to the Theory of Dynamic Programming. RAND
Corp. Report.

Betts, J.T. 1998. Survey of Numerical Methods for Trajectory Optimization. Guidance,
Control and Dynamics 21(2):193–207.

Burghes, D.N., and Wood, A.D. 1980. Mathematical Models in the Social, Management
and Life Sciences. Hemstead, UK: Ellis Horwood.

Dantzig, G.B. 1949. Programming of Interdependent Activities: II Mathematical
Model. Econometrica 17(3):200–211.

Dantzig, G.B. 1990. The Diet Problem. Interfaces 20(4):43–47.
Deb, K. 1995. Optimization for Engineering Design: Algorithms and Examples. Upper

Saddle River, NJ: Prentice Hall.
Epperson, J.F. 2010. An Introduction to Numerical Methods and Analysis. Hoboken, NJ:

John Wiley & Sons.
Gomory, R.E. 1958. Outline of an Algorithm for Integer Solutions to Linear Programs.

Bulletin of American Society 64:275–278.
Griva, I., Nash, S.G., and Sofer, A. 2009. Linear and Nonlinear Optimization.

Philadelphia: SIAM.
Hancock, H. 1917. Theory of Maxima and Minima. Boston: Ginn and Company.
Jaluria, Y. 2008. Design and Optimization of Thermal Systems. Boca Raton, FL: CRC Press.
Kantorovich, L.V. 1939. Mathematical Methods of Organizing and Planning

Production. Leningrad State University.
Karush, W. 1939. Minima of Functions of Several Variables with Inequalities as Side

Constraints. M.Sc. Dissertation. Illinois: University of Chicago.
King, J.R. 1975. Production, Planning and Control: An Introduction to Quantitative

Methods. Oxford: Pergamon Press.
Kuhn, H.W., and Tucker, A.W. 1951. Nonlinear Programming. Proceedings of the Second

Berkeley Symposium on Mathematical Statistics and Probability. University of California
Press, 481–492.

Pravica, D.W., and Spurr, M.J. 2010. Mathematical Modeling for the Scientific Method.
Burlington, MA: Jones and Bartlett Learning.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F2.4231
http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F2.4231
http://www.crcnetbase.com/action/showLinks?crossref=10.2307%2F1905523
http://www.crcnetbase.com/action/showLinks?crossref=10.1287%2Finte.20.4.43
http://www.crcnetbase.com/action/showLinks?crossref=10.1090%2FS0002-9904-1958-10224-4

300 Bibliography

Rao, S.S. 2009. Engineering Optimization: Theory and Practice. Hoboken, NJ: John
Wiley & Sons.

Schafer, M. 2006. Computational Engineering: Introduction to Numerical Methods. New
York: Springer Science+Business Media.

Shepley, R.L. 1984. Differential Equations. New York: John Wiley & Sons.
Spivey, W.A., and Thrall, R.M. 1970. Linear Optimization. New York: Holt, Rinehart

and Winston.
Venkataraman, P. 2009. Applied Optimization with MATLAB Programming. Hoboken,

NJ: John Wiley & Sons.
Vinh, N.X. 1981. Optimal Trajectories in Atmospheric Flight. Amsterdam: Elsevier.
Watkins, D.S. 2010. Fundamentals of Matrix Computations. Hoboken, NJ: John Wiley &

Sons.
Wismer, D.A., and Chattergy, R. 1978. Introduction to Nonlinear Optimization: A Problem

Solving Approach. Amsterdam: Elsevier/North Holland.

Chapter 2

Deb, K. 1995. Optimization for Engineering Design: Algorithms and Examples. Upper
Saddle River, NJ: Prentice Hall.

Dennis, J.E., and Schnabel, R.B. 1983. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Upper Saddle River, NJ: Prentice Hall.

Kincaid, D., and Cheney, W. 2009. Numerical Analysis: Mathematics of Scientific
Computing. Providence, RI: American Mathematical Society.

King, R.M., and Mody, N.A. 2011. Numerical and Statistical Methods for Biomedical
Engineering: Applications in MATLAB. Cambridge, UK: Cambridge University
Press.

 Philips, D.T., Ravindran, A., and Solberg, J.J. 1976. Operations Research: Principles and
Practice. New York: John Wiley & Sons.

 Reklaitis, G.V., Ravindran, A., and Ragsdell, K.M. 1983. Engineering Optimization:
Methods and Applications. New York: John Wiley & Sons.

Chapter 3

Andreas, A., and Wu-Shey, L. 2007. Practical Optimization: Algorithms and Engineering
Applications. New York: Springer Science+Business Media.

Ashok, D.B., and Tirupathi, R.C. 2011. Optimization Concepts and Applications in
Engineering. Cambridge, UK: Cambridge University Press.

Cauchy, A.L. 1847. Methode generale pour la resolution des systemes d’equations
simultanees. Comptes Rendus de l’Académie des Sciences 25:536–538.

Colville, A.R. 1968. A Comparative Study on Nonlinear Programming Codes, Report 320-
2949, IBM. New York Scientific Centre.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F9780470549124

301Bibliography

Dennis, J.E., and Schnabel, R.B. 1983. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Upper Saddle River, NJ: Prentice Hall.

Fletcher, R., and Powell, M.J.D. 1963. A Rapidly Convergent Descent Method for
Minimization. The Computer Journal 6:163–168.

Fletcher, R., and Reeves, C.M. 1964. Function Minimization by Conjugate Gradients.
The Computer Journal 7(2):149–154.

Freudenstein, F., and Roth, B. 1963. Numerical Solutions of Systems of Nonlinear
Equations. Journal of ACM 10(4):550–556.

Griva, I., Nash, S.G., and Sofer, A. 2009. Linear and Nonlinear Optimization. Philadelphia:
SIAM.

Haftka, R.T., and Gurdal, Z.A. 1992. Elements of Structural Optimization. Dordrecht, the
Netherlands: Kluwer.

Levenberg, K. 1944. A Method for the Solution of Certain Nonlinear Problems in
Least Squares. Quarterly Applied Mathematics 2(2):164–168.

Marquardt, D. 1963. An Algorithm for Least Squares Estimation of Nonlinear
Parameters. SIAM Journal of Applied Mathematics 11(2):431–441.

Nelder, J.A., and Mead, R. 1965. A Simplex Method for Function Minimization.
Computer Journal 7(2):308–313.

Nowak, U., and Weimann, L. 1991. A Family of Newton Codes for Systems of Highly
Nonlinear Equation. TR 91-10. Berlin: Konard Zuse Zentrumf. Informationstechn.

Powell, M.J.D. 1970. A Hybrid Method for Nonlinear Equations. Chapter 6. In:
Numerical Methods for Nonlinear Algebraic Equations. P. Rabinowitz (ed.), Gordon
and Breach, 87–114.

Rao, S.S. 2009. Engineering Optimization: Theory and Practice. Hoboken, NJ: John
Wiley & Sons.

Reklaitis, G.V., Ravindran, A., and Ragsdell, K.M. 1983. Engineering Optimization:
Methods and Applications. New York: John Wiley & Sons.

Rosenbrock, H.H. 1960. An Automatic Method for Finding the Greatest or Least Value
of a Function. The Computer Journal 3(3):175–184.

Shanno, D.F. 1970. Conditioning of Quasi-Newton Methods for Function Minimiza-
tion. Mathematics of Computation 24:647–656.

Venkataraman, P. 2009. Applied Optimization with MATLAB Programming. Hoboken,
NJ: John Wiley & Sons.

Chapter 4

Barnes, E.R. 1986. A Variation on Karmarkar’s Algorithm for Solving Linear
Programming Problems. Mathematical Programming 36:174–182.

Dantzig, G.B. 1963. Linear Programming and Extensions. Princeton, NJ: Princeton
University Press.

Fishback, P.E. 2010. Linear and Nonlinear Programming with MAPLE: An Interactive
Applications-Based Approach. Boca Raton, FL: CRC Press.

Griva, I., Nash, S.G., and Sofer, A. 2009. Linear and Nonlinear Optimization. Philadelphia:
SIAM.

Karmarkar, N. 1984. A New Polyline-Time Algorithm for Linear Programming,
Combinatorica 4(4):373–395.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF02579150
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fcomjnl%2F3.3.175
http://www.crcnetbase.com/action/showLinks?crossref=10.1090%2FS0025-5718-1970-0274029-X
http://www.crcnetbase.com/action/showLinks?crossref=10.1137%2F0111030
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fcomjnl%2F7.4.308
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fcomjnl%2F6.2.163
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF02592024
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fcomjnl%2F7.2.149
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F9780470549124
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F321186.321200

302 Bibliography

Rao, S.S. 2009. Engineering Optimization: Theory and Practice. Hoboken, NJ: John
Wiley & Sons.

Spivey, W.A., and Thrall, R.M. 1970. Linear Optimization. New York: Holt, Rinehart
and Winston.

Vanderbei, R.J., Meketon, M.S., and Freedman, B.A. 1986. A Modification of
Karmarkar’s Linear Programming Problem. Algorithmica 1:395–407.

Chapter 5

Davis, L. 1987. Genetic Algorithm and Simulated Annealing. London: Pitman.
Deb, K. 1995. Optimization for Engineering Design: Algorithms and Examples. Upper

Saddle River, NJ: Prentice Hall.
Dorigo, M. 1992. Optimization, Learning and Natural Algorithms, PhD dissertation,

Dipartimento di Elettronica, Politecnico di Milano. Italy.
Dorigo, M., Maniezzo, V., and Colorni, A. 1996. Ant System: Optimization by a Colony

of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics B
26(1):29–41.

Gendreau, M., and Potvin, J.Y. 2010. Handbook of Metaheuristics, International Series in
Operations Research and Management Science, Vol. 146. Heidelberg and New
York: Springer Science+Business Media.

Glover, F. 1986. Future Paths for Integer Programming and Links to Artificial
Intelligence. Computers and Operations Research 13:533–549.

Goldberg, D.E. 1989. Genetic Algorithms in Search Optimization and Machine Learning.
Reading, MA: Addison-Wesley.

Goldberg, D.E., Deb, K., and Thierens, D. 1993. Towards a Better Understanding of
Mixing in Genetic Algorithms. Journal of the Society of Instrument and Control
Engineers 32(1):10–16.

Hartl, D.L. 1991. Basic Genetics. Burlington, MA: Jones & Bartlett.
Holland, J.H. 1992. Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT

Press.
Kennedy, J., and Eberhart, R. 2001. Swarm Intelligence. San Diego: Academic Press.
Laarhoven, P.J.M.V., and Aarts, E.H.L. 1987. Simulated Annealing: Theory and

Applications. Dordrecht: Kluwer.
Laskari, E.C., Parsopoulos, K.E., and Vrahatis, M.N. 2002. Particle Swarm Optimization

for Minmax Problems. Evolutionary Computation Proceedings 2:1576–1581.
Merkle, D., Middendorf, M., and Schmeck, H. 2002. Ant Colony Optimization for

Resource-Constrained Project Scheduling. IEEE Transactions on Evolutionary
Computation 6(4):333–346.

Michalewicz, Z. 1996. Genetic Algorithm + Data Structures = Evolution Programs.
Heidelberg and New York: Springer-Verlag.

Mitchell, M. 1996. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.
Pham, D.T., and Karaboga, D. 2000. Intelligent Optimization Techniques: Genetic

Algorithm, Tabu Search, Simulated Annealing and Neural Networks. Heidelberg and
New York: Springer Science+Business Media.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2F3477.484436
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-94-015-7744-1
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-94-015-7744-1
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F9780470549124
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTEVC.2002.802450
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2F0305-0548%2886%2990048-1
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTEVC.2002.802450
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF01840454

303Bibliography

Reimann, M., Doerner, K., and Hartl, R.F. 2004. D-Ants: Savings Based Ants Divide
and Conquer the Vehicle Routing Problems. Computers & Operations Research
31(4):563–591.

Shmygelska, A., and Hoos, H.H. 2005. An Ant Colony Optimization Algorithm for
the 2D and 3D Hydrophobic Polar Protein Folding Problem. BMC, Bioinformatics
6:30.

Chapter 6

Byrd, R.H., Gilbert, J.C., and Nocedal, J. 2000. A Trust Region Method Based on Inte-
rior Point Techniques for Nonlinear Programming. Mathematical Programming
89(1):149–185.

Byrd, R.H., Schnabel, R.B., and Shultz, G.A. 1988. Approximate Solution of the
Trust Region Problem by Minimization over Two-Dimensional Subspaces.
Mathematical Programming 40(3):247–263.

Coleman, T.F., and Verma, A. 2001. A Preconditioned Conjugate Gradient Approach
to Linear Equality Constrained Minimization. Computational Optimization and
Applications 20(1):61–72.

Griva, I., Nash, S.G., and Sofer, A. 2009. Linear and Nonlinear Optimization. Philadelphia:
SIAM.

Han, S.P. 1977. A Globally Convergent Method for Nonlinear Programming. Journal of
Optimization Theory and Applications 22(3):297–309.

Haug, E.J., and Arora, J.S. 1979. Applied Optimal Design: Mechanical and Structural
Systems. New York: John Wiley & Sons.

Horowitz, B., Guimaraes, L.J.N., and Afonso, S.M.B. 2008. A Concurrent Efficient Global
Optimization Algorithm Applied to Engineering Problems. AIAA 2008-6010.

Moré, J.J., and Sorensen, D.C. 1983. Computing a Trust Region Step. SIAM Journal on
Scientific and Statistical Computing 3:553–572.

Nocedal, J., and Wright, S.J. 2006. Numerical Optimization. Springer Series in Operations
Research. New York: Springer Science+Business Media.

Powell, M.J.D. 1978. The Convergence of Variable Metric Methods for Nonlinearly
Constrained Optimization Calculations. Nonlinear Programming 3. New York:
Academic Press.

Ragsdell, K.M., and Philips, D.T. 1976. Optimal Design of a Class of Welded Structures
Using Geometric Programming. ASME Journal of Engineering for Industries
98(3):1021–1025.

Rao, S.S. 2009. Engineering Optimization: Theory and Practice. Hoboken, NJ: John
Wiley & Sons.

Reklaitis, G.V., Ravindran, A., and Ragsdell, K.M. 1983. Engineering Optimization:
Methods and Applications. New York: John Wiley & Sons.

Sandgren, E. 1990. Nonlinear Integer and Discrete Programming in Mechanical
Design Optimization. ASME Journal of Mechanical Design 112:223–229.

Thygeson, J.R., and Grossmann, E.D. 1970. Optimization of a Continuous Through-
Circulation Dryer. American Institute of Chemical Engineers Journal 16:749–754.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0305-0548%2803%2900014-5
http://www.crcnetbase.com/action/showLinks?crossref=10.1137%2F0904038
http://www.crcnetbase.com/action/showLinks?crossref=10.1137%2F0904038
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FPL00011391
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF01580735
http://www.crcnetbase.com/action/showLinks?crossref=10.1115%2F1.2912596
http://www.crcnetbase.com/action/showLinks?crossref=10.1023%2FA%3A1011271406353
http://www.crcnetbase.com/action/showLinks?crossref=10.1115%2F1.3438995
http://www.crcnetbase.com/action/showLinks?crossref=10.1023%2FA%3A1011271406353
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Faic.690160512
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F9780470549124
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF00932858
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF00932858

304 Bibliography

Chapter 7

Adimurthy, V., Ramanan, R.V., and Pankaj, P. 2012. Optimization in Aerospace Dynamics.
Bangalore, India: ISRO.

Arora, R.K., and Pradeep, K. 2003. Aerodynamic Shape Optimization of a Re-Entry Cap-
sule. AIAA Atmospheric Flight Mechanics Conference and Exhibit. AIAA-5394-2003.

Binh, T., and Korn, U. 1997. MOBES: A Multi-Objective Evolution Strategy for
Constrained Optimization Problems. Proceedings of the Third International Con-
ference on Genetic Algorithms 176–182.

Chankong, V., and Haimes, Y.Y. 1983. Multiobjective Decision Making: Theory and
Methodology. Amsterdam: North Holland.

Chernyi, G.G. 1961. Introduction to Hypersonic Flow. New York: Academic Press.
Deb, K. 2002. Multi-Objective Optimization Using Evolutionary Algorithms. Hoboken,

NJ: John Wiley & Sons.
Knowles, J.D., and Corne, D.W. 2000. Approximating the Non-Dominated Front Using

the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2):149–172.
Miettinen, K. 1999. Nonlinear Multiobjective Optimization. Dordrecht: Kluwer.
Parsopoulos, K.E., and Vrahatis, M.N. 2002. Particle Swarm Optimization in Multi-

objective Problems. Proceedings of the ACM 2002 Symposium on Applied Computation:
603–607.

Statnikov, R.B., and Matusov, J.B. 1995. Multicriteria Optimization and Engineering, Springer.
Veldhuizen, D.A.V. 1999. Multiobjective Evolutionary Algorithms: Classification, Analyzes,

and New Innovations. PhD dissertation, Air Force Institute of Technology, Wright-
Patterson AFB.

Zitzler, E., Deb, K., and Thiele, L. 2000. Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation 8(2):173–195.

Chapter 8

Abuo-El-Ata, M., Fergany, H., and El-Wakeel, M. 2003. Probabilistic Multi-Item Inven-
tory Model with Varying Order Cost Under Two Restrictions: A Geometric
Programming Approach. International Journal of Production Economics 83(3):223–231.

Beightler, C.S., Philips, D.T., and Wilde, D.J. 1967. Foundations of Optimization. Upper
Saddle River, NJ: Prentice Hall.

Cao, B.Y. 2002. Fuzzy Geometric Programming. Dordrecht: Kluwer Academic.
Chen, T.Y. 1992. Structural Optimization Using Single-Term Posynomial Geometric

Programming. Computer and Structures 45(5):911–918.
Chiang, M. 2005. Geometric Programming for Communication Systems. Hanover, MA:

NOW Publishers.
Chu, C., and Wong, D.F. 2001. VLSI Circuit Performance Optimization by Geometric

Programming. Annals of Operations Research 105:37–60.
Dawson, J., Boyd, S., Hershenson, M., and Lee, T.H. 2001. Optimal Allocation of

Local Feedback in Multistage Amplifiers via Geometric Programming. IEEE
Transactions on Circuits and Systems 48(1):1–11.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2F0045-7949%2892%2990050-A
http://www.crcnetbase.com/action/showLinks?crossref=10.1023%2FA%3A1013345330079
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2F81.903183
http://www.crcnetbase.com/action/showLinks?crossref=10.1162%2F106365600568202
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2F81.903183
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0925-5273%2802%2900327-4
http://www.crcnetbase.com/action/showLinks?crossref=10.1162%2F106365600568167

305Bibliography

Dembo, R.S. 1976. A Set of Geometric Programming Test Problems and Their
Solutions. Mathematical Programming 10:192–213.

Dembo, R.S. 1978. Dual to Primal Conversion in Geometric Programming. Journal of
Optimization Theory and Applications 26:243–252.

Dey, S., and Roy, T.K. 2013. Optimization of Structural Design Using Geometric
Programming. International Journal of Engineering Research and Technology 2(8).

Duffin, R.J., Peterson, E.L., and Zener, C. 1967. Geometric Programming. New York:
John Wiley & Sons.

Fang, S.C., Rajasekara, J.R., and Tsao, H.S.J. 1997. Entropy Optimization and Mathematical
Programming. Dordrecht: Kluwer Academic.

Hajela, P. 1986. Geometric Programming Strategies for Large Scale Structural
Synthesis. AIAA Journal 24(7):1173–1178.

Hoburg, W., and Abbeel, P. 2012. Geometric Programming for Aircraft Design
Optimization. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, Hawaii. AIAA 2012-1680.

Jefferson, T.R., and Scott, C.H. 1979. Avenues of Geometric Programming—
Applications. NZOR 7-1.

Ojha, A.K., and Biswal, K.K. 2010. Posynomial Geometric Programming Problems
with Multiple Parameters. Journal of Computing 2(1).

Phillips, D.T., Ravindran, A., and Solberg, J.J. 1976. Operations Research—Principles and
Practice. John Wiley & Sons.

Rao, S.S. 2009. Engineering Optimization: Theory and Practice. New Jersey: John Wiley &
Sons.

Stoecker, W.F. 1971. Design of Thermal System. New York: McGraw-Hill.

Chapter 9

Allison, J.T., and Papalambros, P.Y. 2008. Consistency Constraint Allocation in
Augmented Lagrangian Coordination. Distance Education and Training
Council (DETC), 49823.

Anderson, V.L., and McLean, R.A. 1974. Design of Experiments: A Realistic Approach.
New York: Marcel Dekker.

Balesdent, M., Berend, N., and Depince, P. 2010. Optimal Design of Expendable
Launch Vehicles using Stage-Wise MDO Formulation. 13th AIAA/ISSMO
Multidisciplinary Analysis Optimization Conference, Texas. AIAA 2010-9324.

Cornell, J.A., and Khuri, A.I. 1996. Response Surfaces: Design and Analyses. Marcel Dekker.
Dapeng, W., Gary, W.G., and Naterer, G.F. 2007. Extended Collaboration Pursuing

Method for Solving Larger Multidisciplinary Design Optimization Problems.
AIAA Journal 45(6):1208–1221.

Fletcher, R. 1981. Practical Methods of Optimization: Constrained Optimization. New
York: John Wiley & Sons.

Geyer, P. 2009. Component-Oriented Decomposition for Multidisciplinary Design
Optimization in Building Design. Advanced Engineering Informatics 23(1):12–31.

Goldberg, D.E. 1989. Genetic Algorithm in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F3.9410
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF01580667
http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F1.21167
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF00933405
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF00933405
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F9781118723203
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.aei.2008.06.008

306 Bibliography

He, Y., and McPhee, J. 2005. Multidisciplinary Optimization of Multi-Body Systems
with Application to the Design of Rail Vehicles. Multi-Body System Dynamics
14(2):111–135.

Herskovits, J. 2004. A Mathematical Programming Algorithms for Multidisciplinary
Design Optimization. 10th AIAA/ISSMO Multidisciplinary Analysis Optimiza-
tion Conference, Texas. AIAA 2004-4502.

IIT Mumbai. 2004. Workshop on Optimization Based Design/Multidisciplinary
Design Optimization (Course Notes), Trivandrum.

Kodiyalam, S., and Sobieszczanski-Sobieski, J. 2000. Bi-Level Integrated System
Synthesis with Response Surfaces. AIAA Journal 38(8):1479–1485.

Kroo, I., and Manning, V. 2000. Collaborative Optimization: Status and Directions.
8th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Texas.
AIAA 2000-4721.

Manokaran, K., Vidya, G., and Sivaramakrishnan, A.E. 2009. Wing Planform Design
Optimization for Reusable Launch Vehicle. Journal of Aircraft 46(2):726–730.

Martins, J.R.R.A., and Lambe, A.B. 2013. Multidisciplinary Design Optimization: A
Survey of Architectures. AIAA Journal 51(9):2049–2075.

McAllister, C.D., and Simpson, T.W. 2003. Multidisciplinary Robust Design Optimiza-
tion of an Internal Combustion Engine. Journal of Mechanical Design 125(1):124–130.

Sobieszczanski-Sobieski, J., Agte, J.S., and Sandusky, R.R., Jr. 2000. Bi-Level Integrated
System Synthesis. AIAA Journal 38(1):164–172.

Sobieszczanski-Sobieski, J., and Haftka, R.T. 1996. Multidisciplinary Aerospace
Design Optimization: Survey of Recent Developments. 34th AIAA Aerospace
Sciences Meeting and Exhibit, Reno. AIAA 96-0711.

Tedford, N.P., and Martins, J.R.R.A. 2006. On the Common Structure of MDO
Problems: A Comparison of Architectures. 11th AIAA/ISSMO Multidisciplinary
Analysis Optimization Conference, Texas. AIAA 2006-7080.

Tedford, N.P., and Martins, J.R.R.A. 2010. Benchmarking Multidisciplinary Design
Optimization Algorithms. Optimization and Engineering 11:159–183.

Xiaoqian Chen Li Yan, Wencai Luo, Ling Xu, Young Zhao, and Zhenguo Wang. 2006.
Research on Theory and Application of Multidisciplinary Design Optimization
of Flight Vehicles. 2nd AIAA MDO Specialist Conference, VA. AIAA 2006-1721.

Yoder, S., and Brockman, J. 1996. A Software Architecture for Collaborative Develop-
ment and Solution of MDO Problems (Multidisciplinary Design Optimization).
AIAA, NASA and ISSMO Symposium on Multidisciplinary Analysis and
Optimization, VA. AIAA 96-4103.

Yushin Kim, Yong-Hee Jeon, and Dong-Ho Lee. 2006. Multi-Objective and Multi-
Disciplinary Design Optimization of Supersonic Fighter Wing. Journal of Aircraft
43(3):817–824.

Chapter 10

Balas, E. 1965. An Additive Algorithm for Solving Linear Programs with Zero-One
Variables. Operations Research 13(4):517–546.

Bricker, D.L. 1999. Notes on Balas’ Additive Algorithm. Ames: University of Iowa Press.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F1.13864
http://www.crcnetbase.com/action/showLinks?crossref=10.1115%2F1.1543978
http://www.crcnetbase.com/action/showLinks?crossref=10.1287%2Fopre.13.4.517
http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F2.937
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs11044-005-4310-0
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs11081-009-9082-6
http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F2.1126
http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F1.39732
http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F1.J051895

307Bibliography

Dakin, R.J. 1965. A Tree-Search Algorithm for Mixed-Integer Programming Problems.
Computer Journal 8(3):250–255.

Garfinkel, R.S., and Nemhauser, G.L. 1972. Integer Programming. New York: John
Wiley & Sons.

Gomory, R.E. 1960. An Algorithm for the Mixed Integer Problem. Rand Report, R.M.
25797.

Gomory, R.E., and Baumol, W.J. 1960. Integer Programming and Pricing. Econometrica
28(3):521–550.

Kennedy, J., and Eberhart, R.C. 2001. Swarm Intelligence. San Diego: Academic Press.
Land, A.H., and Doig, A. 1960. An Automatic Method for Solving Discrete

Programming Problems. Econometrica 28:497–520.
Laskari, E.C., Parsopoulos, K.E., and Vrahatis, M.N. 2002. Particle Swarm Optimization

for Integer Programming. Evolutionary Computation Proceedings 2:1576–1581.
Rao, S.S. 2009. Engineering Optimization: Theory and Practice. Hoboken, NJ: John

Wiley & Sons.
Shenoy, G.V., Srivastava, U.K., and Sharma, S.C. 1986. Operations Research for

Management. New Delhi: New Age International Publishers.
Wismer, D.A., and Chattergy, R. 1978. Introduction to Nonlinear Optimization: A Problem

Solving Approach. Amsterdam: North Holland.

Chapter 11

Bellman, R.E. 1957. Dynamic Programming. Princeton, NJ: Princeton University Press.
Bertsekas, D.P. 1987. Dynamic Programming: Deterministic and Stochastic Models. Upper

Saddle River, NJ: Prentice Hall.
Denardo, E.V. 1982. Dynamic Programming Models and Applications. Upper Saddle

River, NJ: Prentice Hall.
Dreyfus, S. 2010. Modern Computational Applications of Dynamic Programming.

Journal of Industrial and Systems Engineering 4(3):152–155.
Edwin, J.E., and Gruber, M.J. 1971. Dynamic Programming Application in Finance.

The Journal of Finance 26(2):473–506.
George, R.E. 1963. Nuclear Rocket Thrust Optimization using Dynamic Programming.

AIAA Journal 1(5):1159–1166.
Hadley, G. 1964. Nonlinear and Dynamic Programming. Reading, MA: Addison-Wesley.
Hillier, F.S., and Lieberman, G.J. 2010. Introduction to Operations Research. New York:

McGraw-Hill.
Howard, R.A. 1960. Dynamic Programming and Markov Processes. John Wiley & Sons.
Leondes, C.T., and Smith, F.T. 1970. Optimization of Interplanetary Orbit Transfers by

Dynamic Programming. Journal of Spacecraft and Rockets 7(5):558–564.
Powell, W.B. 2010. Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality. Hoboken, NJ: John Wiley & Sons.
Puterman, M.L. 2005. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. Hoboken, NJ: John Wiley & Sons.
Smith, D.K. 1991. Dynamic Programming: A Practical Introduction. Ellis Horwood.
Sniedovich, M. 1992. Dynamic Programming. New York: Marcel Dekker.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F3.29990
http://www.crcnetbase.com/action/showLinks?crossref=10.2307%2F1910129
http://www.crcnetbase.com/action/showLinks?crossref=10.1111%2Fj.1540-6261.1971.tb00910.x
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F9780470549124
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fcomjnl%2F8.3.250
http://www.crcnetbase.com/action/showLinks?crossref=10.2514%2F3.1740
http://www.crcnetbase.com/action/showLinks?crossref=10.2307%2F1910130

308 Bibliography

Appendix A

MATLAB, The MathWorks Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098, USA, Tel:
508-647-7000, Fax: 508-647-7001, email: info@mathworks.com, web: mathworks
.com.

Pratap, R. 2010. Getting Started with MATLAB: A Quick Introduction for Scientists and
Engineers. Oxford and New York: Oxford University Press.

© 2015 by Taylor & Francis Group, LLC

309

Appendix A: Introduction to MATLAB®

A.1 Introduction

MATLAB is a software package of The MathWorks Inc., for technical comput-
ing that does both computing and visualization with ease. It has a number of
built-in functions that can be used by an individual’s application. The acro-
nym MATLAB stands for MATrix LABoratory. Matrices are the basic build-
ing blocks of MATLAB. Though MATLAB is primarily used for numerical
computations, it also supports symbolic computations. The main advantage
of MATLAB is the ease with which one can translate the idea into an appli-
cation. MATLAB runs on almost all computer platforms, whether Microsoft
Windows, Apple Macintosh or Unix. On Microsoft Windows, MATLAB can
be started by double clicking the MATLAB shortcut icon. See Figure A.1 for
a typical desktop of MATLAB.

Observe that the desktop has four windows: current folder, command
window, workspace, and command history. The command prompt is shown
by >>. All commands are to be typed here. The command history windows
keep a record of the previously typed commands across multiple sessions.
The previously typed command in this window can be double-clicked so
that it can be executed again. All files listed in the left window correspond
to the current folder directory. The file can be opened for editing by simply
double-clicking on it. The type and size of the variables are shown in the
workspace window (empty in this figure). There is a provision to select the
variables and plot them.

A.2 Matrices and Arrays

Type the matrix A in the command prompt

>> A = [1 2 3; 4 -1 -2; 5 6 7]

Then press enter. The following output is displayed in the command
window.

© 2015 by Taylor & Francis Group, LLC

310 Appendix A

A =
 1 2 3
 4 -1 -2
 5 6 7

Observe that a declaration of dimensions of A is not required. Let us learn
few more commands.

>> sum(A)
ans =
 10 7 8

The sum function adds the elements of each column. To get sum of each
row

>> sum(A')
ans =
 6 1 18

where A' is the transpose of the matrix A. The diagonal elements can be
obtained using the diag function.

>> diag(A)
ans =

 1
 -1
 7

Simultaneous use of functions in a single command is also permissible.
For example,

>> sum(diag(A))
ans =
 7

Suppose we want to assign the element –2 in matrix A to a variable x. The
element –2 is in second row and third column of A. Then

>> x = A(2,3)
x =
 -2

Consider the colon operator

>> x = 1:2:10

The output is a row vector containing numbers from 1 to 10 in steps of 2:

ans =
 1 3 5 7 9

© 2015 by Taylor & Francis Group, LLC

311Appendix A

Fi
g

u
r

e
A

.1
C

om
m

an
d

 w
in

do
w

.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18469-14&iName=master.img-000.jpg&w=238&h=425

312 Appendix A

To get all rows (or columns) of a matrix, a colon operator can be used. For
example, to get second column of A,

>> A(:,2)
ans =
 2
 -1
 6

To get third row of A

>> A(3,:)
ans =
 5 6 7

A.3 Expressions

MATLAB does not require variable type declarations. For example,

drag_coefficient = 0.6

The variables are case sensitive; that is, the variable LIFT is different from
lift.

MATLAB uses conventional decimal notation. Scientific notation uses the
letter e to specify a power-of-ten scale factor. Imaginary numbers use either
i or j as a suffix. Some examples are

6 -999 0.0005 109.1237 1.60210e-20 9.123e23 7i
-6.28j 4e6i

MATLAB uses the following operators and the precedence follows stan-
dard mathematical rules.

+ Addition
– Subtraction
* Multiplication
/ Division
\ Left division
^ Power
() Specify evaluation order

© 2015 by Taylor & Francis Group, LLC

313Appendix A

The relational operators >, <, >=, <= consider only the real part for the pur-
pose of comparison while the operator = = considers both real and imagi-
nary parts.

Some elementary functions in MATLAB are

Trigonometric
sin Sine
sind Sine of argument in degrees
sinh Hyperbolic sine
asin Inverse sine
asind Inverse sine, result in degrees
asinh Inverse hyperbolic sine
cos Cosine
cosd Cosine of argument in degrees
cosh Hyperbolic cosine
acos Inverse cosine
acosd Inverse cosine, result in degrees
acosh Inverse hyperbolic cosine
tan Tangent
tand Tangent of argument in degrees
tanh Hyperbolic tangent
atan Inverse tangent
atan2 Four-quadrant inverse tangent
atanh Inverse hyperbolic tangent
sec Secant
secd Secant of argument in degrees
sech Hyperbolic secant
asec Inverse secant
asecd Inverse secant, result in degrees
asech Inverse hyperbolic secant
csc Cosecant
cscd Cosecant of argument in degrees
csch Hyperbolic cosecant
acsc Inverse cosecant
acscd Inverse cosecant, result in degrees
acsch Inverse hyperbolic cosecant
cot Cotangent
cotd Cotangent of argument in degrees
coth Hyperbolic cotangent
acot Inverse cotangent

© 2015 by Taylor & Francis Group, LLC

314 Appendix A

acotd Inverse cotangent, result in degrees
acoth Inverse hyperbolic cotangent
hypot Square root of sum of squares

Exponential
exp Exponential
expm1 Compute exp(x) – 1 accurately
log Natural logarithm
log1p Compute log(1 + x) accurately
log10 Common (base 10) logarithm
log2 Base 2 logarithm and dissect floating point number
pow2 Base 2 power and scale floating point number
sqrt Square root
nthroot Real nth root of real numbers

Complex
abs Absolute value
angle Phase angle
complex Construct complex data from real and imaginary parts
conj Complex conjugate
imag Complex imaginary part
real Complex real part
isreal True for real array

Rounding and Remainder
fix Round toward zero
floor Round toward minus infinity
ceil Round toward plus infinity
round Round toward nearest integer
mod Modulus (signed remainder after division)
rem Remainder after division
sign Signum

MATLAB also provides values of useful constants.

pi 3.14159265…
i Imaginary unit
j Same as i
eps Floating-point relative precision
realmin Smallest floating-point number
realmax Largest floating-point number
Inf Infinity
NaN Not-a-number

© 2015 by Taylor & Francis Group, LLC

315Appendix A

A.4 Matrix Operations

Examples of zeros, ones, and rand functions are given below.

>> Y = zeros(3,2)
Y =
 0 0
 0 0
 0 0
>> X = ones(2,3)
X =
 1 1 1
 1 1 1
>> Z = rand(2)
Z =
 0.1656 0.2630
 0.6020 0.6541

The rand function generates a uniformly generated random number
between 0 and 1.

The matrix A can be saved in the same directory, for a later use, by the
command:

>> save –ascii aa X

Sometimes it is necessary to clear all variables and functions from the
command window. This is done with the command

>> clear all

Now if A is punched in the command prompt it results in an error.

>> A

??? Undefined function or variable ‘A’.

To get back the saved value of matrix A, use the load command

>> A=load('aa')
A =
 1 2 3
 4 -1 -2
 5 6 7

To know about a function name, use help from the menu or simply type
help functionnane in the command. For example,

>> help clc

© 2015 by Taylor & Francis Group, LLC

316 Appendix A

CLC Clear command window.
CLC clears the command window and homes the cursor.

If one is not able to recollect the function name, use the lookfor command.
For example, to get the name of absolute function:

>> lookfor absolute

abs Absolute value
genelowvalfilter Filters genes with low absolute expression levels
imabsdiff Absolute difference of two images
meanabs Mean of absolute elements of a matrix or matrices
sumabs Sum of absolute elements of a matrix or matrices
mae Mean absolute error performance function
sae Sum absolute error performance function
dmae Mean absolute error performance derivative function
circlepick Pick bad triangles using an absolute tolerance
mad Mean/median absolute deviation

The concatenation of the matrices is shown with the following example.

>> A = [1 2 3; 4 -1 -2; 5 6 7]
A =
 1 2 3
 4 -1 -2
 5 6 7
>> B = [8;9;10]
B =
 8
 9
 10
>> Z = [A B]
Z =
 1 2 3 8
 4 -1 -2 9
 5 6 7 10

Suppose we want to delete the second column of the Z matrix. This can be
done by

>> Z(:,2)=[]
Z =
 1 3 8
 4 -2 9
 5 7 10

© 2015 by Taylor & Francis Group, LLC

317Appendix A

The inverse of the square matrix can be computed by

>> inv(Z)
ans =
 -0.3517 0.1102 0.1822
 0.0212 -0.1271 0.0975
 0.1610 0.0339 -0.0593

The eigenvalues of the square matrix are computed by

>> eig(Z)
ans =
 17.1878
 -2.3534
 -5.8344

Some of the array operators are

+ Addition
– Subtraction
.* Element-by-element multiplication
./ Element-by-element division
.\ Element-by-element left division
.̂ Element-by-element power
.' Unconjugated array transpose

For example,

>> U = [1 2 3]
U =
 1 2 3
>> V = [-1 -2 -3]
V =
 -1 -2 -3
>> U.*V
ans =
 -1 -4 -9

The display of numbers is controlled by the format command. Typical
commands are

format short
format long

The previous command can be brought back into the command prompt
using the key ↑.

© 2015 by Taylor & Francis Group, LLC

318 Appendix A

A.5 Plotting

If x and y are two vectors then plot(x, y) makes a graph. For example, con-
sider the following example.

>> x = 0:0.01:2*pi;
>> y = cos(x);
>> y1 = sin(x);
>> plot(x,y,'--',x,y1,'r:')
>> xlabel('0 \leq x \leq 2\pi')
>> ylabel('Sine and Cosine functions')
>> legend('cos(x)', 'sin(x)')
>> title('Multiple Plots')

Figure A.2 is displayed on the desktop and can be edited using the figure
menu.

The following example demonstrates how to make a contour plot (Figure
A.3).

>> [X,Y] = meshgrid(-2:.01:2,-2:.01:3);
>> Z = X.^2+Y.^2;
>> v=[1;2;3;4;5;6;7;8;9;10;11;12];
>> [c,h] = contour(X,Y,Z,v); clabel(c,h);

Figure A.2
Multiple plots.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18469-14&iName=master.img-001.jpg&w=215&h=195

319Appendix A

A.6 Programming

The if-else statement can be demonstrated through the following example.

>> for i = 1:6
x = rand(1);
if x<0.5
disp('x is less than 0.5')
else
disp('x is greater than 0.5')
end
end

Note that the first end is the end of the if statement and the second end
is the end of the for loop. Note that when a semicolon is put at the end of
a statement, it suppresses printing of the variable. The following output is
displayed by running the above code.

x is greater than 0.5
x is greater than 0.5
x is less than 0.5
x is greater than 0.5
x is greater than 0.5
x is less than 0.5

Figure A.3
Contour plot.

© 2015 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18469-14&iName=master.img-002.jpg&w=215&h=193

320 Appendix A

A break statement is used for an early exit from a for or while loop.
Instead of running all the commands in the command window, one can

create a script file with extension.m. For example, type edit test.m on the
command prompt, resulting in opening of an empty file. Type the following
contents into that file.

for i = 1:10
x = rand(1);
if x<0.5
disp('x is less than 0.5')
else
disp('x is greater than 0.5')
end
end

and save it. Then execute the script file by typing test in the command prompt.
The script can also be executed by clicking on ▶ in the editor window.

Functions are also script files with extension.m, but they accept input
arguments and return output arguments. The function name and file name
should be the same. For example, a function springsystem.m takes the input
x and y and returns an output z.

function z = springsystem(x,y)

It is important to note that a function without the arguments cannot be
executed. For example, simply typing springsystem at the command prompt
will result in an error. The input/output arguments can have different names
while calling the function. For example,

k = springsystem(a,b)

is perfectly fine.

© 2015 by Taylor & Francis Group, LLC

321

Appendix B: MATLAB® Code

Chapter 1

Code Name Details

graph_examp12.m Solves Example 1.2 using the graphical method
graph_examp14.m Solves Example 1.4 using the graphical method
convexity.m Plots some convex functions
derivative.m Computes and plots first and second derivatives of a function
grad.m Plots the gradient vector
positive_definite.m Checks whether the square matrix is positive definite
quadr.m Linear and quadratic approximations of a function
quadr_examp12.m Linear and quadratic approximations of a function given in Example 1.2

%%%
% MATLAB code graph_examp12.m
%%%
%
% x1 -> radius of can
% x2 -> height of can
% area -> area of can
% pi -> MATLAB variable
% x,y,z -> array of design points
% vv -> user identified contour values
% cons_x2-> value of x2 when constraint is active
% contour -> MATLAB function to generate contours
% xlabel, ylabel, legend, hold on -> MATLAB functions
%
for x1 = 1:100
 for x2 = 1:200
 area = 2*pi*x1*x2 + 2*pi*x1*x1;
 x(x1,x2) = x1;
 y(x1,x2) = x2;
 z(x1,x2) = area;
 end
end
vv = [15000;26436;50000;70000;200000];
[c, h] = contour(x,y,z,vv); clabel(c, h);
hold on

© 2015 by Taylor & Francis Group, LLC

322 Appendix B

for x1 = 10:100
 cons_x2 = 330000/(pi*x1*x1);
 plot(x1,cons_x2,'*')
 hold on
end
xlabel('x_1, mm')
ylabel('x_2, mm')
legend('Objective Function','Constraint')
%%

%%%
% MATLAB code graph_examp14.m
%%%
%
% L -> length of rod
% rho -> density of rod material
% d -> diameter of rod
% m -> mass of rod
% I -> moment of inertia
% k -> mass per unit length
% f1 -> frequency
% plot, xlabel, ylabel, legend -> MATLAB function
%
L = 1;
rho = 7800;
E = 2e11;

for d = 0.0:0.001:0.05
mass = (pi/4)*d*d*L*rho;
k = mass/L;
I = (pi/64)*d^4;
f1 = (1/(2*pi))*(3.5156/(L*L))*sqrt((E*I)/k);
plot(d,mass,'+')
hold on
plot(d,f1,'*')
hold on
end
xlabel('d, m')
ylabel('objective function (kg), constraint(Hz)')
legend('Objective Function','Constraint')
%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code convexity.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% x -> independent variable
% y -> dependent variable

© 2015 by Taylor & Francis Group, LLC

323Appendix B

% plot, xlabel, ylabel, meshgrid -> MATLAB functions
%

 x = meshgrid(-2:0.01:2);
 y = x.^2;
 subplot(2,2,1), plot(x,y)
 xlabel('x')
 ylabel('y')
 hold on
 y = exp(x);
 subplot(2,2,2), plot(x,y)
 xlabel('x')
 ylabel('y')
 hold on
 y = exp(y);
 subplot(2,2,3), plot(x,y)
 xlabel('x')
 ylabel('y')
 hold on
 y = exp(x.^2);
 subplot(2,2,4), plot(x,y)
 xlabel('x')
 ylabel('y')
 hold on
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code derivative.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% delx -> delta-x
% fx -> f(x)
% deriv -> derivative of the function at xd
% sderiv -> second derivative of the function at xdd
% signchange -> change of derivative sign
% locatepoints -> point at which derivative changes sign
% plot, subplot, xlabel, ylabel, hold -> MATLAB functions
%
delx = 0.01;
x=0.1:delx:1.0;
fx = @(x)2*sin(5*x)+3*x.^3-2*x.^2+3*x-5;
subplot(311), plot(x,fx(x),'LineWidth',2)
hold on
ylabel('f(x)')
grid on
 for i = 2:length(x)-1
 xd(i-1) = x(i);
 deriv(i-1) = (fx(x(i+1))-fx(x(i-1)))/(2*delx);
 end

 subplot(312), plot(xd,deriv,'LineWidth',2)
 grid on

© 2015 by Taylor & Francis Group, LLC

324 Appendix B

 hold on
 ylabel('f''(x)')
 signchange = deriv(1:length(deriv)-1).* deriv(2:length(deriv));
 locatepoints = xd(find(signchange<0))
 subplot(311), plot(locatepoints,fx(locatepoints),'r*')
 subplot(312), plot(xd(find(signchange<0)),deriv(find(signchange<0)),'r*')
 for ii = 2:length(xd)-1
 xdd(ii-1) = xd(ii);
 sderiv(ii-1) = (fx(xd(ii+1))+fx(xd(ii-1))-2*fx(xd(ii)))/
 (delx*delx);
 end
 subplot(313), plot(xdd,sderiv,'LineWidth',2)
 grid on
 hold on
 subplot(313), plot(xdd(find(signchange<0)),sderiv(find(signchange<0)),'r*')
 xlabel('x')
 ylabel('f''''(x)')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%
% MATLAB code grad.m
%%%
%
% x1 -> radius of can
% x2 -> height of can
% area -> area of can
% pi -> MATLAB variable
% x,y,z -> array of design points
% vv -> user identified contour values
% xit, x2t -> identified point at which gradient required
% contour -> MATLAB function to generate contours
% xlabel, ylabel, legend, plot, hold on -> MATLAB functions
%
clear all
clc
for x1 = 1:100
 for x2 = 1:100
 area = 2*pi*x1*x2 + 2*pi*x1*x1;
 x(x1,x2) = x1;
 y(x1,x2) = x2;
 z(x1,x2) = area;
 end
end
vv = [5000,15000,30000,50000,70000,90000];
[c, h] = contour(x,y,z,vv); clabel(c, h);
hold on
x1t = 25;
x2t = 70.493;
slope = (x2t+2*x1t)/x1t;
i = 1;

© 2015 by Taylor & Francis Group, LLC

325Appendix B

for delx1 = -10:10
 delx2 = -slope*delx1;
 x11(i) = x1t+delx1;
 x22(i) = x2t+delx2;
 i = i+1;
end
plot(x11,x22,'r--')
hold on
i = 1;
for delx1 = -10:10
 delx2 = (1/slope)*delx1;
 x11(i) = x1t+delx1;
 x22(i) = x2t+delx2;
 i = i+1;
end
plot(x11,x22,'b+')
xlabel('x_1, mm')
ylabel('x_2, mm')
legend('Objective Function','Tangent','Gradient')
%%

%%%
% MATLAB code positive_definite.m
%%%
% H -> hessian matrix
% eig, fprintf -> MATLAB function
% eigenvalues -> of the hessian matrix
%
H = [2 1 1;
 1 2 1;
 0 2 3];
eigenvalues = eig(H);
eigenvalues
if eigenvalues >= 0
 fprintf('The matrix is positive definite\n')
else
 fprintf('The matrix is not positive definite\n')
end
%%%

© 2015 by Taylor & Francis Group, LLC

326 Appendix B

%%%
% MATLAB code quadr.m
%%%
%
% x -> independent variable and symbolic variable (later)
% y -> exp(-x)
% syms -> symbolic object (MATLAB function)
% taylor -> MATLAB function
% subs -> symbolic substitution (MATLAB function)
% xlabel, ylabel, legend, plot, hold on -> MATLAB functions
%
x = -2:0.01:2;
y = exp(-x);
plot(x,y)
hold on
% Linear approximation
syms x
f = taylor(exp(-x),2);
x = -2:0.01:2;
z = subs(f);
plot(x,z,'r--')
% Quadratic approximation
syms x
f = taylor(exp(-x),3);
x = -2:0.01:2;
z = subs(f);
plot(x,z,'g--')
legend('exp(-x)','linear','quadratic')
xlabel('x')
ylabel('f(x)')
%%%

%%%
% MATLAB code quadr_examp12.m
%%%
%
% x1 -> radius of can
% x2 -> height of can
% area -> area of can
% pi -> MATLAB variable
% x,y,z -> array of design points
% vv -> user identified contour values
% xit, x2t -> identified point at which gradient required
% contour -> MATLAB function to generate contours
% syms -> symbolic object (MATLAB function)
% subs -> symbolic substitution (MATLAB function)
% gradient -> analytical value
% hessian -> analytical value
% xlabel, ylabel, legend, plot, hold on -> MATLAB functions
%

© 2015 by Taylor & Francis Group, LLC

327Appendix B

clear all
clc
for x1 = 1:200
 for x2 = 1:200
 area = 2*pi*x1*x2 + 2*pi*x1*x1;
 x(x1,x2) = x1;
 y(x1,x2) = x2;
 z(x1,x2) = area;
 end
end
vv = [15000;50000;60000;70000;80000;90000;150000;200000];
[c, h] = contour(x,y,z,vv); clabel(c, h);
hold on
syms x1p x2p
gradient = [2*pi*x2p+4*pi*x1p;2*pi*x1p];
hessian = [4*pi 2*pi; 2*pi 0];
% Linear approximation
x1p = 60;
x2p = 72.629;
gf = subs(gradient);
for delx1 = 1:60
 for delx2 = 1:60
 x1 = x1p + delx1;
 x2 = x2p + delx2;
 area = 2*pi*x1p*x2p + 2*pi*x1p*x1p + gf’*[delx1;delx2]
 + 0.5*[delx1 delx2]*(hessian*[delx1;delx2]);
 [x1 x2 area]
 xx(delx1,delx2) = x1;
 yy(delx1,delx2) = x2;
 zz(delx1,delx2) = area;
 end
end
vv1 = [50000;60000;70000;80000;90000];
[c, h] = contour(xx,yy,zz,vv1,'rd','LineWidth',3);
xlabel('x_1, mm')
ylabel('x_2, mm')
legend('Objective Function','Quadratic approx.')
%%

© 2015 by Taylor & Francis Group, LLC

328 Appendix B

Chapter 2

Code Name Details

exhaustive.m Exhaustive search to locate the minimum of the test problem
bisection.m Bisection method
func.m Objective function to be coded here
newtonraphson.m Newton–Raphson method
secant.m Secant method
cubic.m Cubic polynomial fit
golden.m Golden section method

%%%
% MATLAB code exhaustive.m
%%%
%
% delta -> step size for search
% T -> independent variable, temperature
% U -> cost function
% uvec -> vector of cost function evaluated at
% different temperatures
% minu -> minimum of cost function
% min -> MATLAB function
%
clear all
clc
uvec=[];
delta = 0.01;
for T = 40:delta:90
 U = 204165.5/(330-2*T) + 10400/(T-20);
 uvec = [uvec U];
 plot(T,U)
 hold on
end
xlabel('T');ylabel('U');
[minu,i]= min(uvec);
fprintf('Minimum Cost = %6.2f\n ',minu)
fprintf('occurs at T = %6.2f\n ',40+(i-1)*delta)
%%

%%%
% MATLAB code bisection.m
%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable

© 2015 by Taylor & Francis Group, LLC

329Appendix B

% alpha -> midpoint of a and b
% delx -> ?x for central difference method
% derivative -> derivative using central difference method
% derivative_alpha -> derivative at x = alpha
% abs -> absolute of a number, MATLAB function
%
clear all
clc
a = 40;
b = 90;
epsilon = 0.01;
delx = 0.01;
fprintf(' a b \n')
fprintf('-------------------------\n')
for i= 1:100
 fprintf(' %7.3f %8.3f \n',a,b)
 alpha = (a+b)/2;
 derivative = (func(a+delx) - func(a-delx))/(2*delx);
 derivative_alpha = (func(alpha+delx)- func(alpha-delx))/
 (2*delx);
if (derivative*derivative_alpha) < 0
 b = alpha;
else
 a = alpha;
end
if abs(a-b) < epsilon
 break;
end
end
fprintf('-------------------------\n')
fprintf('x* = %7.3f Minimum = %8.3f\n',a,func(a))
fprintf('Number of function calls = %3d\n',4*i)
%
%%%

%%%
% MATLAB code func.m
%%%
%
% x -> input variable to the function
% fx -> output from the function
%
function fx = func(x)
 fx = 204165.5/(330-2*x) + 10400/(x-20);
%%%

© 2015 by Taylor & Francis Group, LLC

330 Appendix B

%%%
% MATLAB code newtonraphson.m
%%%
%
% x -> initial guess of design variable
% delx -> ?x for central difference method
% derivative -> derivative using central difference method
% sec_derivative -> second derivative
% epsilon -> constant used to terminate the program
% xprev -> value of x stored from previous iteration
%
clear all
clc
x = 45;
delx = 0.01;
epsilon = 0.01;
fprintf(' x f(x) Deriv. Second deriv.\n')
fprintf('---\n')
for i = 1:100
 derivative = (func(x+delx) - func(x-delx))/(2*delx);
 sec_derivative =(func(x+delx)+func(x-delx)-2*func(x))/
 (delx*delx);
fprintf('%8.3f %8.3f %8.3f %8.3f\n',x,func(x),derivative,
 sec_derivative)
 xprev = x;
 x = x- derivative/sec_derivative;
 if abs(x-xprev) < epsilon
 break;
 end
end
fprintf('---\n')
fprintf('Number of function calls = %3d\n',5*i)
%%%

%%%
% MATLAB code secant.m
%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable
% alpha -> midpoint of a and b
% delx -> ?x for central difference method
% derivative -> derivative using central difference method
% derivative_alpha -> derivative at x = alpha
% abs -> absolute of a number, MATLAB function
% flag -> set the flag when minimum is bracketed
%
clear all
clc

© 2015 by Taylor & Francis Group, LLC

331Appendix B

a = 40;
b = 90;
epsilon = 0.001;
delx = 0.01;
flag = 0;
fprintf(' Alpha Deriv. \n')
fprintf('-------------------------\n')
for i = 1:100
 alpha = (a+b)/2;
 derivative = (func(a+delx) - func(a-delx))/(2*delx);
derivative_alpha = (func(alpha+delx)-func(alpha-delx))/
 (2*delx);
 if (derivative*derivative_alpha) < 0
 b = alpha;
 flag = 1;
 else
 a = alpha;
 end
 if flag == 1
 break;
 end
end
 for j = 1:100
 fprintf(' %7.3f %8.3f \n',alpha,derivative_alpha)
 derivative_a = (func(a+delx) - func(a-delx))/(2*delx);
 derivative_b = (func(b+delx) - func(b-delx))/(2*delx);
 alpha = b - derivative_b*(b-a)/(derivative_b-derivative_a);
 derivative_alpha = (func(alpha+delx) - func(alpha-delx))/
 (2*delx);
 if derivative_alpha > 0
 b = alpha;
 else
 a = alpha;
 end
 if abs(derivative_alpha) < epsilon
 break;
 end
end
fprintf('-------------------------\n')
fprintf('x* = %7.3f Minimum = %8.3f\n',alpha,func(alpha))
fprintf('Number of function calls = %3d\n',4*i+6*j)
%
%%%

© 2015 by Taylor & Francis Group, LLC

332 Appendix B

%%%
% MATLAB code cubic.m
%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable
% alpha -> midpoint of a and b
% delx -> ?x for central difference method
% derivative -> derivative using central difference method
% derivative_alpha -> derivative at x = alpha
% abs -> absolute of a number, MATLAB function
% flag -> set the flag when minimum is bracketed
% derivative_a -> derivative at point a
% derivative_b -> derivative at b
%
a = 40;
b = 90;
delx = 0.01;
flag = 0;
epsilon= 0.001;
fprintf(' a b \n')
fprintf('-------------------------\n')
for i = 1:100
 alpha = (a+b)/2;
 derivative = (func(a+delx) - func(a-delx))/(2*delx);
 derivative_alpha = (func(alpha+delx)-func(alpha-delx))/
 (2*delx);
if (derivative*derivative_alpha) < 0
 b = alpha;
 flag = 1;
 else
 a = alpha;
 end
 if flag == 1
 break;
 end
end
for j = 1:100
 fprintf(' %7.3f %8.3f \n',a,b)
 derivative_a = (func(a+delx) - func(a-delx))/(2*delx);
 derivative_b = (func(b+delx) - func(b-delx))/(2*delx);
 z = 3*(func(a)-func(b))/(b-a) + derivative_a + derivative_b;
 w = ((b-a)/abs(b-a))*sqrt(z*z-derivative_a*derivative_b);
 mew = (derivative_b+w-z)/(derivative_b-derivative_a+2*w);
if mew <= 1
 x_opt = b - mew*(b-a);
 else
 x_opt = a;
 end

© 2015 by Taylor & Francis Group, LLC

333Appendix B

 alpha1 = (func(x_opt+delx) - func(x_opt-delx))/(2*delx);
 if abs(alpha1) < epsilon
 break;
 else
 if (derivative_a*alpha1) < 0
 b = x_opt;
 else
 a = x_opt;
 end
end
end
fprintf('-------------------------\n')
fprintf('x* = %7.3f Minimum = %8.3f\n',x_opt,func
 (x_opt))
fprintf('Number of function calls = %3d\n',4*i+8*j)
%
%%%

%%%
% MATLAB code golden.m
%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable
% alpha -> midpoint of a and b
% falpha1 -> function value at x = alpha1
% falpha2 -> function value at x = alpha2
% epsilon -> constant used to terminate the algorithm
% abs -> absolute of a number, MATLAB function
% tau -> 2-golden number
%
clear all
clc
a = 40;
b = 90;
epsilon = 0.00001;
tau = 0.381967;
alpha1 = a*(1-tau) + b*tau;
alpha2 = a*tau + b*(1-tau);
falpha1 = func(alpha1);
falpha2 = func(alpha2);
fprintf(' a b \n')
fprintf('-------------------------\n')
for i = 1:100
 fprintf(' %7.3f %8.3f \n',a,b)
 if falpha1 > falpha2
 a = alpha1;
 alpha1 = alpha2;
 falpha1 = falpha2;
 alpha2 = tau*a + (1-tau)*b;
 falpha2 = func(alpha2);
 else
 b = alpha2;

© 2015 by Taylor & Francis Group, LLC

334 Appendix B

 alpha2 = alpha1;
 falpha2 = falpha1;
 alpha1 = tau*b + (1-tau)*a;
 falpha1 = func(alpha1);
 end
if abs(func(alpha1)-func(alpha2)) < epsilon
 break;
end
end
fprintf('-------------------------\n')
fprintf('x* = %7.3f Minimum = %8.3f\n',alpha1,func(alpha1))
fprintf('Number of function calls = %3d\n',2+i)
%
%%%

%%%
% MATLAB code func.m
%%%
% objective function to be coded here
% different test functions
%
function fx = func(x)
% fx = 204165.5/(330-2*x) + 10400/(x-20);
% fx = 3*x^4+(x-1)^2;
% fx = -4*x*sin(x);
% fx = 2*(x-3)^2+exp(0.5*x*x);
 fx = 3*(x)^2+12/(x^3)-5;
% fx = 2*x*x+16/x;
%
%%%

© 2015 by Taylor & Francis Group, LLC

335Appendix B

Chapter 3

Code Name Details

golden_funct1.m Golden section method for a multivariable function
func_multivar.m Objective function to be coded here
rosenbrock.m Plot of Rosenbrock function
springsystem.m Finds minimum of the spring system problem
steep_des.m Steepest descent method
grad_vec.m Gradient vector computation
contour_testproblem.m Plots contour of the test problem function
newton.m Newton’s method
hessian.m Computes Hessian matrix
modified_newton.m Modified Newton’s method
levenbergmarquardt.m Levenberg–Marquardt’s method
conjugate.m Conjugate gradient method
DFP.m Davidon–Fletcher–Powell (DFP) method
BFGS.m Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
powell.m Powell’s conjugate direction method
neldermead.m Nelder–Mead algorithm
\Robotics\ Directory containing codes for problems in robotics

%%%
% MATLAB code golden_funct1.m
%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable
% falpha1 -> function value at x = alpha1
% falpha2 -> function value at x = alpha2
% epsilon -> constant used to terminate the algorithm
% abs -> absolute of a number, MATLAB function
% tau -> 2-golden number
% func_multivar -> returns the value of a multivariable
% function
%
function [alpha1,falpha1] = golden_funct1(x,search)
a = -5;
b = 5;
tau = 0.381967;
epsilon = 1e-5;
alpha1 = a*(1-tau) + b*tau;
alpha2 = a*tau + b*(1-tau);
falpha1 = func_multivar(x+alpha1*search);

© 2015 by Taylor & Francis Group, LLC

336 Appendix B

falpha2 = func_multivar(x+alpha2*search);
for i= 1:1000
 if falpha1 > falpha2
 a = alpha1;
 alpha1 = alpha2;
 falpha1 = falpha2;
 alpha2 = tau*a + (1-tau)*b;
 falpha2 = func_multivar(x+alpha2*search);
 else
 b = alpha2;
 alpha2 = alpha1;
 falpha2 = falpha1;
 alpha1 = tau*b + (1-tau)*a;
 falpha1 = func_multivar(x+alpha1*search);
 end
 if abs(func_multivar(x+alpha1*search)-
 func_multivar(x+alpha2*search)) < epsilon
 break;
 end
end
%
%%%

%%%
% MATLAB code func_multivar.m
%%%
%
function fx = func_multivar(x)
 fx = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
%
%%%

%%%
% MATLAB code rosenbrock.m
%%%
%
% plots the Rosenbrock’s function
%
clear all
clc
[x1,x2] = meshgrid(-2:.03:2,-2:.03:2);
z = 100*(x2-x1.^2).^2+(1-x1).^2
surf(x1,x2,z)
shading interp
view (170,20)
xlabel('x1')

© 2015 by Taylor & Francis Group, LLC

337Appendix B

ylabel('x2')
zlabel('f(x1,x2)')
%
%%%

%%
% MATLAB code springsystem.m
%%%
%
clear all
clc
zprev = inf;
i = 0;
j = 0;
for x = -1:0.01:1
 i = i+1;
 for y = -1:0.01:1
 j = j+1;
 z = 100*(sqrt(x^2+(y+1)^2)-1)^2 + 90*(sqrt(x^2+(y-
 1)^2)-1)^2 -(20*x+40*y);
 if z < zprev
 zprev = z;
 xbest = x;
 ybest = y;
 end
 end
end
fprintf('Minimum Potential = %7.4f\n ',zprev)
fprintf('occurs at x1,x2 = %10.4f %10.4f\n',xbest,ybest)
%
%%%

%%%
% MATLAB code steep_des.m
%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1,epsilon2 -> constants used for terminating the
% algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% search -> search direction (set to negative of gradient)
%
clear all
clc
n_of_var = 2;
x = [-3 2];

© 2015 by Taylor & Francis Group, LLC

338 Appendix B

epsilon1 = 1e-6;
epsilon2 = 1e-6;
delx = 1e-3;
falpha_prev = func_multivar(x);
fprintf('Initial function value = %7.4f\n ',falpha_prev)
fprintf(' No. x-vector f(x) Deriv \n')
fprintf('__\n')
for i = 1:3000
deriv = grad_vec(x,delx,n_of_var);
search = -deriv;
[alpha,falpha] = golden_funct1(x,search);
if abs(falpha-falpha_prev)<epsilon1 || norm(deriv)<epsilon2
 break;
end
falpha_prev = falpha;
x = x + alpha*search;
fprintf('%3d %8.3f %8.3f % 8.3f %8.3f
 \n',i,x,falpha,norm(deriv))
end
fprintf('__\n')
%
%%%

%%%
% MATLAB code grad_vec.m
%%%
%
% compute gradient vector using central difference method
% xvec, xvec1 -> vector of design variables
% deriv(i) -> derivative w.r.t. ith variable
%
function deriv = grad_vec(x,delx,n_of_var)
xvec = x;
xvec1 = x;
for i = 1:length(x)
 xvec = x;
 xvec1 = x;
 xvec(i) = x(i) + delx;
 xvec1(i) = x(i) - delx;
deriv(i) = (func_multivar(xvec) - func_multivar(xvec1))/
 (2*delx);
end
%
%%%

© 2015 by Taylor & Francis Group, LLC

339Appendix B

%%%
% MATLAB code contour_testproblem.m
%%%
%
% plots contour of the test problem
% surfc -> Matlab function
clear all
clc
i = 0;
j = 0;
for x = -5:.02:5
 i = i+1;
 for y = -5:.02:5
 j = j+1;
 z(i,j) = 100*(sqrt(x^2+(y+1)^2)-1)^2 + 90*(sqrt(x^2+
 (y - 1)^2)-1)^2 -(20*x+40*y);
 t1(i,j) = x;
 t2(i,j) = y;
 end
 j = 0;
end
surfc(t1,t2,z)
shading interp
xlabel('x1')
ylabel('x2')
zlabel('f(x1,x2)')
%
%%%

%%%
% MATLAB code newton.m
%%%
%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
% the algorithm
% delx -> required for gradient computation
% f_prev -> function value at first/previous iteration
% deriv -> gradient vector
% sec_deriv -> hessian matrix
%
clear all
clc
n_of_var = 2;
x = [-3 2];
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;

© 2015 by Taylor & Francis Group, LLC

340 Appendix B

f_prev = func_multivar(x);
fprintf('Initial function value = %7.4f\n',f_prev)
fprintf('No. x-vector f(x) Deriv \n')
fprintf('__\n')
for i = 1:50
 f_prev = func_multivar(x);
 deriv = grad_vec(x,delx,n_of_var);
 sec_deriv = hessian(x,delx,n_of_var);
 x = (x' - inv(sec_deriv)*deriv')';
 f = func_multivar(x);
 if abs(f-f_prev)<epsilon1 || norm(deriv)<epsilon2
 break;
 end
 fprintf('%3d %8.3f %8.3f % 8.3f %8.3f
 \n',i,x,f,norm(deriv))
end
fprintf('%3d %8.3f %8.3f % 8.3f %8.3f \n',i,x,f,norm(deriv))
fprintf('__\n')
%
%%%

%%%
% MATLAB code hessian.m
%%%
%
%compute hessian matrix
% sec_deriv -> second derivative matrix
% func_multivar() -> multivariable function
% temp -> temporary variable
% Note that n_of_var = length(x)
%
function sec_deriv = hessian(x,delx,n_of_var)
for i = 1:length(x)
 for j = 1:length(x)
 if i == j
 temp = x;
 temp(i) = x(i) + delx;
 term1 = func_multivar(temp);
 temp(i) = x(i) - delx;
 term2 = func_multivar(temp);
 term3 = func_multivar(x);
 sec_deriv(i,j) = (term1-2*term3+term2)/(delx^2);
 else
 temp = x;
 temp(i) = x(i) + delx;
 temp(j) = x(j) + delx;
 term1 = func_multivar(temp);
 temp = x;

© 2015 by Taylor & Francis Group, LLC

341Appendix B

 temp(i) = x(i) + delx;
 temp(j) = x(j) - delx;
 term2 = func_multivar(temp);
 temp = x;
 temp(i) = x(i) - delx;
 temp(j) = x(j) + delx;
 term3 = func_multivar(temp);
 temp = x;
 temp(i) = x(i) - delx;
 temp(j) = x(j) - delx;
 term4 = func_multivar(temp);
 sec_deriv(i,j) = (term1-term2-term3+term4)/(4*delx^2);
 end
 end
end
%
%%%

%%%
% MATLAB code modified_newton.m
%%%
%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
% the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% sec_deriv -> hessian matrix
% search -> search direction (vector)
clear all
clc
n_of_var = 2;
x = [-3 2];
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;
f_prev = func_multivar(x);
fprintf('Initial function value = %7.4f\n ',f_prev)
fprintf('No. x-vector f(x) Deriv \n')
fprintf('__\n')
for i = 1:20
 falpha_prev = func_multivar(x);
 deriv = grad_vec(x,delx,n_of_var);
 sec_deriv = hessian(x,delx,n_of_var);
 search = -inv(sec_deriv)*deriv';
 [alpha,falpha] = golden_funct1(x,search');

© 2015 by Taylor & Francis Group, LLC

342 Appendix B

 if abs(falpha-falpha_prev)<epsilon1 ||
 norm(deriv)<epsilon2
 break;
 end
 falpha_prev = falpha;
 x = x + alpha*search';
 f = func_multivar(x);
 fprintf('%3d %8.3f %8.3f % 8.3f %8.3f
 \n',i,x,falpha,norm(deriv))
end
fprintf('%3d %8.3f %8.3f % 8.3f %8.3f
 \n',i,x,falpha,norm(deriv))
fprintf('__\n')
%
%%%

%%%
% MATLAB code levenbergmarquardt.m
%%%
%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% lambda -> initially set to a large value
% epsilon1, epsilon2 -> constant used for terminating
% the algorithm
% delx -> required for gradient computation
% f_prev -> function value at first/previous iteration
% deriv -> gradient vector
% sec_deriv -> hessian matrix
% search -> search direction (vector)
%
clear all
clc
n_of_var = 2;
x = [-3 2];
lambda = 1e3;
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;
f_prev = func_multivar(x);
fprintf('Initial function value = %7.4f\n ',f_prev)
fprintf(' No. x-vector f(x) Deriv \n')
fprintf('__\n')
for i = 1:100
 f_prev = func_multivar(x);
 deriv = grad_vec(x,delx,n_of_var);
 sec_deriv = hessian(x,delx,n_of_var);
 search = -inv(sec_deriv+lambda*eye(length(x)))*deriv';
 x = x + search';

© 2015 by Taylor & Francis Group, LLC

343Appendix B

 f = func_multivar(x);
 if f < f_prev
 lambda = lambda/2;
 else
 lambda = 2*lambda;
 end
 if abs(f-f_prev)<epsilon1 || norm(deriv)<epsilon2
 break;
 end
 fprintf('%3d %8.3f %8.3f % 8.3f %8.3f
 \n',i,x,f,norm(deriv))
end
fprintf('__\n')
%
%%%

%%%
% MATLAB code conjugate.m
%%%
%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
% the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% search -> search direction (vector)
%
clear all
clc
n_of_var = 2;
x = [-3 2];
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;
falpha_prev = func_multivar(x);
fprintf('Initial function value = %7.4f\n ',falpha_prev)
fprintf('No. x-vector f(x) Deriv \n')
fprintf('__\n')
for i = 1:300
 if i==1
 deriv_prev = grad_vec(x,delx,n_of_var);
 search_prev = -deriv_prev;
 [alpha,falpha] = golden_funct1(x,search_prev);
 if norm(deriv_prev)<epsilon2
 break;

© 2015 by Taylor & Francis Group, LLC

344 Appendix B

 end
 x = x + alpha*search_prev;
 falpha_prev = func_multivar(x);
 else
 deriv = grad_vec(x,delx,n_of_var);
 search = -deriv +
 ((norm(deriv)^2)/(norm(deriv_prev)^2))*search_prev;
 [alpha,falpha] = golden_funct1(x,search);
 if abs(falpha-falpha_prev)<epsilon1 ||
 norm(deriv)<epsilon2
 break;
 end
 deriv_prev = deriv;
 search_prev = search;
 x = x + alpha*search;
 falpha_prev = func_multivar(x);
 end
 fprintf('%3d %8.3f %8.3f % 8.3f %8.3f
 \n',i,x,falpha,norm(deriv_prev))
end
fprintf('%3d %8.3f %8.3f % 8.3f %8.3f
\n',i,x,falpha,norm(deriv))
fprintf('__\n')
%%%

%%%
% MATLAB code DFP.m
%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
% the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% deltag -> difference in gradient vector (over previous
 iteration)
% A -> approximation of inverse of the hessian matrix
% search -> search direction
%
clear all
clc
n_of_var = 2;
x = [-3 2];
A = eye(length(x));
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;
falpha_prev = func_multivar(x);

© 2015 by Taylor & Francis Group, LLC

345Appendix B

fprintf('Initial function value = %7.4f\n ',falpha_prev)
fprintf(' No. x-vector f(x) Deriv \n')
fprintf('__\n')
for i = 1:100
 if i==1
 deriv_prev = grad_vec(x,delx,n_of_var);
 search = -deriv_prev;
 [alpha,falpha] = golden_funct1(x,search);
 if abs(falpha-falpha_prev)<epsilon1
 break;
 end
 falpha_prev = falpha;
 x = x + alpha*search;
 fprintf('%3d %8.3f %8.3f % 8.3f %8.3f \n',i,x,falpha_
 prev,norm(deriv_prev))
 else
 deltax = (alpha*search);
 if i>2
 deltax = deltax';
 end
 deriv = grad_vec(x,delx,n_of_var);
 deltag = deriv-deriv_prev;
 term1 = (deltax'*deltax)/(deltax*deltag');
 term2 = (A*deltag'*deltag*A)/(deltag*A*deltag');
 A = A + term1 - term2;
 search = -A*deriv';
 [alpha,falpha] = golden_funct1(x,search’);
 fprintf('%3d %8.3f %8.3f % 8.3f %8.3f \n',i,x+alpha
 *search',falpha,norm(deriv))
 if abs(falpha-falpha_prev)<epsilon1 ||
 norm(deriv)<epsilon2
 break;
 end
 falpha_prev = falpha;
 deriv_prev = deriv;
 x = x+alpha*search';
 end
 end
fprintf('__\n')
%
%%%

%%%
% MATLAB code BFGS.m
%%%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating the
% algorithm

© 2015 by Taylor & Francis Group, LLC

346 Appendix B

% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% deltag -> difference in gradient vector (over previous
% iteration)
% A -> approximation of the hessian matrix
% search -> search direction
%
clear all
clc
n_of_var = 2;
x = [-3 2];
delx = 0.001;
A = eye(length(x));
epsilon1 = 1e-6;
epsilon2 = 1e-6;
delx = 1e-3;
falpha_prev = func_multivar(x);
fprintf('Initial function value = %7.4f\n ',falpha_prev)
fprintf(' No. x-vector f(x) Deriv \n')
fprintf('__\n')
for i = 1:50
 if i==1
 deriv_prev = grad_vec(x,delx,n_of_var);
 search = -deriv_prev;
 [alpha,falpha] = golden_funct1(x,search);
 if abs(falpha-falpha_prev)<0.001
 break;
 end
 falpha_prev = falpha;
 x = x + alpha*search;
 fpri ntf('%3d %8.3f %8.3f % 8.3f %8.3f \n',i,x,falpha_

prev,norm(deriv_prev))
 else
 deltax = (alpha*search);
 if i>2
 deltax = deltax';
 search = search';
 end
 deriv = grad_vec(x,delx,n_of_var);
 deltag = deriv-deriv_prev;
 term1 = (deltag'*deltag)/(deltag*deltax');
 term2 = (deriv_prev'*deriv_prev)/(deriv_prev*search');
 A = A + term1 + term2;
 search = -inv(A)*deriv';
 [alpha,falpha] = golden_funct1(x,search');
fpri ntf('%3d %8.3f %8.3f % 8.3f %8.3f \n',i,x+alpha*search',

falpha,norm(deriv))
 if ab s(falpha-falpha_prev)<epsilon1 ||

norm(deriv)<epsilon2

© 2015 by Taylor & Francis Group, LLC

347Appendix B

 break;
 end
 falpha_prev = falpha;
 deriv_prev = deriv;
 x = x+alpha*search';
 end
end
fprintf('__\n')
%
%%%

%%%
% MATLAB code powell.m
%%%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% epsilon -> constant used for terminating the algorithm
% term -> linearly independent search directions
% falpha_prev -> function value at first/previous iteration
% search -> search direction
%
clear all
clc
n_of_var = 2;
x = [-3 2];
epsilon = 1e-6;
falpha_prev = func_multivar(x);
fprintf('Initial function value = %7.4f\n ',falpha_prev)
fprintf(' No. x-vector f(x) \n')
fprintf('__\n')
for i = 1:n_of_var
 for j = 1:n_of_var+1
 if (i==j)
 term(i,j)=1;
 else
 term(i,j) = 0;
 end
 end
end
for i = 1: n_of_var
 search{i} = (term(:,i))';
 [alpha,falpha] = golden_funct1(x,search{i});
 x = x + alpha*search{i};
end
search{i+1} = (term(:,i+1))';
for k = 1:200
 xini = x;
 i = 1;
 while i<n_of_var+1

© 2015 by Taylor & Francis Group, LLC

348 Appendix B

 [alpha,falpha] = golden_funct1(x,search{i});
 x = x + alpha*search{i};
 i = i+1;
 end
 if abs(falpha-falpha_prev) < epsilon
 break;
 end
 search{i} = (x-xini);
 [alpha,falpha] = golden_funct1(x,search{i});
 x = x + alpha*search{i};
 temp = search;
 for i = 1:n_of_var
 search{i} = temp{i+1};
 end
 falpha_prev = falpha;
 fprintf('%3d %8.3f %8.3f % 8.3f \n',k,x,falpha)
end
fprintf('__\n')
%
%%%

%%%
% MATLAB code neldermead.m
%%%
% n_of_var -> number of design variables
% lb, ub -> lower/upper bound of variable
% (optional for generating initial feasible points randomly)
% ybest -> best value of the objective function in the iteration
% ysecondbest -> second best value of the objective function
% yworst -> worst value of the objective function in the
% iteration
% xworst -> corresponding value of the variable for yworst
% xc -> centroid of the polygon
% fcentroid -> function value at xc
% deviation -> sum square deviation of function values from
% centroid
% xr => reflected point
% freflec => function value at reflected point
% xe => expanded point
% fexp => function value at expanded point
% xcont => contracted point
% fcont => function value at contracted point
%
clear all
clc
n_of_var = 2;
epsilon = 1e-4;
alpha = 1;
gamma = 2;

© 2015 by Taylor & Francis Group, LLC

349Appendix B

rho = -0.5;
lb = [-1 -1];
ub = [1 1];
fprintf(' Iteration Deviation f(x) \n')
fprintf('__\n')
for JJ = 1:50
for i = 1:length(lb)
 for j = 1:n_of_var+1
 a(i,j) = lb(i) + (ub(i)-lb(i))*rand;
 end
end
if JJ~=1
 a = x';
end
for i = 1:n_of_var+1
 for j = 1:n_of_var
 x(i,j) = a(j,i);
 end
 fval(i) = func_multivar(x(i,:));
end
[yworst,I] = max(fval);
[ybest,II] = min(fval);
% compute centroid
for i = 1:length(lb)
 sum(i) = 0;
 for j = 1:n_of_var+1
 if (j ~= I)
 sum(i) = sum(i) + a(i,j);
 else
 xworst(:,i) = a(i,j);
 end
 end
end
xc = sum./n_of_var;
fcentroid = func_multivar(xc);
sum1 = 0;
for i = 1:n_of_var+1
 sum1 = sum1 + (fcentroid-fval(i))^2;
end
deviation = sqrt(sum1/(n_of_var+1));
 if deviation < epsilon
 break;
 end
fval(I) = [];
[ysecondworst,Isw] = max(fval);
xr = xc + alpha*(xc-xworst);
freflec = func_multivar(xr);
if freflec < ybest

 %expansion

© 2015 by Taylor & Francis Group, LLC

350 Appendix B

 xe = xc + gamma*(xc-xworst);
 fexp = func_multivar(xe);
 if fexp < freflec
 x(I,:) = xe;
 else
 x(I,:) = xr;
 end
else
 if freflec < ysecondworst
 x(I,:) = xr;
 else
 xcont = xc + rho*(xc-xworst);
 fcont = func_multivar(xcont);
 if fcont < yworst
 x(I,:) = xcont;
 end
 end
end
fprintf('%3d %15.4f %15.3f \n',JJ,deviation,ybest)
end
fprintf('__\n')
xc
%
%%%

%%%
% MATLAB code robotics_nominal_traj.m
%%%
%
% Generates nominal trajectory for the robotics arm problem
clear all
clc
% generate 100 points in t
t = -pi:.063:pi
px = 30*cos(t);
py = 100*sin(t);
pz = 10*t + 66.04;
plot3(px,py,pz,'b-','LineWidth',3)
xlabel('px')
ylabel('py')
zlabel('pz')
%
%%%

© 2015 by Taylor & Francis Group, LLC

351Appendix B

%%%
% MATLAB code robotics_optimized_traj.m
%%%
%
% Generates optimized trajectory for the robotics arm problem
function [] = generate_optimized_traj(x)
d1 = 66.04;
d3 = 14.91;
d4 = 43.31;
a2 = 43.18;
a3 = 2.03;
for i = 1:100
t = -pi + (i-1)*0.063;
theta1 = x(i);
theta2 = x(i+100);
theta3 = x(i+200);
c1 = cos(theta1);
c2 = cos(theta2);
s1 = sin(theta1);
s2 = sin(theta2);
c23 = cos(theta2+theta3);
s23 = sin(theta2+theta3);
f1(i) = c1*(a2*c2 + a3*c23 - d4*s23) - d3*s1;
f2(i) = s1*(a2*c2 + a3*c23 - d4*s23) + d3*c1;
f3(i) = d1 - a2*s2 - a3*s23 -d4*c23;
end
 plot3(f1,f2,f3,'r*')
end
%
%%%

Chapter 4

Code Name Details

simplex.m Simplex method
initial_cost.m Computes cost coefficients for the nonbasic variables
phase1.m Phase I of the simplex method
remove_variable.m Removes user specified column from the nonbasic set
phase1_without_initialization.m Phase I of the simplex method without initializing A

matrix and b vector.
dual.m Dual simplex method
interior.m Affine scaling method

© 2015 by Taylor & Francis Group, LLC

352 Appendix B

%%
% MATLAB code simplex.m
%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [3 1 1 0 0;
 1 2 0 1 0;
 1 0 0 0 1];
b = [10;8;3];
c = [-6;-7;0;0;0];
 basic_set = [3 4 5];
 nonbasic_set = [1 2];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
fprintf('\n __\n')
basic_set
nonbasic_set
Initial_Table = [B N b_cap]
Cost =[cb cn_cap -zz1]
for i = 1:3
 [minvalue entering_basic_variable] = min(cn_cap);
ente ring_column = inv(B)*A(:,nonbasic_set(entering_basic_

variable));
ratios = b_cap'./entering_column';
[min_ratio leaving_basic_variable] = min(ratios);
while min_ratio<0

© 2015 by Taylor & Francis Group, LLC

353Appendix B

 ratios(leaving_basic_variable) = inf;
 [min_ratio leaving_basic_variable] = min(ratios);
end
temp_basic_set = basic_set;
temp_nonbasic_set = nonbasic_set;
temp_cb = cb;
temp_cn = cn;
basi c_set(leaving_basic_variable) = temp_nonbasic_

set(entering_basic_variable);
nonb asic_set(entering_basic_variable) = temp_basic_

set(leaving_basic_variable);
cb(leaving_basic_variable) = temp_cn(entering_basic_variable);
cn(entering_basic_variable) = temp_cb(leaving_basic_variable);
aa(nonbasic_set) = cn;
cn = aa(sort(nonbasic_set));
nonbasic_set = sort(nonbasic_set);
for ii = 1:length(basic_set)
 B(:,ii) = A(:,basic_set(ii));
end
for ii = 1:length(nonbasic_set)
 N(:,ii) = A(:,nonbasic_set(ii));
end
xb = inv(B)*b;
y = cb*inv(B);
cn_cap = cn-y*N;
b_cap = xb;
zz = zz1+cb*xb;
fprintf('\n __\n')
basic_set
nonbasic_set
Table = [eye(length(B)) inv(B)*N b_cap]
Cost = [cb_ini cn_cap -zz]
if cn_cap >= 0
 break;
 end
end
fprintf('\n ------SOLUTION------\n')
basic_set
xb
zz
%
%%

%%
% MATLAB code initial_cost.m
%%
%
cb = [0 1 1];
cn = [0 0 0];
N = [3 2 0;

© 2015 by Taylor & Francis Group, LLC

354 Appendix B

 2 -4 -1;
 3 4 0];
B = [0 1 0;0 0 1;1 0 0];
y = cb*inv(B);
cn_cap = cn-y*N
%%

%%
% MATLAB code phase1.m
%%
%
% The matrix A and b corresponds to Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [3 2 0 0 1 0;
 2 -4 -1 0 0 1;
 3 4 0 1 0 0];
b = [10;3;16];
c = [-5;2;1;0;0;0];
basic_set = [5 6 4];
nonbasic_set = [1 2 3];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 91/8;
fprintf('\n __\n')
basic_set
nonbasic_set
Initial_Table = [B N b_cap]
Cost = [cb cn_cap -zz1]

© 2015 by Taylor & Francis Group, LLC

355Appendix B

for i = 1:1
 [minvalue entering_basic_variable] = min(cn_cap);
ente ring_column = inv(B)*A(:,nonbasic_set(entering_basic_

variable));
ratios = b_cap'./entering_column';
[min_ratio leaving_basic_variable] = min(ratios);
while min_ratio<0
 ratios(leaving_basic_variable) = inf;
 [min_ratio leaving_basic_variable] = min(ratios);
end
temp_basic_set = basic_set;
temp_nonbasic_set = nonbasic_set;
temp_cb = cb;
temp_cn = cn;
basic _set(leaving_basic_variable) = temp_nonbasic_

set(entering_basic_variable);
nonba sic_set(entering_basic_variable) = temp_basic_

set(leaving_basic_variable);
cb(leaving_basic_variable) = temp_cn(entering_basic_variable);
cn(entering_basic_variable) = temp_cb(leaving_basic_variable);
aa(nonbasic_set) = cn;
cn = aa(sort(nonbasic_set));
nonbasic_set = sort(nonbasic_set);
for ii = 1:length(basic_set)
 B(:,ii) = A(:,basic_set(ii));
end
for ii = 1:length(nonbasic_set)
 N(:,ii) = A(:,nonbasic_set(ii));
end
xb = inv(B)*b;
y = cb*inv(B);
cn_cap = cn-y*N;
b_cap = xb;
zz = zz1+cb*xb;
fprintf('\n __\n')
basic_set
nonbasic_set
Table = [eye(length(B)) inv(B)*N b_cap]
Cost = [cb_ini cn_cap -zz]
end
%
%%

%%
% MATLAB code remove_variable.m
%%
%
% This program removes user specified column from
% the nonbasic set
%

© 2015 by Taylor & Francis Group, LLC

356 Appendix B

remove_column = 3;
nonbasic_set(remove_column) = [];
N(:,remove_column) = [];
cn(remove_column) = [];
cn_cap = cn-y*N;
fprintf('\n ----Table after removing artificial
 variable------\n')
basic_set
nonbasic_set
Initial_Table = [eye(length(B)) inv(B)*N b_cap]
Cost = [cb_ini cn_cap -zz]
%%

%%
% MATLAB code dual.m
%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> set of nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [-1 0 1 0 0 0;
 0 -1 0 1 0 0;
 -2 -1 0 0 1 0;
 -1 -3 0 0 0 1];
b = [-3;-4;-25;-26];
c = [9; 8; 0; 0; 0;0];
basic_set = [3 4 5 6];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end

cn_cap = cn;
cb_ini = cb;

© 2015 by Taylor & Francis Group, LLC

357Appendix B

b_cap = b;
zz = 0;
fprintf('\n __\n')
basic_set
nonbasic_set
Initial_Table = [B N b_cap]
Cost = [cb cn_cap zz]
for i = 1:4
 [minvalue leaving_basic_variable] = min(b_cap);
 mat1 = inv(B)*N;
entering_row = mat1(leaving_basic_variable,:);
ratios = -1*(cn_cap'./entering_row');
[min_ratio entering_basic_variable] = min(ratios);
while min_ratio<0
 ratios(entering_basic_variable) = inf;
 [min_ratio entering_basic_variable] = min(ratios);
end
temp_basic_set = basic_set;
temp_nonbasic_set = nonbasic_set;
temp_cb = cb;
temp_cn = cn;
basi c_set(leaving_basic_variable) = temp_nonbasic_

set(entering_basic_variable);
nonb asic_set(entering_basic_variable) = temp_basic_

set(leaving_basic_variable);
 cb(leaving_basic_variable) = temp_cn(entering_basic_

variable);
 cn(entering_basic_variable) = temp_cb(leaving_basic_

variable);
 aa(nonbasic_set) = cn;
 cn = aa(sort(nonbasic_set));
nonbasic_set = sort(nonbasic_set);
for ii = 1:length(basic_set)
 B(:,ii) = A(:,basic_set(ii));
end
for ii = 1:length(nonbasic_set)
 N(:,ii) = A(:,nonbasic_set(ii));
end
xb = inv(B)*b;
y = cb*inv(B);
cn_cap = cn-y*N;
b_cap = xb;
zz = cb*xb;
fprintf('\n __\n')
basic_set
nonbasic_set
Table = [eye(length(B)) inv(B)*N b_cap]
Cost = [cb_ini cn_cap -zz]
if b_cap >= 0
 break;

© 2015 by Taylor & Francis Group, LLC

358 Appendix B

end
end
fprintf('\n ------FINAL SOLUTION------\n')
basic_set
xb
zz
%%

%%
% MATLAB code interior.m
%%
%
% Affine scaling method
%
clear all
clc
A = [3 1;
 1 2;
 1 0];
b = [10;8;3];
c = [6;7];
x = [0;0];
obj_prev = c’*x;
gamma = 0.9;
tolerance = 1e-5;
for i = 1:10
 vk = b-A*x;
 dv = diag(vk);
 hx = inv(A'*dv^-2*A)*c;
 hv = -A*hx;
 for j = 1:length(hv)
 if hv(j)<0
 var(j) = -vk(j)/hv(j);
 else
 var(j) = inf;
 end
 end
 alpha = gamma*min(var);
 x = x + alpha*hx;
 objective = c’*x;
 if abs(objective-obj_prev)<tolerance
 break;
 end
 obj_prev = objective;
end
objective
x
%
%%

© 2015 by Taylor & Francis Group, LLC

359Appendix B

Chapter 5

Code Name Details

prob.m Genetic algorithm (GA; main program)
in.m Inputs to GA
roulett.m Roulette wheel selection
tournament.m Tournament selection
func.m Test function to be included here (for GA)
simann.m Simulated annealing
func1.m Objective function to be included here (for PSO and simulated

annealing)
pso.m Particle swarm optimization (PSO)

%%%
% File name prob.m
% Genetic algorithm - main program
%%%
%
clear all
clc
format long g;
% Read the input file
in;
% INITIALIZATION OF STRINGS
string = 0;
for i = 1:n_of_v
string = string+n_of_bits(i);
end
for j = 1:n_of_p
 for i = 1:string
 r(j,i) = rand;
 if r(j,i)< 0.5
 r(j,i) = 0;
 else
 r(j,i) = 1;
 end
 end
end
% MAIN LOOP
for g = 1:n_of_g
% Decoded value of r (with left bit as MSB)
deci = cell(n_of_v,1);
decoded = cell(n_of_v,1);
dum1 = 1;
dummy = n_of_bits(1);
for i = 1:n_of_v
deci{i} = bi2de(r(:,dum1:dummy),'left-msb');
dum1 = dum1+n_of_bits(i);
while dummy<string
dummy = dummy+n_of_bits(i+1);
end

© 2015 by Taylor & Francis Group, LLC

360 Appendix B

% NORMALIZE TO THE VARIABLE RANGE
x1(:,i) = deci{i};
decoded{i} = range(i,1)+((range(i,2)-range(i,1))/(2^n_of_bits(i)-
 1))*x1(:,i);
xxx(:,i) = decoded{i};
end
% FUNCTION EVALUATION
for i = 1:n_of_p
[fitness1(i),constraint(i,:)] = func(xxx(i,:));
end
fitness = fitness1';
for hh = 1:length(fitness)
 if fitness(hh) < 0
 flag1 = 1;
 end
end
if flag1 == 1
 [factor,indices] = min(fitness);
 fitness1 = -factor+fitness;
end
% CALLING ROULETTE WHEEL
if tourni_flag ~= 1
 if problem == 'min'
 fitness2 = 1./(1+fitness1);
 end
[best_fit(g),indi(g)] = max(fitness2);
best_var(g,:) = xxx(indi(g),:);
if problem == 'min'
 best_fit(g) = fitness(indi(g));
end
% CUMULATIVE PROBABILITY
s = sum(fitness2);
cum_prob = fitness2/s;
roulett;
else
[best_fit(g),indi(g)] = min(fitness);
average_fitness = mean(fitness);
best_var(g,:) = xxx(indi(g),:);
% CALLING TOURNAMENT SELECTION
tournament;

% IF THIS IS A CONSTRAINT PROBLEM THEN WE HAVE TO USE THIS
 if n_of_c>=0
 best_fit(g) = min_fit;
 best_var(g,:) = xxx(indi(g),:);
 end
end
% CROSSOVER
for k = 1:2:n_of_p
parent1 = r_new(round(random('unif',0.5,n_of_p+0.5)),:);
parent2 = r_new(round(random('unif',0.5,n_of_p+0.5)),:);
 if multi_crossover == 0
cross_o_pos = round(random('unif',1.5,string+0.5-1));
child1(1:cross_o_pos) = parent2(1:cross_o_pos);
child1(cross_o_pos+1:string) = parent1(cross_o_pos+1:string);

© 2015 by Taylor & Francis Group, LLC

361Appendix B

child2(1:cross_o_pos) = parent1(1:cross_o_pos);
child2(cross_o_pos+1:string) = parent2(cross_o_pos+1:string);
else
pois_ra = rand(1);
if(pois_ra<0.1353)no_of_cross_over = 0;
end
if(pois_ra>=0.1353 & pois_ra<0.4059)no_of_cross_over = 1;
end
if(pois_ra>=0.4059 & pois_ra<0.6865)no_of_cross_over = 2;
end
if(pois_ra>=0.6865 & pois_ra<0.8769)no_of_cross_over = 3;
end
if(pois_ra>=0.8769)no_of_cross_over = 3;
end
switch no_of_cross_over
case 0
child1(1:string) = parent1(1:string);
child2(1:string) = parent2(1:string);
case 1
cross_o_pos = round(random('unif',1.5,string+0.5-1));
child1(1:cross_o_pos) = parent2(1:cross_o_pos);
child1(cross_o_pos+1:string) = parent1(cross_o_pos+1:string);
child2(1:cross_o_pos) = parent1(1:cross_o_pos);
child2(cross_o_pos+1:string) = parent2(cross_o_pos+1:string);
case 2
cross_o_pos1 = round(random('unif',1.5,string+0.5-1));
cross_o_pos2 = round(random('unif',1.5,string+0.5-1));
while (cross_o_pos2 == cross_o_pos1)
cross_o_pos2 = round(random('unif',1.5,string+0.5-1));
end
cross_sor = [cross_o_pos1 cross_o_pos2];
cross_sort = sort(cross_sor);
child1(1:cross_sort(1)) = parent1(1:cross_sort(1));
chi ld1(cross_sort(1)+1:cross_sort(2)) = parent2(cross_sort(1)+1:cross_

sort(2));
child1(cross_sort(2)+1:string) = parent1(cross_sort(2)+1:string);
child2(1:cross_sort(1)) = parent2(1:cross_sort(1));
chi ld2(cross_sort(1)+1:cross_sort(2)) = parent1(cross_sort(1)+1:cross_

sort(2));
child2(cross_sort(2)+1:string) = parent2(cross_sort(2)+1:string);
case 3
cross_o_pos1 = round(random('unif',1.5,string+0.5-1));
cross_o_pos2 = round(random('unif',1.5,string+0.5-1));
while (cross_o_pos2 == cross_o_pos1)
cross_o_pos2 = round(random('unif',1.5,string+0.5-1));
end
cross_o_pos3 = round(random('unif',1.5,string+0.5-1));
while (cross_o_pos3 == cross_o_pos1 & cross_o_pos3 == cross_o_pos2)
cross_o_pos3 = round(random('unif',1.5,string+0.5-1));
end
cross_sor = [cross_o_pos1 cross_o_pos2 cross_o_pos3];
cross_sort = sort(cross_sor);
child1(1:cross_sort(1)) = parent1(1:cross_sort(1));
chi ld1(cross_sort(1)+1:cross_sort(2)) = parent2(cross_sort(1)+1:cross_

sort(2));

© 2015 by Taylor & Francis Group, LLC

362 Appendix B

chi ld1(cross_sort(2)+1:cross_sort(3)) = parent1(cross_sort(2)+1:cross_
sort(3));

child1(cross_sort(3)+1:string) = parent2(cross_sort(3)+1:string);
child2(1:cross_sort(1)) = parent2(1:cross_sort(1));
chi ld2(cross_sort(1)+1:cross_sort(2)) = parent1(cross_sort(1)+1:cross_

sort(2));
chi ld2(cross_sort(2)+1:cross_sort(3)) = parent2(cross_sort(2)+1:cross_

sort(3));
child2(cross_sort(3)+1:string) = parent1(cross_sort(3)+1:string);
end
end
r(k,:) = child1;
r(k+1,:) = child2;
end
% MUTATION
for i = 1:n_of_p
pr_m = random('unif',0,1);
for j = 1:string
 if pr_m<mut_prob
 if r(i,j) == 0
 r(i,j) = 1;
 else
 r(i,j) = 0;
 end
 end
end
end
[min_best_fit,ind] = min(best_fit);
[g best_var(ind,:) min(best_fit)];
if g >= 2
 if abs(last_gen_best-min(best_fit))<epsilon
 flag = flag+1;
 else
 flag = 0;
 end
end
if flag>stall_gen
 break;
end
last_gen_best = min(best_fit);
fprintf('%4i %9.4f %9.4f \n',g, best_var(ind,:), min(best_fit))
end % END OF MAIN LOOP
[min_best_fit,ind] = min(best_fit);
best_var(ind,:)
min_best_fit
%
%%%

%%%
% File name in.m
% Input parameters for Genetic algorithm
%%%
%
problem = 'min'; % If roulette wheel is used to minimize

© 2015 by Taylor & Francis Group, LLC

363Appendix B

n_of_v = 1; % number of variables
n_of_g = 10000; % maximum number of generations
n_of_p = 10; % population size
range(1,:) = [40 90]; % variable bound
n_of_bits(1) = 15; % number of bits
cross_prob = 0.9; % crossover probability
multi_crossover = 1; % use multi-crossover
mut_prob = 0.02; % mutation probability
tourni_flag = 0; % use roulette wheel
epsilon = 1e-7; % function tolerance
flag = 0; % stall generations flag
flag1 = 0; % scaling flag
stall_gen = 500; % stall generations for termination
n_of_c = 0; % for constraint handling
%
%%%

%%%
% File name roulett.m
% Roulette wheel selection
%%%
%
slot(1) = 0;
for ii = 2:n_of_p+1
 slot(ii) = cum_prob(ii-1)+slot(ii-1);
end
% COPY GENERATION
for kk = 1:n_of_p
 pr = rand;
 for iii = 1:n_of_p+1
 if (pr>slot(iii)) & (pr<slot(iii+1))
 st_t_c(kk) = iii;
 end
 end
end
for kkk = 1:n_of_p
 r_new(kkk,:) = r(st_t_c(kkk),:);
end
%
%%%

%%%
% File name tournament.m
% Tournament selection
% Also modifies the function
% in the presence of constraints
%%%
%

© 2015 by Taylor & Francis Group, LLC

364 Appendix B

infeasible_flag = 1;
for i = 1:n_of_p
 if constraint(i)>= 0
 feas_tag(i) = 1;
 fit(i) = fitness(i);
 else
 feas_tag(i) = 0;
 fit(i) = -100000000000;
 end
end
for i = 1:n_of_p
if(feas_tag(i) == 1)
infeasible_flag = 0;
end
end
if(infeasible_flag == 1)
fit(1) = 1000000000000;
end
max_fit = max(fit);
for i = 1:n_of_p
 if feas_tag(i)== 0
 for j = 1:n_of_c
 if (constraint(i,j)<0)
 fitness(i) = max_fit+abs(constraint(i,j));
 end
 end
 end
end
[min_fit,indices] = min(fitness);
for i = 1:n_of_p
 pr = round(random('unif',0.5,n_of_p+0.5));
 while pr == i
 pr = round(random('unif',0.5,n_of_p+0.5));
 end
 if feas_tag(i) == feas_tag(pr)
 if fitness(i) <= fitness(pr)
 r_new(i,:) = r(i,:);
 else
 r_new(i,:) = r(pr,:);
 end
 else
 if feas_tag(i) == 1
 r_new(i,:) = r(i,:);
 else
 r_new(i,:) = r(pr,:);
 end
 end
end
%%%

© 2015 by Taylor & Francis Group, LLC

365Appendix B

%%%
% File name func.m
% Enter the function to be optimized
%%%
%
function [y,constr] = func(x)
y = 204165.5/(330-2*x) + 10400/(x-20);
constr(1) = 10;
%
%%%

%%%
% File name simann.m
% Simulated annealing algorithm
%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x(i) -> design variables
% rand -> random number from 0 to 1
% perturb_x(i) -> perturbation on design variables
%
clear all
clc
format long
epsilon = 0.002;
flag = 0;
lb = [-5.12 -5.12];
ub = [5.12 5.12];
for i = 1:length(lb)
 x(i) = lb(i) + (ub(i)-lb(i))*rand;
end
[E_old,constr] = func1(x);
bestx = x;
best_obj = E_old;
for j = 1:10000
 flag = flag+1;
 for i = 1:length(x)
 perturb_x(i) = epsilon*x(i)*rand;
 if rand < 0.5
 perturb_x(i) = -perturb_x(i);
 end
 end
x = x + perturb_x;
 for i = 1:length(x)
 if x(i)<lb(i) | x(i)>ub(i)
 x(i) = lb(i) + (ub(i)-lb(i))*rand;
 end
end

© 2015 by Taylor & Francis Group, LLC

366 Appendix B

[E_new,constr] = func1(x);
 if E_new < E_old
 E_old = E_new;
 else
 if exp(-(E_new-E_old)/E_old)> rand
 E_old = E_new;
 end
 x = x - perturb_x;
end
 px(j) = j;
 py(j) = E_new;

 if E_new < best_obj
 best_obj = E_new;
 bestx = x;
 flag = 0;
 end
[j bestx best_obj]
 if flag > 1000
 break;
 end
end
%%%

%%%
% File name func1.m
% Enter the function to be optimized
%%%
%
function [y,constr] = func1(x)
y = 20 + x(1)*x(1)-10*cos(2*pi*x(1)) + x(2)*x(2)-
 10*cos(2*pi*x(2));
constr(1) = 10;
%
%%%

%%%
% File name pso.m
% Particle Swarm Optimization algorithm
%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x -> position of individual
% v -> velocity of individual
% rand -> random number from 0 to 1
% fitness -> fitness of individual
% pbest -> best fitness achieved by individual
% gbest -> best fitness of group

© 2015 by Taylor & Francis Group, LLC

367Appendix B

% pop -> population size
% phi_1, phi_2 -> tuning parameters
% nmax -> maximum number of iterations
%
clear all
clc
format long
pop = 20;
phi_1 = 1.05;
phi_2 = 1.1;
nmax = 100;
weight = linspace(1,0.3,nmax);
lb = [-500 -500];
ub = [500 500];
for i = 1:length(lb)
 for j = 1:pop
 x(i,j) = lb(i) + (ub(i)-lb(i))*rand;
 v(i,j) = 0;
 end
end
for i = 1:pop
 fitness(i) = func1(x(:,i));
 pbest(i) = fitness(i);
 px(i,:) = x(:,i);
end
[gbest, location] = min(fitness);
gx = x(:,location);
plot3(px(:,1),px(:,2),pbest,'r*')
 grid on
 xlabel('x1')
 ylabel('x2')
 zlabel('f(x)')
for i = 1:nmax
 for j = 1:pop
v(:,j) = weight(i)*v(:,j) + phi_1*rand*(px(j,:)'-x(:,j)) +
 phi_2*rand*(gx-x(:,j));
 x(:,j) = x(:,j) + v(:,j);
 for k = 1:length(x(:,j))
 if x(k,j) < lb(k) || x(k,j) > ub(k)
 x(k,j) = lb(k) + (ub(k)-lb(k))*rand;
 end
 end
 fitness(j) = func1(x(:,j));
 if fitness(j) < pbest(j)
 pbest(j) = fitness(j);
 px(j,:) = x(:,j);
 end
 end
 [gbest, location] = min(pbest);
 gx = x(:,location);

© 2015 by Taylor & Francis Group, LLC

368 Appendix B

 [gx' gbest]
 plot3(px(:,1),px(:,2),pbest,'r*')
 grid on
 xlabel('x1')
 ylabel('x2')
 zlabel('f(x)')
 axis([-500 500 -500 500 -1000 0])
 pause(0.2)
end
%%%

%%%
% File name func1.m
% Enter the function to be optimized
%%%
%
function y = func1(x)
y = -x(1)*sin(sqrt(abs(x(1)))) -x(2)*sin(sqrt(abs(x(2))));
%
%%%

Chapter 6

Code Name Details

DFP.m (main program) Davidon–Fletcher–Powell (DFP) method (see Chapter 3)
grad_vec.m (function) Gradient vector computation (see Chapter 3)
golden_funct1.m (function) Golden section method (see Chapter 3)
func1.m (function) Computes value of objective function
constr.m (function) Computes value of constraint function
pso.m (main program) Particle swarm optimization (PSO) method to solve welded

beam problem
func1.m (function) Computes value of objective function
constr.m (function) Computes value of constraint function
ALM.m (main program) Augmented Lagrangian method
func1.m (function) Computes value of augmented objective function
sqp.m (main program) Sequential quadratic programming method
func_val.m (function) Computes augmented Lagrangian function
func_val1.m (function) Computes function value
eqconstr_val.m (function) Computes equality constraints value
ineqconstr_val.m (function) Computes inequality constraints value
grad_vec_f.m Computes gradient vector of the objective function
grad_vec_eqcon.m (function) Computes gradient vector for equality constraints
grad_vec_ineqcon.m (function) Computes gradient vector for inequality constraints
hessian.m (function) Computes Hessian matrix (see Chapter 3)

© 2015 by Taylor & Francis Group, LLC

369Appendix B

%%%
% MATLAB code func1.m
%%%
%
% y -> objective function
% penalty -> penalty term
%
function y = func1(x,scale_factor)
y = (x(1)-1)^2 + (x(2)-5)^2;
penalty = 0.0;
[h,g] = constr(x);
for i = 1:length(h)
 if h(i)~=0
 penalty = penalty + h(i)^2;
 end
end
for i = 1:length(g)
 if g(i)>0
 penalty = penalty + g(i)^2;
 end
end
y = y+penalty*scale_factor;
%%%

%%%
% MATLAB code constr.m
%%%
%
% define your constraints here
% g(1), g(2)… -> inequality constraints
% h(1), h(2), …-> equality constraints
%
function [h,g] = constr(x)
h(1) = 0;
g(1) = -x(1)^2 + x(2) -4;
g(2) = -(x(1)-2)^2 + x(2) -3;
%%%

%%%
% File name pso.m
% Particle Swarm Optimization algorithm
% Welded beam problem
%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x -> position of individual
% v -> velocity of individual
% rand -> random number from 0 to 1

© 2015 by Taylor & Francis Group, LLC

370 Appendix B

% fitness -> fitness of individual
% pbest -> best fitness achieved by individual
% gbest -> best fitness of group
% nmax -> maximum number of iterations
%
clear all
clc
format long
pop = 200;
phi_1 = 1.05;
phi_2 = 1.1;
nmax = 3000;
scale_factor = 10000000;
weight = linspace(1,0.3,nmax);
fprintf('___\n')
lb = [0.1 0.1 0.1 0.1];
ub = [2 10 10 2];
for i = 1:length(lb)
 for j = 1:pop
 x(i,j) = lb(i) + (ub(i)-lb(i))*rand;
 v(i,j) = 0;
 end
end
for i = 1:pop
 fitness(i) = func1(x(:,i),scale_factor);
 pbest(i) = fitness(i);
 px(i,:) = x(:,i);
end
[gbest, location] = min(fitness);
gx = x(:,location);
for i = 1:nmax
 for j = 1:pop
 v(:,j) = weight(i)*v(:,j) + phi_1*rand*(px(j,:)'-x(:,j))

+ phi_2*rand*(gx-x(:,j));
 x(:,j) = x(:,j) + v(:,j);
 for k = 1:length(x(:,j))
 if x(k,j) < lb(k) || x(k,j) > ub(k)
 x(k,j) = lb(k) + (ub(k)-lb(k))*rand;
 end
 end
 fitness(j) = func1(x(:,j),scale_factor);
 if fitness(j) < pbest(j)
 pbest(j) = fitness(j);
 px(j,:) = x(:,j);
 end
 end
 [gbest, location] = min(pbest);
 gx = x(:,location);

 [gx' gbest];

© 2015 by Taylor & Francis Group, LLC

371Appendix B

 fprintf('%3d %8.3f %8.3f %8.3f %8.3f % 8.3f
 \n',i,gx,gbest)
end
fprintf('___ \n')
%%%

%%
% MATLAB code func1.m
%%
%
% y -> objective function
% penalty -> penalty term
%
function y = func1(x,scale_factor)
y = 1.10471*x(1)*x(1)*x(2) + 0.04811*x(3)*x(4)*(14+x(2));
penalty = 0.0;
[h,g] = constr(x);
for i = 1:length(h)
 if h(i)~=0
 penalty = penalty + h(i)^2;
 end
end
for i = 1:length(g)
 if g(i)>0
 penalty = penalty + g(i)^2;
 end
end
y = y+penalty*scale_factor;
%
%%%

%%%
% MATLAB code constr.m
%%%
%
% define your constraints here
% g(1), g(2)… -> inequality constraints
% h(1), h(2), …-> equality constraints
%
function [h,g] = constr(x)
h(1) = 0;
load = 6000;
length = 14;
modulusE = 30e6;
modulusG = 12e6;
tmax = 13600;
sigmamax = 30000;
delmax = 0.25;
tdash = load/(sqrt(2)*x(1)*x(2));
R = sqrt(x(2)*x(2)/4 + ((x(1)+x(3))/2)^2);
M = load*(length + x(2)/2);
J = 2* ((x(1)*x(2)/sqrt(2)) * (x(2)^2/12 +((x(1)+x(3))/2)^2));
tdashdash = M*R/J;
tx = sqrt(tdash^2 + 2*tdash*tdashdash*x(2)/(2*R) + tdashdash^2);

© 2015 by Taylor & Francis Group, LLC

372 Appendix B

sigmax = 6*load*length/(x(4)*x(3)^2);
delx = 4*load*length^3/(modulusE*x(4)*x(3)^3);
pcx = (4.013*sqrt(modulusE*modulusG*x(3)^2*x(4)^6/36)/(length^2)) *

(1- (x(3)/(2*length))*sqrt(modulusE/(4*modulusG)));
g(1) = tx/tmax -1;
g(2) = sigmax/sigmamax -1;
g(3) = x(1) - x(4);
g(4) = (.10471*x(1)*x(1) + 0.04811*x(3)*x(4)*(14+x(2)))/5 -1;
g(5) = 0.125 - x(1);
g(6) = delx/delmax -1;
g(7) = load/pcx -1;
g(8) = x(1)/2 -1;
g(9) = x(4)/2 -1;
g(10) = -x(1) + 0.1;
g(11) = -x(4) + 0.1;
g(12) = x(2)/10 -1;
g(13) = x(3)/10 -1;
g(14) = -x(2) + 0.1;
g(15) = -x(3) + 0.1;
%%%

%%%
% MATLAB code ALM.m
%%%
%
% n_of_var -> number of design variables
% x = [0 1 1] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
% the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% deltag -> difference in gradient vector (over previous iteration)
% A -> approximation of inverse of the hessian matrix
% search -> search direction
% LAMBDA, BETA -> Lagrange Multipliers
% RK -> penalty parameter
%
clear all
clc
n_of_var = 2;
n_of_eqcons = 1;
n_of_iqcons = 2;
scale_factor = 1;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
x = [0 1 1];
RK = x(3);
A = eye(length(x));
epsilon1 = 1e-6;
epsilon2 = 1e-6;
delx = 1e-3;
checkconstr = zeros(1,n_of_iqcons);
falpha_prev = func1(x,scale_factor);

© 2015 by Taylor & Francis Group, LLC

373Appendix B

fprintf('Initial function value = %7.4f\n ',FVALUE)
fprintf(' No. x-vector rk f(x) |Cons.| \n')
fprintf('___\n')
for i = 1:30
 if i==1
 deriv_prev = grad_vec(x,delx,n_of_var,scale_factor);
 search = -deriv_prev;
 [alpha,falpha] = golden_funct1(x,search,scale_factor);
 if abs(falpha-falpha_prev)<epsilon1
 break;
 end
 falpha_prev = falpha;
 x = x + alpha*search;
 yyy = func1(x,scale_factor);
 LAMBDA = LAMBDA + 2*RK*EQCONSTR;
 BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
 checkconstr1 = max([ICONSTR;checkconstr]);
fpri ntf('%3d %8.3f %8.3f % 8.3f % 8.3f % 8.3f \n',i,x,FVALUE,

norm([EQCONSTR checkconstr1]))
 else
 deltax = (alpha*search);
 if i>2
 deltax = deltax';
 end
 deriv = grad_vec(x,delx,n_of_var,scale_factor);
 deltag = deriv-deriv_prev;
 term1 = (deltax'*deltax)/(deltax*deltag');
 term2 = (A*deltag'*deltag*A)/(deltag*A*deltag');
 A = A + term1 - term2;
 search = -A*deriv';
 [alpha,falpha] = golden_funct1(x,search',scale_factor);
 checkconstr1 = max([ICONSTR;checkconstr]);
 fpri ntf('%3d %8.3f %8.3f % 8.3f % 8.3f % 8.3f \n',i,x,FVALUE,

norm([EQCONSTR checkconstr1]))
 if abs(falpha-falpha_prev)<epsilon1 || norm(deriv)<epsilon2
 break;
 end
 falpha_prev = falpha;
 deriv_prev = deriv;
 x = x+alpha*search';
 yyy = func1(x,scale_factor);
 LAMBDA = LAMBDA + 2*RK*EQCONSTR;
 BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
 end
 end
fprintf('___\n\n')
if LAMBDA>=0 & BETA>=0
 fprintf('KKT Conditions are satisfied \n\n')
end
fprintf('Lagrange Multipliers: \n\n')
disp([LAMBDA BETA])
%
%%%

© 2015 by Taylor & Francis Group, LLC

374 Appendix B

%%%
% MATLAB code func1.m
%%%
%
function y = func1(x,scale_factor)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
y = (x(1)-1)^2 + (x(2)-5)^2;
h(1) = 0.0;
g(1) = -x(1)^2 + x(2) -4;
g(2) = -(x(1)-2)^2 + x(2) -3;
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y = y + LAMBDA.*EQCONSTR + RK.*EQCONSTR^2 + sum(BETA.*

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR;
-BETA./(2*RK)])).^2);

%
%%%

%%%
% MATLAB code sqp.m
%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1 -> constant used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
%
clear all
clc
warning off
n_of_var = 2;
n_of_eqcons = 1;
n_of_iqcons = 1;
scale_factor = 10;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [10 -5];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-6;
delx = 1e-3;

© 2015 by Taylor & Francis Group, LLC

375Appendix B

checkconstr = zeros(1,n_of_iqcons);
fprintf(' No. x-vector f(x) |Cons.| \n')
fprintf('___\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:3
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x = quadprog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_

val(X),deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';
yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
 break
end
end
fprintf('___\n')
%
%%%

%%%
% MATLAB code func_val.m
%%%
% computes augmented Lagrangian function value
%
function y = func_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
y = (x(1)-1)^2 + (x(2)-2)^2;
g = ineqconstr_val(x);
h = eqconstr_val(x);
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y = y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.*

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR;
-BETA./(2*RK)])).^2);

%
%%%

© 2015 by Taylor & Francis Group, LLC

376 Appendix B

%%%
% MATLAB code func_val1.m
%%%
% computes function value
%
function y = func_val1(x)
y = (x(1)-1)^2 + (x(2)-2)^2;
%
%%%

%%%
% MATLAB code eqconstr_val.m
%%%
% computes value of equality constraint
%
function h = eqconstr_val(x)
h(1) = 2*x(1)-x(2);
%
%%%

%%%
% MATLAB code ineqconstr_val.m
%%%
% computes value of inequality constraint
%
function g = ineqconstr_val(x)
g(1) = x(1)-5;
%
%%%

%%%
% MATLAB code grad_vec_f.m
%%%
% computes gradient vector (obj. function)
%
function deriv = grad_vec_f(x,delx,n_of_var,scale_factor)
xvec = x;
xvec1 = x;
for i = 1:length(x)
 xvec = x;
 xvec1 = x;
 xvec(i) = x(i) + delx;
 xvec1(i) = x(i) - delx;
 deriv(i) = (func_val1(xvec) - func_val1(xvec1))/(2*delx);
end
%
%%%

© 2015 by Taylor & Francis Group, LLC

377Appendix B

%%%
% MATLAB code grad_vec_eqcon.m
%%%
% computes gradient vector (eq. constraint)
%
function deriv = grad_vec_eqcon(x,delx,n_of_eqcons)
xvec = x;
xvec1 = x;
for j = 1:n_of_eqcons
for i = 1:length(x)
 xvec = x;
 xvec1 = x;
 xvec(i) = x(i) + delx;
 xvec1(i) = x(i) - delx;
 h = eqconstr_val(xvec);
 h1 = eqconstr_val(xvec1);
 deriv(j,i) = (h(j) - h1(j))/(2*delx);
end
end
%
%%%

%%%
% MATLAB code grad_vec_ineqcon.m
%%%
% computes gradient vector (ineq. constraint)
%
function deriv = grad_vec_ineqcon(x,delx,n_of_iqcons)
xvec = x;
xvec1 = x;
for j = 1:n_of_iqcons
for i = 1:length(x)
 xvec = x;
 xvec1 = x;
 xvec(i) = x(i) + delx;
 xvec1(i) = x(i) - delx;
 g = ineqconstr_val(xvec);
 g1 = ineqconstr_val(xvec1);
 deriv(j,i) = (g(j) - g1(j))/(2*delx);
end
end
%
%%%

© 2015 by Taylor & Francis Group, LLC

378 Appendix B

Chapter 7

Code Name Details

sqp.m (main program) Sequential quadratic programming (SQP) method modified for
weighted sum approach

func_val.m (function) Computes augmented Lagrangian function value
func_val1.m (function) Computes function value
sqp.m (main program) SQP method modified for solving multiobjective problems using

ε-constraint technique
func_val.m (function) Computes augmented Lagrangian function value
func_val1.m (function) Computes function value
ineqconstr_val.m Computes inequality constraint value
pso.m (main program) Particle swarm optimization (PSO) method with dynamic

weights
func1.m (function) Computes value of objective function
sqp.m (main program) Main program for solving reentry problem
dynamics.m (function) Computes area, volume, and Xcp

%%%
% MATLAB code sqp.m
%%%
%
% n_of_var -> number of design variables
% x = [0.1 0.1] -> starting value of x
% epsilon1 -> constants used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
clear all
clc
warning off
n_of_var = 2;
n_of_eqcons = 1;
n_of_iqcons = 1;
scale_factor = 1;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [0.1 0.1];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-6;
delx = 1e-3;
for kk = 1:101
 X = [0.1 0.1];
 W1 = (kk-1)/100;
 W2 = 1 - W1;

© 2015 by Taylor & Francis Group, LLC

379Appendix B

checkconstr = zeros(1,n_of_iqcons);
fprintf(' No. x-vector f(x) |Cons.| \n')
fprintf('___\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:10
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x = quadprog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_val(X),
deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';
yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
 break
end
end
fprintf('___\n')
plot(0.5*(X(1)^2+X(2)^2) , 0.5*((X(1)-1)^2 + (X(2)-3)^2),'r*')
hold on
end
xlabel('f1');
ylabel('f2');
%
%%

%%%
% MATLAB code func_val.m
%%%
% computes augmented Lagrangian function value
%
function y = func_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
y = W1*0.5*(x(1)^2+x(2)^2) + W2*0.5*((x(1)-1)^2 + (x(2)-3)^2);
g = ineqconstr_val(x);
h = eqconstr_val(x);
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y = y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.*

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR;
-BETA./(2*RK)])).^2);

%
%%%

© 2015 by Taylor & Francis Group, LLC

380 Appendix B

%%%
% MATLAB code func_val1.m
%%%
% computes function value
%
function y = func_val1(x)
global W1 W2
y = W1*0.5*(x(1)^2+x(2)^2) + W2*0.5*((x(1)-1)^2 + (x(2)-3)^2);
%
%%%

%%%
% MATLAB code sqp.m modified for eps-constraints method
%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1 -> constants used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
clear all
clc
warning off
n_of_var = 1;
n_of_eqcons = 1;
n_of_iqcons = 5;
scale_factor = 1;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [1 1];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-6;
delx = 1e-3;
for kk = 1:100
 W1 = (kk-1)/100;
 W2 = 1 - W1;
checkconstr = zeros(1,n_of_iqcons);
fprintf(' No. x-vector f(x) |Cons.| \n')
fprintf('___\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:10
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x = quad prog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_val(X),

deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';

© 2015 by Taylor & Francis Group, LLC

381Appendix B

yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
 break
end
end
fprintf('___\n')
plot(X(1), (1+X(2)^2-X(1)-0.1*sin(3*pi*X(1))),'r*')
hold on
end
xlabel('f1')
ylabel('f2')
%
%%%

%%%
% MATLAB code func_val.m
%%%
% computes augmented Lagrangian function value
%
function y = func_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
y = (1+x(2)^2-x(1)-0.1*sin(3*pi*x(1)));
g = ineqconstr_val(x);
h = eqconstr_val(x);
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y = y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.*

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR; -BETA./
(2*RK)])).^2);

%
%%%

%%%
% MATLAB code ineqconstr_val.m
%%%
% computes value of inequality constraint
function g = ineqconstr_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
g(1) = x(1)-1;
g(2) = -x(1);
g(3) = x(2)-2;
g(4) = -x(2)-2;
g(5) = x(1)- W1;
%%%

© 2015 by Taylor & Francis Group, LLC

382 Appendix B

%%%
% File name pso.m
% Particle Swarm Optimization algorithm with dynamic weights
%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x -> position of individual
% v -> velocity of individual
% rand -> random number from 0 to 1
% fitness -> fitness of individual
% pbest -> best fitness achieved by individual
% gbest -> best fitness of group
%
clear all
clc
format long
global W1 W2
pop = 200;
phi_1 = 0.5;
phi_2 = 0.5;
nmax = 120;
weight = linspace(1,0.4,nmax);
lb = [0 -2];
ub = [1 2];
W1 = 0;
W2 = 1;
for i = 1:length(lb)
 for j = 1:pop
 x(i,j) = lb(i) + (ub(i)-lb(i))*rand;
 v(i,j) = 0;
 end
end
for i = 1:pop
 fitness(i) = func1(x(:,i));
 pbest(i) = fitness(i);
 px(i,:) = x(:,i);
end
[gbest, location] = min(fitness);
gx = x(:,location);
 for i = 1:nmax
 W1 = abs(sin(2*pi*i/150));
 W2 = 1-W1;
 for j = 1:pop
 v(:,j) = weight(i)*v(:,j) + phi_1*rand*(px(j,:)'-x(:,j)) +
 phi_2*rand*(gx-x(:,j));
 x(:,j) = x(:,j) + v(:,j);
 for k = 1:length(x(:,j))
 if x(k,j) < lb(k) || x(k,j) > ub(k)
 x(k,j) = lb(k) + (ub(k)-lb(k))*rand;

© 2015 by Taylor & Francis Group, LLC

383Appendix B

 end
 end
 fitness(j) = func1(x(:,j));
 if fitness(j) < pbest(j)
 pbest(j) = fitness(j);
 px(j,:) = x(:,j);
 end
 F1(j) = x(1,j);
 F2(j) = (1+x(2,j)^2-x(1,j)-0.1*sin(3*pi*x(1,j)));
end
 [gbest, location] = min(pbest);
 gx = x(:,location);
 [gx' gbest];
 plot(F1,F2,'r*')
 pause(0.1)
end
%
%%%

%%%
% File name func1.m
% Enter the function to be optimized
%%%
%
function [y] = func1(x)
global W1 W2
y = W1*x(1) + W2*(1+x(2)^2-x(1)-0.1*sin(3*pi*x(1)));
%%%

%%%
% MATLAB code sqp.m
%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1 -> constant used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
clear all
clc
warning off
n_of_var = 5;
n_of_eqcons = 1;
n_of_iqcons = 12;
scale_factor = 1;

© 2015 by Taylor & Francis Group, LLC

384 Appendix B

global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [0.5 25 31 0.5 0.5];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-2;
delx = 1e-3;
for kk = 640:20:1630
 W1 = (kk-1)/100;
checkconstr = zeros(1,n_of_iqcons);
fprintf(' No. x-vector f(x) |Cons.| \n')
fprintf('___\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:30
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x = quadprog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_

val(X),deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';
yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
 break
end
end
fprintf('___\n')
[xcp, area, volume] = dynamics(X);
 plot(xcp, area,'k*','LineWidth',1.5)
hold on
end
xlabel('X_{cp}')
ylabel('A')
%%%

%%%
% MATLAB code dynamics.m
%%%
function [xcp, area, volume] = dynamics(X)

© 2015 by Taylor & Francis Group, LLC

385Appendix B

beta1 = [0.075759311956522
 0.001381832173914
 0.005825624927536
 0.087880851017943
 0.079788071083505
 0.103099119565217
 0.000091411652174
 -0.000083773739130
 0.024378102714516
 0.052872440763746];
cm = -0.278527718840579+beta1'*[X(1);X(2);X(3);X(4);X(5);
 X(1)^2;X(2)^2;X(3)^2;X(4)^2;X(5)^2];
beta2 = [0.150130422826087
 -0.003965447971014
 0.014019523043478
 0.103639584627328
 0.108001867667355
 0.047906228260870
 0.000186851275362
 -0.000219940956522
 -0.000485274327121
 0.016298096388315];
cn = -0.314286112399353+beta2’*[X(1);X(2);X(3);X(4);X(5);
 X(1)^2;X(2)^2;X(3)^2;X(4)^2;X(5)^2];
xcp = cm/cn;
r1 = X(1)*cos(deg2rad(X(2)));
r2 = X(1)*cos(deg2rad(X(2))) + X(4)*tan(deg2rad(X(2)));
r3 = r2 + X(5)*tan(deg2rad(X(3)));
area = 2*pi*X(1)*X(1)*(1-sin(deg2rad(X(2)))) +

pi*(r1+r2)*sqrt((r2-r1)^2 + X(4)^2) +
pi*(r3+r2)*sqrt((r3-r2)^2 + X(5)^2) + pi*r3^2;

cap = (pi*r1*(1-sin(deg2rad(X(2))))/6) * (3*r1*r1 +
(r1*(1-sin(deg2rad(X(2))))^2));

volume = cap + 0.3333*pi*X(4)*(r2^2 + r1^2 + r2*r1) +
0.3333*pi*X(5)*(r3^2 + r2^2 + r2*r3);

end
%%%

Chapter 9

Code Name Details

sqp.m (main program) Sequential quadratic programming (SQP) method (for
multidisciplinary design optimization [MDO] application)

discipline1.m (function) Output from first discipline

© 2015 by Taylor & Francis Group, LLC

386 Appendix B

discipline2.m (function) Output from first discipline
eqconstr_val.m (function) Computes equality constraints value
ineqconstr_val.m (function) Computes inequality constraints value
func_val1.m (function) Computes function value
func_val.m (function) Computes augmented Lagrangian function
grad_vec_eqcon.m (function) Computes gradient vector for equality constraints
grad_vec_ineqcon.m (function) Computes gradient vector for inequality constraints
hessian.m (function) Computes Hessian matrix (see Chapter 3)

%%%
% MATLAB code sqp.m
%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1 -> constant used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
clear all
clc
warning off
n_of_var = 5;
n_of_eqcons = 2;
n_of_iqcons = 4;
scale_factor = 10;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [1 2 5 1 0];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-6;
delx = 1e-3;
checkconstr = zeros(1,n_of_iqcons);
fprintf(' No. x-vector f(x) |Cons.| \n')
fprintf('___\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:30
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x = quadprog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_val(X),
 deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';
yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));

© 2015 by Taylor & Francis Group, LLC

387Appendix B

fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
 break
end
end
fprintf('___\n')
%
%%

%%%
% MATLAB code discipline1.m
%%%
%
% Discipline-1
%
function y1 = discipline1(x)
y1 = x(1)+x(2)+x(3)^2-0.2*x(5);
%
%%%

%%%
% MATLAB code discipline2.m
%%%
%
% Discipline-2
%
function y2 = discipline2(x)
y2 = x(3)+x(2)+sqrt(x(4));
%
%%%

%%%
% MATLAB code eqconstr_val.m
%%%
% computes value of equality constraint
function h = eqconstr_val(x)
y1 = discipline1(x);
y2 = discipline2(x);
h(1) = y1-x(4);
h(2) = y2-x(5);
%%%

%%%
% MATLAB code ineqconstr_val.m
%%%
% computes value of inequality constraint
function g = ineqconstr_val(x)

© 2015 by Taylor & Francis Group, LLC

388 Appendix B

y1 = discipline1(x);
y2 = discipline2(x);
g(1) = 1-y1/3.16;
g(2) = y2/24-1;
g(3) = -x(1);
g(4) = -x(2);
%%%

%%%
% MATLAB code func_val1.m
%%%
% computes function value
%
function y = func_val1(x)
y = x(1)^2 + x(2) + x(4) +exp(-x(5));
%%%

%%%
% MATLAB code func_val.m
%%%
% computes augmented Lagrangian function value
function y = func_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
y = x(1)^2 + x(2) + x(4) +exp(-x(5));
g = ineqconstr_val(x);
h = eqconstr_val(x);
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y = y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.*

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR;
-BETA./(2*RK)])).^2);

%%%

%%%
% MATLAB code grad_vec_eqcon.m
%%%
function deriv = grad_vec_eqcon(x,delx,n_of_eqcons)
xvec = x;
xvec1 = x;
for j = 1:n_of_eqcons
for i = 1:length(x)
 xvec = x;
 xvec1 = x;
 xvec(i) = x(i) + delx;
 xvec1(i) = x(i) - delx;
 h = eqconstr_val(xvec);
 h1 = eqconstr_val(xvec1);

© 2015 by Taylor & Francis Group, LLC

389Appendix B

 deriv(j,i) = (h(j) - h1(j))/(2*delx);
end
end
%%%

%%%
% MATLAB code grad_vec_ineqcon.m
%%%
function deriv = grad_vec_ineqcon(x,delx,n_of_iqcons)
xvec = x;
xvec1 = x;
for j = 1:n_of_iqcons
for i = 1:length(x)
 xvec = x;
 xvec1 = x;
 xvec(i) = x(i) + delx;
 xvec1(i) = x(i) - delx;
 g = ineqconstr_val(xvec);
 g1 = ineqconstr_val(xvec1);
 deriv(j,i) = (g(j) - g1(j))/(2*delx);
end
end
%%%

Chapter 10

Code Name Details

Gomory’s Method (All-Integer Problem)
simplex.m Simplex method for solving linear programming

problem (LPP)
dual_step1.m Solves step 1 of problem
dual_step2.m Solves step 2 of problem

Gomory’s Method (Mixed-Integer Problem)
simplex.m Simplex method for solving LPP
dual_step.m Dual simplex method

Branch and Bound Method
simplex.m Simplex method for solving LPP
subproblem1.m Simplex method for subproblem 1
subproblem2.m Simplex method for subproblem 2
node2_subproblem1.m Simplex method for subproblem 1 (Node 2)
node2_subproblem2.m Simplex method for subproblem 2 (Node 2)

© 2015 by Taylor & Francis Group, LLC

390 Appendix B

Particle Swarm Optimization
pso.m Main program
func1.m Objective function
constr.m Constraints

%%
% MATLAB code simplex.m
% Gomory’s method (All-integer problem)
%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [1 -1 1 0;
 4 7 0 1];
b = [5;50];
c = [-3;-2;0;0];
 basic_set = [3 4];
 nonbasic_set = [1 2];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%

© 2015 by Taylor & Francis Group, LLC

391Appendix B

%%
% MATLAB code dual_step1.m (Solves step 1 of the problem)
% Gomory’s method (All-integer problem)
%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> set of nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [1 0 7/11 1/11 0;
 0 1 -4/11 1/11 0;
 0 0 -7/11 -1/11 1];
b = [85/11;30/11;-8/11];
c = [0;0;13/11; 5/11;0];
basic_set = [1 2 5];
nonbasic_set = [3 4];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz = -315/11;
% Rest of the code remains same as in dual.m (Chapter 4)
%%

%%
% MATLAB code dual_step2.m (Solves step 2 of the problem)
% Gomory’s method (All-integer problem)
%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> set of nonbasic variables

© 2015 by Taylor & Francis Group, LLC

392 Appendix B

% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A =[1 0 0 0 1 0;
 0 1 0 1/7 -4/7 0;
 0 0 1 1/7 -11/7 0;
 0 0 0 -1/7 4/7 1];
b = [7;22/7;8/7;-1/7];
c = [0;0;0;2/7;13/7;0];
basic_set = [1 2 3 6];
nonbasic_set = [4 5];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz = -191/7;
% Rest of the code remains same as in dual.m (Chapter 4)
%%

%%
% MATLAB code simplex.m
% Gomory’s method (Mixed-integer problem)
%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%

© 2015 by Taylor & Francis Group, LLC

393Appendix B

clear all
clc
format rational
format compact
A = [1 1 1 0;
 5 2 0 1];
b = [6;20];
c = [-3;-2;0;0];
 basic_set = [3 4];
 nonbasic_set = [1 2];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%

%%
% MATLAB code dual_step.m
% Gomory’s method (Mixed-integer problem)
%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> set of nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [1 0 -2/3 1/3 0;
 0 1 5/3 -1/3 0;
 0 0 -5/3 1/3 1];
b = [8/3;10/3;-1/3];
c = [0;0;4/3; 1/3;0];
basic_set = [1 2 5];

© 2015 by Taylor & Francis Group, LLC

394 Appendix B

nonbasic_set = [3 4];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz =-44/3;
% Rest of the code remains same as in dual.m (Chapter 4)
%%

%%
% MATLAB code simplex.m
% Branch and Bound method
%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [2 5 1 0;
 2 -3 0 1];
b = [16;7];
c = [-4;-5;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end

© 2015 by Taylor & Francis Group, LLC

395Appendix B

cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%

%%
% MATLAB code subproblem1.m
% Subproblem-1
%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [2 5 1 0 0;
 2 -3 0 1 0;
 1 0 0 0 1];
b = [16;7;5];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%

© 2015 by Taylor & Francis Group, LLC

396 Appendix B

%%
% MATLAB code subproblem2.m
% Subproblem-2
%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [2 5 1 0 0;
 2 -3 0 1 0;
 -1 0 0 0 1];
b = [16;7;-6];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%

%%
% MATLAB code node2_subproblem1.m
% Subproblem-1 (Node-2)
%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients

© 2015 by Taylor & Francis Group, LLC

397Appendix B

% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [2 5 1 0 0;
 2 -3 0 1 0;
 0 1 0 0 1];
b = [16;7;1];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%

%%
% MATLAB code node2_subproblem2.m
% Subproblem-2 (Node-2)
%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables

© 2015 by Taylor & Francis Group, LLC

398 Appendix B

% cn -> cost coefficients of nonbasic variables
%
clear all
clc
format rational
format compact
A = [2 5 1 0 0;
 2 -3 0 1 0;
 0 -1 0 0 1];
b = [16;7;-2];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
 B(:,i) = A(:,basic_set(i));
 cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
 N(:,i) = A(:,nonbasic_set(i));
 cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%

%%%
% File name pso.m
% Welded beam problem
%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x -> position of individual
% v -> velocity of individual
% rand -> random number from 0 to 1
% fitness -> fitness of individual
% pbest -> best fitness achieved by individual
% gbest -> best fitness of group
%
clear all
clc
format long
pop = 50;
phi_1 = 1.05;
phi_2 = 1.1;
nmax = 1000;
scale_factor = 10000000;
weight = linspace(1,0.3,nmax);
fprintf('___\n')
lb = [0.1 0.1 0.1 0.1];

© 2015 by Taylor & Francis Group, LLC

399Appendix B

ub = [2 10 10 2];
for i = 1:length(lb)
 for j = 1:pop
 x(i,j) = lb(i) + (ub(i)-lb(i))*rand;
 v(i,j) = 0;
 end
end
for i = 1:pop
 fitness(i) = func1(x(:,i),scale_factor);
 pbest(i) = fitness(i);
 px(i,:) = x(:,i);
end
[gbest, location] = min(fitness);
gx = x(:,location);
for i = 1:nmax
 for j = 1:pop
 v(:,j) = weight(i)*v(:,j) + phi_1*rand*(px(j,:)'-x(:,j)) +

phi_2*rand*(gx-x(:,j));
 x(:,j) = x(:,j) + v(:,j);
 for k = 1:length(x(:,j))
 if x(k,j) < lb(k) || x(k,j) > ub(k)
 x(k,j) = lb(k) + (ub(k)-lb(k))*rand;
 end
 end
 x(2,:) = round(x(2,:));
 x(4,:) = round(x(4,:));
 fitness(j) = func1(x(:,j),scale_factor);
 if fitness(j) < pbest(j)
 pbest(j) = fitness(j);
 px(j,:) = x(:,j);
 end
 end
 [gbest, location] = min(pbest);
 gx = x(:,location);
 [gx' gbest];
 fprintf('%3d %8.3f %8.3f %8.3f %8.3f % 8.3f \n',i,gx,gbest)
end
fprintf('__ \n')
%%%

%%%
% File name func1.m
% Objective function for welded beam problem
%%%
function y = func1(x,scale_factor)
y = 1.10471*x(1)*x(1)*x(2) + 0.04811*x(3)*x(4)*(14+x(2));
%y = (x(1)-1)^2 + (x(2)-5)^2;
penalty = 0.0;
[h,g] = constr(x);
for i = 1:length(h)
 if h(i)~=0
 penalty = penalty + h(i)^2;
 end
end

© 2015 by Taylor & Francis Group, LLC

400 Appendix B

for i = 1:length(g)
 if g(i)>0
 penalty = penalty + g(i)^2;
 end
end
y = y+penalty*scale_factor;
%%%

%%%
% File name constr.m
% Constraint function for welded beam problem
%%%
function [h,g] = constr(x)
h(1) = 0;
% g(1) = -x(1)^2 + x(2) -4;
% g(2) = -(x(1)-2)^2 + x(2) -3;
load = 6000;
length = 14;
modulusE = 30e6;
modulusG = 12e6;
tmax = 13600;
sigmamax = 30000;
delmax = 0.25;
tdash = load/(sqrt(2)*x(1)*x(2));
R = sqrt(x(2)*x(2)/4 + ((x(1)+x(3))/2)^2);
M = load*(length + x(2)/2);
J = 2* ((x(1)*x(2)/sqrt(2)) *(x(2)^2/12 + ((x(1)+x(3))/2)^2));
tdashdash = M*R/J;
tx = sqrt(tdash^2 + 2*tdash*tdashdash*x(2)/(2*R)+tdashdash^2);
sigmax = 6*load*length/(x(4)*x(3)^2);
delx = 4*load*length^3/(modulusE*x(4)*x(3)^3);
pcx = (4.013*sqrt(modulusE*modulusG*x(3)^2*x(4)^6/36)/(length^2)) *

(1- (x(3)/(2*length))*sqrt(modulusE/(4*modulusG)));
g(1) = tx/tmax -1;
g(2) = sigmax/sigmamax -1;
g(3) = x(1) - x(4);
g(4) = (.10471*x(1)*x(1) + 0.04811*x(3)*x(4)*(14+x(2)))/5 -1;
g(5) = 0.125 - x(1);
g(6) = delx/delmax -1;
g(7) = load/pcx -1;
g(8) = x(1)/2 -1;
g(9) = x(4)/2 -1;
g(10) = -x(1) + 0.1;
g(11) = -x(4) + 0.1;
g(12) = x(2)/10 -1;
g(13) = x(3)/10 -1;
g(14) = -x(2) + 0.1;
g(15) = -x(3) + 0.1;
%%%

© 2015 by Taylor & Francis Group, LLC

401

Appendix C: Solutions to Chapter Problems

Chapter 1

 1. Let x = number of times fare is reduced by Rs. 300

 Revenue = R = price × quantity = (15,000 − 300x) × (130 + 4x)

 For maximization,
d
d
R
x

= 0

 ∴ x = 8.75

 Now,
d
d

2

2 2400
R

x
= −

 ∴ R has a local maximum at x = 8.75

 Best fare = (15,000 − 300x) = Rs. 12,375

 Number of passengers = (130 + 4x) = 165

 Revenue = Rs. 2,041,875

 2. Let x = number of additional trees that need to be planted

 Yield = y = (50 + x) × (300 − 3x)

 For maximization, d
d

y
x

= 0

 ∴ x = 25

 Now,
d
d

2

2 6
y

x
= −

 ∴ R has a local maximum at x = 25

© 2015 by Taylor & Francis Group, LLC

402 Appendix C

 3. Let r = the radius of the circle; w and h are the width and height of
the rectangle to be inscribed in the circle (see Figure C.1).

 r

w h2
2 2

2 2
=







+






 w r h= −4 2 2 (Constraint)

 A = wh (Objective function to be maximized)

 ∴ = −A r h h4 2 2

 Plotting (h, A) gives (see Figure C.2) optimal value of A as 50 cm2 at
h = 7.07 cm.

w/2

h/2 r

figure C.1
Rectangle inscribed in a circle.

6 6.5 7 7.5 8 8.5 9
38

40

42

44

46

48

50

h

A

figure C.2
h vs. A.

© 2015 by Taylor & Francis Group, LLC

403Appendix C

 It is easy to show analytically
d
d
A
h

=




0 that maximum area is

given by 2r2 when w h r= = 2 .
 4. The fence needs to cover only three sides of the field because the

river is flowing on one side. Thus the optimization problem can be
stated as
Maximize

 xy

subject to

 2x + y = 300

 where x and y are two adjacent sides of the rectangle.
 5. Minimize

 x y i jij ij

j

n

i

n

()≠
==

∑∑
11

 subject to

 xij

i

n

=
=

∑ 1
1

xij

j

n

=
=

∑ 1
1

 where xij is an integer that takes a value 0 or 1.
 6. Minimize

 (rrR) + rs(W − R)

 7. Minimize

 (45 − m − c)2 + (55 − 2m − c)2 + (70 − 3m − c)2 + (85 − 4m − c)2 + (105 − 5m − c)2

 m* = 15 c* = 27

 8. U
T T

, . ,=

−
+

−
204 165 5
330 2

10 400
20

 40 ≤ T ≤ 90

© 2015 by Taylor & Francis Group, LLC

404 Appendix C

 9. ∇ =
+

+

+
+

















f

x
x

x x

x
x

x x

5
4

2 3

5
6

2 3

2
1

1
2

2
2

1
2

1
2

2
2




∇ =

−

+()
−

+(2

2
2

1
2

1
2

2
2

2
1 2

1
2

2
2

12 8

2 3
5

24

2 3
f

x x

x x

x x

x x))
−

+()
−

+()


2

1 2

1
2

2
2

2
1
2

2
2

1
2

2
2

25
24

2 3

12 18

2 3

x x

x x

x x

x x



















 10. Let x, y, and z denote the quantity of product A, B, and C respec-
tively. The optimization problem can be stated as
Maximize

 5x + 7y + 4z

subject to

 12x + 25y + 7z ≤ 28,000

 11x + 6y + 20z ≤ 35,000

 15x + 6y + 5z ≤ 32,000

 11. Let
x11 = number of units transported from factory P to warehouse A
x12 = number of units transported from factory P to warehouse B
x13 = number of units transported from factory P to warehouse C
x14 = number of units transported from factory P to warehouse D
x15 = number of units transported from factory P to warehouse E
x21 = number of units transported from factory Q to warehouse A
x22 = number of units transported from factory Q to warehouse B
x23 = number of units transported from factory Q to warehouse C
x24 = number of units transported from factory Q to warehouse D
x25 = number of units transported from factory Q to warehouse E
x31 = number of units transported from factory R to warehouse A
x32 = number of units transported from factory R to warehouse B
x33 = number of units transported from factory R to warehouse C
x34 = number of units transported from factory R to warehouse D
x35 = number of units transported from factory R to warehouse E

© 2015 by Taylor & Francis Group, LLC

405Appendix C

Minimize

 3x11 + 7x12 + 4x13 + 6x14 + 5x15 + 5x21 + 4x22 + 2x23 + 5x24 + x25 + 6x31
 + 3x32 + 2x33 + 2x34 + 4x35

subject to

 x11 + x12 + x13 + x14 + x15 ≤ 150

 x21 + x22 + x23 + x24 + x25 ≤ 110

 x31 + x32 + x33 + x34 + x35 ≤ 90

 x11 + x21 + x31 ≥ 50

 x12 + x22 + x32 ≥ 100

 x13 + x23 + x33 ≥ 70

 x14 + x24 + x34 ≥ 70

 x15 + x25 + x35 ≥ 60

 12. The minimum value is –13.128 and occurs at x = –0.47.
 The maximum value (see Figure C.3) is 1.128 and occurs at x = –3.53.

–4 –3 –2 –1 0
–14

–12

–10

–8

–6

–4

–2

0

2

x

f(
x)

figure C.3
Plot of the function.

© 2015 by Taylor & Francis Group, LLC

406 Appendix C

 13. Let xij = barrels of gasoline of type i used to make fuel of type j

 Fj = barrels of fuel of type j

 Profit = Revenue – Cost

 The objective function and constraints can be written as
Minimize

 () ()

()

90 100 60 65

70
1 2 11 12 21 22

31 32

F F x x x x

x x

+ − + − +
− + −− +80 41 42()x x

subject to

 75x11 + 85x21 + 90x31 + 95x41 − 80F1 ≥ 0

 75x12 + 85x22 + 90x32 + 95x42 − 90F2 ≥ 0

 F1 + F2 ≥ 6000

 0 ≤ (x11 + x12) ≤ 3000

0 ≤ (x21 + x22) ≤ 4000

 0 ≤ (x31 + x32) ≤ 5000

 0 ≤ (x41 + x42) ≤ 4000

 14. Functions at plots (a) and (d) are convex (see Figure C.4).
 15. The Taylor series of a function f(x) at x = a is given by

 f a f a x a
f a

x a() ()()
()
!

()+ − + − +′ ′′
2

2


 The Taylor series for the function ln(x − 1) at x = 3 is given by

 ln2
1
2

3
1
8

3 2+ − − −() ()x x

© 2015 by Taylor & Francis Group, LLC

407Appendix C

 16. The linear approximation of a function is given by the first two terms
of the Taylor series. The linear expansion for the function (1 + x)50 +
(1 − 2x)60 at x = 1 is given by

 L(x) = (1 + 250) + (120 + 50 × 249)(x − 1)

 17. The Taylor series for the function ex at x = 3 is given by

 e e x
e

x
e

x3 3
3

2
4

33
2

3
6

3+ − + − + −() () ()

 18. The Taylor series for the function ecos x at x = π is given by

1 1

2
2

e e
x+ −()π

–4 –3 –2 –1 0 1 2 3 40
5

10
15
20
25
30
35
40
45
50

(a) (b)

(c) (d)

–3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1–70

–60

–50

–40

–30

–20

–10

0

–1.6 –1.5 –1.4 –1.3 –1.2 –1.1 –1 –0.9 –0.8
–600

–400

–200

0

200

400

600

–5 –4 –3 –2 –1 0 1 2 3 4 5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5

figure C.4
Plot of four different functions.

© 2015 by Taylor & Francis Group, LLC

408 Appendix C

 19. The quadratic approximation of a function is given by the first three
terms of the Taylor series. The quadratic expansion for the function
ln(1 + sin x) at x = 0 is given by

 Q x x
x

()
!

= −
2

2

 20. The gradient of the function is given by

 ∇ =

−

+ −

−










f

x x x x

x x x x x

x x x x

2

2

2

1 2 2 3
2

1
2

2 3 1 3
2

2
2

1 2 3










 The gradient at (1, 1, –1) is given by

 ∇ = −
















f
1
2

3

 Now

 ∇ = −



















=f T() []x u 1 2 3
1 14

2 14

3 14

6 14
/

/

/

/

 21. Both functions are convex (see Figure C.5).
 22.
 i. The maximum value is 19,575/17 and occurs at x = 99/17 and

x = 48/17 (see Figure C.6).
 ii. The maximum value is 120 and occurs at x = 0 and x = 30 (see

Figure C.7).
 23. The Jacobian is given by

 J =
− + −

1 4 9

2 2

3 2 3 4

2 3

1 2 3
2

1
2

3
2

3 2 1
2

2 3 1 3

x x

x x x x x x x x

x x x x 22 41 2x x+



















© 2015 by Taylor & Francis Group, LLC

409Appendix C

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 30
10
20
30
40
50
60
70
80
90

(a)
0

0.5

1

1.5

2

2.5

3

(b)

figure C.5
Plot of two different functions.

Maximize 125*x + 150*y

–1 1 2 3 4 5 6 7 8 9 10
–1

1

2

3

4

5

6

7

figure C.6
Linear programming problem.

Maximize 3*x + 4*y

10

15

20

25

30

figure C.7
Linear programming problem.

© 2015 by Taylor & Francis Group, LLC

410 Appendix C

Chapter 2

 1.
L
D







=
max

 .1 71 occurs at α* = 20 degrees

 2.
 i. The minimum value of function is –3.517 and occurs at x* =

−1.386. The numbers of function evaluations are 16, 20, 40, and 58
by the golden section, cubic polynomial fit, bisection, and secant
method respectively.

 ii. The minimum value of function is 4.369 and occurs at x* = 0.45.
The numbers of function evaluations are 15, 16, 36, and 44 by the
golden section, cubic polynomial fit, bisection, and secant method
respectively.

 iii. The minimum value of function is 0.691 and occurs at x* = 1.087.
The numbers of function evaluations are 15, 40, 32, and 128 by the
golden section, cubic polynomial fit, bisection, and secant method
respectively.

 iv. Minimum value of function is 11.052 and occurs at x* = 1.356.
The number of function evaluations is 16 by the golden sec-
tion method. Other methods did not converge as the function is
highly skewed.

 3. The maximum value of function is 0.202 and occurs at x* = 3.
 4. The maximum value of function is 28.209 and occurs at x* = 3.577.
 5. The maximum value of function is 0.693 and occurs at x* = 0.0. The

minimum value of function is 0.526 and occurs at x* = 1.19.
 6. Let x and y be the length and depth of the beam and D be the diam-

eter of the log. Then,

 x2 + y2 = D2

 y2 = 1 − x2

 Let S denote the strength of the beam. Then,

 S = kxy2

 where k is a constant.
 Now,

 S = kx(1 − x2)

© 2015 by Taylor & Francis Group, LLC

411Appendix C

 For maximum,

d
d

S
x

= 0

 Therefore,

 x = 0.5774 m and y = 0.8165 m

 7. Total cost

 C
x

x
x

= +




 + ×6

300
3

7
600

 For maximum,

d
d
C
x

= 0

 Therefore,

 x = 54.77 km/h

 8. Total time

 t
x x= − + +7

6
25

2

2

 For minimum,

d
d

t
x

= 0

 Therefore,

 x = 1.77 km

 9. (T)min = 41,375 N occurs at v* = 149 m/s

© 2015 by Taylor & Francis Group, LLC

412 Appendix C

 10. The global minimum value of function is –6.097 and occurs at x* =
−1.18. The local minimum value of function is –5.01 and occurs at
x* = 0.43. The regions ABC and CDE are convex. The region BCD is
concave (see Figure C.8).

 11. f′(x) = 0

k
p

x
p
p2

1

2

2 0− =

 Therefore,

 x
k
p

=
2 1

 Hence,

 f x
k
p p

() .= =
2

1 24
40 5

 12. The minimum value of function is –4.899 and occurs at x* = 0.3.
 13. r* = 40.7 mm and h* = 57.6 mm.
 14. a* = 2.24 (see Figure C.9).

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2–10

–5

0

5

10

15

x

f(
x)

D

E

A

B

C

figure C.8
Multimodal function.

© 2015 by Taylor & Francis Group, LLC

413Appendix C

Chapter 3

 1. The gradient of the function is given by

 ∇ =
+
+













f
x x

x x

2 3

3 4
1 2

1 2

 Therefore, search direction for the steepest descent method at (1, 2)
is given by

 S f= −∇ = −








 8

11

 2. x* = (0, 0) with f(x*) = 0
 3. All the methods converge to the point x* = (3, 2) with f(x*) = 0. The

convergence history of different methods is given below:

28.4

28.35

28.3

28.25

28.2

28.15
2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

a

t

figure C.9
Solution to bacteria problem.

© 2015 by Taylor & Francis Group, LLC

414 Appendix C

 i. Steepest descent method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 ——
 1 2.777 1.706 4.239 46.648
 2 -3.827 -2.255 34.894 23.591
 3 -3.417 -2.938 8.305 63.644
 4 3.276 1.088 7.130 31.920
 5 2.843 1.804 2.045 10.994
 6 3.036 1.921 0.095 16.863
 7 2.993 1.992 0.004 2.150
 8 3.001 1.997 0.000 0.792
 9 3.000 2.000 0.000 0.089
 10 3.000 2.000 0.000 0.018
 11 3.000 1.999 0.000 0.007
 12 3.000 1.999 0.000 0.032
 13 3.000 2.000 0.000 0.024
 14 3.000 2.000 0.000 0.010
 15 3.000 1.999 0.000 0.005
 16 3.000 1.999 0.000 0.017
 17 3.000 2.000 0.000 0.029
 18 3.000 2.000 0.000 0.013
 19 3.000 1.999 0.000 0.007
 20 3.000 2.000 0.000 0.022
 21 3.000 2.000 0.000 0.012
 22 3.000 1.999 0.000 0.007
 23 3.000 2.000 0.000 0.019
 24 3.000 2.000 0.000 0.011
 25 3.000 1.999 0.000 0.007
 26 3.000 2.000 0.000 0.018
 27 3.000 2.000 0.000 0.011
 28 3.000 1.999 0.000 0.006
 29 3.000 2.000 0.000 0.017
 30 3.000 2.000 0.000 0.010
 31 3.000 1.999 0.000 0.006
 32 3.000 2.000 0.000 0.017
 33 3.000 2.000 0.000 0.010
 34 3.000 1.999 0.000 0.006
 35 3.000 2.000 0.000 0.016
 36 3.000 2.000 0.000 0.010
 37 3.000 1.999 0.000 0.006
 38 3.000 2.000 0.000 0.016
 39 3.000 2.000 0.000 0.009
 40 3.000 1.999 0.000 0.006
 41 3.000 2.000 0.000 0.015
 42 3.000 2.000 0.000 0.009
 ——

© 2015 by Taylor & Francis Group, LLC

415Appendix C

 ii. Newton’s method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 ———
 1 4.426 2.016 114.754 46.648
 2 3.508 1.780 9.631 193.672
 3 3.095 1.967 0.298 42.834
 4 3.004 1.998 0.001 6.720
 5 3.000 2.000 0.000 0.292
 6 3.000 2.000 0.000 0.001
 ———

 iii. Modified Newton’s method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 ——
 1 2.991 2.598 7.814 46.648
 2 2.951 2.035 0.076 31.917
 3 2.999 2.001 0.000 2.892
 4 3.000 2.000 0.000 0.035
 5 3.000 2.000 0.000 0.006
 6 3.000 2.000 0.000 0.001
 ——

 iv. Levenberg–Marquardt method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 ———
 1 2.024 2.963 29.980 46.648
 2 2.074 2.898 26.507 44.421
 3 2.172 2.794 21.043 40.863
 4 2.353 2.646 13.471 35.851
 5 2.615 2.457 5.628 29.097
 6 2.844 2.259 1.324 19.368
 7 2.952 2.107 0.184 9.124
 8 2.989 2.028 0.012 3.221
 9 2.998 2.004 0.000 0.797
 10 3.000 2.000 0.000 0.113
 11 3.000 2.000 0.000 0.008
 ———

© 2015 by Taylor & Francis Group, LLC

416 Appendix C

 v. Conjugate gradient method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 ———
 1 2.777 1.706 4.239 46.648
 2 3.076 1.727 0.920 23.591
 3 3.110 1.886 0.425 6.141
 4 3.029 2.027 0.060 6.459
 5 2.993 2.031 0.014 3.124
 6 2.987 2.019 0.008 0.955
 7 2.994 1.998 0.001 0.719
 8 3.000 1.996 0.000 0.484
 9 3.001 1.997 0.000 0.139
 10 3.001 1.999 0.000 0.084
 11 3.000 2.000 0.000 0.070
 ———

 vi. DFP method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 ——
 1 2.777 1.706 4.239 46.648
 2 3.076 1.727 0.920 23.591
 3 2.997 1.999 0.000 6.142
 4 3.000 2.000 0.000 0.229
 5 3.000 2.000 0.000 0.019
 6 3.000 2.000 0.000 0.004
 7 3.000 2.000 0.000 0.001
 ——

 vii. BFGS method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 ——
 1 2.777 1.706 4.239 46.648
 2 3.076 1.727 0.920 23.591
 3 2.997 2.000 0.000 6.141
 4 3.000 2.000 0.000 0.234
 5 3.000 2.000 0.000 0.020
 6 3.000 2.000 0.000 0.004
 ——

© 2015 by Taylor & Francis Group, LLC

417Appendix C

 viii. Powell method

 Initial function value = 32.0000
 No. x-vector f(x)
 ——————————————————————————————————
 1 3.000 2.003 0.000
 2 3.000 2.001 0.000
 3 3.000 2.001 0.000
 4 3.000 2.001 0.000
 5 3.000 2.000 0.000
 ——————————————————————————————————

 ix. Nelder–Meads method

 Iteration Deviation f(x)
 ————————————————————————————————
 1 87.9962 58.789
 2 29.8163 21.131
 3 32.1499 10.859
 4 13.5635 10.859
 5 4.5179 6.998
 6 5.4792 2.191
 7 3.5857 0.483
 8 1.3618 0.483
 9 1.1302 0.483
 10 0.3982 0.483
 11 0.3662 0.116
 12 0.2224 0.116
 13 0.0865 0.072
 14 0.0644 0.006
 15 0.0417 0.006
 16 0.0084 0.006
 17 0.0089 0.002
 18 0.0029 0.002
 19 0.0023 0.001
 20 0.0013 0.001
 21 0.0011 0.000
 22 0.0005 0.000
 23 0.0002 0.000
 24 0.0002 0.000
 ————————————————————————————————

xc =
 2.9994 1.9987

© 2015 by Taylor & Francis Group, LLC

418 Appendix C

 4. The metric [A] approaches the inverse of the Hessian matrix in the
DFP method.

 Initial function value = 9.0000
 No. x-vector f(x) Deriv
 ——
 1 0.545 -0.183 0.165 13.928
 2 0.001 -0.000 0.000 0.575
 3 -0.000 0.000 0.000 0.001
 4 0.000 -0.000 0.000 0.000
 ——

>> A

A =

 0.909090909189563 -0.272727272447249
 -0.272727272447250 0.181818182613013

>> inv(hessian(x,delx,n_of_var))

ans =

 0.909090909090909 -0.272727272727273
 -0.272727272727273 0.181818181818182

 5. The metric [A] approaches to the Hessian matrix in the BFGS method.

 Initial function value = 67.0000
 No. x-vector f(x) Deriv
 ——
 1 0.818 -0.273 0.372 38.275
 2 0.001 -0.000 0.000 0.862
 3 -0.000 0.000 0.000 0.001
 ——

>> A

A =

 1.999999985050531 2.999999955266635
 2.999999955266635 9.999999866143737

>> hessian(x,delx,n_of_var)

ans =

 2.000000000000000 3.000000000000000
 3.000000000000000 10.000000000000002

© 2015 by Taylor & Francis Group, LLC

419Appendix C

 6. x* = (−0.656, −0.656) with f(x*) = −2.661

 Initial function value = 4.3891
 No. x-vector f(x) Deriv
 ——
 1 0.098 0.184 -2.422 21.090
 2 -0.764 -0.539 -2.601 0.987
 3 -0.665 -0.599 -2.641 0.763
 4 -0.655 -0.656 -2.661 0.845
 5 -0.655 -0.656 -2.661 0.014
 6 -0.656 -0.656 -2.661 0.010
 7 -0.656 -0.656 -2.661 0.002
 ——

 7. x* = (1, 0, 0) with f(x*) = 0
 8. Both the complex variable formula and the central difference for-

mula give the same results.
 9. The value of the analytical derivative at x = 0.1 is 10.995004165278026.

The value of the derivative at x = 0.1 using the central difference
formula is 10.995337352778689. The value of the derivative at x = 0.1
using the complex variable formula is 10.995004165278024.

 10.

xi f(xi) Si α* f(α*)

(1, 1) 106 (2, 4) 0.431928 28.3361
(0, 0) 170 (1, 2) 1.41453 43.9167
(3, 2) 0 (1, 1) –0.00366 0.00099

 11. x* = (0, 0) with f(x*) = 0
 12.

 x
p v

v1 = −

x

p w
w2 = −

 Since the second derivative is negative
−

+








p
x()1 1

2 , it corresponds
to the maximum of the function

© 2015 by Taylor & Francis Group, LLC

420 Appendix C

 13. x* = (0.02, 1.6) with f(x*) = −25.632

 Initial function value = 0.0000
 No. x-vector f(x) Deriv
 ——
 1 0.122 1.530 -24.751 32.102
 2 0.020 1.593 -25.631 16.299
 3 0.020 1.599 -25.632 0.167
 4 0.020 1.599 -25.632 0.030
 5 0.020 1.600 -25.632 0.022
 6 0.020 1.600 -25.632 0.016
 7 0.020 1.600 -25.632 0.011
 8 0.020 1.600 -25.632 0.002
 ——

Chapter 4

 1. Maximize

 z = 5x + 7y

 subject to

 2x + 3y ≤ 42

 3x + 4y ≤ 48

 x, y ≥ 0

 The solution is x = 0, y = 12, z = 84
 2.
 i. The solution is x1 = 0, x2 = 5, z = −10
 ii. The solution is x1 = 0, x2 = 10, z = 50

 iii. The solution is x x z1 2
15
7

110
7

610
7

= = =, ,

 iv. The solution is x x z1 2
11
5

6
5

1
5

= = =, ,

 3.

x

x

x

1

2

3

2 3
2

5 3



















= −

















/

/
Infeasib(lle)

© 2015 by Taylor & Francis Group, LLC

421Appendix C

x

x

x

1

2

4

11 4
9 8
5 8



















=
















/
/
/

(Feasiblle)

x

x

x

1

3

4

2
3 5
2 5



















=
















/
/

(Feasible)

x

x

x

2

3

4

3
11 5

1 5



















=
−

−

















/
/

(Infeasiible)

 4. k = 2
 5.
 i.

 A c=
− −
− − −
−

















= −
1 2 3 1 0 0
2 1 4 0 1 0
3 2 5 0 0 1

2
3
1

0
0
0

;

























=
















=; ;b x
5
5
7

1

2

3

1

x

x

x

s

ee

s
2

3



























 ii.

 A =

− − −
− − − −

−















3 2 3 3 1 0 0
4 3 1 1 0 1 0

1 2 1 1 0 0 1
0 1 0 0 0 0 0





=

−

−



























=





; ;c

2
3
4

4
0
0
0

5
2
8
5

b














=

′

′
′′




















; x

x

x

x

x

e

e

s

1

2

3

3

1

2

3












© 2015 by Taylor & Francis Group, LLC

422 Appendix C

 6.

 x bBB

x

x

x

=



















= =
















−

−
3

4

5

1
1 0 0
0 1 0
0 0 1

11

7
8
5

7
8
5

















=
















 7. The solution is x1 = 0, x2 = 5, z = −10

 ———
 basic_set =
 3 4 5
 nonbasic_set =
 1 2
 Initial_Table =
 1 0 0 1 2 10
 0 1 0 2 -1 5
 0 0 1 4 -3 5
 Cost =
 0 0 0 3 -2 0
 ———
 basic_set =
 2 4 5
 nonbasic_set =
 1 3
 Table =
 1 0 0 1/2 1/2 5
 0 1 0 5/2 1/2 10
 0 0 1 11/2 3/2 20
 Cost =
 0 0 0 4 1 10

 ------SOLUTION------
 basic_set =
 2 4 5
 xb =
 5
 10
 20
 zz =
 -10

 8. Because the cost coefficients of the nonbasic variables are not zeros,
the LPP has a unique solution.

 ———
 basic_set =
 3 4 5
 nonbasic_set =
 1 2

© 2015 by Taylor & Francis Group, LLC

423Appendix C

 Initial_Table =
 1 0 0 2 -4 2
 0 1 0 -1 1 3
 0 0 1 1 0 4
 Cost =
 0 0 0 1 -2 0
 ———
 basic_set =
 3 2 5
 nonbasic_set =
 1 4
 Table =
 1 0 0 -2 4 14
 0 1 0 -1 1 3
 0 0 1 1 0 4
 Cost =
 0 0 0 -1 2 6
 ———
 basic_set =
 3 2 1
 nonbasic_set =
 4 5
 Table =
 1 0 0 4 2 22
 0 1 0 1 1 7
 0 0 1 0 1 4
 Cost =
 0 0 0 2 1 10

 ------SOLUTION------
 basic_set =
 3 2 1
 xb =
 22
 7
 4
 zz =
 -10

 9. x1 = 0, x2 = 0, x3 = 2
 10. The dual is

Minimize

 z = 7x1 + 6x2

subject to

 x1 ≥ 4

© 2015 by Taylor & Francis Group, LLC

424 Appendix C

 x2 ≥ 5

 2x1 + x2 ≥ 23

 x1 + 3x2 ≥ 24

 x1, x2 ≥ 0

 The optimal solution for the dual problem is 93 at x1 = 9, x2 = 5.
 The optimal solution for the primal problem is 93 at y1 = 0, y2 = 0,

y3 = 3, y4 = 1.
 11. x1 = 0.505, x2 = 0.745, z = 1.25

Chapter 5

 1. String length = 17.
 2. String length for each variable as 14, 17, and 12.
 3. Rerun the codes by modifying the input parameters mentioned in

the file in.m.
 4. Roulette wheel slots can be constructed for each of the strings. For

example, the first string will have slots from 0 to 0.065 (25/385). Other
slots are made in a similar way. Ten uniformly distributed random
numbers are generated between 0 and 1. The corresponding strings
pointed out by the random numbers are then selected. The strings
selected are S-1 (one copy), S-3 (two copies), S-4 (one copy), S-5 (two
copies), S-6 (one copy), S-8 (two copies), and S-9 (one copy). No copies
of the strings S-2, S-7, and S-10 are made (see Figure C.10).

 5. A tour size of two is selected. Each string has to be paired randomly
with any other string in the group using random number genera-
tion. The winner is decided by comparing the fitness values of the
strings (see Table C.1).

0.2 0.4 0.6 0.8 1.0

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 9 10

figure C.10
Roulette wheel slots.

© 2015 by Taylor & Francis Group, LLC

425Appendix C

 6. Global minimum at x* = (0, 0) with f(x*) = 0
 7. Global minimum at x* = (0, 0) with f(x*) = 0
 8. The Himmelblau function has four distinct minima (see Figure C.11)

as given below:

 x1 = 3, x2 = 2, f(x*) = 0

 x1 = 3.584, x2 = −1.848, f(x*) = 0

 x1 = −3.779, x2 = −3.283, f(x*) = 0

 x1 = −2.805, x2 = 3.131, f(x*) = 0

Table C.1

Tournament Selection

String Competitor Winner

S-1 S-5 S-5
S-2 S-10 S-10
S-3 S-10 S-3
S-4 S-2 S-2
S-5 S-10 S-5
S-6 S-5 S-5
S-7 S-8 S-8
S-8 S-1 S-8
S-9 S-4 S-9
S-10 S-9 S-9

–5

0

5

–5

0

5
0

200

400

600

800

1000

x1
x2

figure C.11
Himmelblau function.

© 2015 by Taylor & Francis Group, LLC

426 Appendix C

 9. Global minimum x* = (−0.656, −0.656) with f(x*) = −2.661
 10. Global minimum x* = (1.139, 0.8996) with f(x*) = 1.9522
 11. Global minimum x* = (1, 3) with f(x*) = 0
 12. Global minimum x* = (0, 0) with f(x*) = 0

Chapter 6

 1.
 i. Infeasible
 ii. Feasible
 iii. Infeasible
 iv. Feasible
 2. Only ii is active.
 3. Substitute the value of x2 = 7 − x1 in the objective function

 f(x) = (5x1 − 14)2 + (x1 + 2)2

 Taking the first derivative as zero gives, x1
34
13

=

 Therefore, x2
57
13

= and f (*)x = 288
13

 4. Writing the Lagrangian as

 L(x,λ) = (3x1 − 2x2)2 + (x1 + 2)2 + λ(x1 + x2 − 7)

 The KKT conditions are given by the equations

 20x1 − 12x2 + λ +4 = 0

 −12x1 + 8x2 + λ = 0

 x1 + x2 − 7 = 0

 Solving these equations gives the solution as x1 = 34/13 and
x2 = 57/13, which is the optimum point with λ = −48/13. The mini-
mum value of the function is 288/13. Also,

 ∇ = −
−









 >2 20 12

12 8
0L

© 2015 by Taylor & Francis Group, LLC

427Appendix C

 The Lagrange multipliers provide information on the sensitivity
of objective function with respect to the right-hand side of the con-
straint equation (say, b). Then,

 ∆ ∆ ∆f b b= = −µ 48
13

 Therefore,

 f b≈ −288
13

48
13

 ∆

 If the right-hand side of the constraint is changed by 1 unit, then
the new value of the function minimum is 18.461 (approximately).
The true minimum of the problem with the revised constraint is
18.615.

 5.
Iteration 1

 f f h g() ; () ; ; x x= ∇ =
−









 ∇ =









 ∇ = −

−
6 3

4
1
1

1
11









 ;

 ∇ = −
−









2 8 7

7 12
L

 The quadratic problem is

 Minimize

 Q T T=
−









 + −

−








 ∆ ∆ ∆x x x3

4
1
2

8 7
7 12

 subject to

 − + =1 1 1 0[] ∆x

 − + − − =1 1 1 0[] ∆x

© 2015 by Taylor & Francis Group, LLC

428 Appendix C

 The solution of the quadratic problem is

 ∆x =










0 3529
0 6471
.
.

 Now x is updated as

 x x x= + =








 +









 =∆ 1

1
0 3529
0 6471

1 3529
1 6471

.

.
.
.











Iteration 2

 f f h() . ; () .
.

; .x x= ∇ =
−









 ∇ =5 007 1 7056

1 9473
1 647712
1 3529

1
1.

; ;








 ∇ = −

−








g

 ∇ =








2 8 3751 2 7195

2 7195 6 6889
L . .

. .

 The quadratic problem is
 Minimize

 Q T T=
−









 +∆ ∆x x .

.
. .
.

1 7056
1 9473

1
2

8 3751 2 7195
2 71995 6 6889.









 ∆x

 subject to

 0 2284 1 64712 1 3529 0. [. .] + =∆x

 []− + − − =2 1 1 0∆x

 The solution of the quadratic problem is

 ∆x = −









0 4279
0 3521

.
.

© 2015 by Taylor & Francis Group, LLC

429Appendix C

 Now x is updated as

 x x x= + =








 + −







 =∆ 1 3529

1 6471
0 4279
0 3521

0.
.

.
.

..

.
9251

1 9991











 In a similar manner, other iterations can be written. The values at

the termination of the algorithm x =




















1 0371
1 9284

.

.
 are

 f f h() . ; () .
.

; .x x= ∇ = −
−









 ∇ =4 4819 0 8643

0 4648
1 92284
1 0371

1
1.

;








 ∇ = −

−








g

 ∇ =








2 17 4375 1 0098

1 0098 3 5976
L . .

. .

 6. Identical results are obtained.
 7. The number of iterations will vary with different start values of the

design variables.
 8. Identical results are obtained.
 9. Copy the SQP folder (of some other problem) to the working direc-

tory and make changes in function and constraint subroutines as
follows.

function y = func_val(x)
y = 0.0064*x(1)*(exp(-0.184*x(1)^0.3*x(2))-1);

function y = func_val1(x)
y = 0.0064*x(1)*(exp(-0.184*x(1)^0.3*x(2))-1);

function h = eqconstr_val(x)
h(1) = 0;

function g = ineqconstr_val(x)
g(1) = ((3000+x(1))*x(1)^2*x(2))/1.2e13 -1;
g(2) = (exp(0.184*x(1)^0.3*x(2)))/4.1 -1;

© 2015 by Taylor & Francis Group, LLC

430 Appendix C

%%%
% MATLAB code sqp.m
%%%
n_of_var = 2;
n_of_eqcons = 1;
n_of_iqcons = 2;
X = [30000 0.5];

 Execute the SQP code with these modifications and the converged
solution is obtained in five iterations.

 No. x-vector f(x) |Cons.|
 ———
 1 30402.6828 0.384516 -153.906889 0.16689252491
 2 31592.6073 0.344868 -153.329290 0.00924809461
 3 31764.8743 0.342079 -153.711944 0.00001910009
 4 31765.5812 0.342072 -153.714422 0.00000000010
 5 31765.5812 0.342072 -153.714422 0.00000000000
 ———

 10. x* = (0.05179, 0.3591, 11.1527) with f(x*) = 0.01267

Chapter 7

 1. The Pareto front is given in Figure C.12.
 2. The Pareto front is given in Figure C.13.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

f1

f 2

figure C.12
Pareto front.

© 2015 by Taylor & Francis Group, LLC

431Appendix C

 3. The Pareto front is given in Figure C.14.
 4. The Pareto front is given in Figure C.15.
 5. The Pareto front is given in Figure C.16.
 6. The Pareto front is given in Figure C.17.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

figure C.13
Pareto front.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

figure C.14
Pareto front.

© 2015 by Taylor & Francis Group, LLC

432 Appendix C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

figure C.15
Pareto front.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

00 0.1 0.2 0.3 0.4 0.5
f1

0.6 0.7 0.8 0.9 1

f 2

figure C.16
Pareto front.

© 2015 by Taylor & Francis Group, LLC

433Appendix C

Chapter 8

 1. x* = (1.305470, 1.390561, 0.4892672) with f(x*) = 125.9045
 2. x* = (0.3205667, 1.481980, 1.064722, 1.719745) with f(x*) = 47.47193
 3. x* = (0.5, 0.5) with f(x*) = 0.5
 4. D* = 0.922 cm, Q* = 0.281 m3/s
 5. Δp* = 400,000 Pa, Q* = 7.5 × 10−4 m3/s, C* = $477.19
 6. Δt* = 2.28°C, Q* = 764.72 m3/m2, C* = 1.163 ($/m2)
 7. ω* = 469 rad/s, T* = 262 Nm

Chapter 9

 1. Full factorial design

 0.5 5 0.01
 0.5 7.5 0.01
 0.5 10 0.01
 1.25 5 0.01
 1.25 7.5 0.01
 1.25 10 0.01
 2 5 0.01

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

f1

f 2

figure C.17
Pareto front.

© 2015 by Taylor & Francis Group, LLC

434 Appendix C

 2 7.5 0.01
 2 10 0.01
 0.5 5 0.055
 0.5 7.5 0.055
 0.5 10 0.055
 1.25 5 0.055
 1.25 7.5 0.055
 1.25 10 0.055
 2 5 0.055
 2 7.5 0.055
 2 10 0.055
 0.5 5 0.1
 0.5 7.5 0.1
 0.5 10 0.1
 1.25 5 0.1
 1.25 7.5 0.1
 1.25 10 0.1
 2 5 0.1
 2 7.5 0.1
 2 10 0.1

 2. Central composite design

 0.5 5
 0.5 10
 2 5
 2 10
 0.293 7.5
 2.828 7.5
 1.25 7.07
 1.25 14.14
 1.25 7.5

 3. a0 = 0.16, a1 = 0.572
 4. y = 49.2682 + 0.02x1 + 0.2745x2 + 0.3084x3 + 14.3068x4

 5. z z x x1 2 1 2 0 7 17 7 3 7 71532* * * *, , , (. , , . , .)() = . The value of objective func-
tion is 2994.355.

Chapter 10

 1. x* = (7, 1) with f(x*) = −23
 2. x* = (1, 0) with f(x*) = −1
 3. Let x1 and x2 be the number of chairs and tables to be produced. The

integer programming problem is

© 2015 by Taylor & Francis Group, LLC

435Appendix C

Maximize

 f(x) = 100x1 + 160x2

subject to

 6x1 + 14x2 ≤ 42

 7x1 + 7x2 ≤ 35

 x1, x2 ≥ 0

where x1 and x2 are integers.
The optimal solution is x* = (5, 0) with f(x*) = 500.

 4. x* = (1, 0, 1, 1, 0, 1, 0, 0, 1) with f(x*) = 72
 5. x* = (2, 2) with f(x*) = −16
 6. x* = (1, 5) with f(x*) = −39
 7. x* = (0, 5) with f(x*) = 10
 8. x* = (0, 1) with f(x*) = 2

Chapter 11

 1.
 i. x* = (0, 5) with f(x*) = −10

 ii. x* =






1
5

52
5

, with f (*)x = 262
5

 iii.

 x* , =






15
7

110
7

 with f (*)x = 610
7

 2. x* = (8, 0) with f(x*) = −24
 3. The optimal path is ADFGI and the minimum distance is 19.
 4. Two numbers of component 1, two numbers of component 2, and

one number of component 3, with the probability of the system =
0.9736.

© 2015 by Taylor & Francis Group, LLC

© 2015 by Taylor & Francis Group, LLC

437

Index

Page numbers followed by f and t indicate figures and tables, respectively.

A

Aerodynamic response surface models,
244

Aerospace applications
weight minimization for, 3

Affine scaling method, for LPP, 125–126,
127f

All-integer programming problem, 263;
see also Integer programming
problem

Angle of attack (α), 244, 246, 255, 255f,
256

Annealing, 140, 154; see also Simulated
annealing (SA)

Ant colony optimization (ACO)
technique, 2, 160–163

applications, 160
background, 160
formula, 165

Array operators, MATLAB®, 317
Arrays, MATLAB®, 309–312
Aspiration criteria, 163
Augmented Lagrange multipliers

(ALM) method
for constrained optimization

problem, 175–176, 182–184
formula, 198
MATLAB® code, 183–184, 372–374

B

Backward difference formula, 17–18,
28

Backward difference method, 17
Balas’ method, 264, 272–274, 286–287
Bank angle, 246
Barrier function methods, for LPP, 125

Basic feasible solution
for LPP, 103

Basic solution, for LPP, 103–105
feasible, 103
optimal, 103

Bellman, Richard, 2, 289
BFGS method, see Broyden–Fletcher–

Goldfarb–Shanno method
Bilevel integrated system synthesis

(BLISS) architecture, of MDO,
252–253, 254f

Bisection method
algorithm for, 39t
comparison with other methods,

49–51, 50f, 51t
for 1-D optimization problem, 38–40,

39f–40f
MATLAB® code, 39, 328–329

Boyle’s law, 5
Branch-and-bound method

MATLAB® code, 279–281, 282–283,
394–398

for nonlinear integer programming
problems, 263–264, 278–284,
280f, 282f, 284f

Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method

algorithm for, 73t
MATLAB® code, 72–73, 345–347
performance comparison with other

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

search direction in (formula), 87
for unconstrained optimization

problems, 55, 72–73, 73t

© 2015 by Taylor & Francis Group, LLC

438 Index

C

Calculus
history, 1

Calculus of variations, 1
history, 1

Cantilever rod (example), 10–11, 11f
Cauchy, Augustin-Louis, 1
Central difference formula, 18, 28

for second derivative, 28
Central difference method, 17
CFD analysis, see Computational fluid

dynamics (CFD) analysis
Collaborative optimization (CO)

architecture, of MDO, 251–252,
251f

advantage, 252
disadvantage, 252

Command window, MATLAB®, 309, 311f
Computational fluid dynamics (CFD)

analysis, 190–191, 244, 254, 255
Computers

development of, 2
Concave function, 15, 16f
Concurrent subspace optimization

(CSSO) architecture, of MDO,
252, 253f

formula, 259
Conjugate directions, 68, 68f
Conjugate gradient method

algorithm for, 69t
MATLAB® code, 69–70, 342–343
performance comparison with other

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

search direction in (formula), 87
for unconstrained optimization

problems, 68–70, 68f, 69t, 70f
vs. steepest descent method, 69–70,

70f
Constrained optimization, 2
Constrained optimization problem,

169–196
application to structural design,

195–196, 195f
geometric programming, 231–235

optimality conditions, 171–174
example, 173–174, 174f
Karush–Kuhn–Tucker (KKT)

conditions, 172–173
Lagrange function, 171, 172
Lagrange multipliers, 172, 173
regular point, 172

overview, 169–171, 170f, 171f
solution techniques, 175–176

augmented Lagrange multipliers
(ALM) method, 175–176,
182–184

feasible directions, method of, 176,
190–195

penalty function method, 175,
176–182, 177f, 179f

Rosen’s gradient projection
method, 176, 192–195, 193f

sequential quadratic
programming, 176, 184–190

variable substitution method, 175
Zoutendijk’s method, 176, 191–192

vs. unconstrained problem, 169
Constraints, 4–5

equality, 4–5, 170
inequality, 4, 5, 170

Continuous data, 5
Contour plot, MATLAB®, 318f
Contraction operation, simplex, 75–76
Convergence method

linear, 62
quadratic, 62
superlinear, 62

Convex function, 13–14, 14f, 16f
examples, 14, 15f

Convexity, 13–16, 14f–16f
MATLAB® code, 13, 322–323

Convex set, 13–14, 14f
Crossover operation, in GA, 147–148, 148t
CSSO (concurrent subspace

optimization) architecture, of
MDO, 252, 253f

formula, 259
Cubic polynomial fit

algorithm for, 45t
comparison with other methods,

49–51, 50f, 51t
for 1-D optimization problem, 44–45
MATLAB® code, 45, 332–333

© 2015 by Taylor & Francis Group, LLC

439Index

Curse of dimensionality, in dynamic
programming, 289

Cylindrical can manufacturing
(example), 8–9, 8f

D

Dantzig, George, 2
Darwin’ survival of the fittest principle,

140
Davidon–Fletcher–Powell (DFP) method

algorithm for, 71t
MATLAB® code, 71–72, 177, 344–345
performance comparison with other

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s function, 79t
for Wood’s function, 83t

search direction in (formula), 87
for unconstrained optimization

problems, 55, 70–72
Decision variables, 3–4
de Fermat, Pierre, 1
Degeneracy

simplex method for LPP, 114–116
Degree of difficulty, in geometric

programming, 225–226
Demand–supply problem, 5–6
Dependent variable, 6
Derivative(s)

concept of, 16–17, 17f
directional, 16–22, 17f, 18f
of function, 18–19, 18f
inflection point (saddle point), 19, 19f
MATLAB® code, 18, 323–324

Design of experiments (DoE), 256
Design variables, 3–4, 5

for optimization problem, 3–4, 4t
Deterministic dynamic programming,

289–294
concept of, 290–291, 290f
example, 293–294
stage 1, 291, 292t
stage 2, 291, 292t
stage 3, 291, 292f, 292t
stage 4, 291, 291f, 291t
structure of, 290f

Dichotomous search method

for 1-D optimization problem, 38,
47–48, 48f

Diet problem, 1
example, 6–8, 7t

Differential equation, 6
solution for, 6

Directional derivative, 16–22, 17f, 18f
Direct search methods, 35, 38

1-D optimization problem
dichotomous search, 47–48, 48f
Fibonacci method, 47, 49
golden section method, 46–47, 47t
interval halving method, 47, 48,

49f
for unconstrained optimization

problems
Nelder–Mead algorithm, 55,

75–78, 75f, 76f, 77t
Powell method, 55, 74, 74t

Discrete data, 5
Discrete programming problems, 263;

see also Integer programming
problem

Domination, principle of, 204
Dual problem

geometric programming for, 229–231,
239

Dual simplex method, for LPP, 121–124
algorithm for, 123t
MATLAB® code, 121, 122, 356–358
primal to dual conversion,

transformation rules, 121–122,
122t

Dynamic programming, 289–296
curse of dimensionality in, 289
deterministic, 289–294
limitations, 289
for LPP (example), 293–294, 293f
overview, 289
principle of optimality in, 289
probabilistic, 294–296, 295t–296t
stages, 289

Dynamic programming problems
history, 2

E

ε-constraints method
concept of, 211, 211f

© 2015 by Taylor & Francis Group, LLC

440 Index

for multiobjective optimization
problem, 210–212, 211f–212f

nonconvex Pareto front, 211–212,
212f

Elementary functions, in MATLAB®,
313–314

End-effector, 83
Equality constraints, 4–5, 170
Euclid, 1
Euler, Leonhard, 1
Evolutionary methods, 139

genetic algorithms, 140–142; see also
Genetic algorithms (GAs)

crossover and mutation, 147–148,
148t

fitness evaluation, 143, 144t
initialize population, 142–143
multimodal test functions,

148–153, 149f, 151f, 152f
reproduction, 143–147, 145f, 145t
working principle, 141–142, 141f

for nonlinear integer programming
problems, 284–285, 285f, 285t

PSO method, 284–285
particle swarm optimization,

157–158, 159f, 159t
Expansion operation, simplex, 76, 76f
Expressions, MATLAB®, 312–314
Exterior penalty function method,

176–177, 177f

F

Feasible directions, method of, 176,
190–195

Rosen’s gradient projection method,
176, 192–195, 193f

Zoutendijk’s method, 176, 191–192
Feasible point, 5
Feasible solutions

for LPP, 103
Fibonacci method

for 1-D optimization problem, 38,
47, 49

Finite element analysis, 254, 255
Fitness evaluation, in GA, 143, 144t

modified, 145t
Fletcher–Reeves conjugate gradient

method

algorithm for, 69t
MATLAB® code, 69–70, 343–344
performance comparison with other

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

for unconstrained optimization
problems, 68–70, 69t, 70f

vs. steepest descent method, 69–70, 70f
Forward difference formula, 17, 28
Forward difference method, 17
Free (unrestricted) variable, 100
Full factorial design, 256, 256f
Function(s), 3; see also specific types

derivative of, 18–19, 18f
linear approximation, 23–25, 23f
objective, 3
quadratic approximation, 23–25, 23f,

24f

G

Gauss, Carl Friedrich, 1
General solution, 6
Genetic algorithms (GAs), 2, 140–142, 245

crossover and mutation, 147–148, 148t
fitness evaluation, 143, 144t

modified, 145t
initialize population, 142–143
MATLAB® code, 142, 148
multimodal test functions, 148–153,

149f, 151f, 152f
Rastrigin’s function, 149–151, 149f,

151f
Schwefel’s function, 149, 151–153,

152f
reproduction, 143–147

pie chart, 145–146, 146f
Roulette wheel selection, 145–146,

146f
selection pressure, 145
tournament selection, 145, 146–147,

146t
schema theorem, 147–148
selection pressure, 145
vs. gradient-based methods, 148–153
working principle, 141–142, 141f

© 2015 by Taylor & Francis Group, LLC

441Index

Geometric programming, 223–238
application (two-bar truss), 223,

235–238, 236f
constrained optimization, 231–235
degree of difficulty in, 225–226
dual problem, 229–231
objective function (posynomial

form), 223–224
overview, 223–224, 224f
unconstrained problem, 224–229

Global optimum solutions, for
nonconvex function, 13, 14f

Global variables
MDO, 246

Goal programming method
advantages, 213
lexicographic, 214
for multiobjective optimization

problem, 212–214
formula, 221
Pareto front, 214

Golden section method
advantages, 46
algorithm for, 47t
comparison with other methods,

49–51, 50f, 51t
for 1-D optimization problem,

46–47
MATLAB® code, 46, 58, 333–334

Gomory, Ralph, 2
Gomory constraint, 267, 268, 271
Gomory’s cutting plane method

for linear integer programming
problems, 263, 265–272

MATLAB® code, 266, 267–272,
390–394

Gradient-based algorithms, 14
Gradient-based 1-D optimization

algorithms, 35, 38
bisection method, 38–40, 39f–40f, 39t
cubic polynomial fit, 44–45, 45t
Newton–Raphson method, 40–42,

41f, 42t
secant method, 42–43, 43f, 44t

Gradient-based search methods, 139
for unconstrained optimization

problems, 55, 60–62
BFGS method, 55, 72–73, 73t
DFP method, 55, 70–72, 71t

Fletcher–Reeves conjugate
gradient method, 68–70, 68f,
69t, 70f

Levenberg–Marquardt method,
55, 66–67, 67t

modified Newton’s method, 66,
66t

Newton’s method, 55, 63–65, 65t
steepest descent method, 62–63, 63t

vs. GA, 149–153
Gradient(s)

of function, 1, 16–22
MATLAB® code, 20, 95, 324–325

Gradient vector, 16–22
for objective function, 20–21, 20f

Graphical method, 11–13, 12f, 13f
LPP solution with, 95–98

feasible region, 95, 96f
infeasible solution, 98
infinite solutions, 96–97, 97f
unbounded solution, 97–98, 98f

MATLAB® code, 12, 95, 321–322
Guided random search methods, 139–164

ant colony optimization, 160–163
evolutionary methods, 139
genetic algorithms, 140–142; see also

Genetic algorithms (GAs)
crossover and mutation, 147–148,

148t
fitness evaluation, 143, 144t
initialize population, 142–143
multimodal test functions,

148–153, 149f, 151f, 152f
reproduction, 143–147, 145f, 145t
working principle, 141–142, 141f

overview, 139–140, 140f
particle swarm optimization,

157–158, 159f, 159t
simulated annealing, 154–156, 155t,

156f–157f
tabu search, 163–164, 163t

H

Hancock, Harris, 2
Hessian matrix (H), 16–22, 55, 63–64, 68

example, 22
inverse of, 70–71
MATLAB® code, 21, 64, 340–341

© 2015 by Taylor & Francis Group, LLC

442 Index

positive definite, 21
for three-variable function, 29

Historical review, 1–2

I

Independent variable, 6
Individual discipline feasible (IDF)

architecture, of MDO, 248, 248f
advantage, 248
formula, 248–249

Inequality constraints, 4, 5, 170
Infeasible solution

for LPP, 98
Infinite solutions

for LPP, 96–97, 97f
Inflection point, 19, 19f
Initialize population, in GA, 142–143
Integer programming problem, 263–285

Balas algorithm, 264, 272–274
development of, 2
linear, 264–265, 265f

Gomory’s cutting plane method,
265–272

zero-one problems, 272–277, 277f
nonlinear, 277–278

branch-and-bound method,
278–284, 280f, 282f, 284f

evolutionary method, 284–285,
285f, 285t

overview, 263–264, 264f
Interior penalty function method,

178–179, 179f
Interior-point methods, for LPP,

125–126, 125f, 126t
affine scaling methods, 125–126, 127f
algorithm for, 126t
barrier function methods, 125
MATLAB® code, 125, 358
potential-reduction methods, 125

Interval halving method
for 1-D optimization problem, 38, 47,

48, 49f

J

Jacobian (J) function, 20–21
with three variables, 28

Job scheduling problem, 163

K

Kantorovich, Leonid, 2
Karmarkar, Narenndra, 125
Karush, William, 2
Karush–Kuhn–Tucker (KKT) conditions,

172–173
Kuhn, Harold, 2

L

Lagrange, Joseph-Louis, 1
Lagrange function

for constrained optimization
problem, 171, 172

formula, 197
Lagrange multipliers, 172, 173,

182–183; see also Augmented
Lagrange multipliers (ALM)
method

Least squares method
history, 1

Legendre, Adrien-Marie, 1
Leibniz, Gottfried Wilhelm, 1
Levenberg–Marquardt method

algorithm for, 67t
MATLAB® code, 67, 342–343
performance comparison with other

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

search direction in (formula), 87
for unconstrained optimization

problems, 55, 66–67
Lexicographic goal programming

method, 214
Linear approximation, 23–25, 23f, 24f

example, 24–25
Linear convergence method, 62
Linear function

properties, 93
Linear integer programming problems,

264–265, 265f
formula, 286–287
Gomory’s cutting plane method,

265–272
zero-one problems, 272–277, 277f

© 2015 by Taylor & Francis Group, LLC

443Index

Linear programming (LP) model
history, 2

Linear programming problem (LPP), 5,
93–131

applications, 93
basic feasible solution, 103
basic solution, 103–105
defined, 93
dynamic programming for

(example), 293–294, 293f
feasible region for, 95, 96f
feasible solution, 103
graphical method, 95–98, 96f–98f
infeasible solution for, 98
infinite solutions for, 96–97, 97f
interior-point method, 125–126, 125f,

126t, 127f
optimal basic solution, 103
overview, 93–94, 94f
portfolio optimization, 127–131, 127t
primal to dual conversion,

transformation rules, 121–122,
122t

simplex method, 105–120
algorithm for, 109t
degeneracy, 114–116
dual, 121–124, 122t, 123t
feasible region, 111–112, 111f
multiple solutions, 112–114, 114f
two-phase method, 116–120

in standard form, 98–103
formula, 133

unbounded solution for, 97–98, 98f
Local minimum functions

saddle point and, 19, 19f
Local optimum solutions, for nonconvex

function, 13, 14f
Local variables

MDO, 246
LPP, see Linear programming problem

(LPP)

M

Machine allocation problem, 1
Mach number (M), 244, 255, 255f, 256
Mathematical models, 5
The MathWorks Inc., 309
MATLAB®, 12, 309–320

advantage, 309
array operators, 317
arrays, 309–312
command window, 309, 311f
elementary functions in, 313–314
expressions, 312–314
matrices, 309–312
matrix operations, 315–317
on Microsoft Windows, 309, 311f
operators, 312–313
overview, 309
plotting, 318, 318f–319f
programming, 319–320

MATLAB® code, 12, 18, 20, 321–400
ALM method (ALM.m), 183–184,

372–374
BFGS method (BFGS.m), 72–73, 345–347
bisection method (bisection.m), 39,

328–329
branch-and-bound method, 279–281,

282–283, 394–398
convexity (convexity.m), 13, 322–323
cubic polynomial fit (cubic.m), 45,

332–333
derivative (derivative.m), 18, 323–324
DFP method (DFP.m), 71–72, 177,

344–345
dual simplex method, 121, 122, 356–358
exhaustive.m, 37, 328
Fletcher–Reeves conjugate gradient

method (conjugate.m), 69–70,
343–344

GA, 142, 148, 359–365
golden section method (golden.m), 46,

58, 333–334, 335–336
Gomory’s cutting plane method, 266,

267–272, 390–394
gradient (grad.m), 20, 324–325
graphical method (graph_examp12.m),

12, 95, 321–322
Hessian matrix (hessian.m), 64, 340–341
interior-point method (interior.m),

125, 358
Levenberg–Marquardt method

(levenbergmarquardt.m), 67,
342–343

modified Newton’s method
(modified_newton.m), 66,
341–342

© 2015 by Taylor & Francis Group, LLC

444 Index

MuPad, 95, 96
Nelder–Mead algorithm

(neldermead.m), 76–78, 348–350
Newton–Raphson method

(newtonraphson.m), 41, 330
Newton’s method (newton.m), 64–65,

339–340
positive definite matrix (positive_

definite.m), 21, 325
Powell method (powell.m), 74, 347–348
PSO method (pso.m), 196, 209, 366–

368, 369–371, 382–383, 398–400
quadratic approximation (quadr.m),

23, 326–327
Rastrigin’s function, 149–150
robotics_nominal_traj.m, 84–85,

350–351
Rosenbrock function (rosenbrock.m),

59, 336–337
secant method (secant.m), 43, 330–331
simplex method for LPP (simplex.m),

109, 112–113, 118–120, 122, 124,
352–356

simulated annealing (simann.m), 155,
365–366

spring system (springsystem.m), 60, 337
SQP method (sqp.m), 187, 207, 250–251,

374–376, 378–380, 383–384,
386–389

steepest descent method (steep_
des.m), 62, 63, 337–338

Matrices, MATLAB®, 309–312
MATrix LABoratory, see MATLAB®

Matrix operations, MATLAB®, 315–317
Microsoft Windows, MATLAB® on, 309,

311f
Mixed-integer programming

problem, 263; see also Integer
programming problem

Modeling, of optimization problem,
5–11

cantilever rod (example), 10–11, 11f
cylindrical can manufacturing

(example), 8–9, 8f
diet problem (example), 6–8, 7t
reentry capsule (example), 9–10, 9f

Modified Newton’s method
algorithm for, 66t
MATLAB® code, 66, 341–342

performance comparison with other
methods

for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

for unconstrained optimization
problems, 66

Monotonic function, 35, 36f
Multidisciplinary design analysis

(MDA), MDO, 245–246, 246f
formula, 258

Multidisciplinary design feasible (MDF)
architecture, of MDO, 247, 247f

advantage, 247
disadvantage, 247
formula, 258

Multidisciplinary design optimization
(MDO), 243–257

advantages, 243–244
for aerospace problems, 244
architecture, 245–246

BLISS architecture, 252–253, 254f
CO architecture, 251–252, 251f
CSSO architecture, 252, 253f
example, 249–251
IDF architecture, 248, 248f
MDF analysis, 247, 247f
multidisciplinary design analysis

(MDA), 245–246, 246f
SAND architecture, 249, 249f

framework, 253–254
global variables, 246
local variables, 246
overview, 243–245, 245f
response surface methodology, 244,

254–257, 255f–257f, 256t
single vs. two disciplines, 243, 244f

Multimodal functions, 14
Multimodal test functions, GA, 148–153

Rastrigin’s function, 149–151, 149f,
151f

Schwefel’s function, 149, 151–153, 152f
Multiobjective optimization problem,

203–219
application (reentry bodies), 215–219,

215f, 217t, 219f
ε-constraints method, 210–212,

211f–212f

© 2015 by Taylor & Francis Group, LLC

445Index

formula, 220
goal programming, 212–214
nondominated solutions, 204
objective functions, 204
overview, 203–205, 205f
Pareto optimal front, 204–205, 204f
principle of domination and, 204
utility function method, 214–215
weighted sum approach, 205–210,

207f–210f
Multiple plots, MATLAB®, 318f
Multiple solutions

for LPP, 112–114, 114f
Multivariable function

unidirectional search for, 58t
MuPad, 95, 96
Mutation operation, in GA, 147–148, 148t

N

Natural selection, 140
Nelder–Mead algorithm

MATLAB® code, 76–78, 348–350
for unconstrained optimization

problems, 55, 75–78, 77t
Newton, Isaac, 1, 40
Newton–Raphson method

algorithm for, 42t
comparison with other methods,

49–51, 50f, 51t
disadvantages, 42
for 1-D optimization problem, 40–42,

41f, 45
formula, 52
MATLAB® code, 41, 330

Newton’s law of cooling, 6
Newton’s method, 23, 68

algorithm for, 65t
MATLAB® code, 64–65, 339–340
modified, 66, 66t
performance comparison with other

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s function, 79t
for Wood’s function, 83t

search direction in (formula), 86
for unconstrained optimization

problems, 55, 63–65

Nonconvex function, 14, 15f
local and global optima for, 14, 15f

Nonconvex set, 13, 14f
Nondominated solutions

for multiobjective optimization
problem, 204; see also
Multiobjective optimization
problem

ε-constraints method, 210–212,
211f–212f

goal programming, 212–214
utility function method, 214–215
weighted sum approach, 205–210,

207f–210f
Non–gradient-based 1-D optimization

algorithms, 35, 38
Non–gradient-based search methods;

see also Direct search methods
for unconstrained optimization

problems, 55, 60
Nonlinear function

contours of, 81f
performance comparison of different

methods for, 82t
unconstrained optimization

problems, 81–82
Nonlinear integer programming

problems, 277–278
branch-and-bound method, 278–284,

280f, 282f, 284f
evolutionary method, 284–285, 285f,

285t

O

Objective function, 3
geometric programming

(posynomial form), 223–224
multiobjective optimization

problem
cost minimization, 204
efficiency maximization, 204

for optimization problems, 3–4, 4t
quadratic approximation of, 23, 24f
tangent and gradient for, 20–21, 20f
variables in, 3–4, 4t

Observations, defined, 5
One-dimensional (1-D) optimization

algorithms, 35–51

© 2015 by Taylor & Francis Group, LLC

446 Index

gradient-based, 35, 38
monotonic function, 35, 36f
non–gradient-based, 35, 38
overview, 6f, 35–36
solution techniques, 38

bisection method, 38–40, 39f–40f, 39t
comparison of, 49–51, 50f, 51t
cubic polynomial fit, 44–45, 45t
dichotomous search method, 38,

47–48, 48f
direct search methods, 35, 38
Fibonacci method, 38, 47, 49
golden section method, 46–47, 47t
interval halving method, 38, 47,

48, 49f
Newton–Raphson method, 40–42,

41f, 42t
other methods, 47–49
secant method, 42–43, 43f, 44t

test problem (solar energy), 37, 37f
unimodal function, 35, 36f

One-dimensional (1-D) optimization
problem, 58

defined, 35
solution techniques, see One-

dimensional (1-D) optimization
algorithms

Operators, MATLAB®, 312–313
Optimal basic solution

for LPP, 103
Optimality, principle of, 289
Optimality conditions, for constrained

optimization problem, 171–174
example, 173–174, 174f
formula, 197
Karush–Kuhn–Tucker (KKT)

conditions, 172–173
Lagrange function, 171, 172
Lagrange multipliers, 172, 173
regular point, 172

Optimization
first textbook on, 2
historical overview, 1–2
meaning of, 1
role of, 2

Optimization methods/techniques
applications of, 2
development of, 2

Optimization problem

constrained, see Constrained
optimization problem

constraints, 4–5
convexity, 13–16, 14f–16f
1-D, 35; see also One-dimensional

(1-D) optimization algorithms
described, 3–5
design variable for, 3–4, 4t
diet, 1
directional derivative, 16–22, 17f, 18f
function, 3
gradient vector, 16–22
graphical method, 11–13, 12f, 13f
Hessian matrix, 16–22
historical overview, 1–2
linear and quadratic approximations,

23–25, 23f, 24f
LPP, 5
machine allocation, 1
modeling of, 5–11
multiobjective, see Multiobjective

optimization problem
objective function, 3–4, 4t
performance index, 3
present-day, 2
unconstrained, see Unconstrained

optimization problem

P

Pareto optimal front
multiobjective optimization problem,

204–205, 204f
ε-constraints method, 211–212, 212f
goal programming method, 214
of reentry test body, 219, 219f
weighted sum approach, 206–210,

207f–210f
Particle swarm optimization, 2
Particle swarm optimization (PSO)

technique, 157–158, 205, 245
algorithm for, 159t
convergence, for Schwefel’s function,

158, 159f
formula, 165
MATLAB® code, 196, 209, 366–368,

369–371, 382–383, 398–400
nonconvex Pareto front generated

with, 209, 209f

© 2015 by Taylor & Francis Group, LLC

447Index

for nonlinear integer programming
problems, 284–285

Penalty function method, for
constrained optimization
problem, 175, 176–182

advantages, 178
disadvantages, 178
exterior, 176–177, 177f
formula, 198
interior, 178–179, 179f
welded beam (example), 179–182, 180f

Performance index, 3
Pheromone, 160, 161
Pie chart, reproduction in GA, 145–146,

146f
Plotting, MATLAB®, 318

contour plot, 318f
multiple plots, 318f

Poisson distribution, 147
Polynomial-time algorithm

(Karmarkar), 125
Portfolio optimization problem, 93,

127–131, 127t
Positive definite Hessian matrix (H), 21

MATLAB® code, 21, 325
Posynomials, in geometric

programming techniques,
223–224, 225, 231, 232, 238

Potential-reduction methods, for LPP, 125
Powell method, 84

algorithm for, 74t
MATLAB® code, 74, 347–348
performance comparison with other

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

for unconstrained optimization
problems, 55, 74, 74t

Primal problem, 229
Principle of optimality, in dynamic

programming, 289
Probabilistic dynamic programming,

294–296, 295t–296t
stage 1, 296t
stage 2, 296t
stage 3, 295t

Programming, MATLAB®, 319–320

Q

Quadratic approximation, 23–25, 23f, 29
example, 24–25
MATLAB® code, 23, 326–327
of objective function, 23, 24f

Quadratic convergence method, 62
Quadratic function

contours of, 80f
performance comparison of different

methods for, 81t
unconstrained optimization

problems, 79–81
Quadratic problem; see also Sequential

quadratic programming (SQP)
method

formula, 198
Quasi-Newton method, 71; see also

Davidon–Fletcher–Powell
(DFP) method

R

Raphson, Joseph, 40
Rastrigin’s function

in GA, 149–151, 149f, 151f
MATLAB® code, 149–150
SA convergence for, 155–156, 156f

Ratio test, 108
Reentry bodies, multiobjective

optimization problem
application, 215–219

design variables, 215–216, 215f
MATLAB code, 219
Pareto front of, 219, 219f
response surface matrix, 217–218, 217t

Reentry capsule (example), 9–10, 9f
Reflection operation, simplex, 75–76, 75f
Reproduction, in GA, 143–147, 145f, 145t

pie chart, 145–146, 146f
Roulette wheel selection method,

145–146, 146f
selection pressure, 145
tournament selection method, 145,

146–147, 146t
Response surface methodology (RSM),

244, 252, 254–257
central composite design, 257, 257t
design matrix, 256t

© 2015 by Taylor & Francis Group, LLC

448 Index

full factorial design, 256, 256f
of lift coefficient, 255, 255f

Response surface model, 217–218
Robotics

MATLAB® code, 84–85, 350–351
unconstrained optimization

problem application to, 83–85,
85f

Rosenbrock function, 59f
contours of, 78, 79f
MATLAB® code, 59, 336–337
performance comparison of different

methods for, 78, 79t
steepest descent method on, 80f
unconstrained optimization

problems, 78, 79f, 79t
unidirectional search on, 58–59, 58t

Rosen’s gradient projection method, 176,
192–195

example, 193–195
formula, 198
with restoration move, 193f

Roulette wheel selection method, in GA,
145–146, 146f

S

Saddle point, 19, 19f
surface-contour plot of function

with, 57, 58f
SAND (simultaneous analysis and

design) architecture, of MDO,
249, 249f

formula, 259
Schema theorem, in GA, 147–148

formula, 165
Schwefel’s function

in GA, 149, 151–153, 152f
PSO convergence for, 158, 159f
SA convergence for, 156f

Secant method
algorithm for, 44t
comparison with other methods,

49–51, 50f, 51t
for 1-D optimization problem, 42–43,

43f
formula, 52
MATLAB® code, 43, 330–331

Selection pressure, in GA, 145

Sequential quadratic programming (SQP)
method, 176, 184–190, 207, 245

example
cylindrical pressure vessel,

188–189
optimized production rate,

189–190
welded beam, 187–188

MATLAB® code, 187, 207, 250–251,
374–376, 378–380, 383–384,
386–389

trust region approach, 185
Simplex

defined, 75
operations to move

contraction, 75–76
expansion, 76, 76f
reflection, 75–76, 75f

Simplex method, for LPP, 105–120
algorithm for, 109t
degeneracy, 114–116
dual, 121–124, 122t, 123t
feasible region, 111–112, 111f
MATLAB® code, 109, 112–113,

118–120, 122, 124, 352–356
multiple solutions, 112–114, 114f
two-phase method, 116–120

Simulated annealing (SA), 154–156
algorithm for, 155t
convergence of

for Rastrigin function, 155–156,
156f

for Schwefel’s function, 156f
for spring system test problem,

157f
MATLAB® code, 155, 365–366

Simultaneous analysis and design
(SAND) architecture, of MDO,
249, 249f

formula, 259
Slack variable, 100
Solar energy problem, 37; see also One-

dimensional (1-D) optimization
algorithms

cost function for, 37, 37f
MATLAB® code, 37
solution techniques, 38

bisection method, 38–40, 39f–40f,
39t

© 2015 by Taylor & Francis Group, LLC

449Index

comparison of, 49–51, 50f, 51t
cubic polynomial fit, 44–45, 45t
dichotomous search method, 38,

47–48, 48f
Fibonacci method, 38, 47, 49
golden section method, 46–47, 47t
interval halving method, 38, 47,

48, 49f
Newton–Raphson method, 40–42,

41f, 42t
other methods, 47–49
secant method, 42–43, 43f, 44t

Spring system, 59–60, 60f; see also
Unconstrained optimization
problem

additional test functions
nonlinear function, 81–82, 81f, 82t
quadratic function, 79–81, 80f,

81t
Rosenbrock function, 78, 79f, 79t
Wood’s function, 82–83, 82f, 83t

MATLAB® code, 60, 337
SA convergence for test problem of,

157f
solution techniques, 60–62

BFGS method, 72–73, 73t
criteria for, 61–62
DFP method, 70–72, 71t
Fletcher–Reeves conjugate

gradient method, 68–70, 68f,
69t, 70f

gradient-based search methods,
55, 60–62

Levenberg–Marquardt method,
66–67, 67t

modified Newton’s method, 66,
66t

Nelder–Mead algorithm, 75–78,
75f, 76f, 77t

Newton’s method, 63–65, 65t
non–gradient-based search

methods, 55, 60
Powell method, 74, 74t
steepest descent method, 62–63,

63t
test problem, 59–60

Standard form, of LPP, 98–103
Steepest descent direction, 62
Steepest descent method, 68, 78

advantage of, 66
algorithm for, 63t
behavior on Rosenbrock function, 80f
history, 1
MATLAB® code, 62, 63, 337–338
performance comparison with other

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

search direction in (formula), 86
for unconstrained optimization

problems, 62–63, 64f
vs. conjugate gradient method, 69–70,

70f
Structural design

constrained optimization problem
application to, 195–196, 195f

Superlinear convergence method, 62
Surface-contour plot of function, 57, 57f

with saddle point, 57, 58f
Surplus variable, 100
Survival of the fittest principle

(Darwin), 140

T

Tabu search, 163–164
algorithm for, 163t

Taylor series approximation, 23
Taylor’s series, 17, 41
Tournament selection method, in GA,

145, 146–147, 146t
Traveling salesman problem, 163
Trust region approach, 185
Tucker, Albert, 2
Two-phase method

for LPP, 116–120

U

Unbounded solution
for LPP, 97–98, 98f

Unconstrained optimization problem, 1,
5, 55–85

additional test functions
nonlinear function, 81–82, 81f, 82t
quadratic function, 79–81, 80f, 81t

© 2015 by Taylor & Francis Group, LLC

450 Index

Rosenbrock function, 78, 79f, 79t
Wood’s function, 82–83, 82f, 83t

application to robotics, 83–85, 85f
geometric programming, 224–229,

239
overview, 55–57, 56f
solution techniques, 60–62

BFGS method, 72–73, 73t
criteria for, 61–62
DFP method, 70–72, 71t
Fletcher–Reeves conjugate

gradient method, 68–70, 68f,
69t, 70f

gradient-based search methods,
55, 60–62

Levenberg–Marquardt method,
66–67, 67t

modified Newton’s method, 66,
66t

Nelder–Mead algorithm, 75–78,
75f, 76f, 77t

Newton’s method, 63–65, 65t
non–gradient-based search

methods, 55, 60
Powell method, 74, 74t
steepest descent method, 62–63,

63t
surface-contour plot of function, 57,

57f
with saddle point, 57, 58f

test problem, 59–60
unidirectional search, 57–59
vs. constrained problem, 169

Unidirectional search, 57–59
formula, 86
for multivariable function, 58t
on Rosenbrock function, 58–59, 58t,

59f
Unimodal function, 35, 36f
Unrestricted (free) variable, 100
Utility function method

formula, 221
for multiobjective optimization

problem, 214–215

V

Variable metric method, 70–71; see also
Davidon–Fletcher–Powell
(DFP) method

Variable(s); see also specific types
decision, 3–4
dependent, 6
design, 3–4
independent, 6
in objective function, 3–4

W

Weighted sum approach
for multiobjective optimization

problem, 205–210, 207f–210f
advantages, 208
disadvantages, 209
example, 210
formula, 220–221
incomplete Pareto front, 208, 208f
nonconvex Pareto front generated

with PSO, 209, 209f
Pareto optimal front, 206–207, 207f

Weight minimization
for aerospace applications, 3

Wood’s function
contours of, 82f
performance comparison of different

methods for, 83t
unconstrained optimization

problems, 82–83

Z

Zenedorous, 1
Zero-one programming problem, 263,

272–277, 277f
Zoutendijk’s method, 176, 191–192

© 2015 by Taylor & Francis Group, LLC

	Cit p_6:1:
	Cit p_6:2:
	Cit p_8:1:
	Cit p_9:1:
	Cit p_12:1:
	Cit p_21:1:
	Cit p_62:1:
	Cit p_54:1:
	Cit p_55:1:
	Cit p_48:1:
	Cit p_49:1:
	Cit p_42:1:
	Cit p_58:1:
	Cit p_43:1:
	Cit p_52:1:
	Cit p_44:1:
	Cit p_70:1:
	Cit p_78:1:
	Cit p_78:2:
	Cit p_63:1:
	Cit p_80:1:
	Cit p_72:1:
	Cit p_80:2:
	Cit p_65:1:
	Cit p_84:1:
	Cit p_94:1:
	Cit p_94:2:
	Cit p_87:1:
	Cit p_88:1:
	Cit p_100:1:
	Cit p_89:1:
	Cit p_97:1:
	Cit p_89:2:
	Cit p_101:1:
	Cit p_98:1:
	Cit p_91:1:
	Cit p_91:2:
	Cit p_119:1:
	Cit p_121:1:
	Cit p_122:1:
	Cit p_114:1:
	Cit p_122:2:
	Cit p_116:1:
	Cit p_109:1:
	Cit p_128:1:
	Cit p_123:1:
	Cit p_140:1:
	Cit p_124:1:
	Cit p_124:2:
	Cit p_141:1:
	Cit p_142:1:
	Cit p_158:1:
	Cit p_151:1:
	Cit p_160:1:
	Cit p_152:1:
	Cit p_144:1:
	Cit p_155:1:
	Cit p_147:1:
	Cit p_149:1:
	Cit p_150:1:
	Cit p_182:1:
	Cit p_167:1:
	Cit p_177:1:
	Cit p_169:1:
	Cit p_162:1:
	Cit p_178:1:
	Cit p_165:1:

