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Preface

There are numerous books on the subject of optimization, attributable to a 
number of reasons. First, the subject itself is mathematically rigorous and 
there are a number of solution methods that need to be examined and under-
stood. No single solution method can be applied to all types of optimization 
problems. Thus a clear understanding of the problem, as well as solution 
techniques, is required to obtain a proper and meaningful solution to the 
optimization problem. With the progression of time, optimization prob-
lems have also become complex. It is necessary not only to obtain the global 
optimum solution, but to find local optima as well. Today’s problems are 
also of the multiobjective type, where conflicting objective functions are to 
be handled. There is also a need to simultaneously handle objective func-
tions and constraints of different disciplines, resulting in multidisciplinary 
design optimization (MDO) problems that are handled using different archi-
tectures. Gradient-based methods were popular until the 1990s. At pres-
ent, a large number of complex problems are solved using guided random 
search methods such as genetic algorithm, simulated annealing, and particle 
swarm optimization (PSO) techniques. Even hybrid algorithms, that use a 
combination of gradient-based and stochastic methods, are also very popu-
lar. Different authors have addressed these issues separately, resulting in a 
number of books in this area.

So how does this book differ from the others? The solution techniques 
are detailed in such a way that more emphasis is given to the concepts and 
rigorous mathematical details and proofs are avoided. It is observed that a 
method can be understood better if different parameters in the algorithm are 
plotted or printed over different iterations while solving a problem. This can 
be accomplished by writing a software code for the method or the algorithm. 
It is often difficult for a newcomer to write a software code if the algorithm 
such as, say, Broyden–Fletcher–Goldfarb–Shanno (BFGS) or PSO is given to 
him or her. In this book, a step-by-step approach is followed in developing 
the software code from the algorithm. The codes are then applied to solve 
some standard functions taken from the literature. This creates understand-
ing and confidence in handling different solution methods. The software 
codes are then suitably modified to solve some real-world problems. A few 
books on optimization have also followed this approach. However, the soft-
ware code in these books is hard to correlate with the corresponding algo-
rithms mentioned in the book and readers are forced to use them as black 
box optimization tools. The codes presented in this book are user friendly in 
the sense that they can be easily understood. A number of practical problems 
are solved using these codes.
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The codes are written in the MATLAB® environment and the use of ready-
made optimization routines available in MATLAB is avoided. The algorithms 
are developed right from computing the gradient or Hessian of a function to 
a complex algorithm such as for solving a constraint optimization problem. 
MATLAB is a software package for technical computing that performs both 
computing and visualization with ease. It has a number of built-in func-
tions that can be used by an individual’s application. The main advantage 
of MATLAB is the ease with which readers can translate their ideas into an 
application.

The book covers both gradient and stochastic methods as solution tech-
niques for unconstrained and constrained optimization problems. A sepa-
rate chapter (Chapter 5) is devoted to stochastic methods, where genetic 
algorithm, PSO, simulated annealing, ant colony optimization, and tabu 
search methods are discussed. With simple modifications of the basic PSO 
code, one can also solve nonconvex multiobjective optimization problems. 
This is probably the first optimization book in which MDO architectures 
are introduced (Chapter 9). Software codes are also developed for the sim-
plex method and affine-scaling interior point method for solving linear pro-
gramming problems. Gomory’s cutting plane method, branch-and-bound 
method, and Balas’ algorithm are also discussed in the chapter on integer 
programming (Chapter 10). A number of real-world problems are solved 
using the MATLAB codes given in the book. Some applications that are 
included in this book are solving a complex trajectory design problem of a 
robot (Chapter 3), multiobjective shape optimization problem of a reentry 
body (Chapter 7), portfolio optimization problem (Chapter 4), and so forth.

I thank my organization, Vikram Sarabhai Space Centre (a lead center of 
Indian Space Research Organisation [ISRO]), for giving permission to pub-
lish this book. The book has been reviewed internally by Dr. Mohankumar 
D., Head, Computer Division. I thank him for his suggestions and correc-
tions. I thank Mr. Pandian, S., Deputy Director, VSSC for supporting the idea 
to write this book. I am ever grateful to Prof. M Seetharama Bhat from IISc, 
Bangalore and Dr. Adimurthy, V. for their support during the last ten years. 
I thank my colleagues Dr. Jayakumar K., Mr. Priyankar, B., Mr. Sajan Daniel 
and Mr.  Amit Sachdeva for many hours of discussions on book-related 
aspects.

I am grateful to Taylor & Francis Group for agreeing to publish this book 
and agreeing to most of my suggestions. Much credit should be given to 
Ms. Aastha Sharma, Editor, for her prompt actions and follow-up with the 
reviewers. Thanks are also due to three anonymous reviewers for their criti-
cal remarks, corrections, and suggestions. I thank Mr. Sarfraz Khan, assistant 
to Ms. Aastha Sharma, for providing online support in signing the contract. 
I also thank Mr. David Fausel for coordinating and reviewing the style and 
art files of the book. My sincere thanks to Mr. Ed Curtis and Ms. Amor Nanas 
for language corrections, copyediting, and other production related works. 
The cover page is designed by Mr. Kevin Craig.
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I thank the MATLAB book program for supporting the idea of this book 
on optimization with MATLAB codes. They have also agreed to give wide 
publicity to this book on their website, for which I am grateful.

I thank my wife, Manju, and children, Abhinav and Aditi, for their patience 
during the last two years. In fact my whole family—father, brothers, sister, 
and in-laws—are eagerly waiting for the launch of this book.

This is the first edition of this book. Some errors and omissions are 
expected. The MATLAB codes are validated with a number of test problems 
taken from the literature. It is still possible that some pathways in the codes 
would not have been exercised during this validation. As a result, no claim is 
made that these codes are bug-free. I request readers to report corrections and 
suggestions on this book at rk_arora@vssc.gov.in or arora_rajesh@rediffmail 
.com.

The MATLAB codes mentioned in this book can be downloaded from the 
weblink http://www.crcpress.com/product/isbn/9781498721127.

Rajesh Kumar Arora, PhD, MBA, FIE
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1

1
Introduction

1.1  Historical Review

Optimization means finding the best solution among many feasible solu-
tions that are available to us. Feasible solutions are those that satisfy all the 
constraints in the optimization problem. The best solution could be mini-
mizing the cost of a process or maximizing the efficiency of a system. Some 
simple optimization problems that come to mind are machine allocation 
and diet problems. In the machine allocation problem, one has to find how 
jobs are to be allocated to different machines of different capacities and with 
different operating costs so as to meet the production target with minimum 
cost. In the diet problem, different food types are available with different 
nutritional contents at different costs. The aim is to estimate different quan-
tities of food so that nutritional requirements are met for an individual at 
minimum cost.

Though rigorous mathematical analysis of the optimization problems was 
carried out during the 20th century, the roots can be traced back to about 
300 b.c., when the Greek mathematician Euclid evaluated the minimum dis-
tance between a point and a line. Another Greek mathematician, Zenedorous, 
showed in 200 b.c. that a figure bounded by a line that has a maximum area 
for a given perimeter is a semicircle.

In the 17th century, Pierre de Fermat, a French mathematician, laid the 
foundation of calculus. He showed that the gradient of a function vanishes 
at the maximum or minimum point. Moving further in the timeline, Newton 
and Leibniz laid mathematical details for the calculus of variations. This 
method deals with maxima or minima of functionals. The foundation for the 
calculus of variations is credited to Euler and Lagrange (in the 18th century), 
as they provided rigorous mathematical details on this topic. Subsequently, 
Gauss and Legendre developed the least squares method, which is exten-
sively used even today. Cauchy used the steepest descent method to solve 
unconstrained optimization problems.
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2 Optimization: Algorithms and Applications

The first textbook on optimization was authored by Harris Hancock and 
published in 1917. In 1939, Leonid Kantorovich presented the linear pro-
gramming (LP) model and an algorithm for solving it. A few years later in 
1947, George Dantzig presented a simplex method for solving LP problems. 
Kantorovich and Dantzig are regarded as pioneers who provided break-
throughs in the development of optimization techniques. The conditions 
for constrained optimization were brought together by Harold Kuhn and 
Albert  Tucker in 1951 and also earlier by William Karush in 1939. Richard 
Bellman laid the principles of dynamic programming problems in which a 
complex problem is broken down into smaller subproblems. Ralph Gomory’s 
contribution to the development of integer programming is worth noting, 
as in this type of optimization problem, design variables can take integer 
values such as 0 and 1.

With the advent of computers in the 1980s, subsequently many large-scale 
problems were solved. Present-day problems in the optimization area are 
of the multidisciplinary and multiobjective type. The solution techniques 
that are employed today to solve complex optimization problems are not just 
gradient-based algorithms, but also include nontraditional methods such as 
genetic algorithms, ant colony optimization, and particle swarm optimiza-
tion that mimic natural processes.

Today, optimization methods are required to solve problems from all dis-
ciplines, whether economics, sciences, or engineering. As a result of stiff 
competition in virtually all disciplines, the role of optimization has become 
still more substantial as one aims to minimize the cost of a product or wants 
to allocate resources judiciously. A simple example from the subject field of 
aerospace engineering can prove this point. The cost of putting 1 kilogram 
of payload in a low Earth orbit is typically about US$15,000. The fuel and 
structural weight of the different stages of the rocket strongly influence the 
payload mass, as does the trajectory of the rocket. Of course, one can reduce 
the structural weight of a stage only to the extent it should not fail because of 
aerodynamic and other loads. The optimization problem that aims at maxi-
mizing the payload mass is highly complex and requires algorithms that run 
on high-speed computers. Even if the optimization technique results in few 
extra kilograms in payload, it represents large revenue for the space agency.

In the next section, we introduce to the optimization problem design vari-
ables, constraints, and applications of optimization in different domains. 
Further in the chapter, modeling aspects of a physical problem are explained 
that convert the verbal problem to a mathematical form. The solution of sim-
ple optimization problems with up to two design variables is explained by 
the graphical method. The importance of convex function in optimization 
is then explained. The chapter concludes with an introduction to the math-
ematical preliminaries of the gradient vector, Hessian matrix, directional 
directive, and linear and quadratic approximation of the function. The road 
map of this chapter is given in Figure 1.1.
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3Introduction

1.2  Optimization Problem

In an optimization problem, a function is to be maximized or minimized. 
The function that is being optimized is referred to as the objective function 
or the performance index. The function is a quantity such as cost, profit, 
efficiency, size, shape, weight, output, and so on. It goes without saying that 
cost minimization or profit maximization are prime considerations for most 
organizations. Certain types of equipment, such as air conditioners or refrig-
erators, are designed with different optimization criteria to have higher effi-
ciency in terms of reducing energy consumption requirements of the user. 
However, this higher efficiency evidently comes at a higher cost to the user. 
Weight minimization is a prime consideration for aerospace applications.

The variables in the objective function are denoted the design variables 
or decision variables. Typically it could be the dimensions of a structure or 
its material attributes, for a structure optimization problem. From practical 
considerations, design variables can take values within a lower and an upper 
limit only. For instance, the maximum capacity of a machine is limited to a 
certain value. The design variables can be a real or a discrete number, binary, 
or integer type. Though a majority of the design variables in the optimi-
zation problems are real, some variables can also be discrete. For example, 
pipe sizes come in standard numbers such as 1, 2, or 5 inches. If pipe size is 

Optimization problem

Modeling of the problem

Convexity

Gradient vector, Hessian matrix, and
directional derivative

Linear and quadratic
 approximation

Solution with graphical method

Book layout

FIGURE 1.1
Road map of Chapter 1.
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4 Optimization: Algorithms and Applications

used as a design variable in an optimization problem, it has to be treated as 
discrete only. There is no point in selecting it as a real number and getting a 
solution such as, say, 3.25 inches, a pipe dimension that really does not exist. 
See Table 1.1 for some typical objective functions and design variables for 
optimization problems from different disciplines.

The optimization problem can be mathematically expressed as follows.

Minimize

 f(x) (1.1)

subject to

 gi(x) ≤ 0   i = 1, 2,…, m < n (1.2)

 hj(x) = 0   j = 1, 2,…, r < n (1.3)

 xl ≤ x ≤ xu

where x is a vector of n design variables given by

 x =





















x

x

xn

1

2



 

The functions f, gi, and hj are all differentiable. The design variables are 
bounded by xl and xu. The constraints gi are called inequality constraints and 

TablE 1.1

Typical Optimization Problems

Discipline Design Variables Objective Function

Manufacturing Productivity from different machines Minimize cost
Corporate Different capitals from projects Maximize the net present value
Airline Different aircrafts, different routes Maximize the profit
Aerospace Propellant fraction in different stages Maximize the payload
Agriculture Different crops Maximize the yield
Biology Gene interaction Network stability
Electronics Size of the devices Minimize the power consumption
Portfolio Investment in stocks/bonds Maximize the return
Thermal Dimensions and material properties Minimize the heat load
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5Introduction

hj are called equality constraints. An example in the aerospace industry is 
to restrict the dimensions of the spacecraft so that in can be accommodated 
inside the payload fairing of a rocket. These restrictions are the constraints of 
the optimization problem. The constraints are functions of the design vari-
ables. In addition, the number of equality or inequality constraints is lower 
than the number of design variables (n). If the design variables satisfy all 
the constraints, they represent a feasible set and any element from the set 
is called a feasible point. The design variables at which the minimum of f(x) 
is reached are given by x*. If the optimization problem does not have any 
constraints, it is referred to as an unconstrained optimization problem. If the 
objective function and constraints are linear functions in x then the optimi-
zation problem is termed a linear programming problem (LPP).

1.3  Modeling of the Optimization Problem

Modeling refers to expressing observations about a problem in mathemati-
cal form using basic building blocks of mathematics such as addition, sub-
traction, multiplication, division, functions, and numbers with proper units. 
Observations refer to data obtained for the problem in hand, by varying cer-
tain parameters of the problem through experiments. Further, mathemati-
cal models provide predictions of the behavior of the problem for different 
inputs. If the model does not yield expected results, it has to be refined by 
conducting further experiments. The mathematical model is not unique for 
different problems, as observed data can be discrete (defined at select inter-
vals) or continuous and can vary in different fashion (say, linear or quadratic) 
with change in input parameters. Some simple mathematical models of dif-
ferent physical phenomena are presented next.

The pressure (P), volume (V), and temperature (T) relationship of a gas is 
given by Boyle’s law as

 PV = kT (1.4)

where k is a constant. Using this mathematical model, the behavior of a gas 
can be predicted (say, pressure) for the different input parameters (say, tem-
perature), keeping the volume of the gas constant.

An example from economics could be constructing a mathematical model 
for the demand–supply problem. The price of a product is to be calculated so 
as to maximize the profit. It is well known that if the price of the merchan-
dise is kept high, profit per unit will increase but then demand for the prod-
uct may be low. Likewise, if the price of the product is kept low, profit per 
unit will decrease, but then demand for the product may be higher. Typically, 
demand (D) varies with price (P) as
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6 Optimization: Algorithms and Applications

 D
c

c P
=

+
1

2
2  (1.5)

where c1 and c2 are constants.
Some problems can be written mathematically in differential equation form. 

A differential equation contains an unknown function and its derivatives. 
As the derivative represents the rate of change of a function, the differen-
tial equation represents the continuously varying quantity and its rate of 
change. For example, the temperature change (with respect to time) of an 
object is proportional to the difference between the temperature (T) of the 
object and that of its surroundings (Ts) and can be represented in differential 
equation form as

 
dT
dt

k T T= − −( )s  (1.6)

Equation 1.6 is also referred to as Newton’s law of cooling. The solution of the 
differential equation is a function that satisfies the differential equation for 
all values of the independent variable in the domain. As the name suggests, 
independent variables are changed during an experiment and the dependent 
variable responds to this depending on on the type of the experiment being 
conducted. A differential equation can have many solutions (referred to as 
general solution). A particular solution is one such solution. Often, a differ-
ential equation has a closed form solution. For example, the solution for the 
differential equation representing Newton’s law of cooling is

 T(t) = Ts + (To − Ts)e−kt (1.7)

Not all problems have closed form solutions and such problems have to be 
numerically simulated to arrive at the solutions.

Therefore, using modeling, one can construct the objective function as well 
as the constraint functions for the optimization problem. One can then use 
different optimization techniques for solving such problems. The following 
examples illustrate how to formulate an optimization problem by construct-
ing the objective and constraint functions.

Example 1.1

In a diet problem, an individual has to meet his daily nutritional require-
ments from a menu of available foods at a minimum cost. The avail-
able food items are milk, juice, fish, fries, and chicken. The nutrient 
requirements to be met are for proteins, vitamins, calcium, calories, and 
carbohydrates. Table 1.2 shows the cost in dollars of the food items per 
serving, nutrient values are shown in rows against their names (such as 
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7Introduction

proteins, vitamins, etc.) per serving, and the last column indicates the 
minimum daily requirements of the nutrients.

The first step is to select the design variables for the problem. It appears 
obvious to select quantities of food items such as fish, fries, and so on as 
the design variables. Let us represent the design variables by x1, x2, x3, x4, 
and x5 for quantities in milk, juice, fish, fries, and chicken respectively. 
As discussed earlier, the objective function and constraints are a func-
tion of these design variables. In this particular problem, the objective 
function is to minimize the cost of the food items purchased. If x3 is 
the quantity of fish ordered and $2 is its unit price, then the total cost 
of the fish item is 2x3. In a similar way, we can evaluate the cost of other 
items  such as milk, juice, and so on. Hence the total cost of the food 
items is

 1.1x1 + 1.2x2 + 2x3 + 1.3x4 + 3x5

Note that the cost function or the objective function is linear; that is, x1 
is not dependent on x2 or any other variable. Having defined the objec-
tive function, let us define the constraints for the problem. In the prob-
lem it is clearly mentioned that the nutritional needs of the individual 
have to be met. For example, a minimum protein requirement of 60 units 
is to be met. Similarly, minimum requirements of other nutrients such 
as vitamins, calcium, and so forth are also to be met. Now, we can write 
the first constraint as

 8x1 + 2x2 + 15x3 + 4x4 + 30x5 ≥ 60 (1.8)

Note that this constraint is an inequality. In a similar fashion, we can 
write other constraints. We are now ready to write the objective function 
and constraints for the diet problem.

Minimize

 1.1x1 + 1.2x2 + 2x3 + 1.3x4 + 3x5 (1.9)

TablE 1.2

Data for the Diet Problem

Milk Juice Fish Fries Chicken Required

Cost 1.1 1.2 2.0 1.3 3.0
Proteins 8 2 15 4 30 60
Vitamins 9 3 3 1 9 100
Calcium 35 3 17 1 16 120
Calories 100 90 350 200 410 2100
Carbohydrates 10 20 40 25 40 400

Note: Construct the objective function and the constraints for this optimization problem.
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8 Optimization: Algorithms and Applications

subject to

 8x1 + 2x2 + 15x3 + 4x4 + 30x5 ≥ 60 (1.10)

 9x1 + 3x2 + 3x3 + x4 + 9x5 ≥ 100 (1.11)

 35x1 + 3x2 + 17x3 + x4 + 16x5 ≥ 120 (1.12)

 100x1 + 90x2 + 350x3 + 200x4 + 410x5 ≥ 2100 (1.13)

 10x1 + 20x2 + 40x3 + 25x4 + 40x5 ≥ 400 (1.14)

Once the optimization problem is defined, one has to use standard 
optimization techniques in evaluating the design variables x1, x2, x3, x4, 
and x5. These methods are described in the later chapters. In this chapter, 
we are focusing on the formulation of the optimization problem.

Example 1.2

A soft drink manufacturer needs to produce a cylindrical can that can 
hold 330 mL of a soft drink. He wants to make the dimensions of the 
container such that the amount of material used in its construction is 
minimized. Formulate the optimization problem by writing down the 
objective function and the constraint.

The design variables for the optimization problem are the radius and 
the height of the can. Let these variables be denoted by x1 and x2 with 
units in millimeters (Figure 1.2). The cylindrical can consists of a curved 
portion and two circular ends. The area of the curved portion is given by 
2πx1x2 and the area of two circular lids is given by 2 1

2πx . Hence, the total 
area that needs to be minimized is 2 21 2 1

2π πx x x+ . The volume of the can 
is given by πx x1

2
2. This volume is to be limited to 330 mL or 330,000 mm3. 

Now we are ready to formulate the optimization problem.

Minimize

 2 21 2 1
2π πx x x+  (1.15)

x1

x2

FIGURE 1.2
Cylindrical can.
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9Introduction

subject to

 πx x1
2

2 330 000= ,  (1.16)

Note that in this optimization problem, the constraint is an equality.

Example 1.3

The shape of a reentry body is a spherical nose, a conical body, and a flared 
bottom (see Figure 1.3). The design variables through which the configura-
tion of the reentry body can be altered are nose radius (Rn), cone length (l1), 
cone angle (θ1), flare length (l2), and flare angle (θ2). By varying the design 
variables, the area (A) of the reentry capsule is to be minimized. As the 
reentry capsule has to house electronic packages and other instruments, 
it must have a certain minimum volume (V), which is specified as 1 m3.

The design variables are bounded between a minimum and maximum 
value. Rn can take a value between 0.4 and 0.6 m, l1 and l2 can take a value 
between 0.4 and 0.8 m, θ1 can take a value between 22 and 27 degrees, 
and θ2 can take a value between (θ1 + 5) and (θ1 + 10) degrees. Formulate 
the shape optimization problem of the reentry capsule.

The total surface area and volume of the capsule are computed using 
the equations

 

A R R R R R l

R R

n

B

= − + + − +

+ +

2 12
1 1 2 2 1

2
1
2

2

π θ π

π

( )sin ( ) ( )

( ) (RR R l RB B− + +2
2

2
2 2) π  (1.17)

 
V

R
R R

l R R

n= − + −( )

+ +

π θ θ

π

( )sin
( sin )

1
6

3 1

1
3

1
1
2

1
2

1
2

1 1
2

2
22

1 2 2
2

2
2

2
1
3

+( ) + + +( )R R l R R R RB Bπ

 

(1.18)

Flare

Conical body

Spherical nose

θ1

θ2
l2

l1

R

FIGURE 1.3
Reentry capsule.
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10 Optimization: Algorithms and Applications

where

 R1 = Rn cos θ1 (1.19)

 R2 = Rn cos θ1 + l1 tan θ1 (1.20)

 RB = R2 + l2 tan θ2 (1.21)

The optimization problem can now be written as

Minimize

 

2 12
1 1 2 2 1

2

1
2

2

π θ π

π

R R R R R l

R R R

n

B B

( )sin ( )

( )

− + + −( ) +

+ + − RR l RB2

2

2
2 2( ) + + π  (1.22)

subject to

 

π θ θ πR
R R l R Rn( )sin

( sin )
1

6
3 1

1
3

1
1
2

1
2

1
2

1 1
2

2
2− + −( ) + + + RR R

l R R R RB B

1 2

2
2

2
2

2
1
3

1

( )

+ + +( ) ≥π
 

(1.23)

 0.4 < Rn < 0.6 (1.24)

 22 < θ1 < 27 (1.25)

 θ1 + 5 < θ2 < θ1 + 10 (1.26)

 0.4 < l1 < 0.8 (1.27)

 0.4 < l2 < 0.8 (1.28)

Example 1.4

It is required to find the optimum diameter (d) of a solid steel shaft 
whose mass (M) is to be minimized and the first cantilever frequency 
has to be greater than 20 Hz. Formulate this as an optimization problem 
by writing down the objective function and the constraint.

If L is the length of the rod (Figure 1.4) and ρ is its density, then the 
mass of the rod is given by

 M d L= π ρ
4

2  (1.29)
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For this problem, L = 1 m and ρ = 7800 kg/m3. The first cantilever fre-
quency is given by

 f
L

EI
k1 2

1
2

3 5156=
π

.  (1.30)

where E is Young’s modulus of steel and its value is 2 × 1011 N/m2. The 
variable k is mass per unit length. The moment of inertia I for the rod is 
given by

 I d= π
64

4  (1.31)

The optimization problem can be written as follows.

Minimize

 
π ρ
4

2d L  (1.32)

subject to

 1
2

3 5156
202π

.
L

EI
k

≥  (1.33)

1.4  Solution with the Graphical Method

Having formulated the optimization problems in the previous section, it 
is tempting for readers to get solutions for these problems. The graphical 
method is a simple technique for locating the optimal solution for problems 
with up to two to three design variables. Beyond three variables, the rep-
resentation of the optimization problem through graphs becomes complex.

L

d

FIGURE 1.4
Cantilever rod.
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The optimization problem mentioned in Example 1.2 requires two design 
variables, x1 and x2, to be evaluated such that it minimizes the total surface 
area and at the same time satisfying the equality constraint. A MATLAB® 
code, graph_examp12.m, given at the end of this book, is used for drawing the 
graph for this problem. For a quick introduction to MATLAB, see Appendix A.

The variable x1 is varied from 1 to 100 mm and the variable x2 is varied 
from 1 to 200 mm in the code. The surface area is calculated based on the val-
ues x1 and x2 and contour of the objective function is plotted (Figure 1.5) for 
different values of x1 and x2. The constraint function is then plotted (marked 
with *). Because this is an equality constraint optimization problem, the min-
imum value of the objective function is the contour curve that touches the 
constraint curve and has the lowest value. The minimum value of the objec-
tive function is 26,436 mm2 corresponding to design variables x1 as 37.45 mm 
and x2 as 74.9 mm. Note that the length of the can is two times its radius at the 
minimum point. This can be proved analytically using elementary calculus.

Similarly, the optimization problem mentioned in Example 1.4 has only 
one design variable, the diameter d of the rod. Again, we can use a graphical 
method to solve this problem. A MATLAB code, graph_examp14.m, is written 
for this problem.

On executing the code, the output is in the form of a graph or a plot as 
shown in Figure 1.6. The value of the objective function (along the y-axis) 
decreases with the reduction in the value of the design variable (along the 
x-axis). However, the constraint value (also plotted along the y-axis) also 
decreases with the reduction in the value of the design variable. In the opti-
mization problem, it is given that the constraint should have a value that is 
equal to or greater than 20 Hz. Hence the optimum solution corresponds to 
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FIGURE 1.5
Function contours for the optimization problem in Example 1.2.
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13Introduction

d = 0.0283 m, where the value of the objective function mass is 4.94 kg and the 
constraint value is 20 Hz.

1.5  Convexity

Consider two design points, x1 and x2, that belong to a set S. If the line join-
ing these two points is also within the set S, then the set S is a convex set. If 
the line joining the design points x1 and x2 does not belong to the set S, then 
the set S is a nonconvex set. See Figure 1.7 for convex and nonconvex sets. In 
optimization, often we have to check a function for its convexity. Consider a 
single variable function f(x) as shown in Figure 1.8 and two points x1 and x2 
at which the value of the function is f(x1) and f(x2) respectively. Consider any 
point x on the line joining x1 and x2. If f x( ) is less than the value of the func-
tion at the corresponding point x̀ on the line joining f(x1) and f(x2) then f(x) is 
a convex function, that is, for convexity

 f x f x
( ) ≤ ( )`  (1.34)

Examples of convex functions are x2, ex, etc. If f(x) is a convex function then 
ef(x) is also a convex function. Hence, ex2

 and eex
 are also convex functions. 

Let us plot (Figure 1.9) these functions in MATLAB (convexity.m) to show that 
these functions are indeed convex.
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FIGURE 1.6
Objective function and constraint plot for the problem in Example 1.4.
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14 Optimization: Algorithms and Applications

The concept of convexity is important in declaring that a function has one 
minimum only. A convex function thus has a global minimum. If a function 
is nonconvex, the optimum reached might be a local one (see Figure 1.10). 
Such functions with more than one minimum or maximum are referred to as 
multimodal functions. Traditional gradient-based algorithms have difficulty 
in locating a global optimum solution. In addition, a designer often has to 
look for an alternative solution to a global optimum because of the pres-
ence of the constraints. For example, at a global optimum solution, the design 
variables may be such that it might be difficult to manufacture the product or 
the particular material might be very costly. The task of the designer is thus 
difficult. He not only has to find a global optimum solution, but also locate 
local optimum solutions.

x2

S

S

Convex set

Nonconvex set

x1
x1

x2

FIGURE 1.7
Convex and nonconvex sets.

x1 x2x~

~

f (x2)

f (x1)

f (x̀)

f (x)

FIGURE 1.8
Convex function.
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If f(x) is a convex function, then −f(x) is a concave function. Similarly, if f(x) 
is a concave function, then −f(x) is a convex function. Figure 1.11 shows both 
convex and concave functions for y = ex.

Typically, optimization algorithms are developed to minimize the objec-
tive function. As discussed earlier, convexity plays an important role for 
functions where their minima are to be located. However, there can be opti-
mization problems where one needs to maximize the objective function f(x). 
The maximization problem can be converted to the minimization type by 
changing the sign of the objective function to −f(x). Mathematically,
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FIGURE 1.9
Examples of convex functions.
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FIGURE 1.10
Local and global optima for a nonconvex function.
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Maximize

 f(x)

is the same as
Minimize

 −f(x)

1.6  Gradient Vector, Directional Derivative, 
and Hessian Matrix

The derivative or gradient of a function f(x) at a point x, generally denoted by 
f′(x), is the slope of the tangent (see Figure 1.12) at that point. That is,

 f′(x) = tan θ (1.35)

where θ is the angle measured by the tangent with respect to the horizon-
tal. Along the gradient direction, there is the maximum change in the value 
of the function. Thus, gradient information provides the necessary search 
direction to locate the maximum or minimum of the function.
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FIGURE 1.11
Concave and convex functions.
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In most optimization problems, which are generally nonlinear, f′(x) has to 
be evaluated numerically. We can use forward difference, backward difference, 
and central difference methods to find the derivative of a function at a point. If 
the value of a function f(x) is known at a point x, then the value of the func-
tion at its neighboring point x + Δx can be computed using Taylor’s series as

 f x x f x xf x
x

f x
x

f x( ) ( ) ( )
!

( )
!

( )+ = + + + +′ ′′ ′′′∆ ∆
∆ ∆2 3

2 3
  (1.36)

Rearranging Equation 1.36 gives

 
f x x f x

x
f x

x
f x

x
f x

( ) ( )
( )

!
( )

!
( )

+ − = + + +′ ′′ ′′′∆
∆

∆ ∆
2 3

2

  (1.37)

The forward difference formula for evaluating the derivative of a function 
can be written as

 ′ = + − +f x
f x x f x

x
O x( )

( ) ( )
( )

∆
∆

∆  (1.38)

The quantity O(Δx) represents that this formula is first-order accurate. In a 
similar fashion, the backward difference formula can be written as

 ′ = − − +f x
f x f x x

x
O x( )

( ) ( )
( )

∆
∆

∆  (1.39)

Tangent

f (x)
x

0
θ

FIGURE 1.12
Concept of derivative.
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Using the forward and backward difference formulas, one can derive the 
central difference formula as

 ′ = + − − +f x
f x x f x x

x
O x( )

( ) ( )
( )

∆ ∆
∆

∆
2

2  (1.40)

Because the central difference formula for computing the derivative of 
a function is of second order, it is more accurate than forward/backward 
difference method. Again, the second derivative can be evaluated using the 
equation

 ′′ = + − + −
f x

f x x f x f x x
x

( )
( ) ( ) ( )∆ ∆

∆
2

2  (1.41)

Let us take a function

 f(x) = 2 sin 5x + 3x3 − 2x2 + 3x − 5 (1.42)

and compute the first and second derivatives using the central difference 
formula for x ranging from 0.1 to 1.0 with Δx as 0.01. A MATLAB code, 
derivative.m, is written and the output is plotted in Figure 1.13.

The top plot in the Figure 1.13 is f(x) varying with x. Note that the function 
has one maximum and one minimum and these points are shown with *. 
The derivative of the function is plotted in the second plot. Note that f′(x) = 0 
at the maximum and minimum of the function. From the third plot, observe 
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FIGURE 1.13
Plot of a function with its first and second derivative.
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that f″(x) ≥ 0 at the minimum and f″(x) ≤ 0 at the maximum of the function. 
The second derivative provides curvature information of the function.

For certain functions such as f(x) = x3, both f′(x) = f″(x) = 0 at x* = 0. In such 
instances, one has to look for higher order derivatives. Here f‴(x) = 6, which 
is nonzero. If the first nonzero higher order derivative is denoted by n, then 
x* is an inflection point (or a saddle point) if n is odd and x* is local optimum if 
n is even. Therefore, x* is an inflection point for the function f(x) = x3, as the 
first nonzero higher order derivative is odd (third derivative). Similarly, it 
can be shown that the function f(x) = x4 has a local minimum at x* = 0. These 
two functions are plotted in Figure 1.14.

So far we considered the derivative of a function with one variable only. 
The gradient is a vector that contains partial derivatives of the function with 
respect to the design variables (x1, x2, ⋯, xn) and is mathematically written as

 ∇ =

∂
∂
∂

∂

∂
∂


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
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f
x

f
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1

2



 (1.43)

Let us plot a tangent and gradient at a given point (x1, x2) on the function 
contours for Example 1.2. For a single-variable case, we observed that the 
tangent at any point for a function and its gradient are the same (Figure 1.12). 
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FIGURE 1.14
Saddle point and local minimum functions.
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However, for a two-variable case, the tangent for each function contour is 
different and the value of the function remains the same along the tangent, 
that is, along a tangent

 ∆ ∆ ∆f
f
x

x
f
x

x=
∂

∂
+

∂
∂

=
1

1
2

2 0  (1.44)

The gradient is normal to the tangent. A MATLAB code, grad.m, is written 
that on execution gives an output shown in Figure 1.15. On the function con-
tour with a value of 15,000, a point (25, 70.493) is located where we desire to 
plot the tangent and gradient. Using Equation 1.44, we can write

 ∆ ∆ ∆x

f
x
f
x

x
x x

x
x2

1

2

1
1 2

1
1

2= −

∂
∂
∂

∂

= − +
 (1.45)

Using the incremental Equation 1.45, a tangent can be drawn at the point 
(25, 70.493). If the slope of the tangent is given by mt, then the slope of the 
gradient mg can be computed from the relation

 mgmt = −1 (1.46)

Consider three functions, f1(x1, x2, x3), f2(x1, x2, x3), and f3(x1, x2, x3), which 
are functions of three variables, x1, x2, and x3. The gradient of these functions 
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FIGURE 1.15
Tangent and gradient for the objective function given in Example 1.2.
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can be put in a single matrix referred to as a Jacobian J and is expressed in 
mathematical form as

 [ ]J =
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∂
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 (1.47)

For constrained optimization problems, it is possible that moving in the 
gradient direction can result in moving into the infeasible region. In such an 
instance one wishes to move in some other search direction and would like 
to know the rate of change of function in that direction. The directional deriva-
tive provides information on the instantaneous rate of change of a function 
in a particular direction. If u is a unit vector, then the directional derivative 
of a function f(x) in the direction of u is given by

 ∇f(x)T u

The Hessian matrix H represents the second derivative of a function with 
more than one variable. For a function f(x1, x2, x3) with three variables, the 
Hessian matrix is written as
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The Hessian matrix should be positive definite at the minimum of the func-
tion. A matrix is positive definite if its eigenvalues are positive. For a square 
matrix, there exists a nonzero vector such that when multiplied with the 
square matrix it results in a vector that differs from the original by a multipli-
cative scalar. The nonzero vector is termed the eigenvector and the multipli-
cative scalar the eigenvalues. Let us check the eigenvalues for the following 
matrix by executing a MATLAB code, positive_definite.m:

 H =
















2 1 1
1 2 1
0 2 3

 (1.49)
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The eigenvalues of the matrix are 1, 1.5858, and 4.4142. Because all the 
eigenvalues are positive, the matrix is positive definite.

Example 1.5

Write a gradient and Hessian matrix for the function

 f x x x x x x x( )x = + + + −1
2

1 2 2
2

3
2

2 32 3 4 5  

Also find the directional derivative of the function at (1, 1, 1) in the 
direction

 d =
















1
2
3  

The gradient is given by

 ∇ =
+

+ −
−



















f

x x

x x x

x x

( )x

2 2

2 6 5

8 5

1 2

1 2 3

3 2
 

The Hessian is given by

 H = −
−

















2 2 0
2 6 5
0 5 8

 

The unit vector in direction d is given by

 u
d
d

= =
+ +

















=











1

1 2 3

1
2
3

1 14

2 14

3 14
2 2 2

/

/

/ 






 

Now, the directional derivative of the function at (1, 1, 1) in the direc-
tion of the unit vector u is given by

 ∇ =  



















=f T( )x u 4 3 3

1 14

2 14

3 14

19 14

/

/

/

/
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1.7  Linear and Quadratic Approximations

A quadratic approximation of a function is often desired in optimization, as 
certain solution methods such as Newton’s method show faster convergence 
for these functions. The Taylor series approximation, as discussed in an ear-
lier section, is used to make linear or quadratic approximations of a function 
by appropriately considering the number of terms in the series. A MATLAB 
code, quadr.m, is written that demonstrates linear and quadratic approxima-
tions (Figure 1.16) of a function e−x.

The Taylor series approximation can be easily extended to a function with 
n variables and is given by the expression

 f f f T T( ) ( ) ( )x x x x x x H x+ = + ∇ + +∆ ∆ ∆ ∆
1
2

  (1.50)

For a linear approximation of the function, only the gradient term is used 
and the Hessian term is ignored. For a quadratic approximation of the func-
tion, the Hessian term is considered along with the gradient term.

For a function with two variables, as in Example 1.2, a MATLAB code, 
quadr_examp12.m, is written to make a quadratic approximation of the func-
tion. On executing the code, quadratic approximations are plotted (Figure 
1.17) along with the function contours. The gradient and Hessian for this 
function are

 ∇ =
+











f
x x

x
( )x

2 4

2
2 1

1

π π
π  (1.51)

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–1

0

1

2

3

4

5

6

7

8

x

f (
x)

Exp(−x)
Linear
Quadratic

FIGURE 1.16
Linear and quadratic approximation of the function e–x.
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 H =










4 2
2 0

π π
π

 (1.52)

Example 1.6

Construct linear and quadratic approximations for the function

 f x
x
x

( )x = −3 2
1

2  

at a point (2, 1).
The gradient is given by

 ∇ =
−

+





















∇ = −


f

x

x
x

f( ) ; ( )
   

x x

1

3

1
5

2

1

2
2

0 



  

 

The Hessian is given by

 
H =

−




















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FIGURE 1.17
Quadratic approximation of the objective function in Example 1.2.

© 2015 by Taylor & Francis Group, LLC

  



25Introduction

The linear approximation of the function is given by

 

l f f

x

x

T( ) ( ) ( ) ( )x x x x x= + ∇ −

= + − 
−
−









0 0 0

1

2

1 1 5
2

1 



= − + −x x1 25 2  

The quadratic approximation of the function is given by

 q f f T T( ) ( ) ( ) ( ) ( )( )x x x x x x x H x x= + ∇ − + − −0 0 0 0 0
1
2  

 q x x
x

x
x x

x
x( )

( )
(

( )
x = − − + − − −








−5 2
2

2
1

12 1
1

2
2

1 2

2
3 2 ))

( )( )+ − −x x
x

1 2

2
2

2 1
2

 

1.8  Organization of the Book

The book is organized into 11 chapters. Chapter 2 discusses 1-D algorithms 
such as the bisection, Newton–Raphson, secant, and golden-section methods. 
These algorithms form the building blocks for the unconstrained optimiza-
tion methods such as the steepest descent, Newton, Levenberg–Marquardt, 
conjugate gradient, Davidon–Fletcher–Powell (DFP), and Broyden–Fletcher–
Goldfarb–Shanno (BFGS) methods, which are discussed in Chapter 3. The 
direct search Powell’s method is used to solve a complex robotics problem. 
Chapter 4 elaborates on linear programming where simplex, dual simplex, 
and interior-point methods are discussed. A practical portfolio optimiza-
tion problem is also solved in this chapter. Genetic algorithm, simulated 
annealing, and particle swarm optimization techniques are elaborated in 
Chapter 5. Ant colony optimization and the tabu search method are also 
briefly introduced here. Solution techniques such as penalty function, aug-
mented Lagrangian, sequential quadratic programming, and methods of 
feasible directions are discussed in Chapter 6 for constrained optimization 
problems. Multiobjective optimization methods are discussed in Chapter 7. 
The shape design of a reentry body is optimized and discussed in this chap-
ter. In Chapter 8, both unconstrained and constrained problems are solved 
using geometric programming techniques. Chapter 9 discusses multidisci-
plinary design optimization (MDO), where different architectures are con-
sidered. The importance of response surface methodology is highlighted for 
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MDO problems. Gomory’s cutting plane method, zero-one problem, Balas’ 
method, branch-and-bound method, and so forth are discussed in Chapter 10 
on integer programming. Both deterministic and probabilistic aspects of 
dynamic programming are discussed in Chapter  11. See Figure 1.18 for a 
quick glance at the organization of the book.

Chapter 2
1-D optimization

•
•
•

Test problem
Solution techniques
Comparison

Chapter 3
Unconstrained optimization

Chapter 4
Linear programming•

•
•

•

Genetic algorithm
Simulated annealing
Particle swarm
optimization
ACO and tabu search

•
•
•
•
•
•

Graphical method
Standard form
Basic solution
Simplex method
Interior-point method
Portfolio optimization

Chapter 6
Constrained optimization

Chapter 7
Multiobjective optimization

•

•
•
•
•

Weighted sum
approach
Goal programming
ε-constraints method
Utility function method
Application

•
•
•

Optimality conditions
Solution techniques
Application

Chapter 5
Random search methods

Chapter 8
Geometric programming

Chapter 9
MDO

Chapter 11
Dynamic programming

•
•
•

Architecture
Framework
Response surface

•
•
•

Gomory’s method
Balas’ method
Branch-and-bound
method

•
•
•
•

Unconstrained problem
Dual problem
Constrained problems
Application

Chapter 10
Integer programming

•
•

Deterministic
Probabilistic

•
•
•
•
• 

Unidirectional search
Test problem
Solution techniques
Additional test functions
Application to robotics

Chapter 1
Introduction

FIGURE 1.18
Organization of the book.
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Chapter Highlights

•	 In an optimization problem, we write the objective function that is to 
be maximized or minimized along with inequality and equality con-
straints. The objective function and constraints are a function of the 
design variables that need to be evaluated by the optimization methods.

•	 The design variables can be a real number or could be of the discrete, 
binary, or integer type.

•	 Modeling refers to writing down the observations of a problem in 
mathematical form using basic building blocks of mathematics such 
as addition, subtraction, multiplication, division, functions, and 
numbers with proper units.

•	 The gradient at a point is the slope of the tangent at that point.
•	 If the objective function and constraints are linear functions of the 

design variables, it is referred to as a linear programming problem. 
These functions do not contain terms such as x1x2 and x1

2.
•	 The graphical method can be applied to solve the optimization prob-

lem with up to three design variables.
•	 Functions with more than one minimum or maximum are referred 

to as multimodal functions.
•	 The concept of convexity is important in declaring a function to have 

one minimum only. A convex function thus has a global minimum.
•	 Typically, optimization algorithms are written to minimize a func-

tion. If the objective function is to be maximized, it is negated and 
then solved as a minimization problem.

•	 The necessary condition for optimality (either maximum or mini-
mum) is that the gradient vanishes at the point of consideration.

•	 At the point of optimality, if the second derivative of the objective 
function is positive, it is a case of the minimum and if the second 
derivative is negative, it is case of the maximum.

•	 The derivative of a function can be numerically evaluated using for-
ward, backward, and central difference methods. The central differ-
ence method is more accurate than forward or backward difference 
methods.

•	 The directional derivative provides information on the instanta-
neous rate of change of a function in a particular direction.

•	 The Hessian matrix H represents the second derivative of a function 
with more than one variable.

•	 The Hessian matrix should be positive definite at the minimum of the 
function. A matrix is positive definite if its eigenvalues are positive.
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•	 A quadratic approximation of a function is often desired in optimi-
zation, as certain solution methods such as Newton’s method show 
faster convergence for these functions.

•	 Taylor’s series approximation is used to make linear or quadratic 
approximations of a function by appropriately considering the num-
ber of terms in the series.

Formulae Chart

Forward difference:

 ′ = + −
f x

f x x f x
x

( )
( ) ( )∆

∆  

Backward difference:

 ′ = − −
f x

f x f x x
x

( )
( ) ( )∆

∆  

Central difference:

 ′ = + − −
f x

f x x f x x
x

( )
( ) ( )∆ ∆

∆2  

Central difference formula for the second derivative:

 ′′ = + − + −
f x

f x x f x f x x
x

( )
( ) ( ) ( )∆ ∆

∆
2

2
 

Jacobian of three functions with three variables:
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Hessian for a three-variable function:

 [ ]H =
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∂

∂
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Quadratic approximation:

 f f f T T( ) ( ) ( )x x x x x x H x+ = + ∇ +∆ ∆ ∆
1
2

∆
 

Problems

 1. An airline company in India uses A320 aircraft to fly passengers 
from New Delhi to Mumbai. Though the maximum seating capacity 
of the aircraft is 180, the airline observes that on average it flies only 
130 passengers per flight. The regular fare between the two cities 
is Rs. 15,000. From the market survey, the company knows that for 
every Rs. 300 reduction in fare, it would attract an additional four 
passengers. The company would like to find a fare policy that would 
maximize its revenue. Formulate this as an optimization problem.

 2. The average yield in a farm is 300 apples per tree, if 50 apple trees 
are planted per acre. The yield per tree decreases by 3 apples for each 
additional tree planted per acre. How many additional trees per acre 
should be planted to maximize the yield? Formulate this as an opti-
mization problem.

 3. Determine the area of the largest rectangle that can be inscribed in 
a circle of radius 5 cm. Formulate this as an optimization problem 
by writing down the objective function and the constraint. Solve the 
problem using the graphical method.

 4. A field needs to be enclosed with a fence, with a river flowing on one 
side of the field. We have 300 m of fencing material. Our aim is to use 
the available fencing material and cover the maximum area of the field. 
Formulate this as an optimization problem by writing down the objec-
tive function and the constraint and clearly stating the design variables.

 5. A traveling salesman has to start from city A, cover all other n number 
of cities, and then come back to city A. The distance between the ith 
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and jth cities is given by yij. How could he plan the route so to cover 
the minimum distance? Formulate this as an optimization problem.

 6. A company has initial wealth W and would like to invest this to get 
maximum returns. It can get higher returns (rr) if it invests in risky 
assets, but the return is not guaranteed. A return (rs) is guaranteed if 
it invests in safe assets. How much should the company invest in risky 
assets (R), to maximize its wealth at the end of a stipulated period? 
Formulate the objective function for the optimization problem.

 7. In an experiment, the following observations (see Table 1.3) are made 
where x is an independent variable and y is a dependent variable. It 
is desired to fit these data with a straight line

 ŷ mx c= +  

 where m and c are to be determined. The data are to be fitted in the 
least squares sense, that is, y yi −( )∑ ˆ 2

 is to be minimized. Formulate 
this as an optimization problem.

 8. The cost of a solar energy system (King 1975) is given by

 U = 35A + 208V

 where A is the surface area of the collector and V is the volume of the 
storage (Figure 1.19). Owing to energy balance considerations, the 
following relation between A and V is to be satisfied:

 A
V

290
100

5833 3−




 = .

 

TablE 1.3

Data Observed from an Experiment

xi 1 2 3 4 5
yi 45 55 70 85 105

Energy
storage tank
of volume V

Solar flux

Solar collector
of area A

FIGURE 1.19
Solar energy problem.
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  The design variable T is related to V as

 V
T

=
−
50

20  

  The variable T has to be restricted between 40°C and 90°C. The cost 
U is to be minimized. Formulate this as an optimization problem.

 9. Write the gradient and Hessian matrix for the function

 f x x x x( ) lnx = + +( )5 2 31 2 1
2

2
2

 

 10. A company manufactures three products: A, B, and C. Each product 
requires time for three processes: 1, 2, and 3, and this information is 
given in Table 1.4.

  The maximum available capacity on each process is given in 
Table 1.5.

  The profit per unit for the product is given in Table 1.6.
  What quantities of A, B, and C should be produced to maximize 

profit? Formulate this as an optimization problem.
 11. A company has three factories and five warehouses. The warehouse 

demand, factory capacity, and the cost of shipping are given in 
Table 1.7.

  Determine the optimal shipment plan to minimize the total cost of 
transportation. Formulate the optimization problem.

TablE 1.4

Time Required for Each Process

Product

Time Required (minute)/Unit

A B C

Process 1 12 25 7
Process 2 11 6 20
Process 3 15 6 5

TablE 1.5

Maximum Capacity of Each Process

Process Capacity (minutes)

1 28,000
2 35,000
3 32,000
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 12. Plot the function

 f(x) = (x + 3)(x − 1)(x + 4)

 and locate minimum and maximum of the function in [–4, 0].
 13. An oil refinery company blends four raw gasoline types (A, B, C, 

and D) to produce two grades of automobile fuel, standard and pre-
mium. The cost per barrel of different gasoline types, performance 
rating and number of barrels available each day is given in Table 1.8.

  The premium should have a rating greater than 90 while the stan-
dard fuel should have a performance rating in excess of 80. The 
selling prices of standard and premium fuel are 90 dollars and 100 
dollars per barrel respectively. The company should produce at least 
6000 barrels of fuel per day. How much quantity of fuel (of each 

TablE 1.6

Profit per Unit of Each Product

Product Profit/Unit

A 5
B 7
C 4

TablE 1.7

Cost per Unit of Shipment from Factory to Warehouse

From Factory

Warehouse

Capacity (No. of Units)

A B C D E

Cost per Unit of Shipment

P 3 7 4 6 5 150
Q 5 4 2 5 1 110
R 6 3 2 2 4 90
Demand 50 100 70 70 60

TablE 1.8

Cost, Performance Rating, and Production Level of Different Gasoline Types

Cost/Barrel in Dollars Performance Rating Barrels/Day

A 60 75 3000
B 65 85 4000
C 70 90 5000
D 80 95 4000
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type) should be produced to maximize profit? Formulate this as an 
optimization problem.

 14. Check whether the following functions are convex or not.

 

a.

b.

c.

2 3 5 4 4

2 4 10 3 1
1

1

2

3 2

x x x

x x x x

− + ∈ −
− + − ∈ −

[ , ]

[ , ]

−−
∈ − −

+ + ∈ −

x
x

x x x

2

2

1 6 0 8

2 5 5 5

[ . , . ]

[ , ]d.
 

 15. Write the first three terms of the Taylor series for the function

 f(x) = ln(x − 1)

 at x = 3.
 16. Find the linear approximation of the function

 f(x) = (1 + x)50 + (1 − 2x)60 

 at x = 1.
 17. Write the Taylor series expansion (up to four terms) for the function 

ex centered at x = 3.
 18. Write the Taylor series expansion (up to three terms) for the function 

ecos x centered at x = π.
 19. Find the quadratic approximation of the function

 f(x) = ln(1 + sin x) 

 at x = 0.
 20. Find the directional derivative of the function

 f x x x x x x x( )x = + −1
2

2 2
2

3 1 2 3
2

 

 at (1, 1, −1) in the direction 
1
2
3
















.

 21. Using MATLAB, plot the functions x4 and x  and check whether 
these functions are convex.
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 22. Solve the following optimization problems using the graphical 
method.

 i. Maximize  z = 125x1 + 150x2

  subject to  6x1 + 11x2 ≤ 66
    8x1 + 9x2 ≤ 72
    x1, x2 ≥ 0

 ii. Maximize  z = 3x1 + 4x2

  subject to  2x1 + x2 ≤ 30
    x1 + 3x2 ≥ 40
    x1, x2 ≥ 0

 23. Calculate the Jacobian of the following system of equations:

 

x x x

x x x

x x x x x x

1 2
2

3
3

1
2

2 3
2

1 2 1 3 2 3

2 3

3 2 4

+ +

− +
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











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
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2
1-D Optimization Algorithms

2.1  Introduction

The one-dimensional (1-D) optimization problem refers to an objective func-
tion with one variable. In practice, optimization problems with many vari-
ables are complex, and rarely does one find a problem with a single variable. 
However, 1-D optimization algorithms form the basic building blocks for 
multivariable algorithms. As these algorithms form a subproblem of mul-
tivariable optimization problems, numerous methods (or algorithms) have 
been reported in the literature, each with some unique advantage over the 
others. These algorithms are classified into gradient-based and non–gradient-
based algorithms. Some popular algorithms are discussed in this chapter.

As an example, a single-variable objective function could be

 f(x) = 2x2 − 2x + 8

This is an unconstrained optimization problem where x has to be deter-
mined, which results in minimization of f(x). If we have to restrict x within 
a ≤ x ≤ b, where a and b are real numbers, then it becomes a constrained 
optimization problem. If the function f(x) is either continuously increasing 
or decreasing between two points a and b, then it is referred to as a monotonic 
function (see Figure 2.1). In a unimodal function, the function is monotonic 
on either side of its minimum point (x*). The function f(x) = 2x2 − 2x + 8 is 
plotted in Figure 2.2, in which we observe that f(x) is a unimodal function. 
Using the property of the unimodal function that it continuously decreases 
or increases on either side of the minimum point, the single-variable search 
algorithms can be devised in such a way that they eliminate certain regions 
of the function where the minimum is not located.

In the next section, a test problem in a solar energy system is defined. Both 
gradient-based and direct search methods are discussed and tested for this 
problem. Subsequently, these solution techniques will also be tested on some 
more standard optimization problems. The performances of these methods 
are compared toward the end of the chapter. The road map of this chapter is 
given in Figure 2.3.
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 f (a) < f (b)

a b a
x x

b

f (a) > f (b)

 

FIGURE 2.1
Monotonic increasing and decreasing functions.
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FIGURE 2.2
Unimodal function.

1-D optimization algorithms

Gradient-based methods Direct search methods

Golden section method
Other methods

Bisection method
Newton–Raphson method
Secant method
Cubic polynomial fit

Test problem (solar energy)

Solution techniques

Comparison of solution methods

FIGURE 2.3
Road map of Chapter 2.
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2.2  Test Problem

Before we discuss the optimization algorithms, let us set a problem on which 
we will be testing these algorithms. The solar energy problem is defined in 
Problem 8 of Chapter 1. In this cost minimization problem, the cost is a func-
tion of the volume of the storage system and the surface area of the collector. 
The volume and surface area are functions of the design variable tempera-
ture T. Let us rewrite the cost function in terms of T alone as

 U
T T

=
−

+
−

204 165 5
330 2

10 400
20

, ,.
 (2.1)

The variable T is restricted between 40°C and 90°C. The function U is plot-
ted as a function of T in Figure 2.4. The minimum occurs at T* = 55.08 and 
the minimum value of the function is U* = 1225.166. Observe from the figure 
that the cost function is unimodal. A MATLAB® code, exhaustive.m, is used 
to plot the cost function by varying the design variable T from 40 to 90 in 
steps of 0.01. One may ask why, if this method is able to locate the minimum 
and is also simple, there is a need to discuss other algorithms. It may be 
noted that the number of function evaluations by this particular method is 
(90 – 40)/0.01 = 5000. For more complex problems, the time required for the 
function evaluation is at a premium and it may not be practical to evaluate 
the function so many times. This necessitates exploring new algorithms that 
require fewer function evaluations to reach the minimum of any function.

On executing this code, the output obtained is

Minimum cost = 1225.17
Occurs at T = 55.08

40 50 60 70 80 90
1200

1250

1300

1350

1400

1450

1500

1550

T

U

FIGURE 2.4
Cost function for the test problem.
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2.3  Solution Techniques

As mentioned previously, the solution techniques for one-dimensional opti-
mization problems can be classified into gradient-based and non–gradient-
based algorithms. As the name suggests, gradient-based algorithms require 
derivative information. These methods find applications to problems in 
which derivatives can be calculated easily. In the search processes of these 
algorithms, the derivative of the function is driven to zero. The algorithm is 
terminated when the derivative of the function is very close to zero and the 
corresponding x is declared as the point (x* = x) at which minimum of the 
function occurs. The following gradient-based methods are discussed in this 
section:

•	 Bisection method
•	 Newton–Raphson method
•	 Secant method
•	 Cubic polynomial fit

For certain types of optimization problems, the variable x may not be real, 
but can take only certain discrete values. Recall the pipe size problem dis-
cussed in Chapter 1, where pipe size comes in some standard sizes such as 
1, 2 inches, and so forth. For such discontinuous functions, gradient infor-
mation will not be available at all points, and the search algorithm has to 
proceed using the function evaluations alone to arrive at the minimum of the 
function. The golden section method is a very effective solution technique 
for such problems and is discussed later in this section. The golden sec-
tion method can also be applied to continuous functions. Some other direct 
search methods such as dichotomous search, the interval halving method, 
and the Fibonacci method are also briefly discussed.

2.3.1  Bisection Method

In Chapter 1, we discussed that at the maximum or minimum of a function, 
f′(x) = 0. Because in these problems we are considering a unimodal function 
of minimization type, the condition that the gradient vanishes at the mini-
mum point still holds. The gradient function changes sign near the optimum 
point. If f′(x1) and f′(x2) are the derivatives of a function computed at points 
x1 and x2, then the minimum of the function is located between x1 and x2 if

 f′(x1)f′(x2) < 0 (2.2)

Based on this condition, certain regions of the search space can be elimi-
nated. The algorithm is described in Table 2.1.
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In this algorithm a and b are the bounds of the function, and Δx is used 
in the central difference formula for computing the derivative and ε is a 
small number required for terminating the algorithm when |a − b| < ε. See 
Figure 2.5, which gives physical insight into this method. The algorithm is 
coded in MATLAB (bisection.m). The objective function is coded in MATLAB 
file ( func.m). Users can change the function in this file to minimize another 
objective function that may be of interest to them. In doing so, they also need 
to give appropriate bounds for the function, given by a and b in the main 
program (bisection.m).

TABLE 2.1

Algorithm for the Bisection Method

Step 1: Given a, b, ε, and Δx

Step 2: Compute α = +a b
2

, f′(a) and f′(α)

 If f′(a) f′(α) < 0
  then b = α
  else a = α

 If |a – b| > ε
  then goto Step 2
  else goto Step 3
Step 3: Converged. Print x* = a, f(x*) = f(a)

Region eliminated

f (x)

f ' (x)

a xα

αa

x

x

b

b

f ' (b) f ' (α) < 0

FIGURE 2.5
Bisection method.
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On executing the code for the test problem, the output obtained is

    a             b     
-------------------------
  40.000        90.000 
  40.000        65.000 
  52.500        65.000 
  52.500        58.750 
  52.500        55.625 
  54.063        55.625 
  54.844        55.625 
  54.844        55.234 
  55.039        55.234 
  55.039        55.137 
  55.039        55.088 
  55.063        55.088 
  55.076        55.088 
-------------------------
x* = 55.082 Minimum = 1225.166
Number of function calls = 52

The minimum obtained from this method matches very closely with the 
exhaustive search method. But the number of function evaluations in the 
bisection method is only 52 as compared to 5000 in the exhaustive search 
method. For this test problem, Figure 2.6 shows the regions that are elimi-
nated in the first two iterations.

2.3.2  Newton–Raphson Method

Isaac Newton evaluated the root of an equation using a sequence of poly-
nomials. The method in the present form was given by Joseph Raphson in 
1960, with successive approximation to x given in an iteration form. The 
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FIGURE 2.6
Region elimination with iterations (bisection method).
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Newton–Raphson method is a root finding technique in which the root of 
the equation f′(x) = 0 is evaluated. Using the Taylor series, the function f′(x) 
can be approximated as

 f′(xk) + f″(xk)Δx (2.3)

where the gradient is approximated at point xk. Setting Equation 2.3 to zero, 
the next approximation point can then be given as

 x x
f x
f xk k

k

k
+ = − ′

′′1
( )
( )

 (2.4)

Figure 2.7 illustrates the steps of this method. The method shows quadratic 
convergence. That is, if x* is the root of the equation, then

 
x x

x x
c c

k

k

+ −

−
≤ ≥1

2
0

*

*
,  (2.5)

The Newton–Raphson algorithm is described in Table 2.2.
The algorithm is coded in MATLAB (newtonraphson.m). On executing the 

code, the output obtained is

 x f(x) Deriv. Second deriv.
-------------------------------------------------
45.000 1266.690 -9.551 1.449
51.590 1229.340 -2.485 0.800
54.697 1225.214 -0.249 0.650
55.079 1225.166 -0.003 0.636
55.084 1225.166 -0.000 0.635
-------------------------------------------------
Number of function calls = 25

Tangents

xk

xk+1

xk+2

f ' (x)

x

FIGURE 2.7
Newton–Raphson method.
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The minimum obtained by this method is in agreement with the earlier 
methods. The number of function evaluations in this method is 25 as com-
pared to those in the bisection method, for which 52 function evaluations were 
required. The Newton–Raphson method has the following disadvantages:

•	 The convergence is sensitive to the initial guess. For certain initial 
guesses, the method can also show divergent trends. For example 
(Dennis and Schnabel 1983), the solution to the function tan–1 x con-
verges when the initial guess, |x| < a, diverges when |x| > a and 
cycle indefinitely if the initial guess is taken as |x| = a, where a = 
1.3917452002707.

•	 The convergence slows down when the gradient value is close to 
zero.

•	 The second derivative of the function should exist.

2.3.3  Secant Method

In the bisection method, the sign of the derivative was used to locate zero of 
f′(x). In the secant method, both the magnitude and the sign of the derivative 
are used to locate the zero of f′(x). The first step in the secant method is the 
same as in the bisection method, That is, if f′(x1) and f′(x2) are the derivatives 
of a function computed at point x1 and x2, then the minimum of the function 
is located between x1 and x2 if

 f′(x1)f′(x2) < 0 (2.6)

Further, it is assumed that f′(x) varies linearly between points x1 and x2. A 
secant line is drawn between the two points x1 and x2. The point α where the 
secant line crosses the x-axis is taken as the improved point in the next itera-
tion (see Figure 2.8).

One of the points, x1 or x2, is then eliminated using the aforementioned 
derivative condition. Thus, either the (x1, α) or the (α, x2) region is retained 

TABLE 2.2

Algorithm for the Newton–Raphson Method

Step 1: Given x and Δx

Step 2: Compute, f′(x) and f″(x)
 Store, xprev = x

 Update x xprev
f x
f x

= − ′
′′
( )
( )

 

 If |x − xprev|> ε
  then goto Step 2
  else goto Step 3

Step 3: Converged. Print x* = x, f(x*) = f(x), f′(x*), f″(x*)
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for the next iteration. The iteration continues until f′(α) is close to zero. The 
algorithm is coded in MATLAB (secant.m) and is described in Table 2.3.

On executing the code for the test problem, the output obtained is

  Alpha          Deriv.  
-------------------------
  65.000         5.072 
  59.832         2.675 
  57.436         1.402 
  56.265         0.726 
  55.680         0.373 
  55.385         0.190 
  55.237         0.097 
  55.161         0.049 
  55.123         0.025 
  55.104         0.013 
  55.094         0.006 
  55.089         0.003 
  55.086         0.002 
-------------------------
x* = 55.085 Minimum = 1225.166
Number of function calls = 82

The secant method is able to locate the minimum of the function, but with 
a higher number of function evaluations as compared to other gradient-
based methods.

Secant

f ' (x)

f ' (a)

a α
bx*

x

f ' (b)

FIGURE 2.8
Secant method.
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2.3.4  Cubic Polynomial Fit

In this method, the function f(x) to be minimized is approximated by a cubic 
polynomial P(x) as

 P(x) = a0 + a1x + a2x2 + a3x3 (2.7)

If the function f(x) is evaluated at four different points, then the polynomial 
coefficients a0, a1, a2, and a4 can be evaluated by solving four simultaneous 
linear equations. Alternatively, if the value of the function and its derivatives 
are available at two points, the polynomial coefficients can still be evaluated. 
Once a polynomial is approximated for the function, the minimum point can 
be evaluated using the polynomial coefficients.

The first step in this search method is to bracket the minimum of the func-
tion between two points, x1 and x2, such that the following conditions hold:

 f′(x1)f′(x2) < 0 (2.8)

Using the information of f(x1), f′(x1), f(x2), and f′(x2), the minimum point of 
the approximating cubic polynomial can be given as

 x

x

x x x

x

=
<

− − ≤ ≤
>













2

2 2 1

1

0

0 1

0

if

if

if

µ
µ µ

µ
( )







 (2.9)

TABLE 2.3

Algorithm for the Secant Method

Step 1: Given a, b, ε, and Δx, flag = 0;

Step 2: Compute α = +a b
2

, f′(a) and f′(α)

 If f′(a) f′(α) < 0
  then b = α
   set flag = 1(zero is bracketed)
  else a = α
 If flag = 1
  then goto Step 3
  else goto Step 2

Step 3: Compute α = −
−( ) −

′
′ ′

x
f x

f x f x x x
2

2

2 1 2 1

( )
( ) ( ) ( )

 
/

 If f′(α) > 0
 then b = α
 else a = α
 If |f′(α)|< ε
 then goto Step 4
 else goto Step 3
Step 4: Converged. Print x* = α, f(x*) = f(α)
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where

 µ =
+ −

− +
′

′ ′
f x w z

f x f x w
( )

( ) ( )
2

2 1 2
 (2.10)

 z
f x f x

x x
f x f x=

−( )
−

+ +′ ′
3 1 2

2 1
1 2

( ) ( )
( ) ( )  (2.11)

 w
x x
x x

z f x f x= −
−

+ − ′ ′2 1

2 1

2
1 2( ) ( )  (2.12)

The algorithm for this method is coded in MATLAB (cubic.m) and is described 
in Table 2.4.

On executing the code for the test problem, the output obtained is

    a             b     
-------------------------
  40.000        65.000 
  54.109        65.000 
  54.109        55.120 
-------------------------
x* = 55.084 Minimum = 1225.166
Number of function calls = 28

This method is able to capture the minimum point of the function with the 
number of function evaluations comparable to that in the Newton–Raphson 
method.

TABLE 2.4

Algorithm for Cubic Polynomial Fit

Step 1: Given x, ε, and Δx

Step 2: Compute α = +a b
2

, f′(a) and f′(α)

 If f′(a) f′(α) < 0
 then b = α
 else a = α

Step 3: Repeat Step 2 until f′(a) f′(α) < 0
Step 4: Using f(a), f′(a), f(b), f′(b), compute μ, z, and w
Step 5: Compute x

 If ′ <f x( ) ε goto Step 6

 If ′ ′ <f a f x( ) ( )  0

 then b x=
 else a x=
 goto Step 4

Step 6: Converged. Print x x* = , f x f x( *) ( )=

© 2015 by Taylor & Francis Group, LLC

  



46 Optimization: Algorithms and Applications

2.3.5  Golden Section Method

Two numbers, p and q, are in a golden ratio if

 
p q

p
p
q

+ = = τ  (2.13)

Equation 2.13 can be written as

 1 + =q
p

τ  (2.14)

or

 1
1+ =
τ

τ  (2.15)

On solving the quadratic equation

 τ2 − τ − 1 = 0 (2.16)

we get

 τ = + =1 5
2

1 618033.  (2.17)

τ is called the golden number, which has a significance in aesthetics (e.g., the 
Egyptian pyramids).

Gradient information was required in the search methods that were dis-
cussed earlier. In the golden section method, the search is refined by elimi-
nating certain regions based on function evaluations alone. No gradient 
computation is required in the golden section method. This method has two 
significant advantages over other region elimination techniques:

•	 Only one new function evaluation is required at each step.
•	 There is a constant reduction factor at each step.

The algorithm is coded in MATLAB (golden.m) and is described in 
Table 2.5.
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On executing the code for the test problem, output obtained is

    a             b     
-------------------------
  40.000        90.000 
  40.000        70.902 
  40.000        59.098 
  47.295        59.098 
  51.803        59.098 
  51.803        56.312 
  53.526        56.312 
  54.590        56.312 
  54.590        55.654 
  54.590        55.248 
  54.841        55.248 
  54.996        55.248 
  54.996        55.152 
  55.056        55.152 
  55.056        55.115 
  55.056        55.092 
-------------------------
x* = 55.077 Minimum = 1225.166
Number of function calls = 18

2.3.6  Other Methods

In addition to the golden section method, there are other direct search meth-
ods that can be used to solve the one-dimensional optimization problems, 
including

•	 Dichotomous search
•	 Interval halving method
•	 Fibonacci method

TABLE 2.5

Algorithm for the Golden Section Method

Step 1: Given x, ε, and τ
Step 2: Compute
 α1 = a(1 − τ) + bτ
 α2 = aτ + b(1 − τ)
Step 3: If f(α1) > f(α2)
 then a = α1, α1 = α2, α2 = aτ + b(1 − τ)
 else a = α2, α2 = α1, α1 = a(1 − τ) + bτ
Step 4: Repeat Step 3 until |f(α1) − f(α2)| < ε
Step 5: Converged. Print x* = α1, f(x*) = f(α1)
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In the dichotomous search, a function is evaluated at two points, close to the 
center of the interval of uncertainty. Let these two points be xa and xb given by

 x
L

a = −
2 2

δ
 (2.18)

 x
L

b = +
2 2

δ
 (2.19)

where δ is a small number and L is the region of uncertainty. Depending 
on the computed value of the function at these points, a certain region is 
eliminated. In Figure 2.9, the region toward the right-hand side of xb is elimi-
nated. In this method, the region of uncertainty after n function evaluations 
is given by

 
L
n n2

1
1

22 2/ /+ −




δ  (2.20)

In the interval halving method, half of the region of uncertainty is deleted 
in every iteration. The search space is divided into four equal parts and func-
tion evaluation is carried out at x1, x2, and x3. Again, a certain region gets 
eliminated based on the value of the functions computed at three points. In 
Figure 2.10, the region toward the right-hand side of x2 is eliminated. In this 
method, the region of uncertainty after n function evaluations is given by

 
1
2

1
2





−n

L  (2.21)

2δ

L

x
xa xb

FIGURE 2.9
Dichotomous search.
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A Fibonacci sequence is given by

 Fn = Fn−1 + Fn−2 (2.22)

where

 F0 = F1 = 1 (2.23)

In the Fibonacci method, the functions are evaluated at points

 xa = a + L* (2.24)

 xb = b − L* (2.25)

where [a, b] define the region of uncertainty and L* is given by

 
L

F
F

Ln

n

* = −2

 (2.26)

In this method n has to be defined before the start of the algorithm.

2.4  Comparison of Solution Methods

Having defined a number of solution methods to find the minimum of a 
function, it is natural to ask the question of which solution method to use for 
a given problem. The answer is quite straightforward: no single method can 

f (x)

x

L

x1 x2 x3

FIGURE 2.10
Interval halving method.
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be used for all types of problems. Different methods may have to be tried for 
different problems.

Let us evaluate the efficiency of each of the methods for the test case problem 
that we discussed in an earlier section. One way of defining efficiency of an 
optimization method could be to show how x approaches x* with increasing 
iterations. Because the number of function evaluations in each iteration is dif-
ferent for different methods, we can plot |x − x*| versus number of function 
evaluations for a meaningful comparison. Figure 2.11 shows this plot for differ-
ent solution methods for the solar energy test problem. It is observed from this 
figure that the cubic polynomial fit and Newton–Raphson approach x* with 25 
number of function evaluations. The bisection and secant methods take a much 
larger number of function evaluations to reach the minimum. The golden sec-
tion method takes a minimum number of function evaluations.

Let us further evaluate these methods for some well-known test problems 
(Philips et al. 1976; Reklaitis et al. 1983). Table 2.6 summarizes the number 
of function evaluations required by each of the methods in reaching the 
minimum of the function. The golden section, cubic polynomial fit, and 
Newton–Raphson methods perform well for all the test problems except for 
the function

 2 3 0 1002 0 5 2
( ) .x e xx− + ≤ ≤  

which is highly skewed. The Newton–Raphson method requires a good ini-
tial guess for convergence. It takes 275 function evaluations for convergence 
with an initial guess of x = 5. The method takes fewer function evaluations 
for convergence with x < 5. However, the method diverges for x > 10. The 
cubic polynomial fit did not converge for this particular function. The golden 
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FIGURE 2.11
Comparing different solution methods.

© 2015 by Taylor & Francis Group, LLC

  



511-D Optimization Algorithms

and bisection methods converged for all the test functions. The solution to 
these problems is obtained by modifying the func.m routine and executing 
the code for the corresponding method.

Chapter Highlights

•	 The one-dimensional (1-D) optimization problems refer to an objec-
tive function that has one variable. 1-D optimization algorithms 
form the basic building blocks for the multivariable algorithms.

•	 If a function is either continuously increasing or decreasing between 
two points, then it is referred as a monotonic function.

•	 In a unimodal function, the function is monotonic on either side of 
its minimum point.

•	 The solution techniques for one-dimensional optimization problems 
can be classified into gradient-based and non–gradient-based algo-
rithms. Some popular gradient-based algorithms are bisection, cubic 
polynomial fit, secant, and Newton–Raphson methods. The golden sec-
tion algorithm does not require derivative information of the function.

•	 The Newton–Raphson method requires the second derivative of the 
function, and convergence of this method is strongly dependent on 
a good initial guess.

•	 In the bisection method, the sign of the derivative is used to locate 
the zero of f′(x). In the secant method, both magnitude and sign of 
the derivative are used to locate the zero of f′(x).

TABLE 2.6

Comparing Different Solution Techniques for Different Problems

Minimize x* f(x*)

Number of Function Evaluations

Golden Bisection Cubic Newton Secant

3x4 + (x − 1)2

 0 ≤ x ≤ 4
0.451 0.426 16 36 36 35 346

−4x sin x
 0 ≤ x ≤ π

2.029 –7.28 14 36 24 20 32

2 3
0 100

2 0 5 2
( ) .x e

x

x− +
≤ ≤

1.591 7.516 14 36 – 275 –

3
12

5

0 5 2 5

2
3

x
x

x

+ −

≤ ≤. .

1.431 5.238 14 32 28 20 604

2
16

1 5

2x
x

x

+

≤ ≤

1.587 15.12 12 36 28 25 70
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•	 In the golden section method, the search is refined by eliminating 
certain regions based on function evaluations only. No gradient 
computation is required in the golden section method. This method 
derives its name from the number 1.61803, referred to as the golden 
number, which has significance in aesthetics.

Formulae Chart

Newton–Raphson method:

 
x x

f x
f xk k

k

k
+ = − ′

′′1
( )
( )  

Secant method:

 α = − ′
− −′ ′

x
f x

f x f x x x2
2

2 1 2 1

( )
( ( ) ( )) ( )

 
/    

Problems

 1. For a lifting body, lift (L) to drag (D) ratio varies with angle of attack 
(α) as

 
L
D

= − + +0 004 0 16 0 112. . .α α
 

 where α lies between 0 and 35 degrees. Find the α at which L/D is 
maximum. Use different algorithms presented in this chapter to 
arrive at the optimum.

 2. Use golden section, cubic polynomial fit, bisection, and secant meth-
ods to minimize the following functions:

 a. 3ex − x3 + 5x −3 ≤ x ≤ 3

 b. −x3 + 4x2 − 3x + 5 −2 ≤ x ≤ 2

 c. e x xx2
2 0 5 23− − ≤ ≤.  

 d. 2
10

0 42x
x

x+ ≤ ≤  
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 3. Find the maximum value of the function

 f x
x

x
x

x( ) tan  = −
+

−














 ≤ ≤−1

2
1

1
1

1
2

0 32
1

 

 4. Find the maximum value of the function

 f(x) = 5x2 − ex 0 ≤ x ≤ 5

 5. Find the maximum and minimum of the function

 
f x x xx( ) ln(cos )cos= + ≤ <1 0

2
π

 

 6. The strength of a beam varies as the product of its breadth and 
square of its depth. Find the dimension of the strongest beam that 
can be cut from a circular log of diameter 1 m.

 7. A car burns petrol at the rate of 
300

3x
x+





  liters per 100 km where 

x is the speed in km/h. The cost of petrol is one dollar per liter and 
the chauffeur is paid $7 per hour. Find the steady speed that will 
minimize the total cost of the trip of 600 km.

 8. A swimmer in the sea is at a distance of 5 km from the closest point 
C on the shore on a straight line. The house of the swimmer is on the 
shore at a distance of 7 km from point C. He can swim at a speed of 
2 km/h and run at a speed of 6 km/h. At what spot on the shore should 
he land so that he reaches his house in the shortest possible time?

 9. The following data are given for an aircraft that is flying at an alti-
tude of 5 km:
Weight = W = 700,000 N
Reference area = S = 140 m2

Aspect ratio = AR = 8
Efficiency factor = e = 0.82
Drag coefficient = CD = 0.018
Atmospheric density = ρ = 0.73612 kg/m3

  The thrust (T) of the aircraft is related to its velocity (v) by the 
equation

 
T v SC

W
v S eAR

v= + ≤ ≤1
2

2 1
100 3002

2

2ρ
ρ πD m/s

 

  Find the velocity of the aircraft at which the thrust requirement is 
minimum.
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 10. Plot the function

 f(x) = x4 + x3 − x2 − 5 −2 ≤ x ≤ 2

 and identify the region where the function is concave and convex. 
Identify the local and global minima for this function.

 11. The consumer demand function is given by

 
f x

k
p

x
p
p

x( ) = −
2

1

2

2

 

 where k = 90, p1 = 10, and p2 = 5. Maximize the function f(x).
 12. Minimize the function

 
f x x

x
x( ) . .= −( ) + ≤ ≤2 3

100
0 3 0 6

 

 13. A cone-shaped biscuit cup is to be designed for minimum surface 
area so that it can hold 130 mL of ice cream. Determine the dimen-
sions of the cone.

 14. Microorganisms such as bacteria have an elongated shape (see 
Figure 2.12). The frictional coefficient τ relates the force on a particle 
and its velocity when moving through a viscous fluid:

 

τ πρ=




 −

4
2 1

2

a
a

b
ln

 

 where ρ is fluid viscosity (for water this value is 1 (μg/s)/μm). For 
a short axis of b = 1 μm, find the value of a that corresponds to the 
minimum in the friction coefficient in water (King and Mody 2011).

b

a

FIGURE 2.12
Elliptical shape of a bacterium.
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3
Unconstrained Optimization

3.1  Introduction

The solution techniques for unconstrained optimization problems with mul-
tiple variables are dealt in this chapter. In practice, optimization problems 
are constrained, and unconstrained optimization problems are few. One 
example of an unconstrained optimization problem is data fitting, where 
one fits a curve on the measured data. However, the algorithms presented in 
this chapter can be used to solve constrained optimization problems as well. 
This is done by suitably modifying the objective function, which includes a 
penalty term in case constraints are violated.

The solution methods for unconstrained optimization problems can 
be broadly classified into gradient-based and non–gradient-based search 
methods. As the name suggests, gradient-based methods require gradi-
ent information in determining the search direction. The gradient-based 
methods discussed in this chapter are steepest descent, Davidon–Fletcher–
Powell (DFP), Broyden–Fletcher–Goldfarb–Shanno (BFGS), Newton, and 
Levenberg–Marquardt methods. The search direction computed by these 
methods uses the gradient information, Hessian information, or a combina-
tion of these two. Some methods also make an approximation of the Hessian 
matrix. Once the search direction is identified, one needs to evaluate how 
much to move in that direction so as to minimize the function. This is a 
one-dimensional problem. We will be using the golden section method, as 
discussed in Chapter 2, for solving the one-dimensional problem. The non–
gradient-based method does not require derivatives or second derivative 
information in finding the search direction. The search direction is guided 
by the function evaluations as well as the search directions computed from 
earlier iterations. Powell’s conjugate direction method, a non–gradient-based 
method, is elaborated in this chapter as it is much superior (shows quadratic 
convergence) to other non-gradient methods such as simplex and pattern 
search methods. The simplex method (Nelder–Mead algorithm) is also 
discussed in Section 3.4.9 on the direct search method. In the last section, 
Powell’s method is used to solve a complicated motion design problem of a 
robot. The road map of this chapter is shown in Figure 3.1.
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For a single-variable function, it was discussed earlier that the derivative 
of the function vanishes at the optimum and the second derivative of the 
function is greater than zero at the minimum of the function. The same can 
be extended to a multivariable function. The necessary conditions for x* to 
be a minimum are that

 ∇f(x*) = 0 (3.1)

and xT Hx is positive definite (xT Hx > 0). To ensure this, eigenvalues of H are 
to be positive. Consider a two-variable function

 f x x x( )x = + −1
2

2
2

12  (3.2)

Test problem
(spring system)

Gradient-based methods Direct search method

Powell’s method
Nelder–Mead algorithm

Steepest descent method
Newton’s method
Modified Newton’s method
Marquardt’s method
Conjugate gradient method
DFP method
BFGS method

Multivariable
optimization methods

Unconstrained
optimization

Application to robotics

Additional test functions
Rosenbrock’s function
Wood’s function
Quadratic function
Nonlinear function

FIGURE 3.1
Road map of Chapter 3.
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The gradient is

 ∇ =
−











f
x

x
( )x

2 2

2
1

2
 (3.3)

Equating the gradient to zero, the optimum is at (1, 0). For this function 
xT Hx > 0. Hence, the point (1, 0) is the minimum of f(x). The surface-contour 
plot of this function is shown in Figure 3.2.

For a two-variable function

 f x x( )x = −1
2

2
2  (3.4)

the optimum is at (0, 0) from the first-order condition. Checking the second-
order condition, we find that xT Hx = 0. Therefore, the point (0, 0) represents 
saddle point (see Figure 3.3).

3.2  Unidirectional Search

The unidirectional search refers to minimizing the value of a multivariable 
function along a specified direction. For example, if xi is the initial starting 
point of the design variables for minimizing a multivariable function and Si 
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FIGURE 3.2
Surface-contour plot of the function.
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is the search direction, then we need to determine a scalar quantity α such 
that the function

 f(α) = xi + αSi (3.5)

is minimized. The value of α at which this function reaches a minimum is 
given by α*. This is a one-dimensional optimization problem and we can use 
the golden section technique to minimize this function. The golden section 
method is modified to handle multivariable functions and the MATLAB® 
code golden_funct1.m is given.

Let us perform a unidirectional search on the Rosenbrock function given by

 f x x x x( ) ( )= −( ) + −100 12 1
2

2

1
2  (3.6)

with different starting values of x and with different search directions. 
The results are summarized in Table 3.1. It is observed from this table that 
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FIGURE 3.3
Surface-contour plot of the function with saddle point.

TablE 3.1

Unidirectional Search for a Multivariable Function

xi f(xi) Si α* f(α*)

(3, 0.5) 7229 (2, 1) –1.3731 88.45
(3, 0.5) 7229 (2, 3) –1.1249 1181.7
(1, 1) 0 (2, 2) 0 0
(2, 2) 401 (1, 1) –1 0
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performing a linear search in the direction (2, 1) from the starting point 
(3, 0.5) results in f(α*) = 88.45 as compared to initial function value of 7229. 
This can be easily shown on the MATLAB command prompt as

>> x = [3 0.5];
>> search = [2 1];
>> [alpha1,falpha1] = golden_funct1(x,search)

alpha1 =
 -1.3731

falpha1 =
 88.4501

The function has to be appropriately coded in func_multivar.m. Note that 
this function has a minimum at (1, 1) and the minimum value of the function 
is zero. If we are at minimum point, then any search direction should not 
improve the function value. It is the reason why search in the direction (2, 2) 
from the point (1, 1) results in f(α*) = 0 with α* = 0. Similarly, search in the 
direction (1, 1) from the point (2, 2) results in f(α*) = 0 with α* = −1. This func-
tion is plotted in Figure 3.4 and is constructed by executing the MATLAB 
code (rosenbrock.m).

3.3  Test Problem

Let us define a spring system as a test problem on which we will apply multi-
variable optimization algorithms such as the steepest descent, DFP, BFGS, 

2
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FIGURE 3.4
Rosenbrock function.
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Newton, and Levenberg–Marquardt methods. Consider two springs of unit 
length and with stiffness k1 and k2, joined at the origin. The other two ends 
of the springs are fixed on a wall (see Figure 3.5). On applying a force, the 
spring system will deflect to an equilibrium position, which we are inter-
ested in determining. The potential of the spring system is given by

 U k x x k x x F xx= + + −( ) + + − −( ) − +1 1
2

2
2

2

2 1
2

2
2

2

11 1 1 1
1

( ) ( ) ( FF xx2 2 )  (3.7)

where F Fx x1 2
,( ) is the force applied at the origin due to which it moves to a posi-

tion (x1, x2). Assuming k1 = 100 N/m, k2 = 90 N/m, and F Fx x1 2
20 40, ( , )( ) = , our 

aim is to evaluate (x1, x2) such that U is minimized.
A MATLAB code (springsystem.m) is used to find the minimum of the 

potential function by varying the design variables from –1 to 1 in steps of 
0.01. On executing this code, the output obtained is

Minimum Potential = -9.6547

occurs at x1,x2 = 0.5000 0.1200

3.4  Solution Techniques

Similar to 1-D optimization algorithms, solution techniques for multivari-
able, unconstrained optimization problems can be grouped into gradi-
ent- and non–gradient-based methods. Gradient-based methods require 
derivative information of the function in constituting a search. The first and 

Fx2

Fx1

k1

k2

FIGURE 3.5
Spring system.
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second derivatives can be computed using the central difference formula as 
given below.

 
∂

∂
=

+ − −f
x

f x x f x x
xi

i i i i

i

( ) ( )∆ ∆
∆2

 (3.8)
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(3.10)

The computation of first derivative requires two function evaluations with 
respect to each variable. So for an n variable problem, 2n function evalua-
tions are required for computing the gradient vector. The computation of the 
Hessian matrix requires O(n2) function evaluations. Note that in the Hessian 
matrix

 
∂

∂ ∂
=

∂
∂ ∂

2 2f
x x

f
x xi j j i

 (3.11)

Alternatively, one can also compute the derivative of a function using com-
plex variables as

 ′ =
+ f x

f x i x x

x
( )

( )Imaginary /∆ ∆

∆
 (3.12)

The gradient-based methods such as steepest descent, DFP, BFGS, Newton, 
and Levenberg–Marquardt methods are discussed next followed by Powell’s 
conjugate direction method, which is a direct search method. The efficiency 
of solution methods can be gauged by three criteria:

•	 Number of function evaluations.
•	 Computational time.
•	 Rate of convergence. By this we mean how fast the sequence xi, xi+1,… 

converges to x*. The rate of convergence is given by the parameter n 
in the equation
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•	 For n = 1 and 0 ≤ c ≤ 1 the method is said to have linear convergence. 
For n = 2, the method is said to have quadratic convergence. When the 
rate of convergence is higher, the optimization method is better. A 
method is said to have superlinear convergence if

 lim , ,
i
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i
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c c n

→∞
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
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x x
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*  (3.14)

3.4.1  Steepest Descent Method

The search direction Si that reduces the function value is a descent direction. 
It was discussed earlier that along the gradient direction, there is the maxi-
mum change in the function value. Thus, along the negative gradient direc-
tion, the function value decreases the most. The negative gradient direction 
is called the steepest descent direction. That is,

 Si = −∇f(xi) (3.15)

In successive iterations, the design variables can be updated using the 
equation

 xi+1 = xi − α∇f(xi) (3.16)

where α is a positive scalar parameter that can be determined using the line 
search algorithm such as the golden section method.

The steepest descent method ensures a reduction in the function value at 
every iteration. If the starting point is far away from the minimum, the gra-
dient will be higher and the function reduction will be maximized in each 
iteration. Because the gradient value of the function changes and decreases 
to a small value near the optimum, the function reduction is uneven and 
the method becomes sluggish (slow convergence) near the minimum. The 
method can therefore be utilized as a starter for other gradient-based algo-
rithms. The algorithm for the steepest descent method is described in Table 
3.2 and a MATLAB code of its implementation is given in steep_des.m.

On executing the code with a starting value of x as (–3, 2), following output 
is produced for the test problem. After the first iteration, the function value 
decreases from 1452.2619 to –2.704. Notice from the output that as the gradi-
ent value decreases, the reduction in function value at each iteration also 
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decreases. The steepest descent algorithm converges to the minimum of the 
test problem in 15 iterations. Observe the sluggishness of the algorithm as it 
approaches the minimum point. The convergence history is shown pictorially 
in Figure 3.6 along with the function contours of the test problem. The func-
tion contours can be plotted using the MATLAB code contour_testproblem.m.

Initial function value = 1452.2619
No. x-vector f(x) Deriv. _____________________________________________

1 0.095 0.023 -2.704 1006.074
2 0.170 0.141 -5.278 37.036
3 0.318 0.048 -7.369 23.451
4 0.375 0.138 -8.773 26.656
5 0.448 0.092 -9.375 14.021
6 0.470 0.127 -9.583 10.071
7 0.491 0.114 -9.639 4.403
8 0.497 0.123 -9.652 2.509
9 0.501 0.120 -9.655 1.050
10 0.503 0.122 -9.656 0.554
11 0.504 0.122 -9.656 0.236
12 0.504 0.122 -9.656 0.125
13 0.504 0.122 -9.656 0.047
14 0.504 0.122 -9.656 0.027
15 0.504 0.122 -9.656 0.016_____________________________________________

3.4.2  Newton’s Method

The search direction in this method is based on the first and second deriva-
tive information and is given by

 Si = −[H]−1∇f(xi) (3.17)

TablE 3.2

Algorithm for the Steepest Descent Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi) and ∇f(xi) (function and gradient vector)
 Si = −∇f(xi)  (search direction)
 Minimize f(xi+1) and determine α (use golden section method)
 xi+1 = xi + αSi  (update the design vector)
 If f fi i( ) ( )x x+ − >1 1ε  or ∥∇f(xi)∥ > ε2

 then goto Step 2
 else goto Step 3
Step 3: Converged. Print x* = xi+1, f(x*) = f(xi+1)
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where [H] is the Hessian matrix. If this matrix is positive definite, then Si 
will be a descent direction. The same can be assumed true near the vicinity 
of the optimum point. However, if the initial starting point is far away from 
the optimum, the search direction may not always be descent. Often a restart 
is required with a different starting point to avoid this difficulty. Though 
the Newton’s method is known for converging in a single iteration for a qua-
dratic function, seldom do we find functions in practical problems that are 
quadratic. However, Newton’s method is often used as a hybrid method in 
conjunction with other methods.

The algorithm for the Newton’s method is described in Table 3.3 and a 
MATLAB code of its implementation is given in newton.m. A MATLAB code 
that computes Hessian matrix is given in hessian.m.
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FIGURE 3.6
Function contours of the test problem and convergence history.
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On executing the code with a starting value of x as (–3, 2), the following 
output is displayed in the command window for the test problem. Note that 
in some iteration, the search direction is not a descent as the function value 
increases instead of monotonically decreasing. The method, however, con-
verges to the minimum point.

Initial function value = 1452.2619
No. x-vector f(x) Deriv._____________________________________________

1 -0.754 0.524 44.244 1006.074
2 -0.362 -0.010 8.398 116.281
3 0.094 0.125 -3.920 50.597
4 11.775 0.324 22007.14 21.420
5 1.042 0.093 14.533 4076.916
6 0.640 0.142 -8.479 102.745
7 0.524 0.122 -9.635 18.199
8 0.505 0.122 -9.656 2.213
9 0.504 0.122 -9.656 0.059
10 0.504 0.122 -9.656 0.000_____________________________________________

Let us restart the method with x as (1, 1). The output is given below. If the 
starting value is closer to the minimum, the function value reduces mono-
tonically in all the iterations and eventually converges to the minimum.

Initial function value = 92.7864
No. x-vector f(x) Deriv.____________________________________________

1 0.818 0.041 -1.428 202.492
2 0.569 0.138 -9.386 56.085
3 0.510 0.122 -9.655 8.516
4 0.504 0.122 -9.656 0.602
5 0.504 0.122 -9.656 0.004____________________________________________

TablE 3.3

Algorithm for Newton’s Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi), ∇f(xi), and [H] (function, gradient, and Hessian)
 Si = −[H]−1∇f(xi) (search direction)
 xi+1 = xi + Si  (update the design vector)
 If f fi i( ) ( )x x+ − >1 1ε  or ∥∇f(xi)∥ > ε2

 then goto Step 2
 else goto Step 3
Step 3: Converged. Print x* = xi+1, f(x*) = f(xi+1)
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3.4.3  Modified Newton’s Method

The method is similar to Newton’s method with a modification that a unidi-
rectional search is performed in the search direction Si of the Newton method. 
The algorithm for the modified Newton method is described in Table 3.4 and 
a MATLAB code of its implementation is given in modified_newton.m.

On executing the code with a starting value of x as (–3, 2), the following 
output is displayed in the command window for the test problem. For the 
same starting point, the modified Newton’s method converges to the mini-
mum point in just six iterations as compared to Newton’s method, which 
converges in ten iterations.

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
──────────────────────────────────────────────
1 0.006 0.025 -1.010 1006.074
2 0.498 0.026 -8.227   36.392
3 0.496 0.121 -9.653   29.839
4 0.504 0.122 -9.656    0.873
5 0.504 0.122 -9.656    0.018
6 0.504 0.122 -9.656    0.003
──────────────────────────────────────────────

3.4.4  levenberg–Marquardt Method

The advantage of the steepest descent method is that it reaches closer to the 
minimum of the function in a few iterations even when the starting guess 
is far away from the optimum. However, the method shows sluggishness 
near the optimum point. On the contrary, Newton’s method shows a faster 
convergence if the starting guess is close to the minimum point. Newton’s 
method may not converge if the starting point is far away from the optimum 
point.

TablE 3.4

Algorithm for Modified Newton’s Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi), ∇f(xi), and [H] (function, gradient, and Hessian)
 Si = −[H]−1∇f(xi) (search direction)
 Minimize f(xi+1) and determine α (use golden section method)
 xi+1 = xi + αSi  (update the design vector)
 If f fi i( ) ( )x x+ − >1 1ε  or ∥∇f(xi)∥ > ε2

 then goto Step 2
 else goto Step 3
Step 3: Converged. Print x* = xi+1, f(x*) = f(xi+1)
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The Levenberg–Marquardt method is a kind of hybrid method that com-
bines the strength of both the steepest descent and Newton’s methods. The 
search direction in this method is given by

 Si = −[H + λI]−1∇f(xi) (3.18)

where I is an identity matrix and λ is a scalar that is set to a high value at the start 
of the algorithm. The value of λ is altered during every iteration depending on 
whether the function value is decreasing or not. If the function value decreases 
in the iteration, λ it decreases by a factor (less weightage on steepest descent 
direction). On the other hand, if the function value increases in the iteration, 
λ it increases by a factor (more weightage on steepest descent direction). The 
algorithm for the Levenberg–Marquardt method is described in Table 3.5 and a 
MATLAB code of its implementation is given in levenbergmarquardt.m.

On executing the code with a starting value of x as (–3, 2), following output 
is displayed at the command window for the test problem.

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
─────────────────────────────────────────────
1 -2.384 1.604 815.738 1006.074
2 -1.680 1.139 325.925  733.709
3 -1.104 0.705 102.059  429.113
4 -0.740 0.327  28.673  201.554
5 -0.444 0.133   8.324   86.884
6 -0.164 0.105   1.186   34.005
7  0.546 0.091  -9.390   20.542
8  0.508 0.122  -9.655   11.361
9  0.505 0.122  -9.656    0.409
10  0.504 0.122  -9.656    0.016
─────────────────────────────────────────────

TablE 3.5

Algorithm for the Levenberg–Marquardt Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi), ∇f(xi), and [H] (function, gradient, and Hessian)
 Si = −[H + λI]−1∇f(xi) (search direction)
 xi+1 = xi + Si (update the design vector)
 If f(xi+1) < f(xi)
 then change the value of λ as λ/2
 else change the value of λ as 2λ
 If f fi i( ) ( )x x+ − >1 1ε  or ∥∇f(xi)∥ > ε2

 then goto Step 2
 else goto Step 3
Step 3: Converged. Print x* = xi+1, f(x*) = f(xi+1)
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3.4.5  Fletcher–Reeves Conjugate Gradient Method

The Levenberg–Marquardt method uses the strengths of both steepest 
descent and Newton’s method for accelerating the convergence to reach the 
minimum of a function. The method is a second-order method, as it requires 
computation of the Hessian matrix. On the other hand, the conjugate gra-
dient method is a first-order method, but shows the property of quadratic 
convergence and thus has a significant advantage over the second-order 
methods. Two directions, S1 and S2, are said to be conjugate if

 S HST
1 2 0=  (3.19)

where H is a symmetric matrix. For example, orthogonal directions are con-
jugate directions. In Figure 3.7, starting from point x1a, the search direction S1 
results in the minimum point xa

*. Similarly, starting from point x1b, the search 
direction S1 results in the minimum point xb

*. The line joining xa
* and xb

* is the 
search direction S2. Then, S1 and S2 are conjugate directions.

The steepest descent method was modified by Fletcher and Reeves in the 
conjugate gradient method. Starting with the search direction

 S1 = −∇f(x1) (3.20)

the subsequent search direction is taken as a linear combination of S1 and 
−∇f(x2). That is,

 S2 = −∇f(x2) + αS1 (3.21)

S2

S1
S1

xa xb

x1a

x1b

FIGURE 3.7
Conjugate directions.
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Using the property S HS1 2 0T =  of conjugate directions, α can be evaluated as

 α =
∇

∇
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Starting with S1 = −∇f(x1), the search direction in every iteration is calcu-
lated using the equation
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The algorithm for the conjugate gradient method is described in Table 3.6 
and a MATLAB code of its implementation is given in conjugate.m.

On executing the code with a starting value of x as (–3, 2), the following 
output is displayed at the command window in the test problem. The effi-
ciency of conjugate gradient method can be seen from Figure 3.8, where it 

TablE 3.6

Algorithm for Fletcher–Reeves’s Conjugate Gradient Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
Step 2: Compute f(xi) ∇f(xi) (function and gradient)
 Si = −∇f(xi) (search direction)
 Minimize f(xi+1) and determine α (use the golden section method)
 xi+1 = xi + αSi (update the design vector)

Step 3: S x
x

x
Si i

i

i

if
f

f
+ +

+
= −∇ +

∇

∇
1 1

1

2

2
( )

( )

( )

 Minimize f(xi+2) and determine α (use the golden section method)
 xi+2 = xi+1 + αSi+1

 Minimize f(xi+2) and determine α (use the golden section method)
 If f fi i( ) ( )x x+ +− >2 1 1ε  or ∥∇f(xi+1)∥ > ε2

 then goto Step 3
 else goto Step 4
Step 4: Converged. Print x* = xi+2, f(x*) = f(xi+2)
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is  compared with the first-order, steepest descent method. The conjugate 
method does not show sluggishness in reaching the minimum point.

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
─────────────────────────────────────────────
1 0.095 0.023 -2.704 1006.074
2 0.178 0.145 -5.404   37.036
3 0.507 0.136 -9.627   23.958
4 0.510 0.123 -9.655    4.239
5 0.505 0.121 -9.656    0.605
6 0.504 0.122 -9.656    0.340
7 0.504 0.122 -9.656    0.023
─────────────────────────────────────────────

3.4.6  DFP Method

In the DFP method, the inverse of the Hessian is approximated by a matrix 
[A] and the search direction is given by

 Si = −[A]∇f(xi) (3.24)

The information stored in the matrix [A] is called as the metric and because 
it changes with every iteration, the DFP method is known as the variable 
metric method. Because this method uses first-order derivatives and has the 

Steepest descent

Conjugate gradient

Minimum point

FIGURE 3.8
Convergence plot of conjugate gradient/steepest descent method.
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property of quadratic convergence, it is referred to as a quasi-Newton method. 
The inverse of the Hessian matrix can be approximated as

 [ ] [ ]
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 (3.25)

where

 Δx = Δxi − Δxi−1 (3.26)

 ∇g = ∇gi − ∇gi−1 (3.27)

The matrix [A] is initialized to the identity matrix. The algorithm for the 
DFP method is described in Table 3.7 and a MATLAB code of its implementa-
tion is given in dfp.m.

On executing the code with a starting value of x as (–3, 2) the following 
output is displayed in the command window for the test problem. Observe 
that in the second and the third iterations, search points are similar in this 
method and the conjugate gradient method, indicating that search directions 
were similar. In further iterations, however, the search direction is differ-
ent. Further, on typing inv(A) in the MATLAB command prompt and then 

TablE 3.7

Algorithm for the DFP Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
 [A] (initialize to identity matrix)
Step 2: Compute f(xi) and ∇f(xi) (function and gradient vector)
 Si = −∇f(xi)  (search direction)
 xi+1 = xi + αSi  (update the design vector)
 Minimize f(xi+1) and determine α (use the golden section method)
Step 3: Compute Δx and ∇g
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g g
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 Si+1 = −[A]i+1∇f(xi+1)
 xi+2 = xi+1 + αSi+1

 Minimize f(xi+2) and determine α (use the golden section method)
 If f fi i( ) ( )x x+ +− >2 1 1ε  or ∥∇f(xi+1)∥ > ε2

  then goto Step 3
  else goto Step 4
Step 4: Converged. Print x* = xi+2, f(x*) = f(xi+2)
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printing the Hessian matrix at the converged value of x, it is observed that 
[A] approaches [H]−1.

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
─────────────────────────────────────────────
1 0.095 0.023 -2.704 1006.074
2 0.179 0.145 -5.418   37.036
3 0.508 0.145 -9.576   23.983
4 0.501 0.122 -9.656    7.004
5 0.504 0.122 -9.656    0.396
6 0.504 0.122 -9.656    0.053
7 0.504 0.122 -9.656    0.038
8 0.504 0.122 -9.656    0.028
9 0.504 0.122 -9.656    0.005
─────────────────────────────────────────────

>> A
A =
 0.0091 0.0005
 0.0005 0.0033
>> inv(hessian(x,delx,n_of_var))
ans =
 0.0091 0.0005
 0.0005 0.0033

3.4.7  bFGS Method

In the BFGS method, the Hessian is approximated using the variable metric 
matrix [A] given by the equation
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 (3.28)

It is important to note that whereas the matrix [A] converges to the inverse 
of the Hessian in the DFP method, the matrix [A] converges to the Hessian 
itself in the BFGS method. As the BFGS method needs fewer restarts as com-
pared to the DFP method, it is more popular than the DFP method. The algo-
rithm for the BFGS method is described in Table 3.8 and a MATLAB code of 
its implementation is given in BFGS.m.

On executing the code with a starting value of x as (–3, 2) the following 
output is displayed in the command window for the test problem. Again, it 
is observed that in the second and third iterations, search points are similar 
to this method as compared to DFP and the conjugate gradient methods, 
indicating that search directions were similar. Further, on typing A in the 
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MATLAB command prompt and then printing the Hessian matrix at the 
converged value of x, it is observed that [A] approaches [H].

Initial function value = 1452.2619
No. x-vector f(x) Deriv.
─────────────────────────────────────────────
1 0.095 0.023 -2.704 1006.074
2 0.179 0.145 -5.418 37.036
3 0.508 0.145 -9.578 24.017
4 0.501 0.122 -9.655 6.900
5 0.504 0.122 -9.656 0.471
6 0.504 0.122 -9.656 0.077
7 0.504 0.122 -9.656 0.056
8 0.504 0.122 -9.656 0.040
9 0.504 0.122 -9.656 0.007
─────────────────────────────────────────────

>> A
A =
 110.5001 -16.9997
 -16.9997 306.7238
>> hessian(x,delx,n_of_var)
ans =
 111.0981 -15.9640
 -15.9640 308.5603

TablE 3.8

Algorithm for the BFGS Method

Step 1: Given xi (starting value of design variable)
 ε1 (tolerance of function value from previous iteration)
 ε2 (tolerance on gradient value)
 Δx (required for gradient computation)
 [A] (initialize to identity matrix)
Step 2: Compute f(xi) and ∇f(xi) (function and gradient vector)
 Si = −∇f(xi)  (search direction)
 xi+1 = xi + αSi  (update the design vector)
 Minimize f(xi+1) and determine α (use golden section method)
Step 3: Compute Δx and ∇g
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 Si+1 = −[[A]i+1]−1∇f(xi+1)
 xi+2 = xi+1 + αSi+1

 Minimize f(xi+2) and determine α (use the golden section method)
 If f fi i( ) ( )x x+ +− >2 1 1ε  or ∥∇f(xi+1)∥ > ε2

 then goto Step 3
 else goto Step 4
Step 4: Converged. Print x* = xi+2, f(x*) = f(xi+2)
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3.4.8  Powell Method

The Powell method is a direct search method (no gradient computation is 
required) with the property of quadratic convergence. Previous search direc-
tions are stored in this method and they form a basis for the new search 
direction. The method makes a series of unidirectional searches along these 
search directions. The last search direction replaces the first one in the new 
iteration and the process is continued until the function value shows no 
improvement. A MATLAB code (powell.m) is written in which this method is 
implemented and the algorithm is described in Table 3.9.

On executing the code with a starting value of x as (–3, 2), following output 
is displayed at the command window for the test problem.

Initial function value = 1452.2619
No. x-vector f(x)
─────────────────────────────────
1 0.504 0.122 -9.656  
2 0.505 0.122 -9.656  
3 0.504 0.122 -9.656  
4 0.504 0.122 -9.656  
5 0.505 0.122 -9.656  
─────────────────────────────────

TablE 3.9

Algorithm for the Powell Method

Step 1: Given xi (starting value of design variable)
 ε (tolerance of function value from previous iteration)
 Si (linearly independent vectors)
 f(Xprev) = f(xi)
Step 2: X = xi + αSi

 Minimize f(X) and determine α (use the golden section method)
Step 3: Set Y = X, i = 1
 do
 Minimize f(X) and determine α (use the golden section method)
 X = X + αSi

 i = i + 1
 while i < (number of variable) + 1
 If f f( ) ( )X X− <prev ε
 then goto Step 4
 else continue
 Si = X − Y
 X = X + αSi

 f(Xprev) = f(X)
 goto Step 3
Step 4: Converged. Print x* = X, f(x*) = f(X)
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3.4.9  Nelder–Mead algorithm

Simplex refers to a geometric figure formed by n + 1 points in an n dimension 
space. For example, in a two-dimensional space, the figure formed is a trian-
gle. The Nelder–Mead algorithm is a direct search method and uses function 
information alone (no gradient computation is required) to move from one 
iteration to another. The objective function is computed at each vertex of the 
simplex. Using this information, the simplex is moved in the search space. 
Again, the objective function is computed at each vertex of the simplex. The 
process of moving the simplex is continued until the optimum value of the 
function is reached. Three basic operations are required to move the simplex 
in the search space: reflection, contraction, and expansion.

In an optimization problem with two dimensions, the simplex will be a 
triangle, whose vertices are given by (say) x1, x2, and x3. Of these, let the worst 
value of the objective function be at x3 = xworst. If the point xworst is reflected 
on the opposite face of the triangle, the objective function value is expected 
to decrease. Let the new reflected point be designated as xr. The new simplex 
(see Figure 3.9) is given by the vertices x1, x2, and xr. The centroid point xc is 
computed using all the points but with the exclusion of xworst. That is,

 x xc i

i

n

n
i

=

≠

+

=
∑1

1

1

worst

 (3.29)

The reflected point is computed as

 xr = xc + α(xc − xworst) (3.30)

where α is a predefined constant. Typically, α = 1 is taken in the simulations. 
If the reflected value does not show improvement, the second worst value is 
taken and the process as discussed earlier is repeated. Sometimes reflection 

x1

x2

xc

xr

x3 = xworst

FIGURE 3.9
Reflection operation.
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can lead to cycling with no improvement in the objective function value. 
Under such conditions, a contraction operation is performed.

If xr results in a new minimum point, then it is possible to further expand 
the new simplex (see Figure 3.10) in the hope of further reducing the objec-
tive function value. The expanded point is computed as

 xe = xc + γ(xc – xworst) (3.31)

where γ is a predefined constant. Typically, γ = 2 is taken in the simulations. 
If xe results in the new minimum point, it replaces the xworst point. Else, xr 
replaces the xworst point.

The contraction operation is used when it is certain that the reflected point 
is better than the second worst point (xsecond worst). The contracted point is 
computed as

 xcontr = xc + ρ(xc − xworst) (3.32)

where ρ is a predefined constant. Typically, ρ = −0.5 is taken in the simulations.
The preceding operations are continued until the standard deviation of 

the functions computed at the vertices of the simplex becomes less than ε. 
That is,
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1
ε  (3.33)

The Nelder–Mead algorithm is described in Table 3.10 and a MATLAB 
code (neldermead.m) is written in which this method is implemented.

x1

x2

xc

xe

xr

x3 = xworst

FIGURE 3.10
Expansion operation.
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On executing the code with a random value of x, the following output is 
displayed at the command window for the test problem.

Iteration Deviation f(x)
────────────────────────────────────
1 72.2666 -0.733
2 36.7907 -0.733
3  6.8845 -0.733
4  9.7186 -8.203
5  5.0965 -8.203
6  3.8714 -8.426
7  1.3655 -8.426
8  0.7944 -9.351
9  0.6497 -9.509
10  0.2242 -9.509
11  0.1083 -9.509
12  0.1068 -9.641
13  0.0794 -9.641
14  0.0299 -9.641

TablE 3.10

Nelder–Mead Algorithm

Step 1: Given xi (randomly select starting value of design variables)
 α, γ, ρ, σ, ε (value of constants)
 Compute f(xi), f(xbest) ≤ … ≤ f(xsecond worst) ≤ f(xworst)
Step 2: Compute the centroid as

 x xc i

n

i
n
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≠
=

∑1

1
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+1

Step 3: Reflection
 xr = xc + α(xc − xworst)
 If f(xbest) ≤ … ≤ f(xr) ≤ f(xsecond worst) then replace xworst with xr and goto Step 1
Step 3: Expansion
 If f(xr) ≤ f(xbest) then
 xe = xc + γ(xc − xworst)
 If f(xe) ≤ f(xr) then replace xworst with xe and goto Step 1
 Else
 replace xworst with xr

 Else
 goto Step 5
Step 4: Contraction
 xcontr = xc + ρ(xc − xworst)
 If f(xcontr) ≤ f(xworst) then replace xworst with xc and goto Step 1
Step 5: If
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 then converged,
 else
 goto Step 1
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15  0.0173 -9.641
16  0.0126 -9.653
17  0.0079 -9.653
18  0.0034 -9.654
19  0.0025 -9.654
20  0.0021 -9.656
21  0.0011 -9.656
22  0.0003 -9.656
23  0.0004 -9.656
24  0.0003 -9.656
────────────────────────────────────

xc =
 0.5028 0.1219

3.5  Additional Test Functions

Different solution techniques were applied to the test problem on the spring 
system in the previous section. In this section, some additional test prob-
lems such as Rosenbrock’s function, Wood’s function, quadratic function, 
and so forth are taken, on which different solution methods will be tested. 
The performance of each method is compared in terms of the computational 
time. The MATLAB functions tic and toc can be used to estimate the compu-
tational time.

3.5.1  Rosenbrock Function

The two-variable function is given by

 f x x x( ) ( )x = −( ) + −100 12 1
2

2

1
2  (3.34)

The minimum of this “banana valley” function is zero (see Figure 3.11 
where the minimum is marked with *) and occurs at (1, 1). Different solution 
methods are applied from the same starting point (–1.5, 1.5) and their per-
formances are summarized in Table 3.11. All methods are able to track the 
minimum of the function. The steepest descent method takes a maximum 
computational time as compared to all other methods. The computational 
time required by other methods is comparable. The convergence history of 
the steepest descent method is plotted in Figure 3.12 and marked with °. 
Because of the particular nature of the problem, the method dwells in the 
region with a low gradient value. The Nelder–Mead method is not compared 
here as it uses more than one starting point.
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3.5.2  Quadratic Function

The two-variable function is given by

 f(x) = (1 − x1)2 + (2 − x2)2 (3.35)

The minimum of this function is zero (see Figure 3.13, where the minimum 
is marked with *) and occurs at (1, 2). Different solution methods are applied 
from a starting point (2, –3) and their performances are summarized in 
Table 3.12. All methods are able to track the minimum of the function. The 
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FIGURE 3.11
Contours of Rosenbrock function.

TablE 3.11

Performance Comparison of Different 
Solution Methods for Rosenbrock’s Function

Method
Computational Time

(ms)

Steepest descent 49.7
Newton 8.04
Modified Newton 11.9
Marquardt 9.4
Conjugate gradient 18.8
DFP 11.23
BFGS 10.34
Powell 10.52
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conjugate gradient method takes minimum computational time compared to 
other solution methods.

3.5.3 Nonlinear Function

The two-variable function is given by

 f x x x x x( )x = − + +4 4 31
2

1 2 2
2

1  (3.36)

The minimum of this function is –0.09375 (see Figure 3.14, where the mini-
mum is marked with *) and occurs at (–3/16, –1/8). Different solution meth-
ods are applied from a starting point (4, 3) and their performances are 

TablE 3.12

Performance Comparison of Different Solution Methods 
for a Quadratic Function

Method
Computational Time

(ms)

Steepest descent 6.06
Newton 7.5
Modified Newton 10.38
Marquardt 9.72
Conjugate gradient 5.79
DFP 7.69
BFGS 7.45
Powell 7.26
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Contours of a nonlinear function.
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summarized in Table 3.13. All methods are able to track the minimum of 
the function. The conjugate gradient method takes minimum computational 
time compared to other solution methods.

3.5.4  Wood’s Function

The two-variable function is given by

 f x
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The minimum of this function is 1.744 (see Figure 3.15, where the minimum 
is marked with *) and occurs at (1.743, 2.03). Different solution methods are 
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FIGURE 3.15
Contours of Wood’s function.

TablE 3.13

Performance Comparison of Different Solution Methods 
for a Nonlinear Function

Method
Computational Time

(ms)

Steepest descent 11.19
Newton 7.67
Modified Newton 10.51
Marquardt 10.0
Conjugate gradient 6.27
DFP 7.85
BFGS 7.70
Powell 8.32
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applied from a starting point (0.5, 0.5) and their performances are summa-
rized in Table 3.14. All methods are able to track the minimum of the func-
tion. The conjugate gradient method takes minimum computational time 
compared to other solution methods.

3.6  Application to Robotics

An industrial robot typically comprises a number of mechanical links with 
one end fixed and the other end-effector free to move. If the joint angles (θ1, θ2, 
and θ3) are known, then the trajectory of the end-effector can be calculated 
using kinematic relationships. Often a predefined motion of the end-effector 
is given for which we have to evaluate the joint angles. This can be stated as 
an unconstrained optimization problem (Andreas 2007).

The design variables for the optimization problem are

 x =



















θ
θ
θ

1

2

3

 (3.38)

The kinematic equations are

 f1(x) = c1(a2c2 + a3c23 − d4s23) − d3s1 − px (3.39)

TablE 3.14

Performance Comparison of Different Solution 
Methods for Wood’s Function

Method
Computational Time

(ms)

Steepest descent 7.16
Newton 9.46
Modified Newton 12.1
Marquardt 10.6
Conjugate gradient 6.22
DFP 9.54
BFGS 8.33
Powell 12.75
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 f2(x) = s1(a2c2 + a3c23 − d4s23) + d3s1 − py (3.40)

 f3(x) = d1 − a2s2 − a3s23 − d4c23 − pz (3.41)

where

 c1 = cos(θ1)

 c2 = cos(θ2)

 c23 = cos(θ2 + θ3)

 s1 = sin(θ1)

 s2 = sin(θ2)

 s23 = sin(θ2 + θ3)

 d1 = 66.04, d3 = 14.91, d4 = 43.31, a2 = 43.18, a3 = 2.03

The desired trajectory equation is given by
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 (3.42)

The unconstrained optimization problem is

 Minimize
i

if
=

∑
1

3

2 ( )x  (3.43)

Here –π ≤ t ≤ π. t is divided into 100 parts. It means there are 100 variables for 
θ1, 100 variables for θ2, and 100 variables for θ3. The unconstrained problem 
thus has 300 variables that need to be determined. The optimization problem 
is solved using the Powell method.

Go to the Robotics directory in Chapter 3 and type powell in the command 
prompt. Then generate the optimized trajectory by executing the MATLAB 
code generate_optimized_traj(x). Give a hold on command and then execute 
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robotics_nominal_traj.m. The desired (nominal shown by solid line) and opti-
mized (shown by *) trajectories are compared in Figure 3.16. It is observed 
that in some regions, the motion of the end-effector is not exactly matched 
with the desired profile. Similar results are also seen in Andreas (2007), 
where the reason for the difference is attributed to “beyond manipulators 
reach.”

Chapter Highlights

•	 The unidirectional search refers to minimizing the value of a multi-
variable function along a specified direction.

•	 Solution techniques for multivariable, unconstrained optimization 
problems can be grouped into gradient- and non–gradient-based 
methods.

•	 The negative gradient direction is addressed as the steepest descent 
direction.

•	 The steepest descent method ensures a reduction in the function 
value at every iteration. If the starting point is far away from the 
minimum, the gradient will be higher and function reduction will 
be maximum in each iteration. Because the gradient value of the 
function decreases near the optimum, the method becomes sluggish 
(slow convergence) near the minimum.
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FIGURE 3.16
Comparison of manipulator’s trajectories (optimized with nominal).
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•	 Newton’s method requires computation of the Hessian matrix, 
which is computationally expensive. Newton’s method is known 
for converging in one iteration for a quadratic function. The method 
requires a restart if the starting point is far away from optimum.

•	 In the modified Newton method, a line search is performed in the 
search direction computed by the Newton method.

•	 The Levenberg–Marquardt method is a sort of hybrid method that 
combines the strength of both the steepest descent and Newton 
methods.

•	 The conjugate gradient method is a first-order method, but shows 
the property of quadratic convergence and thus has a significant 
advantage over the second-order methods.

•	 DFP and BFGS methods are called the variable metric methods.
•	 It is important to note that whereas the matrix [A] converges to the 

inverse of the Hessian in the DFP method, it converges to the Hessian 
itself in the BFGS method.

•	 The Powell method is a direct search method (no gradient computa-
tion is required) with the property of quadratic convergence.

•	 In the Nelder–Mead algorithm, the simplex is moved using reflec-
tion, expansion, and contraction.

Formulae Chart

Necessary conditions for minimum of a function:

 ∇f(x*) = 0

 ∇2f(x*) ≥ 0

Unidirectional search:

 f(α) = xi + αSi

Search direction in steepest descent method:

 Si = −∇f(xi)

Search direction in the Newton method:

 Si = −[H]−1∇f(xi)
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Search direction in the Levenberg–Marquardt method:

 Si = −[H + λI]−1∇f(xi)

Search direction in the conjugate gradient method:
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Search direction in the DFP method:

 Si = −[A]∇f(xi)
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Search direction in the BFGS method:

 Si = −[A]−1∇f(xi) 
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Problems

 1. Find the steepest descent direction for the function

 f x x x x( )x = + +1
2

1 2 2
23 2

 at point (1, 2).
 2. Minimize the function

 f x x e ex x( ) , .x = + + −− −10 000 2 00011 2
1 2

 from a starting value of (2, 2) using the BFGS, DFP, and steepest 
descent methods.

 3. Minimize the function

 
f x x x x( )x = + −( ) + + −( )1

2
2

2

2
2

1

2
11 7
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 from a starting value of (2, 3) using the following methods:
 i. Steepest descent
 ii. Newton
 iii. Modified Newton
 iv. Levenberg–Marquardt
 v. DFP
 vi. BFGS
 vii. Powell
 viii. Nelder–Mead
 4. Show that in the DFP method, the variable metric [A] approaches 

the inverse of the Hessian matrix for the following function which 
needs to be minimized.

 f x x x x( )x = + +1
2

1 2 2
23 5  

 Take starting value as (1, 1).
 5. Show that in the BFGS method, the variable metric [A] approaches the 

Hessian matrix for the following function which needs to be minimized.

 f x x x x( )x = + +1
2

1 2 2
23 5  

 Take the starting value as (1, 1).
 6. Minimize the function using the DFP method with a starting value 

of (1, 1)

 f x x x xx x( ) sin( ( ))x = + + − − ++e 1
2

2
2

1 2 1 23 3  

 7. Minimize the function

 
f x x x x( ) ( )x = − + + −( ) +100 10 100 13

2
1
2

2
2

2

3
2θ

 

 where

 
2 01 2

1
1πθ =







>−tan
x
x

x
 

 
2 01 2

1
1πθ π= +







<−tan
x
x

x
 

 Take the starting value as (–1, 0, 0).
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 8. Instead of using the central difference formula for computing the 
derivative of a function, use the complex variable formula

 
′ =

+ f x
f x i x x

x
( )

( )Imaginary /∆ ∆

∆  

 The MATLAB code grad_vec.m can be modified as

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code grad_vec.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function deriv = grad_vec_complex(x,delx,n_of_var)
xvec = x;
h = 1e-14;
for j = 1:length(x)
xvec = x;
c = complex(xvec(j),h);
xvec(j) = c;
deriv(j) = imag(func_multivar(xvec)/h);
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 Now use the steepest descent method to optimize the test function 
given in the main text.

 9. Compare the accuracy of the derivative computation using the cen-
tral difference formula and the complex variable formula against the 
analytical value of the derivative of the test function

 f(x) = sin x + ln x

 at = 0.1.
 10. Use the line search algorithm to minimize the function

 f x x x x( )x = + −( ) + + −( )1
2

2

2

2
2

1

2
11 7  

 starting from different initial points and different search directions:
 i. Starting point (1, 1) and search direction (2, 4)
 ii. Starting point (0, 0) and search direction (1, 2)
 iii. Starting point (3, 2) and search direction (1, 1)
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 11. Minimize the function

 
f x x( )x = +( )1

2
81

2
2
2

 

 from the starting point (1, 2) using the steepest descent method. 
Observe the sluggishness of this method. Again, solve the function 
by the conjugate gradient method and compare the performance 
with the steepest descent method.

 12. A manufacturing firm wants to divide its resources suitably between 
capital (x1) and labor (x2) so as to maximize the profit function given by

 f(x) = p{ln(1 + x1) + ln(1 + x2)} − wx2 − vx1

 where p is the unit price of the product, w is the wage rate of labor, 
and v is the unit cost of capital.

 i. By computing the gradient vector of the above function with 
respect to x1 and x2 and then equating it to zero, compute the 
design variables x1 and x2 as a function of p, v, and w.

 ii. Using the second-order condition, check whether the solution 
corresponds to a maximum of the function.

 iii. Compute numerical values of x1 and x2 by assuming suitable val-
ues of p, v, and w (p > w, v).

 iv. Starting with an initial guess of (0, 0) and using the values of p, 
v, and w as assumed in (iii), find the maximum of the function 
using the steepest descent method. Compare the values of x1 and 
x2 with those obtained from (iii).

 13. The stable equilibrium configuration (Haftka and Gurdal 1992) of a 
two-bar unsymmetrical shallow truss (Figure 3.17) can be obtained 

l1 l2

h

p

FIGURE 3.17
Two-bar truss.
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by minimizing the potential energy function of the nondimensional 
displace variables x1 and x2 as

 
f m x x x x x

x
( )x = − + +





 + − + −1

2
1
2

1
2

1
21 1 1

2
2

2

1 1 1
2 2γ α α

γγ
γ γ







−4
1p x
 

 where m, γ, α, and p are the nondimensional quantities defined as

 
m

A
A

l
l

h
l

p
p

EA
= = = =1

2

1

2
1

1 2

γ α
 

 where E is the elastic modulus and A1 and A2 are the cross-sectional 
areas of the bars. Take m = 5, γ = 4, α = 0.02, and p = 0 00002. . Staring 
with an initial guess of (0, 0), minimize the function using the DFP 
and BFGS methods.
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4
Linear Programming

4.1  Introduction

Linear programming refers to an optimization problem that has the objec-
tive and the constraints as a linear function of the design variables. The con-
straints could be of an equality or inequality type or both. Mathematically, a 
linear function satisfies the following properties:

 f(x + y) = f(x) + f(y) (4.1)

 f(kx) = kf(x) (4.2)

where x and y are the variables and k is a scalar. A practical linear program-
ming problem (LPP) might contain hundreds of design variables and con-
straints and thus require special solution techniques that are different from 
the methods that were described in the previous chapters. A number of 
applications of LPP can be found in the literature, some of which include

•	 An airline company would like to assign crews to different flights 
in an optimal way so that total cost is minimized while covering its 
entire network.

•	 In a portfolio optimization problem, an investor would like to know 
the investment allocation to different assets that would maximize 
the return.

•	 An oil company blends different qualities of oil to produce differ-
ent grades of gasoline, which need to be shipped to users who are 
located in different places. The quantity of gasoline that can be pro-
duced is fixed at a certain maximum and so is the input oil quantity. 
The company would like to maximize its profit.

•	 A company produces a number of products and this requires a num-
ber of processes on different machines. The profit from each prod-
uct is known and the maximum time available for each machine 
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is fixed. The company would like to determine the manufacturing 
policy that would maximize its profit.

•	 A government-run bus company has to cover different places in a 
metro city. As a government company, it has an obligation to cover 
all parts of the city, irrespective of whether a particular route is prof-
itable or not. The company would like to find the number of routes 
and allocate a number of buses for each of these routes in such a way 
that it can maximize its profit.

The next section discusses the solution to LPP using the graphical method 
and its limitations. The need to convert an LPP into the standard form 
along with procedural details is discussed next. Basic definitions of linear 
programming such as feasible solutions, basic solutions, basic feasible solu-
tions, and optimal solution are further introduced. The simplex method is 
discussed in detail for solving LPPs. The degeneracy problem in the simplex 
method and how it can be overcome is also discussed. The importance of 
converting a primal problem into a dual problem is explained followed by 
the dual-simplex method to solve such problems. In the simplex method, the 
algorithm moves from one feasible point to another feasible point. For a large 
LPP, this can be time consuming. As an alternate, interior point methods 
move inside the feasible region to reach the optimum. The road map of this 
chapter is given in Figure 4.1.

Solution with graphical method

Standard form of LPP

Simplex method
Multiple solutions
Degeneracy
Two-phase method
Dual simplex method

Interior-point method

Portfolio optimization

Basic solution

Figure 4.1
Road map of Chapter 4.
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4.2  Solution with the Graphical Method

The graphical method is a simple technique for locating the optimal solu-
tion of problems with up to two to three design variables only. Beyond three 
variables and with many constraints, the representation of the optimization 
problem through graphs becomes complex. Consider the LPP

Maximize

 z = x + 2y (4.3)

subject to 

 2x + y ≥ 4 (4.4)

 −2x + 4y ≥ −2 (4.5)

 −2x + y ≥ −8 (4.6)

 −2x + y ≤ −2 (4.7)

 y ≤ 6 (4.8)

The intersection of five constraints leads to a feasible region ABCDE as 
shown in Figure 4.2. To make this plot, first type MuPad in the MATLAB® 
command prompt. Open a new window in MuPad and then type the follow-
ing commands:

k := [{2*x + y >= 4, -2*x + 4*y >= -2, -2*x + y >= -8, 
-2*x + y <= -2, y <= 6}, x + 2*y]:
g := linopt::plot_data(k, [x, y]):
plot(g, Color = RGB::Grey) 

The coordinate value of the vertex is given in the brackets. The values of 
the objective function at points A, B, C, D, and E are given as 9, 13/5, 7/2, 16 
and 19 respectively. In an LPP, the optimal value of the objective function 
occurs at the edge of the convex polyhedron. Thus, the maximum value of 
the objective function is 19 and the values of the variables x and y are 7 and 
6 respectively at the optimal point. Note that the objective function z = x + 
2y, also referred to as the cost equation represents, a family of parallel lines 
(shown by the dashed line in Figure 4.2) called equicost lines. The value of 
the objective function is constant along this line.

© 2015 by Taylor & Francis Group, LLC

  



96 Optimization: Algorithms and Applications

An LPP need not have a unique solution. For example, if we change the 
previous LPP to

Minimize

 z = 2x + y (4.9)

subject to

 2x + y ≥ 4 (4.10)

 −2x + 4y ≥ −2 (4.11)

 −2x + y ≥ −8 (4.12)

 −2x + y ≤ −2 (4.13)

 y ≤ 6 (4.14)

Open a new window in MuPad and then type the following command and 
observe the plot in Figure 4.3.

k := [{2*x + y >= 4, -2*x + 4*y >= -2, -2*x + y >= -8, 
-2*x + y <= -2, y <= 6}, -2*x - y]:
g := linopt::plot_data(k, [x, y]):
plot(g, Color = RGB::Grey) 
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y
D (4, 6)

E (7, 6)

A (5, 2)

z = 16 z = 19

z = 9
C (     , 1)3

2
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5
2
5

Figure 4.2
Feasible region (ABCDE) for the LPP.
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The equicost line z = 4 passes through points B and C. The minimum value 
of the objective function is 4 and occurs at (3/2, 1) and (9/5, 2/5). In fact, for 
infinite number of points in the line joining points B and C, the objective 
function value is 4. That is, in the given LPP, the solution is not unique.

Now consider the LPP in which one of the constraints is removed. The LPP 
is given by

Maximize

 z = x + 2y (4.15)

subject to

 2x + y ≥ 4 (4.16)

 −2x + 4y ≥ −2 (4.17)

 −2x + y ≥ −8 (4.18)

 −2x + y ≤ −2 (4.19)

The constraints are plotted in Figure 4.4. Observe that the value of the 
objective function can be increased to an infinitely large value, without leav-
ing the feasible region. The solution of the LPP, in this case, is said to be 
unbounded.

1 2 3 4 5 6 7 8
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0

1

2

3

4

5

6

7

x

y
z = 20

z = 4

D (4, 6)

E (7, 6)

A (5, 2)

C (     , 1)3
2

B (     ,       )9
5

2
5

Figure 4.3
Infinite solutions for the LPP.
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In addition, there can be inconsistent constraints in a LPP or the constraints 
may be such that no feasible solution exists for the problem. The solution of 
the LPP, in this case, is said to be infeasible. From the discussion so far, we can 
say that an LPP can have

•	 A unique solution
•	 Infinite solutions
•	 An unbounded solution
•	 An infeasible solution

4.3  Standard Form of an LPP

In the previous section, the graphical method was used to find the optimal 
solution of a two-variable LPP. In practice, LPP would contain several vari-
ables and constraints. Thus, there is a need to put LPP in a standard form. 
For an n variable LPP, the scalar form is given as

Minimize

 z = c1x1 + c2x2 + ⋯ + cnxn (4.20)

y

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
x

Unbounded

Figure 4.4
Unbounded solution for the LPP.
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subject to

 a11x1 + a12x2 + ⋯ + a1nxn = b1 (4.21)

 a21x1 + a22x2 + ⋯ + a2nxn = b2 (4.22)

 ⋮ 

 am1x1 + am2x2 + ⋯ + amnxn = bm (4.23)

 xj, bm ≥ 0 (4.24)

where aij(i = 1, 2, ⋯, m; j = 1, 2, ⋯, n), bj, cj are constants and xj are the design 
variables. LPP can also be put in matrix form as

Minimize

 z = cT x (4.25)

subject to

 Ax = b (4.26)

 x, b ≥ 0 (4.27)

where A is an m × n constraint matrix given by

 A =





















a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

�
�

�
�

 (4.28)

and b, c, and x are column vectors given by

 

b c=


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
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














=



















b

b

b

c

c
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1

2

1

2

 

, 




=


















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


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The following important points are to be noted when an LPP is written in 
standard form.

•	 The objective function needs to be in the minimization type.
•	 All of the design variables should be nonnegative.
•	 All of the components of the vector b are to be nonnegative.
•	 All of the constraints are of the equality type.

If the objective function is the maximization type, it can be converted to 
the minimization type by multiplying the cost coefficients by –1. For exam-
ple, if the objective function is

 Maximize z = x1 + 2x2 

Then it can be converted to the minimization type as

 Minimize −z = −x1 − 2x2 

If a ≤ type constraint is present, then it can be converted into an equality 
constraint by adding a slack variable. For example, the inequality constraint

 4x1 − 5x2 + 6x3 + 9x4 ≤ 20 

can be converted to an equality constraint by the addition of the slack variable s1

 4x1 − 5x2 + 6x3 + 9x4 + s1 = 20 

where s1 ≥ 0. If a ≥ type constraint is present, then it can be converted into an 
equality constraint by subtracting it with a surplus variable. For example, the 
inequality constraint

 2x1 + 4x2 − 6x3 + 7x4 ≥ 8 

can be converted to an equality constraint by subtracting it with a surplus 
variable e1

 2x1 + 4x2 − 6x3 + 7x4 − e1 = 8 

An unrestricted or free variable (without any specified bounds) can be 
replaced by a pair of nonnegative variables. If x1 is an unrestricted variable, 
then it can be replaced by

 x x x1 1 1= ′ − ′′  

with ′ ≥x1 0 and ′′ ≥x1 0.
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Example 4.1

Transform the following LPP into the standard form.

Maximize

 z = −4x1 − 2x2 + x3 − 3x4

subject to

 2x1 + 3x2 − x3 − 3x4 = 5

 −5x1 − 2x2 + 4x3 − 7x4 ≤ 8

 4x1 − x2 − 2x3 + 5x4 ≤ −6

 x1 ≥ −1, 0 ≤ x2 ≤ 3, x3 ≥ 0, x4 free

Since the objective function is of the maximization type, it needs to be 
converted into the minimization type. This can be done by multiplying 
the objective function by –1, that is,

Minimize 

 −z = 4x1 + 2x2 − x3 + 3x4

The right-hand side of the third constraint is negative (–6). In standard 
form, this has to be positive. Hence, the third constraint has to be multi-
plied by –1 throughout. Third constraint thus becomes

 −4x1 + x2 + 2x3 − 5x4 ≥ 6

Note that inequality type also changes during this operation.
Now transforming the variables

 ′ = +x x1 1 1  

 x x x4 4 4= ′ − ′′  

and substituting these variables in the LPP, we get

Minimize

 ′ = ′ + − + ′ − ′′ −z x x x x x4 2 3 3 41 2 3 4 4  

subject to

 2 3 3 3 71 2 3 4 4′ + − − ′ + ′′ =x x x x x  
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 − ′ − + − ′ + ′′ ≤5 2 4 7 7 31 2 3 4 4x x x x x  

 − ′ + + − ′ + ′′ ≥4 2 5 5 21 2 3 4 4x x x x x  

 x2 ≤ 3 

 ′ ′ ′′ ≥x x x x x1 2 3 4 4 0, , , ,  

Using the slack and surplus variables, inequality constraints can be 
converted into equality constraints. Thus, the LPP problem converted 
into standard form is

Minimize

 ′′ = ′ + = ′ + − + ′ − ′′z z x x x x x4 4 2 3 31 2 3 4 4  

subject to

 2 3 3 3 71 2 3 4 4′ + − − ′ + ′′ =x x x x x  

 − ′ − + − ′ + ′′ + =5 2 4 7 7 31 2 3 4 4 2x x x x x s  

 − ′ + + − ′ + ′′ − =4 2 5 5 21 2 3 4 4 3x x x x x e  

 x2 + s4 = 3 

 ′ ′ ′′ ≥x x x x x s e s1 2 3 4 4 2 3 4 0, , , , , , ,  

In matrix form, the LPP in standard form can be written as

Minimize

 z″ = cTx 

subject to

 Ax = b 

 x ≥ 0 
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where

 

A =

− −
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

 

4.4  Basic Solution

Consider an LPP in the standard form

Minimize

 z = cTx (4.29)

subject to

 Ax = b (4.30)

 x, b ≥ 0 (4.31)

with n variables and m constraints. If m = n, then the solution is given by 
satisfying the constraint equations Ax = b and there is no need for optimiza-
tion. For m > n, there will be m − n redundant equations. The case m < n will 
correspond to an underdetermined system of linear equations that will have 
infinite solutions. The solution technique of LPP is to determine the optimal 
solution among many solutions.

A solution that satisfies the constraints is called the feasible solution. If we 
set n − m variables to zero and solve the constraint equations Ax = b, we 
get the basic solution. The corresponding variable x obtained from the basic 
 solution is termed the basis. A basic solution that also satisfies x ≥ 0 is called 
the basic feasible solution. It may be noted that every basic feasible solution is 
an extreme point of the convex set of feasible solutions. If the basic feasible 
solution is optimal then it is said to be the optimal basic solution.
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Example 4.2

Find all the basic solutions for the system of equations:

 3x1 − 4x2 + 2x3 + x4 = 0 

 x1 + 3x2 + 2x3 + x4 = 500 

 7x1 + x2 + x3 − x4 = 700 

Writing the above equations in matrix form

 Ax = b 

where

 A x=
















=


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
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;

x
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x
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
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
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






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; b
0

500
700

 

Let x1, x2, and x3 be the basic variables and x4 be the nonbasic variable. 
Since the nonbasic variable(s) take the value zero in the basic solution, 
we can rewrite the matrix equation as

 Bx = b 

where

 B x b=
−















=



















=
3 4 2
1 3 2
7 1 1

01

2

3

; ;
x

x

x
5500
700

















 

The matrix B corresponds to the basic variable columns of A. If B is 
invertible, then we can evaluate x as

 x = B−1b 

 x =



















=
−















−
x

x

x

1

2

3

1

3 4 2
1 3 2
7 1 1

0
500
7700

6800 89
8300 89
6400 89

















=
















/
/
/
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Since x1, x2, and x3 are all greater than zero, the solution obtained is a 
basic feasible solution.

Similarly, we can take x1, x2, and x4 as the basic variables and x3 as the 
nonbasic variable. Then,

 x =



















=
−

−

















−
x

x

x

1

2

4

1

3 4 1
1 3 1
7 1 1

0
5000
700

100
100
100

















=
















 

Again, the basic variables obtained have a value greater than zero, cor-
responding to a basic feasible solution.

If we take x1, x3, and x4 as the basic variables and x2 as the nonbasic 
variable, then

 x =



















=
−

















−
x

x

x

1

3

4

1

3 2 1
1 2 1
7 1 1

0
500
7700

250
3200 3
4150 3

















=
−

−

















/
/

 

Since some of the basic variables are negative, the basic solution is not 
feasible.

Now take x2, x3, and x4 as the basic variables and x1 as the nonbasic 
variable. Then,

 x =



















=
−

−

















−
x

x

x

2

3

4

1

4 2 1
3 2 1
1 1 1

0
5000
700

500 7
6400 21
6800 21

















=
−

















/
/
/

 

Since some of the basic variables are negative, the basic solution is not 
feasible.

4.5  Simplex Method

In the previous example, we examined four basic solutions for a system of 
equations with four variables and three constraints. The number of basic 
solutions that need to be inspected for an n variable problem with m con-
straints is given by

 

n
n m m

!
( )! !−  
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For a large LPP, the number of basic solutions could be very high. For 
example, for a 15-variable problem with 10 constraints, number of basic solu-
tions is 3003.

In the simplex method, all the basic solutions are not evaluated. Rather, 
this is an iterative method that moves from one basic feasible solution to 
another until the basis becomes optimal. To begin with, the simplex method 
requires an initial basic feasible solution for the problem. This can be accom-
plished by the introduction of artificial variables in the problem. The coeffi-
cient matrix associated with the artificial variables will be an identity matrix. 
The artificial variables can provide initial bases since the columns of an iden-
tity matrix are linearly independent.

Consider an LPP

Maximize

 z = 6x1 + 7x2 

subject to

 3x1 + x2 ≤ 10 

 x1 + 2x2 ≤ 8 

 x1 ≤ 3 

 x1, x2 ≥ 0 

Writing the problem in standard form

Minimize

 z = −6x1 − 7x2 

subject to

 3x1 + x2 + x3 = 10 

 x1 + 2x2 + x4 = 8 

 x1 + x5 = 3 

 x1, x2, x3, x4, x5 ≥ 0 
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Writing the constraints in matrix form

 Ax = b 

where

 A x=
















=











3 1 1 0 0
1 2 0 1 0
1 0 0 0 1

1

2

3

4

5

;

x

x

x

x

x















=
















; b
10
8
3

 

Taking x3, x4, and x5 as basic variables, we can evaluate them as

 x B bB

x

x

x

=



















= =
















−

−
3

4

5

1
1 0 0
0 1 0
0 0 1

11

10
8
3

10
8
3

















=
















 

The solution obtained is a basic feasible solution since all the elements of x are 
positive. This is not surprising since all the elements of the vector b are positive 
(problem already written in the standard form) and B is an identity matrix. In 
this way, a basic feasible solution is ensured at the start of the simplex method. 
Now we need to check whether the basic feasible solution is optimal.

Since nonbasic variables (x1 and x2) have zero values, the objective function

 z = −6x1 − 7x2 

takes the value zero. That is,

 z = 0 

The value of z will decrease if x1 or x2 is increased from zero. Thus, the cur-
rent basis is not optimal. In the simplex method, we can add or remove only 
one variable from the basis. So we can bring either x1 or x2 into the basis. Since 
the coefficient of x2 is most negative (−7 < −6), we bring x2 into the basis. The 
idea is that z decreases more rapidly when x2 is brought into the basis.

Keeping the other nonbasic variable x1 equal to zero, let us write the basic 
variable equations in terms of x2 as

 x3 = 10 − x2 

 x4 = 8 − 2x2 

 x5 = 3 
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To maintain nonnegativity of the basic variables x3, x4, and x5, the variable 
x2 can take a maximum value of 10 in the equation

 x3 = 10 − x2 

and x2 can take a maximum value of 4 in the equation

 x4 = 8 − 2x2 

Though we would like to take x2 as large as possible to minimize the objec-
tive function, it can take a maximum value of 4 without making x4 negative. 
Thus, x4 is the leaving basic variable. Note that if the coefficients of x2 on 
the left-hand side of the constraint equations were negative, then x2 can be 
increased to any larger value without violating the nonnegativity constraint 
of the basic variable. The preceding discussion can be put in a ratio test for 
determining the leaving basic variable. In this test we compute the mini-
mum of the ratios

 

b
a

ai

ij
ij; > 0

 

In the present example, since x2 is the new basic variable, j becomes 2. So 
the ratios are

 

10
1

10
8
2

4= =;
 

Since the second row has the minimum value (4 < 10), the second basic 
variable (x4) leaves the basis. The new basic feasible solution is

 

xB

x

x

x

=



















=
















2

3

5

4
6
3

 

Rewriting the objective function in terms of the new nonbasic variables x1 
and x4 by using the second constraint equation, we get

 
z x x= − − +28

5
2

7
21 4

 

In the first iteration of the simplex method, the objective function is mini-
mized to –28 and since the coefficient of the nonbasic variable x1 is nega-
tive, the basic feasible solution obtained is not optimal. The steps described 
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earlier are to be repeated until the cost coefficients associated with nonbasic 
variables in the objective function are all nonnegative. Based on the discus-
sion, let us write the algorithm for the simplex method (see Table 4.1) and 
corresponding MATLAB code (simplex.m).

The initial simplex tableau is written as follows:

•	 A vector of basic variables
•	 A vector of nonbasic variables
•	 The matrix [ ]ˆB N b , and
•	 The cost coefficients [ ]c cB

T T
N

The simplex tableau at the end of each iteration is written as follows:

•	 A vector of basic variables
•	 A vector of nonbasic variables
•	 The matrix [ ]I B N B b− −1 1 , and
•	 The cost coefficients [ ]ˆc cB

T
N
T z−

Table 4.1

Algorithm for Simplex Method

Step 1: Write the LPP in the canonical form

 Minimize z = cTx

 subject to Ax = b

 x ≥ 0

 Compute matrices B and N from matrix A, corresponding to basic and nonbasic variable 
sets. cN and cB are the cost coefficients. Print the initial simplex tableau.

Step 2: Compute the minimum(cN), which gives ith entering basic variable
 Compute the entering column as Â B Ai i= −1

Step 3: For all components of Âi  that are greater than zero, compute the ratios bi

iÂ
. 

From the minimum of these ratios decide the leaving basic variable.
Step 4: Using the updated basic and nonbasic variable sets, update the B and N matrix along 
with cN and cB.

Step 5: Compute

 x b B bB = = −ˆ 1

 y c BT = −
B
T 1

 ĉ c y NN N
T TT = −

 z B
T= −c xB

 If ĉN
T ≥ 0

 then goto Step 6
 else print simplex tableau and goto Step 2

Step 6: Print the optimal basis, value of basic variables, and the objective function value. 
The components of the vector y are called simplex multipliers.
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Let us execute the code for the LPP

Minimize

 z = −6x1 − 7x2

subject to

 3x1 + x2 + x3 = 10

 x1 + 2x2 + x4 = 8

 x1 + x5 = 3

 x1, x2, x3, x4, x5 ≥ 0

The output obtained is

basic_set =   3   4   5
nonbasic_set =   1   2
Initial_Table =
1     0       0       3       1      10
0     1       0       1       2       8
0     0       1       1       0       3
Cost =
0     0       0      -6      -7       0
___________________________
basic_set =   3   2   5
nonbasic_set =   1   4 
Table =
 1     0       0     5/2    -1/2       6
 0     1       0     1/2     1/2       4
 0     0       1       1       0       3
Cost =
 0     0       0    -5/2     7/2      28
___________________________
basic_set =      1   2   5
nonbasic_set =   3   4
Table =
 1     0       0     2/5    -1/5    12/5
 0     1       0    -1/5     3/5    14/5
 0     0       1    -2/5     1/5     3/5
Cost =
 0     0       0     1     3    34
— — — SOLUTION — — —
basic_set = 1       2          5
xb =
 12/5
 14/5
 3/5
zz =
 -34

 (x3, x2, x5)

 (x1, x2, x5)

(x1, x4)
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Since the reduced cost coefficients (1 and 3) of the nonbasic variables are 
nonnegative, the basis is optimal. The basis for the optimal solution is x1, x2, 
and x5 and their values are

 
x1

12
5

=
 

 
x2

14
5

=
 

 
x5

3
5

=
 

and the objective function is minimized to

 z = −34 

Let us graph the constraints (see Figure 4.5) for this problem. The initial 
basic feasible solution in the simplex method corresponds to point A (0, 0). In 
the first iteration, the method moved to point B (0, 4) as the next basic feasible 
solution where objective function value was reduced to –28. The basis here is 
x3, x2, and x5 and their values are

 x2 = 4 

 x3 = 6 

 x5 = 3 

–1.0 –0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

–1

1

2

3

4

5

x2

C (    ,     )12
5

14
5

Feasible region

B (0, 4)

A (0, 0)

x1

Figure 4.5
Feasible region for the problem solved by the simplex method.
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In the second iteration, the simplex method moved to point C
12
5

14
5

,






 

as the next basic feasible solution where the objective function value was 
reduced to –34. Since all the cost coefficients corresponding to the nonbasic 
variable were nonnegative, the basic feasible solution was optimal and fur-
ther iterations were terminated.

4.5.1  Multiple Solutions

Let us modify the objective function of the previous problem and rewrite 
LPP as

Minimize

 z = −6x1

subject to

 3x1 + x2 + x3 = 10 

 x1 + 2x2 + x4 = 8 

 x1 + x5 = 3 

 x1, x2, x3, x4, x5 ≥ 0 

The MATLAB code (simplex.m) is executed again with the following 
modification:

c = [-6;0;0;0;0];

The output obtained is

________________________________________
basic_set =
 3 4 5
nonbasic_set =
 1 2
Initial_Table =
1 0 0 3 1 10
0 1 0 1 2 8
0 0 1 1 0 3
Cost =
0 0 0 -6 0 0
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________________________________________
basic_set =
 3 4 1
nonbasic_set =
 2 5
Table =
1 0 0 1 -3 1
0 1 0 2 -1 5
0 0 1 0 1 3
Cost =
0 0 0 0 6 18
 ------SOLUTION------
basic_set =
 3 4 1
xb =
 1
 5
 3
zz =
 -18

The simplex method converges to the optimal solution in one iteration and 
the minimum value of the objective function is –18. Observe from the output 
that at the end of the first iteration the cost coefficient corresponding to the 
nonbasic variable x2 is zero as compared to another nonbasic variable x5 that 
has a value of 6. Allow the MATLAB code (simplex.m) to be executed for one 
more iteration by commenting the terminating criterion as follows:

%  if cn_cap >=0
%      break;
%  end

The output obtained in the second iteration is
________________________________________
basic_set =  2 4 1
nonbasic_set = 3 5
Table =
1 0 0 1 -3 1
0 1 0 -2 5 3
0 0 1 0 1 3
Cost =
0 0 0 0 6 18
 ------SOLUTION------
basic_set =
 2 4 1 
xb =
 1
 3
 3
zz =
      -18
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Observe that this basis is also optimal. An LPP is said to have multiple solu-
tions when the cost coefficient of a nonbasic variable is zero in the optimal 
basis. This is also shown in Figure 4.6, where these points correspond to an 
edge of the convex polyhedron.

4.5.2  Degeneracy

Sometimes, during the course of the simplex procedure, the method can 
become cyclic with no further improvement in the objective function. This 
occurs when the entering basic variable becomes zero in a basis. That is, com-
ponent of vector bi becomes zero during the iteration. Let us show this with 
an example for the following LPP:

Minimize

 z = −3x1 − 3x2 

subject to

 x1 ≤ 4 

 x1 + 2x2 ≤ 4 

 x1, x2 ≥ 0 

–1.0 –0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

–1

1

2

3

4

5

Multiple solutions

x1

x2

Figure 4.6
Concept of multiple solutions.
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Modify the simplex.m code with the following changes:

A =[1  0  1  0;
    1  2  0  1 ];
b = [4;4];
c = [-3;-3;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

On executing the code, the following output is displayed on the command 
window.

________________________________________
basic_set =  3 4
nonbasic_set = 1 2
Initial_Table =
 1 0 1 0 4
 0 1 1 2 4
Cost =
 0 0 -3 -3 0
________________________________________
basic_set =  1 4
nonbasic_set = 2 3
Table =
 1 0 0 1 4
 0 1 2  -1 0
Cost =
 0 0 -3 3 12
________________________________________
basic_set =  1 2
nonbasic_set = 3 4
Table =
 1 0 1 0 4
 0 1   -1/2  1/2 0
Cost =
 0 0  3/2  3/2 12

Note that in the first iteration, the basic variable x4 becomes zero. The value 
of the objective function does not improve during the second iteration. The 
problem can be avoided by adding a small perturbation on the b vector and 
the same can be implemented in the simplex.m code as

b = [4;4];
pertb = [1e-2;1e-3];
b = b+pertb;

On executing the modified code, the following output is displayed on the 
command window.
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────────────────────────────────────────
basic_set =  3 4
nonbasic_set = 1 2
Initial_Table =
 1 0 1 0 401/100
 0 1 1 2 4001/1000
Cost =
 0 0 -3 -3 0
────────────────────────────────────────
basic_set =  3 1
nonbasic_set = 2 4
Table =
 1 0 -2 -1 9/1000
 0 1 2 1 4001/1000
Cost =
 0 0 3 3 3997/333
________________________________________
basic_set =  3 2
nonbasic_set = 1 4
Table =
 1 0 1 0 401/100
 0 1 1/2 1/2 4001/2000
Cost =
 0 0  -3/2 3/2 4003/667
 ------SOLUTION------
basic_set =  3 2
xb =
 401/100
 4001/2000
zz =
 -4003/667

Note that by making a small perturbation on b, we are able to achieve the 
minimum value of the objective function as –6.0015 at (x1, x2) = (0, 2.0005). The 
exact minimum value of the objective function is –6 and occurs at (x1, x2) = (0, 2).

4.5.3  Two-Phase Method

As discussed earlier, to start a simplex method, a basic feasible solution is 
required. A basic feasible solution may not be readily available for an LPP. 
For example, the addition of a negative slack variable in a ≥ type constraint 
will not lead to the canonical form of equations. By addition of artificial vari-
ables, this problem can be overcome. The original LPP gets modified as a 
result of the introduction of the artificial variables. In phase I of the simplex 
method, we solve the modified LPP to get a basic feasible solution. Once a 
basic feasible solution is available from phase I, phase II involves solving the 
original LPP. Let us explain the two-phase simplex method with an example.
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Consider a LPP

Minimize

 z = 3x1 + 4x2

subject to

 3x1 + 2x2 = 10

 2x1 − 4x2 ≥ 3

 3x1 + 4x2 ≤ 16

 x1, x2 ≥ 0

Writing the LPP with slack (x3, x4) and artificial variables (y1, y2) as

Minimize

 z = 3x1 + 4x2

subject to

 3x1 + 2x2 + y1 = 10

 2x1 − 4x2 − x3 + y2 = 3

 3x1 + 4x2 + x4 = 16

 x1, x2, x3, x4, y1, y2 ≥ 0

The objective function in the phase I problem is

Minimize

 ′ = = +∑z y y yi 1 2  (4.32)

The constraints of the phase I problem remain same as in the original LPP. 
The variables y1, y2, and x4 can be taken as the basic variables. The objective 
function in the phase I problem is not a function of the nonbasic variables. 
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Writing the modified objective function in terms of the nonbasic variables 
using the first and second constraint equations:

 y1 + y2 = 13 − 5x1 + 2x2 + x3

This can also be done using the formula

 ĉ c y NN
T

N
T T= −  (4.33)

where

 y c BT
B
T= −1

 (4.34)

By executing the MATLAB code (initial_cost.m), the cost coefficients for the 
nonbasic variables can be obtained as

(-5, 2, 1)

With a minor modification of the MATLAB code (simplex.m), phase I code is 
written in phase1.m. On executing the code, the following output is displayed 
on the command window.

─────────────────────────────────────────
basic_set =  5 6 4
nonbasic_set = 1 2 3
Initial_Table =
1 0 0 3 2 0 10
0 1 0 2  -4  -1 3
0 0 1 3 4 0 16
Cost =
0 0 0 -5 2 1 -13
─────────────────────────────────────────
basic_set =  5 1 4
nonbasic_set = 2 3 6
Table =
1 0 0 8 3/2 -3/2 11/2
0 1 0  -2  -1/2 1/2 3/2
0 0 1  10 3/2 -3/2 23/2
Cost =
0 0 0 -8 -3/2 5/2 -11/2

The variable number 6 (y2) has left the basis and so can be removed from 
the basis. A MATLAB code (remove_variable.m) removes the user-specified 
column from the nonbasic set. Note that this variable corresponds to the 
third column in the nonbasic set. On executing the code, the following out-
put is displayed on the command window.
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 ----Table after removing artificial variable------
basic_set =  5 1 4
nonbasic_set = 2 3
Initial_Table =
1 0 0 8 3/2  11/2
0 1 0 -2 -1/2 3/2
0 0 1 10 3/2  23/2
Cost =
0 0 0 -8 -3/2  -11/2

Now rerun the phase I code without initializing the A and b matrix. This 
can be done by modifying the code phase1.m to phase1_without_ initialization.m. 
On executing the code phase1_without_initialization.m, the following output is 
displayed on the command window.

 ________________________________________
basic_set =  2 1 4
nonbasic_set = 3 5
Table =
1 0 0 3/16 1/8 11/16
0 1 0 -1/8 1/4 23/8
0 0 1 -3/8 -5/4 37/8
Cost =
0 0 0 0 1 0

Again, the variable number 5 (y1) has left the basis and so can be removed 
from the basis. This corresponds to the second column in the nonbasic set. 
Make the following modification in the code remove_variable.m and then 
rerun this code.

remove_column = 2;

----Table after removing artificial variable------
basic_set =  2 1 4
nonbasic_set = 3 
Initial_Table =
 1 0 0 3/16 11/16
 0 1 0 -1/8 23/8
 0 0 1 -3/8 37/8
Cost =
 0 0 0 0 0

This basis does not involve any artificial variable and the value of the objective 
function is zero. So this is the feasible solution for the original problem. In case 
the objective function value was greater than zero, the solution would be infea-
sible. This is the end of phase I. The objective function of the original problem is

 z = 3x1 + 4x2
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The objective function has to be written in terms of the nonbasic variable. 
Again using the code initial_cost.m, with the following modifications, the 
cost coefficients for the nonbasic variable can be computed.

cb = [3 4 0];
cn = [0];
N = [3/16;
 -1/8;
 -3/8];
B = [0 1 0;1 0 0;0 0 1];

In phase II of the simplex method, execute the phase1.m code with follow-
ing modifications.

A =[0 1 3/16 0;
 1 0 -1/8 0;
 0 0 -3/8 1];
b = [11/16;23/8;37/8];
c = [0;0; -3/8; 0];
basic_set = [2 1 4];
nonbasic_set = [3];
zz1 = 91/8;

On executing the phase1.m code the following output is printed on the com-
mand window.

________________________________________
basic_set =  2 1 4
nonbasic_set = 3 
Initial_Table =
 1 0 0 3/16 11/16
 0 1 0  -1/8 23/8
 0 0 1  -3/8 37/8
Cost =
 0 0 0  -3/8 -91/8
________________________________________
basic_set =  3 1 4
nonbasic_set = 2 
Table =
 1 0 0  16/3 11/3
 0 1 0 2/3 10/3
 0 0 1 2 6
Cost =
 0 0 0 2 -10

Since all the cost coefficients are nonnegative, the basis is optimal. The 

minimum value of the objective function is 10 and occurs at ( , ) ,x x1 2
10
3

0=




 .
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4.5.4  Dual Simplex Method

Every LPP, called the primal, is associated with another LPP, called its dual. 
The optimal solution of the primal problem and its dual remain the same. In 
the dual problem, the components of the b vector (right-hand side of the con-
straint equation in the primal problem) become the cost coefficients in the 
objective function and vice versa. If there are n variables and m constraints 
in the primal problem, then there will be m variables and n constraints in the 
dual problem. If the objective function in the primal problem is of the mini-
mization type, then it becomes a maximization type in the dual problem. All 
constraints are to be written as ≤ in the dual problem. An equality constraint 
x = b can be converted into two ≤ constraints by writing it as x ≤ b and −x ≤ 
−b. For a primal LPP

Maximize

 z = cTx

subject to

 Ax ≥ b

 x ≥ 0

Its corresponding dual is

Minimize

 w = bT y

subject to

 AT y ≤ c

 y ≥ 0

The transformation rules from primal to dual problems are given in 
Table 4.2. In the primal LPP, the simplex method moves from one feasible 
solution to another. The dual simplex method moves from one primal infea-
sible solution to another with reduced infeasibility. On reaching the primal 
feasibility conditions, the method stops as the solution obtained is the opti-
mal one. One may argue the need for a dual problem and its solution. It is 
observed that some of the LPPs show degeneracy when used with the pri-
mal problems. The corresponding dual problems are much easier to solve in 
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such cases. Further, dual methods are more suited for mixed-integer type 
problems.

Let us write the algorithm for the dual-simplex method (Table 4.3) and the 
corresponding MATLAB code is written in the file dual.m.

Consider the primal LPP

Maximize

 z = 3y1 + 4y2 + 25y3 + 26y4

subject to

 y1 + 2y3 + y4 ≤ 9

 y2 + y3 + 3y4 ≤ 8

 y1, y2, y3, y4 ≥ 0

Its dual is

Minimize

 z = 9x1 + 8x2

subject to

 x1 ≥ 3

 x2 ≥ 4

 2x1 + x2 ≥ 25

 x1 + 3x2 ≥ 26 

 x1, x2 ≥ 0

Table 4.2

Transformation Rules from Primal to 
Dual Conversion

Primal Dual

aix ≥ bi yi ≥ 0
aix ≤ bi yi ≤ 0
aix = bi yi free
xi ≥ 0 a y cj

T
j≤

xi ≤ 0 a y cj
T

j≥

xi free a y cj
T

j=
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Since the constraints are of ≥ type, the dual problem is not in standard 
form. Writing the constraints in the canonical form,

 Ax = b

where

 A x=



















=

−
−

− −
− −

1 0 1 0 0 0
0 1 0 1 0 0
2 1 0 0 1 0
1 3 0 0 0 1

;

xx

x

x

x

x

x

1

2

3

4

5

6

3
4
25
26



























=

 −
−

−
−

; b

















 

Table 4.3

Algorithm for the Dual-Simplex Method

Step 1: Write the dual LPP in canonical form

Minimize z = cTx

subject to Ax = b

x ≥ 0

 Compute matrices B and N from matrix A, corresponding to basic and nonbasic variable sets. 
cN and cB are the cost coefficients of basic and nonbasic variables. Print the initial tableau.

Step 2: Compute minimum(bi), which gives the ith leaving basic variable.
Compute the pivot row as Â B Ai i= −1

Step 3: For all components of Âi  which are less than zero, compute the ratios −
c

A
j

ˆ
i

. 
Minimum of these ratios decide the entering basic variable.

Step 4: Using the updated basic and nonbasic variable sets, update B and N matrix along 
with cN and cB.

Step 5: Compute

x b B bB = = −ˆ 1

y c BT
B
T= −1

ĉ c y NN
T

N
T T= −

z B
T

B= −c x

 If b̂ ≥ 0
 then goto Step 6
 else print the simplex tableau and goto Step 2

Step 6: Print the optimal basis, value of basic variables and the objective function value.
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On executing the code dual.m, the following output is printed on the 
MATLAB command window.

────────────────────────────────────────
basic_set =  3 4 5 6
nonbasic_set = 1 2
Initial_Table =
1 0 0 0 -1 0 -3
0 1 0 0 0 -1 -4
0 0 1 0 -2 -1 -25
0 0 0 1 -1 -3 -26
Cost =
0 0 0 0 9 8 0
________________________________________
basic_set =  3 4 5 2
nonbasic_set = 1 6
Table =
1 0 0 0  -1 0 -3
0 1 0 0 1/3 -1/3 14/3
0 0 1 0  -5/3 -1/3  -49/3
0 0 0 1 1/3 -1/3 26/3
Cost =
0 0 0 0 19/3 8/3 -208/3
________________________________________
basic_set =  3 4 1 2
nonbasic_set = 5 6
Table =
1 0 0 0 -3/5 1/5 34/5
0 1 0 0 1/5 -2/5 7/5
0 0 1 0 -3/5 1/5 49/5
0 0 0 1 1/5 -2/5 27/5
Cost =
0 0 0 0 19/5 7/5 -657/5
 ------FINAL SOLUTION------
basic_set = 3 4 1 2 
xb =
 34/5
 7/5
 49/5
 27/5
zz =
 657/5

Since all the bi are nonnegative, the basis is optimal. The minimum value 

of the objective function is 
657

5
 and occurs at ( , ) ,x x1 2

49
5

27
5

=




 .
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4.6  Interior-Point Method

In the simplex method, one moves along the boundary of the feasible region 
to arrive at the optimum. For an LPP with a large number of constraints, this 
may be time consuming if the initial guess is far from the optimal. On the 
other hand, interior-point methods move inside the feasible region to reach 
the optimal solution. Narenndra Karmarkar proposed a new polynomial-
time algorithm (Karmarkar 1984) that claimed to be up to 50 times faster as 
compared to the simplex method for large LPP. His algorithm did create fur-
ther interest in such methods. Interior point methods can be classified into

•	 Barrier function methods
•	 Potential-reduction methods
•	 Affine scaling methods

The affine scaling method is very simple to implement and has been suc-
cessful in solving large LPP. The method is due to Barnes and Vanderbei 
(Barnes 1986; Vanderbei et al. 1986). In this method, we start with a point 
inside the feasible region (see Figure 4.7) and then use the projected steepest-
descent direction to get the next improved point. Note that if the point (xc) 
is close to the central position, a considerable improvement in the objective 
function can be made. On the other hand, if the point (xa) is away from the 
central position, the improvement in the objective function would be less. 
The affine scaling method transforms LPP to another equivalent problem so 
that the point is closer to the central position.

Let us write an algorithm for the affine scaling method (Table 4.4) and the 
corresponding MATLAB code is written in the file interior.m.

Let us take the same problem that was solved by the simplex method. The LPP

Maximize

 z = 6x1 + 7x2

xa

xc

x*

Figure 4.7
Interior-point method.
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subject to

 3x1 + x2 ≤ 10

 x1 + 2x2 ≤ 8

 x1 ≤ 3

 x1, x2 ≥ 0

On executing the code, the maximum value of the objective function 
obtained is 34, which occurs at (x1, x2) = (2.4, 2.8). This matches with the result 
that was obtained by the simplex method. The convergence history of the 
affine scaling method is shown in Figure 4.8.

Table 4.4

Algorithm for the Interior-Point Method

Step 1: Write the LPP in the form

Maximize z = cTx

subject to Ax = b

x ≥ 0

 Give inputs A, b, c, x0 (initial feasible point), γ (accelerating parameter), and ε (tolerance 
parameter).

Step 2: Compute vi = b − Axi

D = diag(vi)

hx = (ATD−2A)−1c

hv = −Ahx

α γ= ⋅ − <








min  v
h

hi

v
v 0

xi+1 = xi + αhx

Step 3: If z zi i( ) ( )x x+ − >1 ε
 then goto Step 2
 else goto Step 4

Step 4: Print x and z. 
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4.7  Portfolio Optimization

Let us solve a 10-variable portfolio optimization problem using some of 
the  techniques described earlier in this chapter. A company has to invest 
$600,000 in different financial products such that its earnings are maxi-
mized. The expected return on investment for different financial products 
is given in Table 4.5.

–1.0 –0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

–1

1

2

3

4

5

Feasible region

x1

x2

B (0, 4)

A (0, 0)

C (    ,     )12
5

14
5

Figure 4.8
Convergence history for the affine scaling method.

Table 4.5

Portfolio Optimization Problem Description

Financial Product Market Return (in %)

x1 Trucks—Germany 9.5
x2 Cars—Japan 11.2
x3 Laptops—USA 10.5
x4 Computers—USA 11.9
x5 Appliances—Australia 11.7
x6 Appliances—Europe 13.2
x7 Insurance—Germany 10.5
x8 Insurance—USA 10.9
x9 Currency carry trade 5.5
x10 Others 5.1
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The following constraints are specified on the investment.

•	 No more than $140,000 in the transport segment
•	 No more than $160,000 in the computer segment
•	 No more than $120,000 in the appliances segment
•	 No more than $230,000 in the German segment
•	 No more than $220,000 in the USA segment

The LPP can be written mathematically as

Maximize

 z = 0.095x1 + 0.112x2 + 0.105x3 + 0.119x4 + 0.117x5 + 0.132x6 + 0.105x7

 + 0.109x8 + 0.055x9 + 0.051x10

subject to

 x1 + x2 ≤ 140

 x3 + x4 ≤ 160

 x5 + x6 ≤ 120

 x1 + x7 ≤ 230

 x3 + x4 + x8 ≤ 220

 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 600

 x1, x2, x3, x4, x5, x6, x7, x8, x91, x10 ≥ 0

Writing the problem in standard form

Minimize

 z = −0.095x1 − 0.112x2 − 0.105x3 − 0.119x4 − 0.117x5 − 0.132x6

 −0.105x7 − 0.109x8 − 0.055x9 − 0.051x10

subject to

 x1 + x2 + x11 = 140

© 2015 by Taylor & Francis Group, LLC

  



129Linear Programming

 x3 + x4 + x12 = 160

 x5 + x6 + x13 = 120

 x1 + x7 + x14 = 230

 x3 + x4 + x8 + x15 = 220

 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x16 = 600

 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16 ≥ 0

The variables x1, x2, and so on are in thousands of dollars. Update the fol-
lowing input data in the code simplex.m and then execute the code.

A =[1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0;
 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0;
 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0;
 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0;
 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0;
 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1];
b = [140;160;120;230;220;600];
c = [-0.095;-0.112;-0.105;-0.119;-0.117;-0.132;-0.105;-0.109;-0.055;  
 - 0.051;0;0;0;0;0;0];
basic_set = [11 12 13 14 15 16];
nonbasic_set = [1 2 3 4 5 6 7 8 9 10]

The following output is displayed on the command window.

_______________________________________
basic_set =  11 12 13 14 15 16
nonbasic_set = 1 2 3 4 5 6 7 8 9 10
Initial_Table =
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 140
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 160
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 120
0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 230
0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 220
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 600
Cost =
0 0 0 0 0 0 -19/200 -14/125 -21/200 -119/1000 -117/1000 -33/250
 -21/200 -109/1000 -11/200 -51/1000 0
_______________________________________
basic_set = 11 12 6 14 15 16
nonbasic_set = 1 2 3 4 5 7 8 9 10 13
Table =
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 140
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 160
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0 0 1 0 0 0 0 0 1 1 0 0 0 0 0   1 120
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0   0 230
0 0 0 0 1 0 0 0 1 1 0 0 1 0 0   0 220
0 0 0 0 0 1 1 1 1 1 0 1 1 1 1  -1 480
Cost =
0 0 0 0 0 0 -19/200 -14/125 -21/200 -119/1000 3/200 -21/200
-109/1000 -11/200 -51/1000 33/250 396/25
_________________________________________
basic_set = 11 4 6 14 15 16
nonbasic_set = 1 2 3 5 7 8 9 10 12 13
Table =
1 0 0 0 0 0 1 1 0 0 0 0 0 0   0   0 140
0 1 0 0 0 0 0 0 1 0 0 0 0 0   1   0 160
0 0 1 0 0 0 0 0 0 1 0 0 0 0   0   1 120
0 0 0 1 0 0 1 0 0 0 1 0 0 0   0   0 230
0 0 0 0 1 0 0 0 0 0 0 1 0 0  -1   0  60
0 0 0 0 0 1 1 1 0 0 1 1 1 1  -1  -1 320
Cost =
0 0 0 0 0 0 -19/200 -14/125 7/500 3/200 -21/200 -109/1000
 -11/200 -51/1000 119/1000 33/250 872/25
_________________________________________
basic_set = 2 4 6 14 15 16
nonbasic_set = 1 3 5 7 8 9 10 11 12 13
Table =
1 0 0 0 0 0 1 0 0 0 0 0 0   1   0   0 140
0 1 0 0 0 0 0 1 0 0 0 0 0   0   1   0 160
0 0 1 0 0 0 0 0 1 0 0 0 0   0   0   1 120
0 0 0 1 0 0 1 0 0 1 0 0 0   0   0   0 230
0 0 0 0 1 0 0 0 0 0 1 0 0   0  -1   0  60
0 0 0 0 0 1 0 0 0 1 1 1 1  -1  -1  -1 180
Cost =
0 0 0 0 0 0 17/1000 7/500 3/200 -21/200 -109/1000 -11/200
 -51/1000 14/125 119/1000 33/250 1264/25
_________________________________________
basic_set = 2 4 6    14  8  16
nonbasic_set = 1 3 5 7 9 10 11 12 13 15
Table =
1 0 0 0 0 0 1 0 0 0 0 0   1   0   0   0 140
0 1 0 0 0 0 0 1 0 0 0 0   0   1   0   0 160
0 0 1 0 0 0 0 0 1 0 0 0   0   0   1   0 120
0 0 0 1 0 0 1 0 0 1 0 0   0   0   0   0 230
0 0 0 0 1 0 0 0 0 0 0 0   0  -1   0   1  60
0 0 0 0 0 1 0 0 0 1 1 1  -1   0  -1  -1 120
Cost =
0 0 0 0 0 0 17/1000 7/500 3/200 -21/200 -11/200 -51/1000
 14/125 1/100 33/250 109/1000 571/10
_________________________________________
basic_set = 2 4 6 14 8  7
nonbasic_set = 1 3 5 9 10 11 12 13 15 16
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Table =
1 0 0 0 0 0 1 0 0   0   0   1   0   0   0   0 140
0 1 0 0 0 0 0 1 0   0   0   0   1   0   0   0 160
0 0 1 0 0 0 0 0 1   0   0   0   0   1   0   0 120
0 0 0 1 0 0 1 0 0  -1  -1   1   0   1   1  -1 110
0 0 0 0 1 0 0 0 0   0   0   0  -1   0   1   0  60
0 0 0 0 0 1 0 0 0   1   1  -1   0  -1  -1   1 120
Cost =
0 0 0 0 0 0 17/1000 7/500 3/200 1/20 27/500 7/1000
 1/100 27/1000 1/250 21/200 697/10
------SOLUTION------
basic_set = 2 4 6 14 8 7
xb =
 140
 160
 120
 110
 60
 120
zz =
 –697/10

The optimal solution for the LPP is

 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 = (0, 140, 0, 160, 0, 120, 120, 60, 0, 0)

Again notice that the variables x1, x2, and so on are in thousands of dol-
lars. Since the maximization problem was converted into the minimization 
problem, the optimal solution has to be multiplied by –1. Thus the maximum 
earnings are $69,700.

Chapter Highlights

•	 An optimization problem that has the objective and the constraints 
as a linear function of the design variables is a linear programming 
problem.

•	 The graphical method is a simple technique for locating the optimal 
solution for problems with up to two or three design variables only.

•	 Inequalities can be plotted in MATLAB in the MuPad command 
window.

•	 In an LPP, the optimal value of the objective function occurs at the 
edge of the convex polyhedron.
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•	 When the objective function can be increased to an infinitely large 
value, without leaving the feasible region, the solution of the LPP is 
said to be unbounded.

•	 In the standard form of an LPP, the objective function is of mini-
mization type, all the design variables should be nonnegative, all 
the constraints should be of the equality type, and all the num-
bers on the right-hand side of the constraint equation should be 
nonnegative.

•	 A ≤ type constraint can be converted into an equality constraint by 
adding a slack variable.

•	 A ≥ type constraint can be converted into an equality constraint by 
subtracting it with a surplus variable.

•	 An unrestricted or free variable (without any specified bounds) can 
be replaced by a pair of nonnegative variables.

•	 A solution that satisfies the constraints is called a feasible solution.
•	 The variables x obtained from the basic solution are termed the 

basis. A basic solution that also satisfies x ≥ 0 is called the basic 
feasible solution. It may be noted that every basic feasible solution 
is an extreme point of the convex set of feasible solutions. If the 
basic feasible solution is optimal then it is called the optimal basic 
solution.

•	 The simplex method is an iterative method that moves from one 
basic feasible solution to another until the basis becomes optimal. 
The method requires an initial basic feasible solution for the prob-
lem. This can be achieved by the introduction of artificial variables 
in the problem. The coefficient matrix associated with the artificial 
variables will be an identity matrix. The artificial variables can pro-
vide initial bases because the columns of an identity matrix are lin-
early independent.

•	 An LPP is said to have multiple solutions when the cost coefficient of 
a nonbasic variable is zero in the optimal basis.

•	 The simplex method can become cyclic with no improvement in the 
objective function during iterations. This occurs when the entering 
basic variable becomes zero in a basis.

•	 The degeneracy problem in the simplex method can be avoided by 
adding a small perturbation on the b vector.

•	 In phase I of the simplex method, we solve the modified LPP to get 
a basic feasible solution. Once a basic feasible solution is available 
from phase I, phase II involves solving the original LPP.

•	 Every LPP, called the primal, is associated with another LPP, called 
its dual. The optimal solution of the primal problem and its dual 
remain the same.
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•	 It is observed that some of the LPPs show degeneracy when used 
with the primal problems. The corresponding dual problems are 
much easier to solve in such cases.

•	 Interior-point methods move inside the feasible region to reach the 
optimal solution.

Formulae Chart

LPP in the standard matrix form:

Minimize

 z = cTx

subject to

 Ax = b

 x ≥ 0

Simplex tableau:

 x b B bB = = −ˆ 1

 

 y c BT
B
T= −1

 

 ĉ c y NN
T

N
T T= −  

 z B
T

B= −c x  

Problems

 1. A manufacturer produces two components, X and Y. Component X 
requires 2 hours of machining and 3 hours of polishing. Component 
Y requires 3 hours of machining and 4 hours of polishing. Every 
week, 42 hours of machining and 48 hours of polishing can be done. 
The company makes a profit of $5 on X and $7 on Y. Assume that 
whatever is produced gets sold in the market. Formulate the LPP 
and solve it using the graphical method.
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 2. Solve the following LPP using the graphical method.
 i. Minimize

 z = 3x1 − 2x2

 subject to

 x1 + 2x2 ≤ 10

 2x1 − x2 ≤ 5

 −4x1 + 3x2 ≥ 5

 x1, x2 ≥ 0

 ii. Maximize

 z = 2x1 + 5x2

 subject to

 3x1 + x2 ≤ 11

 x1 + x2 ≥ 6

 2x1 + x2 ≤ 10

 x1, x2 ≥ 0

 iii. Maximize

 z = 4x1 + 5x2

 subject to

 2x1 + x2 ≤ 20

 −3x1 + 2x2 ≤ 25

 −x1 + x2 ≤ 30

 x1, x2 ≥ 0
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 iv. Maximize

 z = −x1 + 2x2

 subject to

 2x1 + x2 ≥ 5

 4x1 + x2 ≥ 10

 2x1 + 3x2 ≤ 8

 x1, x2 ≥ 0

 3. Determine all the basic solutions (feasible and infeasible) for the fol-
lowing system of linear equations.

 x1 − 2x2 − x3 + 4x4 = 3

 x1 + 2x3 + 2x4 = 4

 2x1 − x2 + x3 + x4 = 5

 4. Find the value of k so that the following LPP has an optimal solution 

at 
−





44
7

48
7

, .

  Minimize

 z = −3x1 + 2x2

  subject to

 −x1 + 2x2 ≥ 10k

 2x1 + x2 ≤ 5k

 2x1 + 3x2 ≤ 4k

 x1, x2 ≥ 0

 5. Convert the following LPP into standard form with matrix notations:
 i. Minimize

 z = 2x1 + 3x2 − x3

© 2015 by Taylor & Francis Group, LLC

  



136 Optimization: Algorithms and Applications

 subject to

 −x1 + 2x2 − 3x3 ≤ 5

 2x1 − x2 + 4x3 ≤ −5

 3x1 − 2x2 − 5x3 ≥ −7

 x1, x2, x3 ≥ 0

 ii. Maximize

 z = 2x1 − 3x2 + 4x3

 subject to

 3x1 − 2x2 − 3x3 ≥ 11

 −4x1 − 3x2 + x3 ≥ −6

 x1 + 2x2 + x3 ≤ 10

 x1 ≥ 2, x2 ≤ 5, x3 free

 6. Consider the system of equations Ax = b, x ≥ 0 where

 A x=
















=











2 3 1 0 0
2 1 0 1 0
4 2 0 0 1

1

2

3

4

5

;

x

x

x

x

x















=
















; b
7
8
5

 

 Find the initial basic solution.
 7. Solve the following LPP using the simplex method.

  Minimize

 z = 3x1 − 2x2

  subject to

 x1 + 2x2 ≤ 10

 2x1 − x2 ≤ 5
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 −4x1 + 3x2 ≥ 5

 x1, x2 ≥ 0

 8. Using the simplex method check whether the following LPP has 
multiple solutions

  Minimize

 z = x1 − 2x2

  subject to

 2x1 − 4x2 ≤ 2

 −x1 + x2 ≤ 3

 x1 ≤ 4

 x1, x2 ≥ 0

 9. Use Phase I of the simplex method to find a basic feasible solution for 
the system of equations

 2x1 − 4x2 + x3 ≥ 2

 −3x1 + 2x2 + 2x3 ≥ 4

 x1, x2, x3 ≥ 0

 10. Write the dual of the following LPP:
  Maximize

 z = 4y1 + 5y2 + 23y3 + 24y4

  subject to

 y1 + 2y3 + y4 ≤ 7

 y2 + y3 + 3y4 ≤ 6

 y1, y2, y3, y4 ≥ 0

  Solve the dual problem. Show that the optimal solution is same for 
the primal and the dual problem.
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 11. Use the affine scaling method to solve the following LPP.
  Maximize

 z = x1 + x2

 Ax ≤ b

  where

 A =

0 1 1
0 2 1
0 4 1
0 6 1
0 8 1
1 0 1
1 2 1
1 4 1
1 6 1
1 8 1
2 0 1

.

.

.

.

.

.

.

.

.

.

.
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  Take initial x as (0, 0) and γ = 0.9.
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5
Guided Random Search Methods

5.1  Introduction

The solution techniques for unconstrained optimization problems that have 
been described in earlier chapters invariably use the gradient information 
to locate the optimum. Such methods, as we have seen, require the objec-
tive function to be continuous and differentiable, and the optimal solution 
depends on the chosen initial conditions. These methods are not efficient in 
handling discrete variables and are more likely to stay at a local optimum for 
a multimodal objective function. Gradient-based methods often have to be 
restarted to ensure that the local optimum reached is indeed the global one.

In this chapter we explore five different types of solution techniques that 
do not require the objective function to be either continuous or differentia-
ble. The solution techniques are

•	 Genetic algorithms (GAs)
•	 Particle swarm optimization (PSO)
•	 Simulated annealing (SA)
•	 Ant colony optimization (ACO)
•	 Tabu search

All these methods are based on random searches in locating the optima. 
However, these methods are different from pure “random walk” methods 
in the sense that they use information from the previous iteration in locat-
ing the next best point(s). These methods are hence classified under guided 
random search methods. The guided random search techniques can be 
subclassified into evolutionary methods. GA and PSO methods fall under 
the heading of evolutionary methods. Instead of using a single point in the 
search space, both GA and PSO techniques use population of points in the 
search space and hence have a better chance of locating the global optima. 
The GA technique mimics the biological process (genetics) whereas the PSO 
technique is based on the idea of natural phenomena such as birds flocking 
together or school of fishes moving together. The SA method is based on 
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the physical analogy of the annealing process of a material that is heated to a 
high temperature and then slowly cooled in a controlled manner. The prop-
erties of the material get improved through this process. In a similar way, 
using the SA technique, the transformation is made from the nonoptimal 
solution for an optimized solution. Some other popular methods such as ant 
colony optimization and tabu search, which are used for solving combinato-
rial problems, are briefly discussed in the last section. The road map of this 
chapter is shown in Figure 5.1.

5.2  Genetic Algorithms

Genetic algorithms (GAs) are search algorithms based on the mechanism 
of natural selection. They rely on one of the most important principles of 
Darwin: survival of the fittest. Globally the population is submitted to many 
transformations. After some generations, when the population is enduring 
no more, the best individual in the population is assumed to represent the 
optimal solution. GA mimics the genetic process in which hereditary char-
acteristics are transmitted from a parent to an offspring. The basic unit of 
inheritance is a gene. Several such genes, encoding specific characteristics 
(eye color, height, etc.) are present on a chromosome. For example, humans 

Guided random search methods

Genetic algorithm
Initialize population
Fitness evaluation
Reproduction
Crossover
Mutation
Multimodal test function

Particle swarm optimization

Simulated annealing

Other methods
Ant colony optimization
Tabu search

FIGURE 5.1
Road map of Chapter 5.
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have 23 pairs of chromosomes. One chromosome in each pair is derived from 
the maternal and and one from the paternal parent. As a result of the crossover 
operation, some characteristics of each parent can be seen in the offspring. 
In the natural hereditary process, some genes also randomly mutate. For 
instance, if the gene corresponding to eye color mutates, the offspring can 
have blue eyes even if both of the parents’ eyes are brown. The mutation in 
a sense brings variety into the offspring and improves his survivability in a 
changing environment.

In gradient-based methods, the solution moves from one point to another 
using the gradient and the Hessian information. In GA, one works with a 
population of points rather than a single point. The fitness (value of the objec-
tive function) of each individual in the population (corresponding to a point 
in the search space) is then computed. Individuals who have high fitness 
value undergo crossover and mutation with the hope that they produce bet-
ter offspring. By better offspring, we mean that they have higher fitness value 
as compared to their parents. To facilitate the easy working of the genetic 
operators on the design variables x, these are often coded into binary strings. 
Once these variables have undergone genetic operations, the new values of 
the variables can be computed by decoding the binary strings. Using the 
decoded value of the variables, the fitness of the each individual in the new 
population is computed. This completes one generation (iteration) of the GA. 
The working principle of a GA is depicted through a flow chart (Figure 5.2).

Begin

Initialize population

Stop

Cont.

Fitness

Reproduction

Crossover

Mutation

Increment generation

No

Yes

FIGURE 5.2
Working principle of a genetic algorithm.
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Let us take the solar energy test problem (see Problem 8 in Chapter 1) in 
which the following cost function (U) is to be minimized and the variable to 
be evaluated is temperature T, which is restricted between 40°C and 90°C.

 U
T T

=
−

+
−

204 165 5
330 2

10 400
20

, ,.

 

Each step of the GA will be explained for the solar energy test problem.

5.2.1  Initialize Population

The variable T has to be restricted within [40, 90]. Since the variable T has to 
be coded into a binary string, we have to first decide on the number of bits in 
the string (also called as the string length). Because each bit can take a value 
of 0 or 1, for a 5-bit string, the minimum value will be 00000 and maximum 
value will be 11111. This corresponds to a decimal value of 0 and 32 (25). If 
this is linearly mapped into the search space, the variable T will have an 
accuracy of

 
90 40

2
1 56255

− = °. C
 

Because we require a finer value of the variable T as 0.001 degrees, the 
required string length will be 15. The initial population of variables (in 
binary form) will be generated randomly. A uniform random number gen-
erator can be used that generates a random number between 0 and 1. If the 
random number values are less than 0.5 we take the bit value as 0; else it is 
taken as 1. To generate a string length of 15, we have to generate the same 
quantity of random numbers. The following random numbers are generated 
using the rand command in MATLAB®. The corresponding bit string is men-
tioned in the second row.

0.81 0.90 0.13 0.91 0.63 0.09 0.28 0.54 0.96 0.15 0.35 0.47 0.74 0.19 0.8
1 1 0 1 1 0 0 1 1 0 0 0 1 0 1

Therefore, the first individual in the population will be 110110011000101. 
Repeat the step for the number of individuals in the population. For a popu-
lation size of 10, the following strings are randomly generated:

110110011000101
100001010111010
000110101110101
100000110011101
000011100100111
100100101011000
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010110100110001
100110101110011
111100100011010
001111100111001

In the next step, we decode these strings and compute their fitness.

5.2.2  Fitness Evaluation

The binary string (genotype) has to be decoded to its real value (phenotype) 
using the equation

 T T
T T DV s

i i
i i i

li
= + −

−min
max min( ) ( )

( )2 1
 (5.1)

where Timin and Timax are the lower and upper bounds of the variable Ti, DV(si) 
is the decoded value of the string si, and li is the string length used to code 
the ith parameter. The binary string 110110011000101 can be decoded as

1 1 0 1 1 0 0 1 1 0 0 0 1 0 1
214 213 211 210 27 26 22 20

Assuming the leftmost bit as the most significant bit, the real value of the 
string is

 214 + 213 + 211 + 210 + 27 + 26 + 22 + 20 = 27,845

The value of the variable for this string will be

 T T
T T DV s

i i
i i i

li
= + −

−
= + −

min
max min( ) ( )

( )
( )

2 1
40

90 40 277 845
2 1

82 489415

,
( )

.
−

=
 

To get fitness value of this string, simply compute the objective function 
value corresponding to Ti = 82.4894. That is,

 f
T Ti

i i

=
−

+
−

=204 165 5
330 2

10 400
20

1403 6
, ,.

.
 

Table 5.1 summarizes the decoded and fitness value of all 10 strings.

5.2.3  Reproduction

In reproduction, good and bad chromosomes (strings) are identified based 
on their fitness value. More copies of good chromosomes are made and bad 
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ones are eliminated. This can be achieved using Roulette wheel or tournament 
selection. In the first approach, roulette wheel slots are sized in proportion to 
the fitness value of each string. The wheel is spun and the string to which it 
is pointed is picked up. This is repeated until all the population is filled up. 
The roulette wheel selection procedure is suited for objective functions of 
the maximizing type. Because in the test problem the objective function is to 
be minimized, we have to suitably convert the fitness values so that roulette 
wheel selection procedure can be used. This is a two-step procedure.

In the first step, identify whether there are any negative values in the fit-
ness value. If the answer is yes, identify the minimum value and scale up the 
remaining fitness values by that number. For example, if the fitness values 
are –5, –1, 2, and 7, then the fitness values after scaling will be 0, 4, 7, and 12.

In the second step, convert the fitness values fi into Fi using the equation

 F
fi
i

=
+
1

1
 (5.2)

The fitness values 0, 4, 7, and 12 now become 1, 0.2, 0.1429, 0.0833.
The fitness values for the test problem do not have any negative values. So, 

we can ignore the first step and compute the fitness Fi and some other terms 
as given in Table 5.2.

Let us make a pie chart with the data corresponding to last column of 
Table 5.2. The probability of picking strings 7 and 10 (denoted by S-7 and 
S-10) for the next generation is highest (11%). The next step in the selection 
process is to make slots (see Figures 5.3 and 5.4) of the roulette wheel using 
the cumulative values of the data corresponding to last column of the table. 
Generate 10 random numbers (corresponding to the population size) between 

TablE 5.1

Fitness Evaluation for Different Strings

Name String Decoded Value Fitness fi

S1 110110011000101 82.4894 1403.6
S2 100001010111010 66.0659 1257.6
S3 000110101110101 45.2568 1264.3
S4 100000110011101 65.6310 1255.2
S5 000011100100111 42.7940 1291.6
S6 100100101011000 68.6508 1273.3
S7 010110100110001 57.6534 1227.2
S8 100110101110011 70.2545 1284.4
S9 111100100011010 87.3067 1468.4
S10 001111100111001 52.1967 1228.0
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0 and 1, and select corresponding strings where these random numbers lie in 
the slots. Thus, two copies each of strings S-2, S-7, and S-8, and one copy each 
of strings S-4, S-5, S-6, and S-10 are made in the reproduction process. These 
strings will participate in the crossover and mutation operations.

The convergence rate of GA is determined largely by the selection pressure 
(degree to which better individuals are favored), with larger selection pres-
sure resulting in better convergence. However, if the selection pressure is too 
high, there are increased chances of GA prematurely converging to a subop-
timal solution. Roulette wheel selection methodology is known for providing 
high selection pressure and this often results in premature convergence. An 

TablE 5.2

Modified Fitness Evaluation for Different Strings

String Fitness fi

F
fi

i

==
++
1

1

F

F

i

i∑∑
110110011000101 1403.6 0.00071195 0.0924
100001010111010 1257.6 0.00079453 0.1031
000110101110101 1264.3 0.00079033 0.1026
100000110011101 1255.2 0.00079605 0.1033
000011100100111 1291.6 0.00077363 0.1004
100100101011000 1273.3 0.00078474 0.1019
010110100110001 1227.2 0.00081420 0.1057
100110101110011 1284.4 0.00077797 0.1010
111100100011010 1468.4 0.00068055 0.0883
001111100111001 1228.0 0.00081367 0.1056

∑ =Fi 0 0077.

S-1
9%

S-9
9%

S-2
10%

S-3
10%

S-4
10%

S-5
10%

S-6
10%
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S-10
11%

S-8
10%

FIGURE 5.3
Pie chart showing probability of a string to be picked up during reproduction.
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alternative method is the tournament selection, in which a number of individu-
als (say, 2) are chosen randomly from the population and the best individual 
(in terms of fitness value) from the group is selected as a parent. The process is 
repeated once for every individual in the new population. This methodology 
ensures that the best string is always retained and the worst string always gets 
eliminated from the selection process. It is important to note that whereas rou-
lette wheel selection is used for maximization type objective functions, tour-
nament selection is used for minimization type objective functions. Because 
the test problem’s objective function is of the minimization type, we had to 
modify the function suitably for the roulette wheel selection methodology. 
The modification of the function is not required in the tournament selection 
methodology because the objective function is already of minimization type.

In the tournament selection methodology, we begin with the first indi-
vidual of the population. Then any other individual from the population is 
selected randomly. The fitness values of the two individuals are then com-
pared. The individual with lower fitness value is declared the “winner.” The 

0.2 0.4 0.6 0.8 1.0

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10

FIGURE 5.4
Slots of roulette wheel.

TablE 5.3

Tournament Selection

String Competitor Fitness Comparison Winner

110110011000101 (S-1) S-8 1403.6 < 1284.4 (No) S-8
100001010111010 (S-2) S-4 1257.6 < 1255.2 (No) S-4
000110101110101 (S-3) S-2 1264.3 < 1257.6 (No) S-2
100000110011101 (S-4) S-9 1255.2 < 1468.4 (Yes) S-4
000011100100111 (S-5) S-10 1291.6 < 1228.0 (No) S-10
100100101011000 (S-6) S-7 1273.3 < 1227.2 (No) S-7
010110100110001 (S-7) S-8 1227.2 < 1284.4 (Yes) S-7
100110101110011 (S-8) S-1 1284.4 < 1403.6 (Yes) S-8
111100100011010 (S-9) S-4 1468.4 < 1255.2 (No) S-4
001111100111001 (S-10) S-2 1228.0 < 1257.6 (Yes) S-10
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process is repeated for all individuals in the population. All the winners are 
selected for the next step of the GA (crossover and mutation). Table 5.3 illus-
trates the tournament selection methodology for the test problem.

5.2.4  Crossover and Mutation

In the reproduction step of the GA, we have merely copied the strings that 
will participate in the crossover and mutation operation. The strings were 
not altered in the reproduction step. In the crossover operation, two par-
ents are taken randomly from the mating pool (previous step of GA using 
roulette wheel or tournament selection) and bits are exchanged between the 
parents to generate new children (strings). The idea behind the crossover 
operation is that good parents will mate to form better offspring. Let us take 
strings S-2 and S-4, which are randomly selected as parents from the mating 
pool (both of these strings are present in the selection procedure specified 
by roulette wheel and tournament selection). The next step is to generate the 
crossover site (position) randomly along the string length. Let the ninth posi-
tion (from the left side or most significant bit side) is the crossover site. Then 
strings S-2 and S-4 after mating become

Parent S-2 100001010 111010    100001010 011101
Parent S-4 100000110 011101    100000110 111010

In this operation we have assumed a single crossover site. It is observed 
in nature that crossover can occur at one or more sites also. The number 
of crossovers follows a Poisson distribution (Hartl 1991) with mean as 2. 
Mutation is used to keep diversity in the population. The mutation operator 
changes the bit 1 to 0 and vice versa with a small probability.

Let us use the crossover (single-point) and mutation operation (with a 
probability of 0.02) for the test problem in which the mating pool is taken 
from tournament selection. The new population is given in Table 5.4.

This completes one generation (iteration) of the GA. The fitness of the new 
population is then computed and the cycle (reproduction, crossover, and 
mutation) is repeated. It is possible in GA that the objective function need 
not improve in a few successive generations.

The mathematical explanation of the GA is given as the Schema theorem

 m H t m H t
f H

f
p

H
l

o H p( , ) ( , )
( )

 
( )

( )+ ≥ ⋅ −
−

−






1 1
1c m

δ
 (5.3)

where m(H, t) represents m examples of a particular schema H at time t. 
f(H) is the average fitness of the strings represented by the schema H; f  is 
the average fitness of the entire population; pc and pm are the probabilities 
of occurrence of crossover and mutation; δ(H) is the defining length of the 
schema H, which is the distance between the first and last specific string 
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position; o(H) is the order of a schema defined by the number of fixed posi-
tions in a template; and l is the length of the string. The schema theorem 
states that the short, low-order, above average schemata receives increasing 
trials in subsequent generations.

The MATLAB code prob.m is the main program of the genetic algorithm. 
Its subroutines are given in in.m, roulette.m, tournament.m, and func.m. On 
executing the genetic algorithm code for the test problem, the output is dis-
played in Table 5.5. It is to be noted that each of the rows in the table cor-
responds to a separate optimization run. From Table 5.5 it is observed that 
minima are reached in most of the runs. However, the number of generations 
varies in each run. This is expected because each run of the genetic algo-
rithm starts with a random set of the population. See Figure 5.5, which plots 
the minimum of the objective function achieved until that generation. The 
step region in the plot indicates that there is no reduction in the value of the 
objective function for a certain number of generations until in a particular 
generation, where there is a reduction in the value of the objective function.

5.2.5  Multimodal Test Functions

The main advantage of GA over gradient-based methods is that it does not 
get stuck at local optima. Let us take some multimodal test functions such 

TablE 5.4

New Population

Mating Pool Crossover Site Children Mutation New Population

100000110011101 (S-4) 9 100000110111010 No 100000110111010
100001010111010 (S-2) 100001010011101 No 100001010011101
010110100110001 (S-7) 6 010110100111001 No 010110100111001
001111100111001 (S-10) 001111100110001 No 001111100110001
100001010111010 (S-2) 11 100001010110001 Yes 101001010110001
010110100110001 (S-7) 010110100111010 No 010110100111010
100000110011101 (S-4) 5 100000101110011 No 100000101110011
100110101110011 (S-8) 100110110011101 Yes 100110110010101
100110101110011 (S-8) 13 100110101110001 No 100110101110001
001111100111001 (S-10) 001111100111011 No 001111100111011

TablE 5.5

Different Optimization Runs with GA

No. of Generations T U

505 55.95 1225.58
501 53.99 1225.55
1029 55.08 1225.166
751 55.08 1225.166
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as Rastrigin and Schwefel’s function to demonstrate that GA can locate the 
global minimum for these functions.

The two-variable Rastrigin’s function (see Figure 5.6) is given by
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The function has a number of local optima and the global minimum value 
of the function is f(x*) = 0 and occurs at x* = (0, 0). The function can be plotted 
in MATLAB using the following commands.
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FIGURE 5.5
Variation of objective function value with increase in number of generations.
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Rastrigin’s function.
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[X,Y] = meshgrid(-5.12:.1:5.12, -5.12:.1:5.12);
Z = 20 + (X.^2-10*cos(2*pi.*X) + Y.^2-10*cos(2*pi.*Y));
surfc(X,Y,Z)
shading interp

The input files for GA can be modified for the two-variable function as

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% File name func.m
% Enter the function to be optimized
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function [y,constr] = func(x)
y = 20 + (x(1)*x(1)-10*cos(2*pi*x(1))+ x(2)*x(2)-

10*cos(2*pi*x(2)));
constr(1) = 10;% This is used with constraints.
% For unconstrained problems, define constr()with
% any positive value
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% File name in.m
% Input parameters for Genetic algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
problem = 'min'; % used with roulette wheel
n_of_v = 2;  % number of variables
n_of_g = 10000; % maximum number of generations
n_of_p = 40;  % population size
range(1,:) = [-5.12 5.12]; % variable bound
range(2,:) = [-5.12 5.12];
n_of_bits(1) = 20; % number of bits
n_of_bits(2) = 20;
cross_prob = 0.9; % crossover probability
multi_crossover = 0;% use multi-crossover
mut_prob = 0.1; % mutation probability
tourni_flag = 0; % use roulette wheel
epsilon = 1e-7; % function tolerance
flag = 0;  % stall generations flag
flag1 = 0;  % scalin flag
stall_gen = 500; % stall generations for termination
n_of_c = 0;  % for constraint handling
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The above file uses a roulette wheel as the selection methodology. To 
change it to tournament selection simply change

tourni_flag = 1;
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Both selection criteria are able to locate the global minimum solution and 
the convergence to the optimum value by two selection methodologies given 
in Figures 5.7 and 5.8 respectively.

The two-variable Schwefel’s function (see Figure 5.9) is given by
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FIGURE 5.7
Convergence of genetic algorithm for Rastrigin function with roulette wheel selection.
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FIGURE 5.8
Convergence of genetic algorithm for Rastrigin function with tournament selection.
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Schwefel’s function.
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Convergence of genetic algorithm for Schwefel’s function.
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The function has a number of local optima and the global minimum value 
of the function is f(x*) = −837.9658 and occurs at x* = (420.9867, 420.9867).

The input files for GA can be modified for the two-variable function as

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% File name func.m
% Enter the function to be optimized
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function [y,constr] = func(x)
y = -x(1)*sin(sqrt(abs(x(1)))) -x(2)*sin(sqrt(abs(x(2))));
constr(1) = 10;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% File name in.m
% Input parameters for Genetic algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
problem = 'min'; % used with roulette wheel
n_of_v = 2; % number of variables
n_of_g = 10000; % maximum number of generations
n_of_p = 80; % population size
range(1,:) = [-500 500]; % variable bound
range(2,:) = [-500 500];
n_of_bits(1) = 20; % number of bits
n_of_bits(2) = 20;
cross_prob = 0.9; % crossover probability
multi_crossover = 0; % use multi-crossover
mut_prob = 0.1; % mutation probability
tourni_flag = 1; % use roulette wheel
epsilon = 1e-7; % function tolerance
flag = 0;  % stall generations flag
flag1 = 0;  % scalin flag
stall_gen = 500; % stall generations for termination
n_of_c = 0;  % for constraint handling
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The GA code is able to achieve the global minimum and the convergence 
history is shown in Figure 5.10.
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5.3  Simulated Annealing

Simulated annealing (SA) is an optimization technique that has derived its 
name from the process of annealing of solids where the solid is heated and 
then allowed to cool slowly until its molecules reach the minimum energy 
state. The solid in this state will be free from defects. In a similar manner, 
the optimization problem is transformed into an “ordered state” or a desired 
optimized state (solution). In the high-energy state, the molecules are free 
to move and their freedom gets restricted as the temperature is reduced 
(cooled). In a similar manner, SA methodology allows “hill climbing” when 
the temperature is high. That is, those points that are in the near vicinity 
of the search point, but have a higher objective function value can still be 
selected with certain probability. This allows the algorithm to escape from 
local optima. Thus, simulation methodology is a powerful technique in 
locating the global optimum solution.

The algorithm starts by picking any random value of the variable xi using 
the equation

 xi = xi,min + (xi,max − xi,min)ui (5.4)

where xi,min and xi,max are the bounds of the variable xi and ui is random num-
ber generated between 0 and 1 (uniform distribution). The energy (Eold) of 
this variable is given by its objective function value. That is,

 Eold = f(xi) (5.5)

The next step in the algorithm is to perturb xi in its neighborhood. The 
perturbation Δxi can be computed as

 Δxi = εxiui (5.6)

where ε is a small number fixed at the start of the simulation. The next search 
point is therefore given by

 xi+1 = xi + Δxi (5.7)

In case the variables xi+1 exceeds their bounds they are artificially brought 
back into the feasible design space using the equation

 xi+1 = xi,min + (xi,max − xi,min)ui (5.8)

The energy state for the new point is given by

 Enew = f(xi+1) (5.9)
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If the new energy state Enew is lower than Eold, the objective function has 
improved and we replace the value of Eold with Enew. In case Enew is higher 
than Eold the following condition is checked

 e u
E E

E
− −



 >

new old

old  (5.10)

If this condition is satisfied we allow for the “hill climbing” and replace 
Eold with Enew. If this condition is not satisfied previous value of x is restored. 
That is,

 xi+1 = xi − Δxi (5.11)

The iterations are repeated until there is no improvement in the objective 
function value for a fixed number of moves. The steps of simulation algo-
rithm can thus be summarized in Table 5.6 and the MATLAB code simann.m 
is given subsequently.

The two-variable Rastrigin’s function

 
f x x x x

x

( ) cos( ) cos( )

.

x = + − + −

− ≤
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5 12

1
2

1 2
2

2

1

π π

,,  .x2 5 12≤  

is optimized and it does not converge to the global minimum of f(x*) = 0 
at x* = (0, 0). The convergence history is given in Figure 5.11. By modifying 
the subroutine func.m other functions such as Schwefel’s function and test 

TablE 5.6

Algorithm for Simulated Annealing

Step 1: Initialize ε and variable bounds xi,min and xi,max

Step 2: Compute starting value of the variables as

xi = xi,min + (xi,max − xi,min)ui

Step 3: Compute Eold = f(xi)
Step 4: Compute Δxi+1 = εxiui and xi+1 = xi + Δxi

If xi+1 exceeds bounds then xi+1 = xi,min + (xi,max − xi,min)ui

Step 5: Compute Enew = f(xi+1)
Step 6: If Enew < Eold

then Eold = Enew

 else if e u
E E

E
−

−



 >

new old

old

then Eold = Enew

  else xi+1 = xi − Δxi

Step 7:  Go to Step 4 until termination criterion (function not improving 
for certain number of iterations) is satisfied.
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problem on spring system (mentioned in Chapter 3) can also be optimized. 
See Figures 5.12 and 5.13, where the convergence history of these functions 
is shown. In all the plots, observe the hill-climbing region shown by the 
oscillatory nature of the curve. Because the algorithm starts from a random 
point, the convergence history will vary in each simulation run for each of 
the functions. The performance of the algorithm will also vary by choosing 
a different ε for a given function.
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FIGURE 5.12
Convergence of simulated annealing for Schwefel’s function.
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FIGURE 5.11
Convergence of simulated annealing for Rastrigin function.
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5.4  Particle Swarm Optimization

In the particle swarm optimization (PSO) technique, a number of search 
points are simultaneously explored in the iteration, similar to a search car-
ried out by GA. The PSO technique is inspired by the collective wisdom of 
a group of individuals such as a flock of birds, animals moving in herds, or 
schools of fish moving together. The PSO algorithm keeps track of the best 
position of the individual as well as that of the population in terms of the 
objective function. The best objective function of the individual and that of 
the group is denoted by pbest and gbest respectively. Each individual in the 
group moves with a velocity that is a function of pbest, gbest and its initial 
velocity. The new position of the individual is updated based on its initial 
position and the velocity. The objective function value is again computed 
for the new positions and the PSO steps are repeated. Now, each step of the 
algorithm is described.

The initial position of the kth individual in the population is given by

 xi,k = xi,min + (xi,max − xi,min)ui (5.12)

where xi,min and xi,max are the bounds of the variable xi and ui is the random 
number generated between 0 and 1 (uniform distribution). Here i is the itera-
tion number. Compute the fitness of the kth individual as

 pi,k = f(xi,k) (5.13)
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FIGURE 5.13
Convergence of simulated annealing for the test problem on the spring system (Chapter 3).
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Since this is the initialization step, the best fitness of each individual is pk 
itself. That is,

 pbesti,k = pi,k (5.14)

The global best fitness is computed as

 gbesti = minimum(pbesti,k) (5.15)

The location of pbestk and gbest is given by pxik and gix. Starting with an 
initial velocity of vi,k, the velocity of the individual is updated using the 
equation

 vi+1,k = w1vi,k + ϕ1(pxik − xi,k)ui + ϕ2(gix − xi,k)ui (5.16)

where w1, ϕ1, and ϕ2 are the tuning factors of the algorithm. The position of 
each individual can be updated as

 xi+1,k = xi,k + vi+1,k (5.17)

In case the variables xi+1 exceeds their bounds they are artificially brought 
back into the feasible design space using the equation

 xi+1 = xi,min + (xi,max − xi,min)ui (5.18)

Based on the new position, the fitness of the kth individual is computed as

 pi+1,k = f(xi+1,k) (5.19)

If this fitness is lower than pbesti,k, then replace pbesti,k with pi+1,k. Compute 
the global best fitness as

 gbesti+1 = minimum(pbesti+1,k) (5.20)

The steps are repeated for a finite number of iterations. The algorithm is 
given in Table 5.7 and the MATLAB code pso.m is given subsequently.

The two-variable Schwefel’s function (see Figure 5.9)

 
f x x x x

x x

( ) sin sin

, 

x = − −

− ≤ ≤

1 1 2 2

1 2500 500  

is optimized and it converges to the global minimum of is f(x*) = −837.9658 
and occurs at x* = (420.9867, 420.9867). The convergence history of the PSO 
algorithm for Schwefel’s function is shown in Figure 5.14.
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TablE 5.7

Algorithm for Particle Swarm Optimization

Step 1: Initialize imax, w1, ϕ1, ϕ2, n (population size), xi,min, and xi,max.
Step 2: Initialize the starting position and velocities of the variables as

 xi,k = xi,min + (xi,max − xi,min)ui k = 1 ⋯ n

  vi,k = 0
Step 3: Compute pi,k = f(xi,k) k = 1 ⋯ n
Step 4: Compute pbesti,k = pi,k and gbesti = minimum(pbesti,k)
  The location of pbestk and gbest is given by pxik and gix.
Step 5: Update velocity

vi+1,k = w1vi,k + ϕ1(pxik − xi,k)ui + ϕ2(gix − xi,k)ui

Step 6: Update position xi+1,k = xi,k + vi+1,k

Step 7: Update fitness pi+1,k = f(xi+1,k)
Step 8: If pi+1,k < pbesti,k

then pbesti+1,k = pi+1,k

Step 9: Update gbesti+1 = minimum(pbesti+1,k)
Step 10: If i < imax then increment i and go to Step 5, else stop.
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FIGURE 5.14
Convergence of particle swarm optimization for Schwefel’s function.
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5.5  Other Methods

In addition to the three methods (GA, SA, and PSO) that were discussed in 
the previous sections, there are numerous other optimization methods that 
have mimicked natural processes or some other physical analogies. Some of 
these methods are the bees algorithm, differential algorithm, evolutionary 
programming, tabu search, ant colony optimization (ACO), and so forth. Of 
these, ACO and tabu search are widely used for solving combinatorial prob-
lems (such as the traveling salesman problem or the job scheduling problem). 
As the name suggests, ACO mimics the behavior of ants in locating the mini-
mum of a function. It may be noted that in a complex combinatorial problem, 
searching all the combinations is computationally expensive. Both ACO and 
tabu search provide a heuristic approach for such problems. These two tech-
niques are briefly explained in this section.

5.5.1  ant Colony Optimization

While on lookout for food, ants deposit a substance called a pheromone on the 
path. Other ants follow this favorable path to reach the food. The ant colony opti-
mization (ACO) technique mimics the behavior of ants in solving the optimi-
zation problems. The ACO technique was proposed in the early 1990s (Dorigo 
1992) and since then has been applied to solve a number of problems such as

•	 Protein folding problem (Shmygelska and Hoos 2005)
•	 Traveling salesman problem (Dorigo et al. 1996)
•	 Project scheduling (Merkle et al. 2002)
•	 Vehicle routing (Reimann et al. 2004)

In the ACO technique, the optimization problem is defined in terms of a 
number of layers and nodes. Each layer corresponds to the design variable 
and each node corresponds to the discrete values of the design variables. The 
ants have to pass through different “best” nodes to reach the destination, 
which is the minimum of the function. Let there be N ants in the colony. If 
the kth ant is at ith node, then the probability of choosing jth node is given by

 pij
k ij

j N
ij

i
k

( )

( )

=
∑

τ

τ
ε

 (5.21)

where Ni
k( )  indicates the set of neighborhood nodes of ant k at node i. Here τij 

represents the pheromone trail and is given by the expression

 τij = τij + Δτ(k) (5.22)
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The pheromone content also evaporates according to the relation

 τij = (1 − ρ)τij (5.23)

where ρ is the evaporation rate. The typical value of ρ is 0.5. The pheromone 
content is updated using the relation

 τ ρ τ τij ij

k

N

ij
k= − +

=
∑( ) ( )1

1

∆  (5.24)

where the quantity ∆τij
k( )  is given by

 ∆τ φ
ij
k f

f
( ) = best

worst

 (5.25)

where fbest and fworst are the best and worst values of the objective function for 
the paths taken by the ants and ϕ is a scaling parameter. Let us explain the 
procedure of ACO to minimize the function

 f x x
x

x( ) . .= −( ) + ≤ ≤2 3
100

0 3 0 6
 

The problem has only one layer because there is there is only one design 
variable for the problem. Let there be seven nodes of this problem. Thus,

 x11 = 0.30

 x12 = 0.35

 x13 = 0.40

 x14 = 0.45

 x15 = 0.50

 x16 = 0.55

 x17 = 0.60

Let us take the number of ants in the colony to be 5. To begin with, there 
is an equal probability of selection of any of the nodes. Using roulette 
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wheel selection (as mentioned in Section 5.2), the following five nodes are 
selected:
 x14 = 0.45

 x16 = 0.55

 x12 = 0.35

 x17 = 0.60

 x11 = 0.30

The corresponding function values are

 f(x14) = −4.6517

 f(x16) = −4.5093

 f(x12) = −4.8109

 f(x17) = −4.4310

 f(x11) = −4.8990

The best (fifth ant) and worst values of the objective function are

 fbest = f(x11) = −4.8990

 fworst = f(x17) = −4.4310

Taking ϕ = 5, the pheromone information is updated as

 ∆τ φ( ) ( . )
.

.k f
f

= = = × −
−

=5 5 4 899
4 431

5 528best

worst  

Now,

 τ ρ τ τij ij

k

N

ij
k= − + = − × + =

=
∑( ) ( . ) . .( )1 1 0 5 1 5 528 6 028

1

∆ ((   )for j = 1

 

The probability of selecting this node in the next iteration is

 p11
6 028
9 028

0 6677= =.
.

.
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and the probability of selecting other nodes is

 p j1
0 5

9 028
0 0554= =.

.
.

 

Again using the roulette wheel selection, the following nodes are selected:

 x11(3 copies)

 x15(1 copy)

 x17(1 copy)

The iterations are repeated until all the ants follow the best path. The mini-
mum value of the objective function is –4.899 and occurs at x* = 0.3.

5.5.2  Tabu Search

The tabu search is a heuristic technique in which an approximate solution 
is used to tackle complex combinatorial problems such as job scheduling 
and traveling salesman problems. The method (Glover 1986) allows nonim-
proving moves whenever a local optimum is reached. However, the method 
prevents visiting earlier solutions by keeping a list of the search history. The 
list is called the tabu (or forbidden) list. To avoid stagnation of search pro-
cess due to tabu, it is mandatory to modify tabu lists frequently. One such 
example is to allow a tabu move when the objective function value improves 
from the best value. Such moves are called as aspiration criteria. The follow-
ing notation is used (Gendreau and Potvin 2010) in the algorithm to follow 
(Table 5.8).

TablE 5.8

Algorithm for Tabu Search

Step 1: Start with an initial set S0.
f * = f(S0)
S* = S0

T = Φ
Step 2: Select ′ ∈S N S  ( )  and find f(S′).

If f(S′) < f *
f * = f(S′)
S* = S′
Record current move in T.

Step 3: Go to Step 2 if termination criteria are not satisfied, else stop.
 (Termination criteria are set if the objective function does not 
show improvement for some fixed number of iterations.)
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S current solution
S* best solution
f* best value of the objective function
N(S) neighborhood of S
N S( ) admissible subset
T tabu list

Chapter Highlights

•	 GA and PSO work with a population of points in a search space 
whereas SA propagates through iterations with a single search point.

•	 GA mimics the genetic process in which hereditary characteristics 
are transmitted from a parent to an offspring.

•	 GA variables are coded into binary strings.
•	 In the reproduction step, the best individuals in the population are 

selected for mating.
•	 The diversity in the population is created using crossover and muta-

tion operations.
•	 The mutation operator changes the bit 1 to 0 and vice versa with a 

small probability.
•	 SA is an optimization technique that has derived its name from the 

process of annealing of solids, in which the solid is heated and then 
allowed to cool slowly until its molecules reach a minimum energy 
state.

•	 SA allows points with higher objective functions to be selected with 
certain probability. It is often called a “hill-climbing” algorithm.

•	 The PSO technique is inspired by the collective wisdom of a group 
of individuals such as a flock of birds or animals moving in herds or 
schools of fish moving together.

•	 The PSO algorithm keeps track of the best position of the individual 
as well as that of the population in terms of the objective function.

•	 In the ACO technique, the optimization problem is defined in terms 
of a number of layers and nodes. Each layer corresponds to the 
design variable and each node corresponds to the discrete values of 
the design variables. The ants have to pass through different “best” 
nodes to reach the destination, which is the minimum of the function.

•	 The tabu search method allows nonimproving moves whenever a 
local optimum is reached. However, the method prevents visiting 
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earlier solutions by keeping a list of the search history. The list called 
as the tabu (or forbidden) list.

•	 To avoid stagnation of a search process due to tabu, it is mandatory 
to modify tabu lists frequently. One such example is to allow a tabu 
move when the objective function value improves from the best 
value. Such moves are called aspiration criteria.

Formulae Chart

Decoding of string from binary to real value:

 x x
x x DV s

i i
i i i

li
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Velocity update in PSO:

 vi+1,k = w1vi,k + ϕ1(pxik − xi,k)ui + ϕ2(gix − xi,k)ui

ACO:

 pij
k ij

j N
ij

i
k
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ε  

 τ ρ τ τij ij
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 ∆τ φ
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Problems

 1. What is the minimum string length required to code the variable 
range (–3, 5) with an accuracy of 0.0001?

 2. An optimization problem has three design variables that are to be 
coded in binary strings. The range of variables is (–100, 50), (0, 1), and 
(3, 7) and the accuracy required is 0.01, 0.00001, and 0.001 respec-
tively. Compute the minimum length of the string required.

 3. By modifying the input (tuning) parameters in GA (population size, 
crossover, and mutation probabilities), SA (ε), and PSO (population 
size, w1, ϕ1, ϕ2), rerun the codes for the test problem on spring system 
(mentioned in Chapter 3), Rastragin and Schwefel’s functions.

 4. In a given generation of GA, the following fitness values are obtained 
for ten strings (S-1 to S-10) for a maximization problem. Find the 
number of copies that will be generated for each string using 
Roulette wheel selection.

String Fitness

S-1 25
S-2 16
S-3 74
S-4 8
S-5 99
S-6 45
S-7 12
S-8 65
S-9 22
S-10 19

 5. If instead, tournament selection is used for reproduction, find 
strings (see previous problem) that get selected in the mating pool. 
Compare the results with those obtained from the roulette wheel 
selection.

 6. Minimize the two variable Griewangk’s function

 
f

x x
x

x

x x

( ) cos  cos

, 

x = + − +

− ≤ ≤

1
2

2
2

2

1 2

4000 2
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 using GA, SA, and PSO techniques.
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 7. Minimize the two-variable Ackley’s function

 f e e a e
b x x x x

( )

.

(cos cos )
x = − − + +

−

− +( ) +
a

1
2

1
2 11

2
2
2

1 2

32 7768 32 7681 2≤ ≤x x,  .  

 using GA, SA, and PSO techniques. Take a = 20, b = 0.2, and c = 2π.
 8. Minimize the function

 
f x x x x

x x

( )

, 

x = + −( ) + + −( )
− ≤ ≤

1
2

2

2

2
2

1

2
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 using GA, SA, and PSO techniques.
 9. Minimize the function

 f x x x xx x( ) sin ( )x = + + − − +( )+e 1
2

2
2

1 2 1 23 3  

 using GA, SA, and PSO techniques.
 10. Optimize the minmax function

Minimize F(x)
  where

 F(x) = max{fi(x)}

 f x x1 1
2

2
4( )x = +  

 f2(x) = (2 − x1)2 + (2 − x2)2

 
f e

x x

x x
3

1 2

2

50 50

1 2( )

, 

x =

− ≤ ≤

− +

 

 using GA, SA, and PSO techniques.
 11. Optimize the minmax function

 
min.max ,  

, 

x x x x

x x

1 2 1 2

1 2

2 7 2 5

50 50

+ − + −{ }
− ≤ ≤  

 using GA, SA, and PSO techniques.
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 12. Minimize the Eggcrate function
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 using GA, SA, and PSO techniques.
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6
Constrained Optimization

6.1  Introduction

Invariably all optimization problems carry constraints, and examples can be 
given from any area one can think of. The supply of a product is constrained 
by the capacity of a machine. The trajectory of a rocket is constrained by the 
final target as well as the maximum aerodynamic load it can carry. The range 
of an aircraft is constrained by its payload, fuel capacity, and its aerodynamic 
characteristics. So how does a constrained optimization problem differ from 
an unconstrained problem? In constrained optimization problems, the feasi-
ble region gets restricted because of the presence of constraints. This is more 
challenging because for a multivariable problem with several nonlinear con-
straints, arriving at any feasible point itself is a daunting task.

The constrained optimization problem can be mathematically stated as

Minimize

 f(x) (6.1)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m < n (6.2)

 hj(x) = 0 j = 1, 2,…, r < n (6.3)

 xl ≤ x ≤ xu

where x is a vector of n design variables given by
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The functions f, gi, and hj are all differentiable. The design variables are 
bounded by xl and xu. The constraints gi are called as inequality constraints 
and hj are called equality constraints.

Consider the following constrained optimization problem.

Minimize

 (x1 − 2)2 + (x2 − 3)2

subject to

 x1 ≥ 3

If we apply the first-order optimality condition on the objective function, 
the function minimum is obtained at (2, 3). However, in the presence of a 
constraint, the minimum occurs at (3, 3). See Figure 6.1, where the function 
contours are plotted along with the constraint. Note that the gradient of the 
function (∇f) and the gradient of the constraint (∇g) are parallel to each other 
at the optimum point. At other points on the constraint (say, point A), the 
gradients are not parallel to each other. More of the optimality conditions 
for the constrained optimization problems are discussed in the next section.

The road map of this chapter is shown in Figure 6.2. After a discussion on 
optimality conditions, different solution techniques such as penalty func-
tion, augmented Lagrangian, sequential quadratic programming (SQP), and 
method of feasible directions are discussed. In the penalty function method, 
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FIGURE 6.1
Constrained optimization problem.
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a constrained optimization problem is transformed into an unconstrained 
problem by penalizing the objective function for any violation of the con-
straints. The augmented Lagrangian method is a blend of both penalty 
function and Lagrangian multipliers methods. In the SQP method, the qua-
dratic subproblem is solved in every iteration where the objective function 
is approximated by a quadratic function and the constraints are linearized. 
Some optimization problems require constraints to be satisfied in every iter-
ation to ensure the meaningful value of the objective function. The method 
of feasible directions ensures meeting the constraints in every iteration.

6.2  Optimality Conditions

Let us define the Lagrange function for the constrained optimization prob-
lem with the equality and inequality constraints

 L f h g
j

r

j j

i

m

i i( , , ) ( ) ( ) ( )x x xxλ µ λ µ= + +
= =

∑ ∑
1 1

 (6.4)

The optimality conditions are given by

 ∇xL = 0

 ∇λL = 0

 ∇μL = 0

Constrained optimization

Optimality conditions

Solution techniques
Penalty function method
Augmented Lagrangian method
Sequential quadratic programming
Method of feasible directions

Application to structural design

FIGURE 6.2
Road map of Chapter 6.
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The first optimality condition results in the equation

 ∇ = ∇ + ∇ + ∇ =
= =

∑ ∑x x x xL f h g
j

r

j j

i

m

i i( ) ( ) ( )
1 1

0λ µ  (6.5)

If a particular inequality constraint is inactive (gi(x) ≤ 0), corresponding 
μi = 0. This condition can also be written as

 −∇ = ∇ + ∇
= =

∑ ∑f h g
j

r

j j

i

m

i i( ) ( ) ( )x x x
1 1

λ µ  (6.6)

That is, negative of the gradient of the objective function can be expressed 
as a linear combination of the gradient of the constraints.

For any feasible point x, the set of active inequality constraints is denoted 
by

 A(x) = {i|gi(x) = 0}

The second and third optimality conditions result in the constraints them-
selves. The multipliers λj and μi are called as Lagrange multipliers and these 
must be ≥0 at the optimum point. The optimality conditions of the con-
strained optimization problem are referred to as Karush–Kuhn–Tucker (KKT) 
conditions. These conditions are valid if x is a regular point. A point is regular 
if the gradient of active inequality and all equality constraints are linearly 
independent. It is important to note that KKT conditions are necessary but 
not sufficient for optimality. That is to say, there may be other local optima 
where KKT conditions are satisfied. The sufficient condition for f(x) to be 
minimum is that ∇xx

2 L must be positive definite.
Let us take the example mentioned in the previous section and write the 

Lagrangian as

 L(x, μ) = (x1 − 2)2 + (x2 − 3)2 + μ(−x1 + 3)

The KKT conditions are given by the equations

 2(x1 − 2) − μ = 0

 2(x2 − 3) = 0

 −x1 + 3 = 0
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Solving these equations gives the solution as x1 = 3 and x2 = 3, which is the 
optimum point with μ = 2. The minimum value of the function is 1.

The Lagrange multipliers provide information on the sensitivity of the 
objective function with respect to sensitivity of the right-hand side of the 
constraint equation (say, b). Then,

 Δf = μΔb = 2Δb

Therefore,

 f ≈ 1 + 2Δb

If the right-hand side of the constraint is changed by +1 unit, then a new 
value of the function minimum is 3 (approximately).

Example 6.1

Consider the optimization problem.

Minimize

 f(x) = (x1 − 1)2 + (x2 − 5)2

subject to

 g x x1 1
2

2 4 0( )x = − + − ≤  

 g2(x) = −(x1 − 2)2 + x2 − 3 ≤ 0

Plot the function contours along with constraints. Check whether KKT 
conditions are satisfied at point A (0.75, 4.5625).

The function contours are given in Figure 6.3 along with the con-
straints. The gradient of the function and the constraints are given by
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−
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Let us check for the optimality condition

 −∇f(x) = μ1∇g1(x) + μ2∇g2(x)

for some μ1 and μ2 which are ≥0.
It can be shown that at point A

 
0 5

0 875
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1
0 4531 2 5

1
.

.
. . . .


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


 ≈ −







 +











 

Thus, for positive value of multipliers (μ1 = 0.4218 and μ2 = 0.4513), the 
negative of the gradient of the objective function can be expressed as a 
linear combination of the gradient of the constraints. KKT conditions are 
satisfied at point A. Thus, point A is a candidate for the minimum of the 
function. Let us check the second-order condition as

 ∇ = − +











=








2 1 22 2 0

0 2
0 25 0

0 2
L

( ) .µ µ

 

As this matrix is positive definite, the minimum of the function occurs 
at point A.
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FIGURE 6.3
Function contours with the constraints for the test problem.
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6.3  Solution Techniques

For a simple optimization problem (say, with two variables) with one equal-
ity constraint, the simplest approach would be to use a variable substitution 
method. In this method, one variable is written in the form of another variable 
using the equality constraint. Then it is substituted in the objective function 
to make it an unconstrained optimization problem that is easier to solve. For 
instance, consider the optimization problem

Minimize

 (x1 − 2)2 + (x2 − 3)2

subject to

 −x1 + x2 = 4

Substituting x2 = 4 + x1 in the objective function, we can rewrite the opti-
mization problem as

Minimize

 (x1 − 2)2 + (x1 + 1)2

Using the first-order condition, it is easy to show that minimum of this 
function occurs at (1/2, 9/2). The main disadvantage of this method is that it 
is difficult to implement when there is a large number of variables and con-
straints are nonlinear.

Another way of converting a constrained optimization problem to an 
unconstrained problem is to penalize the objective function when con-
straints are violated. Such methods are termed are termed penalty function 
methods and are very easy to implement. Once the unconstrained problem 
is formed using the penalty functions, it can be solved using both gradi-
ent- and non–gradient-based methods described in previous chapters. The 
method, however, has one serious drawback. The original objective function 
gets distorted when modified with the penalty terms. The modified function 
may not be differentiable at all points. Non–gradient-based solution tech-
niques for unconstrained problems (converted by penalty functions) are sug-
gested for such cases.

The Lagrange function and multipliers were discussed in the previ-
ous section. In the augmented Lagrange multiplier (ALM) method, both 
the Lagrange multiplier and the penalty function methods are combined. 
Lagrange multipliers are updated on each iteration. One significant advan-
tage of this method is that it provides an optimal value of the multipliers in 
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addition to the solution of the optimization problem. This helps in generat-
ing a quick solution for the same optimization problem whose right-hand 
sides of the constraint equations are changed.

The most popular method to date is sequential quadratic programming 
(SQP) method for handling nonlinear objective function and constraints. In 
this method the objective function is approximated by a quadratic function 
and constraints are approximated by linear functions. The quadratic sub-
problem is then solved at each iteration. Hence, the method derives the name 
SQP.

In some optimization problems, the meaningful value of an objective func-
tion can be generated only if constraints are satisfied. The method of feasible 
directions ensures that design variables are always in the feasible region. 
Zoutendijk’s method of feasible directions and Rosen’s gradient projection 
method are discussed in this chapter.

6.3.1  Penalty Function Method

The motivation of the penalty function method is to solve the constrained 
optimization problem using algorithms for unconstrained problems. As the 
name suggests, the algorithm penalizes the objective function in case con-
straints are violated. The modified objective function with penalty terms is 
written as

 

F f r h r gk

j

r

j k

i

m

i( ) ( ) ( ) ( )x x x x= + +
= =

∑ ∑
1

2

1

2

 

(6.7)

where rk (>0) is a penalty parameter and the function

 〈gi(x)〉 = max[0, gi(x)] (6.8)

In case constraints are satisfied (gi(x) ≤ 0), 〈gi(x)〉 will be zero and there 
will be no penalty on the objective function. In case constraints are violated 
(gi(x) ≥ 0), 〈gi(x)〉 will be a positive value resulting in a penalty on the objective 
function. The penalty will be higher for higher infeasibility of the constraints. 
The function F(x) can be optimized using the algorithms for unconstrained 
problems. The penalty function method of this form is called the exterior 
penalty function methods.

The parameter rk has to be appropriately selected by the algorithm. If rk 
is selected as a small value (say, 1), constraints may not be fully satisfied at 
the termination of the algorithm. If rk is selected as a large value, there is a 
danger of ill-conditioning the objective function (see Figure 6.4). The correct 
approach would be to start the algorithm with a small rk and increase it to 
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a larger value for the purpose of tightening the constraints. The following 
strategy is suggested to take appropriate value of rk during an iteration:

 

r
g h

k

i j
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 
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max ,
   ( ) ( )

1
1

x x
 

(6.9)

Let us use the Davidon– Fletcher–Powell (DFP) method to solve the uncon-
strained problem. To account for varying penalty terms in each iteration, the 
MATLAB® code DFP.m is modified and reproduced at the end of the book.

On executing the MATLAB code DFP.m for the optimization problem

Minimize

 f(x) = (x1 − 1)2 + (x2 − 5)2

subject to

 g x x1 1
2

2 4 0( )x = − + − ≤  

 g2(x) = −(x1 − 2)2 + x2 − 3 ≤ 0

with a starting value of x of (–1, 1), following output is displayed. Note 
from the output that penalty parameter becomes larger as constraints are 
tightened.
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Infeasible region

Optimization problem

Modified objective function

f (x) = 2x1
g (x) = 3 – x1 ≤ 0

F (x) = f (x) + rk  g(x)  2

f
rk = 1
rk = 2
rk = 3

FIGURE 6.4
Exterior penalty function method.
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Initial function value = 20.0000
No. x-vector f(x) |Constr| Penalty param.
_________________________________________________________
1 0.812 4.624 0.2219 11.70470 1
2 0.751 4.643 0.2501 0.21589 5
3 0.739 4.602 0.2544 0.11436 9
4 0.742 4.572 0.2574 0.05665 18
5 0.745 4.562 0.2589 0.02322 43
6 0.751 4.562 0.2540 0.01459 69
7 0.750 4.562 0.2543 0.00180 555
8 0.750 4.562 0.2542 0.00109 915
9 0.750 4.562 0.2541 0.00092 1082
10 0.750 4.562 0.2540 0.00052 1913
11 0.750 4.562 0.2540 0.00021 4720
12 0.750 4.562 0.2540 0.00018 5495
13 0.750 4.562 0.2542 0.00015 6526
14 0.750 4.563 0.2539 0.00056 1801
15 0.750 4.563 0.2541 0.00029 3435
16 0.750 4.562 0.2539 0.00030 3309
17 0.750 4.562 0.2539 0.00007 14692
18 0.750 4.562 0.2539 0.00006 15596
19 0.750 4.562 0.2539 0.00001 70933_________________________________________________________

The main advantages of the penalty function method are

•	 It can be started from an infeasible point.
•	 Unconstrained optimization methods can be directly used.

The main disadvantages of the penalty function method are

•	 The function becomes ill-conditioned as the value of the penalty 
terms is increased. Owing to abrupt changes in the function value, 
the gradient value may become large and the algorithm may show 
divergence.

•	 As this method does not satisfy the constraints exactly, it is not suit-
able for optimization problems where feasibility must be ensured in 
all iterations.

So far we have discussed the exterior penalty function method, which can 
be started even from an infeasible point. Some problems require feasibility 
to be maintained in all the iterations. In the interior penalty function method, 
a feasible point is first selected. The objective function is modified in such 
a way that it does not leave the feasible boundary. They are therefore fre-
quently referred to as barrier function methods. The modified objective func-
tion in the interior penalty function approach would be
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See Figure 6.5, where we observe that modified function remains feasible 
for different values of rk.

Example 6.2

A welded beam (Ragsdell and Philips 1976) has to be designed at mini-
mum cost whose constraints are shear stress in weld (τ), bending stress 
in the beam (σ), buckling load on the bar (P), and deflection of the beam (δ). 
The design variables (see Figure 6.6) are
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The optimization problem is

Minimize

 f x x x x x( ) . . ( )x = + +1 10471 0 04811 141
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FIGURE 6.5
Interior penalty function method.
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subject to

 g1(x) = τ(x) − τmax ≤ 0

 g2(x) = σ(x) − σmax ≤ 0

 g3(x) = x1 − x4 ≤ 0

 g x x x x4 1
2

3 4 20 10471 0 04811 14 5 0( ) ( ). .x = + + − ≤  

 g5(x) = 0.125 − x1 ≤ 0

 g6(x) = δ(x) − δmax ≤ 0

 g7(x) = P − Pc(x) ≤ 0

 0.1 ≤ x1, x4 ≤ 2.0

 0.1 ≤ x2, x3 ≤ 10.0

where

 τ τ τ τ τ( )x = ′ + ′ ′′ + ′′2 2 22
2
x
R  

 ′ =τ P

x x2 1 2  

 ′′ =τ MR
J  

h

P

t

b

L
l

FIGURE 6.6
Welded beam.
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 P = 6000 lb, L = 14 in., E = 30 × 106 psi, G = 12 × 106 psi, τmax = 13,600 psi, 
σmax = 30,000 psi, δmax = 0.25 in.

To give equal weightage to all the constraints, the first step is to nor-
malize all the constraints. For example, the constraint

 τ(x) − τmax ≤ 0

can be normalized as

 
τ
τ
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− ≤1 0
 

The penalty function method is used and the unconstrained optimi-
zation technique used is particle swarm optimization (PSO). The PSO 
code along with cost and constraint functions is given at the end of the 
book. On executing the code, the optimum value of objective function 
obtained is 2.381 and the corresponding variables are
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The termination criterion for the algorithm is the point at which the 
maximum number of iterations are completed. The output is reproduced 
below.

No. x-vector f(x)
_______________________________________________________
1 0.379 4.305 9.021 0.427 4.081
2 0.319 4.211 9.862 0.363 3.611
3 0.291 4.149 9.603 0.317 3.050
4 0.177 3.941 3.820 0.171 3.050
5 0.107 3.814 6.680 1.358 3.050
6 1.674 3.800 1.484 0.920 3.050
7 1.658 3.787 5.360 0.479 3.050
8 1.532 3.804 9.572 1.449 3.050
9 0.293 4.130 7.868 1.764 3.050
10 0.781 4.472 8.763 1.174 3.050
11 0.976 4.771 9.202 1.250 3.050
12 1.214 4.987 2.249 0.375 3.050
13 0.301 5.758 7.995 0.307 2.909
 …
2993 0.244 6.212 8.299 0.244 2.381
2994 0.244 6.212 8.299 0.244 2.381
2995 0.244 6.212 8.299 0.244 2.381
2996 0.244 6.212 8.299 0.244 2.381
2997 0.244 6.212 8.299 0.244 2.381
2998 0.244 6.212 8.299 0.244 2.381
2999 0.244 6.212 8.299 0.244 2.381
3000 0.244 6.212 8.299 0.244 2.381_________________________________________________

6.4  Augmented Lagrange Multiplier Method

As the name suggests, the augmented Lagrange multipliers (ALM) method 
combines both Lagrange multipliers and penalty function methods. For an 
optimization problem with both equality and inequality constraints, the 
augmented Lagrangian function is given by

 A r f h rk

j

r

j j

i

m

i i k

j
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( , , , ) ( ) ( )x x xλ β λ β α= + + +
= = =
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2( )x +
=

∑α  (6.11)

where λj and βi are the Lagrange multipliers, rk is a penalty parameter fixed 
at the start of the iteration and
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The Lagrange multipliers are updated in each iteration (k) using the 
expressions
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The augmented Lagrange function can be minimized using algorithms 
for unconstrained optimization. Here the DFP method is used for uncon-
strained minimization. Consider again the optimization problem

Minimize

 f(x) = (x1 − 1)2 + (x2 − 5)2

subject to

 g x x1 1
2

2 4 0( )x = − + − ≤  

 g2(x) = −(x1 − 2)2 + x2 − 3 ≤ 0

The MATLAB code ALM.m solves the constrained optimization problem 
using the ALM method with starting point as (0, 1). On executing the code the 
following output is displayed on the command window.

 Initial function value = 17.0000
No. x-vector rk f(x) |Cons.|
________________________________________________
1 0.887 4.547 1.000 0.218 0.308
2 0.887 4.547 1.000 0.249 0.146
3 0.685 4.613 1.000 0.254 0.022
4 0.739 4.569 1.000 0.220 0.059
5 0.751 4.594 1.000 0.240 0.029
6 0.757 4.576 1.000 0.253 0.013
7 0.756 4.562 1.000 0.265 0.000
8 0.752 4.551 1.000 0.252 0.012
9 0.746 4.568 1.000 0.252 0.018
10 0.743 4.569 1.000 0.254 0.003
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11 0.748 4.564 1.000 0.253 0.003
12 0.750 4.563 1.000 0.253 0.002
13 0.750 4.563 1.000 0.254 0.001
14 0.750 4.563 1.000 0.254 0.000
15 0.750 4.561 1.000 0.252 0.002
16 0.750 4.563 1.000 0.253 0.002______________________________________________

 KKT conditions are satisfied

 Lagrange multipliers
 0 0.4201 0.4500

Since there are no equality constraints, the first Lagrange multiplier is zero. 
The other two positive multipliers correspond to the inequality constraints. 
Since the multipliers are positive, both inequality constraints are active.

6.5  Sequential Quadratic Programming

We discussed in the earlier section that for a constrained optimization 
problem

Minimize

 f(x)

subject to

 h(x) = 0

the corresponding Lagrangian function would be

 L(x, λ) = f(x) + λh(x) (6.15)

and the first-order optimality condition would be

 ∇xL(x, λ) = 0 (6.16)

The variables x and λ are updated using the equation
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where ∆
∆

x
λ
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This is equivalent to solving a quadratic problem with linear constraints. 
Thus a nonlinear optimization problem with both equality and inequality 
constraints can be written as a quadratic problem.

Minimize

 Q f LT T= ∇ + ∇∆ ∆ ∆x x x x( )
1
2

2  (6.19)

subject to

 hj(x) + ∇hj(x)TΔx = 0 (6.20)

 gi(x) + ∇gi(x)TΔx = 0 (6.21)

The SQP method approximates the objective function to a quadratic form 
and linearizes the constraints in each iteration. The quadratic programming 
problem is then solved to get Δx. The value of x is updated with Δx. Again 
the objective function is approximated with a quadratic function and con-
straints are linearized with new value of x. The iterations are repeated until 
there is no further improvement in the objective function.

Trust region approach is a useful technique for solving quadratic prob-
lems. In this approach, a region around x has to be evaluated (Δx) where a 
quadratic approximation of the function holds. The region is adjusted so that 
f(x + Δx) < f(x). Refer to Byrd et al. (1988, 2000) and Moré and Sorensen (1983) 
for more details.

The Lagrangian function is often replaced by an augmented Lagrangian 
function in the SQP method. Let us show the steps of SQP for the constrained 
optimization problem

Minimize

 f(x) = (x1 − 1)2 + (x2 − 2)2
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subject to

 h1(x) = 2x1 − x2 = 0

 g1(x) = x1 ≤ 5

from a starting point (10, –5).
Iteration 1
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The quadratic problem is

Minimize

 
Q T T=
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
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subject to

 25 + [2 −1]Δx = 0

 5 + [1 0]Δx = 0

The solution of the quadratic problem is
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
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
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Now x is updated as

 
x x x= + =

−
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Iteration 2

 
f f h g( ) . ; ( ) ; ;x x= ∇ =
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The quadratic problem is

Minimize

 
Q T T=


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
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
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10 4
4 4  

subject to

 0 + [2 −1]Δx = 0

 −2.5 + [1 0]Δx = 0

The solution of the quadratic problem is

 
∆x = −

−
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
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
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.
.  

Now x is updated as
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Iteration 3
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Thus minimum of the function is at 1
2









 . The value of multiplier is zero for 

the inequality constraint. That is, the inequality constraint is inactive at the 
optimum point. The MATLAB code sqp.m solves the constrained optimiza-
tion problem using SQP method.

Example 6.3

Solve the welded beam constrained optimization problem using the SQP 
method with an initial guess of (0.4, 6.0, 8.0, 0.5). Which constraints are 
active at the optimum point?
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On executing the SQP code, the following output is displayed on the 
command screen.

No.      x-vector    f(x)  |Cons.|
_______________________________________________________
1.0000 0.1250 10.0000  7.3810  0.1250  1.2379  7.2894
2.0000 0.1562  9.4551  8.6532  0.1562  1.7806  2.7531
3.0000 0.1920  7.1120  9.2150  0.1920  2.0868  0.9222
4.0000 0.2215  5.7879  9.4825  0.2215  2.3129  0.2302
5.0000 0.2352  5.5031  9.4865  0.2352  2.4297  0.0259
6.0000 0.2377  5.5289  9.3717  0.2377  2.4386  0.0006
7.0000 0.2385  5.6017  9.2434  0.2385  2.4308  0.0002
8.0000 0.2392  5.6751  9.1197  0.2392  2.4234  0.0002
9.0000 0.2399  5.7473  9.0011  0.2399  2.4166  0.0002
10.0000 0.2405  5.8180  8.8876  0.2405  2.4102  0.0002
11.0000 0.2412  5.8871  8.7793  0.2412  2.4044  0.0002
12.0000 0.2418  5.9543  8.6761  0.2418  2.3991  0.0001
13.0000 0.2425  6.0194  8.5781  0.2425  2.3942  0.0001
14.0000 0.2431  6.0822  8.4853  0.2431  2.3897  0.0001
15.0000 0.2436  6.1426  8.3977  0.2436  2.3856  0.0001
16.0000 0.2442  6.2004  8.3151  0.2442  2.3819  0.0001
17.0000 0.2444  6.2175  8.2914  0.2444  2.3809  0.0000
18.0000 0.2444  6.2175  8.2915  0.2444  2.3810  0.0000
19.0000 0.2444  6.2175  8.2915  0.2444  2.3810  0.0000_________________________________________________

The minimum function value is 2.3810 and occurs at
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On typing BETA at the command prompt, the following values are 
displayed.

1.4584 0.9876 0.0000 0 0 0 22.0248 0
0 0 0 0 0 0 0

The positive value of multipliers for the first, second, and seventh con-
straints indicate that these are active constraints at the optimum point.

Example 6.4

A cylindrical pressure vessel capped at both ends by hemispherical 
heads is to be designed for minimum cost (Sandgren 1990) whose design 
variables are the thickness of the shell (x1), thickness of the head (x2), 
inner radius (x3), and length of the cylindrical section of the vessel (x4).

© 2015 by Taylor & Francis Group, LLC

  



189Constrained Optimization

The optimization problem is

Minimize

 f x x x x x x x( ) . . . .x = + + +0 6224 1 7781 3 1661 19 841 3 4 2 3
2

1
2

4 xx x1
2

3  

subject to

 g1(x) = −x1 + 0.0193x3 ≤ 0

 g2(x) = −x2 + 0.00954x3 ≤ 0

 g x x x3 3
2

4 3
34

3
1 296 000 0( ) , ,x = − − + ≤π π

 

 g4(x) = x4 − 240 ≤ 0

where

 0 ≤ x1, x2 ≤ 10, 10 ≤ x3, x4 ≤ 200 

Solve the constrained optimization problem using the SQP method 
with an initial guess of (4, 4, 100, 100).

On executing the SQP code, the function minimum obtained is 
5885.3407 and occurs at (0.7782, 0.3848, 40.3196, 200). The convergence 
history is shown in the following table.

No.                        x-vector                    f(x)      |Cons.|
___________________________________________________________________________________
1.0000e+000 1.2397e+000 6.1277e-001 6.4231e+001 2.0000e+002 1.7338e+004 7.2861e-012
2.0000e+000 8.8933e-001 4.3960e-001 4.6079e+001 2.0000e+002 7.9846e+003 3.1070e-012
3.0000e+000 7.8712e-001 3.8908e-001 4.0784e+001 2.0000e+002 6.0404e+003 0
4.0000e+000 7.7823e-001 3.8468e-001 4.0323e+001 2.0000e+002 5.8865e+003 0
5.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 0
6.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 5.5511e-017
7.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 0
8.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 5.5511e-017
9.0000e+000 7.7817e-001 3.8465e-001 4.0320e+001 2.0000e+002 5.8853e+003 6.9849e-010
___________________________________________________________________________________

Example 6.5

The optimized production rate (Thygeson and Grossmann 1970) of a 
through-circulation system for drying catalyst pellets depends on the 
fluid velocity (x1) and bed depth (x2).

The optimization problem is

Minimize

 f x x x( ) . . .x = −( ) − 0 0064 0 184 11 1
0 3

2exp
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subject to

 g x x x1 1 1
2

2
133000 1 2 10 0( ) ( ) .x = + − × ≤  

 g x x2 1
0 3

20 184 4 1 0( ) . ..x = ( ) − ≤exp  

where

 0 ≤ x1 ≤ 40,000, 0 ≤ x2 ≤ 1 

Solve the constrained optimization problem using the PSO method.
On executing the PSO code, the function minimum obtained is 

–153.716 and occurs at (31,766, 0.342). The convergence history is shown 
in the following table.

No. x-vector f(x)
_________________________________________
1 31475.978 0.340 -151.749
2 31532.201 0.341 -152.112
3 32464.351 0.321 -152.958
4 37080.697 0.262 -152.958
5 38808.857 0.240 -152.958
6 39261.784 0.234 -152.958
7 33844.159 0.303 -152.958
8 27509.668 0.384 -152.958
9 26009.433 0.404 -152.958
 …
992 31766.001 0.342 -153.716
993 31766.001 0.342 -153.716
994 31766.001 0.342 -153.716
995 31766.001 0.342 -153.716
996 31766.001 0.342 -153.716
997 31766.001 0.342 -153.716
998 31766.001 0.342 -153.716
999 31766.001 0.342 -153.716
1000 31766.001 0.342 -153.716_____________________________________

6.6  Method of Feasible Directions

Some optimization problems require constraints to be satisfied in every itera-
tion. For example, consider the shape optimization problem of a body whose 
drag is to be minimized. The drag force is computed using computational 
fluid dynamics (CFD) analysis for a given shape of the body. It is obvious 
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that CFD analysis will provide reliable results if only there is a meaningful 
shape of the body. This can be achieved by not only giving a proper defini-
tion of the constraints, but also satisfying them at each iteration. Consider a 
constrained optimization problem

Minimize

 f(x)

subject to

 gi(x) ≤ 0 i = 1, 2,…, m 

A direction S is feasible at point x if

 ST∇gi(x) < 0 (6.22)

If the objective function also has to be reduced, then the following inequal-
ity must also be satisfied:

 ST∇f(x) ≤ 0 (6.23)

Zoutendijk’s method of feasible directions and Rosen’s gradient projection 
method are two popular methods of feasible directions that are explained in 
this section.

6.6.1  Zoutendijk’s Method

The method starts with a feasible point x. That is, gi(x) ≤ 0 are satisfied. Set the 
search direction as the steepest descent direction. That is,

 S = −∇f(x)

If at least one of the constraint is active gi(x) = 0, then the following optimi-
zation subproblem is to be solved with respect to S.

Minimize

 β (6.24)

subject to

 ST∇gi(x) + β ≤ 0 (6.25)
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 ST∇f(x) + β ≤ 0 (6.26)

 −1 ≤ sk ≤ 1 k = 1, 2,…, n (6.27)

where n denotes number of variables and sk are the components of the search 
direction. A line search algorithm can be used to determine the next point 
x as

 x x S= + α  

such that

 f(x + αS) = f(x)

 gi(x + αS) ≤ 0

In case constraints are not met with x, the optimization subproblem has to 
be solved again with x to obtain new S. The algorithm is terminated if any of 
the following criteria are met:

•	 The objective function value does not show improvement over suc-
cessive iterations.

•	 Design variables do not change over successive iterations.
•	 β is close to zero.

6.6.2  Rosen’s Gradient Projection Method

In this method, the search direction (negative of the gradient of the objective 
function) is projected into the subspace tangent of the active constraints. This 
condition of projection is sufficient for linear constraints. However, if the 
constraints are nonlinear, the projected search direction moves away from 
the search boundary (see Figure 6.7). A restoration move is carried out in 
case nonlinear constraints are present.

Let the matrix N denote gradient of active constraints. That is,

 N = [∇g1, ∇g2,⋯, ∇gm] (6.28)

The projected matrix is given by

 P = I − N(NTN)−1NT (6.29)
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The search direction is given by

 S = −P∇f(x) (6.30)

The restoration move is given by

 −N(NTN)−1gi(x) (6.31)

Combining the projection and restoration move, the design variable can 
be updated as

 x x S N N N g x= + − −α ( ) ( )T
i

1  (6.32)

where

 α γ= −
∇
f

fT

( )
( )
x

S x
 (6.33)

and γ specifies the desired reduction in the objective function (Haug and 
Arora 1979).

Example 6.6

Show all the important variables in the first iteration of the Rosen’s gra-
dient projection method for the following optimization problem from a 
starting value of (2, 1).

Minimize

 f(x) = (x1 − 1)2 + (x2 − 2)2

Restoration
move

Projection
move

gi = 0

FIGURE 6.7
Rosen’s gradient projection method with restoration move.
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subject to

 g1(x) = 2x1 − x2 ≤ 0

 g2(x) = x1 ≤ 5

At x = (2, 1)

 f(x) = 2

 ∇ =
−
−













=
−









f

x

x
( )

( )

( )
x

2 1

2 2
2
2

1

2
 

The constraint g1(x) is also violated. Therefore,

 N =
−











2
1

 

The projection matrix is given by

 P I N N N N= − =








−( )T T1 1

5
1 2
2 4

 

Therefore, the search direction is given by

 S P x= − ∇ =
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





f ( ) 1

2
 

Taking γ = 0.1,

 α γ= −
∇

=f
fT

( )
( )

.
x

S x
0 1

 

The value of x can now be updated as

 x x S N N N x= + − =








 +
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At x = (0.9, 1.8)

 f(x) = 0.05

Both the constraints are also feasible at this point.

6.7  Application to Structural Design

A structure is to be designed that has members with square cross sections 
(Figure 6.8). The design variables are the cross-sectional sizes of the columns 
(x1) and beam (x2). The objective function is to minimize the volume of the 
structure. The stresses are to be restricted at three critical sections: top of 
the column and end and midspan of the beam. The optimization problem 
(Horowitz et al. 2008) is stated as

Minimize

 V lx lx= +2 1
2

2
2α  

subject to

 
g

ql
x

ql x
x x1

1
2

2
1

1
4

2
4 12

3
6 4

0( )x ≤ +
+

− ≤
α

σ
 

 
g

x x l

x x x

ql
2

1
4

2

2
3

1
4

2
4 2

6

6 4 2
0( )

( )
x ≤ +

+( ) − ≤α
α α

σ
 

l

αl

FIGURE 6.8
Structural frame.
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g

x x l x x

x x x

ql
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4

2
3

1
4

2
4

3 6

6 4 2
( )x ≤

+ +( )
+( ) −

α α
α α

σ33 0≤
 

 0 ≤ x1, x2 ≤ 40

where

 q = 15 kgf/cm

 l = 550 cm

 σ1 = σ2 = σ3 = 103 kgf/cm2

The constrained optimization problem has two optima. It is desired to 
achieve a global optima for this problem. We use stochastic algorithm PSO 
for this purpose. On executing MATLAB code pso.m the following output is 
obtained.

 No. x1 x2 f(x)
 ________________________________
 1 10.881 31.486 597348.396
 2 18.732 31.907 597348.396
 3 25.175 32.252 597348.396
 4 22.256 32.096 597348.396
 5 11.958 31.131 595963.381
   …
 96 9.294 31.083 569385.788
 97 9.294 31.083 569385.788
 98 9.294 31.083 569385.788
 99 9.294 31.083 569385.788
 100 9.294 31.083 569385.788
 

________________________________

The global optimum value of the design variable is (x1, x2) = (9.294, 31.083) 
and optimum value of the objective function is 569,385 cm3.

Chapter Highlights

•	 A point is regular if the gradient of active inequality and all equality 
constraints are linearly independent.
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•	 The optimality conditions for constrained optimization problems 
are frequently referred to as Karush–Kuhn–Tucker (KKT) conditions. 
KKT conditions are necessary but not sufficient for optimality.

•	 The Lagrange multiplier provides information on the sensitivity of 
the objective function with respect to the sensitivity of the right-
hand side of the constraint equation.

•	 A constrained optimization problem can be converted to an uncon-
strained problem by penalizing the objective function when con-
straints are violated. Such methods are termed penalty function 
methods and are very easy to implement.

•	 The motivation of using the penalty function method is to solve 
the constrained optimization problem using algorithms for uncon-
strained problems.

•	 The augmented Lagrange multiplier (ALM) method combines both 
Lagrange multiplier and penalty function methods.

•	 The sequential quadratic programming (SQP) method approximates 
the objective function to a quadratic form and linearizes the con-
straints in each iteration.

•	 The method of feasible directions ensures meeting the constraints 
in every iteration.

•	 In Rosen’s gradient projection method, the search direction (nega-
tive of the gradient of the objective function) is projected into the 
subspace tangent of the active constraints.

Formulae Chart

Lagrange function:

 

L f h g
j

r

j j

i
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i i( , , ) ( ) ( ) ( )x x x xλ µ λ µ= + +
= =
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1 1  

Optimality condition:

 

−∇ = ∇ + ∇
= =

∑ ∑f h g
j
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j j
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1 1

λ µ

 

© 2015 by Taylor & Francis Group, LLC

  



198 Optimization: Algorithms and Applications

Penalty function:

 

f f r h r gk
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 〈gi(x)〉 = max[0, gi(x)]

Augmented Lagrangian function:
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Quadratic problem:
Minimize

 
Q f LT T= ∇ + ∇∆ ∆ ∆x x x x( )

1
2

2

 

subject to

 hj(x) + ∇hj(x)TΔx = 0

 gi(x) + ∇gi(x)TΔx = 0

Rosen’s gradient projection method:

 P = I − N(NTN)−1NT

 x x S N N N x= + − −α ( ) ( )T
ig1

 

 
α γ= −

∇
f

fT

( )
( )
x

S x  
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Problems

 1. For the following optimization problem
Minimize

 f(x) = 2x1 + x2

subject to

 1 01
2

2+ − ≤x x  

check whether the following points are feasible
i. (0, 0)

ii. (1, 2)
iii. (2, 1)
iv. (1, 3)

 2. For the following optimization problem
Minimize

 f x x( ) ( ) ( )x = − + − +1
2

2
23 4 2  

subject to

 1 01
2

2+ − ≤x x  

check which of the constraints are active at the following points
i. (2, –1)

ii. (1, 2)
iii. (1, 1)
iv. (13/5, 1/5)

 3. Solve the following optimization problem using the variable-elimination 
method.
Minimize

 f(x) = (3x1 − 2x2)2 + (x1 + 2)2

subject to

 x1 + x2 = 7
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 4. Write the Lagrangian for the problem
Minimize

 f(x) = (3x1 − 2x2)2 + (x1 + 2)2

subject to

 x1 + x2 = 7

 and then write down the optimality conditions. Find the optimal 
value of x1 and x2. Also compute the value of multiplier and com-
ment whether the constraint is active at the optimal point. What is 
the approximate change in the optimal value of f(x) if the right-hand 
side of the constraint equation is changed to 6 from 7.

 5. Solve the following optimization problem
Minimize

 
f

x
x

x
x

( )x = +5 1

2

2

1
2

 

subject to

 x1x2 − 2 = 0

 x1 + x2 ≥ 1

 using the SQP method with an initial guess of (1, 1). Define the qua-
dratic sub-problem at each step.

 6. Solve the previous optimization problem using the PSO method. 
Compare the results obtained from the SQP method.

 7. The welded beam constrained optimization problem was solved 
using PSO and SQP methods in this chapter. For the SQP method, 
the initial guess for the design variables was taken as (0.4, 6.0, 8.0, 
0.5), which was close to the optimum point. Using different initial 
guesses for the design variables, execute the SQP code and observe 
the sensitivity of the convergence.

 8. Solve the pressure vessel problem using the PSO method and Rosen’s 
gradient projection method.

 9. Solve the through-circulation dryer problem using the SQP method 
with different initial guesses of the design variables.
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 10. Solve the spring design problem (Rao 2009), which minimizes the 
weight of a spring subject to constraints on deflection, shear stress, 
and frequency. The design variables are the mean coil diameter (x1), 
the wire diameter (x2), and the number of active coils (x3).
Minimize

 f x x x( ) ( )x = +3 2 1
22  

subject to

 
g

x x
x1

2
3

3

1
41

71 785
0( )

,
x = − ≤

 

 
g

x x x

x x x x2
2
2

1 2
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1
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x x
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 where

 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15
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7
Multiobjective Optimization

7.1  Introduction

In previous chapters, optimization problems with a single objective function 
were discussed and these problems were with or without constraints. Typical 
single-variable objective functions are cost minimization, efficiency maximiza-
tion, weight minimization, and so on. The solution to single-variable optimiza-
tion problems results in a single point in the design space and the corresponding 
objective function value at that point gives the minimum value of the function.

In the multiobjective optimization problem, two or more objective func-
tions are to be simultaneously optimized. For example, the criteria in manu-
facturing a product could be cost minimization and efficiency maximization. 
The general form of a multiobjective optimization problem can be mathe-
matically stated as

Minimize

 fk(x)   k = 1, 2,…, K (7.1)

subject to

 gi(x) ≤ 0   i = 1, 2,…, m < n (7.2)

 hj(x) = 0   j = 1, 2,…, r < n (7.3)

 xl ≤ x ≤ xu (7.4)

where x is a vector of n design variables given by

 x =





















x

x

xn

1

2


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The solution to a multiobjective problem results in a number of points 
in the objective function space referred to as Pareto optimal solutions. For a 
multiobjective problem with two objective functions (the first function is 
efficiency maximization and the second function is cost minimization), a 
typical Pareto optimal front is shown in Figure 7.1. The first objective (  f1) 
function “efficiency” is along the x-axis of this figure and the y-axis contains 
the second objective (  f2) function “cost.” The Pareto optimal front is obtained 
using the principle of domination. In this concept, each solution is compared 
to check whether it dominates another solution or not.

A solution x1 is said to dominate another solution x2 if the following condi-
tions are satisfied

•	 The solution x1 is no worse than x2 in all objectives.
•	 The solution x1 is better than x2 in at least one objective.

Consider points A and C for domination. Clearly, point C dominates point 
A in both the objective functions. However, point C is itself dominated by 
at least one of the points in the Pareto optimal front. The points along the 
Pareto optimal front are referred to as nondominated solutions. In Figure 7.1, 
the Pareto optimal front is convex. However, this front can be concave, par-
tially convex/concave or discontinuous. The trade-off between the objective 
functions defines the shape of the Pareto front.

In this chapter, we discuss the methods for obtaining the nondominated 
solutions for a multiobjective optimization problem. These methods will be 
applied on some well-known test functions. The road map of this chapter 
is shown in Figure 7.2. The weighted sum approach, ε-constraint method, 
goal programming, and utility function method are explained as the tech-
niques for solving multiobjective problems. In the weighted sum approach, 

C
B

A

Pareto optimal front

f2

f1

Nondominated solutions

FIGURE 7.1
Pareto optimal front.
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different objectives are combined into a single objective function using dif-
ferent weights. This method is simple and easy to implement. However, it 
can locate one Pareto point in one optimization run using the gradient-based 
method. The particle swarm optimization (PSO) technique, which works 
with a number of solution points, can locate the Pareto front on one single 
run. In the ε-constraint method, one objective function is minimized and 
remaining objective functions are transformed into constraints which are 
to be specified by the user. The transformed problem is then solved using 
the gradient-based method. The method can locate the Pareto fronts of the 
nonconvex problems. In goal programming, a target is set for each of the 
objective functions and the optimizer aims to minimize the deviations from 
the set goals. In the utility function method, all the objectives are combined 
into a single function which is then solved along with the constraints. In 
the last section, shape optimization of a reentry body is carried out that has 
two conflicting objectives: weight minimization and stability maximization, 
along with constraints.

7.2  Weighted Sum Approach

The simplest approach to solve a multiobjective optimization problem is to 
combine all the objective functions into a single objective function, which 
then can be solved using any of the methods described in previous chap-
ters. Different objective functions can be combined into a single objective 

Multiobjective optimization

Weighted sum approach

ε-Constraints method

Goal programming

Utility function method

Application

FIGURE 7.2
Road map of Chapter 7.
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function using user-supplied weights and the optimization problem can 
be stated as

Minimize

 w k Kk k

k

K

f x( ) , , ,
=

∑ =
1

1 2   (7.5)

subject to

 gi(x) ≤ 0   i = 1, 2,…, m < n (7.6)

 hj(x) = 0   j = 1, 2,…, r < n (7.7)

 xl ≤ x ≤ xu (7.8)

where wk is a nonnegative weight of the kth objective function such that

 wk

k

K

=
=

∑ 1
1

    (7.9)

The value of weight to be selected for an objective function depends on the 
relative importance of that objective function over the other objective func-
tions. For example, in the cost-efficiency multiobjective problem discussed 
in the previous section, a weight of 0.2 for the objective function “cost” and a 
weight of 0.8 for the other objective function efficiency will result in an opti-
mized solution given by a single point. To obtain the Pareto optimal front, 
the procedure has to be repeated with different weights.

Consider the following multiobjective optimization problem whose Pareto 
optimal front is to be obtained.

Minimize

 f x x1 1
2

2
21

2
( )x = +( )

 

Minimize

 f x x2 1
2

2
21

2
1 3( ) ( ) ( )x = − + − 
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Using the weighted sum approach, two objective functions can be com-
bined to form a single objective function as given below

Minimize

 F w x x w x x( ) ( ) ( )x = +( ) + − + − 
1
2

1
2

1 31 1
2

2
2

2 1
2

2
2

The above function is optimized by varying the weight w1 from 0 to 1 in 
steps of 0.01. The other weight w2 is selected using the following equality,

 w2 = 1 − w1 (7.10)

For each value of [w1, w2], the above function will be optimized to obtain 
the optimal solution. Thus, different values of [w1, w2] will result in a number 
of optimal solutions that result in the Pareto optimal front. Let us use the 
sequential quadratic programming (SQP) method, as discussed in the previ-
ous chapter, to solve the multi-objective problem. The MATLAB® code sqp.m 
is modified so that in a single execution, the Pareto optimal front can be 
obtained. Only the modified main program and functions are listed under 
the heading of this chapter in Appendix B. Other routines remain the same 
as previous chapters. On executing the code, the Pareto optimal front is 
obtained and is shown in Figure 7.3. The shape of the Pareto front is convex. 
The tangent line at point A represents the equal-cost line for the function F(x) 
and its slope depends on the choice of weights w1 and w2.
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0.5

1

1.5

2

2.5
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5
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f 2

w1
w2

Pareto front

Objective space

A

FIGURE 7.3
Pareto front.
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Let us check the performance of the weighted sum method for multiobjec-
tive problems that have a nonconvex Pareto front. Consider the following 
multiobjective optimization problem:

Minimize

 f1(x) = x1

Minimize

 f x x x2 2
2

1 11 0 1 3( ) . sin( )x = + − − π

subject to

 0 ≤ x1≤ 1,   −2 ≤ x2 ≤ 2

On executing the modified SQP code for these functions, an incomplete 
Pareto front is generated and is shown in Figure 7.4. The weighted sum 
approach, though simple to implement, has difficulty in locating the Pareto 
front of the nonconvex type. Another disadvantage of the weighted sum 
approach is that even if weights are uniformly distributed, it may not result 
in uniform distribution of Pareto optimal solutions (see Figure 7.4). The 
advantages and disadvantages of this method are

Advantages

•	 It is simple and easy to use.
•	 It ensures a solution for convex problems.
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FIGURE 7.4
Incomplete Pareto front.
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Disadvantages

•	 The computational burden is higher.
•	 Different weights may lead to the same solution.
•	 A solution is not obtained for nonconvex problems.
•	 All problems have to be converted to the same type (min or max type).

An interesting alternative is to use evolutionary algorithms (such as 
genetic algorithm or PSO) to locate the Pareto optimal front because it works 
simultaneously on a number of points. In one such strategy using the PSO 
technique (Parsopoulos and Vrahatis 2002), the weights are updated on each 
iteration using the equation

 w t
t

F1
2

( ) sin=






π

 

where t is the iteration index and F is the weights’ change frequency. The 
dynamic change of weights during the iterations forces the PSO algorithm to 
keep the solutions on the Pareto front. The PSO algorithm given in Chapter 5 
is modified with the dynamic weight strategy and the revised MATLAB code 
is given in pso.m. On executing the code for the multiobjective problem, the 
Pareto optimal front is obtained and is shown in Figure 7.5. It is important to 
note that the modified PSO algorithm is able to locate the nonconvex Pareto 
front where weigthed sum approach failed to achieve the full Pareto front.
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FIGURE 7.5
Nonconvex Pareto front generated with particle swarm optimization.
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Example 7.1

Consider the multiobjective optimization problem:

Minimize

 f x x1 1
3

2
2( )x = +

Minimize

 f x x2 2
2

12 3( )x = −  

subject to

 0 ≤ x1 ≤ 1,   −2 ≤ x2 ≤ 2

Modify the PSO code for these functions and obtain the Pareto opti-
mal front.

The tuning parameters for PSO algorithm are changed to different val-
ues. On executing the code with one such change in tuned parameters, 
the Pareto optimal front is obtained and given in Figure 7.6.

7.3  ε-Constraints Method

In this method, the decision-maker chooses one objective out of K objectives 
that needs to be minimized and the remaining objectives are put as con-
straints to some target values (which are to be defined by the decision-maker). 
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FIGURE 7.6
Pareto front for the test problem.
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If we select f3(x) as the objective function that needs to be minimized, then 
the ε-constraint problem is

Minimize

 f3(x) (7.11)

subject to

 f k K kk k( ) ,x ≤ = … ≠ε 1 3  (7.12)

For a simple multiobjective problem with two objectives, the concept of this 
method is explained through Figure 7.7. Using different values of ε, Pareto opti-
mal solutions can be obtained. The method can also provide solutions for mul-
tiobjective problems with nonconvex Pareto fronts. The disadvantage of this 
method is that prior information on ε is required to obtain a proper solution.

Let us solve the following problem using this method.

Minimize

 f1(x) = x1

Minimize

 f x x x2 2
2

1 11 0 1 3( ) . sin( )x = + − − π  

subject to

 0 ≤ x1 ≤ 1,   −2 ≤ x2 ≤ 2

Pareto point

Pareto front
(to be determined)

f2

f1
f1(x) ≤ ε

FIGURE 7.7
Concept of ε-constraints method.
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The second objective function f2(x) is used as an objective function and the 
first objective function f1(x) is put as a constraint:

 f1( )x ≤ ε

The optimization problem is solved for different ε using the SQP method. 
The ε is varied from 0.01 to 0.99, resulting each time in an optimization prob-
lem with different constraints. The solution of each of these problems results 
in a single Pareto point. The SQP code, mentioned in Chapter 6, is suitably 
modified and the Pareto front obtained is shown in Figure 7.8.

7.4  Goal Programming

In goal programing, a target or goal is set for each objective function. Then 
the optimization problem is to minimize the deviation from the set targets. 
For example, if the functions fk(x) are to be minimized and we set a goal for 
this function as τk, then the optimization problem becomes

Minimize

 w p w n k Kk k k k

k

K

1 2

1

1 2, , , , ,+ =
=

∑   (7.13)
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FIGURE 7.8
Nonconvex Pareto front generated using ε-constraints method.
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subject to

 fk(x) + pk − nk = τk (7.14)

 pk, nk ≥ 0 (7.15)

where w1,k and w2,k are the weights of the kth goal and pk and nk are the under-
achievement and overachievement for the kth goal. The main advantage of 
goal programming is that multiobjectives are transformed into the con-
straints of a single-objective optimization problem.

Let us consider the following multiobjective optimization problem.

Minimize

 f x x1 1
2

2( )x = +  

Minimize

 f x x2 2
2

1( )x = −  

subject to

 −5 ≤ x1 ≤ 5,   −3 ≤ x2 ≤ 3

Assuming goals for the two objective functions as 1 and 2, the goal pro-
gramming problem can be written as

Minimize

 f1(x) = w11p1 + w12p2 + w21n1 + w22n2

subject to

 x x p n1
2

2 1 1 1 0+ + − − =  

 x x p n2
2

1 2 2 2 0− + − − =  

 −5 ≤ x1 ≤ 5,   −3 ≤ x2 ≤ 3

where the design variables for this problem are x1, x2, p1, p2, n1, and n2. For 
the user-supplied value of the weight variables, the optimization problem 
is solved. The optimal value of the design variables is substituted in the 
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original multiobjective problem to obtain the values of f1 and f2. The Pareto 
front can be obtained by repeating the procedure with different weights.

In the lexicographic goal programming method, different objectives of the multi-
objective problem are to be ranked in the order of importance or priority. The 
most important objective is selected first and it is solved to obtain x*. The next 
objective function in the order of priority is then selected and solved with the 
additional constraint being the value of the objective function obtained from 
the first step. The process is repeated until all the objectives are covered. Let 
f1(x) be the most important objective function selected by the designer; then 
the first step is to solve the optimization problem:

Minimize

 f1(x)

subject to

 gi(x) ≤ 0   i = 1, 2,…, m

The optimal solution for this problem is denoted by x*. In the next step of 
lexicographic goal programming, the second most important objective func-
tion f2(x) is selected for optimization and the problem can be stated as

Minimize

 f2(x)

subject to

 gi(x) ≤ 0   i = 1, 2,…, m

 f1(x) = f1(x*)

The process is repeated until all the objectives are covered and let the opti-
mum solution obtained for the multiobjective problem be denoted by x*. It is 
important to note that if the priorities of the objective functions are changed, 
the optimal solution obtained will be a different x*.

7.5  Utility Function Method

In this method a utility function U is defined that combines all the objective 
functions of the multiobjective optimization problem. The utility function 
then becomes the objective function of the optimization problem that can 
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be solved along with the constraints. Mathematically, the utility function 
method can be described as

Minimize

 U(  fk(x))   k = 1, 2,…, K (7.16)

subject to

 gi(x) ≤ 0   i = 1, 2,…, m < n (7.17)

 hj(x) = 0   j = 1, 2,…, r < n (7.18)

7.6  Application

Reentry bodies enter the Earth’s atmosphere with high velocities. The large 
kinetic energy possessed by these bodies has to be dissipated by appropri-
ately designing the shape of these bodies. The shape design of the reentry 
body is a typical multiobjective optimization problem with conflicting objec-
tives (Adimurthy et al. 2012; Arora and Pradeep 2003). The weight of the reen-
try body is to be minimized and its stability is to be maximized. The weight 
minimization is the same as minimizing the surface area of the reentry body. 
The stability of the body is dictated by its location of center of pressure and is 
denoted by Xcp. An aerodynamic body is more stable if its Xcp is located as aft 
as possible. Thus, for aerodynamic stability Xcp is to be maximized.

The shape of a reentry body is typically a spherical nose-cone-flare type 
(Figure 7.9). The design parameters for the multiobjective optimization are the 

Flare

Conical body

Spherical nose

l1

R

l2θ2

θ1

FIGURE 7.9
Design variables of the reentry body.
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nose radius (Rn), first conical flare angle (θ1), and its length (l1) and second con-
ical flare angle (θ2) and its length (l2). During the launch phase of the reentry 
body, it has to be accommodated inside the payload fairing of the rocket. So 
there are restrictions on the dimensions of the nose radius and flare lengths. 
In addition, to avoid flow separation, variable θ2 is linked to θ1. Further, elec-
tronic packages and other equipment have to be housed inside the reentry 
body, leading to volume (V) constraint in the optimization problem.

The constraints of the problem are

 V ≥ 1

 0.4 < Rn < 0.6

 22 < θ1 < 27

 θ1 + 5 < θ2 < θ1 + 10

 0.4 < l1 < 0.8

 0.4 < l2 < 0.8

The surface area and volume are computed using the expressions

 

A = − + + − +

+ +

2 12
1 1 2 2 1

2
1
2

2

π θ π

π

R R R R R l

R R

n

B

( )sin ( ) ( )

( ) (RR R l RB B− + +2
2

2
2 2) π  

 

V
R

R R l R Rn= − + −( ) + +π θ θ π( )sin
( sin )

1
6

3 1
1
3

1
1
2

1
2

1
2

1 1
2

2
22

1 2

2
2

2
2

2
1
3

+( )

+ + +( )

R R

l R R R RB Bπ
 

where

 R1 = Rn cos θ1

 R2 = Rn cos θ1 + l1 tan θ1

 RB = R2 + l2 tan θ2

The other objective function Xcp is computed using the expression

 X
C
Ccp

m

n

=
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where Cm and Cn are pitching moment coefficient and the normal force coef-
ficient respectively. The value of Xcp is computed for a unit reference length. 
The value of aerodynamic coefficients can be computed using the flow field 
analysis for different geometrical shapes. As an alternate, one can build 
a response surface for Cm and Cn as a function of input parameters Rn, θ1, 
l1, θ2 and l2. The responses are generated using modified Newtonian flow 
(Chernyi 1961), which is valid for hypersonic (Mach>5) flows. The analysis 
is valid for a small angle of attack. The response matrix is generated for an 
angle of attack of 5 degrees and is shown in Table 7.1.

The response surface model is then generated with MATLAB using the 
regstats function. For example,

>> regstats(cm,inputparam,’purequadratic’)
>> beta

will generate the polynomial coefficients (beta) of the respective input 
parameters. The response surface of the aerodynamic coefficients is thus 
given as

TablE 7.1

Response Surface Matrix

Input Parameters Responses

Rn m θ1 degrees θ2 degrees l1 m l2 m Cm Cn

0.5 20 25 0.65 0.65 0.07954 0.12198
0.5 20 25 1.00 0.65 0.12409 0.15979
0.5 20 25 0.20 0.65 0.03992 0.08037
0.5 20 25 0.65 1.00 0.13359 0.16864
0.5 20 25 0.65 0.20 0.03420 0.072529
0.2 20 25 0.65 0.65 0.03848 0.06818
0.2 20 25 1.00 0.65 0.06647 0.09546
0.2 20 25 0.20 0.65 0.01552 0.03951
0.2 20 25 0.65 1.00 0.07245 0.10236
1.0 20 25 0.65 0.65 0.01974 0.23620
1.0 20 25 1.00 0.65 0.27559 0.29093
1.0 20 25 0.20 0.65 0.12147 0.17304
1.0 20 25 0.65 1.00 0.29286 0.30292
1.0 20 25 0.65 0.20 0.10818 0.16111
0.5 15 20 0.65 0.65 0.05917 0.09790
1.2 15 25 0.20 0.65 0.12767 0.17713
0.2 15 20 1.00 0.65 0.04339 0.06695
0.5 25 35 0.65 0.65 0.11970 0.15591
0.5 25 30 0.65 1.00 0.17626 0.20450
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 C R l l R ln nm 1
2= + + + + + + + +β β β θ β β θ β β β θ β0 1 2 1 3 1 4 2 5 2 6

2
7 8 1

22
9 10 2

2+ +β θ β2
2 l  

 C R l l Rn nn = + + + + + + +′ ′ ′ ′ ′ ′ ′ ′β β β θ β β θ β β β0 1 2 1 3 1 4 2 5 2 6
2

7 θθ β β θ β1
2

2
2+ + +′ ′ ′8 1

2
9 2

2
10l l  

where the polynomial coefficients are given by
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The response surface model is validated by using some arbitrary values of input 
parameters, but within their constraint bounds and generating the responses 
for these parameters. The accuracy of responses is checked by comparing them 
with those generated by flow field analysis for the same input parameters. The 
accuracy of the response surface model is within 5% of those generated by the 
flow field analysis. Let us summarize the multiobjective problem:

Minimize

 
A R R R R R R Rn B= − + + − + + +2 12

1 1 2 2 1
2

1 2π θ π π( )sin ( ) ( ) ( ) (l2 RR R RB B− + +2
2 2) l2

2 π

Maximize

 Xcp

subject to

 V ≥ 1

 0.4 < Rn < 0.6

 22 < θ1 < 27
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 θ1 + 5 < θ2 < θ1 + 10

 0.4 < l1 < 0.8

 0.4 < l2 < 0.8

The multiobjective optimization problem is solved using the ε-constraints 
method. The objective function Xcp is taken as the function to be optimized 
and the other objective function A becomes a constraint. Since Xcp is to be 
maximized, it is put as −Xcp in the SQP method which is written for minimi-
zation of a function. The area is varied from 6.4 m2 to 16.3 m2. This is put as 
a constraint in the optimization problem:

 A < ε

where ε is varied from 6.4 to 16.3 in steps of 0.2 resulting in different con-
straint optimization problems. Each of these problems is then solved using 
the SQP method. The MATLAB code for the objective functions is given in 
func.m and func1.m. On executing the MATLAB code sqp.m the Pareto front 
is obtained and is given in Figure 7.10. The shape of the reentry body for 
the extreme cases of Pareto front is also shown in this figure. For achieving 
higher stability, the flare lengths are higher and for achieving lower surface 
area, flare lengths are smaller. Along the Pareto front, the maximum Xcp that 
can be obtained is 0.87 where A is 16.3 m2. For area of 6.4 m2, the Xcp achieved 
will be 0.58.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
6

8

10

12

14

16

18

Xcp

A

Pareto front

FIGURE 7.10
Pareto front of reentry test body.
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Chapter Highlights

•	 In the multiobjective optimization problem, two or more objective 
functions are to be simultaneously optimized.

•	 The solution to a multiobjective problem results in a number of 
points in the objective function space referred to as Pareto optimal 
solutions.

•	 The Pareto front can be concave, partially convex/concave or 
discontinuous.

•	 The points along the Pareto optimal front are referred to as non-
dominated solutions.

•	 In the weighted-sum approach, different objective functions are com-
bined into a single objective function using user-supplied weights.

•	 The weighted sum approach, though simple to implement, has dif-
ficulty in locating the Pareto front of the nonconvex type.

•	 In the ε-constraint method, the decision-maker chooses one objec-
tive out of K objectives that needs to be minimized and the remain-
ing objectives are put as constraints to some target values.

•	 Evolutionary algorithms (such as genetic algorithm or particle 
swarm optimization) are often used to locate the Pareto optimal 
front since they work simultaneously on a number of points.

•	 In goal programing, a target or goal is set for each objective function. 
Then the optimization problem is to minimize the deviation from 
the set targets.

Formulae Chart

Multiobjective problem:
Minimize/maximize

 fk(x)   k = 1, 2,…, K

Weighted sum approach:
Minimize

 w k Kk k

k

K

f x( ) , , ,
=

∑ =
1

1 2 
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 wk

k

K

=
=

∑ 1
1  

Goal programming:
Minimize

 f3(x)
subject to

 f k K kk k( ) ,x ≤ = ≠ε 1 3

Goal programming:
Minimize

 
w p w n k Kk k k k

k

K

1 2

1

1 2, , , , ,+ =
=

∑ 

 

subject to

 fk(x) + pk − nk = τk

Utility function method:
Minimize

 U(  fk(x))

Problems

 1. Find the convex Pareto front for the multiobjective optimization 
problem (Parsopoulos and Vrahatis 2002):
  Minimize  f1 = x2

  Minimize  f2 = (x − 2)2

 where x ∈ − 10 105 5, .
 2. Find the concave Pareto front for the multiobjective optimization 

problem (Zitzler et al. 2000).
  Minimize  f1 = x1

  Minimize  f g
f
g2
1

2

1= −















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 where g
n

xi

i

n

= +
−

=
∑1

9
1

2

 and xi ∈[ , ]0 1 . Take n = 30.

 3. Find the convex Pareto front for the multiobjective optimization 
problem (Zitzler et al. 2000).
  Minimize  f1 = x1

  Minimize  f g
f
g2
11= −











 where g
n

xi

i

n

= +
−

=
∑1

9
1

2

 and xi ∈[ , ]0 1 . Take n = 30.

 4. Find the convex/concave Pareto front for the multiobjective optimi-
zation problem (Zitzler et al. 2000).
  Minimize  f1 = x1

  Minimize f g
f
g

f
g2

1

4

141= −






−










 where g
n

xi

i

n

= +
−

=
∑1

9
1

2

 and xi ∈[ , ]0 1 . Take n = 30.

 5. Find the concave Pareto front for the multiobjective optimization 
problem (Deb 2002):

  Minimize  f x ni

i

n

1

2

1

1 1= − − −( )









=
∑exp /

  Minimize  f x ni

i

n

2

2

1

1 1= − − +( )









=
∑exp /

 where x ∈ −[ , ]4 4 . Take n = 2.
 6. Find the convex Pareto front for the constrained multiobjective opti-

mization problem (Binh and Korn 1997):
  Minimize f x x1 1

2
2
24 4= +

  Minimize  f2 = (x1 − 5)2 + (x2 − 5)2

  subject to ( )x x1
2

2
25 25− + ≤

 (x1 − 8)2 + (x2 + 3)2 ≥ 7.7
 where x x1 20 5 0 3∈ ∈[ , ], [ , ].
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8
Geometric Programming

8.1  Introduction

Geometric programming can be applied to optimization problems in which 
the objective function and constraints have a special structure. The conven-
tional format of the objective function and constraints can be converted into the 
format required for geometric programming. Once the problem is written in 
the required format, it is much easier to solve the optimization problem using 
geometric programming than using nonlinear programming (NLP) methods 
described in previous chapters. The geometric programming technique pro-
posed by Zener, Duffin, and Peterson can solve large-scale optimization prob-
lems with high reliability and efficiency. Geometric programming is applied to 
various disciplines such as inventory model (Abuo-El-Ata et al. 2003), structural 
optimization (Hajela 1986), communication systems (Chiang 2005), very-large-
scale integration (VLSI) design (Chu and Wong 2001), and so on.

In geometric programming, the objective function is written in posynomial 
form:

 f cx x x xa a a
n
an( )x = …1 2 3

1 2 3  (8.1)

where c is a positive constant, the exponents ai are real numbers, and xi are 
the design variables that can take positive values. It is important to note that 
in polynomials, c can take both positive and negative values. For example,

 f x x x x( )x = − −5 2 31
2

2
2

1 2  

is a polynomial, while

 f x x x x( )x = + + − −2 5 41
2

2
2

1
2

2
1

 

is a posynomial.
If the objective function is obtained in polynomial form, then it has to be 

transformed into a posynomial before geometric programming techniques 
can be used. For example, the maximization function f x x( )x = 1

2
2 can be 
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transformed into a posynomial form minimization function f x x( )x = − −
1

2
2

1. 
It is very interesting to note that in geometric programming, the objective 
function is evaluated first and then optimal design variables are obtained. 
That is, the optimized value of the objective function can be obtained with-
out knowing the optimal value of design variables. Thus, the solution to 
geometric programming problems does not depend on the initial guess. In 
this chapter, both unconstrained and constrained optimization problems are 
solved using geometric programming. The chapter concludes with a practi-
cal application of geometric programming. The road map for this chapter is 
given in Figure 8.1.

8.2  Unconstrained Problem

Consider minimization of the function

 

f U c xj

j

N

j i
a

j

N

i

n
ij( ) ( )x x= =











= = =
∑ ∑ ∏

1 1 1  

(8.2)

where xi, cj > 0. The minimum or maximum of the function can be obtained 
using the first-order condition

 
∂

∂
=f

xi

0  (8.3)

Unconstrained problems

Dual problem

Constrained optimization

 

Application

Geometric programming

FIGURE 8.1
Road map of Chapter 8.
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The solution of this equation leads to the orthogonality condition

 j

N

j ijw a
=

∑ =
1

0*

 

(8.4)

and the normality condition

 j

N

jw
=

∑ =
1

1*

 

(8.5)

where

 w
U

fj
j*

*( )
=

x
*

 (8.6)

The procedure for obtaining the optimal value of the objective function is 
to write the function as

 f
U

w

U

w

U

w

w w

n

n

*
*

*

*

*

*

*

* *

=
























…



1

1

2

2

1 2









wn*

 (8.7)

where the values wj
* are obtained by solving the orthogonality and normal 

equations.
The quantity N − (n + 1) is called as the degree of difficulty in geometric pro-

gramming, where n is the number of design variables and N is the number 
of posynomial terms in the objective function. If the degree of difficulty is 
zero, then the problem has a unique solution. If the degree of difficulty is 
positive (number of equations obtained through orthogonality and normal-
ity condition being less than the number of variables), some variables have to 
be expressed in terms of other variables to obtain the solution. In geometric 
programming, we do not have the negative degree of difficulty.

Using f* and U j
*, optimal values of the design variables can be evaluated 

using the expression

 U w f cj j

i

n

i
aij* * ( *)= =

=
∏1

1

* x  (8.8)
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For a zero degree of difficulty problem, the above equation can be reduced 
to a set of simultaneous equations, which are easier to solve. This can be 
done by taking logarithms on both the sides, that is,

 ln
*

ln * ln * ln *w f
c

a x a x a x
j

j j nj n
1

1 1 2 2

*
= + + … +  (8.9)

and then letting

 k xi i= ln *  (8.10)

The design variables can be obtained as

 x ei
ki* =  (8.11)

The main advantage of using log summation terms is that the transformed 
function becomes a convex one.

The above procedure is explained by following examples that are of zero 
degree of difficulty.

Example 8.1

Solve the optimization problem using geometric programming:

Minimize

 f x x x x x x x x x( )x = + + +− − − −3 4 5 61
1

2
3

1
2

2 3
2

1 2
4

3
1

3  

The degree of difficulty of this problem is 4 − (3 + 1) = 0. Also given are

 

a a a a

a a a a

a a a a

a a a a

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 444

1 2 1 0
3 1 4 0
0 2 1 1
1 1 1 1





















=

















−
−

− − 






















=



















  and

c

c

c

c

1

2

3

4

3
4
5
6

 

Writing the normality and orthogonality conditions in matrix form

 

−
−

− −




























1 2 1 0
3 1 4 0
0 2 1 1
1 1 1 1

1

2

3

4

 

w

w

w

w











=



















0
0
0
1
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Solving the above equation gives

 

w

w

w

w

1

2

3

4

7 20
1 20
1 4

7 20





















=















/
/
/
/







 

Substituting these values in the following equation gives the optimal 
value of the objective function.

 f
w w w w

w w w w

* =
























3 4 5 6

1 2 3 4

1 2 3 4

== =3865
256

15 1.
 

The next step is to obtain the value of the design variables. The follow-
ing equations are solved simultaneously to obtain ki.

 

− −
−
−





































1 3 0
2 1 2
1 4 1
0 0 1

1

2

3

 
k

k

k

==

×

×

×

×





ln
.

ln
.

ln
.

ln
.

15 1
7
20

3

15 1
1

20
4

15 1
1
4

5

15 1
7
20

6





































These values of ki are substituted in the equation x ei
ki* =  to obtain the 

design variables as

 

x

x

x

1

2

3

0 4201
1 1407
0 8995

*

*

*

.

.

.





















=
















 

Example 8.2

The treatment of waste is accomplished by chemicals and dilation to 
meet effluent requirements (Stoecker 1971). The total cost is the sum of 
the treatment plant, pumping power requirements, and piping costs. 
This cost is given by the equation
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 C D
Q

D Q
= + +150

972 000 4322

5

,

 

where C is in dollars, D is in inches, and Q is in cubic feet per second. 
Find the minimum cost and best values of D and Q by geometric 
programming.

The degree of difficulty of this problem is 3 − (2 + 1) = 0. Also given are

 

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

1 5 0
0 2



















=
−

−11
1 1 1

150
972 000

1

2

3



































=and
c

c

c
,

4432

















Writing the normality and orthogonality conditions in matrix form

 
1 5 0
0 2 1
1 1 1

0
0
1

1

2

3

−
−



































=




 
w

w

w











 

Solving the above equation gives

 

w

w

w

1

2

3

5 8
1 8
1 4



















=
















/
/
/

 

Substituting these values in the following expression gives the opti-
mal value of the objective function.

 C
w w w

w w w

* =


















=150 972 000 432

1 2 3

1 2 3,
11440

 

The next step is to obtain the value of the design variables. The follow-
ing equations are solved simultaneously to obtain ki.

 

1 0
5 2
0 1

1440
5
8

150

141

2
−

−





























=

×

k

k

ln

ln
440

1
8

972 000

1440
1
4

432

×

×



























,

ln





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This values of ki are substituted in the equation x ei
ki* =  to obtain the 

design variables as

 
D
Q

*
*













=










6
1 2.

 

8.3  Dual Problem

Similar to linear programming, there is a dual problem in geometric pro-
gramming. The minimization problem discussed in the previous section in 
this chapter is referred to as the primal problem. The corresponding maximum 
of the primal problem is referred to as the dual problem. The dual problem 
structure is helpful in solving geometric programming problems that have a 
degree of difficulty greater than zero. In the primal problem, the minimiza-
tion of the function

 f c x
j

N

j

i

n

i
aij( )x =













= =
∑ ∏

1 1

 (8.12)

is replaced by maximization of the function

 F
c

w
j

N
j

j

wj

( )w =





=
∏

1

 (8.13)

in the dual problem. Because it is easy to solve an objective function that has 
summation terms rather than product terms, the logarithm is taken on both 
sides of Equation 8.13.

 ln ( ) lnF w
w

c
j

N

j
j

j

w = −





=
∑

1

 (8.14)

This function is maximized subject to normality and orthogonality con-
ditions, mentioned in the previous section. It is significant to note that the 
solution obtained from the dual problem (maximization) is the same as the 
solution of the primal problem (minimization).
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Example 8.3

Solve the optimization problem:

Minimize

 f x x x x x x( )x = + + +− −
1
2

2
2

1
1

2
1

1 22 3 2  

The degree of difficulty of this problem is 4 − (2 + 1) = 1. Writing the 
minimization problem in dual form as

Maximize

 f
w w w w

w w w

( )w =
























1 2 3 2

1 2 3 4

1 2 3 ww4

 

subject to orthogonality and normality conditions

 
2 0 1 1
0 2 1 1
1 1 1 1

1

2

3

4

−
−





































 

w

w

w

w

==



















0
0
0
1

 

In the above matrix notation, four unknowns are to be determined 
from three equations. One can write the three variables in the form of a 
fourth variable as

 w
w

1
41 2

4
= −

 

 w
w

2
41 2

4
= −

 

 w3
1
2

=
 

Substituting these values in the dual objective function and taking the 
logarithm on both sides:

ln ( ) lnF w
w w w

4
4 4 41 2

4
1 2

4
1 2

4
= − −





−



 + −





−



 + +









ln ln ln

1 2
8

1
3

1
6 4

4
4

4w
w

w
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Differentiating the above equation with respect to w4:

 ln ln ln( ) lnw w4 4
22

1
2

1 2 32 0− − − −  =
 

Solving the above equation gives w4 = 0.20711. Substituting the value 
of w4 gives

 w w
w

1 2
41 2

4
0 146445= = − = .

 

This optimum value of the objective function can now be obtained as

 f
w w w w

w w w w

* =
























1 2 3 2

1 2 3 4

1 2 3 4

== 7 6119.
 

The next step is to determine the design variables x1 and x2. Now,

 U w f x1 1 1
20 146445 7 6119* . .= = × =*

 

 U w f x2 2 2
20 146445 7 6119 2* . .= = × =*

 

This gives

 x1 1 0558* .=  

 x2 0 7466* .=  

8.4  Constrained Optimization

In the constrained optimization problems, both the objective function and 
the constraints are given as posynomials. Consider minimization of the 
function

 

f g c x
j

N

j

i

n

i
aij( ) ( )x x= =













= =
∑ ∏0

1 1  

(8.15)
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subject to k constraints

 

g c xk

j

N

kj

i

n

i
akij( )x =













≤
= =

∑ ∏
1 1

1

 

(8.16)

where xi, cj, ′ >cj 0. This the primal problem in standard form and its dual 
(maximization function) is given by

 F
c

w
w

k

m

j

N
kj

kj
l

N

kl

wkl

( )w =












= = =
∏∏ ∑

0 1 1

 (8.17)

subject to orthogonality and normality conditions

 k

m

j

N

kij kla w
= =

∑∑ =
0 1

0

 

(8.18)

 j

N

kjw k
=

∑ = =
1

0 0,

 

(8.19)

The problem is then solved in a manner similar to the unconstrained opti-
mization problem. If the right-hand side of the constraints are given as posy-
nomials such as

 gk(x) ≤ v(x) (8.20)

the same can be transformed into the standard form as

 
g
v

k( )
( )

x
x

≤ 1  (8.21)

Example 8.4

Solve the optimization problem:

Minimize

 f g x x x x x( ) ( )x x= = +− − −
0 1

1
2

1
3

1
2 330 30  
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subject to

 g x x x x1 1 3 1 20 5 0 25 1( ) . .x = + ≤  

The degree of difficulty of this problem is 3 − (2 + 1) = 0. Writing the 
minimization problem in dual form as

Maximize

 f
w w w w

w w w

( )
. .

w =


















30 30 0 5 0 25

1 2 3

1 2 3

44
3 4

4

3 4






+ +
w

w ww w( )

subject to orthogonality and normality conditions

 

−
−
−





























1 0 1 1
1 1 0 1
1 1 1 0
1 1 0 0

1

2

3

4

 

w

w

w

w











=



















0
0
0
1

 

Solving the above equation gives

 

−
−
−





























1 0 1 1
1 1 0 1
1 1 1 0
1 1 0 0

1

2

3

4

 

w

w

w

w











=



















−
−
−

−
1 0 1 1
1 1 0 1
1 1 1 0
1 1 0 0

0
0
0
1

1

















=





















2 3
1 3
1 3
1 3

/
/
/
/

 

This optimum value of the objective function can now be obtained as

 f f
w w w

w w w

* = =


















( )
. .

w
30 30 0 5 0

1 2 3

1 2 3 225
45

4
3 4

4

3 4

w
w w

w
w w





+ =+( )

The next step is to determine the design variables x1 and x2. Now,

 U w f x x x1 1 1
1

2
1

3
130 30* *= = = − − −

 U w f x x2 2 2 315 30* *= = =

This gives

 x1 2* =  

© 2015 by Taylor & Francis Group, LLC

  



234 Optimization: Algorithms and Applications

 x2 1* =  

 x3
1
2

* =
 

Example 8.5

Solve the optimization problem (Dembo 1976):

Minimize

 f g x x x x( ) ( )x x= = + − −
0 1 2 1

1
2

1

subject to

 g x x1 1
1 2

20 25 1( ) .x = + ≤/

The degree of difficulty of this problem is 4 − (2 + 1) = 1. Writing the 
minimization problem in dual form as

Maximize

 f
w w w w

w w w

( )
.

w =





















1 1 0 25 1

1 2 3 4

1 2 3 


+ +
w

w ww w
4

3 4
3 4( )

subject to orthogonality and normality conditions

 
1 1 0 5 0
1 1 0 1
1 1 0 0

1

2

3

4

−
−



































.
 

w

w

w

w



=



















0
0
0
1

 

In the above matrix notation, four unknowns are to be determined 
from three equations. One can write the three variables in the form of a 
fourth variable as

 w
w

1
41

2
= −

 w
w

2
41

2
= +

 w3 = 2w4
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Substituting these values in the dual function

 f
w w w

w w

( )
.

w =
−





 +










− +

2
1

2
1

0 25
24

1
2

4

1
2

4

4 4










+ +
w w

w w

w
w w

4 4

4 4
1

2
4

4 4
2( )

Taking the logarithm on both sides of the above equation and then dif-
ferentiating it with respect to w4 and equating it to zero one gets w4 = 0. 
Therefore,

 w
w

1
41

2
1
2

= − =
 

 w
w

2
41

2
1
2

= + =
 

 w3 = 2w4 = 0

This optimum value of the objective function can now be obtained as

 f f
w w w w

w w w

* = =


















( )
.

w
1 1 0 25 1

1 2 3 4

1 2 3 





+ =+
w

w ww w
4

3 4
3 4 2( )

Now,

 U w f x x1 1 1 21* *= = =  

 U w f x x2 2 1
1

2
11* *= = = − −

 

The above equation is satisfied for a number of combinations of x1 and x2.

8.5  Application

A two-bar structure (Figure 8.2) is to be designed so as to minimize its weight 
(Dey and Roy 2013) while tolerating certain maximum tensile and compres-
sive stresses. The optimization problem is written as

Minimize

 W A x l y A x yB B B B= + − + +( )ρ 1
2 2

2
2 2( )
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subject to

 
P x l y

lA
B B

t

2 2

1

+ −
≤

( )
,σ max

 
P x y

lA
B B

c

2 2

2

+
≤ σ ,max

 0.5 ≤ yB ≤ 1.5

 A1, A2 ≥ 0

where

Load = P = 105 N
Density = ρ = 77 kN/m3

Length = l = 2 m
Width = xB = 1 m
Maximum tensile stress = σt,max = 150 Mpa
Maximum compressive stress = σc,max = 100 Mpa

The design variables are A1, A2, and yB.
The nonlinear optimization problem can be transformed into geometric 

programming problem with the following substitutions:

 x1 = A1

 x2 = A2

xB

yB

l

P

C

B
A

FIGURE 8.2
Two-bar truss.
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 1 2 2
3+ − ≤( )y xB  

 1 2
4+ ≤y xB  

 x5 = yB

 x x x6 5 3
21 4= + −

 

The geometric programming problem becomes

Minimize

 W = 77(x1x3 + x2x4)

subject to

 
1
3

13 1
1x x− ≤

 

 
1
2

14 2
1x x− ≤

 

 x x x4
2

4
2

5
2 1− −+ ≤  

 5 13
2

6
1

3
2

3
2

6
1x x x x x− − − −+ ≤  

 
1
2

15
1x− ≤

 

 
2
3

15x ≤
 

 x x x x6
1

3
2

5 6
14 1− − −+ =  

The degree of difficulty is 12 − (6 + 1) = 5. The problem can be converted 
into a dual problem and then solved. The solution is given by

 x1 0 52068* .=  
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 x2 0 640312* .=  

 x3 1 56205* .=  

 x4 1 280625* .=  

 x5 0 8* .=  

 x6 2 31147* .=  

 W = 125.7667

Chapter Highlights

•	 In geometric programming, the objective function and constraints 
are written in posynomial form.

•	 In geometric programming, the objective function is determined 
first and then design variables are evaluated. The initial guess of the 
variables has no role in geometric programming.

•	 The degree of difficulty refers to the number of unknowns minus 
the number of equations (orthogonality and normal conditions).

•	 The dual problem structure is helpful in solving geometric pro-
gramming problems that have a degree of difficulty greater than 
zero.

•	 The solution obtained from the dual problem (maximization) is the 
same as the solution of the primal problem (minimization).

Formulae Chart

Posynomial:

 f cx x x xa a a
n
an( )x = …1 2 3

1 2 3
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Unconstrained minimization:
Minimize

 

f U c x
j

N

j

j

N

j

i

n

i
aij( ) ( )x x= =













= = =
∑ ∑ ∏

1 1 1

Normality and orthogonality conditions:

 j

N

j ijw a
=

∑ =
1

0*

 

 j

N

jw
=

∑ =
1

1*

 

Optimal function value:

 f
U

w

U

w

U

w

w w

n

n

*
*

*

*

*
 

*

*

* *

=
























…



1

1

2

2

1 2










wn*

 

  where

 w
U

fj
j*

*( )
=

x
*

 

Dual problem (unconstrained):

 F
c

w
j

N
j

j

wj

( )w =





=
∏

1

Dual problem (constrained):

 F
c

w
w

k

m

j

N
kj

kj
l

N

kl

wkl

( )w =












= = =
∏∏ ∑

0 1 1  
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Problems

 1. Minimize (Ojha and Biswal 2010)

 10 40 401
3

2
2

3
1

1 2 1 2 3x x x x x x x x− − + +  

  subject to

 2 11
2

2
2

2
5

3
1x x x x− − − −+ ≤  

 x1, x2, x3 ≥ 0 

 2. Minimize (Ojha and Biswal 2010)

 x x x x x x x1
4

2
1

3 4
1

1
2

2
3

3
23− − − − − −+  

  subject to

 

2 3

3 1

1
3

3 1
1

3
1

2
1

3
1

4
2

1
2

2 4

x x x x

x x x x x x

+ ≤

+ ≤

− −

− − −
 

 x1, x2, x3, x4 ≥ 0

 3. Minimize (Rao 2009)

 x1

   subject to

 − + ≤4 4 11
2

2x x  

 x1 + x2 ≥ 1

 x1, x2 ≥ 0

 4. In a certain reservoir pump installation (Rao 2009), the first cost of 
the pipe is given by (100D + 50D2), where D is the diameter of the pipe 
in centimeters. The cost of the reservoir decreases with an increase 
in the quantity of fluid handled and is given by 20/Q, where Q is the 
rate at which the fluid is handled (m3/s). The pumping cost is given 
by (300Q2/D5). Find the optimal size of the pipe and the amount of 
fluid handled for minimum overall cost.
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 5. A hydraulic power system (Stoecker 1971) must provide 300 W of 
power, where the power is the product of volume flow rate Q m3/s 
and the pressure build up Δp Pa. The cost of the hydraulic pump is a 
function of both the flow rate and pressure buildup.

 Cost dollars= + × −1200 10 100 4 4Q p. ( )∆  

  Convert to a single-variable unconstrained problem and use geo-
metric programming to determine the minimum cost of the pump 
and the optimum values of Q and Δp.

 6. A newly harvested grain system (Stoecker 1971) has a high moisture 
content and must be dried to prevent spoilage. The drying can be 
achieved by blowing it with air. The seasonal operating cost in dol-
lars per square meter of the grain bed for such a dryer consists of the 
cost of heating of the air.

 Heating cost = 0.002QΔt

  and

 Blower cost = 2.6 × 10−9Q3

 where Q is air quantity delivered through the bed, m3/m2 of bed 
area and Δt is the rise in temperature through heater in °C. The val-
ues of Q and Δt also influence the time required for adequate drying 
of the grain according to the equation

 Drying time days= ×80 106

2Q t∆  

  Using the geometric programming method, compute the mini-
mum operating cost and optimum values of Q and Δt that will 
achieve adequate drying in 60 days.

 7. The torque T (Nm) developed by an internal combustion engine is 
represented by

 T = 23.6ω0.7 − 3.17ω

 where ω is the rotational speed in rad/s. Determine the maximum 
power of this engine and the ω at which this occurs (Stoecker 1971).
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9
Multidisciplinary Design Optimization

9.1  Introduction

In Chapter 7 on multiobjective optimization, a number of objective functions 
were simultaneously handled along with constraints for a given discipline. 
In multidisciplinary design optimization (MDO), two or more disciplines 
are simultaneously optimized. For example, in rocket design, the disciplines 
could be structures, aerodynamics, propulsion, control, and mission. Each 
of these disciplines can have separate optimal requirements. For example, 
the propulsion discipline can have a constraint on chamber pressure, the 
structural discipline can have constraints on stresses on the members, and 
the mission can have trajectory constraints such as on dynamic pressure and 
heat loads. Further, in MDO there are interactions among the disciplines. For 
example, the variable dynamic pressure in the trajectory discipline has an 
effect on load computation in the structural discipline. The idea of MDO is 
to optimize the design in a global sense. This has the following advantages:

•	 The time required in the design cycle can be significantly reduced. 
For example, a given aerodynamic shape will give a certain higher 
load distribution of certain structural members that may require 
reworking of these members, which in turn can change the aerody-
namic shape. The cycle is iterative and time consuming if the indi-
vidual disciplines are optimized sequentially. In addition, sequential 
optimization of disciplines may lead to a suboptimal solution for 
the whole system. For example, lift distribution along the wing span 
changes if the aerodynamic and structure disciplines are optimized 
together instead of considering the aerodynamic discipline alone 
(Figure 9.1).

•	 Disciplines with conflicting objectives can be resolved. For exam-
ple, to minimize wave drag on a supersonic aircraft, optimizing 
the aerodynamics discipline alone will result in thin wings. This, 
on the other hand, could result in aero-elastic problems (structure 
discipline).
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Here one may argue that when optimizing even a single discipline is highly 
time consuming, how can so many disciplines be optimized together? For 
example, the aerodynamic discipline has to generate lift and drag coefficients 
for a number of configurations through computational fluid dynamics (CFD) 
that requires a large computational time. Similarly, the structural discipline 
has to make finite element models and compute stresses on different mem-
bers, which again are computationally intensive. In MDO, this problem can 
be alleviated by considering simplified mathematical models for each disci-
pline. One such technique is response surface methodology (RSM). In RSM, 
one generates a response surface to variation in design variables by carrying 
out a limited number of tests. For example, aerodynamic response surface 
models can be generated with a limited number of CFD or wind tunnel tests 
carried out at certain Mach numbers and certain angles of attack only. The 
response surface model can then generate aerodynamic coefficients at any 
Mach number and angle of attack.

MDO is often used for aerospace problems (Balesdent et al. 2010; 
Manokaran et al. 2009; Xiaoqian et al. 2006; Yushin et al. 2006) as they are 
highly complex in nature owing to the presence of a large number of con-
straints in various disciplines, and even if optimization results in increas-
ing only a few kilograms of payload, revenue can be increased by a few 
thousand dollars. However, MDO can also be applied to other areas (Geyer 
2009; He and McPhee 2005) such as automobiles, where one can simultane-
ously optimize different disciplines such as body, engine, hydraulics, and 
so on. The road map of this chapter is shown in Figure 9.2. Through MDO 
architecture, the MDO problem is transformed into a series of optimization 
problems. A number of such architectures are discussed in this section 
along with their advantages and disadvantages. A very brief introduc-
tion is given about MDO framework that provides a platform for compar-
ing different architectures. As MDO requires working with a number of 

Wing

Optimization with
aerodynamics discipline
alone

Lift

Optimization with aerodynamics
and structure discipline 

FIGURE 9.1
Optimization of a single versus two disciplines.
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disciplines simultaneously, simplified but accurate models are required for 
each discipline. This is done through response surface methodology, which 
is explained in the last section.

9.2  MDO Architecture

Through MDO architecture, the multidisciplinary problem is transformed 
into a series of standard optimization problems that can be solved through 
either a gradient-based solver (Fletcher 1981) such as sequential quadratic 
programming (SQP) or through a non–gradient-based solver such as genetic 
algorithm (GA; Goldberg 1989) or particle swarm optimization (PSO). In 
the literature, different architectures are reported that transform the prob-
lems differently. It is quite obvious that each MDO architecture has certain 
advantages and disadvantages. The efficiency of different architectures can 
be measured in terms of number of disciplines or number of global/local 
variables. Some well-known MDO architectures are multidisciplinary fea-
sible (MDF), individual discipline feasible (IDF), simultaneous analysis and 
design (SAND), collaborative optimization (CO), current subspace optimi-
zation (CSSO), and bilevel integrated system synthesis (BLISS). Excellent 
details of these architectures are mentioned in Martins and Lambe (2013) 
and Tedford and Martins (2006). Important highlights of these architectures 
are presented in this section. Let us define an MDO problem with two dis-
ciplines with xi as the local variables, zi as the global variables, and yi as the 
coupling variables. See Figure 9.3 for more clarity. Each discipline solves the 
governing equations and provides feasible states and outputs in the form 
of coupling variables to the other discipline. The variables that belong to 

MDO architecture
MDF
IDF
SAND
CO
CSSO
BLISS

MDO framework

Response surface methodology

FIGURE 9.2
Road map of Chapter 9.
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a single discipline are called local variables. The variables that affect more 
than one discipline are called global variables.

For example, discipline 1 could be aerodynamics, which feeds aerody-
namic forces to discipline 2, where vehicle dynamics is simulated. Altitude 
and velocity information from discipline 2 is then fed to discipline 1 for 
computing aerodynamic forces. Here, angle of attack and bank angle are the 
global variables. The set of discipline analyses is repeated until a change in 
values of coupling variables becomes negligible. Mathematically, this can be 
stated as

 y yi
n

i
n+ =1  (9.1)

where yi
n  represents the value of ith discipline coupling variables after n 

iterations. The optimization problem can be stated as

Minimize

 f(z, x) (9.2)

subject to

 gj(z, x) ≤ 0   j = 1, 2,…, m < n (9.3)

 hk(z, x) = 0   k = 1, 2,…, r < n (9.4)

 y yi
n

i
n+ − =1 0  (9.5)

zi, xi

Aerodynamics
(Discipline 1)

y1, y2

y1

y2

Vehicle dynamics
(Discipline 2)

FIGURE 9.3
Multidisciplinary design analysis (MDA).
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9.2.1  Multidisciplinary Design Feasible

In this architecture, the design variables are iterated until coupling variables 
become consistent. The objective function and constraints are then computed 
and supplied to the optimizer (Figure 9.4). The procedure is said to converge 
if the coupling variables remain constant over successive iterations.

The main advantage of MDF is that it ensures feasible solution at each iter-
ative step. By this we mean that constraints are satisfied with every iteration, 
but the optimum solution is not yet reached. The disadvantage of MDF is 
that it cannot be parallelized and computation of gradients for the coupled 
system is difficult. The MDF problem can be mathematically stated as

Minimize

 f(z, x, y(x, z)) (9.6)

subject to

 g(z, x, y(x, z)) ≤ 0 (9.7)

 y yi
n

i
n+ − =1 0  (9.8)

Optimizer
(e.g., SQP)

f, g
x, z

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

Control system
(Discipline 3)

FIGURE 9.4
Multidisciplinary feasible (MDF) analysis.
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9.2.2  Individual Discipline Feasible

In IDF architecture, discipline feasibility is ensured whereas a multidisci-
plinary feasible solution may not be present. The advantage of the IDF is 
that different disciplines can be evaluated in parallel. Further discipline 
computations are fewer as compared to MDF, and this can be a significant 
advantage because discipline evaluations are often time consuming. In IDF 
architecture, coupling variables are handled by the optimizer (Figure 9.5), 
which in turn provides design and coupling variables to different disci-
plines. This architecture is recommended for those MDO problems that have 
a small number of coupling variables.

The IDF problem can be mathematically stated as

Minimize

 f(z, x, yt) (9.9)

with respect to z, x, yt

subject to

 g(z, x, y(x, yt, z)) ≤ 0 (9.10)

 y y x y zi
t

i
t− =( ), , 0  (9.11)

where yt are the estimates of coupling variables by the optimizer, yi are the 
coupling variable output of the discipline i, and yi

t  are the estimates of the 
nonlocal coupling variables. The last constraint ensures that at the optimum, 
the coupling variables computed by the discipline and the optimizer are 
matched.

Optimizer
(e.g., SQP)f, g, y

x, y*, z

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

FIGURE 9.5
Individual discipline feasible (IDF) architecture.
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9.2.3  Simultaneous Analysis and Design

In SAND architecture, the optimizer is given freedom to design (optimize) 
the system and solve the governing equations simultaneously. The residuals 
obtained from the discipline analyses are treated as equality constraints in 
the optimization problem. As compared to MDF and IDF, SAND architecture 
(Figure 9.6) does not maintain even discipline feasibility at different iterations.

The SAND problem can be mathematically stated as

Minimize

 f(z, x, y(x, z, u)) (9.12)

with respect to z, x, u
subject to

 g(z, x, y(x, u, z)) ≤ 0 (9.13)

 R(z, x, y(x, z, u), u) ≤ 0 (9.14)

where u is the state variable of the discipline and R represents the residuals 
of the discipline equations.

Example 9.1

Consider the MDO problem with two disciplines.

Minimize

 x x y e y
1
2

2 1
2+ + + −

 

Optimizer
(e.g., SQP)

z, x1, u

y1

y2

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

z, x2, u

FIGURE 9.6
Simultaneous analysis and design (SAND) architecture.
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with respect to x1, x2, z1

subject to

 1 − y1/3.16 ≤ 0

 y2/24 − 1 ≤ 0

 0 ≤ x1 ≤ 10

 0 ≤ x2 ≤ 10

 −10 ≤ z1 ≤ 10

Discipline 1

 y z x x y1 1
2

1 2 20 2= + + − .  

Discipline 2

 y y z x2 1 1 2= + +
 

Solve the MDO problem (Tedford and Martins 2010) using SAND 
architecture.

The MDO problem is solved using the SQP method. The MATLAB® 
codes from Chapter 6 are suitably modified to solve this problem. The 
starting value of the design variables is taken as (x1, x2, z1, y1, y2) = (1, 2, 
5, 1, 0). The design variables y1, y2 are to be matched with the discipline 
outputs. The optimizer carries out this task by defining two additional 
equality constraints. On executing the sqp.m code, the following output 
is obtained.

No. x-vector f(x) |Cons.|
______________________________________________________________
1.0000 13.0989 0.000 5.3084 36.3832 24.0000 207.9656 12.6601

2.0000  0.0000 0 4.6986 19.8331  9.3585  19.8332  0.4254

3.0000  0.0000 0 3.7071 11.3189  7.2047  11.3197  0.9920

4.0000  0.0000 0.0000 3.2572  9.1468  6.2987   9.1487  0.2032

5.0000  0.0000 0.0000 2.8631  6.9373  5.5221   6.9413  0.1573

6.0000  0.0000 0.0000 2.5514  5.4328  4.8997   5.4403  0.0987
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7.0000 0.0000 0.0000 2.2985 4.3400 4.3949 4.3523 0.0653

8.0000 0.0000 0.0000 2.0899 3.5283 3.9783 3.5471 0.0447

9.0000 0.0000 0.0000 1.9809 3.1600 3.7613 3.1833 0.0122

10.0000 0.0000 0.0000 1.9776 3.1600 3.7553 3.1834 0.0000

11.0000 0.0000 0.0000 1.9776 3.1600 3.7553 3.1834 0.0000

12.0000 0.0000 0.0000 1.9776 3.1600 3.7553 3.1834 0.0000______________________________________________________________

The optimal values of the design variables are x x z1 2 1 0 0 1 9776* , * , * ( , , . )( ) = . 
The converged values of the coupling variables are (y1, y2) = (3.16, 3.7553). The 
minimum value of the objective function is 3.1834.

9.2.4  Collaborative Optimization

In CO architecture, optimization is carried out at discipline and system lev-
els. Thus, discipline feasibility is guaranteed throughout the optimization 
process. The MDO problem is decomposed into a number of subproblems 
corresponding to each discipline (Figure 9.7). The discipline optimization is 
carried out in a conventional way in which local constraints to that discipline 
are satisfied. The system level is optimized with respect to global, coupling, 
and local variables. The constraints at the system level consist of global con-
straints as well as compatibility constraints of the discipline. The discipline 

Discipline optimizer
(e.g., genetic algorithm)

Discipline optimizer
(e.g., particle swarm optimization)

System optimizer
(e.g., SQP)

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

J1, J2

z*, x*, y*z*, x*, y*

y1 y2z, x, y2 z, x, y1

FIGURE 9.7
Collaborative optimization (CO) architecture.
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optimizer, on the other hand, reduces the discrepancy between the system 
level variables and the discipline variables. One significant advantage of CO 
architecture is that each discipline can be optimized in parallel. Further, 
different optimization techniques (gradient- or non–gradient-based) can be 
used by different disciplines. The disadvantage of CO architecture is that the 
dimensionality of the system-level optimization problem increases signifi-
cantly with increase in coupling variables.

The CO architecture at system level can be mathematically stated as

Minimize

 f(z, y, xobj) (9.15)

with respect to z, y, xobj

subject to

 J z z x x y yi i, *, , * , ,obj obj *( ) = 0  (9.16)

where xobj is the local variable affecting the objective function.

9.2.5  Concurrent Subspace Optimization

So far in MDO architecture, we have assumed discipline computations are 
easy to evaluate. This is far from true. As explained in the introduction, aero-
dynamic analysis through CFD and structural analysis through the finite-
element method are time consuming. In this particular architecture, the 
problem of extensive computing is alleviated by making simplified math-
ematical models for each discipline. One such technique is RSM. In RSM, one 
generates a response surface to variation in design variables by carrying out 
a limited number of tests.

In CSSO architecture, RSM is used to provide information for the disci-
pline subspace optimization. The response surface is constructed by carry-
ing out a discipline analysis at a few design points. Thus, response surfaces 
provides state variables of each discipline for the given design variables. The 
CSSO architecture is depicted in Figure 9.8.

9.2.6  Bilevel Integrated System Synthesis

BLISS architecture is designed to suit a parallel computing environment. It 
is a bilevel architecture where each discipline optimization is fully auton-
omous and coordination is done at the system level to ensure multidisci-
plinary feasibility. In this architecture, discipline response levels are used 
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by the system optimizer (Figure 9.9). A major difference between BLISS and 
CSSO is that subspace optimization is not carried out in BLISS.

9.3  MDO Framework

Different MDO architectures were presented in the previous section. One 
question that arises here is, how do we know which architecture is more effi-
cient? To answer this, one needs a platform in which different MDO archi-
tectures can be compared. The MDO framework provides this platform. The 
MDO problem is first input in standard form. The user then has to select the 
architecture through which the problem needs to be solved. The framework 
then casts the MDO problem into the specified architecture form, which is 
then solved to get the solution.

Subspace optimizations 

Aerodynamics
(Discipline 1)

Vehicle dynamics
(Discipline 2)

y1

Generation of response surface
Aerodynamics:
  
Structure: Using FEM and testing

Using synthesized CFD
and wind tunnel data

Aerodynamics
(Discipline 1)

Vehicle dynamics
(Discipline 2)

MDA

MDA

System optimizer
(e.g., SQP)

Optimizer
(e.g., PSO)

Optimizer
(e.g., GA)

Aerodynamics
(Discipline 1)

Structure
(Discipline 2)

y2

y1

y2

FIGURE 9.8
Current subspace optimization (CSSO) architecture.
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The standard MDO form is to define the objective function, constraints, 
design variables, coupled variables, state variables, and analysis functions. 
The following are some typical requirements of an ideal framework.

•	 It should be able to handle large problems.
•	 A majority of operations should be handled by the graphical user 

interface (GUI).
•	 It should support a collaborative design.
•	 It should support different optimizers on different disciplines.
•	 It should provide debugging support.
•	 It should offer feasibility of parallel processing.
•	 Data exchange between different modules should be possible.
•	 Visualization of intermediate and final results should be possible.

9.4  Response Surface Methodology

The motivation behind the use of RSM is that expensive computational 
procedures such as finite element methods, CFD, or experimentation are 
minimized. RSM is an empirical model building technique in which the 
objective is to generate one or more outputs (responses) from a system that 

System optimizer
(e.g., SQP)

z, y*, w y

Use response surface
of respective

discipline

Generation of response surface using design of experiments  
Aerodynamics:
Structure: Using FEM and testing

Using synthesized CFD and wind tunnel data

Convergence
check

System optimization

FIGURE 9.9
Bilevel integrated system synthesis (BLISS) architecture.
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has several input parameters (Cornell and Khuri 1996). The empirical model 
is built using simulations and experiments in which the output is computed 
or measured by changing the inputs, which are also known. For example, lift 
coefficient (CL) for a wing varies with angle of attack (α) and Mach number 
(M). Here, response surface of parameter lift coefficient can be generated as 
a function of angle of attack and Mach number. That is,

 CL = f(α, M) (9.17)

A typical response surface plot is shown in Figure 9.10. One should have 
some idea of the relationship between the responses and input parameters. 
Typically, one can use the first- or second-order polynomial approximation 
between the output and input variables. For example, for a single input x, the 
estimated output ŷ  is given by the relationship

 ŷ a a x a x= + +0 1 2
2  (9.18)

The aim is to estimate the coefficients a0, a1, and a2 so that output ŷ  can be 
estimated for any given x. These coefficients can be estimated by minimizing 
the function

 ŷ y
j

N

−( )
=

∑ 2

1

 (9.19)

where y is the actual measurement made through experiments or through 
high-fidelity simulations such as CFD and finite element analysis. These 
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FIGURE 9.10
Response surface of lift coefficient as a function of α and M.
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measurements are made for N cases. A question that needs to be asked here 
is, at what values of x should the experiments be performed? The answer to 
this is given by design of experiments (DoE). The accuracy and computa-
tional cost of constructing the response surface is given by DoE (Anderson 
and McLean 1974).

A number of design models are available that can capture the interactions 
among variables, with each having an advantage in either having a lower 
number of points or having higher accuracy. In one such model, called full 
factorial design, 3N points are selected at which experiments need to be car-
ried out. For a two-variable problem, nine experimental points are required 
(Figure 9.11). In this figure, the subscripts l and u stand for lower and upper 
bound of the input variable.

Let us assume the input variable angle of attack (α) varies from 1 to 10 
degrees and Mach number (M) varies from 0.3 to 2.0. Then the design matrix 
at which experiments need to be carried out is given in Table 9.1.

TABlE 9.1

Design Matrix

Experiment 
Number α M

1 1 0.3
2 1 1.15
3 1 2.0
4 5.5 0.3
5 5.5 1.15
6 5.5 2.0
7 10 0.3
8 10 1.15
9 10 2.0

x1l x1u

x2u

x2l

x1

x2

FIGURE 9.11
Full factorial design.
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In a central composite design, the corner points are augmented with cen-
tral and axial points (Figure 9.12). This design is preferred for a second-order 
model. For more such design models refer to Cornell and Khuri (1996).

Chapter Highlights

•	 In multidisciplinary design optimization, two or more disciplines 
are simultaneously optimized with interaction among them.

•	 The main advantage of MDO is that the time required in the design 
cycle can be significantly reduced. In addition, disciplines with con-
flicting objectives can be resolved.

•	 Through MDO architecture, the multidisciplinary problem is trans-
formed into a series of standard optimization problems that can 
be solved through either a gradient-based solver such as SQP or 
through a non–gradient-based solver such as GA or PSO.

•	 The main advantage of MDF architecture is that it ensures a feasible 
solution at each iterative step.

•	 The main advantage of the IDF is that different disciplines can be 
evaluated in parallel.

•	 In CO architecture, optimization is carried out at a discipline and 
system level. Thus, discipline feasibility is guaranteed throughout 
the optimization process. The MDO problem is decomposed into a 
number of subproblems corresponding to each discipline.

•	 BLISS architecture is designed to suit a parallel computing environ-
ment. It is a bilevel architecture in which each discipline optimiza-
tion is fully autonomous and coordination is done at the system level 

x1l x1u

x2l

x2u

FIGURE 9.12
Central composite design.
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to ensure multidisciplinary feasibility. In this architecture, disci-
pline response levels are used by the system optimizer.

•	 RSM is an empirical model building technique in which the objec-
tive is to generate one or more outputs (responses) from a system 
that has several input parameters. The empirical model is built using 
simulations and experiments in which the output is computed or 
measured by changing the inputs, which are also known.

•	 The accuracy and computational cost of constructing the response 
surface is given by design of experiments (DoE).

•	 Full factorial and central composite design are two such DoE 
techniques.

Formulae Chart

Multidisciplinary analysis:
Minimize

 f(z, x)

subject to

 gj(z, x) ≤ 0   j = 1, 2,…, m < n

 hk(z, x) = 0   k = 1, 2,…, r < n

 y yi
n

i
n+ − =1 0  

Multidisciplinary feasible:
Minimize

 f(z, x, y(x, z)) 

 subject to

 g(z, x, y(x, z)) ≤ 0

 y yi
n

i
n+ − =1 0

IDF:
Minimize

 f(z, x, yt)

© 2015 by Taylor & Francis Group, LLC

  



259Multidisciplinary Design Optimization

 subject to

 g(z, x, y(x, yt, z)) ≤ 0

 y y x y zi
t

i
t− =( ), , 0

SAND:
Minimize

 f(z, x, y(x, z, u))

 subject to

 g(z, x, y(x, z, u)) ≤ 0

 R(z, x, y(x, z, u), u) ≤ 0

CSSO:
Minimize

 f(z, y, xobj)

 subject to

 
J z z x x y yi i, *, , * , ,obj obj *( ) = 0

 

Problems

 1. A DoE has to be carried out for a process that has three inputs and 
one output. The lower and upper bounds for the three inputs are 
[0.5, 2.0], [5, 10], and [0.01, 0.1] respectively. How many experiments 
are to be carried out using a full factorial design, and at what values 
of input variables?

 2. A DoE has to be carried out for a process that has two inputs and 
one output. The lower and upper bounds for the two inputs are [0.5, 
2.0] and [5, 10]. How many experiments are to be carried out using 
central composite design, and at what values of input variables?

 3. A linear model

 ŷ a a x= +0 1  

 is to be used for a system where the following measurements are 
made.
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x y
0.1 0.3
0.5 0.4
1.0 0.7
2.0 1.2
3.0 2.0
5.0 3.0

  Estimate the coefficients a0 and a1 by minimizing the function

 ŷ y
j

N

−( )
=

=

∑ 2

1

6

 

 4. The response variable y in a chemical process is a function of four 
variables: temperature (x1), pressure (x2), time (x3), and stoichiometric 
ratio (x4). The lower and upper limits of input variables are [350, 450], 
[5, 10], [10, 40], and [0.1, 0.5]. A full factorial design is used to fit a first-
order model. The input variable combinations and corresponding 
response values are given in Table 9.2.

  Fit a first-order model for this problem.

TABlE 9.2

Responses for Different Inputs

x1 x2 x3 x4 y

–1 –1 –1 –1 47.5
1 –1 –1 –1 73.2
–1 1 –1 –1 59.4
1 1 –1 –1 75.1
–1 –1 1 –1 74.0
–1 1 1 –1 72.0
1 1 1 –1 73.2
–1 –1 –1 1 82.3
1 –1 –1 1 61.9
–1 1 –1 1 63.8
1 1 –1 1 70.5
–1 –1 1 1 83.2
1 –1 1 1 69.7
–1 1 1 1 80.5
1 1 1 1 81.7
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 5. The speed reducer optimization problem is written in MDO form 
(Tedford and Martins 2010) as

  Minimize  
C y z C z C z C C y y y C y y1 1 1

2
2 2

2
3 2 4 5 2

2
3
2

1 6 2
2

3
2+ −( ) − +( ) + +( )) + +( )C x y x y1 1 2

2
2 3

2

  with respect to x1, x2, z1, z2

  subject to 1 − z1x2/C7 ≥ 0
    0.7 ≤ z1 ≤ 0.8
    17 ≤ z2 ≤ 28
    7.3 ≤ x1 ≤ 8.3
    7.3 ≤ x2 ≤ 8.3

  Discipline 1

    y1 = max(g1, g2, g3, g4)

  subject to 1 − y1/(C8z1) ≥ 0
    1 − y1/C9 ≥ 0

  where g C z z1 10 1
2

2= /

    g C z z2 11 1
2

2
2= /

    g3 = C12z1

    g4 = C13

  Discipline 2

    y2 = max(g5, g6, g7)

  subject to 1 − y2/(C14) ≥ 0
    1 − y2C15C16/x1 ≥ 0

  where g C x z z5 17 1
3

1 2

1 4
= ( )/

/

    g C C C x z z C6 18 19 20
2

1
2

1
2

2
2

21

1 3

1= ( ) +( )/ /
/

    g7 = C22

  Discipline 3

    y3 = max(g8, g9, g10)

  subject to 1 − y3/(C23) ≥ 0
    1 − y3C24C16/x2 ≥ 0

  where g C x z z8 25 2
3

1 2

1 4
= ( )/

/
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    g C C C x z z C9 26 19 20
2

2
2

1
2

2
2

27

1 3

1= ( ) +( )/ /
/

    g10 = C28

The values of constants for this problem are

C1 0.7854 C15 1.5

C2 3.3333 C16 1.9

C3 14.9334 C17 1.93

C4 43.0934 C18 1100

C5 1.5079 C19 0.1

C6 7.477 C20 1.69 × 109

C7 40 C21 745

C8 12 C22 2.9

C9 3.6 C23 5.5

C10 27 C24 1.1

C11 397.5 C25 1.93

C12 5 C26 850

C13 2.6 C27 1.575 × 108

C14 3.9 C28 5
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10
Integer Programming

10.1  Introduction

In the previous chapters, decision variables in optimization problems were 
considered to be continuous and they could take any fractional values such 
as 10.5, 5.64, etc. Some optimization problems require design variables to 
be integers. For example, the number of cars produced in a day, number of 
maneuvers required by a spacecraft in an orbit, number of rivets required, 
amount of manpower required, and so forth, all have to be integers. It does 
not make much sense to get a solution such as 8.4 rivets for butting two 
plates. It is important to note that rounding off the decision variable to the 
nearest integer may not yield the optimum solution or may violate some of 
the constraints. Therefore, it is desirable to give a special formulation to inte-
ger programming problems.

Integer programming can be of different types. An all-integer programming 
problem contains design variables that can take integer values only. In mixed- 
integer programming problems, some decision variables are of an integer type 
and some can take fractional values or are of a continuous type. Optimization 
problems in which design variables can take only discrete values are referred 
to as discrete programming problems. For example, pipe sizes come in standard 
sizes such as 0.5, 0.8, 1.0, 1.4, 1.8, . . . inch. If pipe size is a decision variable, 
then it can take these discrete values only. There is also a special type of inte-
ger programming called a zero-one programming problem in which design 
variables can take a value of 0 or 1. For example, suppose we want to set up 
two plants from five candidate locations. If variable Si corresponds to the 
setup of plant at ith location, then Si = 1, else it takes the value 0.

Cutting plane and branch-and-bound methods are two popular techniques 
for solving integer programming problems. Gomory’s cutting plane method 
is well suited for linear integer programming problems. The linear program-
ming problem is first solved using the simplex method. If integer solutions 
are not obtained, additional constraints called “cuts” are added to the prob-
lem. The modified linear programming is then solved using the dual method. 
The procedure is repeated until the integer solutions are obtained. In the 
branch-and-bound method, the nonlinear integer optimization problem is 
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first solved as a continuous variable problem. Then the method branches into 
subproblems in which additional constraints are added to the problem to 
get integer solutions. The subproblems are again solved as continuous vari-
able problems and the procedure is repeated until a feasible integer solution 
is obtained. The Balas algorithm is popular in solving the zero-one integer 
programming problems. This method selects few solutions from the pos-
sible 2n enumerated solutions, where n is the number of binary variables in 
the problem. In this chapter, we also explore a particle swarm optimization 
(PSO) method for solving integer programming problems. The road map of 
this chapter is shown in Figure 10.1.

10.2  Integer Linear Programming

Consider the following integer programming problem.

Minimize

 f(x) = −3x1 − 2x2

subject to

 x1 − x2 ≤ 5

 4x1 + 7x2 ≤ 50

 x1, x2 ≥ 0

where x1 and x2 are integers.

Integer linear programming
Gomory’s cutting plane method
Balas’ method

Integer programming

Integer nonlinear programming
Branch-and-bound method
Evolutionary method

FIGURE 10.1
Road map of Chapter 10.
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Let us plot the objective function and the constraints (Figure 10.2) and 
for the time being ignore the integer aspects of the problem. The minimum 

of the optimization problem is −28
7
11

 and occurs at x1 7
8
11

=  and x2 2
8
11

= , 

which is shown by point A in Figure 10.2. Let us round off the values of 
x1 and x2 to obtain an integer solution. The truncated point (8,3) becomes 
an infeasible point where the constraint 4x1 + 7x2 ≤ 50 is not satisfied. The 
optimal point of this integral programming problem is B(7, 3) and the 
value of the objective function at this point is –27. It is important to note 
that rounded off values of the decision variables obtained by solving the 
optimization problem as continuous variables may or may not lead to an 
optimal solution.

10.2.1  Gomory’s Cutting Plane Method

To start with, the linear integer programming problem is solved using the 
simplex method described in Chapter 4 by ignoring the integer requirement 
of the variables. If the variables at the optimal solution happen to be inte-
gers, the algorithm is terminated. Otherwise, some additional constraints 
are imposed on the problem. The modified problem is then solved to obtain 
an integer solution (Gomory 1960).

Let us explain the procedure for this problem. The matrices A, b, and c are 
modified as follows.

A = [1 -1 1 0;
 4  7 0 1];
b = [5;50];

1 2 3 4 5 6 7 8 9
−1

1

2

3

4

5

6

7

8

A 7   , 2   

B(7, 3)

7
11

8
11

8
11

f = –27

f = –28

−1
x1

x2

(              )

FIGURE 10.2
Continuous/integer variable solution.
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c = [-3;-2;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

The MATLAB® code (simplex.m) is executed with these initializations and 
the following output is obtained.

________________________________________
basic_set =
 3 4
nonbasic_set =
 1 2
Initial_Table =
 1 0 1 -1 5
 0 1 4 7 50
Cost =
 0 0 -3 -2 0
________________________________________
basic_set =
 1 4
nonbasic_set =
 2 3
Table =
 1 0 -1 1 5
 0 1 11 -4 30
Cost =
 0 0 -5 3 15
________________________________________
basic_set =
 1 2
nonbasic_set =
 3 4
Table =
 1 0 7/11 1/11 85/11
 0 1 -4/11 1/11 30/11
Cost =
 0 0 13/11 5/11 315/11
— — —SOLUTION— — —
basic_set =
 1 2
xb =
 85/11
 30/11
zz =
 -315/11

The minimum of the optimization problem is −28
7
11

 and occurs at x1 7
8
11

=  

and x2 2
8
11

= . Because the decision variables are nonintegers, a Gomory 
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constraint is to be added. This requires the addition of another slack variable, 
x5. We have to select a variable from x1 or x2 that is to be made an integer. The 
one with the largest fractional value is selected. As both x1 and x2 have the 

same fractional value 8
11





 , we select x1 randomly as the variable that has to 

be made an integer. The Gomory constraint is written as

 
x x x5 3 4

7
11

1
11

8
11

− − = −

The Gomory constraint is written in the following manner. First, consider 
the row corresponding to the variable that is to be made an integer. Because 
it is x1 for this problem, the final row from the simplex table is selected as

1 0 7/11 1/11 85/11

Take the negative for the nonbasic variables and add it to the new slack 
variable x5, which then becomes the left-hand side of the Gomory constraint. 
The right-hand side of the Gomory constraint is given by the negative of 

the fractional value corresponding to 85
11





 , which is −







8
11

. When this con-

straint is added to the primal problem, it becomes infeasible because one of 
bi is negative. The problem can be solved using the dual simplex method. The 
MATLAB code (dual.m) is executed with following initialization.

A = [1 0  7/11  1/11 0;
 0 1 -4/11  1/11 0;
 0 0 -7/11 -1/11 1];
b = [85/11;30/11;-8/11];
c = [0;0;13/11;5/11;0];
basic_set = [1 2 5];
nonbasic_set = [3 4];
zz = -315/11;

On executing the code the following output is obtained.

________________________________________
basic_set =
 1 2 5
nonbasic_set =
 3 4
Initial_Table =
 1 0 0 7/11 1/11 85/11
 0 1 0 -4/11 1/11 30/11
 0 0 1 -7/11 -1/11 -8/11
Cost =
 0 0 0 13/11 5/11 -315/11
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________________________________________
basic_set =
 1 2 3
nonbasic_set =
 4 5
Table =
 1 0 0 0 1 7
 0 1 0 1/7 -4/7 22/7
 0 0 1 1/7 -11/7 8/7
Cost =
 0 0 0 2/7 13/7 191/7
— — —FINAL SOLUTION— — —
basic_set =
 1 2 3
xb =
 7
 22/7
 8/7
zz = -191/7

The variable x1 has taken an integer value (x1 = 7). The variables x2 and x3 
are still not integers. A Gomory constraint is to be added. This requires the 
addition of another slack variable x6. Picking the row

0 1 0 1/7 -4/7 22/7

The Gomory constraint is given by

 
x x x6 3 4

1
7

4
7

1
7

− + = −

The MATLAB code (dual.m) is again executed with following initialization.

A = [1 0 0  0 1  0;
 0 1 0  1/7 -4/7 0;
 0 0 1  1/7 -11/7 0;
 0 0 0 -1/7  4/7 1];
b = [7;22/7;8/7;-1/7];
c = [0;0;0;2/7;13/7;0];
basic_set = [1 2 3 6];
nonbasic_set = [4 5];
zz = -191/7

On executing the code the following output is obtained.

________________________________________
basic_set =
 1 2 3 6
nonbasic_set =
 4 5
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Initial_Table =
 1 0 0 0 0 1 7
 0 1 0 0 1/7 -4/7 22/7
 0 0 1 0 1/7 -11/7 8/7
 0 0 0 1 -1/7 4/7 -1/7
Cost =
 0 0 0 0 2/7 13/7 -191/7
________________________________________
basic_set =
 1 2 3 4
nonbasic_set =
 5 6
Table =
 1 0 0 0 1 0 7
 0 1 0 0 0 1 3
 0 0 1 0 -1 1 1
 0 0 0 1 -4 -7 1
Cost =
 0 0 0 0 3 2 27
— — —FINAL SOLUTION— — —
basic_set =
 1 2 3 4
xb =
 7
 3
 1
 1
zz =
 -27

The minimum of the optimization problem is −27 and occurs at x1 = 7 and 
x2 = 3. Observe that other basic variables x3 and x4 have also achieved integer 
values at the optimum point for an all-integer problem.

Consider the following mixed-integer programming problem.

Minimize

 f(x) = −3x1 − 2x2

subject to
 x1 + x2 ≤ 6

 5x1 + 2x2 ≤ 20

 x1, x2 ≥ 0

where x2 is an integer.
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The first step is to solve the linear programming problem by neglecting the 
integer constraint. The matrices A, b, and c are modified as below.

A = [1 1 1 0;
 5 2 0 1];
b = [6;20];
c = [-3;-2;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

The MATLAB code (simplex.m) is executed with these initializations and 
the following output is obtained.
________________________________________
basic_set =
 3 4
nonbasic_set =
 1 2
Initial_Table =
 1 0 1 1 6
 0 1 5 2 20
Cost =
 0 0 -3 -2 0
________________________________________
basic_set =
 3 1
nonbasic_set =
 2 4
Table =
 1 0 3/5 -1/5 2
 0 1 2/5 1/5 4
Cost =
 0 0 -4/5 3/5 12
________________________________________
basic_set =
 2 1
nonbasic_set =
 3 4
Table =
 1 0 5/3 -1/3 10/3
 0 1 -2/3 1/3 8/3
Cost =
 0 0 4/3 1/3 44/3
— — —SOLUTION— — —
basic_set =
 2 1
xb =
 10/3
 8/3
zz =
 -44/3
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Because the variable x2 is noninteger 
10
3





 , we have to add the Gomory 

constraint. The Gomory constraint is written as

 
x x x5 3 4

5
3

1
3

1
3

− + = −

The MATLAB code (dual.m) is executed with the following initialization.

A = [1 0 -2/3  1/3 0;
 0 1  5/3 -1/3 0;
 0 0 -5/3  1/3 1];
b = [8/3;10/3;-1/3];
c = [0;0;4/3;1/3;0];
basic_set = [1 2 5];
nonbasic_set = [3 4];
zz = -44/3

On executing the code the following output is obtained.

________________________________________
basic_set =
 1 2 5
nonbasic_set =
 3 4
Initial_Table =
 1 0 0 -2/3 1/3 8/3
 0 1 0 5/3 -1/3 10/3
 0 0 1 -5/3 1/3 -1/3
Cost =
 0 0 0 4/3 1/3 -44/3
________________________________________
basic_set =
 1 2 3
nonbasic_set =
 4 5
Table =
 1 0 0 1/5 -2/5 14/5
 0 1 0 0 1 3
 0 0 1 -1/5 -3/5 1/5
Cost =
 0 0 0 3/5 4/5 72/5
— — —FINAL SOLUTION— — —
basic_set =
 1 2 3
xb =
 14/5
 3
 1/5
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zz =
 -72/5

The minimum of the optimization problem is − 72
5

 and occurs at x2 = 3 and 

x1
14
5

= .

10.2.2  Zero-One Problems

In these problems, the decision variables can only take the values 0 or 1. For 
example, if a plant is to be located at a particular site, the variable takes a value 
1, else it takes the value 0. If there are n integer variables to be evaluated,  an 
enumerated search would require 2n evaluations of the objective function 
and constraints. For a problem with a few variables, an explicit enumerated 
search should be good enough. However, for a problem with a large number 
of variables, an enumerated search will be computationally expensive. For 
example, for a 20-variable problem, the number of function (and constraints) 
evaluations would be 1,048,576. Balas’ method uses an implicit enumeration 
(Balas 1965) technique to find the optimal solution.

The standard form of linear programming problem where Balas’ method 
can be applied is given by

Minimize

 z = cTx (10.1)

subject to

 Ax b x= ∈, { , }0 1  (10.2)

 c ≥ 0 (10.3)

where A is m × n constraint matrix given by

 

A =





















a a

a a

a

a

a a a

n

n

m m mn

11 12

21 22

1

2

1 2

�
�

�
� 



and b, c, and x are column vectors given by
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b c=
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If some of the cost coefficients (xi) are negative, they can be put in the stan-
dard form by the substitution

 x y yi i i= − ∈1 0 1, { , }  (10.4)

For example, the following problem

Minimize

 f(x) = x1 − x2

subject to

 −2x1 − 3x2 ≤ −5

is written in standard form as

Minimize

 f(x) = x1 + y2

subject to

 −2x1 + 3y2 ≤ −2

 x y1 2 0 1, { , }∈

Let us explain Balas’ method through an example. Consider the following 
zero-one integer programming problem (Bricker 1999).

Minimize

 f(x) = 4x1 + 8x2 + 9x3 + 3x4 + 4x5 + 10x6
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subject to

 4x1 − 5x2 − 3x3 − 2x4 − x5 + 8x6 ≤ −8

 −5x1 + 2x2 + 9x3 + 8x4 − 3x5 + 8x6 ≤ 7

 8x1 + 5x2 − 4x3 + x5 + 6x6 ≤ 6

 x ∈ {0, 1}

Start with the solution

 x1 = x2 = x3 = x4 = x5 = x6 = 0

This is an initial solution and no variable is fixed. Thus the solution vector 
is a null set and is given by

 S = { }

On substituting these values of variables, second and third constraints are 
satisfied, whereas the first constraint is infeasible. The violated constraint is 
denoted as

 V = {1}

To check the sensitivity of different variables on the feasibility of the first 
constraint, we observe that if variables x1 and x6 become 1, they only increase 
the infeasibility of the first constraint. These two variables are not helpful. 
The helpful variables are therefore given by

 H = {2, 3, 4, 5}

At the end of the first iteration we can write

 S1 = { }

 V1 = {1}

 H1 = {2, 3, 4, 5}
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We must select a helpful variable for branching. The variable x2 will reduce 
infeasibility in the first constraint and therefore can be selected for branch-
ing. The solution vector is therefore written as

 S2 = {2}

This means that variable x2 is now fixed at 1. The first constraint is, how-
ever, still violated. That is,

 V2 = {1}

Again, we observe that variables x3, x4, and x5 are helpful. Therefore, at the 
end of second iteration we can write

 S2 = {2}

 V2 = {1}

 H2 = {3, 4, 5}

The variable x5 will reduce more infeasibility in the constraints as com-
pared to the variables x3 and x4. Therefore the variable x5 is also fixed at 1. 
Hence,

 S3 = {2, 5}

The first constraint is still violated. Therefore, at the end of third iteration, 
we can write

 S3 = {2, 5}

 V3 = {1}

 H3 = {3, 4}

Similarly, at the end of the fourth iteration, we can write

 S4 = {2, 5, 4}

 V4 = { }

 H4 = { }
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Thus, if the variables x2, x5, and x4 are fixed at 1, no constraints are violated 
and the value of the objective function is given by 15. Because a violated 
constraint set is a null set, we backtrack and fix x4 to zero. This is written as

 S5 2 5 4= { }, ,

Therefore, at the end of the fifth iteration, we can write

 S5 2 5 4= { }, ,

 V5 = {1}

 H5 = {3}

In the next iteration, x5 is fixed at 0 and variable x4 is removed from the 
solution set. Therefore,

 S6 2 5= { },

 V6 = {1}

 H6 = {3, 4}

Similarly, the last node is written as

 S7 2= { }

 V7 = {1}

 H7 = {3, 4, 5}

Thus the optimal value of variables, as obtained in the fourth iteration, is 
given by

 x1 = x3 = x5 = 0 and x2 = x4 = x5 = 1
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The optimal value of the objective function is 15. The different steps of the 
Balas method can be understood with the tree diagram (Figure 10.3).

10.3  Integer Nonlinear Programming

The branch-and-bound method is one of the popular methods of solving both 
integer linear and nonlinear programming. The technique was developed by 
Land and Doig and can also be used for mixed-integer programming. We 
will also explore the utility of the PSO technique in solving mixed-integer 
nonlinear problems. The constrained mixed-integer optimization problem 
can be mathematically stated as

Minimize

 f(x) (10.5)

subject to

 gi(x) ≤ 0   i = 1, 2,…, m < n (10.6)

 hj(x) = 0   j = 1, 2,…, r < n (10.7)

 xk = integers   k = 1, 2,…, p < n (10.8)

7 2

6 3

5 4

1

x2 = 0 x2 = 1

x5 = 1
x5 = 0

x4 = 0 x4 = 1

FIGURE 10.3
Tree diagram for the test problem.
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where there are n variables to be determined out of which p are integers and 
the remaining variables are continuous.

10.3.1  Branch-and-Bound Method

In this method (Land and Doig 1960), the optimization problem is solved 
with continuous variables, and the integer constraints are relaxed. If the 
solution obtained is integers, the algorithm is terminated as it represents the 
optimal solution of the integer problem. If one of the integer variables xk 
is continuous, then one has to solve two additional subproblems with the 
upper bound constraint

 xk ≤ [xk] (10.9)

and lower bound constraint

 xk ≥ [xk] + 1 (10.10)

This process of the branching ensures that feasible integer solutions are 
not eliminated. The branching problem is again solved (as continuous vari-
ables) with these additional constraints. The process is continued until an 
integer solution is obtained. This solution corresponds to the upper bound 
of the objective function for a minimization problem. During the course of 
further branchings, if any of the branches have the value of the objective 
function greater than this upper bound value then that node is terminated or 
fathomed. If a lower value of the objective function is reached than the upper 
bound value, then the upper bound value is updated. The method continues 
to branch until all the nodes have been evaluated or fathomed. The lowest 
value of the objective function corresponding to the integer feasible solution 
gives the optimal value of the objective function.

Consider the following integer programming problem that is solved using 
the branch-and-bound method.

Minimize

 f(x) = −4x1 − 5x2

subject to

 2x1 + 5x2 ≤ 16

 2x1 − 3x2 ≤ 7

 x1, x2 ≥ 0

where x1 and x2 are integers.
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As a first step, integer constraints are relaxed and the linear programming 
problem is solved with continuous variables. The MATLAB code (simplex.m) 
is executed with the initializations

A = [2  5 1 0;
 2 -3 0 1];
b = [16;7];
c = [-4;-5;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];

and following output is obtained:
________________________________________
basic_set =
 3 4
nonbasic_set =
 1 2
Initial_Table =
 1 0 2 5 16
 0 1 2 -3 7
Cost =
 0 0 -4 -5 0
________________________________________
basic_set =
 2 4
nonbasic_set =
 1 3
Table =
 1 0 2/5 1/5 16/5
 0 1 16/5 3/5 83/5
Cost =
 0 0 -2 1 16
________________________________________
basic_set =
 2 1
nonbasic_set =
 3 4
Table =
 1 0 1/8 -1/8 9/8
 0 1 3/16 5/16 83/16
Cost =
 0 0 11/8 5/8 211/8
— — —SOLUTION— — —
basic_set =
 2 1
xb =
 9/8
 83/16
zz =
 -211/8
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The optimal value of the objective function is −26
3
8

 and occurs at x1 5
3

16
=  

and x2 1
1
8

=  (Figure 10.4).

Because both variables are not integers, we branch and create two 
subproblems:

NODE 1
Subproblem 1

Minimize f(x) = −4x1 − 5x2

subject to 2x1 + 5x2 ≤ 16
  2x1 − 3x2 ≤ 7
  x1 ≤ 5

Subproblem 2
Minimize f(x) = −4x1 − 5x2

subject to 2x1 + 5x2 ≤ 16
  2x1 − 3x2 ≤ 7
  x1 ≥ 6

The MATLAB code (subproblem1.m) is executed with the initializations

A = [2  5 1 0 0;
 2 -3 0 1 0;
 1  0 0 0 1];
b = [16;7;5];
c = [-4;-5;0;0;0];

–1 1 2 3 4 5 6

–1

1

2

3

4

x2

x1

3
8

f = –26

A 5    , 1    3
16

1
8(              )

FIGURE 10.4
Optimal noninteger solution.
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basic_set = [3 4 5];
nonbasic_set = [1 2];

and the following output is obtained.

basic_set =
 3 4 5
nonbasic_set =
 1 2
Initial_Table =
 1 0 0 2 5 16
 0 1 0 2 -3 7
 0 0 1 1 0 5
Cost =
 0 0 0 -4 -5 0
________________________________________
basic_set =
 2 4 5
nonbasic_set =
 1 3
Table =
 1 0 0 2/5 1/5 16/5
 0 1 0 16/5 3/5 83/5
 0 0 1 1 0 5
Cost =
 0 0 0 -2 1 16
________________________________________
basic_set =
 2 4 1
nonbasic_set =
 3 5
Table =
 1 0 0 1/5 -2/5 6/5
 0 1 0 3/5 -16/5 3/5
 0 0 1 0 1 5
Cost =
 0 0 0 1 2 26
— — —SOLUTION— — —
basic_set =
 2 4 1
xb =
 6/5
 3/5
 5
zz =
 -26

The optimal value of the objective function is −26 and occurs at x1 = 5 and 

x2 1
1
5

=  (Figure 10.5). As x2 has a noninteger value, we need to branch here 
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(node 2). In a similar way, subproblem 2 can be solved (node 3). The solution 
to subproblem 2 results in an infeasible solution. No further branching is 
therefore required from subproblem 2.

Two further nodes (4 and 5) are created from node 2. Two new subprob-
lems are

NODE 2
Subproblem 1

Minimize f(x) = −4x1 − 5x2

subject to 2x1 + 5x2 ≤ 16
  2x1 − 3x2 ≤ 7
  x2 ≤ 1

Subproblem 2
Minimize f(x) = −4x1 − 5x2

subject to 2x1 + 5x2 ≤ 16
  2x1 − 3x2 ≤ 7
  x2 ≥ 2

A = [2 5 1  0 0;
 2 -3 0 1 0;
 0 1 0  0 1];
b = [16;7;1];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];

–1 1 2 3 4 5 6

–1

1

2

3

4

x2

f = –26

 5, 1   

x1

1
5(         )

FIGURE 10.5
Noninteger solution.
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and the following output is obtained.

______________________________________
basic
 3 4 5
nonbasic_set =
 1 2
Initial_Table =
 1 0 0 2 5 16
 0 1 0 2 -3 7
 0 0 1 0 1 1
Cost =
 0 0 0 -4 -5 0
________________________________________
basic_set =
 3 4 2
nonbasic_set =
 1 5
Table =
 1 0 0 2 -5 11
 0 1 0 2 3 10
 0 0 1 0 1 1
Cost =
 0 0 0 -4 5 5
________________________________________
basic_set =
 3 1 2
nonbasic_set =
 4 5
Table =
 1 0 0 -1 -8 1
 0 1 0 1/2 3/2 5
 0 0 1 0 1 1
Cost =
 0 0 0 2 11 25
— — —SOLUTION— — —
basic_set =
 3 1 2
xb =
 1
 5
 1
zz =
 -25

The optimal value of the objective function is −25 and occurs at x1 = 5 and 
x2 = 1 (Figure 10.6). Because this subproblem has an integer feasible solution, 
we fathom the node here and do not branch from here. Similarly, the solution 
of the second problem gives an objective function value of −22 and occurs 
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at x1 = 3 and x2 = 2 (Figure 10.7). Because the value of objective function in 
subproblem 2 is greater than the value of the objective function in subprob-
lem 1, we also fathom the node 5. The optimal value of the original integer 
programming problem is therefore –25 and occurs at x1 = 5 and x2 = 1. The 
tree diagram for this problem is shown in Figure 10.8.

10.3.2  Evolutionary Method

The particle swarm optimization (PSO) method can be successfully used to solve 
integer programming problems. The method was elaborated in Chapter 5 and 
it successfully solved nonlinear constraint optimization problems (Chapter 6) 

1

2

3

4

f = –22

x2

x1
(3, 2)

FIGURE 10.7
Feasible integer solution.

–1 1 2 3 4 5 6

–1

1

2
f = –25

(5, 1)

x2

x1

FIGURE 10.6
Feasible integer solution (optimal).
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as well as multiobjective problems (Chapter 7). In this method, the velocity 
of individual vi,k is updated using the equation

 vi+1,k = w1vi,k + ϕ1(pxik − xi,k)ui + ϕ2(gix − xi,k)ui (10.11)

where w1, ϕ1, and ϕ2 are the tuning factors of the algorithm. The position of 
each individual is updated as

 xi+1,k = xi,k + vi+1,k (10.12)

For integer variables in the problem, we can round off the variable to the 
nearest integer (Laskari et al. 2002) as

 xi+1,k = round(xi+1,k) (10.13)

The rest of the procedure remains same and is mentioned in Chapter 5. 
The constrained welded beam optimization problem (see Chapter 6) is again 
considered with a modification that some of the variables take integer values 
only. The optimal solution obtained using the PSO method for different ver-
sions of this problem is mentioned in Table 10.1.

4 5

2 3

1

Infeasible

Optimal x1 = 3, x2 = 2, f = –22
x1 = 5, x2 = 1, f = –25

1
5

x1 = 5, x2 = 1  , f = –26

3
16

11
8

1
8

x1 = 5    , x2 = 1   , f = –25

FIGURE 10.8
Tree diagram for the test problem.

TaBlE 10.1

Optimal Solution to Different Welded Beam Problems

Welded 
Beam

Integer Variable 
Constraint

Optimal Solution

x1
* x2

* x3
* x4

* f *

Problem 1 None 0.244 6.212 8.299 0.244 2.381
Problem 2 x3, x4 0.681 2.794 5 1 5.471
Problem 3 x3 0.263 5.869 8 0.263 2.461
Problem 4 x4 0.645 3.734 4.099 1 5.211
Problem 5 x2 0.241 6 8.644 0.242 2.399
Problem 6 x2, x4 0.614 4 4.099 1 5.213
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Chapter Highlights

•	 An all-integer programming problem contains design variables that 
can take integer values only.

•	 In mixed-integer programming problems, some decision variables 
are of the integer type and some can take fractional values or are of 
the continuous type.

•	 Optimization problems in which design variables can take only dis-
crete values are referred to as discrete programming problems.

•	 There is also a special type of integer programming called a zero-
one programming problem in which design variables can take a 
value of 0 or 1.

•	 In Gomory’s cutting plane method, the linear integer program-
ming problem is first solved using the simplex method by ignor-
ing the integer requirement of the variables. If the variables at the 
optimal solution happen to be integers, the algorithm is termi-
nated. Otherwise, some additional constraints are imposed on the 
problem.

•	 If there are n integer variables to be evaluated in a zero-one problem, 
an enumerated search would require 2n evaluations of the objective 
function and constraints. Balas’ method uses an implicit enumera-
tion technique to find the optimal solution.

•	 In the branch-and-bound method, the optimization problem is solved 
with continuous variables, and the integer constraints are relaxed. 
If the solution obtained is integers, the algorithm is terminated as it 
represents the optimal solution of the integer problem. If one of the 
integer variables is continuous, then one has to solve two additional 
subproblems with additional constraints.

•	 The PSO method can be used to solve nonlinear mixed-integer pro-
gramming problems with minor modifications.

Formulae Chart

Standard form of linear integer programming where Balas’ method is 
used:
Minimize

 z = cTx
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subject to

 Ax = b

 x ∈ {0, 1}

 c ≥ 0

Problems

 1. Solve the following integer programming problem using the graphi-
cal method.
  Minimize f(x) = −3x1 − 2x2

  subject to 2x1 + x2 ≤ 17
    2x1 + 3x2 ≤ 40
    3x1 + 3x2 ≤ 26
    x1, x2 ≥ 0

 where x1 and x2 are integers.
 2. Solve the following integer programming problem using Gomory’s 

cutting plane method.
  Minimize f(x) = −x1 + 2x2

  subject to 2x1 + 2x2 ≤ 4
    6x1 + 2x2 ≤ 9
    x1, x2 ≥ 0

 where x1 and x2 are integers.
 3. A small wooden furniture manufacturer has specialized in two 

types of furniture: chairs and tables, both requiring two types of 
raw material. Chairs require 6 and 7 units of the first and second 
kind of raw material whereas tables require 14 and 7 units of the first 
and second kind of raw material. In a day, the manufacturer has a 
supply of 42 units and 35 units of two types of raw material. Profit 
analysis indicates that every unit of chair contributes Rs. 100 and 
every unit of table contributes Rs. 160. The manufacturer would like 
to know the optimum number of chairs and tables to be produced 
so as to maximize the profit (Shenoy et al. 1986). Formulate this as an 
integer-programming problem and solve it.

 4. Solve the following zero-one programming problem (Shenoy et al. 
1986) using Balas’ method.
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  Minimize   16x1 + 15x2 + 17x3 + 15x4 + 40x5 + 12x6 + 13x7 + 9x8 + 
12x9

  subject to  13x1 + 50x2 + 7x3 + 6x4 + 36x5 + 6x6 + 46x7 + 38x8 + 
18x9 ≤ 50

     3x1 + 8x2 + 6x3 + 2x4 + 34x5 + 6x6 + 4x7 + 7x8 + 3x9 ≤ 
20

    x ∈ {0, 1}
 5. Solve the following integer programming problem using Gomory’s 

cutting plane method.
  Minimize f(x) = −3x1 − 5x2

  subject to 2x1 + 5x2 ≤ 15
    2x1 − 2x2 ≤ 5
    x1, x2 ≥ 0

 where x1 and x2 are integers.
 6. Solve the following integer programming problem using Gomory’s 

cutting plane method.
  Minimize f(x) = −4x1 − 7x2

  subject to x1 + x2 ≤ 6
    5x1 + 9x2 ≤ 50
    x1, x2 ≥ 0

 where x1 and x2 are integers.
 7. Solve the following integer programming problem using Gomory’s 

cutting plane method
  Maximize f(x) = 3x1 + 2x2

  subject to 2x1 + x2 ≤ 5
    2x1 − 7x2 ≤ 4
    x1, x2 ≥ 0

 where x1 and x2 are integers.
 8. Solve the following integer programming problem using the branch-

and-bound method.
  Maximize f(x) = x1 + 2x2

  subject to 2x1 + x2 ≤ 4
    3x1 + 4x2 ≤ 5
    x1, x2 ≥ 0

 where x1 and x2 are integers.
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11
Dynamic Programming

11.1  Introduction

Dynamic programming is an optimization technique in which a complex opti-
mization problem is divided into a number of stages (or subproblems) in which 
a policy decision has to be taken at each stage. The stages are solved sequen-
tially, one by one. The stages generally represent a time-varying phenomenon 
such as the amount of inventory in a store. Dynamic programming thus refers 
to planning of a time-varying system. The series of interrelated decisions taken 
at each stage is done using the state information associated with that stage and 
has to be suitably linked with the next stage. The dimensionality of the prob-
lem increases with an increase in the number of states. The series of best policy 
decisions taken at each stage is referred to as the optimal policy of the optimi-
zation problem. The principle of optimality in dynamic programming states that 
the optimal decision at a given stage is independent of the optimal decisions 
taken in the previous stages. Typically in dynamic programming, the optimal 
decision pertaining to the last stage is taken first and then moved backward to 
the next stage and the process is continued until the first stage is reached. The 
technique of dynamic programming was developed by Richard Bellman in the 
1950s. The method is used to solve a number of problems in different areas 
(Edwin and Gruber 1971; George 1963; Leondes and Smith 1970). The method, 
though easy to implement, has a serious drawback: the complexity of the prob-
lem increases with an increase in the number of variables. This is frequently 
referred to as the curse of dimensionality in dynamic programming. This chapter 
discusses aspects of deterministic and probabilistic dynamic programming.

11.2  Deterministic Dynamic Programming

In dynamic programming, when the current policy decision and the state 
completely determine the state of the next stage, it is called deterministic 
dynamic programming. Let the state at stage n be denoted by sn. The policy 
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decision xn transforms this state to sn+1 at the next stage n + 1. The function 
f sn n+ +1 1
* ( ) is the optimal value of the objective function to which the contri-

bution made by xn decision is to be added (Figure 11.1). This provides the 
contribution of n stages and is given by fn (sn, xn). This function is optimized 
with respect to xn to give f s f s xn n n n n

* ,  * .( ) ( )=  The procedure is repeated by 
moving back one stage.

Let us take an example to explain the concept of dynamic programming. 
A person in a remote place A has to reach city I to withdraw money from an 
ATM. Though he has the option to select different paths to reach his goal, he 
is interested in finding the path that has a  minimum distance to be covered. 
The intermediate villages where he can change his path are given by B, C, 
D, E, F, G, and H. The distance between the villages is given in Figure 11.2.

Before using dynamic programming, let us select the path that results in 
the minimum distance from one city to another. From village A, the mini-
mum distance is 3 to village C. From village C, the minimum distance is 6 to 
village F. In this way the total distance traveled is 16 and the path is

 A → C → F → G → I

Stage n Stage n + 1

Sn

xn
Sn+1

f *n+1(Sn+1)fn(Sn , xn)

FIGURE 11.1
Structure of deterministic dynamic programming.
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FIGURE 11.2
Distance (not to scale) between the villages.
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For an n stage problem in dynamic programming, the current stage is des-
ignated as n and the current state is sn. The policy decision variable is given 
by xn and the optimal policy is given by the recursive relationship

 f c f xsn sx n nn n
* *( ) ( )= +{ }+min 1  (11.1)

where csxn
 is the cost for stage n and f xn n+1

* ( ) is the cost for stages n + 1 and 
higher. Equation 11.1 is minimized with respect to xn. This is a four-stage 
problem and we start from the last stage (n = 4), as shown in Figure 11.3.

At this stage, a person can be either at G or H. If he is at G, the shortest 
distance (in fact, it is the only path) to reach the destination (I) is 5. Similarly, 
if he is at H, the shortest distance to reach the destination is 4. The results of 
stage 4 are summarized in Table 11.1.

Let’s go back one stage (n = 3). At stage 3, a person can be either at E or F. 
If he is at E, he has two paths, to go either to G or H, and the distance to be 
covered is 3 and 5 respectively. The additional distance from G (or H) to I, 
which is computed in the last stage, is to be added at this stage. The distance 
covered for the route E–G–I is 8 and for E–H–I it is 9 (Figure 11.4). Similarly, 
one can compute distance for the path F–G–I and F–H–I. The results of stage 
3 are given in Table 11.2.

Let’s go back one more stage (n = 2). At stage 2, a person can be at B, C, or D. 
From here, his immediate destination can be E or F. The minimum distance 
from E and F to the destination was already computed in Table 11.1. The 
results for stage 2 are mentioned in Table 11.3.

In a similar manner results for stage 1 are summarized in Table 11.4.

G

H
4

5

n = 4

I

FIGURE 11.3
Stage 4.

TablE 11.1

Stage 4

s f4(s) x4
*

G 5 I
H 4 I
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Thus the minimum distance from A to destination I is 15. There are three 
optimal paths for this problem:

 

A D E G I
A D F G I
A D F H I

→ → → →
→ → → →
→ → → →

TablE 11.2

Stage 3

s

f s x c f xsx3 3 4 43
( ) ( ), *== ++

f s3
*( ) x3

*G H

E 8 9 8 G
F 7 7 7 G, H

TablE 11.3

Stage 2

s

f s x c f xsx2 2 3 32
( ) ( ), *== ++

f s2
*( ) x2

*E F

B 12 12 12 E, F
C 15 13 13 F
D 11 11 11 E, F

G

H

3

n = 3

5

E

5

4

FIGURE 11.4
Stage 3.

TablE 11.4

Stage 1

s

f s x c f xsx1 1 2 21
( ) ( ), *== ++

f s1
*( ) x1

*B C D

A 17 16 15 15 D
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Example 11.1

Solve the following linear programming problem (LPP) using dynamic 
programming.

Maximize z = 2x1 + 3x2

subject to x1 ≤ 3
  2x2 ≤ 11
  2x1 + 3x2 ≤ 12
  x1 ≥ 0, x2 ≥ 0

This is a two-stage problem because it contains two interacting vari-
ables. The states in the problem are the right-hand side of the inequality 
constraints. For the first stage, the resources available for the first activity 
(x1) are

 s1 = {3, 11, 12}

When x1 is allocated, the remaining resources for the next state (Figure 
11.5) will be

 s2 = {3 − x1, 11, 12 − 2x1}

The stage 2 problem can be written

Maximize z = 3x2

subject to 2x2 ≤ 11
  3x2 ≤ 12

Thus maximum allocation of x2 is limited by

 
min

11
2

12 2
3

1, 
−








x

Stage 1 Stage 2

f1(s1, x1) f *2(s2)

s1 = {3, 11, 12} s2 = {3 − x1, 11, 12 − 2x1}

FIGURE 11.5
Two-stage problem.
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Clearly, the minimum of the two terms is

 
12 2

3
01

1
− ≥x

x
 

Thus,

 
f

x
xs2

1
12 3

11
2

12 2
3

12 2* , ( ) = −







= −min
 

Therefore,

 
f s x

x
1 1 1

12 3
11
2

12 2
3

*   , ( ) = + −


















=min 22 12 2 121 1x x+ − =

 

Thus, the maximum value of the function is 12 and occurs at x1 0* = . 
Substituting the value of x1 in one of the constraint equations gives x2 4* = .

11.3  Probabilistic Dynamic Programming

In deterministic dynamic programming, the state and decisions of the pres-
ent stage completely determine the state of the next stage. In probabilistic 
dynamic programming, the state of the next stage is determined with some 
probability distribution. Let us take the following example, which is solved 
using the concept of probabilistic dynamic programming.

A milk vendor purchases six cases of milk from a dairy farm for Rs. 900 
per case. He has three booths where he can sell the milk at Rs. 2000 per case. 
Any unsold milk of the day can be returned back to the dairy farm at a rate 
of Rs. 500 per case. The demand at the three booths has certain probabilities 
and is given in Table 11.5.

Find the optimal policy in allocating six cases of milk to different booths 
so as to maximize the profit.

To maximize profits, we need to maximize the revenue as cost is fixed. 
Like previous problems, the first step in the dynamic programming is to 
identify the stages, states, and decision policies. In this problem, number of 
stages refers to the number of booths. Thus, it is a three-stage problem. The 
state at each stage is the number of milk cases available for allocation and let 
it be denoted by si for the ith stage. Let the decision policy of allocating num-
ber of cases of milk to a particular booth be denoted by xi. Let ri(xi) represent 
the revenue earned by allocating xi cases to ith store and fi(si) represent the 
maximum expected revenue earned by assigning xi cases to the ith store. As 
with the earlier problems, we will start with the last stage. Before that, let 
us compute the elements of the revenue table ri(xi) for 0 ≤ xi ≤ 3 as maximum 
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demand at any store is 3. Let us illustrate this by taking a case for booth 1 
where two cases of milk are to be allocated. This is denoted by r1(2).

 r1(2) = 0.5 × 2500 + 0.4 × 4000 + 0.1 × 4000 = 3250

In a similar manner, other elements of ri(xi) can be constructed and are 
given in Table 11.6.

The state and decision policies for different stages are summarized in 
Tables 11.7 through 11.9.

TablE 11.5

Demands from Different Booths

Demand (in Number of Cases) Probability

Booth 1 1 0.5
2 0.4
3 0.1

Booth 2 1 0.5
2 0.3
3 0.2

Booth 3 1 0.6
2 0.2
3 0.2

TablE 11.6

Revenue Earned by Allocating Resources

xi r1(x1) r2(x2) r3(x3)

0 0 0 0
1 2000 2000 2000
2 3250 3250 3500
3 3900 4050 3900

TablE 11.7

Stage 3

s3

r3(x3)

f s3 3
*( ) x3

*0 1 2 3

0 0 – – – 0 0
1 0 2000 – – 2000 1
2 0 2000 3500 – 3500 2
3 0 2000 3500 3900 3900 3
4 0 2000 3500 3900 3900 3
5 0 2000 3500 3900 3900 3
6 0 2000 3500 3900 3900 3
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The optimal policy is to allocate three cases of milk to booth 1, one case of 
milk to booth 2, and two cases of milk to booth 3.

Chapter Highlights

•	 Dynamic programming refers to planning of time-varying systems.
•	 In dynamic programming, a complex optimization problem is divided 

into a number of stages (or subproblems) in which a policy decision 
has to be taken at each stage.

•	 The series of interrelated decisions taken at each stage is done using 
the state information associated with that stage and has to be suit-
ably linked with the next stage.

•	 The principle of optimality in dynamic programming states that the 
optimal decision at a given stage is independent of the optimal deci-
sions taken in the previous stages.

•	 In dynamic programming, when the current policy decision and the 
state completely determine the state of the next stage, it is called deter-
ministic dynamic programming.

TablE 11.8

Stage 2

s2

r2(x2) + f3(s2 − x2)

f s2 2
*( ) x2

*0 1 2 3

0 0 – – – 0 0
1 2000 2000 – – 2000 0, 1
2 3500 4000 3250 – 4000 1
3 3900 5500 5250 4050 5500 1
4 3900 5900 6750 6050 6750 2
5 3900 5900 7150 7550 7550 3
6 3900 5900 7150 7950 7950 3

TablE 11.9

Stage 1

s1

r1(x1) + f2(s1 − x1)

f s1 1
*( ) x1

*0 1 2 3

6 7950 9550 10,000 9400 10,000 3
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Formula Chart

Recursive relationship:

 f c fs xn sx nn nn
* *( ) ( )= +{ }+min 1  

Problems

 1. Solve the following LPP using dynamic programming.
 i. Minimize z = 3x1 − 2x2

 subject to x1 + 2x2 ≤ 10
   2x1 − x2 ≤ 5
   −4x1 + 3x2 ≥ 5
   x1, x2 ≥ 0

 ii. Maximize z = 2x1 + 5x2

 subject to 3x1 + x2 ≤ 11
    x1 − x2 ≤ 6
    −2x1 + x2 ≤ 10
    x1, x2 ≥ 0

 iii. Maximize z = 4x1 + 5x2

 subject to 2x1 + x2 ≤ 20
    −3x1 + 2x2 ≤ 25
    −x1 + x2 ≤ 30
    x1, x2 ≥ 0

 2. Solve the following integer programming problem using dynamic 
programming.
  Minimize f(x) = −3x1 − 2x2

  subject to 2x1 + x2 ≤ 17
    2x1 + 3x2 ≤ 40
    3x1 + 3x2 ≤ 26
    x1, x2 ≥ 0

 where x1 and x2 are integers.
 3. Find the optimal policy of the stagecoach problem (Figure 11.6) to 

minimize the distance from A to I.
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 4. A system consists of three components (R1, R2, and R3) arranged in 
series. The reliability of the system is given by

 R = R1 R2 R3

 The reliability of each component can be increased by arranging (in 
parallel) itself to a similar component. If ri is the reliability of each 
component, then reliability of the subsystem in parallel is given by

 R ri i
ni= − −1 1( )

 where ni is the number of components arranged in parallel. The 
costs of various components along with their reliabilities are given 
in Table 11.10.

  Maximize the reliability of the system if an amount of $700 is 
available for investment.
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FIGURE 11.6
Stagecoach problem.

TablE 11.10

Cost and Reliability of Various Components

Component Cost ($) Reliability of Each Component

1 100 0.93
2 150 0.96
3 190 0.98
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Appendix A: Introduction to MATLAB®

A.1 Introduction

MATLAB is a software package of The MathWorks Inc., for technical comput-
ing that does both computing and visualization with ease. It has a number of 
built-in functions that can be used by an individual’s application. The acro-
nym MATLAB stands for MATrix LABoratory. Matrices are the basic build-
ing blocks of MATLAB. Though MATLAB is primarily used for numerical 
computations, it also supports symbolic computations. The main advantage 
of MATLAB is the ease with which one can translate the idea into an appli-
cation. MATLAB runs on almost all computer platforms, whether Microsoft 
Windows, Apple Macintosh or Unix. On Microsoft Windows, MATLAB can 
be started by double clicking the MATLAB shortcut icon. See Figure A.1 for 
a typical desktop of MATLAB.

Observe that the desktop has four windows: current folder, command 
window, workspace, and command history. The command prompt is shown 
by >>. All commands are to be typed here. The command history windows 
keep a record of the previously typed commands across multiple sessions. 
The previously typed command in this window can be double-clicked so 
that it can be executed again. All files listed in the left window correspond 
to the current folder directory. The file can be opened for editing by simply 
double-clicking on it. The type and size of the variables are shown in the 
workspace window (empty in this figure). There is a provision to select the 
variables and plot them.

A.2 Matrices and Arrays

Type the matrix A in the command prompt

>> A = [1 2 3; 4 -1 -2; 5 6 7]

Then press enter. The following output is displayed in the command 
window.
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A =
 1 2 3
 4 -1 -2
 5 6 7

Observe that a declaration of dimensions of A is not required. Let us learn 
few more commands.

>> sum(A)
ans =
 10 7 8

The sum function adds the elements of each column. To get sum of each 
row

>> sum(A')
ans =
 6 1 18

where A' is the transpose of the matrix A. The diagonal elements can be 
obtained using the diag function.

>> diag(A)
ans =

 1
 -1
 7

Simultaneous use of functions in a single command is also permissible. 
For example,

>> sum(diag(A))
ans =
 7

Suppose we want to assign the element –2 in matrix A to a variable x. The 
element –2 is in second row and third column of A. Then

>> x = A(2,3)
x =
 -2

Consider the colon operator

>> x = 1:2:10

The output is a row vector containing numbers from 1 to 10 in steps of 2:

ans =
 1 3 5 7 9
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To get all rows (or columns) of a matrix, a colon operator can be used. For 
example, to get second column of A,

>> A(:,2)
ans =
 2
 -1
 6

To get third row of A

>> A(3,:)
ans =
 5 6 7

A.3 Expressions

MATLAB does not require variable type declarations. For example,

drag_coefficient = 0.6

The variables are case sensitive; that is, the variable LIFT is different from 
lift.

MATLAB uses conventional decimal notation. Scientific notation uses the 
letter e to specify a power-of-ten scale factor. Imaginary numbers use either 
i or j as a suffix. Some examples are

6 -999 0.0005 109.1237 1.60210e-20 9.123e23  7i 
-6.28j    4e6i

MATLAB uses the following operators and the precedence follows stan-
dard mathematical rules.

+ Addition
– Subtraction
* Multiplication
/ Division
\ Left division
^ Power
() Specify evaluation order
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The relational operators >, <, >=, <= consider only the real part for the pur-
pose of comparison while the operator = = considers both real and imagi-
nary parts.

Some elementary functions in MATLAB are

Trigonometric
sin Sine
sind Sine of argument in degrees
sinh Hyperbolic sine
asin Inverse sine
asind Inverse sine, result in degrees
asinh Inverse hyperbolic sine
cos Cosine
cosd Cosine of argument in degrees
cosh Hyperbolic cosine
acos Inverse cosine
acosd Inverse cosine, result in degrees
acosh Inverse hyperbolic cosine
tan Tangent
tand Tangent of argument in degrees
tanh Hyperbolic tangent
atan Inverse tangent
atan2 Four-quadrant inverse tangent
atanh Inverse hyperbolic tangent
sec Secant
secd Secant of argument in degrees
sech Hyperbolic secant
asec Inverse secant
asecd Inverse secant, result in degrees
asech Inverse hyperbolic secant
csc Cosecant
cscd Cosecant of argument in degrees
csch Hyperbolic cosecant
acsc Inverse cosecant
acscd Inverse cosecant, result in degrees
acsch Inverse hyperbolic cosecant
cot Cotangent
cotd Cotangent of argument in degrees
coth Hyperbolic cotangent
acot Inverse cotangent
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acotd Inverse cotangent, result in degrees
acoth Inverse hyperbolic cotangent
hypot Square root of sum of squares

Exponential
exp Exponential
expm1 Compute exp(x) – 1 accurately
log Natural logarithm
log1p Compute log(1 + x) accurately
log10 Common (base 10) logarithm
log2 Base 2 logarithm and dissect floating point number
pow2 Base 2 power and scale floating point number
sqrt Square root
nthroot Real nth root of real numbers

Complex
abs Absolute value
angle Phase angle
complex Construct complex data from real and imaginary parts
conj Complex conjugate
imag Complex imaginary part
real Complex real part
isreal True for real array

Rounding and Remainder
fix Round toward zero
floor Round toward minus infinity
ceil Round toward plus infinity
round Round toward nearest integer
mod Modulus (signed remainder after division)
rem Remainder after division
sign Signum

MATLAB also provides values of useful constants.

pi    3.14159265…
i    Imaginary unit
j    Same as i
eps   Floating-point relative precision
realmin Smallest floating-point number
realmax Largest floating-point number
Inf   Infinity
NaN  Not-a-number
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A.4 Matrix Operations

Examples of zeros, ones, and rand functions are given below.

>> Y = zeros(3,2)
Y =
 0 0
 0 0
 0 0
>> X = ones(2,3)
X =
 1 1 1
 1 1 1
>> Z = rand(2)
Z =
 0.1656 0.2630
 0.6020 0.6541

The rand function generates a uniformly generated random number 
between 0 and 1.

The matrix A can be saved in the same directory, for a later use, by the 
command:

>> save –ascii aa X

Sometimes it is necessary to clear all variables and functions from the 
command window. This is done with the command

>> clear all

Now if A is punched in the command prompt it results in an error.

>> A

??? Undefined function or variable ‘A’.

To get back the saved value of matrix A, use the load command

>> A=load('aa')
A =
 1 2 3
 4 -1 -2
 5 6 7

To know about a function name, use help from the menu or simply type 
help functionnane in the command. For example,

>> help clc

© 2015 by Taylor & Francis Group, LLC

  



316 Appendix A

CLC Clear command window.
CLC clears the command window and homes the cursor.

If one is not able to recollect the function name, use the lookfor command. 
For example, to get the name of absolute function:

>> lookfor absolute

abs Absolute value
genelowvalfilter Filters genes with low absolute expression levels
imabsdiff Absolute difference of two images
meanabs Mean of absolute elements of a matrix or matrices
sumabs Sum of absolute elements of a matrix or matrices
mae Mean absolute error performance function
sae Sum absolute error performance function
dmae Mean absolute error performance derivative function
circlepick Pick bad triangles using an absolute tolerance
mad Mean/median absolute deviation

The concatenation of the matrices is shown with the following example.

>> A = [1 2 3; 4 -1 -2; 5 6 7]
A =
 1 2 3
 4 -1 -2
 5 6 7
>> B = [8;9;10]
B =
 8
 9
 10
>> Z = [A B]
Z =
 1 2 3 8
 4 -1 -2 9
 5 6 7 10

Suppose we want to delete the second column of the Z matrix. This can be 
done by

>> Z(:,2)=[]
Z =
 1 3 8
 4 -2 9
 5 7 10
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The inverse of the square matrix can be computed by

>> inv(Z)
ans =
 -0.3517 0.1102 0.1822
 0.0212 -0.1271 0.0975
 0.1610 0.0339 -0.0593

The eigenvalues of the square matrix are computed by

>> eig(Z)
ans =
 17.1878
 -2.3534
 -5.8344

Some of the array operators are

+ Addition
– Subtraction
.* Element-by-element multiplication
./ Element-by-element division
.\ Element-by-element left division
.̂  Element-by-element power
.' Unconjugated array transpose

For example,

>> U = [1 2 3]
U =
 1 2 3
>> V = [-1 -2 -3]
V =
 -1 -2 -3
>> U.*V
ans =
 -1 -4 -9

The display of numbers is controlled by the format command. Typical 
commands are

format short
format long

The previous command can be brought back into the command prompt 
using the key ↑.
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A.5 Plotting

If x and y are two vectors then plot(x, y) makes a graph. For example, con-
sider the following example.

>> x = 0:0.01:2*pi;
>> y = cos(x);
>> y1 = sin(x);
>> plot(x,y,'--',x,y1,'r:')
>> xlabel('0 \leq x \leq 2\pi')
>> ylabel('Sine and Cosine functions')
>> legend('cos(x)', 'sin(x)')
>> title('Multiple Plots')

Figure A.2 is displayed on the desktop and can be edited using the figure 
menu.

The following example demonstrates how to make a contour plot (Figure 
A.3).

>> [X,Y] = meshgrid(-2:.01:2,-2:.01:3);
>> Z = X.^2+Y.^2;
>> v=[1;2;3;4;5;6;7;8;9;10;11;12];
>> [c,h] = contour(X,Y,Z,v); clabel(c,h);

Figure A.2
Multiple plots.
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A.6 Programming

The if-else statement can be demonstrated through the following example.

>> for i = 1:6
x = rand(1);
if x<0.5
disp('x is less than 0.5')
else
disp('x is greater than 0.5')
end
end

Note that the first end is the end of the if statement and the second end 
is the end of the for loop. Note that when a semicolon is put at the end of 
a statement, it suppresses printing of the variable. The following output is 
displayed by running the above code.

x is greater than 0.5
x is greater than 0.5
x is less than 0.5
x is greater than 0.5
x is greater than 0.5
x is less than 0.5

Figure A.3
Contour plot.
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A break statement is used for an early exit from a for or while loop.
Instead of running all the commands in the command window, one can 

create a script file with extension.m. For example, type edit test.m on the 
command prompt, resulting in opening of an empty file. Type the following 
contents into that file.

for i = 1:10
x = rand(1);
if x<0.5
disp('x is less than 0.5')
else
disp('x is greater than 0.5')
end
end

and save it. Then execute the script file by typing test in the command prompt. 
The script can also be executed by clicking on ▶ in the editor window.

Functions are also script files with extension.m, but they accept input 
arguments and return output arguments. The function name and file name 
should be the same. For example, a function springsystem.m takes the input 
x and y and returns an output z.

function z = springsystem(x,y)

It is important to note that a function without the arguments cannot be 
executed. For example, simply typing springsystem at the command prompt 
will result in an error. The input/output arguments can have different names 
while calling the function. For example,

k = springsystem(a,b)

is perfectly fine.
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Appendix B: MATLAB® Code

Chapter 1

Code Name Details

graph_examp12.m Solves Example 1.2 using the graphical method
graph_examp14.m Solves Example 1.4 using the graphical method
convexity.m Plots some convex functions
derivative.m Computes and plots first and second derivatives of a function
grad.m Plots the gradient vector
positive_definite.m Checks whether the square matrix is positive definite
quadr.m Linear and quadratic approximations of a function
quadr_examp12.m Linear and quadratic approximations of a function given in Example 1.2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code graph_examp12.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% x1 -> radius of can
% x2 -> height of can
% area -> area of can
% pi -> MATLAB variable
% x,y,z -> array of design points
% vv -> user identified contour values
% cons_x2-> value of x2 when constraint is active
% contour -> MATLAB function to generate contours
% xlabel, ylabel, legend, hold on -> MATLAB functions
%
for x1 = 1:100
    for x2 = 1:200
        area = 2*pi*x1*x2 + 2*pi*x1*x1;
        x(x1,x2) = x1;
        y(x1,x2) = x2;
        z(x1,x2) = area;
    end
end
vv = [15000;26436;50000;70000;200000];
[c, h] = contour(x,y,z,vv); clabel(c, h);
hold on

© 2015 by Taylor & Francis Group, LLC



322 Appendix B

for x1 = 10:100
    cons_x2 = 330000/(pi*x1*x1);
    plot(x1,cons_x2,'*')
    hold on
end
xlabel('x_1, mm')
ylabel('x_2, mm')
legend('Objective Function','Constraint')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code graph_examp14.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% L -> length of rod
% rho -> density of rod material
% d -> diameter of rod
% m -> mass of rod
% I -> moment of inertia
% k -> mass per unit length
% f1 -> frequency
% plot, xlabel, ylabel, legend -> MATLAB function
%
L = 1;
rho = 7800;
E = 2e11;

for d = 0.0:0.001:0.05
mass = (pi/4)*d*d*L*rho;
k = mass/L;
I = (pi/64)*d^4;
f1 = (1/(2*pi))*(3.5156/(L*L))*sqrt((E*I)/k);
plot(d,mass,'+')
hold on
plot(d,f1,'*')
hold on
end
xlabel('d, m')
ylabel('objective function (kg), constraint(Hz)')
legend('Objective Function','Constraint')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code convexity.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% x -> independent variable
% y -> dependent variable
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% plot, xlabel, ylabel, meshgrid -> MATLAB functions
%

    x = meshgrid(-2:0.01:2);
    y = x.^2;
    subplot(2,2,1), plot(x,y)
    xlabel('x')
    ylabel('y')
    hold on
    y = exp(x);
    subplot(2,2,2), plot(x,y)
    xlabel('x')
    ylabel('y')
    hold on
    y = exp(y);
    subplot(2,2,3), plot(x,y)
    xlabel('x')
    ylabel('y')
    hold on
    y = exp(x.^2);
    subplot(2,2,4), plot(x,y)
    xlabel('x')
    ylabel('y')
    hold on
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code derivative.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% delx -> delta-x
% fx -> f(x)
% deriv -> derivative of the function at xd
% sderiv -> second derivative of the function at xdd
% signchange -> change of derivative sign
% locatepoints -> point at which derivative changes sign
% plot, subplot, xlabel, ylabel, hold -> MATLAB functions
%
delx = 0.01;
x=0.1:delx:1.0;
fx = @(x)2*sin(5*x)+3*x.^3-2*x.^2+3*x-5;
subplot(311), plot(x,fx(x),'LineWidth',2)  
hold on
ylabel('f(x)')
grid on
 for i = 2:length(x)-1
     xd(i-1) = x(i);
     deriv(i-1) = (fx(x(i+1))-fx(x(i-1)))/(2*delx);
 end

 subplot(312), plot(xd,deriv,'LineWidth',2)
 grid on
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 hold on
 ylabel('f''(x)')
 signchange = deriv(1:length(deriv)-1).* deriv(2:length(deriv));
 locatepoints = xd(find(signchange<0))
 subplot(311), plot(locatepoints,fx(locatepoints),'r*')
 subplot(312), plot(xd(find(signchange<0)),deriv(find(signchange<0)),'r*')
 for ii = 2:length(xd)-1
 xdd(ii-1) = xd(ii);
 sderiv(ii-1) = (fx(xd(ii+1))+fx(xd(ii-1))-2*fx(xd(ii)))/  
         (delx*delx);
 end
  subplot(313), plot(xdd,sderiv,'LineWidth',2)
 grid on
 hold on
 subplot(313),  plot(xdd(find(signchange<0)),sderiv(find(signchange<0)),'r*')
 xlabel('x')
 ylabel('f''''(x)')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code grad.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% x1 -> radius of can
% x2 -> height of can
% area -> area of can
% pi -> MATLAB variable
% x,y,z -> array of design points
% vv -> user identified contour values
% xit, x2t -> identified point at which gradient required
% contour -> MATLAB function to generate contours
% xlabel, ylabel, legend, plot, hold on -> MATLAB functions
%
clear all
clc
for x1 = 1:100
    for x2 = 1:100
        area = 2*pi*x1*x2 + 2*pi*x1*x1;
        x(x1,x2) = x1;
        y(x1,x2) = x2;
        z(x1,x2) = area;
    end
end
vv = [5000,15000,30000,50000,70000,90000];
[c, h] = contour(x,y,z,vv); clabel(c, h);
hold on
x1t = 25;
x2t = 70.493;
slope = (x2t+2*x1t)/x1t;
i = 1;
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for delx1 = -10:10
    delx2 = -slope*delx1;
    x11(i) = x1t+delx1;
    x22(i) = x2t+delx2;
    i = i+1;
end
plot(x11,x22,'r--')
hold on
i = 1;
for delx1 = -10:10
    delx2 = (1/slope)*delx1;
    x11(i) = x1t+delx1;
    x22(i) = x2t+delx2;
    i = i+1;
end
plot(x11,x22,'b+')
xlabel('x_1, mm')
ylabel('x_2, mm')
legend('Objective Function','Tangent','Gradient')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code positive_definite.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% H -> hessian matrix
% eig, fprintf -> MATLAB function
% eigenvalues -> of the hessian matrix
%
H =  [2 1 1;
      1 2 1;
      0 2 3];
eigenvalues = eig(H);
eigenvalues
if eigenvalues >= 0
    fprintf('The matrix is positive definite\n')
else
    fprintf('The matrix is not positive definite\n')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code quadr.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% x -> independent variable and symbolic variable (later)
% y -> exp(-x)
% syms -> symbolic object (MATLAB function)
% taylor -> MATLAB function
% subs -> symbolic substitution (MATLAB function)
% xlabel, ylabel, legend, plot, hold on -> MATLAB functions
%
x = -2:0.01:2;
y = exp(-x);
plot(x,y)
hold on
% Linear approximation
syms x
f = taylor(exp(-x),2);
x = -2:0.01:2;
z = subs(f);
plot(x,z,'r--')
% Quadratic approximation
syms x
f = taylor(exp(-x),3);
x = -2:0.01:2;
z = subs(f);
plot(x,z,'g--')
legend('exp(-x)','linear','quadratic')
xlabel('x')
ylabel('f(x)')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code quadr_examp12.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% x1 -> radius of can
% x2 -> height of can
% area -> area of can
% pi -> MATLAB variable
% x,y,z -> array of design points
% vv -> user identified contour values
% xit, x2t -> identified point at which gradient required
% contour -> MATLAB function to generate contours
% syms -> symbolic object (MATLAB function)
% subs -> symbolic substitution (MATLAB function)
% gradient -> analytical value
% hessian -> analytical value
% xlabel, ylabel, legend, plot, hold on -> MATLAB functions
%
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clear all
clc
for x1 = 1:200
    for x2 = 1:200
        area = 2*pi*x1*x2 + 2*pi*x1*x1;
        x(x1,x2) = x1;
        y(x1,x2) = x2;
        z(x1,x2) = area;
    end
end
vv = [15000;50000;60000;70000;80000;90000;150000;200000];
[c, h] = contour(x,y,z,vv); clabel(c, h);
hold on
syms x1p x2p
gradient = [2*pi*x2p+4*pi*x1p;2*pi*x1p];
hessian = [4*pi 2*pi; 2*pi 0];
% Linear approximation
x1p = 60;
x2p = 72.629;
gf = subs(gradient);
for delx1 = 1:60
    for delx2 = 1:60
        x1 = x1p + delx1;
        x2 = x2p + delx2;
        area = 2*pi*x1p*x2p + 2*pi*x1p*x1p + gf’*[delx1;delx2]             
 + 0.5*[delx1 delx2]*(hessian*[delx1;delx2]);
        [x1 x2 area]
        xx(delx1,delx2) = x1;
        yy(delx1,delx2) = x2;
        zz(delx1,delx2) = area;
    end
end
vv1 = [50000;60000;70000;80000;90000];
[c, h] = contour(xx,yy,zz,vv1,'rd','LineWidth',3); 
xlabel('x_1, mm')
ylabel('x_2, mm')
legend('Objective Function','Quadratic approx.')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Chapter 2

Code Name Details

exhaustive.m Exhaustive search to locate the minimum of the test problem
bisection.m Bisection method
func.m Objective function to be coded here
newtonraphson.m Newton–Raphson method
secant.m Secant method
cubic.m Cubic polynomial fit
golden.m Golden section method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code exhaustive.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% delta -> step size for search
% T -> independent variable, temperature
% U -> cost function
% uvec -> vector of cost function evaluated at
%         different temperatures
% minu -> minimum of cost function
% min -> MATLAB function
% 
clear all
clc
uvec=[];
delta = 0.01;
for T = 40:delta:90
    U = 204165.5/(330-2*T) + 10400/(T-20);
    uvec = [uvec U];
    plot(T,U)
    hold on
end
xlabel('T');ylabel('U');
[minu,i]= min(uvec);
fprintf('Minimum Cost =  %6.2f\n ',minu)
fprintf('occurs at T =  %6.2f\n ',40+(i-1)*delta)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code bisection.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable
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% alpha -> midpoint of a and b
% delx -> ?x for central difference method
% derivative -> derivative using central difference method
% derivative_alpha -> derivative at x = alpha
% abs -> absolute of a number, MATLAB function
% 
clear all
clc
a = 40;
b = 90;
epsilon = 0.01;
delx = 0.01;
fprintf('    a             b     \n')
fprintf('-------------------------\n')
for i= 1:100
 fprintf(' %7.3f      %8.3f \n',a,b)
 alpha = (a+b)/2;
 derivative = (func(a+delx) - func(a-delx) )/(2*delx);
 derivative_alpha = (func(alpha+delx)- func(alpha-delx))/  
 (2*delx);
if (derivative*derivative_alpha) < 0
 b = alpha;
else
 a = alpha;
end
if abs(a-b) < epsilon
 break;
end
end
fprintf('-------------------------\n')
fprintf('x* =  %7.3f       Minimum =   %8.3f\n',a,func(a))
fprintf('Number of function calls =     %3d\n',4*i)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% x -> input variable to the function
% fx -> output from the function
%
function fx = func(x)
    fx = 204165.5/(330-2*x) + 10400/(x-20);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code newtonraphson.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% x -> initial guess of design variable
% delx -> ?x for central difference method
% derivative -> derivative using central difference method
% sec_derivative -> second derivative
% epsilon -> constant used to terminate the program
% xprev -> value of x stored from previous iteration
%
clear all
clc
x = 45;
delx = 0.01;
epsilon = 0.01;
fprintf('     x    f(x)      Deriv. Second deriv.\n')
fprintf('-----------------------------------------\n')
for i = 1:100
 derivative = (func(x+delx) - func(x-delx))/(2*delx);
 sec_derivative =(func(x+delx)+func(x-delx)-2*func(x))/  
 (delx*delx);
fprintf('%8.3f %8.3f %8.3f %8.3f\n',x,func(x),derivative,  
 sec_derivative)
 xprev = x;
 x = x- derivative/sec_derivative;
 if abs(x-xprev) < epsilon
    break;
 end
end
fprintf('-----------------------------------------\n')
fprintf('Number of function calls =     %3d\n',5*i)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code secant.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable
% alpha -> midpoint of a and b
% delx -> ?x for central difference method
% derivative -> derivative using central difference method
% derivative_alpha -> derivative at x = alpha
% abs -> absolute of a number, MATLAB function
% flag -> set the flag when minimum is bracketed
%
clear all
clc
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a = 40;
b = 90;
epsilon = 0.001;
delx = 0.01;
flag = 0;
fprintf('  Alpha          Deriv.  \n')
fprintf('-------------------------\n')
for i = 1:100
 alpha = (a+b)/2;
 derivative = (func(a+delx) - func(a-delx))/(2*delx);
derivative_alpha = (func(alpha+delx)-func(alpha-delx))/  
 (2*delx);
 if (derivative*derivative_alpha) < 0
    b = alpha;
    flag = 1;
 else
    a = alpha;
 end
 if flag == 1
    break;
 end
end
 for  j = 1:100
 fprintf(' %7.3f      %8.3f \n',alpha,derivative_alpha)
 derivative_a = (func(a+delx) - func(a-delx))/(2*delx);
 derivative_b = (func(b+delx) - func(b-delx))/(2*delx);
 alpha = b - derivative_b*(b-a)/(derivative_b-derivative_a);
 derivative_alpha = (func(alpha+delx) - func(alpha-delx))/  
 (2*delx);
 if derivative_alpha > 0
    b = alpha;
 else
    a = alpha;
 end
 if abs(derivative_alpha) < epsilon
    break;
 end
end
fprintf('-------------------------\n')
fprintf('x* =  %7.3f       Minimum = %8.3f\n',alpha,func(alpha))
fprintf('Number of function calls =     %3d\n',4*i+6*j)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code cubic.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable
% alpha -> midpoint of a and b
% delx -> ?x for central difference method
% derivative -> derivative using central difference method
% derivative_alpha -> derivative at x = alpha
% abs -> absolute of a number, MATLAB function
% flag -> set the flag when minimum is bracketed
% derivative_a -> derivative at point a
% derivative_b -> derivative at b
% 
a = 40;
b = 90;
delx = 0.01;
flag = 0;
epsilon= 0.001;
fprintf('    a             b     \n')
fprintf('-------------------------\n')
for i = 1:100
 alpha = (a+b)/2;
 derivative = (func(a+delx) - func(a-delx))/(2*delx);
 derivative_alpha = (func(alpha+delx)-func(alpha-delx))/  
 (2*delx);
if (derivative*derivative_alpha) < 0
    b = alpha;
    flag = 1;
 else
    a = alpha;
 end
 if flag == 1
    break;
 end
end
for j = 1:100
 fprintf(' %7.3f      %8.3f \n',a,b)
 derivative_a = (func(a+delx) - func(a-delx))/(2*delx);
 derivative_b = (func(b+delx) - func(b-delx))/(2*delx);
 z = 3*(func(a)-func(b))/(b-a) + derivative_a + derivative_b;
 w = ((b-a)/abs(b-a))*sqrt(z*z-derivative_a*derivative_b);
 mew = (derivative_b+w-z)/(derivative_b-derivative_a+2*w);
if mew <= 1
    x_opt = b - mew*(b-a);
 else
    x_opt = a;
 end
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 alpha1 = (func(x_opt+delx) - func(x_opt-delx) )/(2*delx);
 if abs(alpha1) < epsilon
   break;
 else
   if (derivative_a*alpha1) < 0
   b = x_opt;
 else
   a = x_opt;
 end 
end
end
fprintf('-------------------------\n')
fprintf('x* =  %7.3f       Minimum =   %8.3f\n',x_opt,func
   (x_opt))
fprintf('Number of function calls =     %3d\n',4*i+8*j)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code golden.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable
% alpha -> midpoint of a and b
% falpha1 -> function value at x = alpha1
% falpha2 -> function value at x = alpha2
% epsilon -> constant used to terminate the algorithm
% abs -> absolute of a number, MATLAB function
% tau -> 2-golden number
% 
clear all
clc
a = 40;
b = 90;
epsilon = 0.00001;
tau = 0.381967;
alpha1 = a*(1-tau) + b*tau;
alpha2 = a*tau + b*(1-tau);
falpha1 = func(alpha1);
falpha2 = func(alpha2);
fprintf('    a             b     \n')
fprintf('-------------------------\n')
for i = 1:100
    fprintf(' %7.3f      %8.3f \n',a,b)
    if falpha1 > falpha2
        a = alpha1;
        alpha1 = alpha2;
        falpha1 = falpha2;
        alpha2 = tau*a + (1-tau)*b;
        falpha2 = func(alpha2);
    else
        b = alpha2;
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        alpha2 = alpha1;
        falpha2 = falpha1;
        alpha1 = tau*b + (1-tau)*a;
        falpha1 = func(alpha1);
    end
if abs(func(alpha1)-func(alpha2)) < epsilon
    break;
end
end
fprintf('-------------------------\n')
fprintf('x* =  %7.3f       Minimum =   %8.3f\n',alpha1,func(alpha1))
fprintf('Number of function calls =     %3d\n',2+i)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% objective function to be coded here
% different test functions
%
function fx = func(x)
%    fx = 204165.5/(330-2*x) + 10400/(x-20);
%    fx = 3*x^4+(x-1)^2;
%    fx = -4*x*sin(x);
%    fx = 2*(x-3)^2+exp(0.5*x*x);
     fx = 3*(x)^2+12/(x^3)-5;
%    fx = 2*x*x+16/x;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Chapter 3

Code Name Details

golden_funct1.m Golden section method for a multivariable function
func_multivar.m Objective function to be coded here
rosenbrock.m Plot of Rosenbrock function
springsystem.m Finds minimum of the spring system problem
steep_des.m Steepest descent method
grad_vec.m Gradient vector computation
contour_testproblem.m Plots contour of the test problem function
newton.m Newton’s method
hessian.m Computes Hessian matrix
modified_newton.m Modified Newton’s method
levenbergmarquardt.m Levenberg–Marquardt’s method
conjugate.m Conjugate gradient method
DFP.m Davidon–Fletcher–Powell (DFP) method
BFGS.m Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
powell.m Powell’s conjugate direction method
neldermead.m Nelder–Mead algorithm
\Robotics\ Directory containing codes for problems in robotics

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code golden_funct1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% a -> lower bound of the design variable
% b -> upper bound of the design variable
% falpha1 -> function value at x = alpha1
% falpha2 -> function value at x = alpha2
% epsilon -> constant used to terminate the algorithm
% abs -> absolute of a number, MATLAB function
% tau -> 2-golden number
% func_multivar -> returns the value of a multivariable   
% function
% 
function [alpha1,falpha1] = golden_funct1(x,search)
a = -5;
b = 5;
tau = 0.381967;
epsilon = 1e-5;
alpha1 = a*(1-tau) + b*tau;
alpha2 = a*tau + b*(1-tau);
falpha1 = func_multivar(x+alpha1*search);
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falpha2 = func_multivar(x+alpha2*search);
for i= 1:1000
  if falpha1 > falpha2
        a = alpha1;
        alpha1 = alpha2;
        falpha1 = falpha2;
        alpha2 = tau*a + (1-tau)*b;
        falpha2 = func_multivar(x+alpha2*search);
   else
        b = alpha2;
        alpha2 = alpha1;
        falpha2 = falpha1;
        alpha1 = tau*b + (1-tau)*a;
        falpha1 = func_multivar(x+alpha1*search);
   end
     if abs(func_multivar(x+alpha1*search)-    
     func_multivar(x+alpha2*search)) < epsilon
     break;
     end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func_multivar.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function fx = func_multivar(x)
   fx = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code rosenbrock.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% plots the Rosenbrock’s function
%
clear all
clc
[x1,x2] = meshgrid(-2:.03:2,-2:.03:2);
z = 100*(x2-x1.^2).^2+(1-x1).^2
surf(x1,x2,z)
shading interp
view (170,20)
xlabel('x1')
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ylabel('x2')
zlabel('f(x1,x2)')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code springsystem.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
clear all
clc
zprev = inf;
i = 0;
j = 0;
for x = -1:0.01:1
    i = i+1;
     for y = -1:0.01:1
         j = j+1;
         z = 100*(sqrt(x^2+(y+1)^2)-1)^2 + 90*(sqrt(x^2+(y-                                       
   1)^2)-1)^2 -(20*x+40*y);
     if z < zprev
         zprev = z;
         xbest = x;
         ybest = y;  
     end
     end
end
fprintf('Minimum Potential =  %7.4f\n ',zprev)
fprintf('occurs at x1,x2 =  %10.4f %10.4f\n',xbest,ybest)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code steep_des.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1,epsilon2 -> constants used for terminating the      
% algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% search -> search direction (set to negative of gradient)
%
clear all
clc
n_of_var = 2;
x = [-3 2];
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epsilon1 = 1e-6;
epsilon2 = 1e-6;
delx = 1e-3;
falpha_prev = func_multivar(x);
fprintf('Initial function value =  %7.4f\n ',falpha_prev)
fprintf(' No.       x-vector      f(x)      Deriv \n')
fprintf('__________________________________________\n')
for i = 1:3000
deriv = grad_vec(x,delx,n_of_var);
search = -deriv;
[alpha,falpha] = golden_funct1(x,search);
if abs(falpha-falpha_prev)<epsilon1 || norm(deriv)<epsilon2
    break;
end
falpha_prev = falpha;
x = x + alpha*search;
fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f      
 \n',i,x,falpha,norm(deriv))
end
fprintf('__________________________________________\n')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code grad_vec.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% compute gradient vector using central difference method
% xvec, xvec1 -> vector of design variables
% deriv(i) -> derivative w.r.t. ith variable 
%
function deriv = grad_vec(x,delx,n_of_var)
xvec = x;
xvec1 = x;
for i = 1:length(x)
    xvec = x;
    xvec1 = x;
    xvec(i) = x(i) + delx;
    xvec1(i) = x(i) - delx;
deriv(i) = (func_multivar(xvec) - func_multivar(xvec1))/  
 (2*delx);
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code contour_testproblem.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% plots contour of the test problem
% surfc -> Matlab function
clear all
clc
i = 0;
j = 0;
for x = -5:.02:5
    i = i+1;
     for y = -5:.02:5
       j = j+1;
 z(i,j) = 100*(sqrt(x^2+(y+1)^2)-1)^2 + 90*(sqrt(x^2+   
    (y - 1)^2)-1 )^2 -(20*x+40*y);
        t1(i,j) = x;
        t2(i,j) = y;
     end
     j = 0;
end
surfc(t1,t2,z)
shading interp
xlabel('x1')
ylabel('x2')
zlabel('f(x1,x2)')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code newton.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
%                       the algorithm
% delx -> required for gradient computation
% f_prev -> function value at first/previous iteration
% deriv -> gradient vector
% sec_deriv -> hessian matrix
%
clear all
clc
n_of_var = 2;
x = [-3 2];
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;
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f_prev = func_multivar(x);
fprintf('Initial function value =  %7.4f\n',f_prev)
fprintf('No.       x-vector      f(x)      Deriv \n')
fprintf('__________________________________________\n')
for i = 1:50
    f_prev = func_multivar(x);
    deriv = grad_vec(x,delx,n_of_var);
    sec_deriv = hessian(x,delx,n_of_var);
     x = (x' - inv(sec_deriv)*deriv')';
     f = func_multivar(x);
      if abs(f-f_prev)<epsilon1 || norm(deriv)<epsilon2
        break;
      end
 fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f     
 \n',i,x,f,norm(deriv))
end
fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f  \n',i,x,f,norm(deriv))
fprintf('__________________________________________\n')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code hessian.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%compute hessian matrix
% sec_deriv -> second derivative matrix
% func_multivar() -> multivariable function
% temp -> temporary variable
% Note that n_of_var = length(x)
%
function sec_deriv = hessian(x,delx,n_of_var)
for i = 1:length(x)
  for j = 1:length(x)
 if i == j
 temp = x;
 temp(i) = x(i) + delx;
 term1 = func_multivar(temp);
 temp(i) = x(i) - delx;
 term2 = func_multivar(temp);
 term3 = func_multivar(x);
 sec_deriv(i,j) = (term1-2*term3+term2)/(delx^2);
 else
 temp = x;
 temp(i) = x(i) + delx;
 temp(j) = x(j) + delx;
 term1 = func_multivar(temp);
 temp = x;
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 temp(i) = x(i) + delx;
 temp(j) = x(j) - delx;
 term2 = func_multivar(temp);
 temp = x;
 temp(i) = x(i) - delx;
 temp(j) = x(j) + delx;
 term3 = func_multivar(temp);
 temp = x;
 temp(i) = x(i) - delx;
 temp(j) = x(j) - delx;
 term4 = func_multivar(temp);
 sec_deriv(i,j) = (term1-term2-term3+term4)/(4*delx^2);
  end
    end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code modified_newton.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
%                       the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% sec_deriv -> hessian matrix
% search -> search direction (vector)
clear all
clc
n_of_var = 2;
x = [-3 2];
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;
f_prev = func_multivar(x);
fprintf('Initial function value =  %7.4f\n ',f_prev)
fprintf('No.       x-vector      f(x)      Deriv \n')
fprintf('__________________________________________\n')
for i = 1:20
    falpha_prev = func_multivar(x);
    deriv = grad_vec(x,delx,n_of_var);
    sec_deriv = hessian(x,delx,n_of_var);
    search = -inv(sec_deriv)*deriv';
    [alpha,falpha] = golden_funct1(x,search');
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     if abs(falpha-falpha_prev)<epsilon1 ||     
 norm(deriv)<epsilon2
    break;
    end
    falpha_prev = falpha;
    x = x + alpha*search';
    f = func_multivar(x);
    fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f       
 \n',i,x,falpha,norm(deriv))
end
fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f      
    \n',i,x,falpha,norm(deriv))
fprintf('__________________________________________\n')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code levenbergmarquardt.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% lambda -> initially set to a large value
% epsilon1, epsilon2 -> constant used for terminating
%                       the algorithm
% delx -> required for gradient computation
% f_prev -> function value at first/previous iteration
% deriv -> gradient vector
% sec_deriv -> hessian matrix
% search -> search direction (vector)
%
clear all
clc
n_of_var = 2;
x = [-3 2];
lambda = 1e3;
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;
f_prev = func_multivar(x);
fprintf('Initial function value =  %7.4f\n ',f_prev)
fprintf(' No.       x-vector      f(x)      Deriv \n')
fprintf('__________________________________________\n')
for i = 1:100
    f_prev = func_multivar(x);
    deriv = grad_vec(x,delx,n_of_var);
    sec_deriv = hessian(x,delx,n_of_var);
    search = -inv(sec_deriv+lambda*eye(length(x)))*deriv';
    x = x + search';
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    f = func_multivar(x);
 if f < f_prev
        lambda = lambda/2;
 else
        lambda = 2*lambda;
 end
 if abs(f-f_prev)<epsilon1 || norm(deriv)<epsilon2
        break;
       end
       fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f           
 \n',i,x,f,norm(deriv))
end
fprintf('__________________________________________\n')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code conjugate.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
%                       the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% search -> search direction (vector)
%
clear all
clc
n_of_var = 2;
x = [-3 2];
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;
falpha_prev = func_multivar(x);
fprintf('Initial function value =  %7.4f\n ',falpha_prev)
fprintf('No.       x-vector      f(x)      Deriv \n')
fprintf('__________________________________________\n')
for i = 1:300
       if i==1
        deriv_prev = grad_vec(x,delx,n_of_var);
        search_prev = -deriv_prev;
        [alpha,falpha] = golden_funct1(x,search_prev);
   if norm(deriv_prev)<epsilon2
 break;
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 end
          x = x + alpha*search_prev;
          falpha_prev = func_multivar(x);
      else
          deriv = grad_vec(x,delx,n_of_var);
        search = -deriv +
 ((norm(deriv)^2)/(norm(deriv_prev)^2))*search_prev;
          [alpha,falpha] = golden_funct1(x,search);
            if abs(falpha-falpha_prev)<epsilon1 ||   
 norm(deriv)<epsilon2
 break;
 end
          deriv_prev = deriv;
          search_prev = search;
          x = x + alpha*search;
          falpha_prev = func_multivar(x);
      end
     fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f      
 \n',i,x,falpha,norm(deriv_prev))
end
fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f      
\n',i,x,falpha,norm(deriv))
fprintf('__________________________________________\n')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code DFP.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
%                       the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% deltag -> difference in gradient vector (over previous   
 iteration)
% A -> approximation of inverse of the hessian matrix
% search -> search direction
%
clear all
clc
n_of_var = 2;
x = [-3 2];
A = eye(length(x));
epsilon1 = 1e-7;
epsilon2 = 1e-7;
delx = 1e-3;
falpha_prev = func_multivar(x);
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fprintf('Initial function value =  %7.4f\n ',falpha_prev)
fprintf(' No.       x-vector      f(x)      Deriv \n')
fprintf('__________________________________________\n')
for i = 1:100
    if i==1
    deriv_prev = grad_vec(x,delx,n_of_var);
    search = -deriv_prev;
    [alpha,falpha] = golden_funct1(x,search);
    if abs(falpha-falpha_prev)<epsilon1
    break;
    end
    falpha_prev = falpha;
    x = x + alpha*search;
    fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f  \n',i,x,falpha_ 
 prev,norm(deriv_prev))
    else
        deltax = (alpha*search);
        if i>2
            deltax = deltax';
        end
        deriv = grad_vec(x,delx,n_of_var);
        deltag = deriv-deriv_prev;
        term1 = (deltax'*deltax)/(deltax*deltag');
        term2 = (A*deltag'*deltag*A)/(deltag*A*deltag');
        A = A + term1 - term2;
        search = -A*deriv';
        [alpha,falpha] = golden_funct1(x,search’);
        fprintf('%3d %8.3f %8.3f  % 8.3f  %8.3f  \n',i,x+alpha 
  *search',falpha,norm(deriv))
        if abs(falpha-falpha_prev)<epsilon1 ||    
  norm(deriv)<epsilon2
         break;
        end
        falpha_prev = falpha;
        deriv_prev = deriv;
        x = x+alpha*search';
    end
    end
fprintf('__________________________________________\n')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code BFGS.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating the   
% algorithm
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% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% deltag -> difference in gradient vector (over previous  
% iteration)
% A -> approximation of the hessian matrix
% search -> search direction
%
clear all
clc
n_of_var = 2;
x = [-3 2];
delx = 0.001;
A = eye(length(x));
epsilon1 = 1e-6;
epsilon2 = 1e-6;
delx = 1e-3;
falpha_prev = func_multivar(x);
fprintf('Initial function value =  %7.4f\n ',falpha_prev)
fprintf(' No.       x-vector      f(x)      Deriv \n')
fprintf('__________________________________________\n')
for i = 1:50
    if i==1
    deriv_prev = grad_vec(x,delx,n_of_var);
    search = -deriv_prev;
    [alpha,falpha] = golden_funct1(x,search);
    if abs(falpha-falpha_prev)<0.001
    break;
    end
    falpha_prev = falpha;
    x = x + alpha*search;
    fpri ntf('%3d %8.3f %8.3f  % 8.3f  %8.3f  \n',i,x,falpha_

prev,norm(deriv_prev))
    else
        deltax = (alpha*search);
        if i>2
            deltax = deltax';
            search = search';
        end
        deriv = grad_vec(x,delx,n_of_var);
        deltag = deriv-deriv_prev;
        term1 = (deltag'*deltag)/(deltag*deltax');
        term2 = (deriv_prev'*deriv_prev)/(deriv_prev*search');
        A = A + term1 + term2;
        search = -inv(A)*deriv';
        [alpha,falpha] = golden_funct1(x,search');
fpri ntf('%3d %8.3f %8.3f  % 8.3f  %8.3f  \n',i,x+alpha*search', 

falpha,norm(deriv))
        if ab s(falpha-falpha_prev)<epsilon1 || 

norm(deriv)<epsilon2
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         break;
        end
        falpha_prev = falpha;
        deriv_prev = deriv;
        x = x+alpha*search';
      end
end
fprintf('__________________________________________\n')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code powell.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% n_of_var -> number of design variables
% x = [-3 2] -> starting value of x
% epsilon -> constant used for terminating the algorithm
% term -> linearly independent search directions
% falpha_prev -> function value at first/previous iteration
% search -> search direction
%
clear all
clc
n_of_var = 2;
x = [-3 2];
epsilon = 1e-6;
falpha_prev = func_multivar(x);
fprintf('Initial function value =  %7.4f\n ',falpha_prev)
fprintf(' No.       x-vector      f(x)   \n')
fprintf('__________________________________________\n')
for i = 1:n_of_var
    for j = 1:n_of_var+1
        if (i==j)
            term(i,j)=1;
        else
            term(i,j) = 0;
        end
    end
end
for i = 1: n_of_var
    search{i} = (term(:,i))';
    [alpha,falpha] = golden_funct1(x,search{i});
    x = x + alpha*search{i};
end
search{i+1} = (term(:,i+1))';
for k = 1:200
    xini = x;
    i = 1;
    while i<n_of_var+1
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        [alpha,falpha] = golden_funct1(x,search{i});
         x = x + alpha*search{i};
         i = i+1;
    end
        if abs(falpha-falpha_prev) < epsilon
            break;
        end
    search{i} = (x-xini);
    [alpha,falpha] = golden_funct1(x,search{i});
    x = x + alpha*search{i};
    temp = search;
    for i = 1:n_of_var
    search{i} = temp{i+1};
    end
    falpha_prev = falpha;
    fprintf('%3d %8.3f %8.3f  % 8.3f  \n',k,x,falpha)
end
fprintf('__________________________________________\n')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code neldermead.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% n_of_var -> number of design variables
% lb, ub -> lower/upper bound of variable
% (optional for generating initial feasible points randomly)
%  ybest -> best value of the objective function in the iteration
% ysecondbest -> second best value of the objective function
% yworst -> worst value of the objective function in the  
% iteration
% xworst -> corresponding value of the variable for yworst
% xc -> centroid of the polygon
% fcentroid -> function value at xc
% deviation -> sum square deviation of function values from  
% centroid
% xr => reflected point
% freflec => function value at reflected point
% xe => expanded point
% fexp => function value at expanded point
% xcont => contracted point
% fcont => function value at contracted point
%
clear all
clc
n_of_var = 2;
epsilon = 1e-4;
alpha = 1;
gamma = 2;
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rho = -0.5;
lb = [-1 -1];
ub = [1 1];
fprintf(' Iteration   Deviation        f(x)   \n')
fprintf('__________________________________________\n')
for JJ = 1:50
for i = 1:length(lb)
    for j = 1:n_of_var+1
        a(i,j) = lb(i) + (ub(i)-lb(i))*rand;
    end
end
if JJ~=1
    a = x';
end
for i = 1:n_of_var+1
    for j = 1:n_of_var
        x(i,j) = a(j,i);
    end
    fval(i) = func_multivar(x(i,:));
end
[yworst,I] = max(fval);
[ybest,II] = min(fval);
% compute centroid
for i = 1:length(lb)
    sum(i) = 0;
    for j = 1:n_of_var+1
        if (j ~= I)
        sum(i) = sum(i) + a(i,j);
        else
            xworst(:,i) = a(i,j);
        end
    end
end
xc = sum./n_of_var;
fcentroid = func_multivar(xc);
sum1 = 0;
for i = 1:n_of_var+1
    sum1 = sum1 + (fcentroid-fval(i))^2;
end
deviation = sqrt(sum1/(n_of_var+1));
    if deviation < epsilon
        break;
    end
fval(I) = [];
[ysecondworst,Isw] = max(fval);
xr = xc + alpha*(xc-xworst);
freflec = func_multivar(xr);
if freflec < ybest

    %expansion
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    xe = xc + gamma*(xc-xworst);
    fexp = func_multivar(xe);
    if fexp < freflec
        x(I,:) = xe;
    else
        x(I,:) = xr;
    end
else
   if freflec < ysecondworst
       x(I,:) = xr;
   else
    xcont = xc + rho*(xc-xworst);
    fcont = func_multivar(xcont);
    if fcont < yworst
        x(I,:) = xcont;
    end
   end
end
fprintf('%3d %15.4f %15.3f    \n',JJ,deviation,ybest)
end
fprintf('__________________________________________\n')
xc
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code robotics_nominal_traj.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Generates nominal trajectory for the robotics arm problem
clear all
clc
% generate 100 points in t
t = -pi:.063:pi
px = 30*cos(t);
py = 100*sin(t);
pz = 10*t + 66.04;
plot3(px,py,pz,'b-','LineWidth',3)
xlabel('px')
ylabel('py')
zlabel('pz')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code robotics_optimized_traj.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Generates optimized trajectory for the robotics arm problem
function [] =  generate_optimized_traj(x)
d1 = 66.04;
d3 = 14.91;
d4 = 43.31;
a2 = 43.18;
a3 = 2.03;
for i = 1:100
t = -pi + (i-1)*0.063; 
theta1 = x(i);
theta2 = x(i+100);
theta3 = x(i+200);
c1 = cos(theta1);
c2 = cos(theta2);
s1 = sin(theta1);
s2 = sin(theta2);
c23 = cos(theta2+theta3);
s23 = sin(theta2+theta3);
f1(i) = c1*(a2*c2 + a3*c23 - d4*s23) - d3*s1;
f2(i) = s1*(a2*c2 + a3*c23 - d4*s23) + d3*c1;
f3(i) = d1 - a2*s2 - a3*s23 -d4*c23;
end
 plot3(f1,f2,f3,'r*')
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Chapter 4

Code Name Details

simplex.m Simplex method
initial_cost.m Computes cost coefficients for the nonbasic variables
phase1.m Phase I of the simplex method
remove_variable.m Removes user specified column from the nonbasic set
phase1_without_initialization.m Phase I of the simplex method without initializing A 

matrix and b vector.
dual.m Dual simplex method
interior.m Affine scaling method
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code simplex.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [3 1 1 0 0;
     1 2 0 1 0;
     1 0 0 0 1];
b = [10;8;3];
c = [-6;-7;0;0;0];
 basic_set = [3 4 5];
 nonbasic_set = [1 2];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
fprintf('\n ________________________________________\n')
basic_set
nonbasic_set
Initial_Table = [B N b_cap]
Cost =[cb cn_cap -zz1]
for i = 1:3
      [minvalue entering_basic_variable] = min(cn_cap);
ente ring_column = inv(B)*A(:,nonbasic_set(entering_basic_

variable));
ratios = b_cap'./entering_column';
[min_ratio leaving_basic_variable] = min(ratios);
while min_ratio<0
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    ratios(leaving_basic_variable) = inf;
    [min_ratio leaving_basic_variable] = min(ratios);
end
temp_basic_set = basic_set;
temp_nonbasic_set = nonbasic_set;
temp_cb = cb;
temp_cn = cn;
basi c_set(leaving_basic_variable) = temp_nonbasic_

set(entering_basic_variable);
nonb asic_set(entering_basic_variable) = temp_basic_

set(leaving_basic_variable);
cb(leaving_basic_variable) = temp_cn(entering_basic_variable);
cn(entering_basic_variable) = temp_cb(leaving_basic_variable);
aa(nonbasic_set) = cn;
cn = aa(sort(nonbasic_set));
nonbasic_set = sort(nonbasic_set);
for ii = 1:length(basic_set)
    B(:,ii) = A(:,basic_set(ii));
end
for ii = 1:length(nonbasic_set)
    N(:,ii) = A(:,nonbasic_set(ii));
end
xb = inv(B)*b;
y = cb*inv(B);
cn_cap = cn-y*N;
b_cap = xb;
zz = zz1+cb*xb;
fprintf('\n ________________________________________\n')
basic_set
nonbasic_set
Table = [eye(length(B)) inv(B)*N  b_cap]
Cost = [cb_ini cn_cap -zz]
if cn_cap >= 0
     break;
 end
end
fprintf('\n ------SOLUTION------\n')
basic_set
xb
zz
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code initial_cost.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
cb = [0 1 1];
cn = [0 0 0];
N = [3 2 0;
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    2 -4 -1;
    3 4 0];
B = [0 1 0;0 0 1;1 0 0];
y = cb*inv(B);
cn_cap = cn-y*N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code phase1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The matrix A and b corresponds to Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [3  2  0 0 1 0;
     2 -4 -1 0 0 1;
     3  4  0 1 0 0];
b = [10;3;16];
c = [-5;2;1;0;0;0];
basic_set = [5 6 4];
nonbasic_set = [1 2 3];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 91/8;
fprintf('\n ________________________________________\n')
basic_set
nonbasic_set
Initial_Table = [B N b_cap]
Cost = [cb cn_cap -zz1]
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for i = 1:1
      [minvalue entering_basic_variable] = min(cn_cap);
ente ring_column = inv(B)*A(:,nonbasic_set(entering_basic_

variable));
ratios = b_cap'./entering_column';
[min_ratio leaving_basic_variable] = min(ratios);
while min_ratio<0
    ratios(leaving_basic_variable) = inf;
    [min_ratio leaving_basic_variable] = min(ratios);
end
temp_basic_set = basic_set;
temp_nonbasic_set = nonbasic_set;
temp_cb = cb;
temp_cn = cn;
basic _set(leaving_basic_variable) = temp_nonbasic_

set(entering_basic_variable);
nonba sic_set(entering_basic_variable) = temp_basic_

set(leaving_basic_variable);
cb(leaving_basic_variable) = temp_cn(entering_basic_variable);
cn(entering_basic_variable) = temp_cb(leaving_basic_variable);
aa(nonbasic_set) = cn;
cn = aa(sort(nonbasic_set));
nonbasic_set = sort(nonbasic_set);
for ii = 1:length(basic_set)
    B(:,ii) = A(:,basic_set(ii));
end
for ii = 1:length(nonbasic_set)
    N(:,ii) = A(:,nonbasic_set(ii));
end
xb = inv(B)*b;
y = cb*inv(B);
cn_cap = cn-y*N;
b_cap = xb;
zz = zz1+cb*xb;
fprintf('\n ________________________________________\n')
basic_set
nonbasic_set
Table = [eye(length(B)) inv(B)*N  b_cap]
Cost = [cb_ini cn_cap -zz]
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code remove_variable.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This program removes user specified column from 
% the nonbasic set
%
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remove_column = 3;
nonbasic_set(remove_column) = [];
N(:,remove_column) = [];
cn(remove_column) = [];
cn_cap = cn-y*N;
fprintf('\n ----Table after removing artificial
 variable------\n')
basic_set
nonbasic_set
Initial_Table = [eye(length(B)) inv(B)*N  b_cap]
Cost = [cb_ini cn_cap -zz]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code dual.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> set of nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [-1  0  1 0 0 0;
      0  -1 0 1 0 0;
     -2  -1 0 0 1 0;
     -1  -3 0 0 0 1];
b = [-3;-4;-25;-26];
c = [9; 8; 0; 0; 0;0];
basic_set = [3 4 5 6];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end

cn_cap = cn;
cb_ini = cb;
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b_cap = b;
zz = 0;
fprintf('\n ________________________________________\n')
basic_set
nonbasic_set
Initial_Table = [B N b_cap]
Cost = [cb cn_cap zz]
for i = 1:4
      [minvalue leaving_basic_variable] = min(b_cap);
       mat1 = inv(B)*N;
entering_row = mat1(leaving_basic_variable,:);
ratios = -1*(cn_cap'./entering_row');
[min_ratio entering_basic_variable] = min(ratios);
while min_ratio<0
    ratios(entering_basic_variable) = inf;
    [min_ratio entering_basic_variable] = min(ratios);
end
temp_basic_set = basic_set;
temp_nonbasic_set = nonbasic_set;
temp_cb = cb;
temp_cn = cn;
basi c_set(leaving_basic_variable) = temp_nonbasic_

set(entering_basic_variable);
nonb asic_set(entering_basic_variable) = temp_basic_

set(leaving_basic_variable);
  cb( leaving_basic_variable) = temp_cn(entering_basic_

variable);
  cn( entering_basic_variable) = temp_cb(leaving_basic_

variable);
 aa(nonbasic_set) = cn;
 cn = aa(sort(nonbasic_set));
nonbasic_set = sort(nonbasic_set);
for ii = 1:length(basic_set)
    B(:,ii) = A(:,basic_set(ii));
end
for ii = 1:length(nonbasic_set)
    N(:,ii) = A(:,nonbasic_set(ii));
end
xb = inv(B)*b;
y = cb*inv(B);
cn_cap = cn-y*N;
b_cap = xb;
zz = cb*xb;
fprintf('\n ________________________________________\n')
basic_set
nonbasic_set
Table = [eye(length(B)) inv(B)*N  b_cap]
Cost = [cb_ini cn_cap -zz]
if b_cap >= 0
     break;
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end
end
fprintf('\n ------FINAL SOLUTION------\n')
basic_set
xb
zz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code interior.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Affine scaling method
%
clear all
clc
A = [3 1;
     1 2;
     1 0];
b = [10;8;3];
c = [6;7];
x = [0;0];
obj_prev = c’*x;
gamma = 0.9;
tolerance = 1e-5;
for i = 1:10
     vk = b-A*x;
     dv = diag(vk);
     hx = inv(A'*dv^-2*A)*c;
     hv = -A*hx;
     for j = 1:length(hv)
         if hv(j)<0
            var(j) = -vk(j)/hv(j);
         else
             var(j) = inf;
         end
     end
     alpha = gamma*min(var);
     x = x + alpha*hx;
     objective = c’*x;
     if abs(objective-obj_prev)<tolerance
         break;
     end
     obj_prev = objective;
end
objective
x
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Chapter 5

Code Name Details

prob.m Genetic algorithm (GA; main program)
in.m Inputs to GA
roulett.m Roulette wheel selection
tournament.m Tournament selection
func.m Test function to be included here (for GA)
simann.m Simulated annealing
func1.m Objective function to be included here (for PSO and simulated 

annealing)
pso.m Particle swarm optimization (PSO)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name prob.m
%   Genetic algorithm -  main program
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
clear all
clc
format long g;
% Read the input file
in;
% INITIALIZATION OF STRINGS
string = 0;
for i = 1:n_of_v
string = string+n_of_bits(i);
end
for j = 1:n_of_p
    for i = 1:string
    r(j,i) = rand;
        if r(j,i)< 0.5
        r(j,i) = 0;
        else 
        r(j,i) = 1;
        end
    end
end
% MAIN LOOP
for g = 1:n_of_g
% Decoded value of r (with left bit as MSB)
deci = cell(n_of_v,1);
decoded = cell(n_of_v,1);
dum1 = 1;
dummy = n_of_bits(1);
for i = 1:n_of_v
deci{i} = bi2de(r(:,dum1:dummy),'left-msb');
dum1 = dum1+n_of_bits(i);
while dummy<string
dummy = dummy+n_of_bits(i+1);
end
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% NORMALIZE TO THE VARIABLE RANGE 
x1(:,i) = deci{i};
decoded{i} = range(i,1)+((range(i,2)-range(i,1))/(2^n_of_bits(i)-  
 1))*x1(:,i);
xxx(:,i) = decoded{i};
end
% FUNCTION EVALUATION 
for i = 1:n_of_p
[fitness1(i),constraint(i,:)] = func(xxx(i,:));
end
fitness = fitness1';
for hh = 1:length(fitness)
    if fitness(hh) < 0
        flag1 = 1;
    end
end
if flag1 == 1
    [factor,indices] = min(fitness);
    fitness1 = -factor+fitness;
end
% CALLING ROULETTE WHEEL
if tourni_flag ~= 1
    if problem == 'min'
    fitness2 = 1./(1+fitness1);
    end
[best_fit(g),indi(g)] = max(fitness2);
best_var(g,:) = xxx(indi(g),:);
if problem == 'min'
    best_fit(g) = fitness(indi(g));
end
% CUMULATIVE PROBABILITY
s = sum(fitness2);
cum_prob = fitness2/s;
roulett;
else
[best_fit(g),indi(g)] = min(fitness);
average_fitness = mean(fitness);
best_var(g,:) = xxx(indi(g),:);
% CALLING TOURNAMENT SELECTION
tournament;

% IF THIS IS A CONSTRAINT PROBLEM THEN WE HAVE TO USE THIS
    if n_of_c>=0
    best_fit(g) = min_fit;
    best_var(g,:) = xxx(indi(g),:);
    end
end
% CROSSOVER
for k = 1:2:n_of_p
parent1 = r_new(round(random('unif',0.5,n_of_p+0.5)),:);
parent2 = r_new(round(random('unif',0.5,n_of_p+0.5)),:);
 if multi_crossover == 0
cross_o_pos = round(random('unif',1.5,string+0.5-1));
child1(1:cross_o_pos) = parent2(1:cross_o_pos); 
child1(cross_o_pos+1:string) = parent1(cross_o_pos+1:string);
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child2(1:cross_o_pos) = parent1(1:cross_o_pos); 
child2(cross_o_pos+1:string) = parent2(cross_o_pos+1:string);
else
pois_ra = rand(1);
if(pois_ra<0.1353)no_of_cross_over = 0;
end
if(pois_ra>=0.1353 & pois_ra<0.4059)no_of_cross_over = 1;
end
if(pois_ra>=0.4059 & pois_ra<0.6865)no_of_cross_over = 2;
end
if(pois_ra>=0.6865 & pois_ra<0.8769)no_of_cross_over = 3;
end
if(pois_ra>=0.8769)no_of_cross_over = 3;
end
switch no_of_cross_over
case 0
child1(1:string) = parent1(1:string);
child2(1:string) = parent2(1:string);
case 1
cross_o_pos = round(random('unif',1.5,string+0.5-1));
child1(1:cross_o_pos) = parent2(1:cross_o_pos); 
child1(cross_o_pos+1:string) = parent1(cross_o_pos+1:string);
child2(1:cross_o_pos) = parent1(1:cross_o_pos); 
child2(cross_o_pos+1:string) = parent2(cross_o_pos+1:string);
case 2
cross_o_pos1 = round(random('unif',1.5,string+0.5-1));
cross_o_pos2 = round(random('unif',1.5,string+0.5-1));
while (cross_o_pos2 == cross_o_pos1)
cross_o_pos2 = round(random('unif',1.5,string+0.5-1));
end
cross_sor = [cross_o_pos1 cross_o_pos2];
cross_sort = sort(cross_sor);
child1(1:cross_sort(1)) = parent1(1:cross_sort(1)); 
chi ld1(cross_sort(1)+1:cross_sort(2)) = parent2(cross_sort(1)+1:cross_

sort(2));
child1(cross_sort(2)+1:string) = parent1(cross_sort(2)+1:string);
child2(1:cross_sort(1)) = parent2(1:cross_sort(1)); 
chi ld2(cross_sort(1)+1:cross_sort(2)) = parent1(cross_sort(1)+1:cross_

sort(2));
child2(cross_sort(2)+1:string) = parent2(cross_sort(2)+1:string);
case 3
cross_o_pos1 = round(random('unif',1.5,string+0.5-1));
cross_o_pos2 = round(random('unif',1.5,string+0.5-1));
while (cross_o_pos2 == cross_o_pos1)
cross_o_pos2 = round(random('unif',1.5,string+0.5-1));
end
cross_o_pos3 = round(random('unif',1.5,string+0.5-1));
while (cross_o_pos3 == cross_o_pos1 & cross_o_pos3 == cross_o_pos2)
cross_o_pos3 = round(random('unif',1.5,string+0.5-1));
end
cross_sor = [cross_o_pos1 cross_o_pos2 cross_o_pos3];
cross_sort = sort(cross_sor);
child1(1:cross_sort(1)) = parent1(1:cross_sort(1)); 
chi ld1(cross_sort(1)+1:cross_sort(2)) = parent2(cross_sort(1)+1:cross_

sort(2));
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chi ld1(cross_sort(2)+1:cross_sort(3)) = parent1(cross_sort(2)+1:cross_
sort(3));

child1(cross_sort(3)+1:string) = parent2(cross_sort(3)+1:string);
child2(1:cross_sort(1)) = parent2(1:cross_sort(1)); 
chi ld2(cross_sort(1)+1:cross_sort(2)) = parent1(cross_sort(1)+1:cross_

sort(2));
chi ld2(cross_sort(2)+1:cross_sort(3)) = parent2(cross_sort(2)+1:cross_

sort(3));
child2(cross_sort(3)+1:string) = parent1(cross_sort(3)+1:string);
end
end
r(k,:) = child1;
r(k+1,:) = child2; 
end
% MUTATION 
for i = 1:n_of_p
pr_m = random('unif',0,1);
for j = 1:string
    if pr_m<mut_prob
    if r(i,j) == 0  
    r(i,j) = 1;
    else
    r(i,j) = 0;
    end
    end
end
end
[min_best_fit,ind] = min(best_fit);
[g best_var(ind,:) min(best_fit)];
if g >= 2
    if abs(last_gen_best-min(best_fit))<epsilon
        flag = flag+1;
    else
        flag = 0;
    end
end
if flag>stall_gen
    break;
end
last_gen_best = min(best_fit);
fprintf('%4i %9.4f %9.4f \n',g, best_var(ind,:), min(best_fit))
end % END OF MAIN LOOP
[min_best_fit,ind] = min(best_fit);
best_var(ind,:)
min_best_fit
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name in.m
%   Input parameters for Genetic algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
problem = 'min'; % If roulette wheel is used to minimize
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n_of_v = 1;           % number of variables
n_of_g = 10000;       % maximum number of generations
n_of_p = 10;          % population size
range(1,:) = [40 90]; % variable bound
n_of_bits(1) = 15;    % number of bits
cross_prob = 0.9;     % crossover probability
multi_crossover = 1;  % use multi-crossover
mut_prob = 0.02;      % mutation probability
tourni_flag = 0;      % use roulette wheel
epsilon = 1e-7;       % function tolerance
flag = 0;             % stall generations flag
flag1 = 0;            % scaling flag
stall_gen = 500;      % stall generations for termination
n_of_c = 0;           % for constraint handling
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name roulett.m
%   Roulette wheel selection
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
slot(1) = 0;
for ii = 2:n_of_p+1
    slot(ii) = cum_prob(ii-1)+slot(ii-1);
end
% COPY GENERATION 
for kk = 1:n_of_p
    pr = rand;
    for iii = 1:n_of_p+1
        if (pr>slot(iii)) & (pr<slot(iii+1))  
        st_t_c(kk) = iii;
        end
    end
end
for kkk = 1:n_of_p
    r_new(kkk,:) = r(st_t_c(kkk),:);
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name tournament.m
%   Tournament selection
%   Also modifies the function
%   in the presence of constraints
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%

© 2015 by Taylor & Francis Group, LLC

  



364 Appendix B

infeasible_flag = 1;
for i = 1:n_of_p
        if constraint(i)>= 0
            feas_tag(i) = 1;
            fit(i) = fitness(i);
        else
            feas_tag(i) = 0;
            fit(i) = -100000000000;
        end
end
for i = 1:n_of_p
if(feas_tag(i) == 1)
infeasible_flag = 0;
end
end
if(infeasible_flag == 1)
fit(1) = 1000000000000;
end
max_fit = max(fit);
for i = 1:n_of_p
    if feas_tag(i)== 0
        for j = 1:n_of_c
        if (constraint(i,j)<0)
    fitness(i) = max_fit+abs(constraint(i,j));
        end
        end
    end
end
[min_fit,indices] = min(fitness);
for i = 1:n_of_p
    pr = round(random('unif',0.5,n_of_p+0.5));
    while pr == i 
    pr = round(random('unif',0.5,n_of_p+0.5));
    end
    if feas_tag(i) == feas_tag(pr)
        if fitness(i) <= fitness(pr)
        r_new(i,:) = r(i,:);
        else
        r_new(i,:) = r(pr,:);
        end
     else
        if feas_tag(i) == 1
        r_new(i,:) = r(i,:);
        else
        r_new(i,:) = r(pr,:);
        end
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

© 2015 by Taylor & Francis Group, LLC

  



365Appendix B

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name func.m
%   Enter the function to be optimized
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function [y,constr] = func(x)
y = 204165.5/(330-2*x) + 10400/(x-20);
constr(1) = 10;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name simann.m
%   Simulated annealing algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x(i) -> design variables
% rand -> random number from 0 to 1
% perturb_x(i) -> perturbation on design variables
%
clear all
clc
format long
epsilon = 0.002;
flag = 0;
lb = [-5.12 -5.12];
ub = [5.12 5.12];
for i = 1:length(lb)
    x(i) = lb(i) + (ub(i)-lb(i))*rand;
end
[E_old,constr] = func1(x);
bestx = x;
best_obj = E_old;
for j = 1:10000
    flag = flag+1;
     for i = 1:length(x)
 perturb_x(i) = epsilon*x(i)*rand;
 if rand < 0.5
     perturb_x(i) = -perturb_x(i);
 end
     end
x = x + perturb_x;
     for i = 1:length(x)
 if x(i)<lb(i) | x(i)>ub(i)
 x(i) = lb(i) + (ub(i)-lb(i))*rand;
 end
end
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[E_new,constr] = func1(x);
 if E_new < E_old
 E_old = E_new;
 else
 if exp(-(E_new-E_old)/E_old)> rand
        E_old = E_new;
 end
 x = x - perturb_x;
end
 px(j) = j;
 py(j) = E_new;

 if E_new < best_obj
 best_obj = E_new;
 bestx = x;
 flag = 0;
 end
[j bestx best_obj]
 if flag > 1000
 break;
 end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name func1.m
%   Enter the function to be optimized
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function [y,constr] = func1(x)
y = 20 + x(1)*x(1)-10*cos(2*pi*x(1)) + x(2)*x(2)-   
 10*cos(2*pi*x(2));
constr(1) = 10;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name pso.m
%   Particle Swarm Optimization algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x -> position of individual
% v -> velocity of individual
% rand -> random number from 0 to 1
% fitness -> fitness of individual
% pbest -> best fitness achieved by individual
% gbest -> best fitness of group
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% pop -> population size
% phi_1, phi_2 -> tuning parameters
% nmax -> maximum number of iterations
%
clear all
clc
format long
pop = 20;
phi_1 = 1.05;
phi_2 = 1.1;
nmax = 100;
weight = linspace(1,0.3,nmax);
lb = [-500 -500];
ub = [500 500];
for i = 1:length(lb)
    for j = 1:pop
        x(i,j) = lb(i) + (ub(i)-lb(i))*rand;
        v(i,j) = 0;
    end
end
for i = 1:pop
    fitness(i) = func1(x(:,i));
    pbest(i) = fitness(i);
    px(i,:) = x(:,i);
end
[gbest, location] = min(fitness);
gx = x(:,location);
plot3(px(:,1),px(:,2),pbest,'r*')
    grid on
    xlabel('x1')
    ylabel('x2')
    zlabel('f(x)')
for i = 1:nmax
    for j = 1:pop
v(:,j) = weight(i)*v(:,j) + phi_1*rand*(px(j,:)'-x(:,j)) +  
 phi_2*rand*(gx-x(:,j));
         x(:,j) = x(:,j) + v(:,j);
         for k = 1:length(x(:,j))
            if x(k,j) < lb(k) || x(k,j) > ub(k)
                x(k,j) = lb(k) + (ub(k)-lb(k))*rand;
            end
        end
        fitness(j) = func1(x(:,j));
        if fitness(j) < pbest(j)
            pbest(j) = fitness(j);
            px(j,:) = x(:,j);
        end
    end
    [gbest, location] = min(pbest);
    gx = x(:,location);
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    [gx' gbest]
    plot3(px(:,1),px(:,2),pbest,'r*')
    grid on
    xlabel('x1')
    ylabel('x2')
    zlabel('f(x)')
    axis([-500 500 -500 500 -1000 0])
    pause(0.2)
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name func1.m
%   Enter the function to be optimized
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function y = func1(x)
y = -x(1)*sin(sqrt(abs(x(1)))) -x(2)*sin(sqrt(abs(x(2))));
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Chapter 6

Code Name Details

DFP.m (main program) Davidon–Fletcher–Powell (DFP) method (see Chapter 3)
grad_vec.m (function) Gradient vector computation (see Chapter 3)
golden_funct1.m (function) Golden section method (see Chapter 3)
func1.m (function) Computes value of objective function
constr.m (function) Computes value of constraint function
pso.m (main program) Particle swarm optimization (PSO) method to solve welded 

beam problem
func1.m (function) Computes value of objective function
constr.m (function) Computes value of constraint function
ALM.m (main program) Augmented Lagrangian method
func1.m (function) Computes value of augmented objective function
sqp.m (main program) Sequential quadratic programming method
func_val.m (function) Computes augmented Lagrangian function
func_val1.m (function) Computes function value
eqconstr_val.m (function) Computes equality constraints value
ineqconstr_val.m (function) Computes inequality constraints value
grad_vec_f.m Computes gradient vector of the objective function
grad_vec_eqcon.m (function) Computes gradient vector for equality constraints
grad_vec_ineqcon.m (function) Computes gradient vector for inequality constraints
hessian.m (function) Computes Hessian matrix (see Chapter 3)
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% y -> objective function
% penalty -> penalty term
%
function y = func1(x,scale_factor)
y = (x(1)-1)^2 + (x(2)-5)^2;
penalty = 0.0;
[h,g] = constr(x);
for i = 1:length(h)
    if h(i)~=0
        penalty = penalty + h(i)^2;
    end
end
for i = 1:length(g)
    if g(i)>0
        penalty = penalty + g(i)^2;
    end
end
y = y+penalty*scale_factor;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code constr.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% define your constraints here
% g(1), g(2)… -> inequality constraints
% h(1), h(2), …-> equality constraints
%
function [h,g] = constr(x)
h(1) = 0;
g(1) = -x(1)^2 + x(2) -4;
g(2) = -(x(1)-2)^2 + x(2) -3;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name pso.m
%   Particle Swarm Optimization algorithm
%   Welded beam problem
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x -> position of individual
% v -> velocity of individual
% rand -> random number from 0 to 1
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% fitness -> fitness of individual
% pbest -> best fitness achieved by individual
% gbest -> best fitness of group
% nmax -> maximum number of iterations
%
clear all
clc
format long
pop = 200;
phi_1 = 1.05;
phi_2 = 1.1;
nmax = 3000;
scale_factor = 10000000;
weight = linspace(1,0.3,nmax);
fprintf('_________________________________________________\n')
lb = [0.1 0.1 0.1 0.1];
ub = [2 10 10 2];
for i = 1:length(lb)
    for j = 1:pop
        x(i,j) = lb(i) + (ub(i)-lb(i))*rand;
        v(i,j) = 0;
    end
end
for i = 1:pop
    fitness(i) = func1(x(:,i),scale_factor);
    pbest(i) = fitness(i);
    px(i,:) = x(:,i);
end
[gbest, location] = min(fitness);
gx = x(:,location);
for i = 1:nmax
    for j = 1:pop
      v(:,j) =  weight(i)*v(:,j) + phi_1*rand*(px(j,:)'-x(:,j))   

+ phi_2*rand*(gx-x(:,j));
        x(:,j) = x(:,j) + v(:,j);
        for k = 1:length(x(:,j))
            if x(k,j) < lb(k) || x(k,j) > ub(k)
                x(k,j) = lb(k) + (ub(k)-lb(k))*rand;
            end
        end
        fitness(j) = func1(x(:,j),scale_factor);
        if fitness(j) < pbest(j)
            pbest(j) = fitness(j);
            px(j,:) = x(:,j);
        end
    end
    [gbest, location] = min(pbest);
    gx = x(:,location);

    [gx' gbest];
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    fprintf('%3d %8.3f %8.3f %8.3f %8.3f % 8.3f   
 \n',i,gx,gbest)
end
fprintf('_____________________________________________ \n')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% y -> objective function
% penalty -> penalty term
%
function y = func1(x,scale_factor)
y = 1.10471*x(1)*x(1)*x(2) + 0.04811*x(3)*x(4)*(14+x(2));
penalty = 0.0;
[h,g] = constr(x);
for i = 1:length(h)
    if h(i)~=0
        penalty = penalty + h(i)^2;
    end
end
for i = 1:length(g)
    if g(i)>0
        penalty = penalty + g(i)^2;
    end
end
y = y+penalty*scale_factor;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code constr.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% define your constraints here
% g(1), g(2)… -> inequality constraints
% h(1), h(2), …-> equality constraints
%
function [h,g] = constr(x)
h(1) = 0;
load = 6000;
length = 14;
modulusE = 30e6;
modulusG = 12e6;
tmax = 13600;
sigmamax = 30000;
delmax = 0.25;
tdash = load/(sqrt(2)*x(1)*x(2));
R = sqrt(x(2)*x(2)/4 + ((x(1)+x(3))/2)^2);
M = load*(length + x(2)/2);
J = 2* ((x(1)*x(2)/sqrt(2)) * (x(2)^2/12 +((x(1)+x(3))/2)^2));
tdashdash = M*R/J;
tx = sqrt(tdash^2 + 2*tdash*tdashdash*x(2)/(2*R) + tdashdash^2);
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sigmax = 6*load*length/(x(4)*x(3)^2);
delx = 4*load*length^3/(modulusE*x(4)*x(3)^3);
pcx =  (4.013*sqrt(modulusE*modulusG*x(3)^2*x(4)^6/36)/(length^2)) *     

(1- (x(3)/(2*length))*sqrt(modulusE/(4*modulusG)));
g(1) = tx/tmax -1;
g(2) = sigmax/sigmamax -1;
g(3) = x(1) - x(4);
g(4) = (.10471*x(1)*x(1) + 0.04811*x(3)*x(4)*(14+x(2)))/5 -1;
g(5) = 0.125 - x(1);
g(6) = delx/delmax -1;
g(7) = load/pcx -1;
g(8) = x(1)/2 -1;
g(9) = x(4)/2 -1;
g(10) = -x(1) + 0.1;
g(11) = -x(4) + 0.1;
g(12) = x(2)/10 -1;
g(13) = x(3)/10 -1;
g(14) = -x(2) + 0.1;
g(15) = -x(3) + 0.1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code ALM.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [0 1 1] -> starting value of x
% epsilon1, epsilon2 -> constant used for terminating
%                       the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% deltag -> difference in gradient vector (over previous iteration)
% A -> approximation of inverse of the hessian matrix
% search -> search direction
% LAMBDA, BETA -> Lagrange Multipliers
% RK -> penalty parameter
%
clear all
clc
n_of_var = 2;
n_of_eqcons = 1;
n_of_iqcons = 2;
scale_factor = 1;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
x = [0 1 1];
RK = x(3);
A = eye(length(x));
epsilon1 = 1e-6;
epsilon2 = 1e-6;
delx = 1e-3;
checkconstr = zeros(1,n_of_iqcons);
falpha_prev = func1(x,scale_factor);
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fprintf('Initial function value =  %7.4f\n ',FVALUE)
fprintf(' No.       x-vector       rk      f(x)     |Cons.| \n')
fprintf('___________________________________________________\n')
for i = 1:30
    if i==1
    deriv_prev = grad_vec(x,delx,n_of_var,scale_factor);
    search = -deriv_prev;
    [alpha,falpha] = golden_funct1(x,search,scale_factor);
    if abs(falpha-falpha_prev)<epsilon1
    break;
    end
    falpha_prev = falpha;
    x = x + alpha*search;
    yyy = func1(x,scale_factor);
    LAMBDA = LAMBDA + 2*RK*EQCONSTR;
    BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
    checkconstr1 = max([ICONSTR;checkconstr]);
fpri ntf('%3d %8.3f %8.3f  % 8.3f  % 8.3f % 8.3f   \n',i,x,FVALUE, 

norm([EQCONSTR checkconstr1]))
    else
        deltax = (alpha*search);
        if i>2
            deltax = deltax';
        end
        deriv = grad_vec(x,delx,n_of_var,scale_factor);
        deltag = deriv-deriv_prev;
        term1 = (deltax'*deltax)/(deltax*deltag');
        term2 = (A*deltag'*deltag*A)/(deltag*A*deltag');
        A = A + term1 - term2;
        search = -A*deriv';
        [alpha,falpha] = golden_funct1(x,search',scale_factor);
        checkconstr1 = max([ICONSTR;checkconstr]);
    fpri ntf('%3d %8.3f %8.3f  % 8.3f  % 8.3f % 8.3f  \n',i,x,FVALUE, 

norm([EQCONSTR checkconstr1]))
    if abs(falpha-falpha_prev)<epsilon1 ||  norm(deriv)<epsilon2
         break;
        end
        falpha_prev = falpha;
        deriv_prev = deriv;
        x = x+alpha*search';
        yyy = func1(x,scale_factor);
        LAMBDA = LAMBDA + 2*RK*EQCONSTR;
        BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
        end
    end
fprintf('_________________________________________________\n\n')
if LAMBDA>=0 & BETA>=0
    fprintf('KKT Conditions are satisfied \n\n')
end
fprintf('Lagrange Multipliers: \n\n')
disp([LAMBDA BETA]) 
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function y = func1(x,scale_factor)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE 
y = (x(1)-1)^2 + (x(2)-5)^2;
h(1) = 0.0;
g(1) = -x(1)^2 + x(2) -4;
g(2) = -(x(1)-2)^2 + x(2) -3;
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y =  y + LAMBDA.*EQCONSTR + RK.*EQCONSTR^2 + sum(BETA.* 

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR; 
-BETA./(2*RK)])).^2);

%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code sqp.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1 -> constant used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
%
clear all
clc
warning off
n_of_var = 2;
n_of_eqcons = 1;
n_of_iqcons = 1;
scale_factor = 10;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [10 -5];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-6;
delx = 1e-3;
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checkconstr = zeros(1,n_of_iqcons);
fprintf('       No.        x-vector       f(x)    |Cons.| \n')
fprintf('_________________________________________________\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:3
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x =  quadprog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_

val(X),deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';
yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
    break
end
end
fprintf('_________________________________________________\n')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func_val.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes augmented Lagrangian function value
%
function y = func_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE 
y = (x(1)-1)^2 + (x(2)-2)^2;
g = ineqconstr_val(x);
h = eqconstr_val(x);
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y =  y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.* 

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR; 
-BETA./(2*RK)])).^2);

%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func_val1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes function value
%
function y = func_val1(x)
y = (x(1)-1)^2 + (x(2)-2)^2;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code eqconstr_val.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes value of equality constraint
%
function h = eqconstr_val(x)
h(1) = 2*x(1)-x(2);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code ineqconstr_val.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes value of inequality constraint
%
function g = ineqconstr_val(x)
g(1) = x(1)-5;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code grad_vec_f.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes gradient vector (obj. function)
%
function deriv = grad_vec_f(x,delx,n_of_var,scale_factor)
xvec = x;
xvec1 = x;
for i = 1:length(x)
    xvec = x;
    xvec1 = x;
    xvec(i) = x(i) + delx;
    xvec1(i) = x(i) - delx;
    deriv(i) = (func_val1(xvec) - func_val1(xvec1))/(2*delx);
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code grad_vec_eqcon.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes gradient vector (eq. constraint)
%
function deriv = grad_vec_eqcon(x,delx,n_of_eqcons)
xvec = x;
xvec1 = x;
for j = 1:n_of_eqcons
for i = 1:length(x)
    xvec = x;
    xvec1 = x;
    xvec(i) = x(i) + delx;
    xvec1(i) = x(i) - delx;
    h = eqconstr_val(xvec);
    h1 = eqconstr_val(xvec1);
    deriv(j,i) = (h(j) - h1(j))/(2*delx);
end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code grad_vec_ineqcon.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes gradient vector (ineq. constraint)
%
function deriv = grad_vec_ineqcon(x,delx,n_of_iqcons)
xvec = x;
xvec1 = x;
for j = 1:n_of_iqcons
for i = 1:length(x)
    xvec = x;
    xvec1 = x;
    xvec(i) = x(i) + delx;
    xvec1(i) = x(i) - delx;
    g = ineqconstr_val(xvec);
    g1 = ineqconstr_val(xvec1);
    deriv(j,i) = (g(j) - g1(j))/(2*delx);
end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Chapter 7

Code Name Details

sqp.m (main program) Sequential quadratic programming (SQP) method modified for 
weighted sum approach

func_val.m (function) Computes augmented Lagrangian function value
func_val1.m (function) Computes function value
sqp.m (main program) SQP method modified for solving multiobjective problems using 

ε-constraint technique
func_val.m (function) Computes augmented Lagrangian function value
func_val1.m (function) Computes function value
ineqconstr_val.m Computes inequality constraint value
pso.m (main program) Particle swarm optimization (PSO) method with dynamic 

weights
func1.m (function) Computes value of objective function
sqp.m (main program) Main program for solving reentry problem
dynamics.m (function) Computes area, volume, and Xcp

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code sqp.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [0.1 0.1] -> starting value of x
% epsilon1 -> constants used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
clear all
clc
warning off
n_of_var = 2;
n_of_eqcons = 1;
n_of_iqcons = 1;
scale_factor = 1;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [0.1 0.1];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-6;
delx = 1e-3;
for kk = 1:101
    X = [0.1 0.1];
    W1 = (kk-1)/100;
    W2 = 1 - W1;
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checkconstr = zeros(1,n_of_iqcons);
fprintf('    No.         x-vector        f(x)       |Cons.| \n')
fprintf('___________________________________________________\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:10
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x = quadprog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_val(X), 
deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';
yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
    break
end
end
fprintf('___________________________________________________\n')
plot(0.5*(X(1)^2+X(2)^2) , 0.5*((X(1)-1)^2 + (X(2)-3)^2),'r*')
hold on
end
xlabel('f1');
ylabel('f2');
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func_val.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes augmented Lagrangian function value
%
function y = func_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
y = W1*0.5*(x(1)^2+x(2)^2) + W2*0.5*((x(1)-1)^2 + (x(2)-3)^2);
g = ineqconstr_val(x);
h = eqconstr_val(x);
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y =  y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.* 

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR; 
-BETA./(2*RK)])).^2);

%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

© 2015 by Taylor & Francis Group, LLC

  



380 Appendix B

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func_val1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes function value
%
function y = func_val1(x)
global W1 W2 
y = W1*0.5*(x(1)^2+x(2)^2) + W2*0.5*((x(1)-1)^2 + (x(2)-3)^2);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code sqp.m modified for eps-constraints method
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1 -> constants used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
clear all
clc
warning off
n_of_var = 1;
n_of_eqcons = 1;
n_of_iqcons = 5;
scale_factor = 1;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [1 1];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-6;
delx = 1e-3;
for kk = 1:100
    W1 = (kk-1)/100;
    W2 = 1 - W1;
checkconstr = zeros(1,n_of_iqcons);
fprintf('       No.         x-vector        f(x)    |Cons.| \n')
fprintf('___________________________________________________\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:10
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x = quad prog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_val(X), 

deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';
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yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
    break
end
end
fprintf('___________________________________________________\n')
plot(X(1), (1+X(2)^2-X(1)-0.1*sin(3*pi*X(1))),'r*')
hold on
end
xlabel('f1')
ylabel('f2')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func_val.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes augmented Lagrangian function value
%
function y = func_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
y = (1+x(2)^2-x(1)-0.1*sin(3*pi*x(1)));
g = ineqconstr_val(x);
h = eqconstr_val(x);
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y =  y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.* 

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR; -BETA./
(2*RK)])).^2);

%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code ineqconstr_val.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes value of inequality constraint
function g = ineqconstr_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
g(1) = x(1)-1;
g(2) = -x(1);
g(3) = x(2)-2;
g(4) = -x(2)-2;
g(5) = x(1)- W1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name pso.m
%   Particle Swarm Optimization algorithm with dynamic weights
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x -> position of individual
% v -> velocity of individual
% rand -> random number from 0 to 1
% fitness -> fitness of individual
% pbest -> best fitness achieved by individual
% gbest -> best fitness of group
%
clear all
clc
format long
global W1 W2
pop = 200;
phi_1 = 0.5;
phi_2 = 0.5;
nmax = 120;
weight = linspace(1,0.4,nmax);
lb = [0 -2];
ub = [1 2];
W1 = 0;
W2 = 1;
for i = 1:length(lb)
    for j = 1:pop
        x(i,j) = lb(i) + (ub(i)-lb(i))*rand;
        v(i,j) = 0;
    end
end
for i = 1:pop
    fitness(i) = func1(x(:,i));
    pbest(i) = fitness(i);
    px(i,:) = x(:,i);
end
[gbest, location] = min(fitness);
gx = x(:,location);
 for i = 1:nmax
    W1 = abs(sin(2*pi*i/150));
    W2 = 1-W1;
    for j = 1:pop
      v(:,j) = weight(i)*v(:,j) + phi_1*rand*(px(j,:)'-x(:,j)) +  
 phi_2*rand*(gx-x(:,j));
        x(:,j) = x(:,j) + v(:,j);
      for k = 1:length(x(:,j))
            if x(k,j) < lb(k) || x(k,j) > ub(k)
                x(k,j) = lb(k) + (ub(k)-lb(k))*rand;

© 2015 by Taylor & Francis Group, LLC

  



383Appendix B

            end
        end
        fitness(j) = func1(x(:,j));
        if fitness(j) < pbest(j)
 pbest(j) = fitness(j);
 px(j,:) = x(:,j);
 end
        F1(j) = x(1,j);
        F2(j) = (1+x(2,j)^2-x(1,j)-0.1*sin(3*pi*x(1,j)));
end
    [gbest, location] = min(pbest);
    gx = x(:,location);
    [gx' gbest];
        plot(F1,F2,'r*')
    pause(0.1)
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name func1.m
%   Enter the function to be optimized
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function [y] = func1(x)
global W1 W2
y = W1*x(1) + W2*(1+x(2)^2-x(1)-0.1*sin(3*pi*x(1)));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code sqp.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1 -> constant used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
clear all
clc
warning off
n_of_var = 5;
n_of_eqcons = 1;
n_of_iqcons = 12;
scale_factor = 1;
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global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE W1 W2
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [0.5 25 31 0.5 0.5];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-2;
delx = 1e-3;
for kk = 640:20:1630
    W1 = (kk-1)/100;
checkconstr = zeros(1,n_of_iqcons);
fprintf('      No.        x-vector        f(x)    |Cons.| \n')
fprintf('_________________________________________________\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:30
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x =  quadprog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_

val(X),deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';
yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
    break
end
end
fprintf('_________________________________________________\n')
[ xcp, area, volume] = dynamics(X);
 plot(xcp, area,'k*','LineWidth',1.5)
hold on
end
xlabel('X_{cp}')
ylabel('A')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code dynamics.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xcp, area, volume] = dynamics(X)
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beta1 = [0.075759311956522
   0.001381832173914
   0.005825624927536
   0.087880851017943
   0.079788071083505
   0.103099119565217
   0.000091411652174
  -0.000083773739130
   0.024378102714516
   0.052872440763746];
cm = -0.278527718840579+beta1'*[X(1);X(2);X(3);X(4);X(5);
   X(1)^2;X(2)^2;X(3)^2;X(4)^2;X(5)^2];
beta2 = [0.150130422826087
  -0.003965447971014
   0.014019523043478
   0.103639584627328
   0.108001867667355
   0.047906228260870
   0.000186851275362
  -0.000219940956522
  -0.000485274327121
   0.016298096388315];
cn = -0.314286112399353+beta2’*[X(1);X(2);X(3);X(4);X(5);
   X(1)^2;X(2)^2;X(3)^2;X(4)^2;X(5)^2];
xcp = cm/cn;
r1 = X(1)*cos(deg2rad(X(2)));
r2 = X(1)*cos(deg2rad(X(2))) + X(4)*tan(deg2rad(X(2)));
r3 = r2 + X(5)*tan(deg2rad(X(3)));
area =  2*pi*X(1)*X(1)*(1-sin(deg2rad(X(2)))) + 

pi*(r1+r2)*sqrt((r2-r1)^2 + X(4)^2) + 
pi*(r3+r2)*sqrt((r3-r2)^2 + X(5)^2) + pi*r3^2;

cap =  (pi*r1*(1-sin(deg2rad(X(2))))/6) * (3*r1*r1 +     
(r1*(1-sin(deg2rad(X(2))))^2));

volume =  cap + 0.3333*pi*X(4)*(r2^2 + r1^2 + r2*r1) + 
0.3333*pi*X(5)*(r3^2 + r2^2 + r2*r3);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Chapter 9

Code Name Details

sqp.m (main program) Sequential quadratic programming (SQP) method (for 
multidisciplinary design optimization [MDO] application)

discipline1.m (function) Output from first discipline
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discipline2.m (function) Output from first discipline
eqconstr_val.m (function) Computes equality constraints value
ineqconstr_val.m (function) Computes inequality constraints value
func_val1.m (function) Computes function value
func_val.m (function) Computes augmented Lagrangian function
grad_vec_eqcon.m (function) Computes gradient vector for equality constraints
grad_vec_ineqcon.m (function) Computes gradient vector for inequality constraints
hessian.m (function) Computes Hessian matrix (see Chapter 3)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code sqp.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% n_of_var -> number of design variables
% x = [-1.5 1.5] -> starting value of x
% epsilon1 -> constant used for terminating the algorithm
% delx -> required for gradient computation
% falpha_prev -> function value at first/previous iteration
% deriv -> gradient vector
% quadprog -> MATLAB function to solve quadratic programming
% LAMBDA -> Lagrange multipliers
clear all
clc
warning off
n_of_var = 5;
n_of_eqcons = 2;
n_of_iqcons = 4;
scale_factor = 10;
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE
LAMBDA = zeros(1,n_of_eqcons);
BETA = zeros(1,n_of_iqcons);
X = [1 2 5 1 0];
RK = 1;
A = eye(length(X));
epsilon1 = 1e-6;
delx = 1e-3;
checkconstr = zeros(1,n_of_iqcons);
fprintf('     No.        x-vector         f(x)      |Cons.| \n')
fprintf('___________________________________________________\n')
checkconstr = zeros(1,n_of_iqcons);
for i = 1:30
deriv_f = grad_vec_f(X,delx,n_of_var,scale_factor);
sec_deriv_f = hessian(X,delx);
deriv_eqcon = grad_vec_eqcon(X,delx,n_of_eqcons);
deriv_ineqcon = grad_vec_ineqcon(X,delx,n_of_iqcons);
options = optimset('Display','off');
x = quadprog(sec_deriv_f,deriv_f,deriv_ineqcon,-ineqconstr_val(X),  
 deriv_eqcon,-eqconstr_val(X),[],[],X,options);
fprev = func_val(X);
X = X+x';
yyy = func_val(X);
LAMBDA = LAMBDA + 2*RK*EQCONSTR;
BETA = BETA + 2*RK*(max([ICONSTR; -BETA./(2*RK)]));
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fnew = func_val(X);
checkconstr1 = max([ineqconstr_val(X);checkconstr]);
disp([i X FVALUE norm([checkconstr1 eqconstr_val(X)])]);
if abs(fnew-fprev) < epsilon1
    break
end
end
fprintf('___________________________________________________\n')
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code discipline1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Discipline-1
%
function y1 = discipline1(x)
y1 = x(1)+x(2)+x(3)^2-0.2*x(5);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code discipline2.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Discipline-2
%
function y2 = discipline2(x)
y2 = x(3)+x(2)+sqrt(x(4));
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code eqconstr_val.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes value of equality constraint
function h = eqconstr_val(x)
y1 = discipline1(x);
y2 = discipline2(x);
h(1) = y1-x(4);
h(2) = y2-x(5);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code ineqconstr_val.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes value of inequality constraint
function g = ineqconstr_val(x)
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y1 = discipline1(x);
y2 = discipline2(x);
g(1) = 1-y1/3.16;
g(2) = y2/24-1;
g(3) = -x(1);
g(4) = -x(2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func_val1.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes function value
%
function y = func_val1(x)
y = x(1)^2 + x(2) + x(4) +exp(-x(5));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code func_val.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes augmented Lagrangian function value
function y = func_val(x)
global LAMBDA RK BETA EQCONSTR ICONSTR FVALUE 
y = x(1)^2 + x(2) + x(4) +exp(-x(5));
g = ineqconstr_val(x);
h = eqconstr_val(x);
EQCONSTR = h;
ICONSTR = g;
FVALUE = y;
y =  y + LAMBDA*EQCONSTR' + RK*EQCONSTR*EQCONSTR' + sum(BETA.* 

max([ICONSTR; -BETA./(2*RK)])) + sum(RK*(max([ICONSTR; 
-BETA./(2*RK)])).^2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code grad_vec_eqcon.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function deriv = grad_vec_eqcon(x,delx,n_of_eqcons)
xvec = x;
xvec1 = x;
for j = 1:n_of_eqcons
for i = 1:length(x)
    xvec = x;
    xvec1 = x;
    xvec(i) = x(i) + delx;
    xvec1(i) = x(i) - delx;
    h = eqconstr_val(xvec);
    h1 = eqconstr_val(xvec1);
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    deriv(j,i) = (h(j) - h1(j))/(2*delx);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code grad_vec_ineqcon.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function deriv = grad_vec_ineqcon(x,delx,n_of_iqcons)
xvec = x;
xvec1 = x;
for j = 1:n_of_iqcons
for i = 1:length(x)
    xvec = x;
    xvec1 = x;
    xvec(i) = x(i) + delx;
    xvec1(i) = x(i) - delx;
    g = ineqconstr_val(xvec);
    g1 = ineqconstr_val(xvec1);
    deriv(j,i) = (g(j) - g1(j))/(2*delx);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Chapter 10

Code Name Details

Gomory’s Method (All-Integer Problem)
simplex.m Simplex method for solving linear programming 

problem (LPP)
dual_step1.m Solves step 1 of problem
dual_step2.m Solves step 2 of problem

Gomory’s Method (Mixed-Integer Problem)
simplex.m Simplex method for solving LPP
dual_step.m Dual simplex method

Branch and Bound Method
simplex.m Simplex method for solving LPP
subproblem1.m Simplex method for subproblem 1
subproblem2.m Simplex method for subproblem 2
node2_subproblem1.m Simplex method for subproblem 1 (Node 2)
node2_subproblem2.m Simplex method for subproblem 2 (Node 2)
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Particle Swarm Optimization
pso.m Main program
func1.m Objective function
constr.m Constraints

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code simplex.m
% Gomory’s method (All-integer problem)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [1 -1 1 0;
     4  7 0 1];
b = [5;50];
c = [-3;-2;0;0];
 basic_set = [3 4];
 nonbasic_set = [1 2];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code dual_step1.m (Solves step 1 of the problem)
% Gomory’s method (All-integer problem)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> set of nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [1 0  7/11  1/11  0;
     0 1  -4/11  1/11  0;
     0 0  -7/11 -1/11 1];
b = [85/11;30/11;-8/11];
c = [0;0;13/11; 5/11;0];
basic_set = [1 2 5];
nonbasic_set = [3 4];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz = -315/11;
% Rest of the code remains same as in dual.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code dual_step2.m (Solves step 2 of the problem)
% Gomory’s method (All-integer problem)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> set of nonbasic variables
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% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A =[1 0 0   0      1   0;
    0 1 0   1/7   -4/7 0;
    0 0 1   1/7  -11/7 0;
    0 0 0  -1/7    4/7 1];
b = [7;22/7;8/7;-1/7];
c = [0;0;0;2/7;13/7;0];
basic_set = [1 2 3 6];
nonbasic_set = [4 5];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz = -191/7;
% Rest of the code remains same as in dual.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code simplex.m
% Gomory’s method (Mixed-integer problem)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
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clear all
clc
format rational
format compact
A = [1 1 1 0;
     5 2 0 1];
b = [6;20];
c = [-3;-2;0;0];
 basic_set = [3 4];
 nonbasic_set = [1 2];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code dual_step.m
% Gomory’s method (Mixed-integer problem)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> set of nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [1 0 -2/3  1/3  0;
     0 1  5/3 -1/3 0;
     0 0 -5/3  1/3  1];
b = [8/3;10/3;-1/3];
c = [0;0;4/3; 1/3;0];
basic_set = [1 2 5];
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nonbasic_set = [3 4];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz =-44/3;
% Rest of the code remains same as in dual.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code simplex.m
% Branch and Bound method
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [2  5 1 0;
     2 -3 0 1];
b = [16;7];
c = [-4;-5;0;0];
basic_set = [3 4];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
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cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code subproblem1.m
% Subproblem-1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [2   5 1 0 0;
     2  -3 0 1 0;
     1   0 0 0 1];
b = [16;7;5];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code subproblem2.m
% Subproblem-2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [2  5   1 0 0;
     2 -3   0 1 0;
    -1  0   0 0 1];
b = [16;7;-6];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code node2_subproblem1.m
% Subproblem-1 (Node-2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
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% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [2  5   1 0 0;
     2 -3   0 1 0;
     0  1   0 0 1];
b = [16;7;1];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code node2_subproblem2.m
% Subproblem-2 (Node-2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The matrix A and b corresponds to equation Ax=b
% c -> vector of cost coefficients
% basic_set -> set of basic variables
% nonbasic_set -> setof nonbasic variables
% B -> matrix containing basic variable columns of A
% N -> matrix containing nonbasic variable columns of A
% xb -> basic variables
% y -> simplex multipliers
% cb -> cost coefficients of basic variables
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% cn -> cost coefficients of nonbasic variables 
%
clear all
clc
format rational
format compact
A = [2  5   1 0 0;
     2 -3   0 1 0;
     0 -1   0 0 1];
b = [16;7;-2];
c = [-4;-5;0;0;0];
basic_set = [3 4 5];
nonbasic_set = [1 2];
for i = 1:length(basic_set)
    B(:,i) = A(:,basic_set(i));
    cb(i) = c(basic_set(i));
end
for i = 1:length(nonbasic_set)
    N(:,i) = A(:,nonbasic_set(i));
    cn(i) = c(nonbasic_set(i));
end
cn_cap = cn;
cb_ini = cb;
b_cap = b;
zz1 = 0;
% Rest of the code remains same as in simplex.m (Chapter 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name pso.m
%   Welded beam problem
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% lb -> lower bound of variables
% ub -> upper bound of variables
% x -> position of individual
% v -> velocity of individual
% rand -> random number from 0 to 1
% fitness -> fitness of individual
% pbest -> best fitness achieved by individual
% gbest -> best fitness of group
%
clear all
clc
format long
pop = 50;
phi_1 = 1.05;
phi_2 = 1.1;
nmax = 1000;
scale_factor = 10000000;
weight = linspace(1,0.3,nmax);
fprintf('_________________________________________________\n')
lb = [0.1 0.1 0.1 0.1];
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ub = [2 10 10 2];
for i = 1:length(lb)
    for j = 1:pop
        x(i,j) = lb(i) + (ub(i)-lb(i))*rand;
        v(i,j) = 0;
    end
end
for i = 1:pop
    fitness(i) = func1(x(:,i),scale_factor);
    pbest(i) = fitness(i);
    px(i,:) = x(:,i);
end
[gbest, location] = min(fitness);
gx = x(:,location);
for i = 1:nmax
    for j = 1:pop
        v(:,j) =  weight(i)*v(:,j) + phi_1*rand*(px(j,:)'-x(:,j)) + 

phi_2*rand*(gx-x(:,j));
        x(:,j) = x(:,j) + v(:,j);
        for k = 1:length(x(:,j))
            if x(k,j) < lb(k) || x(k,j) > ub(k)
                x(k,j) = lb(k) + (ub(k)-lb(k))*rand;
            end
        end
        x(2,:) = round(x(2,:));
        x(4,:) = round(x(4,:));
        fitness(j) = func1(x(:,j),scale_factor);
        if fitness(j) < pbest(j)
            pbest(j) = fitness(j);
            px(j,:) = x(:,j);
        end
    end
    [gbest, location] = min(pbest);
    gx = x(:,location);
    [gx' gbest];
    fprintf('%3d %8.3f %8.3f %8.3f %8.3f % 8.3f    \n',i,gx,gbest)
end
fprintf('________________________________________________ \n')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name func1.m
%   Objective function for welded beam problem
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = func1(x,scale_factor)
y = 1.10471*x(1)*x(1)*x(2) + 0.04811*x(3)*x(4)*(14+x(2));
%y = (x(1)-1)^2 + (x(2)-5)^2;
penalty = 0.0;
[h,g] = constr(x);
for i = 1:length(h)
    if h(i)~=0
        penalty = penalty + h(i)^2;
    end
end

© 2015 by Taylor & Francis Group, LLC

  



400 Appendix B

for i = 1:length(g)
    if g(i)>0
        penalty = penalty + g(i)^2;
    end
end
y = y+penalty*scale_factor;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   File name constr.m
%   Constraint function for welded beam problem
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [h,g] = constr(x)
h(1) = 0;
% g(1) = -x(1)^2 + x(2) -4;
% g(2) = -(x(1)-2)^2 + x(2) -3;
load = 6000;
length = 14;
modulusE = 30e6;
modulusG = 12e6;
tmax = 13600;
sigmamax = 30000;
delmax = 0.25;
tdash = load/(sqrt(2)*x(1)*x(2));
R = sqrt(x(2)*x(2)/4 + ((x(1)+x(3))/2)^2);
M = load*(length + x(2)/2);
J = 2* ((x(1)*x(2)/sqrt(2)) *(x(2)^2/12 + ((x(1)+x(3))/2)^2));
tdashdash = M*R/J;
tx = sqrt(tdash^2 + 2*tdash*tdashdash*x(2)/(2*R)+tdashdash^2);
sigmax = 6*load*length/(x(4)*x(3)^2);
delx = 4*load*length^3/(modulusE*x(4)*x(3)^3);
pcx =  (4.013*sqrt(modulusE*modulusG*x(3)^2*x(4)^6/36)/(length^2)) * 

(1- (x(3)/(2*length))*sqrt(modulusE/(4*modulusG)));
g(1) = tx/tmax -1;
g(2) = sigmax/sigmamax -1;
g(3) = x(1) - x(4);
g(4) = (.10471*x(1)*x(1) + 0.04811*x(3)*x(4)*(14+x(2)))/5 -1;
g(5) = 0.125 - x(1);
g(6) = delx/delmax -1;
g(7) = load/pcx -1;
g(8) = x(1)/2 -1;
g(9) = x(4)/2 -1;
g(10) = -x(1) + 0.1;
g(11) = -x(4) + 0.1;
g(12) = x(2)/10 -1;
g(13) = x(3)/10 -1;
g(14) = -x(2) + 0.1;
g(15) = -x(3) + 0.1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Appendix C: Solutions to Chapter Problems

Chapter 1

 1. Let x = number of times fare is reduced by Rs. 300

 Revenue = R = price × quantity = (15,000 − 300x) × (130 + 4x) 

  For maximization, 
d
d
R
x

= 0

 ∴ x = 8.75 

  Now, 
d
d

2

2 2400
R

x
= −

 ∴ R has a local maximum at x = 8.75

 Best fare = (15,000 − 300x) = Rs. 12,375

 Number of passengers = (130 + 4x) = 165

 Revenue = Rs. 2,041,875

 2. Let x = number of additional trees that need to be planted

 Yield = y = (50 + x) × (300 − 3x)

  For maximization, d
d

y
x

= 0

 ∴ x = 25 

  Now, 
d
d

2

2 6
y

x
= −

 ∴ R has a local maximum at x = 25 
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 3. Let r = the radius of the circle; w and h are the width and height of 
the rectangle to be inscribed in the circle (see Figure C.1).

 
   r

w h2
2 2

2 2
=







+




  

 w r h= −4 2 2 (Constraint)  

  A = wh (Objective function to be maximized)

 ∴ = −A r h h4 2 2

 

  Plotting (h, A) gives (see Figure C.2) optimal value of A as 50 cm2 at 
h = 7.07 cm.

w/2

h/2 r

figure C.1
Rectangle inscribed in a circle.
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figure C.2
h vs. A.
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  It is easy to show analytically 
d
d
A
h

=




0  that maximum area is 

given by 2r2 when w h r= = 2 .
 4. The fence needs to cover only three sides of the field because the 

river is flowing on one side. Thus the optimization problem can be 
stated as
Maximize

 xy

subject to

 2x + y = 300

 where x and y are two adjacent sides of the rectangle.
 5. Minimize

 x y i jij ij

j

n

i

n

( )≠
==

∑∑
11  

 subject to

   xij

i

n

=
=

∑ 1
1  

 

xij

j

n

=
=

∑ 1
1  

 where xij is an integer that takes a value 0 or 1.
 6. Minimize

 (rrR) + rs(W − R) 

 7. Minimize

 (45 − m − c)2 + (55 − 2m − c)2 + (70 − 3m − c)2 + (85 − 4m − c)2 + (105 − 5m − c)2 

 m* = 15 c* = 27

 8. U
T T

 
, . ,=

−
+

−
204 165 5
330 2

10 400
20

 40 ≤ T ≤ 90 
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 9. ∇ =
+
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+
+


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 10. Let x, y, and z denote the quantity of product A, B, and C respec-
tively. The optimization problem can be stated as
Maximize

 5x + 7y + 4z

subject to

 12x + 25y + 7z ≤ 28,000

 11x + 6y + 20z ≤ 35,000

 15x + 6y + 5z ≤ 32,000

 11. Let
x11 = number of units transported from factory P to warehouse A
x12 = number of units transported from factory P to warehouse B
x13 = number of units transported from factory P to warehouse C
x14 = number of units transported from factory P to warehouse D
x15 = number of units transported from factory P to warehouse E
x21 = number of units transported from factory Q to warehouse A
x22 = number of units transported from factory Q to warehouse B
x23 = number of units transported from factory Q to warehouse C
x24 = number of units transported from factory Q to warehouse D
x25 = number of units transported from factory Q to warehouse E
x31 = number of units transported from factory R to warehouse A
x32 = number of units transported from factory R to warehouse B
x33 = number of units transported from factory R to warehouse C
x34 = number of units transported from factory R to warehouse D
x35 = number of units transported from factory R to warehouse E
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Minimize

 3x11 + 7x12 + 4x13 + 6x14 + 5x15 + 5x21 + 4x22 + 2x23 + 5x24 + x25 + 6x31  
 + 3x32 + 2x33 + 2x34 + 4x35

subject to

 x11 + x12 + x13 + x14 + x15 ≤ 150

 x21 + x22 + x23 + x24 + x25 ≤ 110

 x31 + x32 + x33 + x34 + x35 ≤ 90

 x11 + x21 + x31 ≥ 50

 x12 + x22 + x32 ≥ 100

 x13 + x23 + x33 ≥ 70

 x14 + x24 + x34 ≥ 70

 x15 + x25 + x35 ≥ 60

 12. The minimum value is –13.128 and occurs at x = –0.47.
  The maximum value (see Figure C.3) is 1.128 and occurs at x = –3.53.
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0

2

x

f(
x)

figure C.3
Plot of the function.
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 13. Let xij =  barrels of gasoline of type i used to make fuel of type j

 Fj = barrels of fuel of type j

 Profit = Revenue – Cost

  The objective function and constraints can be written as
Minimize

 
  ( ) ( )

( )

90 100 60 65

70
1 2 11 12 21 22

31 32

F F x x x x

x x

+ − + − +
− + −− +80 41 42( )x x

 

subject to

 75x11 + 85x21 + 90x31 + 95x41 − 80F1 ≥ 0

 75x12 + 85x22 + 90x32 + 95x42 − 90F2 ≥ 0

 F1 + F2 ≥ 6000

 0 ≤ (x11 + x12) ≤ 3000
 

0 ≤ (x21 + x22) ≤ 4000

 0 ≤ (x31 + x32) ≤ 5000 

 0 ≤ (x41 + x42) ≤ 4000

 14. Functions at plots (a) and (d) are convex (see Figure C.4).
 15. The Taylor series of a function f(x) at x = a is given by

 f a f a x a
f a

x a( ) ( )( )
( )
!

( )+ − + − +′ ′′
2

2


 

  The Taylor series for the function ln(x − 1) at x = 3 is given by

 ln2
1
2

3
1
8

3 2+ − − −( ) ( )x x
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 16. The linear approximation of a function is given by the first two terms 
of the Taylor series. The linear expansion for the function (1 + x)50 + 
(1 − 2x)60 at x = 1 is given by

 L(x) = (1 + 250) + (120 + 50 × 249)(x − 1) 

 17. The Taylor series for the function ex at x = 3 is given by

 e e x
e

x
e

x3 3
3

2
4

33
2

3
6

3+ − + − + −( ) ( ) ( )
 

 18. The Taylor series for the function ecos x at x = π is given by

 
1 1

2
2

e e
x+ −( )π
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figure C.4
Plot of four different functions.
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 19. The quadratic approximation of a function is given by the first three 
terms of the Taylor series. The quadratic expansion for the function 
ln(1 + sin x) at x = 0 is given by

 Q x x
x

( )
!

= −
2

2  

 20. The gradient of the function is given by

 ∇ =

−

+ −

−










f

x x x x

x x x x x

x x x x

 

2

2

2

1 2 2 3
2

1
2

2 3 1 3
2

2
2

1 2 3










 

  The gradient at (1, 1, –1) is given by

 ∇ = −
















f  
1
2

3  

  Now

 ∇ = −



















=f T( ) [ ]x u 1 2 3
1 14

2 14

3 14

6 14
/

/

/

/

 

 21. Both functions are convex (see Figure C.5).
 22.
 i. The maximum value is 19,575/17 and occurs at x = 99/17 and 

x = 48/17 (see Figure C.6).
 ii. The maximum value is 120 and occurs at x = 0 and x = 30 (see 

Figure C.7).
 23. The Jacobian is given by

 J =
− + −

1 4 9

2 2

3 2 3 4

2 3

1 2 3
2

1
2

3
2

3 2 1
2

2 3 1 3

x x

x x x x x x x x

x x x x 22 41 2x x+

















  
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figure C.5
Plot of two different functions.

Maximize 125*x + 150*y

–1 1 2 3 4 5 6 7 8 9 10
–1

1

2

3

4

5

6

7

figure C.6
Linear programming problem.

Maximize 3*x + 4*y
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figure C.7
Linear programming problem.
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Chapter 2

 1. 
L
D







=
max

  .1 71 occurs at α* = 20 degrees

 2.
 i. The minimum value of function is –3.517 and occurs at x* = 

−1.386. The numbers of function evaluations are 16, 20, 40, and 58 
by the golden section, cubic polynomial fit, bisection, and secant 
method respectively.

 ii. The minimum value of function is 4.369 and occurs at x* = 0.45. 
The numbers of function evaluations are 15, 16, 36, and 44 by the 
golden section, cubic polynomial fit, bisection, and secant method 
respectively.

 iii. The minimum value of function is 0.691 and occurs at x* = 1.087. 
The numbers of function evaluations are 15, 40, 32, and 128 by the 
golden section, cubic polynomial fit, bisection, and secant method 
respectively.

 iv. Minimum value of function is 11.052 and occurs at x* = 1.356.
The number of function evaluations is 16 by the golden sec-
tion method. Other methods did not converge as the function is 
highly skewed.

 3. The maximum value of function is 0.202 and occurs at x* = 3.
 4. The maximum value of function is 28.209 and occurs at x* = 3.577.
 5. The maximum value of function is 0.693 and occurs at x* = 0.0. The 

minimum value of function is 0.526 and occurs at x* = 1.19.
 6. Let x and y be the length and depth of the beam and D be the diam-

eter of the log. Then,

 x2 + y2 = D2

 y2 = 1 − x2

  Let S denote the strength of the beam. Then,

 S = kxy2

 where k is a constant.
  Now,

 S = kx(1 − x2)
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  For maximum,

 
d
d

S
x

= 0
 

  Therefore,

 x = 0.5774 m and y = 0.8165 m

 7. Total cost

 C
x

x
x

= +




 + ×6

300
3

7
600

 

  For maximum,

 
d
d
C
x

= 0
 

  Therefore,

 x = 54.77 km/h

 8. Total time

 t
x x= − + +7

6
25

2

2

 

  For minimum,

 
d
d

t
x

= 0
 

  Therefore,

 x = 1.77 km

 9. (T)min = 41,375 N occurs at v* = 149 m/s
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 10. The global minimum value of function is –6.097 and occurs at x* = 
−1.18. The local minimum value of function is –5.01 and occurs at 
x* = 0.43. The regions ABC and CDE are convex. The region BCD is 
concave (see Figure C.8).

 11. f′(x) = 0

 
k
p

x
p
p2

1

2

2 0− =
 

  Therefore,

 x
k
p

=
2 1  

  Hence,

 f x
k
p p

( ) .= =
2

1 24
40 5

 

 12. The minimum value of function is –4.899 and occurs at x* = 0.3.
 13. r* = 40.7 mm and h* = 57.6 mm.
 14. a* = 2.24 (see Figure C.9).
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figure C.8
Multimodal function.
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Chapter 3

 1. The gradient of the function is given by

 ∇ =
+
+













f
x x

x x
 

2 3

3 4
1 2

1 2  

  Therefore, search direction for the steepest descent method at (1, 2) 
is given by

 S f= −∇ = −








  8

11  

 2. x* = (0, 0) with f(x*) = 0
 3. All the methods converge to the point x* = (3, 2) with f(x*) = 0. The 

convergence history of different methods is given below:
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figure C.9
Solution to bacteria problem.
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 i. Steepest descent method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv 
 ————————————————————————————————————————————
 1 2.777 1.706 4.239 46.648
 2 -3.827 -2.255 34.894 23.591
 3 -3.417 -2.938 8.305 63.644
 4 3.276 1.088 7.130 31.920
 5 2.843 1.804 2.045 10.994
 6 3.036 1.921 0.095 16.863
 7 2.993 1.992 0.004 2.150
 8 3.001 1.997 0.000 0.792
 9 3.000 2.000 0.000 0.089
 10 3.000 2.000 0.000 0.018
 11 3.000 1.999 0.000 0.007
 12 3.000 1.999 0.000 0.032
 13 3.000 2.000 0.000 0.024
 14 3.000 2.000 0.000 0.010
 15 3.000 1.999 0.000 0.005
 16 3.000 1.999 0.000 0.017
 17 3.000 2.000 0.000 0.029
 18 3.000 2.000 0.000 0.013
 19 3.000 1.999 0.000 0.007
 20 3.000 2.000 0.000 0.022
 21 3.000 2.000 0.000 0.012
 22 3.000 1.999 0.000 0.007
 23 3.000 2.000 0.000 0.019
 24 3.000 2.000 0.000 0.011
 25 3.000 1.999 0.000 0.007
 26 3.000 2.000 0.000 0.018
 27 3.000 2.000 0.000 0.011
 28 3.000 1.999 0.000 0.006
 29 3.000 2.000 0.000 0.017
 30 3.000 2.000 0.000 0.010
 31 3.000 1.999 0.000 0.006
 32 3.000 2.000 0.000 0.017
 33 3.000 2.000 0.000 0.010
 34 3.000 1.999 0.000 0.006
 35 3.000 2.000 0.000 0.016
 36 3.000 2.000 0.000 0.010
 37 3.000 1.999 0.000 0.006
 38 3.000 2.000 0.000 0.016
 39 3.000 2.000 0.000 0.009
 40 3.000 1.999 0.000 0.006
 41 3.000 2.000 0.000 0.015
 42 3.000 2.000 0.000 0.009
 ————————————————————————————————————————————
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 ii. Newton’s method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 —————————————————————————————————————————————
 1 4.426 2.016 114.754 46.648
 2 3.508 1.780 9.631 193.672
 3 3.095 1.967 0.298 42.834
 4 3.004 1.998 0.001 6.720
 5 3.000 2.000 0.000 0.292
 6 3.000 2.000 0.000 0.001
 —————————————————————————————————————————————

 iii. Modified Newton’s method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv 
 ————————————————————————————————————————————
 1 2.991 2.598  7.814 46.648 
 2 2.951 2.035  0.076 31.917 
 3 2.999 2.001  0.000  2.892 
 4 3.000 2.000  0.000  0.035 
 5 3.000 2.000  0.000  0.006 
 6 3.000 2.000  0.000  0.001  
 ————————————————————————————————————————————

 iv. Levenberg–Marquardt method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 —————————————————————————————————————————————
 1 2.024 2.963 29.980 46.648
 2 2.074 2.898 26.507 44.421
 3 2.172 2.794 21.043 40.863
 4 2.353 2.646 13.471 35.851
 5 2.615 2.457  5.628 29.097
 6 2.844 2.259  1.324 19.368
 7 2.952 2.107  0.184  9.124
 8 2.989 2.028  0.012  3.221
 9 2.998 2.004  0.000  0.797
 10 3.000 2.000  0.000  0.113
 11 3.000 2.000  0.000  0.008
 —————————————————————————————————————————————
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 v. Conjugate gradient method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv
 —————————————————————————————————————————————
 1 2.777 1.706  4.239 46.648
 2 3.076 1.727  0.920 23.591
 3 3.110 1.886  0.425  6.141
 4 3.029 2.027  0.060  6.459
 5 2.993 2.031  0.014  3.124
 6 2.987 2.019  0.008  0.955
 7 2.994 1.998  0.001  0.719
 8 3.000 1.996  0.000  0.484
 9 3.001 1.997  0.000  0.139
 10 3.001 1.999  0.000  0.084
 11 3.000 2.000  0.000  0.070
 —————————————————————————————————————————————

 vi. DFP method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv 
 ————————————————————————————————————————————
 1 2.777 1.706 4.239 46.648
 2 3.076 1.727 0.920 23.591
 3 2.997 1.999 0.000 6.142
 4 3.000 2.000 0.000 0.229
 5 3.000 2.000 0.000 0.019
 6 3.000 2.000 0.000 0.004
 7 3.000 2.000 0.000 0.001
 ————————————————————————————————————————————

 vii. BFGS method

 Initial function value = 32.0000
 No. x-vector f(x) Deriv 
 ————————————————————————————————————————————
 1 2.777 1.706 4.239 46.648
 2 3.076 1.727 0.920 23.591
 3 2.997 2.000 0.000 6.141
 4 3.000 2.000 0.000 0.234
 5 3.000 2.000 0.000 0.020
 6 3.000 2.000 0.000 0.004
 ————————————————————————————————————————————
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 viii. Powell method

 Initial function value = 32.0000
 No. x-vector f(x)
 ——————————————————————————————————
 1 3.000 2.003 0.000
 2 3.000 2.001 0.000
 3 3.000 2.001 0.000
 4 3.000 2.001 0.000
 5 3.000 2.000 0.000
 ——————————————————————————————————

 ix. Nelder–Meads method

 Iteration Deviation f(x)
 ————————————————————————————————
 1 87.9962 58.789
 2 29.8163 21.131
 3 32.1499 10.859
 4 13.5635 10.859
 5 4.5179 6.998
 6 5.4792 2.191
 7 3.5857 0.483
 8 1.3618 0.483
 9 1.1302 0.483
 10 0.3982 0.483
 11 0.3662 0.116
 12 0.2224 0.116
 13 0.0865 0.072
 14 0.0644 0.006
 15 0.0417 0.006
 16 0.0084 0.006
 17 0.0089 0.002
 18 0.0029 0.002
 19 0.0023 0.001
 20 0.0013 0.001
 21 0.0011 0.000
 22 0.0005 0.000
 23 0.0002 0.000
 24 0.0002 0.000
 ————————————————————————————————

xc =
 2.9994 1.9987
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 4. The metric [A] approaches the inverse of the Hessian matrix in the 
DFP method.

 Initial function value = 9.0000
 No. x-vector f(x) Deriv
 ————————————————————————————————————————————
 1 0.545 -0.183 0.165 13.928
 2 0.001 -0.000 0.000 0.575
 3 -0.000 0.000 0.000 0.001
 4 0.000 -0.000 0.000 0.000
 ————————————————————————————————————————————

>> A

A =

   0.909090909189563  -0.272727272447249
  -0.272727272447250   0.181818182613013

>> inv(hessian(x,delx,n_of_var))

ans =

   0.909090909090909  -0.272727272727273
  -0.272727272727273   0.181818181818182

 5. The metric [A] approaches to the Hessian matrix in the BFGS method.

 Initial function value = 67.0000
 No. x-vector f(x) Deriv
 ————————————————————————————————————————————
 1 0.818 -0.273 0.372 38.275
 2 0.001 -0.000 0.000 0.862
 3 -0.000 0.000 0.000 0.001
 ————————————————————————————————————————————

>> A

A =

   1.999999985050531   2.999999955266635
   2.999999955266635   9.999999866143737

>> hessian(x,delx,n_of_var)

ans =

   2.000000000000000   3.000000000000000
   3.000000000000000  10.000000000000002
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 6. x* = (−0.656, −0.656) with f(x*) = −2.661

 Initial function value = 4.3891
 No. x-vector f(x) Deriv 
 ————————————————————————————————————————————
 1 0.098 0.184 -2.422 21.090
 2 -0.764 -0.539 -2.601 0.987
 3 -0.665 -0.599 -2.641 0.763
 4 -0.655 -0.656 -2.661 0.845
 5 -0.655 -0.656 -2.661 0.014
 6 -0.656 -0.656 -2.661 0.010
 7 -0.656 -0.656 -2.661 0.002
 ————————————————————————————————————————————

 7. x* = (1, 0, 0) with f(x*) = 0
 8. Both the complex variable formula and the central difference for-

mula give the same results.
 9. The value of the analytical derivative at x = 0.1 is 10.995004165278026. 

The value of the derivative at x = 0.1 using the central difference 
formula is 10.995337352778689. The value of the derivative at x = 0.1 
using the complex variable formula is 10.995004165278024.

 10.

xi f(xi) Si α* f(α*)

(1, 1) 106 (2, 4) 0.431928 28.3361
(0, 0) 170 (1, 2) 1.41453 43.9167
(3, 2) 0 (1, 1) –0.00366 0.00099

 11. x* = (0, 0) with f(x*) = 0
 12.

 x
p v

v1 = −
 

 
x

p w
w2 = −

 

  Since the second derivative is negative 
−

+








p
x( )1 1

2 , it corresponds 
to the maximum of the function
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 13. x* = (0.02, 1.6) with f(x*) = −25.632

 Initial function value = 0.0000
 No. x-vector f(x) Deriv 
 ————————————————————————————————————————————
 1 0.122 1.530 -24.751 32.102
 2 0.020 1.593 -25.631 16.299
 3 0.020 1.599 -25.632 0.167
 4 0.020 1.599 -25.632 0.030
 5 0.020 1.600 -25.632 0.022
 6 0.020 1.600 -25.632 0.016
 7 0.020 1.600 -25.632 0.011
 8 0.020 1.600 -25.632 0.002
 ————————————————————————————————————————————

Chapter 4

 1. Maximize

 z = 5x + 7y

 subject to

 2x + 3y ≤ 42

 3x + 4y ≤ 48

 x, y ≥ 0

 The solution is x = 0, y = 12, z = 84
 2.
 i. The solution is x1 = 0, x2 = 5, z = −10
 ii. The solution is x1 = 0, x2 = 10, z = 50

 iii. The solution is x x z1 2
15
7

110
7

610
7

= = =,   ,  

 iv. The solution is x x z1 2
11
5

6
5

1
5

= = =, ,

 3. 

x

x

x

1

2

3

2 3
2

5 3



















= −

















/

/
Infeasib( lle)
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 4. k = 2
 5.
 i.

 A c=
− −
− − −
−


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
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


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 ii.
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 6.

 x bBB
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

















= =
















−

−
3

4

5

1
1 0 0
0 1 0
0 0 1

11

7
8
5

7
8
5

















=
















 

 7. The solution is x1 = 0, x2 = 5, z = −10

 —————————————————————————————————————————
 basic_set =
  3 4 5
 nonbasic_set =
  1 2
 Initial_Table =
  1 0 0 1 2 10
  0 1 0 2 -1 5
  0 0 1 4 -3 5
 Cost =
  0 0 0 3 -2 0
 —————————————————————————————————————————
 basic_set =
  2  4  5 
 nonbasic_set =
  1  3 
 Table =
  1 0 0 1/2 1/2 5
  0 1 0 5/2 1/2 10
  0 0 1 11/2 3/2 20
 Cost =
  0 0 0 4 1 10

 ------SOLUTION------
 basic_set =
  2  4  5
 xb =
  5 
  10 
  20 
 zz =
  -10 

 8. Because the cost coefficients of the nonbasic variables are not zeros, 
the LPP has a unique solution.

 —————————————————————————————————————————————————
 basic_set =
  3  4  5 
 nonbasic_set =
  1  2 
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 Initial_Table =
  1  0 0 2 -4 2
  0  1 0 -1 1 3
  0  0 1 1 0 4
 Cost = 
  0  0 0 1 -2 0
 —————————————————————————————————————————————————
 basic_set =
  3  2  5 
 nonbasic_set =
  1  4 
 Table =
  1  0 0 -2 4 14
  0  1 0 -1 1 3
  0  0 1 1 0 4
 Cost =
  0  0 0 -1 2 6
 —————————————————————————————————————————————————
 basic_set =
  3 2 1
 nonbasic_set =
  4 5
 Table =
  1 0 0 4 2 22
  0 1 0 1 1 7
  0 0 1 0 1 4
 Cost =
  0 0 0 2 1 10

 ------SOLUTION------
 basic_set =
  3 2 1
 xb =
  22
  7
  4
 zz =
  -10

 9. x1 = 0, x2 = 0, x3 = 2
 10. The dual is

Minimize

 z = 7x1 + 6x2

subject to

 x1 ≥ 4
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 x2 ≥ 5 

 2x1 + x2 ≥ 23

 x1 + 3x2 ≥ 24

 x1, x2 ≥ 0

  The optimal solution for the dual problem is 93 at x1 = 9, x2 = 5.
  The optimal solution for the primal problem is 93 at y1 = 0, y2 = 0, 

y3 = 3, y4 = 1.
 11. x1 = 0.505, x2 = 0.745, z = 1.25

Chapter 5

 1. String length = 17.
 2. String length for each variable as 14, 17, and 12.
 3. Rerun the codes by modifying the input parameters mentioned in 

the file in.m.
 4. Roulette wheel slots can be constructed for each of the strings. For 

example, the first string will have slots from 0 to 0.065 (25/385). Other 
slots are made in a similar way. Ten uniformly distributed random 
numbers are generated between 0 and 1. The corresponding strings 
pointed out by the random numbers are then selected. The strings 
selected are S-1 (one copy), S-3 (two copies), S-4 (one copy), S-5 (two 
copies), S-6 (one copy), S-8 (two copies), and S-9 (one copy). No copies 
of the strings S-2, S-7, and S-10 are made (see Figure C.10).

 5. A tour size of two is selected. Each string has to be paired randomly 
with any other string in the group using random number genera-
tion. The winner is decided by comparing the fitness values of the 
strings (see Table C.1).

0.2 0.4 0.6 0.8 1.0

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 9 10

figure C.10
Roulette wheel slots.

© 2015 by Taylor & Francis Group, LLC

  



425Appendix C

 6. Global minimum at x* = (0, 0) with f(x*) = 0
 7. Global minimum at x* = (0, 0) with f(x*) = 0
 8. The Himmelblau function has four distinct minima (see Figure C.11) 

as given below:

 x1 = 3, x2 = 2, f(x*) = 0

 x1 = 3.584, x2 = −1.848, f(x*) = 0

 x1 = −3.779, x2 = −3.283, f(x*) = 0

 x1 = −2.805, x2 = 3.131, f(x*) = 0

Table C.1

Tournament Selection

String Competitor Winner

S-1 S-5 S-5
S-2 S-10 S-10
S-3 S-10 S-3
S-4 S-2 S-2
S-5 S-10 S-5
S-6 S-5 S-5
S-7 S-8 S-8
S-8 S-1 S-8
S-9 S-4 S-9
S-10 S-9 S-9

–5

0

5

–5

0

5
0

200

400

600

800

1000

x1
x2

figure C.11
Himmelblau function.
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 9. Global minimum x* = (−0.656, −0.656) with f(x*) = −2.661
 10. Global minimum x* = (1.139, 0.8996) with f(x*) = 1.9522
 11. Global minimum x* = (1, 3) with f(x*) = 0
 12. Global minimum x* = (0, 0) with f(x*) = 0

Chapter 6

 1.
 i. Infeasible
 ii. Feasible
 iii. Infeasible
 iv. Feasible
 2. Only ii is active.
 3. Substitute the value of x2 = 7 − x1 in the objective function

 f(x) = (5x1 − 14)2 + (x1 + 2)2

  Taking the first derivative as zero gives, x1
34
13

=

  Therefore, x2
57
13

=  and f ( *)x = 288
13

 4. Writing the Lagrangian as

 L(x,λ) = (3x1 − 2x2)2 + (x1 + 2)2 + λ(x1 + x2 − 7)

  The KKT conditions are given by the equations

 20x1 − 12x2 + λ +4 = 0

 −12x1 + 8x2 + λ = 0

 x1 + x2 − 7 = 0

  Solving these equations gives the solution as x1 = 34/13 and 
x2 = 57/13, which is the optimum point with λ = −48/13. The mini-
mum value of the function is 288/13. Also,

 ∇ = −
−









 >2 20 12

12 8
0L
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  The Lagrange multipliers provide information on the sensitivity 
of objective function with respect to the right-hand side of the con-
straint equation (say, b). Then,

 ∆ ∆ ∆f b b= = −µ 48
13

 
 

  Therefore,

 f b≈ −288
13

48
13

 ∆
 

  If the right-hand side of the constraint is changed by 1 unit, then 
the new value of the function minimum is 18.461 (approximately). 
The true minimum of the problem with the revised constraint is 
18.615.

 5.
Iteration 1

 f f h g( ) ; ( )  ;  ;  x x= ∇ =
−









 ∇ =









 ∇ = −

−
6 3

4
1
1

1
11









  ;

 

 ∇ = −
−









2 8 7

7 12
L  

 

  The quadratic problem is

  Minimize

 Q T T=
−









 + −

−








      ∆ ∆ ∆x x x3

4
1
2

8 7
7 12  

  subject to

 − + =1 1 1 0[ ] ∆x  

 − + − − =1 1 1 0[ ] ∆x  
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  The solution of the quadratic problem is

 ∆x =










0 3529
0 6471
.
.  

  Now x is updated as

 x x x= + =








 +









 =∆ 1

1
0 3529
0 6471

1 3529
1 6471

.

.
.
.











 

Iteration 2

 f f h( ) . ; ( ) .
.

;   .x x= ∇ =
−









 ∇ =5 007 1 7056

1 9473
1 647712
1 3529

1
1.

;   ; 








 ∇ = −

−








g

 

 ∇ =








2 8 3751 2 7195

2 7195 6 6889
L . .

. .
 

 

  The quadratic problem is
  Minimize

 Q T T=
−









 +∆ ∆x x  .

.
. .
.

1 7056
1 9473

1
2

8 3751 2 7195
2 71995 6 6889.









 ∆x

 

  subject to

 0 2284 1 64712 1 3529 0. [ . . ] + =∆x  

   [ ]− + − − =2 1 1 0∆x  

  The solution of the quadratic problem is

 ∆x = −









0 4279
0 3521

.
.  
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  Now x is updated as

 x x x= + =








 + −







 =∆ 1 3529

1 6471
0 4279
0 3521

0.
.

.
.

..

.
9251

1 9991











 

  In a similar manner, other iterations can be written. The values at 

the termination of the algorithm x =




















1 0371
1 9284

.

.
 are

 f f h( ) . ; ( ) .
.

; .x x= ∇ = −
−









 ∇ =4 4819 0 8643

0 4648
1 92284
1 0371

1
1.

;  








 ∇ = −

−








g

 

 ∇ =








2 17 4375 1 0098

1 0098 3 5976
L . .

. .  

 6. Identical results are obtained.
 7. The number of iterations will vary with different start values of the 

design variables.
 8. Identical results are obtained.
 9. Copy the SQP folder (of some other problem) to the working direc-

tory and make changes in function and constraint subroutines as 
follows.

function y = func_val(x)
y = 0.0064*x(1)*(exp(-0.184*x(1)^0.3*x(2))-1);

function y = func_val1(x)
y = 0.0064*x(1)*(exp(-0.184*x(1)^0.3*x(2))-1);

function h = eqconstr_val(x)
h(1) = 0;

function g = ineqconstr_val(x)
g(1) = ((3000+x(1))*x(1)^2*x(2))/1.2e13 -1;
g(2) = ( exp(0.184*x(1)^0.3*x(2)) )/4.1 -1;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code sqp.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n_of_var = 2;
n_of_eqcons = 1;
n_of_iqcons = 2;
X = [30000 0.5];

  Execute the SQP code with these modifications and the converged 
solution is obtained in five iterations.

 No. x-vector f(x) |Cons.| 
 ———————————————————————————————————————————————————————————
 1 30402.6828 0.384516 -153.906889 0.16689252491
 2 31592.6073 0.344868 -153.329290 0.00924809461
 3 31764.8743 0.342079 -153.711944 0.00001910009
 4 31765.5812 0.342072 -153.714422 0.00000000010
 5 31765.5812 0.342072 -153.714422 0.00000000000
 ———————————————————————————————————————————————————————————

 10. x* = (0.05179, 0.3591, 11.1527) with f(x*) = 0.01267

Chapter 7

 1. The Pareto front is given in Figure C.12.
 2. The Pareto front is given in Figure C.13.
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figure C.12
Pareto front.
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 3. The Pareto front is given in Figure C.14.
 4. The Pareto front is given in Figure C.15.
 5. The Pareto front is given in Figure C.16.
 6. The Pareto front is given in Figure C.17.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

figure C.13
Pareto front.
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Pareto front.
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Chapter 8

 1. x* = (1.305470, 1.390561, 0.4892672) with f(x*) = 125.9045
 2. x* = (0.3205667, 1.481980, 1.064722, 1.719745) with f(x*) = 47.47193
 3. x* = (0.5, 0.5) with f(x*) = 0.5
 4. D* = 0.922 cm, Q* = 0.281 m3/s
 5. Δp* = 400,000 Pa, Q* = 7.5 × 10−4 m3/s, C* = $477.19
 6. Δt* = 2.28°C, Q* = 764.72 m3/m2, C* = 1.163 ($/m2)
 7. ω* = 469 rad/s, T* = 262 Nm

Chapter 9

 1. Full factorial design

 0.5 5 0.01
 0.5 7.5  0.01
 0.5 10 0.01
 1.25 5 0.01
 1.25 7.5  0.01
 1.25 10  0.01
 2 5  0.01
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figure C.17
Pareto front.
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 2 7.5 0.01
 2 10 0.01
 0.5 5 0.055
 0.5 7.5  0.055
 0.5 10 0.055
 1.25 5 0.055
 1.25 7.5 0.055
 1.25 10 0.055
 2 5 0.055
 2 7.5 0.055
 2 10 0.055
 0.5 5 0.1
 0.5 7.5 0.1
 0.5 10 0.1
 1.25 5 0.1
 1.25 7.5 0.1
 1.25 10 0.1
 2 5 0.1
 2 7.5 0.1
 2 10 0.1

 2. Central composite design

 0.5 5
 0.5 10
 2 5
 2 10
 0.293 7.5
 2.828 7.5
 1.25 7.07
 1.25 14.14
 1.25 7.5

 3. a0 = 0.16, a1 = 0.572
 4. y = 49.2682 + 0.02x1 + 0.2745x2 + 0.3084x3 + 14.3068x4

 5. z z x x1 2 1 2 0 7 17 7 3 7 71532* * * *, , , ( . , , . , . )( ) = . The value of objective func-
tion is 2994.355.

Chapter 10

 1. x* = (7, 1) with f(x*) = −23
 2. x* = (1, 0) with f(x*) = −1
 3. Let x1 and x2 be the number of chairs and tables to be produced. The 

integer programming problem is
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Maximize

 f(x) = 100x1 + 160x2

subject to

 6x1 + 14x2 ≤ 42

 7x1 + 7x2 ≤ 35

 x1, x2 ≥ 0

where x1 and x2 are integers.
The optimal solution is x* = (5, 0) with f(x*) = 500.

 4. x* = (1, 0, 1, 1, 0, 1, 0, 0, 1) with f(x*) = 72
 5. x* = (2, 2) with f(x*) = −16
 6. x* = (1, 5) with f(x*) = −39
 7. x* = (0, 5) with f(x*) = 10
 8. x* = (0, 1) with f(x*) = 2

Chapter 11

 1.
 i. x* = (0, 5) with f(x*) = −10

 ii. x* =






1
5

52
5

,   with f ( *)x = 262
5

 iii.

 x* , =






15
7

110
7

 with f ( *)x = 610
7

 

 2. x* = (8, 0) with f(x*) = −24 
 3. The optimal path is ADFGI and the minimum distance is 19.
 4. Two numbers of component 1, two numbers of component 2, and 

one number of component 3, with the probability of the system = 
0.9736.
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Index

Page numbers followed by f and t indicate figures and tables, respectively.

A

Aerodynamic response surface models, 
244

Aerospace applications
weight minimization for, 3

Affine scaling method, for LPP, 125–126, 
127f

All-integer programming problem, 263; 
see also Integer programming 
problem

Angle of attack (α), 244, 246, 255, 255f, 
256

Annealing, 140, 154; see also Simulated 
annealing (SA)

Ant colony optimization (ACO) 
technique, 2, 160–163

applications, 160
background, 160
formula, 165

Array operators, MATLAB®, 317
Arrays, MATLAB®, 309–312
Aspiration criteria, 163
Augmented Lagrange multipliers 

(ALM) method
for constrained optimization 

problem, 175–176, 182–184
formula, 198
MATLAB® code, 183–184, 372–374

B

Backward difference formula, 17–18, 
28

Backward difference method, 17
Balas’ method, 264, 272–274, 286–287
Bank angle, 246
Barrier function methods, for LPP, 125

Basic feasible solution
for LPP, 103

Basic solution, for LPP, 103–105
feasible, 103
optimal, 103

Bellman, Richard, 2, 289
BFGS method, see Broyden–Fletcher–

Goldfarb–Shanno method
Bilevel integrated system synthesis 

(BLISS) architecture, of MDO, 
252–253, 254f

Bisection method
algorithm for, 39t
comparison with other methods, 

49–51, 50f, 51t
for 1-D optimization problem, 38–40, 

39f–40f
MATLAB® code, 39, 328–329

Boyle’s law, 5
Branch-and-bound method

MATLAB® code, 279–281, 282–283, 
394–398

for nonlinear integer programming 
problems, 263–264, 278–284, 
280f, 282f, 284f

Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) method

algorithm for, 73t
MATLAB® code, 72–73, 345–347
performance comparison with other 

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

search direction in (formula), 87
for unconstrained optimization 

problems, 55, 72–73, 73t
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C

Calculus
history, 1

Calculus of variations, 1
history, 1

Cantilever rod (example), 10–11, 11f
Cauchy, Augustin-Louis, 1
Central difference formula, 18, 28

for second derivative, 28
Central difference method, 17
CFD analysis, see Computational fluid 

dynamics (CFD) analysis
Collaborative optimization (CO) 

architecture, of MDO, 251–252, 
251f

advantage, 252
disadvantage, 252

Command window, MATLAB®, 309, 311f
Computational fluid dynamics (CFD) 

analysis, 190–191, 244, 254, 255
Computers

development of, 2
Concave function, 15, 16f
Concurrent subspace optimization 

(CSSO) architecture, of MDO, 
252, 253f

formula, 259
Conjugate directions, 68, 68f
Conjugate gradient method

algorithm for, 69t
MATLAB® code, 69–70, 342–343
performance comparison with other 

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

search direction in (formula), 87
for unconstrained optimization 

problems, 68–70, 68f, 69t, 70f
vs. steepest descent method, 69–70, 

70f
Constrained optimization, 2
Constrained optimization problem, 

169–196
application to structural design, 

195–196, 195f
geometric programming, 231–235

optimality conditions, 171–174
example, 173–174, 174f
Karush–Kuhn–Tucker (KKT) 

conditions, 172–173
Lagrange function, 171, 172
Lagrange multipliers, 172, 173
regular point, 172

overview, 169–171, 170f, 171f
solution techniques, 175–176

augmented Lagrange multipliers 
(ALM) method, 175–176, 
182–184

feasible directions, method of, 176, 
190–195

penalty function method, 175, 
176–182, 177f, 179f

Rosen’s gradient projection 
method, 176, 192–195, 193f

sequential quadratic 
programming, 176, 184–190

variable substitution method, 175
Zoutendijk’s method, 176, 191–192

vs. unconstrained problem, 169
Constraints, 4–5

equality, 4–5, 170
inequality, 4, 5, 170

Continuous data, 5
Contour plot, MATLAB®, 318f
Contraction operation, simplex, 75–76
Convergence method

linear, 62
quadratic, 62
superlinear, 62

Convex function, 13–14, 14f, 16f
examples, 14, 15f

Convexity, 13–16, 14f–16f
MATLAB® code, 13, 322–323

Convex set, 13–14, 14f
Crossover operation, in GA, 147–148, 148t
CSSO (concurrent subspace 

optimization) architecture, of 
MDO, 252, 253f

formula, 259
Cubic polynomial fit

algorithm for, 45t
comparison with other methods, 

49–51, 50f, 51t
for 1-D optimization problem, 44–45
MATLAB® code, 45, 332–333
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Curse of dimensionality, in dynamic 
programming, 289

Cylindrical can manufacturing 
(example), 8–9, 8f

D

Dantzig, George, 2
Darwin’ survival of the fittest principle, 

140
Davidon–Fletcher–Powell (DFP) method

algorithm for, 71t
MATLAB® code, 71–72, 177, 344–345
performance comparison with other 

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s function, 79t
for Wood’s function, 83t

search direction in (formula), 87
for unconstrained optimization 

problems, 55, 70–72
Decision variables, 3–4
de Fermat, Pierre, 1
Degeneracy

simplex method for LPP, 114–116
Degree of difficulty, in geometric 

programming, 225–226
Demand–supply problem, 5–6
Dependent variable, 6
Derivative(s)

concept of, 16–17, 17f
directional, 16–22, 17f, 18f
of function, 18–19, 18f
inflection point (saddle point), 19, 19f
MATLAB® code, 18, 323–324

Design of experiments (DoE), 256
Design variables, 3–4, 5

for optimization problem, 3–4, 4t
Deterministic dynamic programming, 

289–294
concept of, 290–291, 290f
example, 293–294
stage 1, 291, 292t
stage 2, 291, 292t
stage 3, 291, 292f, 292t
stage 4, 291, 291f, 291t
structure of, 290f

Dichotomous search method

for 1-D optimization problem, 38, 
47–48, 48f

Diet problem, 1
example, 6–8, 7t

Differential equation, 6
solution for, 6

Directional derivative, 16–22, 17f, 18f
Direct search methods, 35, 38

1-D optimization problem
dichotomous search, 47–48, 48f
Fibonacci method, 47, 49
golden section method, 46–47, 47t
interval halving method, 47, 48, 

49f
for unconstrained optimization 

problems
Nelder–Mead algorithm, 55, 

75–78, 75f, 76f, 77t
Powell method, 55, 74, 74t

Discrete data, 5
Discrete programming problems, 263; 

see also Integer programming 
problem

Domination, principle of, 204
Dual problem

geometric programming for, 229–231, 
239

Dual simplex method, for LPP, 121–124
algorithm for, 123t
MATLAB® code, 121, 122, 356–358
primal to dual conversion, 

transformation rules, 121–122, 
122t

Dynamic programming, 289–296
curse of dimensionality in, 289
deterministic, 289–294
limitations, 289
for LPP (example), 293–294, 293f
overview, 289
principle of optimality in, 289
probabilistic, 294–296, 295t–296t
stages, 289

Dynamic programming problems
history, 2

E

ε-constraints method
concept of, 211, 211f
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for multiobjective optimization 
problem, 210–212, 211f–212f

nonconvex Pareto front, 211–212, 
212f

Elementary functions, in MATLAB®, 
313–314

End-effector, 83
Equality constraints, 4–5, 170
Euclid, 1
Euler, Leonhard, 1
Evolutionary methods, 139

genetic algorithms, 140–142; see also 
Genetic algorithms (GAs)

crossover and mutation, 147–148, 
148t

fitness evaluation, 143, 144t
initialize population, 142–143
multimodal test functions, 

148–153, 149f, 151f, 152f
reproduction, 143–147, 145f, 145t
working principle, 141–142, 141f

for nonlinear integer programming 
problems, 284–285, 285f, 285t

PSO method, 284–285
particle swarm optimization, 

157–158, 159f, 159t
Expansion operation, simplex, 76, 76f
Expressions, MATLAB®, 312–314
Exterior penalty function method, 

176–177, 177f

F

Feasible directions, method of, 176, 
190–195

Rosen’s gradient projection method, 
176, 192–195, 193f

Zoutendijk’s method, 176, 191–192
Feasible point, 5
Feasible solutions

for LPP, 103
Fibonacci method

for 1-D optimization problem, 38, 
47, 49

Finite element analysis, 254, 255
Fitness evaluation, in GA, 143, 144t

modified, 145t
Fletcher–Reeves conjugate gradient 

method

algorithm for, 69t
MATLAB® code, 69–70, 343–344
performance comparison with other 

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

for unconstrained optimization 
problems, 68–70, 69t, 70f

vs. steepest descent method, 69–70, 70f
Forward difference formula, 17, 28
Forward difference method, 17
Free (unrestricted) variable, 100
Full factorial design, 256, 256f
Function(s), 3; see also specific types

derivative of, 18–19, 18f
linear approximation, 23–25, 23f
objective, 3
quadratic approximation, 23–25, 23f, 

24f

G

Gauss, Carl Friedrich, 1
General solution, 6
Genetic algorithms (GAs), 2, 140–142, 245

crossover and mutation, 147–148, 148t
fitness evaluation, 143, 144t

modified, 145t
initialize population, 142–143
MATLAB® code, 142, 148
multimodal test functions, 148–153, 

149f, 151f, 152f
Rastrigin’s function, 149–151, 149f, 

151f
Schwefel’s function, 149, 151–153, 

152f
reproduction, 143–147

pie chart, 145–146, 146f
Roulette wheel selection, 145–146, 

146f
selection pressure, 145
tournament selection, 145, 146–147, 

146t
schema theorem, 147–148
selection pressure, 145
vs. gradient-based methods, 148–153
working principle, 141–142, 141f
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Geometric programming, 223–238
application (two-bar truss), 223, 

235–238, 236f
constrained optimization, 231–235
degree of difficulty in, 225–226
dual problem, 229–231
objective function (posynomial 

form), 223–224
overview, 223–224, 224f
unconstrained problem, 224–229

Global optimum solutions, for 
nonconvex function, 13, 14f

Global variables
MDO, 246

Goal programming method
advantages, 213
lexicographic, 214
for multiobjective optimization 

problem, 212–214
formula, 221
Pareto front, 214

Golden section method
advantages, 46
algorithm for, 47t
comparison with other methods, 

49–51, 50f, 51t
for 1-D optimization problem, 

46–47
MATLAB® code, 46, 58, 333–334

Gomory, Ralph, 2
Gomory constraint, 267, 268, 271
Gomory’s cutting plane method

for linear integer programming 
problems, 263, 265–272

MATLAB® code, 266, 267–272, 
390–394

Gradient-based algorithms, 14
Gradient-based 1-D optimization 

algorithms, 35, 38
bisection method, 38–40, 39f–40f, 39t
cubic polynomial fit, 44–45, 45t
Newton–Raphson method, 40–42, 

41f, 42t
secant method, 42–43, 43f, 44t

Gradient-based search methods, 139
for unconstrained optimization 

problems, 55, 60–62
BFGS method, 55, 72–73, 73t
DFP method, 55, 70–72, 71t

Fletcher–Reeves conjugate 
gradient method, 68–70, 68f, 
69t, 70f

Levenberg–Marquardt method, 
55, 66–67, 67t

modified Newton’s method, 66, 
66t

Newton’s method, 55, 63–65, 65t
steepest descent method, 62–63, 63t

vs. GA, 149–153
Gradient(s)

of function, 1, 16–22
MATLAB® code, 20, 95, 324–325

Gradient vector, 16–22
for objective function, 20–21, 20f

Graphical method, 11–13, 12f, 13f
LPP solution with, 95–98

feasible region, 95, 96f
infeasible solution, 98
infinite solutions, 96–97, 97f
unbounded solution, 97–98, 98f

MATLAB® code, 12, 95, 321–322
Guided random search methods, 139–164

ant colony optimization, 160–163
evolutionary methods, 139
genetic algorithms, 140–142; see also 

Genetic algorithms (GAs)
crossover and mutation, 147–148, 

148t
fitness evaluation, 143, 144t
initialize population, 142–143
multimodal test functions, 

148–153, 149f, 151f, 152f
reproduction, 143–147, 145f, 145t
working principle, 141–142, 141f

overview, 139–140, 140f
particle swarm optimization, 

157–158, 159f, 159t
simulated annealing, 154–156, 155t, 

156f–157f
tabu search, 163–164, 163t

H

Hancock, Harris, 2
Hessian matrix (H), 16–22, 55, 63–64, 68

example, 22
inverse of, 70–71
MATLAB® code, 21, 64, 340–341
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positive definite, 21
for three-variable function, 29

Historical review, 1–2

I

Independent variable, 6
Individual discipline feasible (IDF) 

architecture, of MDO, 248, 248f
advantage, 248
formula, 248–249

Inequality constraints, 4, 5, 170
Infeasible solution

for LPP, 98
Infinite solutions

for LPP, 96–97, 97f
Inflection point, 19, 19f
Initialize population, in GA, 142–143
Integer programming problem, 263–285

Balas algorithm, 264, 272–274
development of, 2
linear, 264–265, 265f

Gomory’s cutting plane method, 
265–272

zero-one problems, 272–277, 277f
nonlinear, 277–278

branch-and-bound method, 
278–284, 280f, 282f, 284f

evolutionary method, 284–285, 
285f, 285t

overview, 263–264, 264f
Interior penalty function method, 

178–179, 179f
Interior-point methods, for LPP, 

125–126, 125f, 126t
affine scaling methods, 125–126, 127f
algorithm for, 126t
barrier function methods, 125
MATLAB® code, 125, 358
potential-reduction methods, 125

Interval halving method
for 1-D optimization problem, 38, 47, 

48, 49f

J

Jacobian (J) function, 20–21
with three variables, 28

Job scheduling problem, 163

K

Kantorovich, Leonid, 2
Karmarkar, Narenndra, 125
Karush, William, 2
Karush–Kuhn–Tucker (KKT) conditions, 

172–173
Kuhn, Harold, 2

L

Lagrange, Joseph-Louis, 1
Lagrange function

for constrained optimization 
problem, 171, 172

formula, 197
Lagrange multipliers, 172, 173, 

182–183; see also Augmented 
Lagrange multipliers (ALM) 
method

Least squares method
history, 1

Legendre, Adrien-Marie, 1
Leibniz, Gottfried Wilhelm, 1
Levenberg–Marquardt method

algorithm for, 67t
MATLAB® code, 67, 342–343
performance comparison with other 

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

search direction in (formula), 87
for unconstrained optimization 

problems, 55, 66–67
Lexicographic goal programming 

method, 214
Linear approximation, 23–25, 23f, 24f

example, 24–25
Linear convergence method, 62
Linear function

properties, 93
Linear integer programming problems, 

264–265, 265f
formula, 286–287
Gomory’s cutting plane method, 

265–272
zero-one problems, 272–277, 277f
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Linear programming (LP) model
history, 2

Linear programming problem (LPP), 5, 
93–131

applications, 93
basic feasible solution, 103
basic solution, 103–105
defined, 93
dynamic programming for 

(example), 293–294, 293f
feasible region for, 95, 96f
feasible solution, 103
graphical method, 95–98, 96f–98f
infeasible solution for, 98
infinite solutions for, 96–97, 97f
interior-point method, 125–126, 125f, 

126t, 127f
optimal basic solution, 103
overview, 93–94, 94f
portfolio optimization, 127–131, 127t
primal to dual conversion, 

transformation rules, 121–122, 
122t

simplex method, 105–120
algorithm for, 109t
degeneracy, 114–116
dual, 121–124, 122t, 123t
feasible region, 111–112, 111f
multiple solutions, 112–114, 114f
two-phase method, 116–120

in standard form, 98–103
formula, 133

unbounded solution for, 97–98, 98f
Local minimum functions

saddle point and, 19, 19f
Local optimum solutions, for nonconvex 

function, 13, 14f
Local variables

MDO, 246
LPP, see Linear programming problem 

(LPP)

M

Machine allocation problem, 1
Mach number (M), 244, 255, 255f, 256
Mathematical models, 5
The MathWorks Inc., 309
MATLAB®, 12, 309–320

advantage, 309
array operators, 317
arrays, 309–312
command window, 309, 311f
elementary functions in, 313–314
expressions, 312–314
matrices, 309–312
matrix operations, 315–317
on Microsoft Windows, 309, 311f
operators, 312–313
overview, 309
plotting, 318, 318f–319f
programming, 319–320

MATLAB® code, 12, 18, 20, 321–400
ALM method (ALM.m), 183–184, 

372–374
BFGS method (BFGS.m), 72–73, 345–347
bisection method (bisection.m), 39, 

328–329
branch-and-bound method, 279–281, 

282–283, 394–398
convexity (convexity.m), 13, 322–323
cubic polynomial fit (cubic.m), 45, 

332–333
derivative (derivative.m), 18, 323–324
DFP method (DFP.m), 71–72, 177, 

344–345
dual simplex method, 121, 122, 356–358
exhaustive.m, 37, 328
Fletcher–Reeves conjugate gradient 

method (conjugate.m), 69–70, 
343–344

GA, 142, 148, 359–365
golden section method (golden.m), 46, 

58, 333–334, 335–336
Gomory’s cutting plane method, 266, 

267–272, 390–394
gradient (grad.m), 20, 324–325
graphical method (graph_examp12.m), 

12, 95, 321–322
Hessian matrix (hessian.m), 64, 340–341
interior-point method (interior.m), 

125, 358
Levenberg–Marquardt method 

(levenbergmarquardt.m), 67, 
342–343

modified Newton’s method 
(modified_newton.m), 66, 
341–342
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MuPad, 95, 96
Nelder–Mead algorithm 

(neldermead.m), 76–78, 348–350
Newton–Raphson method 

(newtonraphson.m), 41, 330
Newton’s method (newton.m), 64–65, 

339–340
positive definite matrix (positive_

definite.m), 21, 325
Powell method (powell.m), 74, 347–348
PSO method (pso.m), 196, 209, 366–

368, 369–371, 382–383, 398–400
quadratic approximation (quadr.m), 

23, 326–327
Rastrigin’s function, 149–150
robotics_nominal_traj.m, 84–85, 

350–351
Rosenbrock function (rosenbrock.m), 

59, 336–337
secant method (secant.m), 43, 330–331
simplex method for LPP (simplex.m), 

109, 112–113, 118–120, 122, 124, 
352–356

simulated annealing (simann.m), 155, 
365–366

spring system (springsystem.m), 60, 337
SQP method (sqp.m), 187, 207, 250–251, 

374–376, 378–380, 383–384, 
386–389

steepest descent method (steep_
des.m), 62, 63, 337–338

Matrices, MATLAB®, 309–312
MATrix LABoratory, see MATLAB®

Matrix operations, MATLAB®, 315–317
Microsoft Windows, MATLAB® on, 309, 

311f
Mixed-integer programming 

problem, 263; see also Integer 
programming problem

Modeling, of optimization problem, 
5–11

cantilever rod (example), 10–11, 11f
cylindrical can manufacturing 

(example), 8–9, 8f
diet problem (example), 6–8, 7t
reentry capsule (example), 9–10, 9f

Modified Newton’s method
algorithm for, 66t
MATLAB® code, 66, 341–342

performance comparison with other 
methods

for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

for unconstrained optimization 
problems, 66

Monotonic function, 35, 36f
Multidisciplinary design analysis 

(MDA), MDO, 245–246, 246f
formula, 258

Multidisciplinary design feasible (MDF) 
architecture, of MDO, 247, 247f

advantage, 247
disadvantage, 247
formula, 258

Multidisciplinary design optimization 
(MDO), 243–257

advantages, 243–244
for aerospace problems, 244
architecture, 245–246

BLISS architecture, 252–253, 254f
CO architecture, 251–252, 251f
CSSO architecture, 252, 253f
example, 249–251
IDF architecture, 248, 248f
MDF analysis, 247, 247f
multidisciplinary design analysis 

(MDA), 245–246, 246f
SAND architecture, 249, 249f

framework, 253–254
global variables, 246
local variables, 246
overview, 243–245, 245f
response surface methodology, 244, 

254–257, 255f–257f, 256t
single vs. two disciplines, 243, 244f

Multimodal functions, 14
Multimodal test functions, GA, 148–153

Rastrigin’s function, 149–151, 149f, 
151f

Schwefel’s function, 149, 151–153, 152f
Multiobjective optimization problem, 

203–219
application (reentry bodies), 215–219, 

215f, 217t, 219f
ε-constraints method, 210–212, 

211f–212f
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formula, 220
goal programming, 212–214
nondominated solutions, 204
objective functions, 204
overview, 203–205, 205f
Pareto optimal front, 204–205, 204f
principle of domination and, 204
utility function method, 214–215
weighted sum approach, 205–210, 

207f–210f
Multiple plots, MATLAB®, 318f
Multiple solutions

for LPP, 112–114, 114f
Multivariable function

unidirectional search for, 58t
MuPad, 95, 96
Mutation operation, in GA, 147–148, 148t

N

Natural selection, 140
Nelder–Mead algorithm

MATLAB® code, 76–78, 348–350
for unconstrained optimization 

problems, 55, 75–78, 77t
Newton, Isaac, 1, 40
Newton–Raphson method

algorithm for, 42t
comparison with other methods, 

49–51, 50f, 51t
disadvantages, 42
for 1-D optimization problem, 40–42, 

41f, 45
formula, 52
MATLAB® code, 41, 330

Newton’s law of cooling, 6
Newton’s method, 23, 68

algorithm for, 65t
MATLAB® code, 64–65, 339–340
modified, 66, 66t
performance comparison with other 

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s function, 79t
for Wood’s function, 83t

search direction in (formula), 86
for unconstrained optimization 

problems, 55, 63–65

Nonconvex function, 14, 15f
local and global optima for, 14, 15f

Nonconvex set, 13, 14f
Nondominated solutions

for multiobjective optimization 
problem, 204; see also 
Multiobjective optimization 
problem

ε-constraints method, 210–212, 
211f–212f

goal programming, 212–214
utility function method, 214–215
weighted sum approach, 205–210, 

207f–210f
Non–gradient-based 1-D optimization 

algorithms, 35, 38
Non–gradient-based search methods; 

see also Direct search methods
for unconstrained optimization 

problems, 55, 60
Nonlinear function

contours of, 81f
performance comparison of different 

methods for, 82t
unconstrained optimization 

problems, 81–82
Nonlinear integer programming 

problems, 277–278
branch-and-bound method, 278–284, 

280f, 282f, 284f
evolutionary method, 284–285, 285f, 

285t

O

Objective function, 3
geometric programming 

(posynomial form), 223–224
multiobjective optimization 

problem
cost minimization, 204
efficiency maximization, 204

for optimization problems, 3–4, 4t
quadratic approximation of, 23, 24f
tangent and gradient for, 20–21, 20f
variables in, 3–4, 4t

Observations, defined, 5
One-dimensional (1-D) optimization 

algorithms, 35–51
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gradient-based, 35, 38
monotonic function, 35, 36f
non–gradient-based, 35, 38
overview, 6f, 35–36
solution techniques, 38

bisection method, 38–40, 39f–40f, 39t
comparison of, 49–51, 50f, 51t
cubic polynomial fit, 44–45, 45t
dichotomous search method, 38, 

47–48, 48f
direct search methods, 35, 38
Fibonacci method, 38, 47, 49
golden section method, 46–47, 47t
interval halving method, 38, 47, 

48, 49f
Newton–Raphson method, 40–42, 

41f, 42t
other methods, 47–49
secant method, 42–43, 43f, 44t

test problem (solar energy), 37, 37f
unimodal function, 35, 36f

One-dimensional (1-D) optimization 
problem, 58

defined, 35
solution techniques, see One-

dimensional (1-D) optimization 
algorithms

Operators, MATLAB®, 312–313
Optimal basic solution

for LPP, 103
Optimality, principle of, 289
Optimality conditions, for constrained 

optimization problem, 171–174
example, 173–174, 174f
formula, 197
Karush–Kuhn–Tucker (KKT) 

conditions, 172–173
Lagrange function, 171, 172
Lagrange multipliers, 172, 173
regular point, 172

Optimization
first textbook on, 2
historical overview, 1–2
meaning of, 1
role of, 2

Optimization methods/techniques
applications of, 2
development of, 2

Optimization problem

constrained, see Constrained 
optimization problem

constraints, 4–5
convexity, 13–16, 14f–16f
1-D, 35; see also One-dimensional 

(1-D) optimization algorithms
described, 3–5
design variable for, 3–4, 4t
diet, 1
directional derivative, 16–22, 17f, 18f
function, 3
gradient vector, 16–22
graphical method, 11–13, 12f, 13f
Hessian matrix, 16–22
historical overview, 1–2
linear and quadratic approximations, 

23–25, 23f, 24f
LPP, 5
machine allocation, 1
modeling of, 5–11
multiobjective, see Multiobjective 

optimization problem
objective function, 3–4, 4t
performance index, 3
present-day, 2
unconstrained, see Unconstrained 

optimization problem

P

Pareto optimal front
multiobjective optimization problem, 

204–205, 204f
ε-constraints method, 211–212, 212f
goal programming method, 214
of reentry test body, 219, 219f
weighted sum approach, 206–210, 

207f–210f
Particle swarm optimization, 2
Particle swarm optimization (PSO) 

technique, 157–158, 205, 245
algorithm for, 159t
convergence, for Schwefel’s function, 

158, 159f
formula, 165
MATLAB® code, 196, 209, 366–368, 

369–371, 382–383, 398–400
nonconvex Pareto front generated 

with, 209, 209f
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for nonlinear integer programming 
problems, 284–285

Penalty function method, for 
constrained optimization 
problem, 175, 176–182

advantages, 178
disadvantages, 178
exterior, 176–177, 177f
formula, 198
interior, 178–179, 179f
welded beam (example), 179–182, 180f

Performance index, 3
Pheromone, 160, 161
Pie chart, reproduction in GA, 145–146, 

146f
Plotting, MATLAB®, 318

contour plot, 318f
multiple plots, 318f

Poisson distribution, 147
Polynomial-time algorithm 

(Karmarkar), 125
Portfolio optimization problem, 93, 

127–131, 127t
Positive definite Hessian matrix (H), 21

MATLAB® code, 21, 325
Posynomials, in geometric 

programming techniques, 
223–224, 225, 231, 232, 238

Potential-reduction methods, for LPP, 125
Powell method, 84

algorithm for, 74t
MATLAB® code, 74, 347–348
performance comparison with other 

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

for unconstrained optimization 
problems, 55, 74, 74t

Primal problem, 229
Principle of optimality, in dynamic 

programming, 289
Probabilistic dynamic programming, 

294–296, 295t–296t
stage 1, 296t
stage 2, 296t
stage 3, 295t

Programming, MATLAB®, 319–320

Q

Quadratic approximation, 23–25, 23f, 29
example, 24–25
MATLAB® code, 23, 326–327
of objective function, 23, 24f

Quadratic convergence method, 62
Quadratic function

contours of, 80f
performance comparison of different 

methods for, 81t
unconstrained optimization 

problems, 79–81
Quadratic problem; see also Sequential 

quadratic programming (SQP) 
method

formula, 198
Quasi-Newton method, 71; see also 

Davidon–Fletcher–Powell 
(DFP) method

R

Raphson, Joseph, 40
Rastrigin’s function

in GA, 149–151, 149f, 151f
MATLAB® code, 149–150
SA convergence for, 155–156, 156f

Ratio test, 108
Reentry bodies, multiobjective 

optimization problem 
application, 215–219

design variables, 215–216, 215f
MATLAB code, 219
Pareto front of, 219, 219f
response surface matrix, 217–218, 217t

Reentry capsule (example), 9–10, 9f
Reflection operation, simplex, 75–76, 75f
Reproduction, in GA, 143–147, 145f, 145t

pie chart, 145–146, 146f
Roulette wheel selection method, 

145–146, 146f
selection pressure, 145
tournament selection method, 145, 

146–147, 146t
Response surface methodology (RSM), 

244, 252, 254–257
central composite design, 257, 257t
design matrix, 256t
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full factorial design, 256, 256f
of lift coefficient, 255, 255f

Response surface model, 217–218
Robotics

MATLAB® code, 84–85, 350–351
unconstrained optimization 

problem application to, 83–85, 
85f

Rosenbrock function, 59f
contours of, 78, 79f
MATLAB® code, 59, 336–337
performance comparison of different 

methods for, 78, 79t
steepest descent method on, 80f
unconstrained optimization 

problems, 78, 79f, 79t
unidirectional search on, 58–59, 58t

Rosen’s gradient projection method, 176, 
192–195

example, 193–195
formula, 198
with restoration move, 193f

Roulette wheel selection method, in GA, 
145–146, 146f

S

Saddle point, 19, 19f
surface-contour plot of function 

with, 57, 58f
SAND (simultaneous analysis and 

design) architecture, of MDO, 
249, 249f

formula, 259
Schema theorem, in GA, 147–148

formula, 165
Schwefel’s function

in GA, 149, 151–153, 152f
PSO convergence for, 158, 159f
SA convergence for, 156f

Secant method
algorithm for, 44t
comparison with other methods, 

49–51, 50f, 51t
for 1-D optimization problem, 42–43, 

43f
formula, 52
MATLAB® code, 43, 330–331

Selection pressure, in GA, 145

Sequential quadratic programming (SQP) 
method, 176, 184–190, 207, 245

example
cylindrical pressure vessel, 

188–189
optimized production rate, 

189–190
welded beam, 187–188

MATLAB® code, 187, 207, 250–251, 
374–376, 378–380, 383–384, 
386–389

trust region approach, 185
Simplex

defined, 75
operations to move

contraction, 75–76
expansion, 76, 76f
reflection, 75–76, 75f

Simplex method, for LPP, 105–120
algorithm for, 109t
degeneracy, 114–116
dual, 121–124, 122t, 123t
feasible region, 111–112, 111f
MATLAB® code, 109, 112–113, 

118–120, 122, 124, 352–356
multiple solutions, 112–114, 114f
two-phase method, 116–120

Simulated annealing (SA), 154–156
algorithm for, 155t
convergence of

for Rastrigin function, 155–156, 
156f

for Schwefel’s function, 156f
for spring system test problem, 

157f
MATLAB® code, 155, 365–366

Simultaneous analysis and design 
(SAND) architecture, of MDO, 
249, 249f

formula, 259
Slack variable, 100
Solar energy problem, 37; see also One-

dimensional (1-D) optimization 
algorithms

cost function for, 37, 37f
MATLAB® code, 37
solution techniques, 38

bisection method, 38–40, 39f–40f, 
39t
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comparison of, 49–51, 50f, 51t
cubic polynomial fit, 44–45, 45t
dichotomous search method, 38, 

47–48, 48f
Fibonacci method, 38, 47, 49
golden section method, 46–47, 47t
interval halving method, 38, 47, 

48, 49f
Newton–Raphson method, 40–42, 

41f, 42t
other methods, 47–49
secant method, 42–43, 43f, 44t

Spring system, 59–60, 60f; see also 
Unconstrained optimization 
problem

additional test functions
nonlinear function, 81–82, 81f, 82t
quadratic function, 79–81, 80f, 

81t
Rosenbrock function, 78, 79f, 79t
Wood’s function, 82–83, 82f, 83t

MATLAB® code, 60, 337
SA convergence for test problem of, 

157f
solution techniques, 60–62

BFGS method, 72–73, 73t
criteria for, 61–62
DFP method, 70–72, 71t
Fletcher–Reeves conjugate 

gradient method, 68–70, 68f, 
69t, 70f

gradient-based search methods, 
55, 60–62

Levenberg–Marquardt method, 
66–67, 67t

modified Newton’s method, 66, 
66t

Nelder–Mead algorithm, 75–78, 
75f, 76f, 77t

Newton’s method, 63–65, 65t
non–gradient-based search 

methods, 55, 60
Powell method, 74, 74t
steepest descent method, 62–63, 

63t
test problem, 59–60

Standard form, of LPP, 98–103
Steepest descent direction, 62
Steepest descent method, 68, 78

advantage of, 66
algorithm for, 63t
behavior on Rosenbrock function, 80f
history, 1
MATLAB® code, 62, 63, 337–338
performance comparison with other 

methods
for nonlinear function, 82t
for quadratic function, 81t
for Rosenbrock’s Function, 79t
for Wood’s function, 83t

search direction in (formula), 86
for unconstrained optimization 

problems, 62–63, 64f
vs. conjugate gradient method, 69–70, 

70f
Structural design

constrained optimization problem 
application to, 195–196, 195f

Superlinear convergence method, 62
Surface-contour plot of function, 57, 57f

with saddle point, 57, 58f
Surplus variable, 100
Survival of the fittest principle 

(Darwin), 140

T

Tabu search, 163–164
algorithm for, 163t

Taylor series approximation, 23
Taylor’s series, 17, 41
Tournament selection method, in GA, 

145, 146–147, 146t
Traveling salesman problem, 163
Trust region approach, 185
Tucker, Albert, 2
Two-phase method

for LPP, 116–120

U

Unbounded solution
for LPP, 97–98, 98f

Unconstrained optimization problem, 1, 
5, 55–85

additional test functions
nonlinear function, 81–82, 81f, 82t
quadratic function, 79–81, 80f, 81t
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Rosenbrock function, 78, 79f, 79t
Wood’s function, 82–83, 82f, 83t

application to robotics, 83–85, 85f
geometric programming, 224–229, 

239
overview, 55–57, 56f
solution techniques, 60–62

BFGS method, 72–73, 73t
criteria for, 61–62
DFP method, 70–72, 71t
Fletcher–Reeves conjugate 

gradient method, 68–70, 68f, 
69t, 70f

gradient-based search methods, 
55, 60–62

Levenberg–Marquardt method, 
66–67, 67t

modified Newton’s method, 66, 
66t

Nelder–Mead algorithm, 75–78, 
75f, 76f, 77t

Newton’s method, 63–65, 65t
non–gradient-based search 

methods, 55, 60
Powell method, 74, 74t
steepest descent method, 62–63, 

63t
surface-contour plot of function, 57, 

57f
with saddle point, 57, 58f

test problem, 59–60
unidirectional search, 57–59
vs. constrained problem, 169

Unidirectional search, 57–59
formula, 86
for multivariable function, 58t
on Rosenbrock function, 58–59, 58t, 

59f
Unimodal function, 35, 36f
Unrestricted (free) variable, 100
Utility function method

formula, 221
for multiobjective optimization 

problem, 214–215

V

Variable metric method, 70–71; see also 
Davidon–Fletcher–Powell 
(DFP) method

Variable(s); see also specific types
decision, 3–4
dependent, 6
design, 3–4
independent, 6
in objective function, 3–4

W

Weighted sum approach
for multiobjective optimization 

problem, 205–210, 207f–210f
advantages, 208
disadvantages, 209
example, 210
formula, 220–221
incomplete Pareto front, 208, 208f
nonconvex Pareto front generated 

with PSO, 209, 209f
Pareto optimal front, 206–207, 207f

Weight minimization
for aerospace applications, 3

Wood’s function
contours of, 82f
performance comparison of different 

methods for, 83t
unconstrained optimization 

problems, 82–83

Z

Zenedorous, 1
Zero-one programming problem, 263, 

272–277, 277f
Zoutendijk’s method, 176, 191–192
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