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Foreword 

Constrained optimization is quite well established as an area of research, and 
there exist several powerful techniques that address general problems in that 
area. In this book a special class of constraints is considered, called geomet­
ric constraints, which express that the solution of the optimization problem 
lies on a manifold. This is a recent area of research that provides powerful 
alternatives to the more general constrained optimization methods. Clas­
sical constrained optimization techniques work in an embedded space that 
can be of a much larger dimension than that of the manifold. Optimization 
algorithms that work on the manifold have therefore a lower complexity and 
quite often also have better numerical properties (see, e.g., the numerical 
integration schemes that preserve invariants such as energy). The authors 
refer to this as unconstrained optimization in a constrained search space. 

The idea that one can describe difference or differential equations whose 
solution lies on a manifold originated in the work of Brockett, Flaschka, 
and Rutishauser. They described, for example, isospectral flows that yield 
time-varying matrices which are all similar to each other and eventually 
converge to diagonal matrices of ordered eigenvalues. These ideas did not 
get as much attention in the numerical linear algebra community as in the 
area of dynamical systems because the resulting difference and differential 
equations did not lead immediately to efficient algorithmic implementations. 

An important book synthesizing several of these ideas is Optimization and 
Dynamical Systems (Springer, 1994), by Helmke and Moore, which focuses 
on dynamical systems related to gradient flows that converge exponentially 
to a stationary point that is the solution of some optimization problem. 
The corresponding discrete-time version of this algorithm would then have 
linear convergence, which seldom compares favorably with state-of-the-art 
eigenvalue solvers. 

The formulation of higher-order optimization methods on manifolds grew 
out of these ideas. Some of the people that applied these techniques to ba­
sic linear algebra problems include Absil, Arias, Chu, Dehaene, Edelman, 
Eldén, Gallivan, Helmke, Hüper, Lippert, Mahony, Manton, Moore, Sepul­
chre, Smith, and Van Dooren. It is interesting to see, on the other hand, that 
several basic ideas in this area were also proposed by Luenberger and Gabay 
in the optimization literature in the early 1980s, and this without any use 
of dynamical systems. 

In the present book the authors focus on higher-order methods and in­
clude Newton-type algorithms for optimization on manifolds. This requires 
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a lot more machinery, which cannot currently be found in textbooks. The 
main focus of this book is on optimization problems related to invariant 
subspaces of matrices, but this is sufficiently general to encompass well the 
two main aspects of optimization on manifolds: the conceptual algorithm 
and its convergence analysis based on ideas of differential geometry, and the 
efficient numerical implementation using state-of-the-art numerical linear al­
gebra techniques. 

The book is quite deep in the presentation of the machinery of differen­
tial geometry needed to develop higher-order optimization techniques, but it 
nevertheless succeeds in explaining complicated concepts with simple ideas. 
These ideas are then used to develop Newton-type methods as well as other 
superlinear methods such as trust-region methods and inexact and quasi-
Newton methods, which precisely put more emphasis on the efficient numer­
ical implementation of the conceptual algorithms. 

This is a research monograph in a field that is quickly gaining momentum. 
The techniques are also being applied to areas of engineering and robotics, as 
indicated in the book, and it sheds new light on methods such as the Jacobi-
Davidson method, which originally came from computational chemistry. The 
book makes a lot of interesting connections and can be expected to generate 
several new results in the future. 

Paul Van Dooren January 2007 
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Notation Conventions 

M, N manifolds

x, y points on a manifold

ξ, η, ζ, χ tangent vectors or vector fields

ξx, ηx, ζx, χx tangent vectors at x

ϕ, ψ coordinate charts

A, B square matrices

W , X, Y , Z matrices

W, X , Y, Z linear subspaces


Conventions related to the definition of functions are stated in Section A.3. 



Chapter One


Introduction 

This book is about the design of numerical algorithms for computational 
problems posed on smooth search spaces. The work is motivated by matrix 
optimization problems characterized by symmetry or invariance properties 
in the cost function or constraints. Such problems abound in algorithmic 
questions pertaining to linear algebra, signal processing, data mining, and 
statistical analysis. The approach taken here is to exploit the special struc­
ture of these problems to develop efficient numerical procedures. 

An illustrative example is the eigenvalue problem. Because of their scale in­
variance, eigenvectors are not isolated in vector spaces. Instead, each eigendi­
rection defines a linear subspace of eigenvectors. For numerical computation, 
however, it is desirable that the solution set consist only of isolated points in 
the search space. An obvious remedy is to impose a norm equality constraint 
on iterates of the algorithm. The resulting spherical search space is an em­
bedded submanifold of the original vector space. An alternative approach is 
to “factor” the vector space by the scale-invariant symmetry operation such 
that any subspace becomes a single point. The resulting search space is a 
quotient manifold of the original vector space. These two approaches provide 
prototype structures for the problems considered in this book. 

Scale invariance is just one of several symmetry properties regularly en­
countered in computational problems. In many cases, the underlying symme­
try property can be exploited to reformulate the problem as a nondegenerate 
optimization problem on an embedded or quotient manifold associated with 
the original matrix representation of the search space. These constraint sets 
carry the structure of nonlinear matrix manifolds. This book provides the 
tools to exploit such structure in order to develop efficient matrix algorithms 
in the underlying total vector space. 

Working with a search space that carries the structure of a nonlinear man­
ifold introduces certain challenges in the algorithm implementation. In their 
classical formulation, iterative optimization algorithms rely heavily on the 
Euclidean vector space structure of the search space; a new iterate is gen­
erated by adding an update increment to the previous iterate in order to 
reduce the cost function. The update direction and step size are generally 
computed using a local model of the cost function, typically based on (ap­
proximate) first and second derivatives of the cost function, at each step. In 
order to define algorithms on manifolds, these operations must be translated 
into the language of differential geometry. This process is a significant re­
search program that builds upon solid mathematical foundations. Advances 
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in that direction have been dramatic over the last two decades and have led 
to a solid conceptual framework. However, generalizing a given optimization 
algorithm on an abstract manifold is only the first step towards the objective 
of this book. Turning the algorithm into an efficient numerical procedure is a 
second step that ultimately justifies or invalidates the first part of the effort. 
At the time of publishing this book, the second step is more an art than a 
theory. 

Good algorithms result from the combination of insight from differential 
geometry, optimization, and numerical analysis. A distinctive feature of this 
book is that as much attention is paid to the practical implementation of 
the algorithm as to its geometric formulation. In particular, the concrete 
aspects of algorithm design are formalized with the help of the concepts of 
retraction and vector transport, which are relaxations of the classical geomet­
ric concepts of motion along geodesics and parallel transport. The proposed 
approach provides a framework to optimize the efficiency of the numerical 
algorithms while retaining the convergence properties of their abstract geo­
metric counterparts. 

The geometric material in the book is mostly confined to Chapters 3 and 5. 
Chapter 3 presents an introduction to Riemannian manifolds and tangent 
spaces that provides the necessary tools to tackle simple gradient-descent op­
timization algorithms on matrix manifolds. Chapter 5 covers the advanced 
material needed to define higher-order derivatives on manifolds and to build 
the analog of first- and second-order local models required in most optimiza­
tion algorithms. The development provided in these chapters ranges from 
the foundations of differential geometry to advanced material relevant to 
our applications. The selected material focuses on those geometric concepts 
that are particular to the development of numerical algorithms on embed­
ded and quotient manifolds. Not all aspects of classical differential geometry 
are covered, and some emphasis is placed on material that is nonstandard 
or difficult to find in the established literature. A newcomer to the field of 
differential geometry may wish to supplement this material with a classical 
text. Suggestions for excellent texts are provided in the references. 

A fundamental, but deliberate, omission in the book is a treatment of the 
geometric structure of Lie groups and homogeneous spaces. Lie theory is 
derived from the concepts of symmetry and seems to be a natural part of 
a treatise such as this. However, with the purpose of reaching a community 
without an extensive background in geometry, we have omitted this material 
in the present book. Occasionally the Lie-theoretic approach provides an 
elegant shortcut or interpretation for the problems considered. An effort 
is made throughout the book to refer the reader to the relevant literature 
whenever appropriate. 

The algorithmic material of the book is interlaced with the geometric ma­
terial. Chapter 4 considers gradient-descent line-search algorithms. These 
simple optimization algorithms provide an excellent framework within which 
to study the important issues associated with the implementation of practi­
cal algorithms. The concept of retraction is introduced in Chapter 4 as a key 
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step in developing efficient numerical algorithms on matrix manifolds. The 
later chapters on algorithms provide the core results of the book: the devel­
opment of Newton-based methods in Chapter 6 and of trust-region methods 
in Chapter 7, and a survey of other superlinear methods such as conjugate 
gradients in Chapter 8. We attempt to provide a generic development of 
each of these methods, building upon the material of the geometric chap­
ters. The methodology is then developed into concrete numerical algorithms 
on specific examples. In the analysis of superlinear and second-order meth­
ods, the concept of vector transport (introduced in Chapter 8) is used to 
provide an efficient implementation of methods such as conjugate gradient 
and other quasi-Newton methods. The algorithms obtained in these sections 
of the book are competitive with state-of-the-art numerical linear algebra 
algorithms for certain problems. 

The running example used throughout the book is the calculation of in­
variant subspaces of a matrix (and the many variants of this problem). This 
example is by far, for variants of algorithms developed within the proposed 
framework, the problem with the broadest scope of applications and the 
highest degree of achievement to date. Numerical algorithms, based on a ge­
ometric formulation, have been developed that compete with the best avail­
able algorithms for certain classes of invariant subspace problems. These 
algorithms are explicitly described in the later chapters of the book and, 
in part, motivate the whole project. Because of the important role of this 
class of problems within the book, the first part of Chapter 2 provides a 
detailed description of the invariant subspace problem, explaining why and 
how this problem leads naturally to an optimization problem on a matrix 
manifold. The second part of Chapter 2 presents other applications that can 
be recast as problems of the same nature. These problems are the subject 
of ongoing research, and the brief exposition given is primarily an invitation 
for interested researchers to join with us in investigating these problems and 
expanding the range of applications considered. 

The book should primarily be considered a research monograph, as it 
reports on recently published results in an active research area that is ex­
pected to develop significantly beyond the material presented here. At the 
same time, every possible effort has been made to make the book accessible 
to the broadest audience, including applied mathematicians, engineers, and 
computer scientists with little or no background in differential geometry. It 
could equally well qualify as a graduate textbook for a one-semester course in 
advanced optimization. More advanced sections that can be readily skipped 
at a first reading are indicated with a star. Moreover, readers are encouraged 
to visit the book home page1 where supplementary material is available. 

The book is an extension of the first author’s Ph.D. thesis [Abs03], itself a 
project that drew heavily on the material of the second author’s Ph.D. the­
sis [Mah94]. It would not have been possible without the many contributions 
of a quickly expanding research community that has been working in the area 

1http://press.princeton.edu/titles/8586.html 
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over the last decade. The Notes and References section at the end of each 
chapter is an attempt to give proper credit to the many contributors, even 
though this task becomes increasingly difficult for recent contributions. The 
authors apologize for any omission or error in these notes. In addition, we 
wish to conclude this introductory chapter with special acknowledgements 
to people without whom this project would have been impossible. The 1994 
monograph [HM94] by Uwe Helmke and John Moore is a milestone in the 
formulation of computational problems as optimization algorithms on man­
ifolds and has had a profound influence on the authors. On the numerical 
side, the constant encouragement of Paul Van Dooren and Kyle Gallivan 
has provided tremendous support to our efforts to reconcile the perspectives 
of differential geometry and numerical linear algebra. We are also grateful 
to all our colleagues and friends over the last ten years who have crossed 
paths as coauthors, reviewers, and critics of our work. Special thanks to Ben 
Andrews, Chris Baker, Alan Edelman, Michiel Hochstenbach, Knut Hüper, 
Jonathan Manton, Robert Orsi, and Jochen Trumpf. Finally, we acknowl­
edge the useful feedback of many students on preliminary versions of the 
book, in particular, Mariya Ishteva, Michel Journée, and Alain Sarlette. 



00˙AMS September 23, 2007

Chapter Two


Motivation and Applications 

The problem of optimizing a real-valued function on a matrix manifold ap­
pears in a wide variety of computational problems in science and engineering. 
In this chapter we discuss several examples that provide motivation for the 
material presented in later chapters. In the first part of the chapter, we focus 
on the eigenvalue problem. This application receives special treatment be­
cause it serves as a running example throughout the book. It is a problem of 
unquestionable importance that has been, and still is, extensively researched. 
It falls naturally into the geometric framework proposed in this book as an 
optimization problem whose natural domain is a matrix manifold—the un­
derlying symmetry is related to the fact that the notion of an eigenvector is 
scale-invariant. Moreover, there are a wide range of related problems (eigen­
value decompositions, principal component analysis, generalized eigenvalue 
problems, etc.) that provide a rich collection of illustrative examples that 
we will use to demonstrate and compare the techniques proposed in later 
chapters. 

Later in this chapter, we describe several research problems exhibiting 
promising symmetry to which the techniques proposed in this book have not 
yet been applied in a systematic way. The list is far from exhaustive and is 
very much the subject of ongoing research. It is meant as an invitation to 
the reader to consider the broad scope of computational problems that can 
be cast as optimization problems on manifolds. 

2.1 A CASE STUDY: THE EIGENVALUE PROBLEM 

The problem of computing eigenspaces and eigenvalues of matrices is ubiq­
uitous in engineering and physical sciences. The general principle of comput­
ing an eigenspace is to reduce the complexity of a problem by focusing on a 
few relevant quantities and dismissing the others. Eigenspace computation 
is involved in areas as diverse as structural dynamics [GR97], control the­
ory [PLV94], signal processing [CG90], and data mining [BDJ99]. Consider­
ing the importance of the eigenproblem in so many engineering applications, 
it is not surprising that it has been, and still is, a very active field of research. 

Let F stand for the field of real or complex numbers. Let A be an n × n 
matrix with entries in F. Any nonvanishing vector v ∈ Cn that satisfies 

Av = λv 

for some λ ∈ C is called an eigenvector of A; λ is the associated eigen­
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value, and the couple (λ, v) is called an eigenpair . The set of eigenvalues 
of A is called the spectrum of A. The eigenvalues of A are the zeros of the 
characteristic polynomial of A, 

PA(z) ≡ det(A − zI), 

and their algebraic multiplicity is their multiplicity as zeros of PA. If T 
is an invertible matrix and (λ, v) is an eigenpair of A, then (λ, Tv) is an 
eigenpair of TAT −1. The transformation A 7→ TAT −1 is called a similarity 
transformation of A. 

A (linear) subspace S of Fn is a subset of Fn that is closed under linear 
combinations, i.e., 

∀x, y ∈ S, ∀a, b ∈ F : (ax + by) ∈ S. 
A set {y1, . . . , yp} of elements of S such that every element of S can be 
written as a linear combination of y1, . . . , yp is called a spanning set of S; 
we say that S is the column space or simply the span of the n × p matrix 
Y = [y1, . . . , yp] and that Y spans S. This is written as 

S = span(Y ) = {Y x : x ∈ Fp} = Y Fp. 

The matrix Y is said to have full (column) rank when the columns of Y are 
linearly independent, i.e., Y x = 0 implies x = 0. If Y spans S and has full 
rank, then the columns of Y form a basis of S. Any two bases of S have 
the same number of elements, called the dimension of S. The set of all p-
dimensional subspaces of Fn, denoted by Grass(p, n), plays an important role 
in this book. We will see in Section 3.4 that Grass(p, n) admits a structure 
of manifold called the Grassmann manifold . 

The kernel ker(B) of a matrix B is the subspace formed by the vectors x 
such that Bx = 0. A scalar λ is an eigenvalue of a matrix A if and only if 
the dimension of the kernel of (A − λI) is greater than zero, in which case 
ker(A − λI) is called the eigenspace of A related to λ. 

An n × n matrix A naturally induces a mapping on Grass(p, n) defined by 

S ∈ Grass(p, n) 7→ AS := {Ay : y ∈ S}. 
A subspace S is said to be an invariant subspace or eigenspace of A if AS ⊆ 
S. The restriction A|S of A to an invariant subspace S is the operator 
x 7→ Ax whose domain is S. An invariant subspace S of A is called spectral 
if, for every eigenvalue λ of A S , the multiplicities of λ as an eigenvalue of A S| |
and as an eigenvalue of A are identical; equivalently, XTAX and XTAX⊥⊥ 
have no eigenvalue in common when [X|X⊥] satisfies [X|X⊥]T [X|X⊥] = In 

and span(X) = S. 
In many (arguably the majority of) eigenproblems of interest, the matrix 

A is real and symmetric (A = AT ). The eigenvalues of an n × n symmetric 
matrix A are reals λ1 ≤ · · · ≤ λn, and the associated eigenvectors v1, . . . , vn 

are real and can be chosen orthonormal , i.e., 
{

1 if i = j,T vi vj = 
0 if i = j. 
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Equivalently, for every symmetric matrix A, there is an orthonormal matrix 
V (whose columns are eigenvectors of A) and a diagonal matrix Λ such that 
A = V ΛV T . The eigenvalue λ1 is called the leftmost eigenvalue of A, and 
an eigenpair (λ1, v1) is called a leftmost eigenpair . A p-dimensional leftmost 
invariant subspace is an invariant subspace associated with λ1, . . . , λp. Sim­
ilarly, a p-dimensional rightmost invariant subspace is an invariant subspace 
associated with λn−p+1, . . . , λn. Finally, extreme eigenspaces refer collec­
tively to leftmost and rightmost eigenspaces. 

Given two n × n matrices A and B, we say that (λ, v) is an eigenpair of 
the pencil (A,B) if 

Av = λBv. 

Finding eigenpairs of a matrix pencil is known as the generalized eigen­
value problem. The generalized eigenvalue problem is said to be symmetric / 
positive-definite when A is symmetric and B is symmetric positive-definite 
(i.e., xTBx > 0 for all nonvanishing x). In this case, the eigenvalues of 
the pencil are all real and the eigenvectors can be chosen to form a B-
orthonormal basis. A subspace Y is called a (generalized) invariant subspace 
(or a deflating subspace) of the symmetric / positive-definite pencil (A,B) 
if B−1Ay ∈ Y for all y ∈ Y, which can also be written B−1AY ⊆ Y or 
AY ⊆ BY. The simplest example is when Y is spanned by a single eigen­
vector of (A,B), i.e., a nonvanishing vector y such that Ay = λBy for some 
eigenvalue λ. More generally, every eigenspace of a symmetric / positive-
definite pencil is spanned by eigenvectors of (A,B). Obviously, the general­
ized eigenvalue problem reduces to the standard eigenvalue problem when 
B = I. 

2.1.1 The eigenvalue problem as an optimization problem 

The following result is instrumental in formulating extreme eigenspace com­
putation as an optimization problem. (Recall that tr(A), the trace of A, 
denotes the sum of the diagonal elements of A.) 

Proposition 2.1.1 Let A and B be symmetric n × n matrices and let B be 
positive-definite. Let λ1 ≤ · · · ≤ λn be the eigenvalues of the pencil (A,B). 
Consider the generalized Rayleigh quotient 

f(Y ) = tr(Y TAY (Y TBY )−1) (2.1) 

defined on the set of all n × p full-rank matrices. Then the following state­
ments are equivalent: 

(i) span(Y∗) is a leftmost invariant subspace of (A,B); 
(ii) Y∗ is a global minimizer of (2.1) over all n × p full-rank matrices; 
(iii) f(Y∗) = 

∑p
i=1 λi. 

Proof. For simplicity of the development we will assume that λp < λp+1, 
but the result also holds without this hypothesis. Let V be an n × n matrix 
for which V TBV = In and V TAV = diag(λ1, . . . , λn), where λ1 ≤ · · · ≤ λn. 
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Such a V always exists. Let Y ∈ Rn×p and put Y = VM . Since Y TBY = Ip, 
it follows that MTM = Ip. Then 

tr(Y TAY ) = tr(MT diag(λ1, . . . , λn)M) 
n p

2λi = mij 

i=1 j=1 

p



p

p p

∑ 

j=1 i=1 

n∑ 

i +1 =p

(λi − λp)m 2 
ij + 2 

ij λp (λi − λp)m+= 







p p n

i=1 i=1 j=1 j=1 i=p+1 

Since the second and last terms are nonnegative, it follows that tr(Y TAY ) ≥∑p
i=1 λi. Equality holds if and only if the second and last terms vanish. This 

happens if and only if the (n − p) × p lower part of M vanishes (and hence 
the p × p upper part of M is orthogonal), which means that Y = VM spans 
a p-dimensional leftmost invariant subspace of (A,B). � 

For the case p = 1 and B = I, and assuming that the leftmost eigen­
value λ1 of A has multiplicity 1, Proposition 2.1.1 implies that the global 
minimizers of the cost function 

f : Rn R : y 7→ f(y) = 
yTAy 

(2.2) ∗ → 
yT y 

are the points v1r, r ∈ R∗, where Rn is Rn with the origin removed and v1∗ 
is an eigenvector associated with λ1. The cost function (2.2) is called the 
Rayleigh quotient of A. Minimizing the Rayleigh quotient can be viewed as 
an optimization problem on a manifold since, as we will see in Section 3.1.1, 
Rn admits a natural manifold structure. However, the manifold aspect is of ∗ 
little interest here, as the manifold is simply the classical linear space Rn 

with the origin excluded. 
A less reassuring aspect of this minimization problem is that the mini­

mizers are not isolated but come up as the continuum v1R∗. Consequently, 
some important convergence results for optimization methods do not apply, 
and several important algorithms may fail, as illustrated by the following 
proposition. 

Proposition 2.1.2 Newton’s method applied to the Rayleigh quotient (2.2) 
yields the iteration y 7→ 2y for every y such that f(y) is not an eigenvalue 
of A. 

Proof. Routine manipulations yield grad f(y) = 
yT 
2 

y
(Ay − f(y)y) and 

Hess f(y)[z] = D(grad f)(y)[z] = 
y
2 

y (y
4 
y)2

(Az−f(y)z)− (yTAzy + yT zAy− 

2f(y)yT zy) = Hyz, where 
T 

Hy = 
yT 
2 (A − f(y)I 

T

− T 
2 (yyTA + AyyT − 

T T 

y y y

2f(y)yyT )) = 2 (I − 2 yy )(A − f(y)I)(I − 2 yy ). It follows that Hy is 
yT y yT y yT y

2 2λi + (λp − λi) 1 − (λi − λp)m+= m ij .ij 


 
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singular if and only if f(y) is an eigenvalue of A. When f(y) is not an eigen­
value of A, the Newton equation Hyη = −grad f(y) admits one and only one 
solution, and it is easy to check that this solution is η = y. In conclusion, 
the Newton iteration maps y to y + η = 2y. � 

This result is not particular to the Rayleigh quotient. It holds for any 
function f homogeneous of degree zero, i.e., f(yα) = f(y) for all real α = 0. 

A remedy is to restrain the domain of f to some subset M of Rn so that ∗ 
any ray yR∗ contains at least one and at most finitely many points of M. 
Notably, this guarantees that the minimizers are isolated. An elegant choice 
for M is the unit sphere 

Sn−1 := {y ∈ Rn : y T y = 1}. 
Restricting the Rayleigh quotient (2.2) to Sn−1 gives us a well-behaved cost 
function with isolated minimizers. What we lose, however, is the linear struc­
ture of the domain of the cost function. The goal of this book is to provide 
a toolbox of techniques to allow practical implementation of numerical op­
timization methods on nonlinear embedded (matrix) manifolds in order to 
address problems of exactly this nature. 

Instead of restraining the domain of f to some subset of Rn , another 
approach, which seems a priori more challenging but fits better with the 
geometry of the problem, is to work on a domain where all points on a ray 
yR∗ are considered just one point. This viewpoint is especially well suited 
to eigenvector computation since the useful information of an eigenvector is 
fully contained in its direction. This leads us to consider the set 

M := {yR∗ : y ∈ Rn 
∗ }. 

Since the Rayleigh quotient (2.2) satisfies f(yα) = f(y), it induces a well-
defined function f̃(yR∗) := f(y) whose domain is M. Notice that whereas the 
Rayleigh quotient restricted to Sn−1 has two minimizers ±v1, the Rayleigh 
quotient f̃  has only one minimizer v1R∗ on M. It is shown in Chapter 3 that 
the set M, called the real projective space, admits a natural structure of quo­
tient manifold. The material in later chapters provides techniques tailored 
to (matrix) quotient manifold structures that lead to practical implemen­
tation of numerical optimization methods. For the simple case of a single 
eigenvector, algorithms proposed on the sphere are numerically equivalent 
to those on the real-projective quotient space. However, when the problem 
is generalized to the computation of p-dimensional invariant subspaces, the 
quotient approach, which leads to the Grassmann manifold, is seen to be the 
better choice. 

2.1.2 Some benefits of an optimization framework 

We will illustrate throughout the book that optimization-based eigenvalue 
algorithms have a number of desirable properties. 

An important feature of all optimization-based algorithms is that opti­
mization theory provides a solid framework for the convergence analysis. 
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Many optimization-based eigenvalue algorithms exhibit almost global con­
vergence properties. This means that convergence to a solution of the opti­
mization problem is guaranteed for almost every initial condition. The prop­
erty follows from general properties of the optimization scheme and does not 
need to be established as a specific property of a particular algorithm. 

The speed of convergence of the algorithm is also an intrinsic property of 
optimization-based algorithms. Gradient-based algorithms converge linearly ; 
i.e., the contraction rate of the error between successive iterates is asymptot­
ically bounded by a constant c < 1. In contrast, Newton-like algorithms have 
superlinear convergence; i.e., the contraction rate asymptotically converges 
to zero. (We refer the reader to Section 4.3 for details.) 

Characterizing the global behavior and the (local) convergence rate of 
a given algorithm is an important performance measure of the algorithm. 
In most situations, this analysis is a free by-product of the optimization 
framework. 

Another challenge of eigenvalue algorithms is to deal efficiently with large-
scale problems. Current applications in data mining or structural analysis 
easily involve matrices of dimension 105 – 106 [AHLT05]. In those applica­
tions, the matrix is typically sparse; i.e., the number of nonzero elements 
is O(n) or even less, where n is the dimension of the matrix. The goal in 
such applications is to compute a few eigenvectors corresponding to a small 
relevant portion of the spectrum. Algorithms are needed that require a small 
storage space and produce their iterates in O(n) operations. Such algorithms 
permit matrix-vector products x 7→ Ax, which require O(n) operations if A 
is sparse, but they forbid matrix factorizations, such as QR and LU, that 
destroy the sparse structure of A. Algorithms that make use of A only in the 
form of the operator x 7→ Ax are called matrix-free. 

All the algorithms in this book, designed and analyzed using a differential 
geometric optimization approach, satisfy at least some of these requirements. 
The trust-region approach presented in Chapter 7 satisfies all the require­
ments. Such strong convergence analysis is rarely encountered in available 
eigenvalue methods. 

2.2 RESEARCH PROBLEMS 

This section is devoted to briefly presenting several general computational 
problems that can be tackled by a manifold-based optimization approach. 
Research on the problems presented is mostly at a preliminary stage and 
the discussion provided here is necessarily at the level of an overview. The 
interested reader is encouraged to consult the references provided. 

2.2.1 Singular value problem 

The singular value decomposition is one of the most useful tasks in numerical 
computations [HJ85, GVL96], in particular when it is used in dimension 
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reduction problems such as principal component analysis [JW92]. 
Matrices U , Σ, and V form a singular value decomposition (SVD) of an 

arbitrary matrix A ∈ Rm×n (to simplify the discussion, we assume that 
m ≥ n) if 

A = U ΣV T , (2.3) 

with U ∈ Rm×m , UTU = Im, V ∈ Rn×n , V TV = In, Σ ∈ Rm×n, Σ diagonal 
with diagonal entries σ1 ≥ · · · ≥ σn ≥ 0. Every matrix A admits an SVD. 
The diagonal entries σi of Σ are called the singular values of A, and the 
corresponding columns ui and vi of U and V are called the left and right 
singular vectors of A. The triplets (σi, ui, vi) are then called singular triplets 
of A. Note that an SVD expresses the matrix A as a sum of rank-1 matrices, 

n
TA = 

∑ 
σiuivi . 

i=1 

The SVD is involved in several least-squares problems. An important ex­
ample is the best low-rank approximation of an m × n matrix A in the 
least-squares sense, i.e., 

arg min F
2 , 

X∈Rp 

‖A − X‖

where Rp denotes the set of all m matrices with rank p and ‖ · ‖2 × n F 

denotes the Frobenius norm, i.e., the sum of the squares of the elements of 
its argument. The solution of this problem is given by a truncated SVD 

p

X = 
∑ 

σiuivi
T , 

i=1 

where (σi, ui, vi) are singular triplets of A (ordered by decreasing value of 
σ). This result is known as the Eckart-Young-Mirsky theorem; see Eckart 
and Young [EY36] or, e.g., Golub and Van Loan [GVL96]. 

The singular value problem is closely related to the eigenvalue problem. It 
follows from (2.3) that ATA = V Σ2V T , hence the squares of the singular val­
ues of A are the eigenvalues of ATA and the corresponding right singular vec­
tors are the corresponding eigenvectors of ATA. Similarly, AAT = UΣ2UT , 
hence the left singular vectors of A are the eigenvectors of AAT . One ap­
proach to the singular value decomposition problem is to rely on eigenvalue 
algorithms applied to the matrices ATA and AAT . Alternatively, it is possi­
ble to compute simultaneously a few dominant singular triplets (i.e., those 
corresponding to the largest singular values) by maximizing the cost function 

f(U, V ) = tr(UTAV N) 

subject to UTU = Ip and V TV = Ip, where N = diag(µ1, . . . , µp), with µ1 > 
> µp > 0 arbitrary. If (U, V ) is a solution of this maximization problem, · · · 

then the columns ui of U and vi of V are the ith dominant left and right 
singular vectors of A. This is an optimization problem on a manifold; indeed, 
constraint sets of the form {U ∈ Rn×p : UTU = Ip} have the structure of 
an embedded submanifold of Rn×p called the (orthogonal) Stiefel manifold 
(Section 3.3), and the constraint set for (U, V ) is then a product manifold 
(Section 3.1.6). 
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2.2.2 Matrix approximations 

In the previous section, we saw that the truncated SVD solves a particular 
kind of matrix approximation problem, the best low-rank approximation 
in the least-squares sense. There are several other matrix approximation 
problems that can be written as minimizing a real-valued function on a 
manifold. 

Within the matrix nearness framework 

min F
2 , 

X∈M 
‖A − X‖

we have, for example, the following symmetric positive-definite least-squares 
problem. 

Find C ∈ Rn×n 

to minimize ‖C − C0‖2 (2.4) 

subject to rank(C) = p, C = CT , C � 0, 

where C � 0 denotes that C is positive-semidefinite; i.e., xTCx ≥ 0 for all 
x ∈ Rn. We can rephrase this constrained problem as a problem on the set 
R

n
∗
×p of all n × p full-rank matrices by setting C = Y Y T , Y ∈ Rn

∗
×p. The 

new search space is simpler, but the new cost function 

f : Rn
∗
×p − C0‖2 → R : Y 7→ ‖Y Y T 

has the symmetry property f(Y Q) = f(Y ) for all orthonormal p×p matrices 
Q, hence minimizers of f are not isolated and the problems mentioned in 
Section 2.1 for Rayleigh quotient minimization are likely to appear. This 
again points to a quotient manifold approach, where a set {Y Q : QTQ = I}
is identified as one point of the quotient manifold. 

A variation on the previous problem is the best low-rank approximation 
of a correlation matrix by another correlation matrix [BX05]: 

Find C ∈ Rn×n 

to minimize ‖C − C0‖2 (2.5) 

subject to rank(C) = p, Cii = 1 (i = 1, . . . , n), C � 0. 

Again, setting C = Y Y T , Y ∈ R∗ 
n×p, takes care of the rank constraint. Re­

placing this form in the constraint Cii = 1, i = 1, . . . , n, yields diag(Y Y T ) = 
I. This constraint set can be shown to admit a manifold structure called an 
oblique manifold : 

OB := {Y ∈ Rn
∗
×p : diag(Y Y T ) = In}; 

see, e.g., [Tre99, TL02, AG06]. This manifold-based approach is further de­
veloped in [GP07]. 

A more general class of matrix approximation problems is the Procrustes 
problem [GD04] 

X
min 
∈M 
‖AX − B‖F2 , A ∈ Rl×m, B ∈ Rl×n , (2.6) 
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where M ⊆ Rm×n . Taking M = Rm×n yields a standard least-squares 
problem. The orthogonal case, M = On = {X ∈ Rn×n : XTX = I}, has a 
closed-form solution in terms of the polar decomposition of BTA [GVL96]. 
The case M = {X ∈ Rm×n : XTX = I}, where M is a Stiefel manifold, 
is known as the unbalanced orthogonal Procrustes problem; see [EP99] and 
references therein. The case M = {X ∈ Rn×n : diag(XTX) = In}, where 
M is an oblique manifold, is called the oblique Procrustes problem [Tre99, 
TL02]. 

2.2.3 Independent component analysis 

Independent component analysis (ICA), also known as blind source separa­
tion (BSS), is a computational problem that has received much attention in 
recent years, particularly for its biomedical applications [JH05]. A typical ap­
plication of ICA is the “cocktail party problem”, where the task is to recover 
one or more signals, supposed to be statistically independent, from recordings 
where they appear as linear mixtures. Specifically, assume that n measured 
signals x(t) = [x1(t), . . . , xn(t)]T are instantaneous linear mixtures of p un­
derlying, statistically independent source signals s(t) = [s1(t), . . . , sp(t)]T . 
In matrix notation, we have 

x(t) = As(t), 

where the n × p matrix A is an unknown constant mixing matrix containing 
the mixture coefficients. The ICA problem is to identify the mixing matrix 
A or to recover the source signals s(t) using only the observed signals x(t). 

This problem is usually translated into finding an n × p separating matrix 
(or demixing matrix ) W such that the signals y(t) given by 

y(t) = W T x(t) 

are “as independent as possible”. This approach entails defining a cost func­
tion f(W ) to measure the independence of the signals y(t), which brings us 
to the realm of numerical optimization. This separation problem, however, 
has the structural symmetry property that the measure of independence of 
the components of y(t) should not vary when different scaling factors are ap­
plied to the components of y(t). In other words, the cost function f should 
satisfy the invariance property f(WD) = f(W ) for all nonsingular diagonal 
matrices D. A possible choice for the cost function f is the log likelihood 
criterion 

K

f(W ) := 
∑ 

nk(log det diag(W ∗ CkW ) − log det(W ∗ CkW )), (2.7) 
k=1 

where the Ck’s are covariance-like matrices constructed from x(t) and 
diag(A) denotes the diagonal matrix whose diagonal is the diagonal of A; 
see, e.g., [Yer02] for the choice of the matrices Ck, and [Pha01] for more 
information on the cost function (2.7). 

The invariance property f(WD) = f(W ), similarly to the homogeneity 
property observed for the Rayleigh quotient (2.2), produces a continuum of 
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minimizers if W is allowed to vary on the whole space of n × p matrices. 
Much as in the case of the Rayleigh quotient, this can be addressed by 
restraining the domain of f to a constraint set that singles out finitely many 
points in each equivalence class {WD : D diagonal}; a possible choice for 
the constraint set is the oblique manifold 

OB = {W ∈ Rn×p : diag(WW T ) = In}.∗ 

Another possibility is to identify all the matrices within an equivalence class 
{WD : D diagonal} as a single point, which leads to a quotient manifold 
approach. 

Methods for ICA based on differential-geometric optimization have been 
proposed by, among others, Amari et al. [ACC00], Douglas [Dou00], Rah­
bar and Reilly [RR00], Pham [Pha01], Joho and Mathis [JM02], Joho and 
Rahbar [JR02], Nikpour et al. [NMH02], Afsari and Krishnaprasad [AK04], 
Nishimori and Akaho [NA05], Plumbley [Plu05], Absil and Gallivan [AG06], 
Shen et al. [SHS06], and Hüeper et al. [HSS06]; see also several other refer­
ences therein. 

2.2.4 Pose estimation and motion recovery 

In the pose estimation problem, an object is known via a set of landmarks 
{mi}i=1,...,N , where mi := (xi, yi, zi)

T ∈ R3 are the three coordinates of 
′ the ith landmark in an object-centered frame. The coordinates mi of the 

landmarks in a camera-centered frame obey a rigid body displacement law 
′ mi = Rmi + t, 

where R ∈ SO3 (i.e., RTR = I and det(R) = 1) represents a rotation and 
t ∈ R3 stands for a translation. Each landmark point produces a normalized 
image point in the image plane of the camera with coordinates 

Rmi + t 
ui = . 

eT (Rmi + t)3 

The pose estimation problem is to estimate the pose (R, t) in the manifold 
SO3 × R3 from a set of point correspondences {(ui,mi)}i=1,...,N . A possible 
approach is to minimize the real-valued function 

N
T 2f : SO3 × R3 R : (R, t) 7→ 

∑ 
‖(I − uiui )(Rmi + t)‖ ,→ 

i=1 

′ which vanishes if and only if the points ui and mi are collinear, i.e., ui is 
indeed the coordinate vector of the projection of the ith landmark onto the 
image plane of the camera. This is an optimization problem on the manifold 
SO3×R3. Since rigid body motions can be composed to obtain another rigid 
body motion, this manifold possesses a group structure called the special 
Euclidean group SE3. 

A related problem is motion and structure recovery from a sequence of im­
ages. Now the object is unknown, but two or more images are available from 
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different angles. Assume that N landmarks have been selected on the object 
and, for simplicity, consider only two images of the object. The coordinates 
′ ′′ mi and mi of the ith landmark in the first and second camera frames are 

related by a rigid body motion 

m ′′ i = Rm ′ i + t. 

Again without loss of generality, the coordinates of the projections of the 
′ 
iith landmark onto each camera image plane are given by pi = 

e

m

m 
and T ′ 

3 i 
′′ 
iqi = 

eT 

m

m ′′ 
. The motion and structure recovery problem is, from a set of 

3 i 

corresponding image points {(pi, qi)}i=1,...,N , to recover the camera motion 
(R, t) and the three-dimensional coordinates of the points that the images 
correspond to. It is a classical result in computer vision that corresponding 
coordinate vectors p and q satisfy the epipolar constraint 

p TRT t∧ q = 0, 

where t∧ is the 3 × 3 skew-symmetric matrix 
 

0 −t3 t2 
 

t∧ :=  t3 0 −t1 . 
−t2 t1 0 

To recover the motion (R, t) ∈ SO3 × R3 from a given set of image corre­
spondences {(pi, qi)}i=1,...,N , it is thus natural to consider the cost function 

N

T ∧
f(R, t) := 

∑
(pi R

T t qi)
2 , pi, qi ∈ R3 , (R, t) ∈ SO3 × R3 . 

i=1 

This function is homogeneous in t. As in the case of Rayleigh quotient mini­
mization, this can be addressed by restricting t to the unit sphere S2, which 
yields the problem of minimizing the cost function 

N

T ∧
f(R, t) := 

∑
(pi R

T t qi)
2 , pi, qi ∈ R3 , (R, t) ∈ SO3 × S2 . 

i=1 

Equivalently, this problem can be written as the minimization of the cost 
function 

N
Tf(E) =: 

∑
(pi Eqi)

2 , pi, qi ∈ R3, E ∈ E1, 
i=1 

where E1 is the normalized essential manifold 

E1 := {Rt∧ : R ∈ SO3, t
∧ ∈ so3, 1 tr((t∧)T t∧) = 1}.2

(so3 = {Ω ∈ R3×3 : ΩT = −Ω} is the Lie algebra of SO3, and the tr function 
returns the sum of the diagonal elements of its argument.) 

For more details on multiple-view geometry, we refer the reader to Hartley 
and Zisserman [HZ03]. Applications of manifold optimization to computer 
vision problems can be found in the work of Ma et al. [MKS01], Lee and 
Moore [LM04], Liu et al. [LSG04], and Helmke et al. [HHLM07]. 
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2.3 NOTES AND REFERENCES 

Each chapter of this book (excepting the introduction) has a Notes and 
References section that contains pointers to the literature. In the following 
chapters, all the citations will appear in these dedicated sections. 

Recent textbooks and surveys on the eigenvalue problem include Golub 
and van der Vorst [GvdV00], Stewart [Ste01], and Sorensen [Sor02]. An 
overview of applications can be found in Saad [Saa92]. A major reference for 
the symmetric eigenvalue problem is Parlett [Par80]. The characterization of 
eigenproblems as minimax problems goes back to the time of Poincaré. Early 
references are Fischer [Fis05] and Courant [Cou20], and the results are often 
referred to as the Courant-Fischer minimax formulation. The formulation is 
heavily exploited in perturbation analysis of Hermitian eigenstructure. Good 
overviews are available in Parlett [Par80, §10 and 11, especially §10.2], Horn 
and Johnson [HJ91, §4.2], and Wilkinson [Wil65, §2]. See also Bhatia [Bha87] 
and Golub and Van Loan [GVL96, §8.1]. 

Until recently, the differential-geometric approach to the eigenproblem 
had been scarcely exploited because of tough competition from some highly 
efficient mainstream algorithms combined with a lack of optimization al­
gorithms on manifolds geared towards computational efficiency. However, 
thanks in particular to the seminal work of Helmke and Moore [HM94] and 
Edelman, Arias, and Smith [Smi93, Smi94, EAS98], and more recent work by 
Absil et al. [ABG04, ABG07], manifold-based algorithms have now appeared 
that are competitive with state-of-the-art methods and sometimes shed new 
light on their properties. Papers that apply differential-geometric concepts 
to the eigenvalue problem include those by Chen and Amari [CA01], Lund­
ström and Eldén [LE02], Simoncinin and Eldén [SE02], Brandts [Bra03], 
Absil et al. [AMSV02, AMS04, ASVM04, ABGS05, ABG06b], and Baker et 
al. [BAG06]. One “mainstream” approach capable of satisfying all the 
requirements in Section 2.1.2 is the Jacobi-Davidson conjugate gradient 
(JDCG) method of Notay [Not02]. Interestingly, it is closely related to an al­
gorithm derived from a manifold-based trust-region approach (see Chapter 7 
or [ABG06b]). 

The proof of Proposition 2.1.1 is adapted from [Fan49]. The fact that the 
classical Newton method fails for the Rayleigh quotient (Proposition 2.1.2) 
was pointed out in [ABG06b], and a proof was given in [Zho06]. 

Major references for Section 2.2 include Helmke and Moore [HM94], Edel­
man et al. [EAS98], and Lippert and Edelman [LE00]. The cost function sug­
gested for the SVD (Section 2.2.1) comes from Helmke and Moore [HM94, 
Ch. 3]. Problems (2.4) and (2.5) are particular instances of the least-squares 
covariance adjustment problem recently defined by Boyd and Xiao [BX05]; 
see also Manton et al. [MMH03], Grubisic and Pietersz [GP07], and several 
references therein. 
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Chapter Three


Matrix Manifolds: First-Order Geometry 

The constraint sets associated with the examples discussed in Chapter 2 have 
a particularly rich geometric structure that provides the motivation for this 
book. The constraint sets are matrix manifolds in the sense that they are 
manifolds in the meaning of classical differential geometry, for which there 
is a natural representation of elements in the form of matrix arrays. 

The matrix representation of the elements is a key property that allows 
one to provide a natural development of differential geometry in a matrix 
algebra formulation. The goal of this chapter is to introduce the fundamental 
concepts in this direction: manifold structure, tangent spaces, cost functions, 
differentiation, Riemannian metrics, and gradient computation. 

There are two classes of matrix manifolds that we consider in detail in this 
book: embedded submanifolds of Rn×p and quotient manifolds of Rn×p (for 
1 ≤ p ≤ n). Embedded submanifolds are the easiest to understand, as they 
have the natural form of an explicit constraint set in matrix space Rn×p. 
The case we will be mostly interested in is the set of orthonormal n × p 
matrices that, as will be shown, can be viewed as an embedded submanifold 
of Rn×p called the Stiefel manifold St(p, n). In particular, for p = 1, the 
Stiefel manifold reduces to the unit sphere Sn−1, and for p = n, it reduces 
to the set of orthogonal matrices O(n). 

Quotient spaces are more difficult to visualize, as they are not defined as 
sets of matrices; rather, each point of the quotient space is an equivalence 
class of n × p matrices. In practice, an example n × p matrix from a given 
equivalence class is used to represent an element of matrix quotient space 
in computer memory and in our numerical development. The calculations 
related to the geometric structure of a matrix quotient manifold can be 
expressed directly using the tools of matrix algebra on these representative 
matrices. 

The focus of this first geometric chapter is on the concepts from differen­
tial geometry that are required to generalize the steepest-descent method, 
arguably the simplest approach to unconstrained optimization. In Rn, the 
steepest-descent algorithm updates a current iterate x in the direction where 
the first-order decrease of the cost function f is most negative. Formally, the 
update direction is chosen to be the unit norm vector η that minimizes the 
directional derivative 

Df (x) [η] = lim 
f(x + tη) − f(x) 

. (3.1) 
t→0 t 

When the domain of f is a manifold M, the argument x + tη in (3.1) does 
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not make sense in general since M is not necessarily a vector space. This 
leads to the important concept of a tangent vector (Section 3.5). In order to 
define the notion of a steepest-descent direction, it will then remain to define 
the length of a tangent vector, a task carried out in Section 3.6 where the 
concept of a Riemannian manifold is introduced. This leads to a definition 
of the gradient of a function, the generalization of steepest-descent direction 
on a Riemannian manifold. 

3.1 MANIFOLDS 

We define the notion of a manifold in its full generality; then we consider 
the simple but important case of linear manifolds, a linear vector space 
interpreted as a manifold with Euclidean geometric structure. The manifold 
of n×p real matrices, from which all concrete examples in this book originate, 
is a linear manifold. 

A d-dimensional manifold can be informally defined as a set M covered 
with a “suitable” collection of coordinate patches, or charts, that identify 
certain subsets of M with open subsets of Rd. Such a collection of coordinate 
charts can be thought of as the basic structure required to do differential 
calculus on M. 

It is often cumbersome or impractical to use coordinate charts to (locally) 
turn computational problems on M into computational problems on Rd . 
The numerical algorithms developed later in this book rely on exploiting the 
natural matrix structure of the manifolds associated with the examples of 
interest, rather than imposing a local Rd structure. Nevertheless, coordinate 
charts are an essential tool for addressing fundamental notions such as the 
differentiability of a function on a manifold. 

3.1.1 Definitions: charts, atlases, manifolds 

The abstract definition of a manifold relies on the concepts of charts and 
atlases. 

Let M be a set. A bijection (one-to-one correspondence) ϕ of a subset U
of M onto an open subset of Rd is called a d-dimensional chart of the set M, 
denoted by (U , ϕ). When there is no risk of confusion, we will simply write 
ϕ for (U , ϕ). Given a chart (U , ϕ) and x ∈ U , the elements of ϕ(x) ∈ Rd are 
called the coordinates of x in the chart (U , ϕ). 

The interest of the notion of chart (U , ϕ) is that it makes it possible to 
study objects associated with U by bringing them to the subset ϕ(U) of Rd . 
For example, if f is a real-valued function on U , then f ◦ ϕ−1 is a function 
from Rd to R, with domain ϕ(U), to which methods of real analysis apply. 
To take advantage of this idea, we must require that each point of the set 
M be at least in one chart domain; moreover, if a point x belongs to the 
domains of two charts (U1, ϕ1) and (U2, ϕ2), then the two charts must give 
compatible information: for example, if a real-valued function f is defined 
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Figure 3.1 Charts. 

ϕ−1 ϕ−1 on U1 ∩ U2, then f and f 2 should have the same differentiability ◦	 1 ◦
properties on U1 ∩ U2. 

The following concept takes these requirements into account. A (C∞) atlas 
of M into Rd is a collection of charts (Uα, ϕα) of the set M such that 

1.	
⋃

α Uα = M, 
2.	 for any pair α, β with Uα∩Uβ =6 ∅, the sets ϕα(Uα∩Uβ) and ϕβ(Uα∩Uβ) 

are open sets in Rd and the change of coordinates 

ϕβ ϕ−1 : Rd Rd ◦	 α → 

(see Appendix A.3 for our conventions on functions) is smooth (class 
C∞, i.e., differentiable for all degrees of differentiation) on its domain 
ϕα(Uα ∩ Uβ); see illustration in Figure 3.1. We say that the elements 
of an atlas overlap smoothly. 

Two atlases A1 and A2 are equivalent if A1 ∪ A2 is an atlas; in other 
words, for every chart (U , ϕ) in A2, the set of charts A1 ∪ {(U , ϕ)} is still 
an atlas. Given an atlas A, let A+ be the set of all charts (U , ϕ) such that 
A ∪ {(U , ϕ)} is also an atlas. It is easy to see that A+ is also an atlas, 
called the maximal atlas (or complete atlas) generated by the atlas A. Two 
atlases are equivalent if and only if they generate the same maximal atlas. 
A maximal atlas of a set M is also called a differentiable structure on M. 

In the literature, a manifold is sometimes simply defined as a set endowed 
with a differentiable structure. However, this definition does not exclude 
certain unconventional topologies. For example, it does not guarantee that 
convergent sequences have a single limit point (an example is given in Sec­
tion 4.3.2). To avoid such counterintuitive situations, we adopt the following 
classical definition. A (d-dimensional) manifold is a couple (M, A+), where 
M is a set and A+ is a maximal atlas of M into Rd, such that the topology 
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induced by A+ is Hausdorff and second-countable. (These topological issues 
are discussed in Section 3.1.2.) 

A maximal atlas of a set M that induces a second-countable Hausdorff 
topology is called a manifold structure on M. Often, when (M, A+) is a 
manifold, we simply say “the manifold M” when the differentiable structure 
is clear from the context, and we say “the set M” to refer to M as a plain set 
without a particular differentiable structure. Note that it is not necessary to 
specify the whole maximal atlas to define a manifold structure: it is enough 
to provide an atlas that generates the manifold structure. 

Given a manifold (M, A+), an atlas of the set M whose maximal atlas is 
A+ is called an atlas of the manifold (M, A+); a chart of the set M that 
belongs to A+ is called a chart of the manifold (M, A+), and its domain is 
a coordinate domain of the manifold. By a chart around a point x ∈M, we 
mean a chart of (M, A+) whose domain U contains x. The set U is then a 
coordinate neighborhood of x. 

Given a chart ϕ on M, the inverse mapping ϕ−1 is called a local parame­
terization of M. A family of local parameterizations is equivalent to a family 
of charts, and the definition of a manifold may be given in terms of either. 

3.1.2 The topology of a manifold* 

Recall that the star in the section title indicates material that can be readily 
skipped at a first reading. 

It can be shown that the collection of coordinate domains specified by a 
maximal atlas A+ of a set M forms a basis for a topology of the set M. (We 
refer the reader to Section A.2 for a short introduction to topology.) We call 
this topology the atlas topology of M induced by A. In the atlas topology, a 
subset V of M is open if and only if, for any chart (U , ϕ) in A+ , ϕ(V ∩ U) 
is an open subset of Rd. Equivalently, a subset V of M is open if and only 
if, for each x ∈ V, there is a chart (U , ϕ) in A+ such that x ∈ U ⊂ V. An 
atlas A of a set M is said to be compatible with a topology T on the set M
if the atlas topology is equal to T . 

An atlas topology always satisfies separation axiom T1, i.e., given any two 
distinct points x and y, there is an open set U that contains x and not y. 
(Equivalently, every singleton is a closed set.) But not all atlas topologies 
are Hausdorff (i.e., T2): two distinct points do not necessarily have disjoint 
neighborhoods. Non-Hausdorff spaces can display unusual and counterintu­
itive behavior. From the perspective of numerical iterative algorithms the 
most worrying possibility is that a convergent sequence on a non-Hausdorff 
topological space may have several distinct limit points. Our definition of 
manifold rules out non-Hausdorff topologies. 

A topological space is second-countable if there is a countable collection B
of open sets such that every open set is the union of some subcollection of 
B. Second-countability is related to partitions of unity, a crucial tool in re­
solving certain fundamental questions such as the existence of a Riemannian 
metric (Section 3.6) and the existence of an affine connection (Section 5.2). 
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The existence of partitions of unity subordinate to arbitrary open cover­
ings is equivalent to the property of paracompactness. A set endowed with a 
Hausdorff atlas topology is paracompact (and has countably many compo­
nents) if (and only if) it is second-countable. Since manifolds are assumed 
to be Hausdorff and second-countable, they admit partitions of unity. 

For a manifold (M, A+), we refer to the atlas topology of M induced by 
A as the manifold topology of M. Note that several statements in this book 
also hold without the Hausdorff and second-countable assumptions. These 
cases, however, are of marginal importance and will not be discussed. 

Given a manifold (M, A+) and an open subset X of M (open is to be 
understood in terms of the manifold topology of M), the collection of the 
charts of (M, A+) whose domain lies in X forms an atlas of X . This defines 
a differentiable structure on of the same dimension as With this X M. 
structure, X is called an open submanifold of M. 

A manifold is connected if it cannot be expressed as the disjoint union of 
two nonempty open sets. Equivalently (for a manifold), any two points can 
be joined by a piecewise smooth curve segment. The connected components 
of a manifold are open, thus they admit a natural differentiable structure as 
open submanifolds. The optimization algorithms considered in this book are 
iterative and oblivious to the existence of connected components other than 
the one to which the current iterate belongs. Therefore we have no interest 
in considering manifolds that are not connected. 

3.1.3 How to recognize a manifold 

Assume that a computational problem involves a search space X . How can 
we check that X is a manifold? It should be clear from Section 3.1.1 that 
this question is not well posed: by definition, a manifold is not simply a set 
X but rather a couple (X , A+) where X is a set and A+ is a maximal atlas 
of X inducing a second-countable Hausdorff topology. 

A well-posed question is to ask whether a given set X admits an atlas. 
There are sets that do not admit an atlas and thus cannot be turned into a 
manifold. A simple example is the set of rational numbers: this set does not 
even admit charts; otherwise, it would not be denumerable. Nevertheless, sets 
abound that admit an atlas. Even sets that do not “look” differentiable may 
admit an atlas. For example, consider the curve γ : R → R2 : γ(t) = (t, |t|) 
and let X be the range of γ; see Figure 3.2. Consider the chart ϕ : X → 
R : (t, |t|) 7→ t. It turns out that A := {(X , ϕ)} is an atlas of the set X ; 
therefore, (X , A+) is a manifold. The incorrect intuition that X cannot be 
a manifold because of its “corner” corresponds to the fact that X is not a 
submanifold of R2; see Section 3.3. 

A set X may admit more than one maximal atlas. As an example, take 
the set R and consider the charts ϕ1 : x 7→ x and ϕ2 : x 7→ x3. Note that ϕ1 

ϕ−1and ϕ2 are not compatible since the mapping ϕ1 2 is not differentiable ◦
at the origin. However, each chart individually forms an atlas of the set R. 
These two atlases are not equivalent; they do not generate the same maximal 
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Figure 3.2 Image of the curve γ : t 7→ (t, |t|). 

atlas. Nevertheless, the chart x 7→ x is clearly more natural than the chart 
x 7→ x3. Most manifolds of interest admit a differentiable structure that is 
the most “natural”; see in particular the notions of embedded and quotient 
matrix manifold in Sections 3.3 and 3.4. 

3.1.4 Vector spaces as manifolds 

Let E be a d-dimensional vector space. Then, given a basis (ei)i=1,...,d of E , 
the function 

1

x
 

. .ψ : E → Rd : x 7→  . 


dx

isuch that x = 
∑d 

ei is a chart of the set E . All charts built in this way i=1 x
are compatible; thus they form an atlas of the set E , which endows E with 
a manifold structure. Hence, every vector space is a linear manifold in a 
natural way. 

Needless to say, the challenging case is the one where the manifold struc­
ture is nonlinear , i.e., manifolds that are not endowed with a vector space 
structure. The numerical algorithms considered in this book apply equally 
to linear and nonlinear manifolds and reduce to classical optimization algo­
rithms when the manifold is linear. 

3.1.5 The manifolds Rn×p and Rn
∗
×p 

Algorithms formulated on abstract manifolds are not strictly speaking nu­
merical algorithms in the sense that they involve manipulation of differential-
geometric objects instead of numerical calculations. Turning these abstract 
algorithms into numerical algorithms for specific optimization problems relies 
crucially on producing adequate numerical representations of the geometric 
objects that arise in the abstract algorithms. A significant part of this book 
is dedicated to building a toolbox of results that make it possible to perform 
this “geometric-to-numerical” conversion on matrix manifolds (i.e., mani­
folds obtained by taking embedded submanifolds and quotient manifolds of 
Rn×p). The process derives from the manifold structure of the set Rn×p of 
n × p real matrices, discussed next. 
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The set Rn×p is a vector space with the usual sum and multiplication by 
a scalar. Consequently, it has a natural linear manifold structure. A chart 
of this manifold is given by ϕ : Rn×p Rnp : X 7→ vec(X), where vec(X)→
denotes the vector obtained by stacking the columns of X below one an­
other. We will refer to the set Rn×p with its linear manifold structure as the 
manifold Rn×p. Its dimension is np. 

The manifold Rn×p can be further turned into a Euclidean space with the 
inner product 

〈Z1, Z2〉 := vec(Z1)T vec(Z2) = tr(Z1 
TZ2). (3.2) 

The norm induced by the inner product is the Frobenius norm defined by 

‖Z‖2 F = tr(ZTZ), 

i.e., ‖Z‖2 is the sum of the squares of the elements of Z. Observe that F 

the manifold topology of Rn×p is equivalent to its canonical topology as a 
Euclidean space (see Appendix A.2). 

Let Rn
∗
×p (p ≤ n) denote the set of all n × p matrices whose columns are 

linearly independent. This set is an open subset of Rn×p since its complement 
{X ∈ Rn×p : det(XTX) = 0} is closed. Consequently, it admits a structure 
of an open submanifold of Rn×p. Its differentiable structure is generated by 

Rnp the chart ϕ : Rn
∗
×p → : X 7→ vec(X). This manifold will be referred to 

as the manifold Rn
∗
×p, or the noncompact Stiefel manifold of full-rank n × p 

matrices. 
In the particular case p = 1, the noncompact Stiefel manifold reduces to 

the Euclidean space Rn with the origin removed. When p = n, the noncom-
pact Stiefel manifold becomes the general linear group GLn, i.e., the set of 
all invertible n × n matrices. 

Notice that the chart vec : Rn×p Rnp is unwieldy, as it destroys the →
matrix structure of its argument; in particular, vec(AB) cannot be written 
as a simple expression of vec(A) and vec(B). In this book, the emphasis is 
on preserving the matrix structure. 

3.1.6 Product manifolds 

Let M1 and M2 be manifolds of dimension d1 and d2, respectively. The set 
M1 ×M2 is defined as the set of pairs (x1, x2), where x1 is in M1 and x2 

is in M2. If (U1, ϕ1) and (U2, ϕ2) are charts of the manifolds M1 and M2, 
respectively, then the mapping ϕ1 × ϕ2 : U1 × U2 → Rd1 × Rd2 : (x1, x2) 7→
(ϕ1(x1), ϕ2(x2)) is a chart for the set M1×M2. All the charts thus obtained 
form an atlas for the set M1×M2. With the differentiable structure defined 
by this atlas, M1×M2 is called the product of the manifolds M1 and M2. Its 
manifold topology is equivalent to the product topology. Product manifolds 
will be useful in some later developments. 
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3.2 DIFFERENTIABLE FUNCTIONS 

Mappings between manifolds appear in many places in optimization algo­
rithms on manifolds. First of all, any optimization problem on a manifold 
M involves a cost function, which can be viewed as a mapping from the man­
ifold M into the manifold R. Other instances of mappings between manifolds 
are inclusions (in the theory of submanifolds; see Section 3.3), natural pro­
jections onto quotients (in the theory of quotient manifolds, see Section 3.4), 
and retractions (a fundamental tool in numerical algorithms on manifolds; 
see Section 4.1). This section introduces the notion of differentiability for 
functions between manifolds. The coordinate-free definition of a differential 
will come later, as it requires the concept of a tangent vector. 

Let F be a function from a manifold M1 of dimension d1 into another 
manifold M2 of dimension d2. Let x be a point of M1. Choosing charts ϕ1 

and ϕ2 around x and F (x), respectively, the function F around x can be 
“read through the charts”, yielding the function 

ˆ ϕ−1 Rd2F = ϕ2 F 1 : Rd1 , (3.3) ◦ ◦ → 

called a coordinate representation of F . (Note that the domain of F̂ is in 
general a subset of Rd1 ; see Appendix A.3 for the conventions.) 

We say that F is differentiable or smooth at x if F̂ is of class C∞ at ϕ1(x). 
It is easily verified that this definition does not depend on the choice of the 
charts chosen at x and F (x). A function F : M1 →M2 is said to be smooth 
if it is smooth at every point of its domain. 

A (smooth) diffeomorphism F : M1 →M2 is a bijection such that F and 
its inverse F −1 are both smooth. Two manifolds M1 and M2 are said to be 
diffeomorphic if there exists a diffeomorphism on M1 onto M2. 

In this book, all functions are assumed to be smooth unless otherwise stated. 

3.2.1 Immersions and submersions 

The concepts of immersion and submersion will make it possible to define 
submanifolds and quotient manifolds in a concise way. Let F : M1 → M2 

be a differentiable function from a manifold M1 of dimension d1 into a 
manifold M2 of dimension d2. Given a point x of M1, the rank of F at x 
is the dimension of the range of D F̂ (ϕ1(x)) [ ] : Rd1 Rd2 , where F̂ is a · →
coordinate representation (3.3) of F around x, and D F̂ (ϕ1(x)) denotes the 
differential of F̂ at ϕ1(x) (see Section A.5). (Notice that this definition does 
not depend on the charts used to obtain the coordinate representation F̂ of 
F .) The function F is called an immersion if its rank is equal to d1 at each 
point of its domain (hence d1 ≤ d2). If its rank is equal to d2 at each point 
of its domain (hence d1 ≥ d2), then it is called a submersion. 

The function F is an immersion if and only if, around each point of its do­
main, it admits a coordinate representation that is the canonical immersion 
(u1, . . . , ud1) 7→ (u1, . . . , ud1 , 0, . . . , 0). The function F is a submersion if and 
only if, around each point of its domain, it admits the canonical submersion 
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(u1, . . . , ud1) 7→ (u1, . . . , ud2) as a coordinate representation. A point y ∈M2 

is called a regular value of F if the rank of F is d2 at every x ∈ F −1(y). 

3.3 EMBEDDED SUBMANIFOLDS 

A set X may admit several manifold structures. However, if the set X is 
a subset of a manifold (M, A+), then it admits at most one submanifold 
structure. This is the topic of this section. 

3.3.1 General theory 

Let (M, A+) and (N , B+) be manifolds such that N ⊂ M. The manifold 
(N , B+) is called an immersed submanifold of (M, A+) if the inclusion map 
i : N →M : x 7→ x is an immersion. 

Let (N , B+) be a submanifold of (M, A+). Since M and N are manifolds, 
they are also topological spaces with their manifold topology. If the mani­
fold topology of N coincides with its subspace topology induced from the 
topological space M, then N is called an embedded submanifold , a regular 
submanifold , or simply a submanifold of the manifold M. Asking that a 
subset N of a manifold M be an embedded submanifold of M removes all 
freedom for the choice of a differentiable structure on N : 

Proposition 3.3.1 Let N be a subset of a manifold M. Then N admits at 
most one differentiable structure that makes it an embedded submanifold of 
M. 

As a consequence of Proposition 3.3.1, when we say in this book that a subset 
of a manifold “is” a submanifold, we mean that it admits one (unique) dif­
ferentiable structure that makes it an embedded submanifold. The manifold 
M in Proposition 3.3.1 is called the embedding space. When the embed­
ding space is Rn×p or an open subset of Rn×p, we say that N is a matrix 
submanifold . 

To check whether a subset N of a manifold M is an embedded submanifold 
of M and to construct an atlas of that differentiable structure, one can 
use the next proposition, which states that every embedded submanifold 
is locally a coordinate slice. Given a chart (U , ϕ) of a manifold M, a ϕ­
coordinate slice of U is a set of the form ϕ−1(Rm ×{0}) that corresponds to 
all the points of U whose last n − m coordinates in the chart ϕ are equal to 
zero. 

Proposition 3.3.2 (submanifold property) A subset N of a manifold 
M is a d-dimensional embedded submanifold of M if and only if, around 
each point x ∈ N , there exists a chart (U , ϕ) of M such that N ∩ U is a 
ϕ-coordinate slice of U , i.e., 

N ∩ U = {x ∈ U : ϕ(x) ∈ Rd × {0}}. 
In this case, the chart (N ∩ U , ϕ), where ϕ is seen as a mapping into Rd , 
is a chart of the embedded submanifold N . 
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The next propositions provide sufficient conditions for subsets of manifolds 
to be embedded submanifolds. 

Proposition 3.3.3 (submersion theorem) Let F : M1 → M2 be a 
smooth mapping between two manifolds of dimension d1 and d2, d1 > d2, 
and let y be a point of M2. If y is a regular value of F (i.e., the rank of F 
is equal to d2 at every point of F −1(y)), then F −1(y) is a closed embedded 
submanifold of M1, and dim(F −1(y)) = d1 − d2. 

Proposition 3.3.4 (subimmersion theorem) Let F : M1 → M2 be a 
smooth mapping between two manifolds of dimension d1 and d2 and let y 
be a point of F (M1). If F has constant rank k < d1 in a neighborhood of 
F −1(y), then F −1(y) is a closed embedded submanifold of M1 of dimension 
d1 − k. 

Functions on embedded submanifolds pose no particular difficulty. Let N
be an embedded submanifold of a manifold M. If f is a smooth function 
on M, then f |N , the restriction of f to N , is a smooth function on N . 
Conversely, any smooth function on N can be written locally as a restriction 
of a smooth function defined on an open subset U ⊂M. 

3.3.2 The Stiefel manifold 

The (orthogonal) Stiefel manifold is an embedded submanifold of Rn×p that 
will appear frequently in our practical examples. 

Let St(p, n) (p ≤ n) denote the set of all n × p orthonormal matrices; i.e., 

St(p, n) := {X ∈ Rn×p : XTX = Ip}, (3.4) 

where Ip denotes the p × p identity matrix. The set St(p, n) (endowed with 
its submanifold structure as discussed below) is called an (orthogonal or 
compact) Stiefel manifold . Note that the Stiefel manifold St(p, n) is distinct 
from the noncompact Stiefel manifold Rn

∗
×p defined in Section 3.1.5. 

Clearly, St(p, n) is a subset of the set Rn×p. Recall that the set Rn×p 

admits a linear manifold structure as described in Section 3.1.5. To show 
that St(p, n) is an embedded submanifold of the manifold Rn×p, consider 
the function F : Rn×p → Ssym(p) : X 7→ XTX − Ip, where Ssym(p) denotes 
the set of all symmetric p × p matrices. Note that Ssym(p) is a vector space. 
Clearly, St(p, n) = F −1(0p). It remains to show that F is a submersion at 
each point X of St(p, n). The fact that the domain of F is a vector space 
exempts us from having to read F through a chart: we simply need to show 
that for all Ẑ in Ssym(p), there exists Z in Rn×p such that DF (X) [Z] = Ẑ. 
We have (see Appendix A.5 for details on matrix differentiation) 

DF (X) [Z] = XTZ + ZTX. 

It is easy to see that DF (X) 
[ 

2
1XẐ

] 
= Ẑ since XTX = Ip and ẐT = Ẑ. 

This shows that F is full rank. It follows from Proposition 3.3.3 that the set 
St(p, n) defined in (3.4) is an embedded submanifold of Rn×p. 
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To obtain the dimension of St(p, n), observe that the vector space Ssym(p) 
has dimension 1

2p(p + 1) since a symmetric matrix is completely determined 
by its upper triangular part (including the diagonal). From Proposition 3.3.3, 
we obtain 

dim(St(p, n)) = np − 1 p(p + 1).2

Since St(p, n) is an embedded submanifold of Rn×p, its topology is the 
subset topology induced by Rn×p. The manifold St(p, n) is closed: it is 
the inverse image of the closed set {0p} under the continuous function 
F : Rn×p 7→ Ssym(p). It is bounded: each column of X ∈ St(p, n) has norm 
1, so the Frobenius norm of X is equal to 

√
p. It then follows from the Heine-

Borel theorem (see Section A.2) that the manifold St(p, n) is compact . 
For p = 1, the Stiefel manifold St(p, n) reduces to the unit sphere Sn−1 in 

Rn. Notice that the superscript n−1 indicates the dimension of the manifold. 
For p = n, the Stiefel manifold St(p, n) becomes the orthogonal group On. 

Its dimension is 1n(n − 1). 2

3.4 QUOTIENT MANIFOLDS 

Whereas the topic of submanifolds is covered in any introductory textbook 
on manifolds, the subject of quotient manifolds is less classical. We develop 
the theory in some detail because it has several applications in matrix com­
putations, most notably in algorithms that involve subspaces of Rn. Compu­
tations involving subspaces are usually carried out using matrices to repre­
sent the corresponding subspace generated by the span of its columns. The 
difficulty is that for one given subspace, there are infinitely many matrices 
that represent the subspace. It is then desirable to partition the set of ma­
trices into classes of “equivalent” elements that represent the same object. 
This leads to the concept of quotient spaces and quotient manifolds. In this 
section, we first present the general theory of quotient manifolds, then we 
return to the special case of subspaces and their representations. 

3.4.1 Theory of quotient manifolds 

Let M be a manifold equipped with an equivalence relation ∼, i.e., a relation 
that is 

1. reflexive: x ∼ x for all x ∈M, 
2. symmetric: x ∼ y if and only if y ∼ x for all x, y ∈M, 
3. transitive: if x ∼ y and y ∼ z then x ∼ z for all x, y, z ∈M. 

The set 

[x] := {y ∈M : y ∼ x} 
of all elements that are equivalent to a point x is called the equivalence class 
containing x. The set 

M/ ∼:= {[x] : x ∈ M} 
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of all equivalence classes of ∼ in M is called the quotient of M by ∼. Notice 
that the points of M/ ∼ are subsets of M. The mapping π : M → M/ ∼
defined by x 7→ [x] is called the natural projection or canonical projection. 
Clearly, π(x) = π(y) if and only if x ∼ y, so we have [x] = π−1(π(x)). We 
will use π(x) to denote [x] viewed as a point of M/∼, and π−1(π(x)) for [x] 
viewed as a subset of M. The set M is called the total space of the quotient 
M/ ∼. 

Let (M, A+) be a manifold with an equivalence relation ∼ and let B+ be 
a manifold structure on the set M/∼. The manifold (M/∼, B+) is called a 
quotient manifold of (M, A+) if the natural projection π is a submersion. 

Proposition 3.4.1 Let M be a manifold and let M/∼ be a quotient of M. 
Then M/∼ admits at most one manifold structure that makes it a quotient 
manifold of M. 

Given a quotient M/ ∼ of a manifold M, we say that the set M/ ∼ is a 
quotient manifold if it admits a (unique) quotient manifold structure. In this 
case, we say that the equivalence relation ∼ is regular, and we refer to the 
set M/∼ endowed with this manifold structure as the manifold M/∼. 

The following result gives a characterization of regular equivalence rela­
tions. Note that the graph of a relation ∼ is the set 

graph(∼) := {(x, y) ∈M×M : x ∼ y}. 

Proposition 3.4.2 An equivalence relation ∼ on a manifold M is regular 
(and thus M/∼ is a quotient manifold) if and only if the following conditions 
hold together: 

(i) The graph of ∼ is an embedded submanifold of the product manifold 
M×M. 

(ii) The projection π1 : graph(∼) →M, π1(x, y) = x is a submersion. 
(iii) The graph of ∼ is a closed subset of M×M (where M is endowed 

with its manifold topology). 

The dimension of M/∼ is given by 

dim(M/∼) = 2 dim(M) − dim(graph(∼)). (3.5) 

The next proposition distinguishes the role of the three conditions in 
Proposition 3.4.2. 

Proposition 3.4.3 Conditions (i) and (ii) in Proposition 3.4.2 are neces­
sary and sufficient for M/ ∼ to admit an atlas that makes π a submersion. 
Such an atlas is unique, and the atlas topology of M/ ∼ is identical to its 
quotient topology. Condition (iii) in Proposition 3.4.2 is necessary and suf­
ficient for the quotient topology to be Hausdorff. 

The following result follows from Proposition 3.3.3 by using the fact that 
the natural projection to a quotient manifold is by definition a submersion. 
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Proposition 3.4.4 Let M/ ∼ be a quotient manifold of a manifold M and 
let π denote the canonical projection. If dim(M/ ∼) < dim(M), then each 
equivalence class π−1(π(x)), x ∈ M, is an embedded submanifold of M of 
dimension dim(M) − dim(M/∼). 

If dim(M/ ∼) = dim(M), then each equivalence class π−1(π(x)), x ∈M, is 
a discrete set of points. From now on we consider only the case dim(M/∼) < 
dim(M). 

When M is Rn×p or a submanifold of Rn×p, we call M/∼ a matrix quo­
tient manifold . For ease of reference, we will use the generic name structure 
space both for embedding spaces (associated with embedded submanifolds) 
and for total spaces (associated with quotient manifolds). We call a matrix 
manifold any manifold that is constructed from Rn×p by the operations of 
taking embedded submanifolds and quotient manifolds. The major matrix 
manifolds that appear in this book are the noncompact Stiefel manifold (de­
fined in Section 3.1.5), the orthogonal Stiefel manifold (Section 3.3.2), and 
the Grassmann manifold (Section 3.4.4). Other important matrix manifolds 
are the oblique manifold 

{X ∈ Rn×p : diag(XTX) = Ip}, 
where diag(M) denotes the matrix M with all its off-diagonal elements as­
signed to zero; the generalized Stiefel manifold 

{X ∈ Rn×p : XTBX = I} 
where B is a symmetric positive-definite matrix; the flag manifolds, which 
are quotients of R

n
∗
×p where two matrices are equivalent when they are 

related by a right multiplication by a block upper triangular matrix with 
prescribed block size; and the manifold of symplectic matrices 

{X ∈ R2n×2n : XTJX = J}, 
Inwhere J = 

[ 
0n 

]
.−In 0n 

3.4.2 Functions on quotient manifolds 

A function f on M is termed invariant under ∼ if f(x) = f(y) whenever 
x ∼ y, in which case the function f induces a unique function f̃  on M/ ∼, 
called the projection of f , such that f = f̃  π.◦ 

M 
� 

� f 
π 

� 

�

�

�

�

�

�

�

� � 

� 

M/∼ 
f̃

�� N 

The smoothness of f̃  can be checked using the following result. 

Proposition 3.4.5 Let M/∼ be a quotient manifold and let f̃  be a function 
on M/ ∼. Then f̃  is smooth if and only if f := f̃  ◦ π is a smooth function 
on M. 



00˙AMS September 23, 2007

� � �
�� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

30 CHAPTER 3 

3.4.3 The real projective space RP
n−1 

The real projective space RP
n−1 is the set of all directions in Rn, i.e., the 

set of all straight lines passing through the origin of Rn. Let Rn := Rn −{0}∗ 
denote the Euclidean space Rn with the origin removed. Note that R∗ 

n is 
the p = 1 particularization of the noncompact Stiefel manifold Rn

∗
×p (Sec­

tion 3.1.5); hence Rn is an open submanifold of Rn. The real projective space∗ 
RP

n−1 is naturally identified with the quotient Rn 
∗ /∼, where the equivalence 

relation is defined by 

x ∼ y ⇔ ∃t ∈ R∗ : y = xt, 

and we write 

RP
n−1 ≃ Rn 

∗ /∼ 

to denote the identification of the two sets. 
The proof that Rn 

∗ / ∼ is a quotient manifold follows as a special case of 
Proposition 3.4.6 (stating that the Grassmann manifold is a matrix quotient 
manifold). The letters RP stand for “real projective”, while the superscript 
(n − 1) is the dimension of the manifold. There are also complex projec­
tive spaces and more generally projective spaces over more abstract vector 
spaces. 

3.4.4 The Grassmann manifold Grass(p, n) 

Let n be a positive integer and let p be a positive integer not greater than n. 
Let Grass(p, n) denote the set of all p-dimensional subspaces of Rn. In this 
section, we produce a one-to-one correspondence between Grass(p, n) and 
a quotient manifold of Rn×p, thereby endowing Grass(p, n) with a matrix 
manifold structure. 

Recall that the noncompact Stiefel manifold Rn
∗
×p is the set of all n × p 

matrices with full column rank. Let ∼ denote the equivalence relation on 
R

n
∗
×p defined by 

X ∼ Y ⇔ span(X) = span(Y ), (3.6) 

where span(X) denotes the subspace {Xα : α ∈ Rp} spanned by the columns 
of X ∈ Rn

∗
×p . Since the fibers of span( ) are the equivalence classes of ∼ and·

since span( ) is onto Grass(p, n), it follows that span( ) induces a one-to-one· ·
correspondence between Grass(p, n) and Rn

∗
×p/∼. 

Rn×p 
∗ 

�

� 

span 
π 

Rn
∗
×p/ ∼ �� �� Grass(p, n) 

f̃

Before showing that the set Rn
∗
×p/∼ is a quotient manifold, we introduce 

some notation and terminology. If a matrix X and a subspace X satisfy 
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0 

X 

X GLp 

Figure 3.3 Schematic illustration of the representation of Grass(p, n) as the quo­
tient space Rn

∗
×p/GLp. Each point is an n-by-p matrix. Each line is an 

equivalence class of the matrices that have the same span. Each line 
corresponds to an element of Grass(p, n). The figure corresponds to the 
case n = 2, p = 1. 

X = span(X), we say that X is the span of X, that X spans X , or that X is a 
matrix representation of X . The set of all matrix representations of span(X) 
is the equivalence class π−1(π(X)). We have π−1(π(X)) = {XM : M ∈
GLp} =: XGLp; indeed, the operations X 7→ XM , M ∈ GLp, correspond 
to all possible changes of basis for span(X). We will thus use the notation 
R

n
∗
×p/GLp for Rn

∗
×p/∼. Therefore we have 

Grass(p, n) ≃ Rn×p/GLp.∗ 

A schematic illustration of the quotient Rn
∗
×p/GLp is given in Figure 3.3. 

The identification of Rn
∗
×p/GLp with the set of p-dimensional subspaces 

(p-planes) in Rn makes this quotient particularly worth studying. Next, the 
quotient Rn

∗
×p/GLp is shown to be a quotient manifold. 

Proposition 3.4.6 (Grassmann manifold) The quotient set Rn
∗
×p/GLp 

(i.e., the quotient of Rn
∗
×p by the equivalence relation defined in (3.6)) admits 

a (unique) structure of quotient manifold. 

Proof. We show that the conditions in Proposition 3.4.2 are satisfied. We first 
prove condition (ii). Let (X0, Y0) be in graph(∼). Then there exists M such 
that Y0 = X0M . Given any V in Rn×p, the curve t 7→ (X0 +tV, (X0 +tV )M) 
is into graph(∼) and satisfies d (π1(γ(t)))

∣∣
t=0 

= V . This shows that π1 is dt
a submersion. For condition (iii), observe that the graph of ∼ is closed as 
it is the preimage of the closed set {0n×p} under the continuous function 
R

n
∗
×p × Rn

∗
×p → Rn×p : (X,Y ) 7→ (I − X(XTX)−1XT )Y . For condition 

(i), the idea is to produce submersions Fi with open domain Ωi ⊂ (Rn
∗
×p 

R
n
∗
×p) such that graph(∼) ∩ Ωi is the zero-level set of Fi and that the Ωi

×
’s 

cover graph(∼). It then follows from Proposition 3.3.3 that graph(∼) is an 
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embedded submanifold of Rn
∗
×p × Rn

∗
×p. To this end, assume for a moment 

that we have a smooth function 

Rn
∗
×p St(n − p, n) : X 7→ X⊥ (3.7) → 

such that XTX⊥ = 0 for all X in an open domain Ω̃ and consider 

F : Ω̃× Rn
∗
×p 

⊥ Y. → R(n−p)×p : (X,Y ) 7→ XT 

Then F −1(0) = graph(∼) ∩ dom(F ). Moreover, F is a submersion on its 
domain since for any V ∈ R(n−p)×p, 

DF (X,Y )[0, X⊥V ] = XT 
⊥ (X⊥V ) = V. 

It remains to define the smooth function (3.7). Depending on n and p, it may 
or may not be possible to define such a function on the whole Rn

∗
×p. However, 

there are always such functions, constructed as follows, whose domain Ω̃ is 
open and dense in Rn

∗
×p. Let E ∈ Rn×(n−p) be a constant matrix of the form 

E = 
[
ei1 | · · · |ein−p 

] 
, 

where the ei’s are the canonical vectors in Rn (unit vectors with a 1 in the ith 
entry), and define X⊥ as the orthonormal matrix obtained by taking the last 
n − p columns of the Gram-Schmidt orthogonalization of the matrix [X E]. 

Ω = {X ∈ Rn×p : [X|
XT 

|
This function is smooth on the domain ˜

∗ E] full rank}, 
which is an open dense subset of Rn

∗
×p. Consequently, F (X,Y ) = ⊥ Y is 

smooth (and submersive) on the domain Ω = Ω̃ × R∗ 
n×p . This shows that 

graph(∼) ∩ Ω is an embedded submanifold of (Rn
∗
×p × Rn

∗
×p). Taking other 

matrices E yields other domains Ω which together cover (Rn
∗
×p × Rn

∗
×p), so 

graph(∼) is an embedded submanifold of (Rn
∗
×p × Rn

∗
×p), and the proof is 

complete. � 

Endowed with its quotient manifold structure, the set Rn
∗
×p/GLp is called 

the Grassmann manifold of p-planes in Rn and denoted by Grass(p, n). The 
particular case Grass(1, n) = RP

n is the real projective space discussed in 
Section 3.4.3. From Proposition 3.3.3, we have that dim(graph(∼)) = 2np −
(n − p)p. It then follows from (3.5) that 

dim(Grass(p, n)) = p(n − p). 

3.5 TANGENT VECTORS AND DIFFERENTIAL MAPS 

There are several possible approaches to generalizing the notion of a direc­
tional derivative 

Df (x) [η] = lim 
f(x + tη) − f(x) 

(3.8) 
t→0 t 

to a real-valued function f defined on a manifold. A first possibility is to 
view η as a derivation at x, that is, an object that, when given a real-valued 
function f defined on a neighborhood of x ∈M, returns a real ηf , and that 
satisfies the properties of a derivation operation: linearity and the Leibniz 
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rule (see Section 3.5.5). This “axiomatization” of the notion of a directional 
derivative is elegant and powerful, but it gives little intuition as to how a 
tangent vector could possibly be represented as a matrix array in a computer. 

A second, perhaps more intuitive approach to generalizing the directional 
derivative (3.8) is to replace t 7→ (x+tη) by a smooth curve γ on M through x 

(i.e., γ(0) = x). This yields a well-defined directional derivative d(f(
d
γ
t 
(t))) . 

∣∣∣
t=0 

(Note that this is a classical derivative since the function t 7→ f(γ(t)) is a 
smooth function from R to R.) Hence we have an operation, denoted by γ̇(0), 
that takes a function f , defined locally in a neighbourhood of x, and returns 

the real number d(f(γ(t))) .dt 

∣∣∣
t=0 

These two approaches are reconciled by showing that every derivative 
along a curve defines a pointwise derivation and that every pointwise deriva­
tion can be realized as a derivative along a curve. The first claim is direct. 
The second claim can be proved using a local coordinate representation, a 
third approach used to generalize the notion of a directional derivative. 

3.5.1 Tangent vectors 

Let M be a manifold. A smooth mapping γ : R →M: t 7→ γ(t) is termed a 
curve in M. The idea of defining a derivative γ ′ (t) as 

γ ′ (t) := lim 
γ(t + τ ) − γ(t) 

(3.9) 
τ→0 τ 

requires a vector space structure to compute the difference γ(t+τ )−γ(t) and 
thus fails for an abstract nonlinear manifold. However, given a smooth real-
valued function f on M, the function f γ : t 7→ f(γ(t)) is a smooth function ◦
from R to R with a well-defined classical derivative. This is exploited in the 
following definition. Let x be a point on M, let γ be a curve through x at 
t = 0, and let Fx(M) denote the set of smooth real-valued functions defined 
on a neighborhood of x. The mapping γ̇(0) from Fx(M) to R defined by 

d(f(γ(t))) 
γ̇(0)f := , f ∈ Fx(M), (3.10) 

dt 

∣∣∣∣
t=0 

is called the tangent vector to the curve γ at t = 0. 
We emphasize that γ̇(0) is defined as a mapping from Fx(M) to R and 

not as the time derivative γ ′ (0) as in (3.9), which in general is meaningless. 
However, when M is (a submanifold of) a vector space E , the mapping γ̇(0) 
from Fx(M) to R and the derivative γ ′ (0) := limt→0

1 (γ(t)−γ(0)) are closely t 

related: for all functions f defined in a neighborhood U of γ(0) in E , we have 

γ̇(0)f = Df (γ(0)) [γ ′ (0)] , 

where f denotes the restriction of f to U∩M; see Sections 3.5.2 and 3.5.7 for 
details. It is useful to keep this interpretation in mind because the derivative 
γ ′ (0) is a more familiar mathematical object than γ̇(0). 

We can now formally define the notion of a tangent vector. 
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Definition 3.5.1 (tangent vector) A tangent vector ξx to a manifold M
at a point x is a mapping from Fx(M) to R such that there exists a curve γ 
on M with γ(0) = x, satisfying 

d(f(γ(t))) 
ξxf = γ̇(0)f :=


dt 

∣∣∣∣
t=0


for all f ∈ Fx(M). Such a curve γ is said to realize the tangent vector ξx. 

The point x is called the foot of the tangent vector ξx. We will often omit 
the subscript indicating the foot and simply write ξ for ξx. 

Given a tangent vector ξ to M at x, there are infinitely many curves γ 
that realize ξ (i.e., γ̇(0) = ξ). They can be characterized as follows in local 
coordinates. 

Proposition 3.5.2 Two curves γ1 and γ2 through a point x at t = 0 satisfy 
γ̇1(0) = γ̇2(0) if and only if, given a chart (U , ϕ) with x ∈ U , it holds that 

d(ϕ(γ1(t))) d(ϕ(γ2(t))) 
= . 

dt 

∣∣∣∣
t=0 dt 

∣∣∣∣
t=0 

Proof. The “only if” part is straightforward since each component of the 
vector-valued ϕ belongs to Fx(M). For the “if” part, given any f ∈ Fx(M), 
we have 

d(f(γ1(t))) d((f ϕ−1)(ϕ(γ1(t)))) 
γ̇1(0)f = = 

◦ 
dt 

∣∣∣∣
t=0 dt 

∣∣∣∣
t=0 

d((f ϕ−1)(ϕ(γ2(t)))) 
= 

◦ 
= γ̇2(0)f. 

dt 

∣∣∣∣
t=0 

The tangent space to M at x, denoted by TxM, is the set of all tangent 
vectors to M at x. This set admits a structure of vector space as follows. 
Given γ̇1(0) and γ̇2(0) in TxM and a, b in R, define 

(aγ̇1(0) + bγ̇2(0)) f := a (γ̇1(0)f) + b (γ̇2(0)f) . 

To show that (aγ̇1(0) + bγ̇2(0)) is a well-defined tangent vector, we need to 
show that there exists a curve γ such that γ̇(0) = aγ̇1(0) + bγ̇2(0). Such 
a curve is obtained by considering a chart (U , ϕ) with x ∈ U and defining 
γ(t) = ϕ−1(aϕ(γ1(t) + bϕ(γ2(t)). It is readily checked that this γ satisfies 
the required property. 

The property that the tangent space TxM is a vector space is very impor­
tant. In the same way that the derivative of a real-valued function provides 
a local linear approximation of the function, the tangent space TxM pro­
vides a local vector space approximation of the manifold. In particular, in 
Section 4.1, we define mappings, called retractions, between M and TxM, 
which can be used to locally transform an optimization problem on the 
manifold M into an optimization problem on the more friendly vector space 
TxM. 
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Using a coordinate chart, it is possible to show that the dimension of 
the vector space TxM is equal to d, the dimension of the manifold M: 
given a chart (U , ϕ) at x, a basis of TxM is given by (γ̇1(0), . . . , γ̇d(0)), 
where γi(t) := ϕ−1(ϕ(x) + tei), with ei denoting the ith canonical vector of 
Rd . Notice that γ̇i(0)f = ∂i(f ϕ−1)(ϕ(x)), where ∂i denotes the partial ◦
derivative with respect to the ith component: 

∂ih(x) := lim 
h(x + tei) − h(x) 

. 
t→0 t 

One has, for any tangent vector γ̇(0), the decomposition 

γ̇(0) = 
∑

(γ̇(0)ϕi)γ̇i(0), 
i 

where ϕi denotes the ith component of ϕ. This provides a way to define the 
coordinates of tangent vectors at x using the chart (U , ϕ), by defining the 
element of Rd 


γ̇(0)ϕ1

 

.

. 
 .  

γ̇(0)ϕd 

as the representation of the tangent vector γ̇(0) in the chart (U , ϕ). 

3.5.2 Tangent vectors to a vector space 

Let E be a vector space and let x be a point of E . As pointed out in Sec­
tion 3.1.4, E admits a linear manifold structure. Strictly speaking, a tangent 
vector ξ to E at x is a mapping 

ξ : Fx(E) R : f 7→ ξf = 
d(f(γ(t))) 

,→ 
dt 

∣∣∣∣
t=0 

where γ is a curve in E with γ(0) = x. Defining γ ′ (0) ∈ E as in (3.9), we 
have 

ξf = Df (x) [γ ′ (0)] . 

Moreover, γ ′ (0) does not depend on the curve γ that realizes ξ. This defines 
a canonical linear one-to-one correspondence ξ 7→ γ ′ (0), which identifies TxE
with E : 

TxE ≃ E . (3.11) 

Since tangent vectors are local objects (a tangent vector at a point x acts on 
smooth real-valued functions defined in any neighborhood of x), it follows 
that if E∗ is an open submanifold of E , then 

TxE∗ ≃ E (3.12) 

for all x ∈ E∗. A schematic illustration is given in Figure 3.4. 
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E∗ 

E 

Figure 3.4 Tangent vectors to an open subset E∗ of a vector space E . 

3.5.3 Tangent bundle 

Given a manifold M, let T M be the set of all tangent vectors to M: 

T M := 
⋃ 

TxM. 
x∈M 

Since each ξ ∈ T M is in one and only one tangent space TxM, it follows 
that M is a quotient of T M with natural projection 

x, π : T M→M : ξ ∈ TxM 7→ 

i.e., π(ξ) is the foot of ξ. The set T M admits a natural manifold structure 
as follows. Given a chart (U , ϕ) of M, the mapping 

ξ ∈ TxM 7→ (ϕ1(x), . . . , ϕd(x), ξϕ1, . . . , ξϕd)T 

is a chart of the set T M with domain π−1(U). It can be shown that the 
collection of the charts thus constructed forms an atlas of the set T M, 
turning it into a manifold called the tangent bundle of M. 

3.5.4 Vector fields 

A vector field ξ on a manifold M is a smooth function from M to the tangent 
bundle T M that assigns to each point x ∈ M a tangent vector ξx ∈ TxM. 
On a submanifold of a vector space, a vector field can be pictured as a 
collection of arrows, one at each point of M. Given a vector field ξ on M
and a (smooth) real-valued function f ∈ F(M), we let ξf denote the real-
valued function on M defined by 

(ξf)(x) := ξx(f) 

for all x in M. The addition of two vector fields and the multiplication of a 
vector field by a function f ∈ F(M) are defined as follows: 

(fξ)x := f(x)ξx, 

(ξ + ζ)x := ξx + ζx for all x ∈M. 
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Smoothness is preserved by these operations. We let X(M) denote the set 
of smooth vector fields endowed with these two operations. 

Let (U , ϕ) be a chart of the manifold M. The vector field Ei on U defined 
by 

(Eif)(x) := ∂i(f ϕ−1)(ϕ(x)) = D(f ϕ−1) (ϕ(x)) [ei]◦	 ◦ 
is called the ith coordinate vector field of (U , ϕ). These coordinate vector 
fields are smooth, and every vector field ξ admits the decomposition 

ξ = 
∑

(ξϕi)Ei 

i 

on U . (A pointwise version of this result was given in Section 3.5.1.) 
If the manifold is an n-dimensional vector space E , then, given a basis 

(ei)i=1,...,d of E , the vector fields Ei, i = 1, . . . , n, defined by 

(Eif)(x) := lim 
f(x + tei) − f(x) 

= Df (x) [ei] 
t→0 t 

form a basis of X(E). 

3.5.5 Tangent vectors as derivations∗ 

Let x and η be elements of Rn. The derivative mapping that, given a real-
valued function f on Rn, returns the real Df (x) [η] can be axiomatized as 
follows on manifolds. Let M be a manifold and recall that F(M) denotes 
the set of all smooth real-valued functions on M. Note that F(M) ⊂ Fx(M) 
for all x ∈M. A derivation at x ∈M is a mapping ξx from F(M) to R that 
is 

1.	 R-linear: ξx(af + bg) = aξx(f) + bξx(g), and 
2.	 Leibnizian: ξx(fg) = ξx(f)g(x) + f(x)ξx(g), for all a, b ∈ R and f, g ∈

F(M). 

With the operations 

(ξx + ζx)f := ξx(f) + ζx(f), 

(aξx)f := aξx(f) for all f ∈ F(M), a ∈ R, 

the set of all derivations at x becomes a vector space. It can also be shown 
that a derivation ξx at x is a local notion: if two real-valued functions f and 
g are equal on a neighborhood of x, then ξx(f) = ξx(g). 

The concept of a tangent vector at x, as defined in Section 3.5.1, and the 
notion of a derivation at x are equivalent in the following sense: (i) Given a 
curve γ on M through x at t = 0, the mapping γ̇(0) from F(M) ⊆ Fx(M) 
to R, defined in (3.10), is a derivation at x. (ii) Given a derivation ξ at x, 
there exists a curve γ on M through x at t = 0 such that γ̇(0) = ξ. For 
example, the curve γ defined by γ(t) = ϕ−1 (ϕ(0) + t 

∑
i(ξ(ϕi)ei)) satisfies 

the property. 
A (global) derivation on F(M) is a mapping D : F(M) F(M) that is → 
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1. R-linear: D(af + bg) = a D(f) + b D(g), (a, b ∈ R), and 
2. Leibnizian: D(fg) = D(f)g + f D(g). 

Every vector field ξ ∈ X(M) defines a derivation f 7→ ξf . Conversely, every 
derivation on F(M) can be realized as a vector field. (Viewing vector fields as 
derivations comes in handy in understanding Lie brackets; see Section 5.3.1.) 

3.5.6 Differential of a mapping 

Let F : M → N be a smooth mapping between two manifolds M and N . 
Let ξx be a tangent vector at a point x of M. It can be shown that the 
mapping DF (x) [ξx] from FF (x)(N ) to R defined by 

(DF (x) [ξ]) f := ξ(f F ) (3.13) ◦ 
is a tangent vector to N at F (x). The tangent vector DF (x) [ξx] is realized 
by F γ, where γ is any curve that realizes ξx. The mapping ◦


DF (x) : TxM→ TF (x)N : ξ 7→ DF (x) [ξ]


is a linear mapping called the differential (or differential map, derivative, or 
tangent map) of F at x (see Figure 3.5). 

ξx 

TxM 

x 

γ(t) 

M 

N 

F (x) 

TF (x)N 

DF (x)[ξx] 

F 

DF (x) 

F (γ(t)) 

Figure 3.5 Differential map of F at x. 

Note that F is an immersion (respectively, submersion) if and only if 
DF (x) : TxM → TF (x)N is an injection (respectively, surjection) for every 
x ∈M. 

If N is a vector space E , then the canonical identification TF (x)E ≃ E 
yields 

DF (x) [ξx] = 
∑

(ξxF i)ei, (3.14) 
i 

where F (x) = 
∑

i F i(x)ei is the decomposition of F (x) in a basis (ei)i=1,...,n 

of E . 
If N = R, then F ∈ Fx(M), and we simply have 

DF (x) [ξx] = ξxF (3.15) 
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using the identification TxR ≃ R. We will often use DF (x) [ξx] as an alter­
native notation for ξxF , as it better emphasizes the derivative aspect. 

If M and N are linear manifolds, then, with the identification TxM≃M 
and TyN ≃ N , DF (x) reduces to its classical definition 

DF (x) [ξx] = lim 
F (x + tξx) − F (x) 

. (3.16) 
t→0 t 

Given a differentiable function F : M 7→ N and a vector field ξ on M, we 
let DF [ξ] denote the mapping 

DF [ξ] : M→ T N : x 7→ DF (x) [ξx] . 

In particular, given a real-valued function f on M and a vector field ξ on 
M, 

Df [ξ] = ξf. 

3.5.7 Tangent vectors to embedded submanifolds 

We now investigate the case where M is an embedded submanifold of a 
vector space E . Let γ be a curve in M, with γ(0) = x. Define 

γ ′ (0) := lim 
γ(t) − γ(0) 

, 
t→0 t 

where the subtraction is well defined since γ(t) belongs to the vector space E
for all t. (Strictly speaking, one should write i(γ(t)) − i(γ(0)), where i is the 
natural inclusion of M in E ; the inclusion is omitted to simplify the notation.) 
It follows that γ ′ (0) thus defined is an element of TxE ≃ E (see Figure 3.6). 
Since γ is a curve in M, it also induces a tangent vector γ̇(0) ∈ TxM. Not 

Sn−1 

γ(t) 

x = γ(0) γ′(0) 

R 

γ 

R 

f 

Figure 3.6 Curves and tangent vectors on the sphere. Since Sn−1 is an embedded 
submanifold of Rn, the tangent vector γ̇(0) can be pictured as the 
directional derivative γ ′ (0). 

surprisingly, γ ′ (0) and γ̇(0) are closely related: If f is a real-valued function 
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in a neighborhood U of x in E and f denotes the restriction of f to U ∩M 
(which is a neighborhood of x in M since M is embedded), then we have 

d d 
γ̇(0)f = f(γ(t)) = f(γ(t)) = Df (x) [γ ′ (0)] . (3.17) 

dt 

∣∣∣∣
t=0 dt 

∣∣∣∣
t=0 

This yields a natural identification of TxM with the set 

{γ ′ (0) : γ curve in M, γ(0) = x}, (3.18) 

which is a linear subspace of the vector space TxE ≃ E . In particular, when 
M is a matrix submanifold (i.e., the embedding space is Rn×p), we have 
TxE = Rn×p, hence the tangent vectors to M are naturally represented by 
n × p matrix arrays. 

Graphically, a tangent vector to a submanifold of a vector space can be 
thought of as an “arrow” tangent to the manifold. It is convenient to keep 
this intuition in mind when dealing with more abstract manifolds; however, 
one should bear in mind that the notion of a tangent arrow cannot always 
be visualized meaningfully in this manner, in which case one must return to 
the definition of tangent vectors as objects that, given a real-valued function, 
return a real number, as stated in Definition 3.5.1. 

In view of the identification of TxM with (3.18), we now write γ̇(t), γ ′ (t), 
and d γ(t) interchangeably. We also use the equality sign, such as in (3.19) dt 
below, to denote the identification of TxM with (3.18). 

When M is (locally or globally) defined as a level set of a constant-rank 
function F : E 7→ Rn, we have 

TxM = ker(DF (x)). (3.19) 

In other words, the tangent vectors to M at x correspond to those vectors 
ξ that satisfy DF (x) [ξ] = 0. Indeed, if γ is a curve in M with γ(0) = x, we 
have F (γ(t)) = 0 for all t, hence 

d(F (γ(t))) 
DF (x) [γ̇(0)] = = 0,

dt 

∣∣∣∣
t=0 

which shows that γ̇(0) ∈ ker(DF (x)). By counting dimensions using Propo­
sition 3.3.4, it follows that TxM and ker(DF (x)) are two vector spaces of 
the same dimension with one included in the other. This proves the equal­
ity (3.19). 

Example 3.5.1 Tangent space to a sphere 
Let t 7→ x(t) be a curve in the unit sphere Sn−1 through x0 at t = 0. Since 

x(t) ∈ Sn−1 for all t, we have 

x T (t)x(t) = 1 

for all t. Differentiating this equation with respect to t yields 

ẋT (t)x(t) + x T (t)ẋ(t) = 0, 

hence ẋ(0) is an element of the set 

{z ∈ Rn : x0 
T z = 0}. (3.20) 
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Sn−1 

x(t) 

x0 = x(0) x ′(0) 

Figure 3.7 Tangent space on the sphere. Since Sn−1 is an embedded submanifold 
of Rn, the tangent space TxSn−1 can be pictured as the hyperplane 
tangent to the sphere at x, with origin at x. 

This shows that Tx0
Sn−1 is a subset of (3.20). Conversely, let z belong to 

the set (3.20). Then the curve t 7→ x(t) := (x0 + tz)/‖x0 + tz‖ is on Sn−1 

and satisfies ẋ(0) = z. Hence (3.20) is a subset of Tx0
Sn−1. In conclusion, 

TxS
n−1 = {z ∈ Rn : x T z = 0}, (3.21) 

which is the set of all vectors orthogonal to x in Rn; see Figure 3.7. 
More directly, consider the function F : Rn → R : x 7→ xTx − 1. Since 

Sn−1 = {x ∈ Rn : F (x) = 0} and since F is full rank on Sn−1, it follows 
from (3.19) that 

TxS
n−1 = ker(DF (x)) = {z ∈ Rn : x T z + z T x = 0} = {z ∈ Rn : x T z = 0}, 

as in (3.21). 

Example 3.5.2 Orthogonal Stiefel manifold 
We consider the orthogonal Stiefel manifold 

St(p, n) = {X ∈ Rn×p : XTX = Ip} 
as an embedded submanifold of the Euclidean space Rn×p (see Section 3.3.2). 
Let X0 be an element of St(p, n) and let t 7→ X(t) be a curve in St(p, n) 
through X0 at t = 0; i.e., X(t) ∈ Rn×p, X(0) = X0, and 

XT (t)X(t) = Ip (3.22) 

for all t. It follows by differentiating (3.22) that 

ẊT (t)X(t) + XT (t)Ẋ(t) = 0. (3.23) 
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We deduce that Ẋ(0) belongs to the set 

{Z ∈ Rn×p : X0 
TZ + ZTX0 = 0}. (3.24) 

We have thus shown that TX0 
St(p, n) is a subset of (3.24). It is possible 

to conclude, as in the previous example, by showing that for all Z in (3.24) 
there is a curve in St(p, n) through X0 at t such that Ẋ(0) = Z. A simpler 
argument is to invoke (3.19) by pointing out that (3.24) is the kernel of 
DF (X0), where F : X 7→ XTX, so that Ip is a regular value of F and 
F −1(Ip) = St(p, n). In conclusion, the set described in (3.24) is the tangent 
space to St(p, n) at X0. That is, 

TX St(p, n) = {Z ∈ Rn×p : XTZ + ZTX = 0}. 
We now propose an alternative characterization of TX St(p, n). Without 

loss of generality, since Ẋ(t) is an element of Rn×p and X(t) has full rank, 
we can set 

Ẋ(t) = X(t)Ω(t) + X⊥(t)K(t), (3.25) 

where X⊥(t) is any n × (n − p) matrix such that span(X⊥(t)) is the or­
thogonal complement of span(X(t)). Replacing (3.25) in (3.23) yields 

Ω(t)T + Ω(t) = 0; 

i.e., Ω(t) is a skew-symmetric matrix. Counting dimensions, we deduce that 

TX St(p, n) = {XΩ + X⊥K : ΩT = −Ω, K ∈ R(n−p)×p}. 
Observe that the two characterizations of TX St(p, n) are facilitated by the 

embedding of St(p, n) in Rn×p: TX St(p, n) is identified with a linear subspace 
of Rn×p. 

Example 3.5.3 Orthogonal group 
Since the orthogonal group On is St(p, n) with p = n, it follows from the 

previous section that 

TUOn = {Z = UΩ : ΩT = −Ω} = USskew(n), (3.26) 

where Sskew(n) denotes the set of all skew-symmetric n × n matrices. 

3.5.8 Tangent vectors to quotient manifolds 

We have seen that tangent vectors of a submanifold embedded in a vector 
space E can be viewed as tangent vectors to E and pictured as arrows in E
tangent to the submanifold. The situation of a quotient E/ ∼ of a vector space 
E is more abstract. Nevertheless, the structure space E also offers convenient 
representations of tangent vectors to the quotient. 

For generality, we consider an abstract manifold M and a quotient mani­
fold M = M/ ∼ with canonical projection π. Let ξ be an element of TxM
and let x be an element of the equivalence class π−1(x). Any element ξ of 



00˙AMS September 23, 2007

43 MATRIX MANIFOLDS: FIRST-ORDER GEOMETRY 

TxM that satisfies Dπ(x)[ξ] = ξ can be considered a representation of ξ. In­
deed, for any smooth function f : M→ R, the function f := f ◦ π : M→ R 
is smooth (Proposition 3.4.5), and one has 

Df(x)[ξ] = Df(π(x))[Dπ(x)[ξ]] = Df(x)[ξ]. 

A difficulty with this approach is that there are infinitely many valid rep­
resentations ξ of ξ at x. 

It is desirable to identify a unique “lifted” representation of tangent vectors 
of TxM in TxM in order that we can use the lifted tangent vector repre­
sentation unambiguously in numerical computations. Recall from Proposi­
tion 3.4.4 that the equivalence class π−1(x) is an embedded submanifold of 
M. Hence π−1(x) admits a tangent space 

Vx = Tx(π−1(x)) 

called the vertical space at x. A mapping H that assigns to each element x of 
M a subspace Hx of TxM complementary to Vx (i.e., such that Hx ⊕ Vx = 
TxM) is called a horizontal distribution on M. Given x ∈M, the subspace 
Hx of TxM is then called the horizontal space at x; see Figure 3.8. Once 
M is endowed with a horizontal distribution, there exists one and only one 
element ξx that belongs to Hx and satisfies Dπ(x)[ξx] = ξ. This unique 
vector ξ is called the horizontal lift of ξ at x.x 

In particular, when the structure space is (a subset of) Rn×p, the hori­
zontal lift ξ is an n × p matrix, which lends itself to representation in a x 

computer as a matrix array. 

Example 3.5.4 Real projective space 
Recall from Section 3.4.3 that the projective space RP

n−1 is the quotient 
Rn 
∗ /∼, where x ∼ y if and only if there is an α ∈ R∗ such that y = xα. The 

equivalence class of a point x of Rn is ∗ 

[x] = π−1(π(x)) = xR∗ := {xα : α ∈ R∗}. 
The vertical space at a point x ∈ Rn is ∗ 

Vx = xR := {xα : α ∈ R}. 
A suitable choice of horizontal distribution is 

Hx := (Vx)⊥ := {z ∈ Rn : x T z = 0}. (3.27) 

(This horizontal distribution will play a particular role in Section 3.6.2 where 
the projective space is turned into a Riemannian quotient manifold.) 

A tangent vector ξ ∈ Tπ(x)RP
n−1 is represented by its horizontal lift ξx ∈ 

Hx at a point x ∈ Rn 
∗ . It would be equally valid to use another representation 

ξy ∈ Hy of the same tangent vector at another point y ∈ Rn such that x ∼ y.∗ 

The two representations ξx and ξy are not equal as vectors in Rn but are 
related by a scaling factor, as we now show. First, note that x ∼ y if and 
only if there exists a nonzero scalar α such that y = αx. Let f : RP

n−1 
R→

be an arbitrary smooth function and define f := f π : Rn R. Consider ◦ ∗ →
the function g : x 7→ αx, where α is an arbitrary nonzero scalar. Since 
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π−1(π(x)) 

x 

Vx 

Hx 

E 

π


E/ ∼ 
x = π(x) 

Figure 3.8 Schematic illustration of a quotient manifold. An equivalence class 
π−1(π(x)) is pictured as a subset of the total space E and corresponds 
to the single point π(x) in the quotient manifold E/ ∼. At x, the tan­
gent space to the equivalence class is the vertical space Vx, and the 
horizontal space Hx is chosen as a complement of the vertical space. 

π(g(x)) = π(x) for all x, we have f(g(x)) = f(x) for all x, and it follows by 
taking the differential of both sides that 

Df(g(x))[Dg(x)[ξx]] = Df(x)[ξx]. (3.28) 

By the definition of ξx, we have Df(x)[ξx] = Df(π(x))[ξ]. Moreover, we have 
Dg(x)[ξx] = αξx. Thus (3.28) yields Df(αx)[αξx]] = Df(π(αx))[ξ]. This 
result, since it is valid for any smooth function f , implies that Dπ(αx)[αξx] = 
ξ. This, along with the fact that αξ is an element of Hαx, implies that αξx x 

is the horizontal lift of ξ at αx, i.e., 

ξαx = αξx. 

Example 3.5.5 Grassmann manifolds 
Tangent vectors to the Grassmann manifolds and their matrix representa­

tions are presented in Section 3.6. 



00˙AMS September 23, 2007

45 MATRIX MANIFOLDS: FIRST-ORDER GEOMETRY 

3.6 RIEMANNIAN METRIC, DISTANCE, AND GRADIENTS 

Tangent vectors on manifolds generalize the notion of a directional deriva­
tive. In order to characterize which direction of motion from x produces the 
steepest increase in f , we further need a notion of length that applies to 
tangent vectors. This is done by endowing every tangent space TxM with 
an inner product 〈·, ·〉x, i.e., a bilinear, symmetric positive-definite form. The 
inner product 〈·, ·〉x induces a norm, 

‖ξx‖x := 
√
〈ξx, ξx〉x, 

on TxM. (The subscript x may be omitted if there is no risk of confusion.) 
The (normalized) direction of steepest ascent is then given by 

arg max Df (x) [ξx] . 
ξ∈TxM:‖ξx‖=1 

A manifold whose tangent spaces are endowed with a smoothly varying 
inner product is called a Riemannian manifold . The smoothly varying inner 
product is called the Riemannian metric. We will use interchangeably the 
notation 

g(ξx, ζx) = gx(ξx, ζx) = 〈ξx, ζx〉 = 〈ξx, ζx〉x 

to denote the inner product of two elements ξx and ζx of TxM. Strictly 
speaking, a Riemannian manifold is thus a couple (M, g), where M is a 
manifold and g is a Riemannian metric on M. Nevertheless, when the Rie­
mannian metric is unimportant or clear from the context, we simply talk 
about “the Riemannian manifold M”. A vector space endowed with an in­
ner product is a particular Riemannian manifold called Euclidean space. Any 
(second-countable Hausdorff) manifold admits a Riemannian structure. 

Let (U , ϕ) be a chart of a Riemannian manifold (M, g). The components 
of g in the chart are given by 

gij := g(Ei, Ej), 

where Ei denotes the ith coordinate vector field (see Section 3.5.4). Thus, 
for vector fields ξ = 

∑
i ξ

iEi and ζ = 
∑

i ζ
iEi, we have 

g(ξ, ζ) = 〈ξ, η〉 = 
∑ 

gijξ
iζj . 

i,j 

Note that the gij ’s are real-valued functions on U ⊆M. One can also define 
the real-valued functions gij◦ϕ−1 on ϕ(U) ⊆ Rd; we use the same notation gij 

for both. We also use the notation G : ˆ x for the matrix-valued function x 7→ Gˆ

such that the (i, j) element of Gx̂ is gij | . If we let ξ̂x̂ = Dϕ 
(
ϕ−1(x̂)

) 
[ξx]x̂

and ζ̂x̂ = Dϕ 
(
ϕ−1(x̂)

) 
[ζx], with x̂ = ϕ(x), denote the representations of ξx 

and ζx in the chart, then we have, in matrix notation, 

g(ξx, ζx) = 〈ξx, ζx〉 = ξ̂x
T 
ˆGx̂ζ̂x̂. (3.29) 

Note that G is a symmetric, positive definite matrix at every point. 
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The length of a curve γ : [a, b] →M on a Riemannian manifold (M, g) is 
defined by 

L(γ) = 
∫ b √

g(γ̇(t), γ̇(t)) dt. 
a 

The Riemannian distance on a connected Riemannian manifold (M, g) is 

dist : M×M→ R : dist(x, y) = inf L(γ) (3.30) 
Γ 

where Γ is the set of all curves in M joining points x and y. Assuming (as 
usual) that M is Hausdorff, it can be shown that the Riemannian distance 
defines a metric; i.e., 

1.	 dist(x, y) ≥ 0, with dist(x, y) = 0 if and only if x = y (positive­
definiteness); 

2.	 dist(x, y) = dist(y, x) (symmetry); 
3.	 dist(x, z) + dist(z, y) ≥ dist(x, y) (triangle inequality). 

Metrics and Riemannian metrics should not be confused. A metric is an 
abstraction of the notion of distance, whereas a Riemannian metric is an 
inner product on tangent spaces. There is, however, a link since any Rie­
mannian metric induces a distance, the Riemannian distance. 

Given a smooth scalar field f on a Riemannian manifold M, the gradient 
of f at x, denoted by grad f(x), is defined as the unique element of TxM
that satisfies 

〈grad f(x), ξ〉x = Df (x) [ξ] , ∀ξ ∈ TxM. (3.31) 

The coordinate expression of grad f is, in matrix notation, 

grad f(x̂) = G−1 Grad f̂(x̂),	 (3.32) x̂

where G is the matrix-valued function defined in (3.29) and Grad denotes 
the Euclidean gradient in Rd , 


∂1f̂(x̂)

 

.Grad f̂(x̂) :=  .. 
  . 

∂df̂(x̂) 

(Indeed, from (3.29) and (3.32), we have 〈grad f, ξ〉 = ξ̂TG(G−1 Grad f̂) = 
ξ̂T Grad f̂ = D f̂ [ξ̂] = Df [ξ] for any vector field ξ.) 

The gradient of a function has the following remarkable steepest-ascent 
properties (see Figure 3.9): 

•	 The direction of grad f(x) is the steepest-ascent direction of f at x: 

grad f(x) 
= arg max Df (x) [ξ] . ‖grad f(x)‖ ξ∈TxM:‖ξ‖=1 

•	 The norm of grad f(x) gives the steepest slope of f at x:

[ 

grad f(x) 
]


‖grad f(x)‖ = Df (x) ‖grad f(x)‖ . 

These two properties are important in the scope of optimization methods. 
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{ξ : Df (x) [ξ] = 1} {ξ : Df (x) [ξ] = −1} 

{ξ : ‖ξ‖ =


0x 

1} 

{ξ : Df (x) [ξ] = 0}
−grad f(x) 

Figure 3.9 Illustration of steepest descent. 

3.6.1 Riemannian submanifolds 

If a manifold M is endowed with a Riemannian metric, one would expect that 
manifolds generated from M (such as submanifolds and quotient manifolds) 
can inherit a Riemannian metric in a natural way. This section considers 
the case of embedded submanifolds; quotient manifolds are dealt with in the 
next section. 

Let M be an embedded submanifold of a Riemannian manifold M. Since 
every tangent space TxM can be regarded as a subspace of TxM, the Rie­
mannian metric g of M induces a Riemannian metric g on M according 
to 

gx(ξ, ζ) = g (ξ, ζ), ξ, ζ ∈ TxM,x

where ξ and ζ on the right-hand side are viewed as elements of TxM. This 
turns M into a Riemannian manifold. Endowed with this Riemannian met­
ric, M is called a Riemannian submanifold of M. The orthogonal comple­
ment of TxM in TxM is called the normal space to M at x and is denoted 
by (TxM)⊥: 

(TxM)⊥ = {ξ ∈ TxM : gx(ξ, ζ) = 0 for all ζ ∈ TxM}. 
Any element ξ ∈ TxM can be uniquely decomposed into the sum of an 
element of TxM and an element of (TxM)⊥: 

ξ = Pxξ + P⊥ 
x ξ, 

where Px denotes the orthogonal projection onto TxM and P⊥ denotes the x 

orthogonal projection onto (TxM)⊥ . 

Example 3.6.1 Sphere 
On the unit sphere Sn−1 considered a Riemannian submanifold of Rn, the 

inner product inherited from the standard inner product on Rn is given by 

〈ξ, η〉x := ξT η. (3.33) 
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The normal space is 

(TxS
n−1)⊥ = {xα : α ∈ R}, 

and the projections are given by 

Pxξ = (I − xx T )ξ, P⊥ξ = xx T ξx 

for x ∈ Sn−1 . 

Example 3.6.2 Orthogonal Stiefel manifold 
Recall that the tangent space to the orthogonal Stiefel manifold St(p, n) is 

TX St(p, n) = {XΩ + X⊥K : ΩT = −Ω, K ∈ R(n−p)×p}. 
The Riemannian metric inherited from the embedding space Rn×p is 

〈ξ, η〉X := tr(ξT η). (3.34) 

If ξ = XΩξ + X⊥Kξ and η = XΩη + X⊥Kη, then 〈ξ, η〉X = tr(ΩT Ωη +ξ 

Kξ
TKη). In view of the identity tr(ST Ω) = 0 for all S ∈ Ssym(p), Ω ∈ 
Sskew(p), the normal space is 

(TX St(p, n))⊥ = {XS : S ∈ Ssym(p)}. 
The projections are given by 

PXξ = (I − XXT )ξ + X skew(XT ξ), (3.35) 

P⊥ = X sym(XT ξ), (3.36) Xξ 

where sym(A) := 1
2 (A + AT ) and skew(A) := 1

2 (A − AT ) denote the com­
ponents of the decomposition of A into the sum of a symmetric term and a 
skew-symmetric term. 

Let f be a cost function defined on a Riemannian manifold M and let f 
denote the restriction of f to a Riemannian submanifold M. The gradient 
of f is equal to the projection of the gradient of f onto TxM: 

grad f(x) = Px grad f(x). (3.37) 

Indeed, Px grad f(x) belongs to TxM and (3.31) is satisfied since, for all 
ζ ∈ TxM, we have 〈Px grad f(x), ζ〉 = 〈grad f(x) − P⊥ grad f(x), ζ〉 = x 

〈grad f(x), ζ〉 = Df (x) [ζ] = Df (x) [ζ]. 

3.6.2 Riemannian quotient manifolds 

We now consider the case of a quotient manifold M = M/ ∼, where the 
structure space M is endowed with a Riemannian metric g. The horizontal 
space Hx at x ∈ M is canonically chosen as the orthogonal complement in 
TxM of the vertical space Vx = Txπ

−1(x), namely, 

Hx := (TxVx)⊥ = {ηx ∈ TxM : g(χx, ηx) = 0 for all χx ∈ Vx}. 
Recall that the horizontal lift at x ∈ π−1(x) of a tangent vector ξx ∈ TxM

is the unique tangent vector ξx ∈ Hx that satisfies Dπ(x)[ξx]. If, for every 
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x ∈M and every ξx, ζx ∈ TxM, the expression g (ξ , ζ ) does not depend x x x

on x ∈ π−1(x), then 

gx(ξx, ζx) := gx(ξx, ζx) (3.38) 

defines a Riemannian metric on M. Endowed with this Riemannian met­
ric, M is called a Riemannian quotient manifold of M, and the natural 
projection π : M → M is a Riemannian submersion. (In other words, a 
Riemannian submersion is a submersion of Riemannian manifolds such that 
Dπ preserves inner products of vectors normal to fibers.) 

Riemannian quotient manifolds are interesting because several differential 
objects on the quotient manifold can be represented by corresponding objects 
in the structure space in a natural manner (see in particular Section 5.3.4). 
Notably, if f is a function on M that induces a function f on M, then one 
has 

grad fx = grad f(x). (3.39) 

Note that grad f(x) belongs to the horizontal space: since f is constant on 
each equivalence class, it follows that gx(grad f(x), ξ) ≡ Df (x) [ξ] = 0 for 
all vertical vectors ξ, hence grad f(x) is orthogonal to the vertical space. 

We use the notation Phξx and Pvξx for the projection of ξx ∈ TxM onto x x

Hx and Vx. 

Example 3.6.3 Projective space 
On the projective space RP

n−1, the definition 

1 T 〈ξ, η〉xR := 
xTx

ξ ηx x 

turns the canonical projection π : R∗ 
n RP

n−1 into a Riemannian submer­→
sion. 

Example 3.6.4 Grassmann manifolds 
We show that the Grassmann manifold Grass(p, n) = Rn

∗
×p/GLp admits 

a structure of a Riemannian quotient manifold when Rn
∗
×p is endowed with 

the Riemannian metric 

gY (Z1, Z2) = tr 
(
(Y TY )−1Z1 

TZ2

) 
. 

The vertical space at Y is by definition the tangent space to the equivalence 
class π−1(π(Y )) = {YM : M ∈ Rp

∗
×p}, which yields 

VY = {YM : M ∈ Rp×p}. 
The horizontal space at Y is then defined as the orthogonal complement of 
the vertical space with respect to the metric g. This yields 

HY = {Z ∈ Rn×p : Y TZ = 0}, (3.40) 

and the orthogonal projection onto the horizontal space is given by 

Ph
Y Z = (I − Y (Y TY )−1Y T )Z. (3.41) 
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W GLp 

W SW 

0 

Y 

σW (span(Y )) 

ξ ⋄W 

Y GLp 

ξ ⋄W M 

W M 

Figure 3.10 Grass(p, n) is shown as the quotient R
n
∗
×p/GLp for the case p = 1, n = 

2. Each point, the origin excepted, is an element of Rn
∗
×p = R2 −{0}. 

Each line is an equivalence class of elements of Rn
∗
×p that have the 

same span. So each line through the origin corresponds to an element 
of Grass(p, n). The affine subspace SW is an affine cross section as 
defined in (3.43). The relation (3.42) satisfied by the horizontal lift ξ of 
a tangent vector ξ ∈ TW Grass(p, n) is also illustrated. This figure can 
help to provide insight into the general case, however, one nonetheless 
has to be careful when drawing conclusions from it. For example, in 
general there does not exist a submanifold of Rn×p that is orthogonal 
to the fibers Y GLp at each point, although it is obviously the case for 
p = 1 (any centered sphere in Rn will do). 

Given ξ ∈ Tspan(Y ) Grass(p, n), there exists a unique horizontal lift ξY ∈ 
TY R

n
∗
×p satisfying 

Dπ(Y )[ξY ] = ξ. 

In order to show that Grass(p, n) admits a structure of a Riemannian quo­
tient manifold of (Rn

∗
×p , g), we have to show that 

g(ξY M , ζY M ) = g(ξY , ζY ) 

for all M ∈ Rp
∗
×p. This relies on the following result. 

Proposition 3.6.1 Given Y ∈ Rn
∗
×p and ξ ∈ Tspan(Y ) Grass(p, n), we have 

ξY M = ξY · M (3.42) 

for all M ∈ R
p
∗
×p, where the center dot (usually omitted) denotes matrix 

multiplication. 

Proof. Let W ∈ Rn
∗
×p. Let UW = {span(Y ) : W TY invertible}. Notice that 

UW is the set of all the p-dimensional subspaces Y of Rn that do not contain 
any direction orthogonal to span(W ). Consider the mapping 

σW : UW → R∗ 
n×p : span(Y ) 7→ Y (W TY )−1W TW ; 
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see Figure 3.10. One has π(σW (Y)) = span(σW (Y)) = Y for all Y ∈ UW ; 
i.e., σW is a right inverse of π. Consequently, Dπ(σW (Y)) DσW (Y) = id.◦
Moreover, the range of σW is 

SW := {Y ∈ R∗ 
n×p : W T (Y − W ) = 0}, (3.43) 

from which it follows that the range of DσW (Y) = {Z ∈ Rn×p : W TZ = 
0} = HW . In conclusion, 

DσW (W)[ξ] = ξW . 

Now, σWM (Y) = σW (Y)M for all M ∈ Rp
∗
×p and all Y ∈ UW . It follows 

that 

ξWM = DσWM (W)[ξ] = D(σW M)(W)[ξ] = DσW (W)[ξ] M = ξW · M, · · 
where the center dot denotes the matrix multiplication. � 

Using this result, we have 

gY M (ξY M , ζY M ) = gY M (ξY M, ζY M) 

= tr 
(
((YM)TYM)−1(ξY M)T (ζY M)

) 

T
(
M−1(Y TY )−1M−TMT ξY= tr ζY M

T 
= tr 

(
(Y TY )−1ξY ζY 

) 

= gY (ξY , ζY ). 

This shows that Grass(p, n), endowed with the Riemannian metric 

gspan(Y )(ξ, ζ) := gY (ξY , ζY ), (3.44) 

is a Riemannian quotient manifold of (Rn
∗
×p , g). In other words, the canon­

ical projection π : Rn
∗
×p Grass(p, n) is a Riemannian submersion from →

(Rn
∗
×p , g) to (Grass(p, n), g). 

3.7 NOTES AND REFERENCES 

Differential geometry textbooks that we have referred to when writing 
this book include Abraham et al. [AMR88], Boothby [Boo75], Brickell 
and Clark [BC70], do Carmo [dC92], Kobayashi and Nomizu [KN63], 
O’Neill [O’N83], Sakai [Sak96], and Warner [War83]. Some material was 
also borrowed from the course notes of M. De Wilde at the University of 
Liège [DW92]. Do Carmo [dC92] is well suited for engineers, as it does not 
assume any background in abstract topology; the prequel [dC76] on the 
differential geometry of curves and surfaces makes the introduction even 
smoother. Abraham et al. [AMR88] and Brickell and Clark [BC70] cover 
global analysis questions (submanifolds, quotient manifolds) at an introduc­
tory level. Brickell and Clark [BC70] has a detailed treatment of the topology 
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of manifolds. O’Neill [O’N83] is an excellent reference for Riemannian con­
nections of submanifolds and quotient manifolds (Riemannian submersions). 
Boothby [Boo75] provides an excellent introduction to differential geometry 
with a perspective on Lie theory, and Warner [War83] covers more advanced 
material in this direction. Other references on differential geometry include 
the classic works of Kobayashi and Nomizu [KN63], Helgason [Hel78], and 
Spivak [Spi70]. We also mention Darling [Dar94], which introduces abstract 
manifold theory only after covering Euclidean spaces and their submanifolds. 

Several equivalent ways of defining a manifold can be found in the lit­
erature. The definition in do Carmo [dC92] is based on local parameter­
izations. O’Neill [O’N83, p. 22] points out that for a Hausdorff manifold 
(with countably many components), being second-countable is equivalent 
to being paracompact. (In abstract topology, a space X is paracompact if 
every open covering of X has a locally finite open refinement that covers 
X.) A differentiable manifold M admits a partition of unity if and only 
if it is paracompact [BC70, Th. 3.4.4]. The material on the existence and 
uniqueness of atlases has come chiefly from Brickell and Clark [BC70]. A 
function with constant rank on its domain is called a subimmersion in most 
textbooks. The terms “canonical immersion” and “canonical submersion” 
have been borrowed from Guillemin and Pollack [GP74, p. 14]. The mani­
fold topology of an immersed submanifold is always finer than its topology 
as a subspace [BC70], but they need not be the same topology. (When they 
are, the submanifold is called embedded.) Examples of subsets of a mani­
fold that do not admit a submanifold structure, and examples of immersed 
submanifolds that are not embedded, can be found in most textbooks on 
differential geometry, such as do Carmo [dC92]. Proposition 3.3.1, on the 
uniqueness of embedded submanifold structures, is proven in Brickell and 
Clark [BC70] and O’Neill [O’N83]. Proposition 3.3.3 can be found in sev­
eral textbooks without the condition d1 > d2. In the case where d1 = d2, 
F −1(y) is a discrete set of points [BC70, Prop. 6.2.1]. In several references, 
embedded submanifolds are called regular submanifolds or simply submani­
folds. Proposition 3.3.2, on coordinate slices, is sometimes used to define the 
notion of an embedded submanifold, such as in Abraham et al. [AMR88]. 
Our definition of a regular equivalence relation follows that of Abraham et 
al. [AMR88]. The characterization of quotient manifolds in Proposition 3.4.2 
can be found in Abraham et al. [AMR88, p. 208]. A shorter proof of Proposi­
tion 3.4.6 (showing that Rn

∗
×p/GLp admits a structure of quotient manifold, 

the Grassmann manifold) can be given using the theory of homogeneous 
spaces, see Boothby [Boo75] or Warner [War83]. 

Most textbooks define tangent vectors as derivations. Do Carmo [dC92] 
introduces tangent vectors to curves, as in Section 3.5.1. O’Neill [O’N83] 
proposes both definitions. A tangent vector at a point x of a manifold can 
also be defined as an equivalence class of all curves that realize the same 
derivation: γ1 ∼ γ2 if and only if, in a chart (U,ϕ) around x = γ1(0) = γ2(0), 
we have (ϕ γ1) ′ (0) = (ϕ γ2) ′ (0). This notion does not depend on the chart ◦ ◦ 
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since, if (V, ψ) is another chart around x, then 

(ψ γ) ′ (0) = (ψ ϕ−1) ′ (ϕ(m)) (ϕ γ) ′ (0).◦ ◦ · ◦ 
This is the approach taken, for example, by Gallot et al. [GHL90]. 

The notation DF (x) [ξ] is not standard. Most textbooks use dFxξ or F∗xξ. 
Our notation is slightly less compact but makes it easier to distinguish the 
three elements F , x, and ξ of the expression and has proved more flexible 
when undertaking explicit computations involving matrix manifolds. 

An alternative way to define smoothness of a vector field is to require 
that the function ξf be smooth for every f ∈ F(M); see O’Neill [O’N83]. 
In the parlance of abstract algebra, the set F(M) of all smooth real-valued 
functions on M, endowed with the usual operations of addition and multipli­
cation, is a commutative ring, and the set X(M) of vector fields is a module 
over F(M) [O’N83]. Formula (3.26) for the tangent space to the orthogonal 
group can also be obtained by treating On as a Lie group: the operation of 
left multiplication by U , LU : X 7→ UX, sends the neutral element I to U , 
and the differential of LU at I sends TIOn = o(n) = Sskew(n) to USskew(n); 
see, e.g., Boothby [Boo75] or Warner [War83]. For a proof that the Rie­
mannian distance satisfies the three axioms of a metric, see O’Neill [O’N83, 
Prop. 5.18]. The axiom that fails to hold in general for non-Hausdorff man­
ifolds is that dist(x, y) = 0 if and only if x = y. An example can be con­
structed from the material in Section 4.3.2. Riemannian submersions are 
covered in some detail in Cheeger and Ebin [CE75], do Carmo [dC92], Klin­
genberg [Kli82], O’Neill [O’N83], and Sakai [Sak96]. The term “Riemannian 
quotient manifold” is new. 

The Riemannian metric given in (3.44) is the essentially unique rotation-
invariant Riemannian metric on the Grassmann manifold [Lei61, AMS04]. 
More information on Grassmann manifolds can be found in Ferrer et 
al. [FGP94], Edelman et al. [EAS98], Absil et al. [AMS04], and references 
therein. 

In order to define the steepest-descent direction of a real-valued function 
f on a manifold M, it is enough to endow the tangent spaces to M with a 
norm. Under smoothness assumptions, this turns M into a Finsler manifold . 
Finsler manifolds have received little attention in the literature in comparison 
with the more restrictive notion of Riemannian manifolds. For recent work 
on Finsler manifolds, see Bao et al. [BCS00]. 
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Chapter Four


Line-Search Algorithms on Manifolds 

Line-search methods in Rn are based on the update formula 

xk+1 = xk + tkηk, (4.1) 

where ηk ∈ Rn is the search direction and tk ∈ R is the step size. The goal 
of this chapter is to develop an analogous theory for optimization problems 
posed on nonlinear manifolds. 

The proposed generalization of (4.1) to a manifold M consists of selecting 
ηk as a tangent vector to M at xk and performing a search along a curve 
in M whose tangent vector at t = 0 is ηk. The selection of the curve relies 
on the concept of retraction, introduced in Section 4.1. The choice of a 
computationally efficient retraction is an important decision in the design 
of high-performance numerical algorithms on nonlinear manifolds. Several 
practical examples are given for the matrix manifolds associated with the 
main examples of interest considered in this book. 

This chapter also provides the convergence theory of line-search algorithms 
defined on Riemannian manifolds. Several example applications related to 
the eigenvalue problem are presented. 

4.1 RETRACTIONS 

Conceptually, the simplest approach to optimizing a differentiable function 
is to continuously translate a test point x(t) in the direction of steepest 
descent, −grad f(x), on the constraint set until one reaches a point where 
the gradient vanishes. Points x where grad f(x) = 0 are called stationary 
points or critical points of f . A numerical implementation of the continuous 
gradient descent approach requires the construction of a curve γ such that 
γ̇(t) = −grad f(γ(t)) for all t. Except in very special circumstances, the con­
struction of such a curve using numerical methods is impractical. The closest 
numerical analogy is the class of optimization methods that use line-search 
procedures, namely, iterative algorithms that, given a point x, compute a 
descent direction η := −grad f(x) (or some approximation of the gradient) 
and move in the direction of η until a “reasonable” decrease in f is found. 
In Rn, the concept of moving in the direction of a vector is straightforward. 
On a manifold, the notion of moving in the direction of a tangent vector, 
while staying on the manifold, is generalized by the notion of a retraction 
mapping. 
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Conceptually, a retraction R at x, denoted by Rx, is a mapping from 
TxM to M with a local rigidity condition that preserves gradients at x; see 
Figure 4.1. 

x 

M 

TxM 

Rx(ξ) 

ξ 

Figure 4.1 Retraction. 

Definition 4.1.1 (retraction) A retraction on a manifold M is a smooth 
mapping R from the tangent bundle T M onto M with the following proper­
ties. Let Rx denote the restriction of R to TxM. 

(i) Rx(0x) = x, where 0x denotes the zero element of TxM. 
(ii) With the canonical identification T0x 

satisfies TxM≃ TxM, Rx 

DRx(0x) = idTxM, (4.2) 

where idTxM denotes the identity mapping on TxM. 

We generally assume that the domain of R is the whole tangent bundle T M. 
This property holds for all practical retractions considered in this book. 

Concerning condition (4.2), notice that, since Rx is a mapping from TxM
to M sending 0x to x, it follows that DRx(0x) is a mapping from T0x 

(TxM) 
to TxM (see Section 3.5.6). Since TxM is a vector space, there is a nat­
ural identification T0x 

(TxM) ≃ TxM (see Section 3.5.2). We refer to the 
condition DRx(0x) = idTxM as the local rigidity condition. Equivalently, for 
every tangent vector ξ in TxM, the curve γξ : t 7→ Rx(tξ) satisfies γ̇ξ(0) = ξ. 
Moving along this curve γξ is thought of as moving in the direction ξ while 
constrained to the manifold M. 

Besides turning elements of TxM into points of M, a second important 
purpose of a retraction Rx is to transform cost functions defined in a neigh­
borhood of x ∈ M into cost functions defined on the vector space TxM. 
Specifically, given a real-valued function f on a manifold M equipped with 
a retraction R, we let f̂ = f R denote the pullback of f through R. For ◦ 
x ∈M, we let 

fx = f Rx (4.3) ̂ ◦ 
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denote the restriction of f to TxM. Note that fx is a real-valued function 
on a vector space. Observe that because of the local rigidity condition (4.2), 
we have (with the canonical identification (3.11)) D f̂x(0x) = Df(x). If M is 
endowed with a Riemannian metric (and thus TxM with an inner product), 
we have 

grad f̂x(0x) = grad f(x). (4.4) 

All the main examples that are considered in this book (and most ma­
trix manifolds of interest) admit a Riemannian metric. Every manifold that 
admits a Riemannian metric also admits a retraction defined by the Rieman­
nian exponential mapping (see Section 5.4 for details). The domain of the 
exponential mapping is not necessarily the whole T M. When it is, the Rie­
mannian manifold is called complete. The Stiefel and Grassmann manifolds, 
endowed with the Riemannian metrics defined in Section 3.6, are complete. 

The Riemannian exponential mapping is, in the geometric sense, the most 
natural retraction to use on a Riemannian manifold and featured heavily in 
the early literature on the development of numerical algorithms on Rieman­
nian manifolds. Unfortunately, the Riemannian exponential mapping is itself 
defined as the solution of a nonlinear ordinary differential equation that, in 
general, poses significant numerical challenges to compute cheaply. In most 
cases of interest in this book, the solution of the Riemannian exponential can 
be expressed in terms of classical analytic functions with matrix arguments. 
However, the evaluation of matrix analytic functions is also a challenging 
problem and usually computationally intensive to solve. Indeed, computing 
the exponential may turn out to be more difficult than the original Rie­
mannian optimization problem under consideration (see Section 7.5.2 for an 
example). These drawbacks are an invitation to consider alternatives in the 
form of approximations to the exponential that are computationally cheap 
without jeopardizing the convergence properties of the optimization schemes. 
Retractions provide a framework for analyzing such alternatives. All the al­
gorithms in this book make use of retractions in one form or another, and 
the convergence analysis is carried out for general retractions. 

In the remainder of this Section 4.1, we show how several structures (em­
bedded submanifold, quotient manifold) and mathematical objects (local 
coordinates, projections, factorizations) can be exploited to define retrac­
tions. 

4.1.1 Retractions on embedded submanifolds 

Let M be an embedded submanifold of a vector space E . Recall that TxM
can be viewed as a linear subspace of TxE (Section 3.5.7) which itself can be 
identified with E (Section 3.5.2). This allows us, slightly abusing notation, 
to consider the sum x + ξ of a point x of M, viewed as an element of E , and 
a tangent vector ξ ∈ TxM, viewed as an element of TxE ≃ E . In this setting, 
it is tempting to define a retraction along the following lines. Given x in M
and ξ ∈ TxM, compute Rx(ξ) by 
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1. moving along ξ to get the point x + ξ in the linear embedding space; 
2. “projecting” the point x + ξ back to the manifold M. 

The issue is to define a projection that (i) turns the procedure into a well-
defined retraction and (ii) is computationally efficient. In the embedded sub-
manifolds of interest in this book, as well as in several other cases, the second 
step can be based on matrix decompositions. Examples of such decomposi­
tions include QR factorization and polar decomposition. The purpose of the 
present section is to develop a general theory of decomposition-based re­
tractions. With this theory at hand, it will be straightforward to show that 
several mappings constructed along the above lines are well-defined retrac­
tions. 

Let M be an embedded manifold of a vector space E and let N be an 
abstract manifold such that dim(M) + dim(N ) = dim(E). Assume that 
there is a diffeomorphism 

φ : M×N → E∗ : (F,G) 7→ φ(F,G), 

where E∗ is an open subset of E (thus E∗ is an open submanifold of E), with 
a neutral element I ∈ N satisfying 

φ(F, I) = F, ∀F ∈M. 

(The letter I is chosen in anticipation that the neutral element will be the 
identity matrix of a matrix manifold N in cases of interest.) 

Proposition 4.1.2 Under the above assumptions on φ, the mapping 

RX(ξ) := π1(φ−1(X + ξ)), 

where π1 : M × N → M : (F,G) 7→ F is the projection onto the first 
component, defines a retraction on M. 

Proof. Since E∗ is open, it follows that X + ξ belongs to E∗ for all ξ in 
some neighborhood of 0X . Since φ−1 is defined on the whole E∗, it follows 
that RX(ξ) is defined for all ξ in a neighborhood of the origin of TXM. 
Smoothness of R and the property RX(0X) = X are direct. For the local 
rigidity property, first note that for all ξ ∈ TXM, we have 

D1φ(X, I)[ξ] = Dφ(X, I)[(ξ, 0)] = ξ. 

Since π1 ◦ φ−1(φ(F, I)) = F , it follows that, for all ξ ∈ TXM, 

ξ = D(π1 φ
−1)(φ(X, I)) [D1φ(X, I)[ξ]] = D(π1 φ

−1)(X)[ξ] = DRX(0X)[ξ],◦ ◦ 
which proves the claim that RX is a retraction. � 

Example 4.1.1 Retraction on the sphere Sn−1 

Let M = Sn−1, let N = {x ∈ R : x > 0}, and consider the mapping 

φ : M×N → Rn 
∗ : (x, r) 7→ xr. 

It is straightforward to verify that φ is a diffeomorphism. Proposition 4.1.2 
yields the retraction 

x + ξ 
Rx(ξ) = , ‖x + ξ‖ 
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defined for all ξ ∈ TxS
n−1. Note that Rx(ξ) is the point of Sn−1 that mini­

mizes the distance to x + ξ. 

Example 4.1.2 Retraction on the orthogonal group 
Let M = On be the orthogonal group. The QR decomposition of a matrix 

A ∈ Rn×n is the decomposition of A as A = QR, where Q belongs to On and ∗ 
R belongs to Supp+(n), the set of all upper triangular matrices with strictly 
positive diagonal elements. The inverse of QR decomposition is the mapping 

φ : On × Supp+(n) → R∗ 
n×n : (Q,R) 7→ QR. (4.5) 

We let qf := π1 φ−1 denote the mapping that sends a matrix to the Q◦
factor of its QR decomposition. The mapping qf can be computed using the 
Gram-Schmidt orthonormalization. 

We have to check that φ satisfies all the assumptions of Proposition 4.1.2. 
The identity matrix is the neutral element: φ(Q, I) = Q for all Q ∈ On. It 
follows from the existence and uniqueness properties of the QR decomposition 
that φ is bijective. The mapping φ is smooth since it is the restriction of a 
smooth map (matrix product) to a submanifold. Concerning φ−1, notice that 
its first matrix component Q is obtained by a Gram-Schmidt process, which 
is C∞ on the set of full-rank matrices. Since the second component R is 
obtained as Q−1M , it follows that φ−1 is C∞. In conclusion, the assumptions 
of Proposition 4.1.2 hold for (4.5), and consequently, 

RX(XΩ) := qf(X + XΩ) = qf(X(I + Ω)) = Xqf(I + Ω) 

is a retraction on the orthogonal group On. 
A second possibility is to consider the polar decomposition of a matrix 

A = QP , where Q ∈ On and P ∈ Ssym+(n), the set of all symmetric positive­
definite matrices of size n. The inverse of polar decomposition is a mapping 

φ : On × Ssym+(n) → Rn
∗
×n : (Q,P ) 7→ QP. 

We have φ−1(A) = (A(ATA)−1/2 , (ATA)1/2). This shows that φ is a diffeo­
morphism, and thus 

RX(XΩ) := X(I + Ω)((X(I + Ω))TX(I + Ω))−1/2 

= X(I + Ω)(I − Ω2)−1/2 (4.6) 

is a retraction on On. Computing this retraction requires an eigenvalue de­
composition of the n × n symmetric matrix (I − Ω2). Note that it does not 
make sense to use this retraction in the context of an eigenvalue algorithm 
on On since the computational cost of computing a single retraction is com­
parable to that for solving the original optimization problem. 

A third possibility is to use Givens rotations. For an n×n skew-symmetric 
matrix Ω, let Giv(Ω) = 

∏
1≤i<j≤n G(i, j, Ωij), where the order of multipli­

cation is any fixed order and where G(i, j, θ) is the Givens rotation of an­
gle θ in the (i, j) plane, namely, G(i, j, θ) is the identity matrix with the 
substitutions eT

i G(i, j, θ)ei = eT
j G(i, j, θ)ej = cos(θ) and eT

i G(i, j, θ)ej = 
−ej

TG(i, j, θ)ei = sin(θ). Then the mapping R : TOn → On defined by 

RX(XΩ) = X Giv(Ω) 
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is a retraction on On. 
Another retraction on On, based on the Cayley transform, is given by 

RX(XΩ) = X(I − 1Ω)−1(I + 1 2 2Ω). 

Anticipating the material in Chapter 5, we point out that the Riemannian 
exponential mapping on On (viewed as a Riemannian submanifold of Rn×n) 
is given by 

ExpX(XΩ) = X exp(Ω), 
1where exp denotes the matrix exponential defined by exp(Ω) := 

∑∞ 
Ωi .i=0 i!

Note that Riemannian exponential mappings are always retractions (Propo­
sition 5.4.1). Algorithms for accurately evaluating the exponential have a 
numerical cost at best similar to those for evaluating (4.6). However, there 
are several computationally efficient Lie group-based algorithms for approxi­
mating the exponential that fit the definition of a retraction (see pointers in 
Notes and References). 

Example 4.1.3 Retraction on the Stiefel manifold 
Consider the Stiefel manifold St(p, n) = {X ∈ Rn×p : XTX = Ip}. The 

retraction based on the polar decomposition is 

RX(ξ) = (X + ξ)(Ip + ξT ξ)−1/2 , (4.7) 

where we have used the fact that ξ, as an element of TX St(p, n), satisfies 
XT ξ + ξTX = 0. When p is small, the numerical cost of evaluating (4.7) is 
reasonable since it involves the eigenvalue decomposition of the small p × p 
matrix (Ip + ξT ξ)−1/2 along with matrix linear algebra operations that require 
only O(np2) additions and multiplications. 

Much as in the case of the orthogonal group, an alternative to choice (4.7) 
is 

RX(ξ) := qf(X + ξ), (4.8) 

where qf(A) denotes the Q factor of the decomposition of A ∈ R
n
∗
×p as 

A = QR, where Q belongs to St(p, n) and R is an upper triangular n × p 
matrix with strictly positive diagonal elements. Computing RX(ξ) can be 
done in a finite number of basic arithmetic operations (addition, subtraction, 
multiplication, division) and square roots using, e.g., the modified Gram-
Schmidt algorithm. 

4.1.2 Retractions on quotient manifolds 

We now consider the case of a quotient manifold M = M/ ∼. Recall the 
notation π for the canonical projection and ξx for the horizontal lift at x of 
a tangent vector ξ ∈ Tπ(x)M. 

Proposition 4.1.3 Let M = M/∼ be a quotient manifold with a prescribed 
horizontal distribution. Let R be a retraction on M such that for all x ∈M 
and ξ ∈ TxM, 

π(Rxa 
(ξxa 

)) = π(Rxb
(ξxb

)) (4.9) 
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for all xa, xb ∈ π−1(x). Then 

Rx(ξ) := π(Rx(ξx)) (4.10) 

defines a retraction on M. 

Proof. Equation (4.9) guarantees that R is well defined as a mapping from 
T M to M. Since R is a retraction, it also follows that the property Rx(0x) = 
x is satisfied. Finally, the local rigidity condition holds since, given x ∈
π−1(x), 

DRx (0x) [η] = Dπ(x) DRx (0x) [η ] = Dπ (x) [η ] = η◦ x x

for all η ∈ TxM, by definition of the horizontal lift. � 

From now on we consider the case where the structure space M is an 
open, dense (not necessarily proper) subset of a vector space E . Assume that 
a horizontal distribution H has been selected that endows every tangent 
vector to M with a horizontal lift. The natural choice for R is then 

Ry(ζ) = y + ζy. 

However, this choice does not necessarily satisfy (4.9). In other words, if x 
and y satisfy π(x) = π(y), the property π(x + ξx) = π(y + ξy) may fail to 
hold. 

As an example, take the quotient of R2 for which the graphs of the curves 
x1 = a + a3x2

2 are equivalence classes, where a ∈ R parameterizes the set 
of all equivalence classes. Define the horizontal distribution as the constant 
subspace e1R. Given a tangent vector ξ to the quotient at the equivalence 
class e2R (corresponding to a = 0), we obtain that the horizontal lift ξ(0,x2) 

is a constant (C, 0) independent of x2. It is clear that the equivalence class 
of (0, x2) + ξ(0,x2) = (C, x2) depends on x2. 

If we further require the equivalence classes to be the orbits of a Lie group 
acting linearly on M, with a horizontal distribution that is invariant by the 
Lie group action, then condition (4.9) holds. In particular, this is the case 
for the main examples considered in this book. 

Example 4.1.4 Retraction on the projective space 
Consider the real projective space RP

n−1 = R∗ 
n/R∗ with the horizontal 

distribution defined in (3.27). A retraction can be defined as 

Rπ(y)ξ = π(y + ξy), 

where ξy ∈ Rn is the horizontal lift of ξ ∈ Tπ(y)RP
n−1 at y. 

Example 4.1.5 Retraction on the Grassmann manifold 
Consider the Grassmann manifold Grass(p, n) = Rn

∗
×p/GLp with the hori­

zontal distribution defined in (3.40). It can be checked using the homogeneity 
property of horizontal lifts (Proposition 3.6.1) that 

Rspan(Y )(ξ) = span(Y + ξY ) (4.11) 

is well-defined. Hence (4.11) defines a retraction on Grass(p, n). 
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Note that the matrix Y + ξY is in general not orthonormal. In particular, 
if Y is orthonormal, then Y + ξY is not orthonormal unless ξ = 0. In the 
scope of a numerical algorithm, in order to avoid ill-conditioning, it may be 
advisable to use qf 

(
Y + ξY 

) 
instead of Y + ξY as a basis for the subspace 

Rspan(Y )(ξ). 

4.1.3 Retractions and local coordinates* 

In this section it is shown that every smooth manifold can be equipped 
with “local” retractions derived from its coordinate charts and that every 
retraction generates an atlas of the manifold. These operations, however, 
may pose computational challenges. 

For every point x of a smooth manifold M, there exists a smooth map 
µx : Rd 7→ M, µx(0) = x, that is a local diffeomorphism around 0 ∈ Rd; the 
map µx is called a local parameterization around x and can be thought of 
as the inverse of a coordinate chart around x ∈ M. If U is a neighborhood 
of a point x∗ of M, and µ : U × Rd → M is a smooth map such that 
µ(x, z) = µx(z) for all x ∈ U and z ∈ Rd, then {µx}x∈M is called a locally 
smooth family of parameterizations around x∗. Note that a locally smooth 
parameterization µ around x∗ can be constructed from a single chart around 
x∗ by defining µx(z) = ϕ−1(z + ϕ(x)). 

If {µx}x∈M is a locally smooth family of parameterizations around x∗, 
then the mappings 

Rx (Dµx (x) [ξ]) : TxM→M : ξ 7→ µx
−1 

define a retraction R whose domain is in general not the whole T M. (It 
is readily checked that Rx satisfies the requirements in Definition 4.1.1.) 
Conversely, to define a smooth family of parameterizations around x∗ from 
a retraction R, we can select smooth vector fields ξ1, . . . , ξd on M such that, 
for all x in a neighborhood of x∗, (ξ1(x), . . . , ξd(x)) forms a basis of TxM, 
and then define 

µx(u1, . . . , ud) = Rx(u1ξ1(x) + + udξd(x)).· · · 
Note, however, that such a basis ξ1, . . . , ξd of vector fields can in general 

be defined only locally. Moreover, producing the ξ’s in practical cases may 
be tedious. For example, on the unit sphere Sn−1, the set TxS

n−1 is a vector 
space of dimension (n − 1) identified with x⊥ := {y ∈ Rn : xT y = 0}; 
however, when n is large, generating and storing a basis of x⊥ is impractical, 
as this requires (n−1) vectors of n components. In other words, even though 
the (n − 1)-dimensional vector space TxS

n−1 is known to be isomorphic 
to Rn−1, creating an explicit isomorphism is computationally difficult. In 
comparison, it is computationally inexpensive to generate an element of x⊥ 

(using the projection onto x⊥) and to perform in x⊥ the usual operations of 
addition and multiplication by a scalar. 

In view of the discussion above, one could anticipate difficulty in dealing 
with pullback cost functions f̂x := f Rx because they are defined on vector ◦ 
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spaces TxM that we may not want to explicitly represent as Rd. Fortunately, 
many classical optimization techniques can be defined on abstract vector 
spaces, especially when the vector space has a structure of Euclidean space, 
which is the case for TxM when M is Riemannian. We refer the reader to 
Appendix A for elements of calculus on abstract Euclidean spaces. 

4.2 LINE-SEARCH METHODS 

Line-search methods on manifolds are based on the update formula 

xk+1 = Rxk
(tkηk), 

where ηk is in Txk
M and tk is a scalar. Once the retraction R is chosen, the 

two remaining issues are to select the search direction ηk and then the step 
length tk. To obtain global convergence results, some restrictions must be 
imposed on ηk and tk. 

Definition 4.2.1 (gradient-related sequence) Given a cost function f 
on a Riemannian manifold M, a sequence {ηk}, ηk ∈ Txk

M, is gradient-
related if, for any subsequence {xk}k∈K of {xk} that converges to a non­
critical point of f , the corresponding subsequence {ηk}k∈K is bounded and 
satisfies 

lim sup 
k→∞, k∈K 

〈grad f(xk), ηk〉 < 0. 

The next definition, related to the choice of tk, relies on Armijo’s back­
tracking procedure. 

Definition 4.2.2 (Armijo point) Given a cost function f on a Rieman­
nian manifold M with retraction R, a point x ∈ M, a tangent vector 
η ∈ TxM, and scalars α > 0, β, σ ∈ (0, 1), the Armijo point is ηA = 
tAη = βmαη, where m is the smallest nonnegative integer such that 

f(x) − f(Rx(βmαη)) ≥ −σ 〈grad f(x), βmαη〉x. 
The real tA is the Armijo step size. 

We propose the accelerated Riemannian line-search framework described 
in Algorithm 1. 

The motivation behind Algorithm 1 is to set a framework that is suf­
ficiently general to encompass many methods of interest while being suf­
ficiently restrictive to satisfy certain fundamental convergence properties 
(proven in the next sections). In particular, it is clear that the choice xk+1 = 

(tAηk) in Step 3 of Algorithm 1 satisfies (4.12), but this choice is not Rxk k 

mandatory. The loose condition (4.12) leaves a lot of leeway for exploiting 
problem-related information that may lead to a more efficient algorithm. In 
particular, the choice xk+1 = Rxk

(t ∗ kηk), where tk 
∗ = arg mint f(Rxk

(tηk)), 
satisfies (4.12) and is a reasonable choice if this exact line search can be 
carried out efficiently. 
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Algorithm 1 Accelerated Line Search (ALS) 
Require: Riemannian manifold M; continuously differentiable scalar field 

f on M; retraction R from T M to M; scalars α > 0, c, β, σ ∈ (0, 1). 
Input: Initial iterate x0 ∈M. 
Output: Sequence of iterates {xk}. 

1: for k = 0, 1, 2, . . . do 
2:	 Pick ηk in Txk

M such that the sequence {ηi}i=0,1,... is gradient-related 
(Definition 4.2.1). 

3:	 Select xk+1 such that 
Af(xk) − f(xk+1) ≥ c (f(xk) − f(Rxk

(tk ηk))), (4.12) 

where tAk is the Armijo step size (Definition 4.2.2) for the given 
α, β, σ, ηk. 

4: end for 

If there exists a computationally efficient procedure to minimize f Rxk
◦

on a two-dimensional subspace of Txk
M, then a possible choice for xk+1 in 

Step 3 is Rxk
(ξk), with ξk defined by 

ξk := arg min f(Rxk
(ξ)), Sk := span 

{
ηk, R

−1(xk−1)
} 
, (4.13) 

ξ∈Sk	
xk 

where span {u, v} = {au + bv : a, b ∈ R}. This is a minimization over a two-
dimensional subspace Sk of Txk

M. It is clear that Sk contains the Armijo 
point associated with ηk, since ηk is in Sk. It follows that the bound (4.12) 
on xk+1 holds with c = 1. This “two-dimensional subspace acceleration” is 
well defined on a Riemannian manifold as long as xk is sufficiently close to 
xk−1 that Rx

−
k 

1(xk−1) is well defined. The approach is very efficient in the 
context of eigensolvers (see Section 4.6). 

4.3 CONVERGENCE ANALYSIS 

In this section, we define and discuss the notions of convergence and limit 
points on manifolds, then we give a global convergence result for Algorithm 1. 

4.3.1 Convergence on manifolds 

The notion of convergence on manifolds is a straightforward generalization 
of the Rn case. An infinite sequence {xk}k=0,1,... of points of a manifold M
is said to be convergent if there exists a chart (U , ψ) of M, a point x∗ ∈ U , 
and a K > 0 such that xk is in U for all k ≥ K and such that the sequence 
{ψ(xk)}k=K,K+1,... converges to ψ(x∗). The point ψ−1(limk→∞ ψ(xk)) is 
called the limit of the convergent sequence {xk}k=0,1,.... Every convergent 
sequence of a (Hausdorff) manifold has one and only one limit point. (The 
Hausdorff assumption is crucial here. Multiple distinct limit points are pos­
sible for non-Hausdorff topologies; see Section 4.3.2.) 
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Representative element 
of fiber {(0, y) : y > 0}

Fibers y 

x = x ′ 

−y +y 
x 

−y +y ′ 

The set H − G 
Representative element 
of fiber {(0, y) : y < 0} 

Figure 4.2 Left: A few equivalence classes of the quotient defined in Section 4.3.2. 
Right: The graph G consists of all the points in H ≡ R3 that do not lie 
on the dashed planes indicated. 

An equivalent and more concise definition is that a sequence on a manifold 
is convergent if it is convergent in the manifold topology, i.e., there is a point 
x∗ such that every neighborhood of x∗ contains all but finitely many points 
of the sequence. 

Given a sequence {xk}k=0,1,..., we say that x is an accumulation point or 
a limit point of the sequence if there exists a subsequence {xjk

}k=0,1,... that 
converges to x. The set of accumulation points of a sequence is called the 
limit set of the sequence. 

4.3.2 A topological curiosity* 

We present a non-Hausdorff quotient and a convergent sequence with two 
limit points. 

Consider the set M = R∗
2, i.e., the real plane with the origin excerpted. 

Consider the equivalence relation ∼ on M, where (x, y) ∼ (x ′ , y ′ ) if and only 
if x = x ′ and the straight line between (x, y) and (x ′ , y ′ ) lies wholly in R2 

∗. 
In other words, the equivalence classes of ∼ are the two vertical half-lines 
{(0, y) : y > 0} and {(0, y) : y < 0} and all the vertical lines {(x, y) : y ∈ R}, 
x = 0; see Figure 4.2. 

Using Proposition 3.4.3, we show that M/ ∼ admits a (unique) differen­
tiable structure that makes the natural projection π a submersion, and we 
show that the topology induced by this differentiable structure is not Haus­
dorff. Consider the graph G = {((x, y), (x ′ , y ′ )) : (x, y) ∼ (x ′ , y 

′ ′ 

′ )} ⊂ M× M. 
Set H = {((x, y), (x , y ′ )) : x = x } and observe that G ⊆ H and H is an em­
bedded submanifold of M× M. The set H−G = {((x, y), (x ′ , y ′ )) : x = x ′ = 
0, sign(y) 6= sign(y ′ )} is a closed subset of H. It follows that G is an open 
submanifold of H and consequently an embedded submanifold of M× M. 
It is straightforward to verify that π1 : G → M is a submersion. However, G
is open in H, hence G is not closed in M× M. The conclusion follows from 
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Proposition 3.4.3. 
To help the intuition, we produce a diffeomorphism between M/ ∼ and 

a subset of M. Let X0 = {(x, 0) : x =6 0} denote the horizontal axis of the 
real plane with the origin excluded. The quotient set M/ ∼ is in one-to­
one correspondence with N := X0 ∪{(0, 1), (0, −1)} through the mapping Φ 
that sends each equivalence class to its element contained in N . Let U+ := 
X0 ∪ {(0, 1)} and U− := X0 ∪ {(0, −1)}. Define charts ψ+ and ψ− of the set 

into R with domains U+ and U− by ψ±((x, 0)) = x for all x = 0 and N 6
ψ+((0, 1)) = 0, ψ−((0, −1)) = 0. These charts form an atlas of the set N
and thus define a differentiable structure on N . It is easy to check that the 
mapping Φ π : M→N , where π : M→ M/∼ is the natural projection, is ◦
a submersion. In view of Proposition 3.4.3, this implies that the sets M/ ∼
and N , endowed with their differentiable structures, are diffeomorphic. 

It is easy to produce a convergent sequence on N with two limit points. 
The sequence {(1/k, 0)}k=1,2,... converges to (0, 1) since {ψ+(1/k, 0)} con­
verges to ψ+(0, 1). It also converges to (0, −1) since {ψ−(1/k, 0)} converges 
to ψ−(0, −1). 

4.3.3 Convergence of line-search methods 

We give a convergence result for the line-search method defined in Algo­
rithm 1. The statement and the proof are inspired by the classical theory in 
Rn. However, even when applied to Rn, our statement is more general than 
the standard results. First, the line search is not necessarily done along a 
straight line. Second, points other than the Armijo point can be selected; for 
example, using a minimization over a subspace containing the Armijo point. 

Theorem 4.3.1 Let {xk} be an infinite sequence of iterates generated by 
Algorithm 1. Then every accumulation point of {xk} is a critical point of the 
cost function f . 

Proof. By contradiction. Suppose that there is a subsequence {xk}k∈K con­
verging to some x∗ with grad f(x∗) =6 0. Since {f(xk)} is nonincreasing, it 
follows that the whole sequence {f(xk)} converges to f(x∗). Hence f(xk) −
f(xk+1) goes to zero. By construction of the algorithm, 

f(xk) − f(xk+1) ≥ −cσαk〈grad f(xk), ηk〉xk
. 

Since {ηk} is gradient-related, we must have {αk}k∈K → 0. The αk’s are 
determined from the Armijo rule, and it follows that for all k greater than 
some k, αk = βmkα, where mk is an integer greater than zero. This means 
that the update α

β 
k ηk did not satisfy the Armijo condition. Hence 

( ( 
αk 

)) 
αk

f(xk) − f Rxk β
ηk < −σ

β 
〈grad f(xk), ηk〉xk

, ∀k ∈ K, k ≥ k. 

Denoting 

η̃k = 
ηk 

and α̃k = 
αk‖ηk‖ 

, (4.14) ‖ηk‖ β 
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the inequality above reads 

f̂xk
(0) − 

α̃

f̂

k

xk 
(α̃kη̃k) 

< −σ〈grad f(xk), η̃k〉xk
, ∀k ∈ K, k ≥ k, 

where f̂ is defined as in (4.3). The mean value theorem ensures that there 
exists t ∈ [0, α̃k] such that 

− Df̂xk 
(tη̃k) [η̃k] < −σ〈grad f(xk), η̃k〉xk

, ∀k ∈ K, k ≥ k, (4.15) 

where the differential is taken with respect to the Euclidean structure on 
Txk
M. Since {αk}k∈K → 0 and since ηk is gradient-related, hence bounded, 

it follows that {α̃k}k∈K → 0. Moreover, since η̃k has unit norm, 
˜
it thus 

belongs to a compact set, and therefore there exists an index set K ⊆ K 
such that {η̃k}k∈K̃ → η̃∗ for some η̃∗ with ‖η̃∗‖ = 1. We now take the limit 
in (4.15) over K̃. Since the Riemannian metric is continuous (by definition), 
and f ∈ C1, and Df̂  

xk
(0)[η̃k] = 〈grad f(xk), η̃k〉xk

—see (3.31) and (4.4)—we 
obtain 

−〈grad f(x∗), η̃∗〉x∗ 
≤ −σ〈grad f(x∗), η̃∗〉x∗ 

. 

Since σ < 1, it follows that 〈grad f(x∗), η̃∗〉x∗ 
≥ 0. On the other hand, from 

the fact that {ηk} is gradient-related, one obtains that 〈grad f(x∗), η̃∗〉x∗ 
< 0, 

a contradiction. � 

More can be said under compactness assumptions using a standard argu­
ment. 

Corollary 4.3.2 Let {xk} be an infinite sequence of iterates generated by 
Algorithm 1. Assume that the level set L = {x ∈ M : f(x) ≤ f(x0)}
is compact (which holds in particular when M itself is compact). Then 
limk→∞ ‖grad f(xk)‖ = 0. 

Proof. By contradiction, assume the contrary. Then there is a subsequence 
{xk}k∈K and ǫ > 0 such that ‖grad f(xk)‖ > ǫ for all k ∈ K. Because f is 
nonincreasing on {xk}, it follows that xk ∈ L for all k. Since L is compact, 
{xk}k∈K has an accumulation point x∗ in L. By the continuity of grad f , one 
has ‖grad f(x∗)‖ ≥ ǫ; i.e., x∗ is not critical, a contradiction to Theorem 4.3.1. 

4.4 STABILITY OF FIXED POINTS 

Theorem 4.3.1 states that only critical points of the cost function f can be 
accumulation points of sequences {xk} generated by Algorithm 1. This result 
gives useful information on the behavior of Algorithm 1. Still, it falls short 
of what one would expect of an optimization method. Indeed, Theorem 4.3.1 
does not specify whether the accumulation points are local minimizers, local 
maximizers, or saddle points (critical points that are neither local minimizers 
nor local maximizers). 
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Unfortunately, avoiding saddle points and local maximizers is too much to 
ask of a method that makes use of only first-order information on the cost 
function. We illustrate this with a very simple example. Let x∗ be any critical 
point of a cost function f and consider the sequence {(xk, ηk)}, xk = x∗, 
ηk = 0. This sequence satisfies the requirements of Algorithm 1, and {xk}
trivially converges to x∗ even if x∗ is a saddle point or a local minimizer. 

Nevertheless, it is observed in practice that unless the initial point x0 is 
carefully crafted, methods within the framework of Algorithm 1 do produce 
sequences whose accumulation points are local minima of the cost function. 
This observation is supported by the following stability analysis of critical 
points. 

Let F be a mapping from M to M. A point x∗ ∈M is a fixed point of F 
if F (x∗) = x∗. Let F (n) denote the result of n applications of F to x, i.e., 

F (1)(x) = F (x), F (i+1)(x) = F (F (i)(x)), i = 1, 2, . . . . 
A fixed point x∗ of F is a stable point of F if, for every neighborhood U of x∗, 
there exists a neighborhood V of x∗ such that, for all x ∈ V and all positive 
integer n, it holds that F (n)(x) ∈ U . The fixed point x∗ is asymptotically 
stable if it is stable, and, moreover, limn→∞ F (n)(x) = x∗ for all x sufficiently 
close to x∗. The fixed point x∗ is unstable if it is not stable; in other words, 
there exists a neighborhood U of x∗ such that, for all neighborhood V of x∗, 
there is a point x ∈ V such that F (n)(x) /∈ U for some n. We say that F is 
a descent mapping for a cost function f if 

f(F (x)) ≤ f(x) for all x ∈M. 

Theorem 4.4.1 (unstable fixed points) Let F : M → M be a descent 
mapping for a smooth cost function f and assume that for every x ∈M, all 
the accumulation points of {F (k)(x)}k=1,2,... are critical points of f . Let x∗ 
be a fixed point of F (thus x∗ is a critical point of f). Assume that x∗ is not 
a local minimum of f . Further assume that there is a compact neighborhood 
U of x∗ where, for every critical point y of f in U , f(y) = f(x∗). Then x∗ 
is an unstable point for F . 

Proof. Since x∗ is not a local minimum of f , it follows that every neighbor­
hood V of x∗ contains a point y with f(y) < f(x∗). Consider the sequence 
yk := F (k)(y). Suppose for the purpose of establishing a contradiction that 
yk ∈ U for all k. Then, by compactness, {yk} has an accumulation point z in 
U . By assumption, z is a critical point of f , hence f(z) = f(x∗). On the other 
hand, since F is a descent mapping, it follows that f(z) ≤ f(y) < f(x∗), a 
contradiction. � 

The assumptions made about f and F in Theorem 4.4.1 may seem com­
plicated, but they are satisfied in many circumstances. The conditions on F 
are satisfied by any method in the class of Algorithm 1. As for the condition 
on the critical points of f , it holds for example when f is real analytic. (This 
property can be recovered from �Lojasiewicz’s gradient inequality: if f is real 
analytic around x∗, then there are constants c > 0 and µ ∈ [0, 1) such that 

‖grad f(x)‖ ≥ c|f(x) − f(x∗)|µ 
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for all x in some neighborhood of x∗.) 
We now give a stability result. 

Theorem 4.4.2 (capture theorem) Let F : M→M be a descent map­
ping for a smooth cost function f and assume that, for every x ∈ M, all 
the accumulation points of {F (k)(x)}k=1,2,... are critical points of f . Let x∗ 
be a local minimizer and an isolated critical point of f . Assume further that 
dist(F (x), x) goes to zero as x goes to x∗. Then x∗ is an asymptotically stable 
point of F . 

Proof. Let U be a neighborhood of x∗. Since x∗ is an isolated local minimizer 
of f , it follows that there exists a closed ball 

Bǫ(x∗) := {x ∈M : dist(x, x∗) ≤ ǫ}
such that Bǫ(x∗) ⊂ U and f(x) > f(x∗) for all x ∈ Bǫ(x∗) − {x∗}. In 
view of the condition on dist(F (x), x), there exists δ > 0 such that, for all 
x ∈ Bδ(x∗), F (x) ∈ Bǫ(x∗). Let α be the minimum of f on the compact set 
Bǫ(x∗) − Bδ(x∗). Let 

V = {x ∈ Bǫ(x∗) : f(x) < α}. 
This set is included in Bδ(x∗). Hence, for every x in V, it holds that F (x) ∈
Bǫ(x∗), and it also holds that f(F (x)) ≤ f(x) < α since F is a descent 
mapping. It follows that F (x) ∈ V for all x ∈ V, hence F (n)(x) ∈ V ⊂ U for 
all x ∈ V and all n. This is stability. Moreover, since by assumption x∗ is 
the only critical point of f in V, it follows that limn→∞ F (n)(x) = x∗ for all 
x ∈ V, which shows asymptotic stability. � 

The additional condition on dist(F (x), x) in Theorem 4.4.2 is not satisfied 
by every instance of Algorithm 1 because our accelerated line-search frame­
work does not put any restriction on the step length. The distance condition 
is satisfied, for example, when ηk is selected such that ‖ηk‖ ≤ c‖grad f(xk)‖
for some constant c and xk+1 is selected as the Armijo point. 

In this section, we have assumed for simplicity that the next iterate de­
pends only on the current iterate: xk+1 = F (xk). It is possible to generalize 
the above result to the case where xk+1 depends on xk and on some “memory 
variables”: (xk+1, yk+1) = F (xk, yk). 

4.5 SPEED OF CONVERGENCE 

We have seen that, under reasonable assumptions, if the first iterate of Al­
gorithm 1 is sufficiently close to an isolated local minimizer x∗ of f , then 
the generated sequence {xk} converges to x∗. In this section, we address the 
issue of how fast the sequence converges to x∗. 

4.5.1 Order of convergence 

A sequence {xk}k=0,1,... of points of Rn is said to converge linearly to a point 
x∗ if there exists a constant c ∈ (0, 1) and an integer K ≥ 0 such that, for 
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all k ≥ K, it holds that ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖. In order to generalize 
this notion to manifolds, it is tempting to fall back to the Rn definition 
using charts and state that a sequence {xk}k=0,1,... of points of a manifold 
M converges linearly to a point x∗ ∈M if, given a chart (U , ψ) with x ∈ U , 
the sequence {ψ(xk)}k=0,1,... converges linearly to ψ(x∗). Unfortunately, the 
notion is not independent of the chart used. For example, let M be the set Rn 

with its canonical manifold structure and consider the sequence {xk}k=0,1,... 

defined by xk = 2−ke1 if k is even and by xk = 2−k+2e2 if k is odd. In 
the identity chart, this sequence is not linearly convergent because of the 
requirement that the constant c be smaller than 1. However, in the chart 
defined by ψ(xe1 + ye2) = xe1 + (y/4)e2, the sequence converges linearly 
with constant c = 12 . 

If M is a Riemannian manifold, however, then the induced Riemannian 
distance makes it possible to define linear convergence as follows. 

Definition 4.5.1 (linear convergence) Let M be a Riemannian mani­
fold and let dist denote the Riemannian distance on M. We say that a 
sequence {xk}k=0,1,... converges linearly to a point x∗ ∈ M if there exists a 
constant c ∈ (0, 1) and an integer K ≥ 0 such that, for all k ≥ K, it holds 
that 

dist(xk+1, x∗) ≤ c dist(xk, x∗). (4.16) 

The limit 

dist(xk+1, x∗)
lim sup 

k→∞ dist(xk, x∗) 

is called the linear convergence factor of the sequence. An iterative algorithm 
on M is said to converge locally linearly to a point x∗ if there exists a 
neighborhood U of x∗ and a constant c ∈ (0, 1) such that, for every initial 
point x0 ∈ U , the sequence {xk} generated by the algorithm satisfies (4.16). 

A convergent sequence {xk} on a Riemannian manifold M converges linearly 
to x∗ with constant c if and only if 

‖Rx
−
∗ 

1(xk+1) − R−x∗ 

1(x∗)‖ ≤ c‖Rx
−
∗ 

1(xk) − Rx
−
∗ 

1(x∗)‖ 
for all k sufficiently large, where R is any retraction on M and ‖ · ‖ de­
notes the norm on Tx∗ 

M defined by the Riemannian metric. (To see this, let 
Expx∗ 

denote the exponential mapping introduced in Section 5.4, restricted 
to a neighborhood Û of 0x∗ 

in Tx∗ 
M such that U := Exp (Û) is a nor-x∗ 

mal neighborhood of x∗. We have dist(x, x∗) = ‖Exp−x∗ 

1(x) − Exp−x∗ 

1(x∗)‖ = 
‖Exp−1(x)‖ for all x ∈ U . Moreover, since Exp is a retraction, we have x∗ 

D(Rx
−
∗ 

1 Expx∗ 
)(0x∗ 

) = id. Hence ‖R−x∗ 

1(x) − Rx
−
∗ 

1(x∗)‖ = ‖Exp−x∗ 

1(x) −
Exp−1(x

◦ 
∗)‖ + o(‖Exp−1(x) − Exp−1(x∗)‖) = dist(x, x∗) + o(dist(x, x∗)).) x∗ x∗ x∗ 

In contrast to linear convergence, the notions of superlinear convergence 
and order of convergence can be defined on a manifold independently of any 
other structure. 
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Definition 4.5.2 Let M be a manifold and let {xk}k=0,1,... be a sequence 
on M converging to x∗. Let (U , ψ) be a chart of M with x ∈ U . If 

‖ψ(xk+1) − ψ(x∗)‖
lim = 0, 

k→∞ ‖ψ(xk) − ψ(x∗)‖ 
then {xk} is said to converge superlinearly to x∗. If there exist constants 
p > 0, c ≥ 0, and K ≥ 0 such that, for all k ≥ K, there holds 

‖ψ(xk+1) − ψ(x∗)‖ ≤ c‖ψ(xk) − ψ(x∗)‖p, (4.17) 

then {xk} is said to converge to x∗ with order at least p. An iterative algo­
rithm on a manifold M is said to converge locally to a point x∗ with order 
at least p if there exists a chart (U , ψ) at x∗ and a constant c > 0 such that, 
for every initial point x0 ∈ U , the sequence {xk} generated by the algorithm 
satisfies (4.17). If p = 2, the convergence is said to be quadratic, and cubic 
if p = 3. 

Since by definition charts overlap smoothly, it can be shown that the 
definitions above do not depend on the choice of the chart (U , ψ). (The 
multiplicative constant c depends on the chart, but for any chart, there 
exists such a constant.) 

Theorem 4.5.3 below gives calculus-based local convergence results for 
iterative methods defined by xk+1 = F (xk), where the iteration mapping 
F : M→M has certain smoothness properties. 

Theorem 4.5.3 Let F : M → M be a C1 mapping whose domain and 
range include a neighborhood of a fixed point x∗ of F . 

(i) If DF (x∗) = 0, then the iterative algorithm with iteration mapping F 
converges locally superlinearly to x∗. 

(ii) If DF (x∗) = 0 and F is C2, then the iterative algorithm with mapping 
F converges locally quadratically to x∗. 

Although Theorem 4.5.3 is very powerful for smooth iteration mappings, 
it is rarely useful for practical line-search and trust-region methods because 
of the nondifferentiability of the step selection process. 

4.5.2 Rate of convergence of line-search methods* 

In this section we give an asymptotic convergence bound for Algorithm 1 
when ηk is chosen as −grad f(xk), without any further assumption on how 
xk+1 is selected. 

The result invokes the smallest and largest eigenvalues of the Hessian of 
f at a critical point x∗. We have not yet given a definition for the Hessian 
of a cost function on a Riemannian manifold. (This is done in Section 5.5.) 
Nevertheless, regardless of this definition, it makes sense to talk about the 
eigenvalues of the Hessian at a critical point because of the following results. 
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Lemma 4.5.4 Let f : Rn R and x∗ ∈ Rn such that Df(x∗) = 0. Let 
F : Rn Rn and y∗ ∈ Rn

→
such that F (y∗) = x∗ and that the Jacobian →

matrix of F at y∗, 

∂1F 1(y∗) ∂nF 1(y∗)

 · · · 
. . .JF (y∗) :=  .. . . ..  , 

∂1F n(y∗) ∂nF n(y∗)· · · 
is orthogonal (i.e., JT (y∗)JF (y∗) = I). Let H be the Hessian matrix of f at F

x∗; i.e., Hij = ∂i∂jf(x∗). Let Ĥ be the Hessian matrix of f F at y∗. Then 

λ(H) = λ(Ĥ); i.e., the spectrum of H and the spectrum of Ĥ

◦ 
are the same. 

Proof. Since ∂j(f ◦ F )(y) = 
∑

k ∂kf(F (y)) ∂jF k(y), we have 

Ĥij = ∂i∂j(f F )(y∗) 

= 
∑ 

∂ℓ∂

◦ 

kf(F (y∗)) ∂iF ℓ(y∗) ∂jF k(y∗) + 
∑ 

∂kf(F (y∗)) ∂i∂jF k(y∗). 
k,ℓ k 

Since x∗ is a critical point of f , it follows that ∂kf(F (y∗)) = 0. Hence we 
have, in matrix notation, 

Ĥ = JT
F (y∗)HJF (y∗).F (y∗)HJF (y∗) = J−1 

This shows that H and Ĥ have the same spectrum because they are related 
by a similarity transformation. � 

Corollary 4.5.5 Let f be a cost function on a Riemannian manifold (M, g) 
and let x∗ ∈ M be a critical point of f , i.e., grad f(x∗) = 0. Let (U , ψ) be 
any chart such that x∗ ∈ U and that the representation of gx∗ 

in the chart is 
the identity, i.e., gij = δij at x∗. Then the spectrum of the Hessian matrix 
of f ψ−1 at ψ(x∗) does not depend on the choice of ψ.◦ 

We can now state the main result of this section. When reading the 
theorem below, it is useful to note that 0 < r∗ < 1 since β, σ ∈ (0, 1). 
Also, in common instances of Algorithm 1, the constant c in the descent 
condition (4.12) is equal to 1, hence (4.18) reduces to f(xk+1) − f(x∗) ≤ 
r (f(xk) − f(x∗)). 

Theorem 4.5.6 Let {xk} be an infinite sequence of iterates generated by 
Algorithm 1 with ηk := −grad f(xk), converging to a point x∗. (By Theo­
rem 4.3.1, x∗ is a critical point of f .) Let λH,min and λH,max be the smallest 
and largest eigenvalues of the Hessian of f at x∗. Assume that λH,min > 0 
(hence x∗ is a local minimizer of f). Then, given r in the interval (r∗, 1) 

αλH,min, 4σ(1 − σ)β λH,min with r∗ = 1 − min 
(

2σ ̄
)
, there exists an integer λH,max 

K ≥ 0 such that 

f(xk+1) − f(x∗) ≤ (r + (1 − r)(1 − c)) (f(xk) − f(x∗)) (4.18) 

for all k ≥ K, where c is the parameter in Algorithm 1. 
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Proof. Let (U , ψ) be a chart of the manifold M with x∗ ∈ U . We use the no­
tation ζx := −grad f(x). Coordinate expressions are denoted with a hat, 
e.g., x̂ := ψ(x), Û = ψ(U), f̂(x̂) := f(x), ζ̂x̂ := Dψ (x) [ζx

f

], 
ˆ 
R̂x̂(ζ̂) := 

ψ(Rx(ζ)). We also let yx̂ denote the Euclidean gradient of at x̂, i.e., 
yx̂ := (∂1f̂(x̂), . . . , ∂df̂(x̂))T . We let Gx̂ denote the matrix representation 
of the Riemannian metric in the coordinates, and we let Hx̂∗ 

denote the 
Hessian matrix of f̂ at x̂∗. Without loss of generality, we assume that x̂∗ = 0 
and that Gx̂∗ 

= I, the identity matrix. 
The major work is to obtain, at a current iterate x, a suitable upper bound 

on f(Rx(tAζx)), where tA is the Armijo step (so tAζx is the Armijo point). 
The Armijo condition is 

f(Rx(tAζx)) ≤ f(x) − σ〈ζx, tAζx〉 
≤ f(x) − σtA〈ζx, ζx〉. (4.19) 

We first give a lower bound on 〈ζx, ζx〉 in terms of f(x). Recall from (3.32) 

x = G−1that ζ̂ˆ x̂ yx̂, from which it follows that 

ζ̂T ˆ G−1〈ζx, ζx〉 = x̂ Gx̂ζx̂ = yx̂ x̂ yx̂ = ‖yx̂‖2(1 + O(x̂)) (4.20) 

since we have assumed that G0 is the identity. It follows from yx̂ = H0x̂ + 
O(x̂2) and f̂(x̂) = f̂(0) + 2

1 x̂TH0x̂+ O(x̂3) that, given ǫ ∈ (0, λH,min), 

f̂(x̂) − f̂(0) = 
1 T 1 1 2 

2 
yx̂H0 

−1 yx̂ + O(x̂ 3) ≤ 
2 λH,min − ǫ 

‖yx̂‖ (4.21) 

holds for all x̂ sufficiently close to 0. From (4.20) and (4.21), we conclude 
that, given ǫ ∈ (0, λH,min), 

1 1 
f(x) − f(x∗) ≤ 

2 λH,min − ǫ 
〈ζx, ζx〉, (4.22) 

which is the desired lower bound on 〈ζx, ζx〉. Using (4.22) in (4.19) yields 

f(Rx(tAζx)) − f(x∗) ≤ (1 − 2(λH,min − ǫ)σtA)(f(x) − f(x∗)). (4.23) 

We now turn to finding a lower bound on the Armijo step tA. We use the 
notation 

γˆ (t) := f̂(R̂ˆ(tu)) x,u x

and 

hx(t) = f(Rx(−tζx)). 

Notice that hx(t) = γx,−ˆ hx(0) = −〈ζx, ζx〉 = ˙ ˆ (0), from ˆ (t) and that ˙ γx,−ˆζx̂ ζx̂

which it follows that the Armijo condition (4.19) reads 

hx(tA) ≤ hx(0) − σtAḣx(0). (4.24) 

We want to find a lower bound on tA. From a Taylor expansion of hx with 
the residual in Lagrange form (see Appendix A.6), it follows that the t’s at 
which the left- and right-hand sides of (4.24) are equal satisfy 

−2(1 − σ)ḣx(0) 
t =

¨ , 
hx(τ) 
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where τ ∈ (0, t). In view of the definition of the Armijo point, we conclude 
that 

A 

( 

α, 
−2β(1 − σ) ˙

)
hx(0) 

t ≥ min ¯ . (4.25) 
¨ maxτ∈(0,ᾱ) hx(τ) 

Let Bδ := {x̂ : ‖x̂‖ < δ} and 

M := sup γˆ (t).¨x,u

x̂∈Bδ,‖u‖=1,t∈(0,ᾱ‖ζ̂x̂‖) 

Then maxτ∈(0,¯ ḧ 
x ζx̂‖2 . Notice also that γˆ (0) = u ≤α) (τ) ≤ M ‖ˆ ¨x,u

TH0u 
λH,max‖u‖2, so that M → λH,max as δ → 0. Finally, notice that ḣx(0) = 
−ζ̂x̂TGx̂ζ̂x̂ = ‖ζ̂x̂‖2(1 + O(x̂)). Using these results in (4.25) yields that, given 
ǫ > 0, 

tA ≥ min 

( 

α, 
2β(1 − σ) 

) 

¯ (4.26) 
λH,max + ǫ 

holds for all x sufficiently close to x∗. 
We can now combine (4.26) and (4.23) to obtain a suitable upper bound 

on f(Rx(tAζx)): 

f(Rx(tAζx)) − f(x∗) ≤ c1(f(x) − f(x∗)) (4.27) 

with ( 

α, 
2β(1 − σ) 

) 

c1 = 1 − σ min ¯ 2(λH,min − ǫ). 
λH,max + ǫ 

Finally, the bound (4.27), along with the bound (4.12) imposed on the 
value of f at the next iterate, yields 

f(xk+1) − f(x∗) = f(xk+1) − f(xk) + f(xk) − f(x∗) 
A≤ −c(f(xk) − f(Rxk

(tk ζxk
))) + f(xk) − f(x∗) 

A= (1 − c)(f(xk) − f(x∗)) + c(f(Rxk
(tk ζxk

)) − f(x∗)) 

≤ (1 − c + c c1)(f(xk) − f(x∗)) 

= (c1 + (1 − c1)(1 − c))(f(xk) − f(x∗)), 

where c ∈ (0, 1) is the constant in the bound (4.12). � 

4.6 RAYLEIGH QUOTIENT MINIMIZATION ON THE 

SPHERE 

In this section we apply algorithms of the class described by Algorithm 1 to 
the problem of finding a minimizer of 

f : Sn−1 → R : x 7→ x TAx, (4.28) 

the Rayleigh quotient on the sphere. The matrix A is assumed to be sym­
metric (A = AT ) but not necessarily positive-definite. We let λ1 denote the 
smallest eigenvalue of A and v1 denote an associated unit-norm eigenvector. 
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4.6.1 Cost function and gradient calculation 

Consider the function 

f : Rn → R : x 7→ x TAx, 

whose restriction to the unit sphere Sn−1 yields (4.28). 
We view Sn−1 as a Riemannian submanifold of the Euclidean space Rn 

endowed with the canonical Riemannian metric 

g(ξ, ζ) = ξT ζ. 

Given x ∈ Sn−1, we have 

Df (x) [ζ] = ζTAx + x TAζ = 2ζTAx 

for all ζ ∈ TxRn ≃ Rn, from which it follows, recalling the definition (3.31) 
of the gradient, that 

grad f(x) = 2Ax. 

The tangent space to Sn−1, viewed as a subspace of TxRn ≃ Rn, is 

TxS
n−1 = {ξ ∈ Rn : x T ξ = 0}. 

The normal space is 

(TxS
n−1)⊥ = {xα : α ∈ R}. 

The orthogonal projections onto the tangent and the normal space are 

ξ = ξ − xx T ξ, P⊥ξ = xx T ξ. Px x 

It follows from the identity (3.37), relating the gradient on a submanifold to 
the gradient on the embedding manifold, that 

grad f(x) = 2Px(Ax) = 2(Ax − xx TAx). (4.29) 

The formulas above are summarized in Table 4.1. 

4.6.2 Critical points of the Rayleigh quotient 

To analyze an algorithm based on the Rayleigh quotient cost on the sphere, 
the first step is to characterize the critical points. 

Proposition 4.6.1 Let A = AT be an n×n symmetric matrix. A unit-norm 
vector x ∈ Rn is an eigenvector of A if and only if it is a critical point of 
the Rayleigh quotient (4.28). 

Proof. Let x be a critical point of (4.28), i.e., grad f(x) = 0 with x ∈ Sn−1 . 
From the expression (4.29) of grad f(x), it follows that x statisfies Ax = 
(xTAx)x, where xTAx is a scalar. Conversely, if x is a unit-norm eigenvector 
of A, i.e., Ax = λx for some scalar λ, then a left multiplication by xT yields 
λ = xTAx and thus Ax = (xTAx)x, hence grad f(x) = 0 in view of (4.29). 

We already know from Proposition 2.1.1 that the two points ±v1 cor­
responding to the “leftmost” eigendirection are the global minima of the 
Rayleigh quotient (4.28). Moreover, the other eigenvectors are not local min­
ima: 
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Table 4.1 Rayleigh quotient on the unit sphere. 

cost 

metric 

tangent space 

normal space 

projection onto 
tangent space 

gradient 

retraction 

Manifold (Sn−1) 

f(x) = xTAx, x ∈ Sn−1


induced metric


ξ ∈ Rn : xT ξ = 0


ξ ∈ Rn : ξ = αx


Pxξ = (I − xxT )ξ


grad f(x) = Pxgrad f(x)


Rx(ξ) = qf(x + ξ)


Embedding space (Rn) 

f(x) = xTAx, x ∈ Rn


g(ξ, ζ) = ξT ζ


Rn


∅ 
identity 

grad f(x) = 2Ax 

Rx(ξ) = x + ξ 

Proposition 4.6.2 Let A = AT be an n × n symmetric matrix with eigen­
values λ1 ≤ ≤ λn and associated orthonormal eigenvectors v1, . . . , vn.· · · 
Then 

(i) ±v1 are local and global minimizers of the Rayleigh quotient (4.28); 
if the eigenvalue λ1 is simple, then they are the only minimizers. 

(ii) ±vn are local and global maximizers of (4.28); if the eigenvalue λn 

is simple, then they are the only maximizers. 
(iii) ±vq corresponding to interior eigenvalues (i.e., strictly larger than 

λ1 and strictly smaller than λn) are saddle points of (4.28). 

Proof. Point (i) follows from Proposition 2.1.1. Point (ii) follows from the 
same proposition by noticing that replacing A by −A exchanges maxima with 
minima and leftmost eigenvectors with rightmost eigenvectors. For point 
(iii), let vq be an eigenvector corresponding to an interior eigenvalue λq and 
consider the curve γ : t 7→ (vq + tv1)/‖vq + tv1‖. Simple calculus shows that 

d2


dt2
(f(γ(t))|t=0 = λ1 − λq < 0.


Likewise, for the curve γ : t 7→ (vq + tvn)/‖vq + tvn‖, we have 

d2


dt2
(f(γ(t))|t=0 = λn − λq > 0.


It follows that vq is a saddle point of the Rayleigh quotient f . � 

It follows from Proposition 4.6.1 and the global convergence analysis of 
line-search methods (Proposition 4.3.1) that all methods within the class 
of Algorithm 1 produce iterates that converge to the set of eigenvectors of 
A. Furthermore, in view of Proposition 4.6.1, and since we are considering 



00˙AMS September 23, 2007

76 CHAPTER 4 

descent methods, it follows that, if λ1 is simple, convergence is stable to ±v1 
and unstable to all other eigenvectors. 

Hereafter we consider the instances of Algorithm 1 where 

ηk := −grad f(xk) = 2(Axk − xkxk
TAxk). 

It is clear that this choice of search direction is gradient-related. Next we 
have to pick a retraction. A reasonable choice is (see Example 4.1.1) 

x + ξ 
Rx(ξ) := , (4.30) ‖x + ξ‖ 

where ‖ · ‖ denotes the Euclidean norm in Rn , ‖y‖ := 
√
yT y. Another pos­

sibility is 

ξ 
Rx(ξ) := x cos ‖ξ‖ + ‖ξ‖ sin ‖ξ‖, (4.31) 

for which the curve t 7→ Rx(tξ) is a big circle on the sphere. (The second 
retraction corresponds to the exponential mapping defined in Section 5.4.) 

4.6.3 Armijo line search 

We now have all the necessary ingredients to apply a simple backtracking in­

stance of Algorithm 1 to the problem of minimizing the Rayleigh quotient on

the sphere Sn−1. This yields the matrix algorithm displayed in Algorithm 2.

Note that with the retraction R defined in (4.30), the function f(Rxk

(tηk))

is a quadratic rational function in t. Therefore, the Armijo step size is easily

computed as an expression of the reals ηk

T ηk, ηk
TAηk, xk

TAηk, and xk
TAxk.


Algorithm 2 Armijo line search for the Rayleigh quotient on Sn−1


Require: Symmetric matrix A, scalars α > 0, β, σ ∈ (0, 1).

Input: Initial iterate x0, ‖x0‖ = 1.

Output: Sequence of iterates {xk}.


1: for k = 0, 1, 2, . . . do 
2: Compute ηk = −2(Axk − xkxk

TAxk). 
3: Find the smallest integer m ≥ 0 such that 

f (Rxk
(αβmηk)) ≤ f(xk) − σαβmηk

T ηk, 

with f defined in (4.28) and R defined in (4.30). 
4: Set 

xk+1 = Rxk
(αβmηk). 

5: end for 

Numerical results for Algorithm 2 are presented in Figure 4.3 for the 
case A = diag(1, 2, . . . , 100), σ = 0.5, α = 1, β = 0.5. The initial point 
x0 is chosen from a uniform distribution on the sphere. (The point x0 is 
obtained by normalizing a vector whose entries are selected from a normal 
distribution). 
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Let us evaluate the upper bound r∗ on the linear convergence factor given 
by Theorem 4.5.6. The extreme eigenvalues λH,min and λH,max of the Hessian 
at the solution v1 can be obtained as 

d2(f(γv1,u(t))) 
λH,min = min 

v
1 
T u=0,uT u=1 dt2 

∣∣∣∣
t=0 

d2(f(γv1,u(t))) 
λH,max = max , 

T Tv u=0,u u=1 dt2 

∣∣∣∣
t=0 1 

where 
v1 + tu 

γv1,u(t) := Rv1
(tu) = . ‖v1 + tu‖ 

This yields 

d2(f(γv1,u(t))) 
∣∣∣∣
t=0 

= 2(u TAu − λ1)
dt2 

and thus 

λH,min = λ2 − λ1, λH,max = λn − λ1. 

For the considered numerical example, it follows that the upper bound on 
the linear convergence factor given by Theorem 4.5.6 is r∗ = 0.9949.... The 
convergence factor estimated from the experimental result is below 0.97, 
which is in accordance with Theorem 4.5.6. This poor convergence factor, 
very close to 1, is due to the small value of the ratio 

λH,min λ2 − λ1 
= 
λn − λ1 

≈ 0.01. 
λH,max 

The convergence analysis of Algorithm 2 is summarized as follows. 

Theorem 4.6.3 Let {xk} be an infinite sequence of iterates generated by 
Algorithm 2. Let λ1 ≤ · · · ≤ λn denote the eigenvalues of A. 

(i) The sequence {xk} converges to the eigenspace of A associated to 
some eigenvalue. 

(ii) The eigenspace related to λ1 is an attractor of the iteration defined 
by Algorithm 2. The other eigenspaces are unstable. 

(iii) Assuming that the eigenvalue λ1 is simple, the linear convergence 
factor to the eigenvector ±v1 associated with λ1 is smaller or equal 
to ( 

2β(1 − σ) 
) 

r∗ = 1 − 2σ(λ2 − λ1) min α, . 
λn − λ1 

Proof. Points (i) and (iii) follow directly from the convergence analysis of 
the general Algorithm 1 (Theorems 4.3.1 and 4.5.6). For (ii), let S1 := {x ∈
Sn−1 : Ax = λ1x} denote the eigenspace related to λ1. Any neighborhood 
of S1 contains a sublevel set L of f such that the only critical points of f in 
L are the points of S1. Any sequence of Algorithm 2 starting in L converges 
to S1. The second part follows from Theorem 4.4.1. � 
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4.6.4 Exact line search 

In this version of Algorithm 1, xk+1 is selected as Rxk
(tkηk), where 

tk := arg min f(Rxk
(tηk)). 

t>0 

We consider the case of the projected retraction (4.30), and we define again 
ηk := −grad f(xk). It is assumed that grad f(xk) = 0, from which it also 
follows that ηTAxk = 0. An analysis of the function 

6
t 7→ f(Rxk

(tηk)) reveals k 

that it admits one and only one minimizer tk > 0. This minimizer is the 
positive solution of a quadratic equation. In view of the particular choice of 
the retraction, the points ±Rxk

(tkηk) can also be expressed as 

arg min f(x), 
x∈Sn−1,x∈span{xk,ηk} 

which are also equal to 

±Xw, 
where X := [xk, ‖ηk‖ 

ηk ] and w is a unit-norm eigenvector associated with the 

smaller eigenvalue of the interaction matrix XTAX. 
Numerical results are presented in Figure 4.3. Note that in this exam­

ple the distance to the solution as a function of the number of iterates is 
slightly better with the selected Armijo method than with the exact line-
search method. This may seem to be in contradiction to the fact that the 
exact line-search method chooses the optimal step size. However, the exact 
minimization only implies that if the two algorithms start at the same point 
x0, then the cost function will be lower at the first iterate of the exact line-
search method than at the first iterate of the Armijo method. This does 
not imply that the distance to the solution will be lower with the exact line 
search. Neither does it mean that the exact line search will achieve a lower 
cost function at subsequent iterates. (The first step of the Armijo method 
may well produce an iterate from which a larger decrease can be obtained.) 

4.6.5 Accelerated line search: locally optimal conjugate gradient 

In this version of Algorithm 1, ηk is selected as −grad f(xk) and xk+1 is 
selected as Rxk

(ξk), where ξk is a minimizer over the two-dimensional sub­
space of Txk

M spanned by ηk and R−1(xk−1), as described in (4.13). When xk 

applied to the Rayleigh quotient on the sphere, this method reduces to the 
locally optimal conjugate-gradient (LOCG) algorithm of A. Knyazev. Its fast 
convergence (Figure 4.3) can be explained by its link with conjugate-gradient 
(CG) methods (see Section 8.3). 

4.6.6 Links with the power method and inverse iteration 

The power method, 

Axk 
,xk+1 = ‖Axk‖ 
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Figure 4.3 Minimization of the Rayleigh quotient of A = diag(1, 2, . . . , n) on Sn−1 , 
with n = 100. The distance to the solution is defined as the angle be­
tween the direction of the current iterate and the eigendirection asso­
ciated with the smallest eigenvalue of A. 

is arguably the simplest method for eigenvector computation. Let A be a 
symmetric matrix, assume that there is an eigenvalue λ that is simple and 
larger in absolute value than all the other eigenvalues, and let v denote 
the corresponding eigenvector. Then the power method converges to ±v for 
almost all initial points x0. 

We mention, as a curiosity, a relation between the power method and the 
steepest-descent method for the Rayleigh quotient on the sphere. Using the 
projective retraction (4.30), the choice tk = 

2xT 
1 
Axk 

yields 
k 

Axk
Rxk

(tk grad f(xk)) = , ‖Axk‖
i.e., the power method. 

There is no such relation for the inverse iteration 
A−1xk 

xk+1 = . ‖A−1xk‖
In fact, inverse iteration is in general much more expensive computationally 
than the power method since the former requires solving a linear system of 
size n at each iteration while the latter requires only a matrix-vector mul­
tiplication. A comparison between inverse iteration and the previous direct 
methods in terms of the number of iterations is not informative since an iter­
ation of inverse iteration is expected to be computationally more demanding 
than an iteration of the other methods. 
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4.7 REFINING EIGENVECTOR ESTIMATES 

All the critical points of the Rayleigh quotient correspond to eigenvectors 
of A, but only the extreme eigenvectors correspond to extrema of the cost 
function. For a given cost function f , it is, however, possible to define a new 
cost function that transforms all critical points of f into (local) minimizers. 
The new cost function is simply defined by 

f̃(x) := ‖grad f(x)‖2 . 
In the particular case of the Rayleigh quotient (4.28), one obtains 

f̃ : Sn−1 → R : x 7→ ‖PxAx‖2 = x TAPxAx = x TA2 x − (x TAx)2 , 

where Px = (I − xxT ) is the orthogonal projector onto the tangent space 
TxS

n−1 = {ξ ∈ Rn : xT ξ = 0}. Following again the development in Sec­
tion 3.6.1, we define the function 

f : Rn → R : x 7→ x TA2 x − (x TAx)2 

whose restriction to Sn−1 is f̃ . We obtain 

grad f(x) = 2(A2 x − 2AxxTAx), 

hence 

grad f̃(x) = Px(grad f(x)) = 2Px(AAx − 2AxxTAx). 

Applying a line-search method to the cost function f̃  provides a descent 
algorithm that (locally) converges to any eigenvector of A. 

4.8 BROCKETT COST FUNCTION ON THE STIEFEL 

MANIFOLD 

Following up on the study of descent algorithms for the Rayleigh quotient 
on the sphere, we now consider a cost function defined as a weighted sum

T
∑

i µix(i)Ax(i) of Rayleigh quotients on the sphere under an orthogonality 

constraint, xT 
(i)x(j) = δij . 

4.8.1 Cost function and search direction 

The cost function admits a more friendly expression in matrix form: 

f : St(p, n) → R : X 7→ tr(XTAXN), (4.32) 

where N = diag(µ1, , µp), with 0 ≤ µ1 ≤ . . . ≤ µp, and St(p, n) denotes · · · 
the orthogonal Stiefel manifold 

St(p, n) = {X ∈ Rn×p : XTX = Ip}. 
As in Section 3.3.2, we view St(p, n) as an embedded submanifold of the 

Euclidean space Rn×p. The tangent space is (see Section 3.5.7) 

TX St(p, n) = {Z ∈ Rn×p : XTZ + ZTX = 0} 
= {XΩ + X⊥K : ΩT = −Ω, K ∈ R(n−p)×p}. 
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We further consider St(p, n) as a Riemannian submanifold of Rn×p en­
dowed with the canonical inner product 

〈Z1, Z2〉 := tr 
(
Z1 

TZ2

) 
. 

It follows that the normal space to St(p, n) at a point X is 

(TX St(p, n))⊥ = {XS : ST = S}. 
The orthogonal projection PX onto TX St(p, n) is given by 

PXZ = Z − X sym(XTZ) = (I − XXT )Z + X skew(XTZ), 

where 

sym(M) := 1 (M + MT ), skew(M) = 1 (M − MT )2 2

denote the symmetric part and the skew-symmetric part of the decomposi­
tion of M into a symmetric and a skew-symmetric term. 

Consider the function 

f : Rn×p R : X 7→ tr(XTAXN), 

so that f = f
∣∣
St(p,n)

. We have 

→ 

Df (X) [Z] = 2 tr 
(
ZTAXN

) 
, 

hence 

grad f(X) = 2AXN 

and 

grad f(X) = PX grad f(X) 

= 2AXN − 2X sym(XTAXN) 

= 2AXN − XXTAXN − XNXTAX. 

It remains to select a retraction. Choices are proposed in Section 4.1.1, 
such as 

RX(ξ) := qf(X + ξ). 

This is all we need to turn various versions of the general Algorithm 1 into 
practical matrix algorithms for minimizing the cost fuction (4.32) on the 
orthogonal Stiefel manifold. 

4.8.2 Critical points 

We now show that X is a critical point of f if and only if the columns of X 
are eigenvectors of A. 

The gradient of f admits the expression 

grad f(X) = 2(I − XXT )AXN + 2X skew(XTAXN) (4.33) 

= 2(I − XXT )AXN + X[XTAX,N ], 
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Table 4.2 Brockett cost function on the Stiefel manifold. 

cost 

metric 

tangent space 

normal space 

projection onto 
tangent space 

gradient 

retraction 

where 

Manifold (St(p, n)) 

tr(XT AXN), XT X = Ip


induced metric


Z ∈ Rn×p : sym(XT Z) = 0


Z ∈ Rn×p : Z = XS, ST = S


PXZ = Z − X sym(XT Z)


grad f(X) = PX grad f(X)


RX(Z) = qf(X + Z)


[A,B] := AB − BA 

Total space (Rn×p) 

tr(XT AXN), X ∈ Rn×p 

〈Z1, Z2〉 = tr(Z1 
T Z2) 

Rn×p 

∅ 

identity 

grad f(X) = 2AXN 

RX(Z) = X + Z 

denotes the (matrix) commutator of A and B. Since the columns of the first 
term in the expression of the gradient belong to the orthogonal complement 
of span(X), while the columns of the second term belong to span(X), it 
follows that grad f(X) vanishes if and only if 

(I − XXT )AXN = 0 (4.34) 

and 

[XTAX, N ] = 0. (4.35) 

Since N is assumed to be invertible, equation (4.34) yields 

(I − XXT )AX = 0, 

which means that 

AX = XM (4.36) 

for some M . In other words, span(X) is an invariant subspace of A. Next, in 
view of the specific form of N , equation (4.35) implies that XTAX is diagonal 
which, used in (4.36), implies that M is diagonal, hence the columns of X 
are eigenvectors of A. Showing conversely that any such X is a critical point 
of f is straightfoward. 

In the case p = n, St(n, n) = On, and critical points of the Brockett cost 
function are orthogonal matrices that diagonalize A. (Note that I − XXT = 
0, so the first term in (4.33) trivially vanishes.) This is equivalent to saying 
that the columns of X are eigenvectors of A. 
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4.9 RAYLEIGH QUOTIENT MINIMIZATION ON THE 

GRASSMANN MANIFOLD 

Finally, we consider a generalized Rayleigh quotient cost function on the 
Grassmann manifold. The Grassmann manifold is viewed as a Riemannian 
quotient manifold of R

n
∗
×p , which allows us to exploit the machinery for 

steepest-descent methods on quotient manifolds (see, in particular, Sec­
tions 3.4, 3.5.8, 3.6.2, and 4.1.2). 

4.9.1 Cost function and gradient calculation 

We start with a review of the Riemannian quotient manifold structure of 
the Grassmann manifold (Section 3.6.2). Let the structure space M be the 
noncompact Stiefel manifold Rn

∗
×p = {Y ∈ Rn×p : Y full rank}. We consider 

on M the equivalence relation 

X ∼ Y ⇔ ∃M ∈ R∗ 
n×p : Y = XM. 

In other words, two elements of Rn
∗
×p belong to the same equivalence class 

if and only if they have the same column space. There is thus a one-to-one 
correspondence between R

n
∗
×p/ ∼ and the set of p-dimensional subspaces 

of Rn . The set R∗ 
n×p/ ∼ has been shown (Proposition 3.4.6) to admit a 

unique structure of quotient manifold, called the Grassmann manifold and 
denoted by Grass(p, n) or R∗ 

n×p/GLp. Moreover, R∗ 
n×p/GLp has been shown 

(Section 3.6.2) to have a structure of Riemannian quotient manifold when 
R

n
∗
×p is endowed with the Riemannian metric 

gY (Z1, Z2) = tr 
(
(Y TY )−1Z1 

TZ2

) 
. 

The vertical space at Y is by definition the tangent space to the equivalence 
class of π−1(π(Y )) = {YM : M ∈ Rp

∗
×p}, which yields 

VY = {YM : M ∈ Rp×p}. 
The horizontal space at Y is defined as the orthogonal complement of the 
vertical space with respect to the metric g, which yields 

HY = {Z ∈ Rn×p : Y TZ = 0}. 
Given ξ ∈ Tspan(Y ) Grass(p, n), there exists a unique horizontal lift ξY ∈ 
TY R

n
∗
×p satisfying 

Dπ(Y )[ξY ] = ξ. 

Since 

g(ξY M , ζY M ) = g(ξY , ζY ) 

for all M ∈ Rp
∗
×p, it follows that (Grass(p, n), g) is a Riemannian quotient 

manifold of (Rn
∗
×p , g) with 

gspan(Y )(ξ, ζ) := gY (ξY , ζY ). 
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In other words, the canonical projection π is a Riemannian submersion from 
(Rn
∗
×p , g) to (Grass(p, n), g). 

Let A be an n × n symmetric matrix, not necessarily positive-definite. 
Consider the cost function on the total space Rn

∗
×p defined by 

f : Rn×p (4.37) ∗ → R : Y 7→ tr 
(
(Y TY )−1Y TAY 

) 
. 

Since f(YM) = f(Y ) whenever M ∈ R∗ 
p×p , it follows that f induces a 

function f on the quotient Grass(p, n) such that f = f π. The function f◦
can be described as 

f : Grass(p, n) R : span(Y ) 7→ tr 
(
(Y TY )−1Y TAY 

) 
. (4.38) → 

This function can be thought of as a generalized Rayleigh quotient. Since f 
is smooth on Rn

∗
×p, it follows from Proposition 3.4.5 that f is a smooth cost 

function on the quotient Grass(p, n). 
In order to obtain an expression for the gradient of f , we will make use of 

the trace identities (A.1) and of the formula (A.3) for the derivative of the 
inverse of a matrix. For all Z ∈ Rn×p, we have 

Df (Y ) [Z] = tr 
(
−(Y TY )−1(ZTY + Y TZ)(Y TY )−1Y TAY 

) 

+ tr 
(
(Y TY )−1ZTAY 

) 
+ tr 

(
(Y TY )−1Y TAZ

) 
. (4.39) 

For the last term, we have, using the two properties (A.1) of the trace, 

tr 
(
(Y TY )−1Y TAZ

) 
= tr 

(
ZTAY (Y TY )−1

) 
= tr 

(
(Y TY )−1ZTAY 

) 
. 

Using the same properties, the first term can be rewritten as 

−2 tr 
(
(Y TY )−1ZTY (Y TY )−1Y TAY 

) 
. 

Replacing these results in (4.39) yields 

Df (Y ) [Z] = tr 
(
(Y TY )−1ZT 2(AY − Y (Y TY )−1Y TAY )

) 

= gY (Z, 2(AY − Y (Y TY )−1Y TAY )). 

It follows that 

grad f(Y ) = 2 
(
AY − Y (Y TY )−1Y TAY 

) 
= Ph

Y (2AY ), 

where 

Ph
Y = (I − Y (Y TY )−1Y T ) 

is the orthogonal projection onto the horizontal space. Note that, in accor­
dance with the theory in Section 3.6.2, grad f(Y ) belongs to the horizontal 
space. It follows from the material in Section 3.6.2, in particular (3.39), that 

grad fY = 2Ph
Y AY = 2 

(
AY − Y (Y TY )−1Y TAY 

) 
. 
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Table 4.3 Rayleigh quotient cost function on the Grassmann manifold. 

Grass(p, n) Total space Rn×p 
∗ 

cost span(Y ) 7→ f(Y ) f(Y ) = tr((Y T Y )−1Y T AY ) 

metric gspan(Y )(ξ, ζ) = gY (ξY , ζY ) gY (Z1, Z2) 

= tr((Y T Y )−1ZT 
1 Z2) 

horizontal space Z ∈ Rn×p : Y T Z = 0 / 

projection onto Ph 
Y Z = Z − Y (Y T Y )−1Y T Z / 

horizontal space 

gradient grad fY = grad f(Y ) grad f(Y ) = Ph 
Y (2AY ) 

retraction Rspan(Y )(ξ) = span(Y + ξY ) RY (Z) = Y + Z 

4.9.2 Line-search algorithm 

In order to obtain a line-search algorithm for the Rayleigh quotient on the 
Grassmann manifold, it remains to pick a retraction. According to Sec­
tion 4.1.2, a natural choice is 

Rspan(Y )(ξ) = span(Y + ξY ). (4.40) 

In other words, (Y + ξY )M is a matrix representation of Rspan(Y )(ξ) for any 
M ∈ R∗ 

p×p . The matrix M can be viewed as a normalization factor that 
can be used to prevent the iterates from becoming ill-conditioned, the best-
conditioned form being orthonormal matrices. We now have all the necessary 
elements (see the summary in Table 4.3) to write down explicitly a line-search 
method for the Rayleigh quotient (4.38). 

The matrix algorithm obtained by applying the Armijo line-search ver­
sion of Algorithm 1 to the problem of minimizing the generalized Rayleigh 
quotient (4.38) is stated in Algorithm 3. 

The following convergence results follow from the convergence analysis of 
the general line-search Algorithm 1 (Theorems 4.3.1 and 4.5.6). 

Theorem 4.9.1 Let {Yk} be an infinite sequence of iterates generated by 
Algorithm 3. Let λ1 ≤ · · · ≤ λn denote the eigenvalues of A. 

(i) The sequence {span(Yk)} converges to the set of p-dimensional in­
variant subspaces of A. 

(ii) Assuming that the eigenvalue λp is simple, the (unique) invariant 
subspace associated with (λ1, . . . , λp) is asymptotically stable for the 
iteration defined by Algorithm 3, and the convergence is linear with 
a factor smaller than or equal to 

( 

α, 
2β(1 − σ) 

) 

r∗ = 1 − 2σ(λp+1 − λp) min ¯ . 
λn − λ1 
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Algorithm 3 Armijo line search for the Rayleigh quotient on Grass(p, n)


Require: Symmetric matrix A, scalars α > 0, β, σ ∈ (0, 1).

Input: Initial iterate Y0 ∈ Rn×p, Y0 full rank.

Output: Sequence of iterates {Yk}.


1: for k = 0, 1, 2, . . . do 
2:	 Compute ηk = −2(AY − Y (Y TY )−1AY ). 
3:	 Find the smallest integer m ≥ 0 such that 

f (Yk + αβmηk) ≤ f(Yk) − σαβm tr(ηk
T ηk), 

with f defined in (4.37). 
4:	 Select Yk+1 := (Yk + αβmηk)M , with some invertible p × p matrix 

M chosen to preserve good conditioning. (For example, select Yk+1 as 
the Q factor of the QR decomposition of Yk + αβmηk.) 

5: end for 

The other invariant subspaces are unstable. 

Numerical results are presented in Figure 4.4. 

4.10 NOTES AND REFERENCES 

Classical references on numerical optimization include Bertsekas [Ber95], 
Dennis and Schnabel [DS83], Fletcher [Fle01], Luenberger [Lue73], Nash and 
Sofer [NS96], Polak [Pol71], and Nocedal and Wright [NW99]. 

The choice of the qualification complete for Riemannian manifolds is not 
accidental: it can be shown that a Riemannian manifold M is complete 
(i.e., the domain of the exponential is the whole T M) if and only if M, 
endowed with the Riemannian distance, is a complete metric space; see, e.g., 
O’Neill [O’N83]. 

The idea of using computationally efficient alternatives to the Rieman­
nian exponential was advocated by Manton [Man02, § IX] and was also 
touched on in earlier works [MMH94, Smi94, EAS98]. Retraction mappings 
are common in the field of algebraic topology [Hir76]. The definition of 
retraction used in this book comes from Shub [Shu86]; see also Adler et 
al. [ADM+02]. Most of the material about retractions on the orthogonal 
group comes from [ADM+02]. 

Selecting a computationally efficient retraction is a crucial step in devel­
oping a competitive algorithm on a manifold. This problem is linked to the 
question of approximating the exponential in such a way that the approxima­
tion resides on the manifold. This is a major research topic in computational 
mathematics, with important recent contributions; see, e.g., [CI01, OM01, 
IZ05, DN05] and references therein. 

The concept of a locally smooth family of parameterizations was intro­
duced by Hüper and Trumpf [HT04]. 
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Figure 4.4 Rayleigh quotient minimization on the Grassmann manifold of p-planes 
in Rn, with p = 5 and n = 100. Upper curve: A = diag(1, 2, . . . , 100). 
Middle curve: A = diag(1, 102, 103, . . . , 200). Lower curve: A = 
diag(1, . . . , 5, 106, 107, . . . , 200). 

Details on the QR and polar decompositions and algorithms to compute 
them can be found in Golub and Van Loan [GVL96]; the differentiability 
of the qf mapping is studied in Dehane [Deh95], Dieci and Eirola [DE99], 
and Chern and Dieci [CD00]. Formulas for the differential of qf and other 
smooth matrix functions can be found in Dehaene [Deh95]. 

Definition 4.2.1, on gradient-related sequences, is adapted from [Ber95]. 
Armijo’s backtracking procedure was proposed in [Arm66] (or see [NW99, 
Ber95] for details). 

Several key ideas for line-search methods on manifolds date back to Lu­
enberger [Lue73, Ch. 11]. Luenberger proposed to use a search direction 
obtained by projecting the gradient in Rn onto the tangent space of the 
constraint set and mentioned the idea of performing a line search along the 
geodesic, “which we would use if it were computationally feasible (which 
it definitely is not)”. He also proposed an alternative to following the 
geodesic that corresponds to retracting orthogonally to the tangent space. 
Other early contributions to optimization on manifolds can be found in 
Gabay [Gab82]. Line-search methods on manifolds are also proposed and an­
alyzed in Udrişte [Udr94]. Recently, Yang [Yan07] proposed an Armijo line-
search strategy along geodesics. Exact and approximate line-search meth­
ods were proposed for matrix manifolds in a burst of research in the early 
1990s [MMH94, Mah94, Bro93, Smi94]. Algorithm 1 comes from [AG05]. 
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Many refinements exist for choosing the step length in line-search meth­
ods. For example, the backtracking parameter β can be adapted during the 
backtracking procedure. We refer to Dennis and Schnabel [DS83, §6.3.2] and 
Ortega and Rheinboldt [OR70]. 

The non-Hausdorff example given in Section 4.3.2 was inspired by Brickell 
and Clark [BC70, Ex. 3.2.1], which refers to Haefliger and Reeb [HR57]. 

For a local convergence analysis of classical line-search methods, see, e.g., 
Luenberger [Lue73] or Bertsekas [Ber95]. The proof of Theorem 4.3.1 (the 
global convergence of line-search methods) is a generalization of the proof 
of [Ber95, Prop. 1.2.1]. In Section 4.4, it is pointed out that convergence 
to critical points that are not local minima cannot be ruled out. Another 
undesirable behavior that cannot be ruled out in general is the existence of 
several (even infinitely many) accumulation points. Details can be found in 
Absil et al. [AMA05]; see also [GDS05]. Nevertheless, such algorithms do 
converge to single accumulation points, and the gap between theory and 
practice should not prevent one from utilizing the most computationally 
effective algorithm. 

The notions of stability of fixed points have counterparts in dynam­
ical systems theory; see, e.g., Vidyasagar [Vid02] or Guckenheimer and 
Holmes [GH83]. In fact, iterations xk+1 = F (xk) can be thought of as 
discrete-time dynamical systems. 

Further information on Lojasiewicz’s gradient inequality can be found 
in �Lojasiewicz [�Loj93]. The concept of Theorem 4.4.2 (the capture the­
orem) is borrowed from Bertsekas [Ber95]. A coordinate-free proof of 
our Theorem 4.5.6 (local convergence of line-search methods) is given by 
Smith [Smi94] in the particular case where the next iterate is obtained 
via an exact line search minimization along geodesics. Optimization algo­
rithms on the Grassmann manifold can be found in Smith [Smi93], Helmke 
and Moore [HM94], Edelman et al. [EAS98], Lippert and Edelman [LE00], 
Manton [Man02], Manton et al. [MMH03], Absil et al. [AMS04], and Liu et 
al. [LSG04]. 

Gradient-descent algorithms for the Rayleigh quotient were considered as 
early as 1951 by Hestenes and Karush [HK51]. A detailed account is given 
in Faddeev and Faddeeva [FF63, §74, p. 430]. There has been limited inves­
tigation of line-search descent algorithms as numerical methods for linear 
algebra problems since it is clear that such algorithms are not competitive 
with existing numerical linear algebra algorithms. At the end of his paper 
on the design of gradient systems, Brockett [Bro93] provides a discrete-time 
analog, with an analytic step-size selection method, for a specific class of 
problems. In independent work, Moore et al. [MMH94] (see also [HM94, 
p. 68]) consider the symmetric eigenvalue problem directly. Chu [Chu92] 
proposes numerical methods for the inverse singular value problem. Smith et 
al. [Smi93, Smi94, EAS98] consider line-search and conjugate gradient up­
dates to eigenspace tracking problems. Mahony et al. [Mah94, MHM96] pro­
poses gradient flows and considers discrete updates for principal component 
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analysis. A related approach is to consider explicit integration of the gradi­
ent flow dynamical system with a numerical integration technique that pre­
serves the underlying matrix constraint. Moser and Veselov [MV91] use this 
approach directly in building numerical algorithms for matrix factorizations. 
The literature on structure-preserving integration algorithms is closely linked 
to work on the integration of Hamiltonian systems. This field is too vast to 
cover here, but we mention the excellent review by Iserles et al. [IMKNZ00] 
and an earlier review by Sanz-Serna [SS92]. 

The locally optimal conjugate gradient algorithm for the symmetric 
eigenvalue problem is described in Knyazev [Kny01]; see Hetmaniuk and 
Lehoucq [HL06] for recent developments. The connection between the power 
method and line-search methods for the Rayleigh quotient was studied in 
Mahony et al. [MHM96]. 

More information on the eigenvalue problem can be found in Golub and 
van der Vorst [GvdV00], Golub and Van Loan [GVL96], Parlett [Par80], 
Saad [Saa92], Stewart [Ste01], Sorensen [Sor02], and Bai et al. [BDDR00]. 

Linearly convergent iterative numerical methods for eigenvalue and sub­
space problems are not competitive with the classical numerical linear alge­
bra techniques for one-off matrix factorization problems. However, a domain 
in which linear methods are commonly employed is in tracking the princi­
pal subspace of a covariance matrix associated with observations of a noisy 
signal. Let {x1, x2, . . .} be a sequence of elements of vectors in Rn and define 

k+N

EN 1 ∑ 
xix Ti ∈ Rn×n , AN

k = 
[ 
xk+1 xN 

] 
∈ Rn×N .= k N 

· · · 
i=k+1 

The signal subspace tracking problem is either to track a principal sub­
space of the covariance matrix Ek

N (a Hermitian eigenspace problem) or to 
directly track a ksignal subspace of the signal array AN (a singular value 
problem). Common and Golub [CG90] studied classical numerical linear al­
gebra techniques for this problem with linear update complexity. More re­
cent review material is provided in DeGroat et al. [DDL99]. Most (if not 
all) high-accuracy linear complexity algorithms belong to a family of power-
based algorithms [HXC+99]. This includes the Oja algorithm [Oja89], the 
PAST algorithm [Yan95], the NIC algorithm [MH98b], and the Bi-SVD al­
gorithm [Str97], as well as gradient-based updates [FD95, EAS98]. Research 
in this field is extremely active at this time, with the focus on reduced-
complexity updates [OH05, BDR05]. We also refer the reader to the Bayesian 
geometric approach followed in [Sri00, SK04]. 

In line-search algorithms, the limit case where the step size goes to zero 
corresponds to a continuous-time dynamical system of the form ẋ = ηx, 
where ηx ∈ TxM denotes the search direction at x ∈ M. There is a vast 
literature on continuous-time systems that solve computational problems, 
spanning several areas of computational science, including, but not limited 
to, linear programming [BL89a, BL89b, Bro91, Fay91b, Hel93b], continuous 
nonlinear optimization [Fay91a, LW00], discrete optimization [Hop84, HT85, 
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Vid95, AS04], signal processing [AC98, Dou00, CG03], balanced realization 
of linear systems [Hel93a, GL93], model reduction [HM94, YL99], and au­
tomatic control [HM94, MH98a, GS01]. Applications in linear algebra, and 
especially in eigenvalue and singular value problems, are particularly abun­
dant. Important advances in the area have come from the work on isospectral 
flows in the early 1980s. We refer the reader to Helmke and Moore [HM94] 
as the seminal monograph in this area and the thesis of Dehaene [Deh95] 
for more information; see also [Chu94, DMV99, CG02, Prz03, MA03, BI04, 
CDLP05, MHM05] and the many references therein. 
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Chapter Five


Matrix Manifolds: Second-Order Geometry 

Many optimization algorithms make use of second-order information about 
the cost function. The archetypal second-order optimization algorithm is 
Newton’s method. This method is an iterative method that seeks a critical 
point of the cost function f (i.e., a zero of grad f) by selecting the update 
vector at xk as the vector along which the directional derivative of grad f is 
equal to −grad f(xk). The second-order information on the cost function is 
incorporated through the directional derivative of the gradient. 

For a quadratic cost function in Rn, Newton’s method identifies a zero 
of the gradient in one step. For general cost functions, the method is not 
expected to converge in one step and may not even converge at all. How­
ever, the use of second-order information ensures that algorithms based on 
the Newton step display superlinear convergence (when they do converge) 
compared to the linear convergence obtained for algorithms that use only 
first-order information (see Section 4.5). 

A Newton method on Riemannian manifolds will be defined and analyzed 
in Chapter 6. However, to provide motivation for the somewhat abstract 
theory that follows in this chapter, we begin by briefly recapping Newton’s 
method in Rn and identify the blocks to generalizing the iteration to a man­
ifold setting. An important step in the development is to provide a meaning­
ful definition of the derivative of the gradient and, more generally, of vector 
fields; this issue is addressed in Section 5.2 by introducing the notion of 
an affine connection. An affine connection also makes it possible to define 
parallel translation, geodesics, and exponentials (Section 5.4). These tools 
are not mandatory in defining a Newton method on a manifold, but they 
are fundamental objects of Riemannian geometry, and we will make use of 
them in later chapters. On a Riemannian manifold, there is one preferred 
affine connection, termed the Riemannian connection, that admits elegant 
specialization to Riemannian submanifolds and Riemannian quotient mani­
folds (Section 5.3). The chapter concludes with a discussion of the concept 
of a Hessian on a manifold (Sections 5.5 and 5.6). 

5.1 NEWTON’S METHOD IN RN 

In its simplest formulation, Newton’s method is an iterative method for 
finding a solution of an equation in one unknown. Let F be a smooth function 
from R to R and let x∗ be a zero (or root) of F , i.e., F (x∗) = 0. From an 
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initial point x0 in R, Newton’s method constructs a sequence of iterates 
according to 

F (xk) 
xk+1 = xk − 

F ′ (xk) 
, (5.1) 

′ where F denotes the derivative of F . Graphically, xk+1 corresponds to the 
intersection of the tangent to the graph of F at xk with the horizontal axis 
(see Figure 5.1). In other words, xk+1 is the zero of the first-order Taylor 
expansion of F around xk. This is clearly seen when (5.1) is rewritten as 

F (xk) + F ′ (xk)(xk+1 − xk) = 0. (5.2) 

xk+1 

x∗ xk x 

y = F (x) 

y 

Figure 5.1 Newton’s method in R. 

Let G : Rn → Rn : G(x) := x − F (x)/F ′ (x) be the iteration map from 
(5.1) and note that x∗ is a fixed point of G. For a generic fixed point where 
F (x∗) = 0 and F ′ (x∗) = 0, the derivative 

G ′ (x∗) = 1 − 
F ′ (x∗)

+ 
F (x∗)F ′′ (x∗) 

= 0,
F ′ (x∗) (F ′ (x∗))2 

and it follows that Newton’s method is locally quadratically convergent to 
x∗ (see Theorem 4.5.3). 

Newton’s method can be generalized to functions F from Rn to Rn. Equa­
tion (5.2) becomes 

F (xk) + DF (xk) [xk+1 − xk] = 0, (5.3) 

where DF (x) [z] denotes the directional derivative of F along z, defined by 

1 
DF (x) [z] := lim (F (x + tz) − F (x)). 

t→0 t 

A generalization of the argument given above shows that Newton’s method 
locally quadratically converges to isolated roots of F for which DF (x∗) is 
full rank. 

Newton’s method is readily adapted to the problem of computing a critical 
point of a cost function f on Rn. Simply take F := grad f , where 

grad f(x) = (∂1f(x), . . . , ∂nf(x))T 
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is the Euclidean gradient of f . The iterates of Newton’s method then con­
verge locally quadratically to the isolated zeros of grad f , which are the 
isolated critical points of f . Newton’s equation then reads 

grad f(xk) + D(grad f) (xk) [xk+1 − xk] = 0. 

To generalize this approach to manifolds, we must find geometric analogs 
to the various components of the formula that defines the Newton iter­
ate on Rn . When f is a cost function an abstract Riemannian manifold, 
the Euclidean gradient naturally becomes the Riemannian gradient grad f 
defined in Section 3.6. The zeros of grad f are still the critical points of 
f . The difference xk+1 − xk, which is no longer defined since the iterates 
xk+1 and xk belong to the abstract manifold, is replaced by a tangent 
vector ηxk 

in the tangent space at xk. The new iterate xk+1 is obtained 
from ηxk 

as xk+1 = Rxk
(ηxk

), where R is a retraction; see Section 4.1 for 
the notion of retraction. It remains to provide a meaningful definition for 
“D(grad f)(xk)[ηxk

]”. 
More generally, for finding a zero of a tangent vector field ξ on a manifold, 

Newton’s method takes the form 

ξxk 
+ “Dξ(xk)[ηxk

]” = 0, 

xk+1 = Rxk
(ηxk

). 

The only remaining task is to provide a geometric analog of the directional 
derivative of a vector field. 

Recall that tangent vectors are defined as derivations of real functions: 
given a scalar function f and a tangent vector η at x, the real Df (x) [η] is 

defined as d(f(γ(t))) , where γ is a curve representing η; see Section 3.5. dt 

∣∣∣
t=0 

If we try to apply the same concept to vector fields instead of scalar fields, 
we obtain 

d ξγ(t) ξγ(t) − ξγ(0) 
= lim . 

dt 

∣∣∣∣
t=0 

t→0 t 

The catch is that the two vectors ξγ(t) and ξγ(0) belong to two different vector 
spaces Tγ(t)M and Tγ(0)M, and there is in general no predefined correspon­
dence between the vector spaces that allows us to compute the difference. 
Such a correspondence can be introduced by means of affine connections. 

5.2 AFFINE CONNECTIONS 

The definition of an affine connection on a manifold is one of the most 
fundamental concepts in differential geometry. An affine connection is an 
additional structure to the differentiable structure. Any manifold admits 
infinitely many different affine connections. Certain affine connections, how­
ever, may have particular properties that single them out as being the most 
appropriate for geometric analysis. In this section we introduce the concept 
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of an affine connection from an abstract perspective and show how it gener­
alizes the concept of a directional derivative of a vector field. 

Let X(M) denote the set of smooth vector fields on M. An affine connec­
tion ∇ (pronounced “del” or “nabla”) on a manifold M is a mapping 

∇ : X(M) × X(M) → X(M), 

∇
which is denoted by (η, ξ) −→ ∇ηξ and satisfies the following properties: 

i)F(M)-linearity in η: ∇fη+gχξ = f∇ηξ + g∇χξ,

ii)R-linearity in ξ: ∇η(aξ + bζ) = a∇ηξ + b∇ηζ,


iii)Product rule (Leibniz’ law): ∇η(fξ) = (ηf)ξ + f∇ηξ,


in which η, χ, ξ, ζ ∈ X(M), f, g ∈ F(M), and a, b ∈ R. (Notice that ηf 
denotes the application of the vector field η to the function f , as defined in 
Section 3.5.4.) The vector field ∇ηξ is called the covariant derivative of ξ 
with respect to η for the affine connection ∇. 

In Rn, the classical directional derivative defines an affine connection, 

(∇ηξ)x = lim 
ξx+tηx 

− ξx 
, (5.4) 

t→0 t 

called the canonical (Euclidean) connection. (This expression is well defined 
in view of the canonical identification TxE ≃ E discussed in Section 3.5.2, 
and it is readily checked that (5.4) satisfies all the properties of affine con­
nections.) This fact, along with several properties discussed below, suggests 
that the covariant derivatives are a suitable generalization of the classical 
directional derivative. 

Proposition 5.2.1 Every (second-countable Hausdorff) manifold admits an 
affine connection. 

In fact, every manifold admits infinitely many affine connections, some of 
which may be computationally more tractable than others. 

We first characterize all the possible affine connections on the linear man­
ifold Rn. Let (e1, . . . , en) be the canonical basis of Rn. If ∇ is a connection 
on Rn, we have 

ηieii 


 ξjej 


 = ηi∇ei 


 ξjej 


∇ηξ = ∇P

j i j 

=
(
ηiξj∇ei

ej + ηi∂iξ
jej

) 
, 

i,j 

where η, ξ, ei, ∇ηξ, ∇ei
ej are all vector fields on Rn . To define ∇, it suffices to 

specify the n2 vector fields ∇ei
ej , i = 1, . . . , n, j = 1, . . . , n. By convention, 

the kth component of ∇ei
ej in the basis (e1, . . . , en) is denoted by Γk . The n3 

ij

real-valued functions Γk are called Christoffel symbols. Each choice ij on Rn 

of smooth functions Γk defines a different affine connection on Rn . The ij 

Euclidean connection corresponds to the choice Γk 
ij ≡ 0. 
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On an n-dimensional manifold M, locally around any point x, a simi­
lar development can be based on a coordinate chart (U , ϕ). The following 
coordinate-based development shows how an affine connection can be defined 
on U , at least in theory (in practice, the use of coordinates to define an affine 
connection can be cumbersome). The canonical vector ei is replaced by the 
ith coordinate vector field Ei of (U , ϕ) which, at a point y of U , is repre­
sented by the curve t 7→ ϕ−1(ϕ(y) + tei); in other words, given a real-valued 
function f defined on U , Eif = ∂i(f ◦ϕ−1). Thus, one has Dϕ(y)[(Ei)y] = ei. 
We will also use the notation ∂if for Eif . A vector field ξ can be decomposed 
as ξ = 

∑
ξjEj , where ξi , i = 1, . . . , d, are real-valued functions on U , i.e., j

elements of F(U). Using the characteristic properties of affine connections, 
we obtain     

∇ηξ = ∇P
i η

iEi 

∑ 

ξjEj
 = 

∑ 
ηi∇Ei 


∑ 

ξjEj
 

j i j 

= 
∑(

ηiξj∇Ei
Ej + ηi∂iξ

jEj

) 
. (5.5) 

i,j 

It follows that the affine connection is fully specified once the n2 vector fields 
∇Ei

Ej are selected. We again use the Christoffel symbol Γij 
k to denote the 

kth component of ∇Ei
Ej in the basis (E1, . . . , En); in other words, 

∇Ei
Ej = 

∑ 
Γij

k Ek. 
k 

The Christoffel symbols Γk 3 
ij at a point x can be thought of as a table of n

real numbers that depend both on the point x in M and on the choice of 
the chart ϕ (for the same affine connection, different charts produce different 
Christoffel symbols). We thus have 

∇ηξ = 
∑(

ηiξjΓij
k Ek + ηi∂iξ

jEj

) 
. 

i,j,k 

A simple renaming of indices yields 

∇ηξ = 
∑ 

ηj
(
ξkΓjk 

i + ∂jξ
i
) 
Ei. (5.6) 

i,j,k 

We also obtain a matrix expression as follows. Letting hat quantities de­
note the (column) vectors of components in the chart (U , φ), we have 

̂ ˆ
ˆ x̂ ξ (ˆ ηˆ] ,∇ηx 

ξ = Γx,ξ̂ηˆ + D ̂ x) [ x̂ (5.7) 

where Γ̂ˆ ˆ denotes the matrix whose (i, j) element is the real-valued function x,ξ 
∑(

ξkΓi 
) 

(5.8) jk

k 

evaluated at x. 
From the coordinate expression (5.5), one can deduce the following prop­

erties of affine connections. 



00˙AMS September 23, 2007

96 CHAPTER 5 

1.	 Dependence on ηx. The vector field ∇ηξ at a point x depends only on 
the value ηx of η at x. Thus, an affine connection at x is a mapping 
TxM× X(x) → X(x) : (ηx, ξ) 7→ ∇ηx 

ξ, where X(x) denotes the set of 
vector fields on M whose domain includes x. 

2.	 Local dependence on ξ. In contrast, ξx does not provide enough infor­
mation about the vector field ξ to compute ∇ηξ at x. However, if the 
vector fields ξ and ζ agree on some neighborhood of x, then ∇ηξ and 
∇ηζ coincide at x. Moreover, given two affine connections ∇ and ∇̃, 
∇ηξ − ∇̃ηξ at x depends only on the value ξx of ξ at x. 

3.	 Uniqueness at zeros. Let ∇ and ∇̃ be two affine connections on M and 
let ξ and η be vector fields on M. Then, as a corollary of the previous 
property, 

( 
˜

)
(∇ηξ)x = ∇ηξ if ξx = 0. 

x 

This final property is particularly important in the convergence analysis 
of optimization algorithms around critical points of a cost function. 

5.3 RIEMANNIAN CONNECTION 

On an arbitrary (second-countable Hausdorff) manifold, there are infinitely 
many affine connections, and a priori, no one is better than the others. 
In contrast, on a vector space E there is a preferred affine connection, the 
canonical connection (5.4), which is simple to calculate and preserves the 
linear structure of the vector space. On an arbitrary Riemannian manifold, 
there is also a preferred affine connection, called the Riemannian or the 
Levi-Civita connection. This connection satisfies two properties (symmetry, 
and invariance of the Riemannian metric) that have a crucial importance, 
notably in relation to the notion of Riemannian Hessian. Moreover, the Rie­
mannian connection on Riemannian submanifolds and Riemannian quotient 
manifolds admits a remarkable formulation in terms of the Riemannian con­
nection in the structure space that makes it particularly suitable in the 
context of numerical algorithms. Furthermore, on a Euclidean space, the 
Riemannian connection reduces to the canonical connection—the classical 
directional derivative. 

5.3.1 Symmetric connections 

An affine connection is symmetric if its Christoffel symbols satisfy the sym­
metry property Γk Γk This definition is equivalent to a more abstract ij = ji. 
coordinate-free approach to symmetry that provides more insight into the 
underlying structure of the space. 

To define symmetry of an affine connection in a coordinate-free manner, 
we will require the concept of a Lie bracket of two vector fields. Let ξ and 
ζ be vector fields on M whose domains meet on an open set U . Recall that 
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F(U) denotes the set of smooth real-valued functions whose domains include 
U . Let [ξ, η] denote the function from F(U) into itself defined by 

[ξ, ζ]f := ξ(ζf) − ζ(ξf). (5.9) 

It is easy to show that [ξ, ζ] is R-linear, 

[ξ, η](af + bg) = a[ξ, η]f + b[ξ, η]g, 

and satisfies the product rule (Leibniz’ law), 

[ξ, η](fg) = f([ξ, η]g) + ([ξ, η]f)g. 

Therefore, [ξ, ζ] is a derivation and defines a tangent vector field, called the 
Lie bracket of ξ and ζ. 

An affine connection ∇ on a manifold M is said to be symmetric when 

∇ηξ −∇ξη = [η, ξ] (5.10) 

for all η, ξ ∈ X(M). 
Given a chart (U , ϕ), denoting by Ei the ith coordinate vector field, we 

have, for a symmetric connection ∇, 

∇Ei
Ej −∇Ej

Ei = [Ei, Ej ] = 0 

since [Ei, Ej ]f = ∂i∂jf − ∂j∂if = 0 for all f F(M). It follows that 
Γk Γk 

∈ 

ij = ji for every symmetric connection. Conversely, it is easy to show 
that connections satisfying Γk

ij = Γji 
k are symmetric in the sense of (5.10) 

by expanding in local coordinates. 

5.3.2 Definition of the Riemannian connection 

The following result is sometimes referred to as the fundamental theorem of 
Riemannian geometry. Let 〈·, ·〉 denote the Riemannian metric. 

Theorem 5.3.1 (Levi-Civita) On a Riemannian manifold M there exists 
a unique affine connection ∇ that satisfies 

(i) ∇ηξ −∇ξη = [η, ξ] (symmetry), and 
(ii) χ〈η, ξ〉 = 〈∇χη, ξ〉 + 〈η, ∇χξ〉 (compatibility with the Riemannian 

metric), 

for all χ, η, ξ ∈ X(M). This affine connection ∇, called the Levi-Civita con­
nection or the Riemannian connection of M, is characterized by the Koszul 
formula 

2〈∇χη, ξ〉 = χ〈η, ξ〉 + η〈ξ, χ〉 − ξ〈χ, η〉 − 〈χ, [η, ξ]〉 + 〈η, [ξ, χ]〉 + 〈ξ, [χ, η]〉. 
(5.11) 

Recall that for vector fields η, ξ, χ ∈ X(M), 〈η, ξ〉 is a real-valued function 
on M and χ〈η, ξ〉 is the real-valued function given by the application of the 
vector field (i.e., derivation) χ to 〈η, ξ〉.) 

Since the Riemannian connection is symmetric, it follows that the Christof­
fel symbols of the Riemannian connection satisfy Γk = Γk Moreover, it ij ji. 
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follows from the Koszul formula (5.11) that the Christoffel symbols for the 
Riemannian connection are related to the coefficients of the metric by the 
formula 

1 
Γk 

∑ 
g kℓ (∂igℓj + ∂jgℓi − ∂ℓgij) , (5.12) ij = 

2 
ℓ 

where gkℓ denotes the matrix inverse of gkℓ, i.e., 
∑

i g
kigiℓ = δℓ

k. In theory, 
the formula (5.12) provides a means to compute the Riemannian connection. 
However, working in coordinates can be cumbersome in practice, and we will 
use a variety of tricks to avoid using (5.12) as a computational formula. 

Note that on a Euclidean space, the Riemannian connection reduces to 
the canonical connection (5.4). A way to see this is that, in view of (5.12), 
the Christoffel symbols vanish since the metric is constant. 

5.3.3 Riemannian connection on Riemannian submanifolds 

Let M be a Riemannian submanifold of a Riemannian manifold M. By 
definition, the Riemannian metric on the submanifold M is obtained by 
restricting to M the Riemannian metric on M; therefore we use the same 
notation 〈·, ·〉 for both. Let ∇ denote the Riemannian connection of M, and 
∇ the Riemannian connection of M. Let X(M) denote the set of vector 
fields on M, and X(M) the set of vector fields on M. 

Given ηx ∈ TxM and ξ ∈ X(M), we begin by defining the object ∇ηξ. To 
this end, since TxM is a subspace of TxM, let ηx be ηx viewed as an element 
of TxM; moreover, let ξ be a smooth local extension of ξ over a coordinate 
neighborhood U of x in M. Then define 

∇ηx 
ξ := ∇η ξ. (5.13) 

x 

This expression does not depend on the local extension of ξ. However, in 
general, ∇ηx 

ξ does not lie in TxM, as illustrated in Figure 5.2. Hence the 
restriction of ∇ to M, as defined in (5.13), does not qualify as a connection 
on M. 

ξ 

∇ξξ 

M 

M 

Figure 5.2 Riemannian connection ∇ in a Euclidean space M applied to a tangent 
vector field ξ to a circle. We observe that ∇ξξ is not tangent to the 
circle. 
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Recall from Section 3.6.1 that, using the Riemannian metric on M, each 
tangent space TxM can be decomposed as the direct sum of TxM and its 
orthogonal complement (TxM)⊥, called the normal space to the Rieman­
nian submanifold M at x. Every vector ξx ∈ TxM, x ∈ M, has a unique 
decomposition 

ξx = Pxξx + Px 
⊥ξx, 

where Pxξx belongs to TxM and P⊥ξx belongs to (TxM)⊥ . We have the x 

following fundamental result. 

Proposition 5.3.2 Let M be a Riemannian submanifold of a Riemannian 
manifold M and let ∇ and ∇ denote the Riemannian connections on M
and M. Then 

∇ηx 
ξ = Px∇ηx 

ξ (5.14) 

for all ηx ∈ TxM and ξ ∈ X(M). 

This result is particularly useful when M is a Riemannian submanifold of a 
Euclidean space; then (5.14) reads 

∇ηx 
ξ = Px (Dξ (x) [ηx]) , (5.15) 

i.e., a classical directional derivative followed by an orthogonal projection. 

Example 5.3.1 The sphere Sn−1 

On the sphere Sn−1 viewed as a Riemannian submanifold of the Euclidean 
space Rn, the projection Px is given by 

Pxξ = (I − xx T )ξ 

and the Riemannian connection is given by 

∇ηx 
ξ = (I − xx T ) Dξ (x) [ηx] (5.16) 

for all x ∈ Sn−1 , ηx ∈ TxS
n−1, and ξ ∈ X(Sn−1). A practical application of 

this formula is presented in Section 6.4.1. 

Example 5.3.2 The orthogonal Stiefel manifold St(p, n) 
On the Stiefel manifold St(p, n) viewed as a Riemannian submanifold of 

the Euclidean space Rn×p, the projection PX is given by 

PXξ = (I − XXT )ξ + X skew(XT ξ) 

and the Riemannian connection is given by 

∇ηX 
ξ = PX(Dξ (x) [ηX ]) (5.17) 

for all X ∈ St(p, n), ηX ∈ TX St(p, n), and ξ ∈ X(St(p, n)). 
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5.3.4 Riemannian connection on quotient manifolds 

Let M be a Riemannian manifold with a Riemannian metric g and let 
M = M/ ∼ be a Riemannian quotient manifold of M, i.e., M is endowed 
with a manifold structure and a Riemannian metric g that turn the natural 
projection π : M→M into a Riemannian submersion. As in Section 3.6.2, 
the horizontal space Hy at a point y ∈M is defined as the orthogonal com­
plement of the vertical space, and ξ denotes the horizontal lift of a tangent 
vector ξ. 

Proposition 5.3.3 Let M = M/ ∼ be a Riemannian quotient manifold 
and let ∇ and ∇ denote the Riemannian connections on M and M. Then 

∇ηξ = Ph 
(
∇ηξ

) 
(5.18) 

for all vector fields ξ and η on M, where Ph denotes the orthogonal projection 
onto the horizontal space. 

This is a very useful result, as it provides a practical way to compute covari­
ant derivatives in the quotient space. The result states that the horizontal 
lift of the covariant derivative of ξ with respect to η is given by the horizontal 
projection of the covariant derivative of the horizontal lift of ξ with respect 
to the horizontal lift of η. 

If the structure space M is (an open subset of) a Euclidean space, then 
formula (5.18) simply becomes 

∇ηξ = Ph 
(
Dξ [η ]

) 
. 

In some practical cases, M is a vector space endowed with a Riemannian 
metric g that is not constant (hence M is not a Euclidean space) but that 
is nevertheless horizontally invariant, namely, 

D(g(ν, λ)) (y) [ηy] = g(Dν (y) [ηy] , λy) + g(νy, Dλ (y) [ηy]) 

for all y ∈ M, all ηy ∈ Hy, and all horizontal vector fields ν, λ on M. In 
this case, the next proposition states that the Riemannian connection on the 
quotient is still a classical directional derivative followed by a projection. 

Proposition 5.3.4 Let M be a Riemannian quotient manifold of a vector 
space M endowed with a horizontally invariant Riemannian metric and let 
∇ denote the Riemannian connection on M. Then 

∇ηξ = Ph 
(
Dξ [η ]

) 

for all vector fields ξ and η on M. 

Proof. Let g( , ) = 〈·, ·〉 denote the Riemannian metric on M and let ∇· ·
denote the Riemannian connection of M. Let χ, ν, λ be horizontal vec­
tor fields on M. Notice that since M is a vector space, one has [ν, λ] = 
Dλ[ν] − Dν[λ], and likewise for permutations between χ, ν, and λ. More­
over, since it is assumed that g is horizontally invariant, it follows that 
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Dg(ν, λ)[χ] = g(Dν[χ], λ)+g(ν, Dλ[χ]); and likewise for permutations. Using 
these identities, it follows from Koszul’s formula (5.11) that 

2〈∇χν, λ〉 = χ〈ν, λ〉 + ν〈λ, χ〉 − λ〈χ, ν〉 + 〈λ, [χ, ν]〉 + 〈ν, [λ, χ]〉 − 〈χ, [ν, λ]〉 
= 2g(Dν[χ], λ), 

hence Ph(∇χν) = Ph(Dν[χ]). The result follows from Proposition 5.3.3. � 

Example 5.3.3 The Grassmann manifold 
We follow up on the example in Section 3.6.2. Recall that the Grass­

mann manifold Grass(p, n) was viewed as a Riemannian quotient manifold 
of (Rn

∗
×p , g) with 

gY (Z1, Z2) = tr 
(
(Y TY )−1Z1 

TZ2

) 
. (5.19) 

The horizontal distribution is 

HY = {Z ∈ Rn×p : Y TZ = 0} (5.20) 

and the projection onto the horizontal space is given by 

Ph
Y Z = (I − Y (Y TY )−1Y T )Z. (5.21) 

It is readily checked that, for all horizontal vectors Z ∈ HY , it holds that 

Dg(ξ, ζ ) (Y ) [Z] = DY (tr((Y TY )−1(ξY )
T ζY )) (Y ) [Z] 

= g(Dξ (Y ) [Z] , ζY ) + g(ξY , Dζ (Y ) [Z]) 

since Y TZ = 0 for all Z ∈ HY . The Riemannian metric g is thus horizon­
tally invariant. Consequently, we can apply the formula for the Riemannian 
connection on a Riemannian quotient of a manifold with a horizontally in­
variant metric (Proposition 5.3.4) and obtain 

∇ηξ = Ph 
(
Dξ (Y ) [ηY ]

) 
. (5.22) Y 

We refer the reader to Section 6.4.2 for a practical application of this 
formula. 

5.4 GEODESICS, EXPONENTIAL MAPPING, AND 

PARALLEL TRANSLATION 

Geodesics on manifolds generalize the concept of straight lines in Rn . A 
geometric definition of a straight line in Rn is that it is the image of a curve 
γ with zero acceleration; i.e., 

d2 

γ(t) = 0 
dt2 

for all t. 
On manifolds, we have already introduced the notion of a tangent vector 

γ̇(t), which can be interpreted as the velocity of the curve γ at t. The map­
ping t 7→ γ̇(t) defines the velocity vector field along γ. Next we define the 
acceleration vector field along γ. 
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Let M be a manifold equipped with an affine connection ∇ and let γ be 
a curve in M with domain I ⊆ R. A vector field on the curve γ smoothly 
assigns to each t ∈ I a tangent vector to M at γ(t). For example, given any 
vector field ξ on M, the mapping t 7→ ξγ(t) is a vector field on γ. The velocity 
vector field t 7→ γ̇(t) is also a vector field on γ. The set of all (smooth) vector 
fields on γ is denoted by X(γ). It can be shown that there is a unique function 

ξ from X(γ) to X(γ) such that dt ξ 7→ D 

1. D (aξ + bζ) = a D ξ + b D ζ (a, b ∈ R), dt dt dt 

2. D (fξ) = f ′ ξ + f D ξ (f ∈ F(I)), dt dt 

3. d
D 
t (η ◦ γ)(t) = ∇γ̇(t)η (t ∈ I, η ∈ X(M)). 

D2 

The acceleration vector field dt2 γ on γ is defined by 

D2 D 
γ := γ. ˙ (5.23) 

dt2 dt 
Note that the acceleration depends on the choice of the affine connection, 
while the velocity γ̇ does not. Specifically, in a coordinate chart (U , ϕ), using 
the notation (x1(t), . . . , xn(t)) := ϕ(γ(t)), the velocity γ̇ simply reads d

d 
t

kx , 
which does not depend on the Christoffel symbol; on the other hand, the 

D2 

acceleration dt2 γ reads 

d2 d i d jx k + 
∑ 

Γij
k (γ) x 

dt2 dt dt
x , 

i,j 

where Γk (γ(t)) are the Christoffel symbols, evaluated at the point γ(t), of ij

the affine connection in the chart (U , ϕ). 
A geodesic γ on a manifold M endowed with an affine connection ∇ is a 

curve with zero acceleration: 
D2 

γ(t) = 0 (5.24) 
dt2 

for all t in the domain of γ. Note that different affine connections produce 
different geodesics. 

For every ξ ∈ TxM, there exists an interval I about 0 and a unique 
geodesic γ(t; x, ξ) : I →M such that γ(0) = x and γ̇(0) = ξ. Moreover, we 
have the homogeneity property γ(t; x, aξ) = γ(at; x, ξ). The mapping 

Expx xξ = γ(1; x, ξ): TxM→M : ξ 7→ Exp

is called the exponential map at x. When the domain of definition of Expx 

is the whole TxM for all x ∈ M, the manifold M (endowed with the affine 
connection ∇) is termed (geodesically) complete. 

It can be shown that Expx defines a diffeomorphism (smooth bijection) of 
a neighborhood Û  of the origin 0x ∈ TxM onto a neighborhood U of x ∈M. 
If, moreover, Û  is star-shaped (i.e., ξ ∈ Û  implies tξ ∈ Û  for all 0 ≤ t ≤ 1), 
then U is called a normal neighborhood of x. 

We can further define 

Exp : T M→M : ξ 7→ Expxξ, 
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where x is the foot of ξ. The mapping Exp is differentiable, and Expx 0x = x 
for all x ∈ M. Further, it can be shown that DExpx (0x) [ξ] = ξ (with the 
canonical identification T0x 

TxM≃ TxM). This yields the following result. 

Proposition 5.4.1 Let M be a manifold endowed with an affine connection 
∇. The exponential map on M induced by ∇ is a retraction, termed the 
exponential retraction. 

The exponential mapping is an important object in differential geometry, 
and it has featured heavily in previously published geometric optimization 
algorithms on manifolds. It generalizes the concept of moving “straight” in 
the direction of a tangent vector and is a natural way to update an iter­
ate given a search direction in the tangent space. However, computing the 
exponential is, in general, a computationally daunting task. Computing the 
exponential amounts to evaluating the t = 1 point on the curve defined by 
the second-order ordinary differential equation (5.24). In a coordinate chart 
(U , ϕ), (5.24) reads 

kd2 

x + 
∑ 

Γij
k (γ)

d i d 
x xj = 0, k = 1, . . . , n, 

dt2 dt dt 
i,j 

where (x1(t), . . . , xn(t)) := ϕ(γ(t)) and Γk are the Christoffel symbols of ij 

the affine connection in the chart (U , ϕ). In general, such a differential equa­
tion does not admit a closed-form solution, and numerically computing the 
geodesic involves computing an approximation to the Christoffel symbols if 
they are not given in closed form and then approximating the geodesic using 
a numerical integration scheme. The theory of general retractions is intro­
duced to provide an alternative to the exponential in the design of numerical 
algorithms that retains the key properties that ensure convergence results. 

Assume that a basis is given for the vector space TyM and let U be a 
normal neighborhood of y. Then a chart can be defined that maps x ∈
U to the components of the vector ξ ∈ TyM satisfying Exp ξ = x. The y 

coordinates defined by this mapping are called normal coordinates. 
We also point out the following fundamental result of differential geometry: 

if M is a Riemannian manifold, a curve with minimal length between two 
points of M is always a monotone reparameterization of a geodesic relative to 
the Riemannian connection. These curves are called minimizing geodesics. 

Example 5.4.1 Sphere 
Consider the unit sphere Sn−1 endowed with the Riemannian metric (3.33) 

obtained by embedding Sn−1 in Rn and with the associated Riemannian con­
nection (5.16). Geodesics t 7→ x(t) are expressed as a function of x(0) ∈ Sn−1 

and ẋ(0) ∈ Tx(0)S
n−1 as follows (using the canonical inclusion of Tx0

Sn−1 

in Rn): 

1 
x(t) = x(0) cos(‖ẋ(0)‖t) + ẋ(0) ‖ẋ(0)‖ sin(‖ẋ(0)‖t). (5.25) 

(Indeed, it is readily checked that d
D
t

2

2 x(t) = (I − x(t)x(t)T ) d
d
t

2

2 x(t) = −(I − 
x(t)x(t)T )‖ẋ(0)‖2x(t) = 0.) 
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Example 5.4.2 Orthogonal Stiefel manifold 
Consider the orthogonal Stiefel manifold St(p, n) endowed with its Rie­

mannian metric (3.34) inherited from the embedding in Rn×p and with the 
corresponding Riemannian connection ∇. Geodesics t 7→ X(t) are expressed 
as a function of X(0) ∈ St(p, n) and Ẋ(0) ∈ TX(0) St(p, n) as follows (using 
again the canonical inclusion of TX(0) St(p, n) in Rn×p): 

X(t) = 
[
X(0) Ẋ(0)

] 
exp 

( 

t 

[
A(0) −S(0) 

])[
I
] 

exp(−A(0)t), (5.26) 
I A(0) 0 

where A(t) := XT (t)Ẋ(t) and S(t) := ẊT (t)Ẋ(t). It can be shown that 
A is an invariant of the trajectory, i.e., A(t) = A(0) for all t, and that 
S(t) = eAtS(0)e−At . 

Example 5.4.3 Grassmann manifold 
Consider the Grassmann manifold Grass(p, n) viewed as a Riemannian 

quotient manifold of Rn
∗
×p with the associated Riemannian connection (5.22). 

Then 

Y(t) = span(Y0(Y0 
TY0)−1/2V cos(Σt) + U sin(Σt)) (5.27) 

is the geodesic satisfying Y(0) = span(Y0) and Ẏ(0) = UΣV T , where Y0 

UΣV T is a thin singular value decomposition, i.e., U is n × p orthonormal, 
V is p × p orthonormal, and Σ is p × p diagonal with nonnegative elements. 
Note that choosing Y0 orthonormal simplifies the expression (5.27). 

Let M be a manifold endowed with an affine connection ∇. A vector field 
ξ on a curve γ satisfying d

D 
t ξ = 0 is called parallel . Given a ∈ R in the 

domain of γ and ξγ(a) ∈ Tγ(a)M, there is a unique parallel vector field ξ on 
γ such that ξ(a) = ξγ(a). The operator Pγ

b←a sending ξ(a) to ξ(b) is called 
parallel translation along γ. In other words, we have 

D (
Pγ

t←aξ(a)
) 

= 0. 
dt 

If M is a Riemannian manifold and ∇ is the Riemannian connection, then 
the parallel translation induced by ∇ is an isometry. 

Much like the exponential mapping is a particular retraction, the parallel 
translation is a particular instance of a more general concept termed vector 
transport, introduced in Section 8.1. More information on vector transport 
by parallel translation, including formulas for parallel translation on spe­
cial manifolds, can be found in Section 8.1.1. The machinery of retraction 
(to replace geodesic interpolation) and vector transport (to replace parallel 
translation) are two of the key insights in obtaining competitive numerical 
algorithms based on a geometric approach. 

5.5 RIEMANNIAN HESSIAN OPERATOR 

We conclude this chapter with a discussion of the notion of a Hessian. The 
Hessian matrix of a real-valued function f on Rn at a point x ∈ Rn is clas­
sically defined as the matrix whose (i, j) element (ith row and jth column) 
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is given by ∂2 f(x) = ∂2 

ij ∂i∂j 
f(x). To formalize this concept on a manifold we 

need to think of the Hessian as an operator acting on geometric objects and 
returning geometric objects. For a real-valued function f on an abstract 
Euclidean space E , the Hessian operator at x is the (linear) operator from E
to E defined by 

∂2 1 n)zjHess f(x)[z] := 
∑ 

ij f̂(x , . . . , x ei, (5.28) 
ij 

jwhere (ei)i=1,...,n is an orthonormal basis of E , z = 
∑

z ej and f̂  is the j

function on Rn defined by f̂(x1, . . . , xn) = f(x1e1 + + xnen). It is a· · · 
standard real analysis exercise to show that the definition does not depend 
on the choice of the orthonormal basis. Equivalently, the Hessian operator 
of f at x can be defined as the operator from E to E that satisfies, for all 
y, z ∈ E , 

1. 〈Hess f(x)[y], y〉 = D2f(x)[y, y] := d2 
∣∣∣
t=0 

f(x + ty) ,dt2 

2. 〈Hess f(x)[y], z〉 = 〈y, Hess f(x)[z]〉 (symmetry). 

On an arbitrary Riemannian manifold, the Hessian operator is generalized 
as follows. 

Definition 5.5.1 Given a real-valued function f on a Riemannian manifold 
M, the Riemannian Hessian of f at a point x in M is the linear mapping 
Hess f(x) of TxM into itself defined by 

Hess f(x)[ξx] = ∇ξx 
grad f 

for all ξx in TxM, where ∇ is the Riemannian connection on M. 

If M is a Euclidean space, this definition reduces to (5.28). (A justification 
for the name “Riemannian Hessian” is that the function mx(y) := f(x) + 
〈grad f(x), Exp−x 

1(y)〉x+ 1 x2 〈Hess f(x)[Exp−1(y)], Exp−1(y)〉 is a second-order x 

model of f around x; see Section 7.1.) 

Proposition 5.5.2 The Riemannian Hessian satisfies the formula 

〈Hess f [ξ], η〉 = ξ(ηf) − (∇ξη)f (5.29) 

for all ξ, η ∈ X(M). 

Proof. We have 〈Hess f [ξ], η〉 = 〈∇ξ grad f, η〉. Since the Riemannian con­
nection leaves the Riemannian metric invariant, this is equal to ξ〈grad f, η〉− 
〈grad f, ∇ξη〉. By definition of the gradient, this yields ξ(ηf) − (∇ξη)f . � 

Proposition 5.5.3 The Riemannian Hessian is symmetric (in the sense of 
the Riemannian metric). That is, 

〈Hess f [ξ], η〉 = 〈ξ, Hess f [η]〉 
for all ξ, η ∈ X(M). 
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Proof. By the previous proposition, the left-hand side is equal to ξ(ηf) −
(∇ξη)f and the right-hand side is equal to 〈Hess f(x)[η], ξ〉 = η(ξf)−(∇ηξ)f . 
Using the symmetry property (5.10) of the Riemannian connection on the 
latter expression, we obtain η(ξf) − (∇ηξ)f = η(ξf) − [η, ξ]f − (∇ξη)f = 
ξ(ηf) − (∇ξη)f , and the result is proved. � 

The following result shows that the Riemannian Hessian of a function f 
at a point x coincides with the Euclidean Hessian of the function f Exp◦ x 

at the origin 0x ∈ TxM. Note that f Exp is a real-valued function on the ◦ x 

Euclidean space TxM. 

Proposition 5.5.4 Let M be a Riemannian manifold and let f be a real-
valued function on M. Then 

Hess f(x) = Hess (f Exp )(0x) (5.30) ◦ x

for all x ∈ M, where Hess f(x) denotes the Riemannian Hessian of f : 
M → R at x and Hess (f ◦ Expx)(0x) denotes the Euclidean Hessian of 
f Expx : TxM→ R at the origin of TxM endowed with the inner product ◦
defined by the Riemannian structure on M. 

Proof. This result can be proven by working in normal coordinates and in­
voking the fact that the Christoffel symbols vanish in these coordinates. We 
provide an alternative proof that does not make use of index notation. We 
have to show that 

〈Hess f(x)[ξ], η〉 = 〈Hess (f Exp )(0x)[ξ], η〉 (5.31) ◦ x

for all ξ, η ∈ TxM. Since both sides of (5.31) are symmetric bilinear forms 
in ξ and η, it is sufficient to show that 

〈Hess f(x)[ξ], ξ〉 = 〈Hess (f Exp )(0x)[ξ], ξ〉 (5.32) ◦ x

for all ξ ∈ TxM. Indeed, for any symmetric linear form B, we have the 
polarization identity 

2B(ξ, η) = B(ξ + η, ξ + η) − B(ξ, ξ) − B(η, η), 

which shows that the mapping (ξ, η) 7→ B(ξ, η) is fully specified by the 
mapping ξ 7→ B(ξ, ξ). Since the right-hand side of (5.32) involves a classical 
(Euclidean) Hessian, we have 

d2


〈Hess (f Exp )(0x)[ξ], ξ〉 =
 (f Exp )(tξ)x ◦ x◦ 
dt2

∣∣∣∣
t=0 

= 
d

d 
t 

( 

d

d 
t
f(Expx(tξ)) 

)∣∣∣∣
t=0 

= 
d

d 
t 

( 

Df(Expxtξ) 

[ 

d

d 
t 

Expx tξ 

])∣∣∣∣
t=0 

. 

It follows from the definition of the gradient that this last expression is 
equal to d

d 
t 〈grad f(Expx tξ), d

d 
t x tξ〉

∣∣
t=0 

Exp . By the invariance property of 

the metric, this is equal to 〈 D D2 

grad f(Exp tξ), ξ〉 + 〈grad f(x), Exp tξ〉.dt x dt2 x 

By definition of the exponential mapping, we have D2 

Exp tξ = 0 and 

dt xtξ
∣∣
t=0 

dt2 x

d
 Exp = ξ. Hence the right-hand side of (5.32) reduces to 

〈∇ξ grad f, ξ〉, 
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and the proof is complete. � 

The result is in fact more general. It holds whenever the retraction and 
the Riemannian exponential agree to the second order along all rays. This 
result will not be used in the convergence analyses, but it may be useful to 
know that various retractions yield the same Hessian operator. 

Proposition 5.5.5 Let R be a retraction and suppose in addition that 

D2


dt2 
R(tξ) = 0 for all ξ ∈ TxM, (5.33)


∣∣∣∣
t=0 

where d
D
t

2

2 γ denotes acceleration of the curve γ as defined in (5.23). Then 

Hess f(x) = Hess (f Rx)(0x). (5.34) ◦ 
Proof. The proof follows the proof of Proposition 5.5.4, replacing Expx by 
Rx throughout. The first-order ridigidity condition of the retraction implies 
that d Rx = ξ. Because of this and of (5.33), we conclude as in the dt tξ

∣∣
t=0 

proof of Proposition 5.5.4. � 

Proposition 5.5.5 provides a way to compute the Riemannian Hessian as 
the Hessian of a real-valued function f Rx defined on the Euclidean space ◦
TxM. In particular, this yields a way to compute 〈Hess f(x)[ξ], η〉 by taking 
second derivatives along curves, as follows. Let R be any retraction satisfying 
the acceleration condition (5.33). First, observe that, for all ξ ∈ TxM, 

d2


〈Hess f(x)[ξ], ξ〉 = 〈Hess (f Rx)(0x)[ξ], ξ〉 =
dt2


f(Rx(tξ)) . (5.35) ◦ 
∣∣∣∣
t=0 

Second, in view of the symmetry of the linear operator Hess f(x), we have 
the polarization identity 

〈Hess f(x)[ξ], η〉 = 1 (〈Hess f(x)[ξ + η], ξ + η〉2

− 〈Hess f(x)[ξ], ξ〉 − 〈Hess f(x)[η], η〉). (5.36) 

Equations (5.35) and (5.36) yield the identity 

〈Hess f(x)[ξ], η〉 
1 d2 

(f(Rx(t(ξ + η))) − f(Rx(tξ)) − f(Rx(tη))) , (5.37) =
2 dt2 

∣∣∣∣
t=0 

valid for any retraction R that satisfies the zero initial acceleration condi­
tion (5.33). This holds in particular for R = Exp, the exponential retraction. 

Retractions that satisfy the zero initial acceleration condition (5.33) will 
be called second-order retractions. For general retractions the equality of the 
Hessians stated in (5.34) does not hold. Nevertheless, none of our quadratic 
convergence results will require the retraction to be second order. The fun­
damental reason can be traced in the following property. 

Proposition 5.5.6 Let R be a retraction and let v be a critical point of a 
real-valued function f (i.e., grad f(v) = 0). Then 

Hess f(v) = Hess(f Rv)(0v).◦ 
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Proof. We show that 〈Hess f(v)[ξv], ηv〉 = 〈Hess(f Rv)(0v)[ξv], ηv〉 for all ◦
ξ, η ∈ X(M). From Proposition 5.5.2, we have 〈Hess f(v)[ξv], ηv〉 = ξv(ηf) −
(∇ξv 

η)f . The second term is an element of TvM applied to f ; since v is a crit­
ical point of f , this term vanishes, and we are left with 〈Hess f(v)[ξv], ηv〉 = 
ξv(ηf). Fix a basis (e1, . . . , en) of TxM and consider the coordinate chart 
ϕ defined by ϕ−1(y1, . . . , yn) = Rv(y1e1 + + ynen). Let ηi and ξi de­· · · 
note the coordinates of η and ξ in this chart. Since v is a critical point of 
f , ∂i(f ϕ−1) vanishes at 0, and we obtain ξv(ηf) = 

∑
i ξv

i∂i(
∑

j η
j∂j(f 

ϕ−1)) = 
◦ ∑

i,j ξv
iηv

j ∂i∂j(f ϕ−1). Since DRv(0v) is the identity, it follows 
◦ 

◦ 
that ξv

i and ηv
j are the components of ξv and ηv in the basis (e1, . . . , en); 

thus the latter expression is equal to 〈Hess(f Rv)(0v)[ξ], η〉. �◦ 

5.6 SECOND COVARIANT DERIVATIVE* 

In the previous section, we assumed that the manifold M was Riemannian. 
This assumption made it possible to replace the differential Df(x) of a func­
tion f at a point x by the tangent vector grad f(x), satisfying 

〈grad f(x), ξ〉 = Df(x)[ξ] for all ξ ∈ TxM. 

This led to the definition of Hess f(x) : ξx 7→ ∇ξx 
grad f as a linear operator 

of TxM into itself. This formulation has several advantages: eigenvalues and 
eigenvectors of the Hessian are well defined and, as we will see in Chapter 6, 
the definition leads to a streamlined formulation (6.4) for the Newton equa­
tion. However, on an arbitrary manifold equipped with an affine connection, 
it is equally possible to define a Hessian as a second covariant derivative that 
applies bilinearly to two tangent vectors and returns a scalar. This second 
covariant derivative is often called “Hessian” in the literature, but we will 
reserve this term for the operator ξx 7→ ∇ξx 

grad f . 
To develop the theory of second covariant derivative, we will require the 

∗concept of a covector. Let Tx M denote the dual space of TxM , i.e., the set 
of linear functionals (linear maps) µx : TxM → R. The set Tx 

∗ M is termed 
the cotangent space of M at x, and its elements are called covectors. The 
bundle of cotangent spaces 

T ∗ M = ∪x∈MTx 
∗ M 

is termed the cotangent bundle. The cotangent bundle can be given the struc­
ture of a manifold in an analogous manner to the structure of the tangent 
bundle. A smooth section of the cotangent bundle is a smooth assignment 
x 7→ µx ∈ Tx 

∗ M. A smooth section of the cotangent bundle is termed a 
covector field or a one-form on M. The name comes from the fact that a 
one-form field µ acts on “one” vector field ξ ∈ X(M) to generate a scalar 
field on a manifold, 

µ[ξ] ∈ F(M), 

defined by (µ[ξ]) x = µx[ξx]. The action of a covector field µ on a vector |
field ξ is often written simply as a concatenation of the two objects, µξ. A 
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covector is a (0, 1)-tensor. The most common covector encountered is the 
differential of a smooth function f : M→ R: 

µx = Df(x). 

Note that the covector field Df is zero exactly at critical points of the func­
tion f . Thus, another way of solving for the critical points of f is to search 
for zeros of Df . 

Given a manifold M with an affine connection ∇, a real-valued function 
f on M, a point x ∈ M, and a tangent vector ξx ∈ TxM, the covariant 
derivative of the covector field Df along ξx is a covector ∇ξx 

(Df) defined 
by imposing the property 

D(Df [η])(x)[ξx] = (∇ξx 
(Df)) [ηx] + Df(x)[∇ξx 

η] 

for all η ∈ X(M). It is readily checked, using coordinate expressions, that 
(∇ξx 

(Df)) [ηx] defined in this manner depends only on η through ηx and 
that (∇ξx 

(Df)) [ηx] is a linear expression of ξx and ηx. The second covariant 
derivative of the real-valued function f is defined by 

∇2 f(x)[ξx, ηx] = (∇ξx 
(Df)) [ηx]. 

(There is no risk of confusing [ξx, ηx] with a Lie bracket since ∇2 f(x) is 
known to apply to two vector arguments.) The notation ∇2 rather than D2 

is used to emphasize that the second covariant derivative depends on the 
choice of the affine connection ∇. 

With development analogous to that in the preceding section, one may 
show that 

∇2 f(x)[ξx, ηx] = ξx(ηf) − (∇ξx 
η)f. 

The second covariant derivative is symmetric if and only if ∇ is symmetric. 
For any second-order retraction R, we have 

∇2 f(x) = D2 (f ◦ Rx)(0x), 

where D2 (f Rx)(0x) is the classical second-order derivative of f Rx at 0x◦ ◦
(see Section A.5). In particular, 

d2 

∇2 f(x)[ξx, ξx] = D2 (f ◦ Expx)(0x)[ξx, ξx] = 
dt2

f(Expx(tξ))|t=0 . 

When x is a critical point of f , we have 

∇2 f(x) = D2 (f ◦ Rx)(0x) 

for any retraction R. 
When M is a Riemannian manifold and ∇ is the Riemannian connection, 

we have 

∇2 f(x)[ξx, ηx] = 〈Hess f(x)[ξx], ηx〉. 

When F is a function on M into a vector space E , it is still possible to 
uniquely define 

n

∇2 F (x)[ξx, ηx] = 
∑

(∇2 F i(x)[ξx, ηx])ei, 
i=1 

where (e1, . . . , en) is a basis of E . 
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5.7 NOTES AND REFERENCES 

Our main sources for this chapter are O’Neill [O’N83] and Brickell and 
Clark [BC70]. 

A proof of superlinear convergence for Newton’s method in Rn can be 
found in [DS83, Th. 5.2.1]. A proof of Proposition 5.2.1 (the existence of 
affine connections) is given in [BC70, Prop. 9.1.4]. It relies on partitions of 
unity (see [BC70, Prop. 3.4.4] or [dC92, Th. 0.5.6] for details). For a proof 
of the existence and uniqueness of the covariant derivative along curves d

D 
t , 

we refer the reader to [O’N83, Prop. 3.18] for the Riemannian case and 
Helgason [Hel78, §I.5] for the general case. More details on the exponential 
can be found in do Carmo [dC92] for the Riemannian case, and in Helga-
son [Hel78] for the general case. For a proof of the minimizing property of 
geodesics, see [O’N83, §5.19]. The material about the Riemannian connec­
tion on Riemannian submanifolds comes from O’Neill [O’N83]. For more 
details on Riemannian submersions and the associated Riemannian connec­
tions, see O’Neill [O’N83, Lemma 7.45], Klingenberg [Kli82], or Cheeger and 
Ebin [CE75]. 

The equation (5.26) for the Stiefel geodesic is due to R. Lippert; see Edel­
man et al. [EAS98]. The formula (5.27) for the geodesics on the Grassmann 
manifold can be found in Absil et al. [AMS04]. Instead of considering the 
Stiefel manifold as a Riemannian submanifold of Rn×p, it is also possible 
to view the Stiefel manifold as a certain Riemannian quotient manifold of 
the orthogonal group. This quotient approach yields a different Riemannian 
metric on the Stiefel manifold, called the canonical metric in [EAS98]. The 
Riemannian connection, geodesics, and parallel translation associated with 
the canonical metric are different from those associated with the Riemannian 
metric (3.34) inherited from the embedding of St(p, n) in Rn×p. We refer the 
reader to Edelman et al. [EAS98] for more information on the geodesics and 
parallel translations on the Stiefel manifold. 

The geometric Hessian is not a standard topic in differential geometry. 
Some results can be found in [O’N83, dC92, Sak96, Lan99]. The Hessian 
is often defined as a tensor of type (0, 2)—it applies to two vectors and 
returns a scalar—using formula (5.29). This does not require a Riemannian 
metric. Such a tensor varies under changes of coordinates via a congruence 
transformation. In this book, as in do Carmo [dC92], we define the Hessian 
as a tensor of type (1, 1), which can thus be viewed as a linear transformation 
of the tangent space. It transforms via a similarity transformation, therefore 
its eigenvalues are well defined (they do not depend on the chart). 
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Chapter Six


Newton’s Method 

This chapter provides a detailed development of the archetypal second-order 
optimization method, Newton’s method, as an iteration on manifolds. We 
propose a formulation of Newton’s method for computing the zeros of a 
vector field on a manifold equipped with an affine connection and a retrac­
tion. In particular, when the manifold is Riemannian, this geometric Newton 
method can be used to compute critical points of a cost function by seeking 
the zeros of its gradient vector field. In the case where the underlying space is 
Euclidean, the proposed algorithm reduces to the classical Newton method. 
Although the algorithm formulation is provided in a general framework, the 
applications of interest in this book are those that have a matrix manifold 
structure (see Chapter 3). We provide several example applications of the 
geometric Newton method for principal subspace problems. 

6.1 NEWTON’S METHOD ON MANIFOLDS 

In Chapter 5 we began a discussion of the Newton method and the issues 
involved in generalizing such an algorithm on an arbitrary manifold. Sec­
tion 5.1 identified the task as computing a zero of a vector field ξ on a 
Riemannian manifold M equipped with a retraction R. The strategy pro­
posed was to obtain a new iterate xk+1 from a current iterate xk by the 
following process. 

1.	 Find a tangent vector ηk ∈ Txk
M such that the “directional derivative” 

of ξ along ηk is equal to −ξ. 
2.	 Retract ηk to obtain xk+1. 

In Section 5.1 we were unable to progress further without providing a gener­
alized definition of the directional derivative of ξ along ηk. The notion of an 
affine connection, developed in Section 5.2, is now available to play such a 
role, and we have all the tools necessary to propose Algorithm 4, a geometric 
Newton method on a general manifold equipped with an affine connection 
and a retraction. 

By analogy with the classical case, the operator 

J(x) : TxM→ TxM : η 7→ ∇ηξ 

involved in (6.1) is called the Jacobian of ξ at x. Equation (6.1) is called the 
Newton equation, and its solution ηk ∈ Txk

M is called the Newton vector . 
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Algorithm 4 Geometric Newton method for vector fields 
Require: Manifold M; retraction R on M; affine connection ∇ on M; 

vector field ξ on M. 
Goal: Find a zero of ξ, i.e., x ∈M such that ξx = 0. 
Input: Initial iterate x0 ∈M. 
Output: Sequence of iterates {xk}. 

1: for k = 0, 1, 2, . . . do 
2: Solve the Newton equation 

J(xk)ηk = −ξxk 
(6.1) 

3: 

for the unknown ηk ∈ Txk
M, where J(xk)ηk := ∇ηk

ξ. 
Set 

xk+1 := Rxk
(ηk). 

4: end for 

In Algorithm 4, the choice of the retraction R and the affine connection 
∇ is not prescribed. This freedom is justified by the fact that superlin­
ear convergence holds for every retraction R and every affine connection 
∇ (see forthcoming Theorem 6.3.2). Nevertheless, if M is a Riemannian 
manifold, there is a natural connection—the Riemannian connection—and a 
natural retraction—the exponential mapping. From a computational view­
point, choosing ∇ as the Riemannian connection is generally a good choice, 
notably because it admits simple formulas on Riemannian submanifolds and 
on Riemannian quotient manifolds (Sections 5.3.3 and 5.3.4). In contrast, 
instead of choosing R as the exponential mapping, it is usually desirable 
to consider alternative retractions that are computationally more efficient; 
examples are given in Section 4.1. 

When M is a Riemannian manifold, it is often advantageous to wrap 
Algorithm 4 in a line-search strategy using the framework of Algorithm 1. 
At the current iterate xk, the search direction ηk is computed as the solution 
of the Newton equation (6.1), and xk+1 is computed to satisfy the descent 
condition (4.12) in which the cost function f is defined as 

f := 〈ξ, ξ〉. 
Note that the global minimizers of f are the zeros of the vector field ξ. More­
over, if ∇ is the Riemannian connection, then, in view of the compatibility 
with the Riemannian metric (Theorem 5.3.1.ii), we have 

D〈ξ, ξ〉 (xk) [ηk] = 〈∇ηk
ξ, ξ〉 + 〈ξ, ∇ηk

ξ〉 = −2〈ξ, ξ〉xk 
< 0 

whenever ξ = 0. It follows that the Newton vector ηk is a descent direction 
for f , although {ηk} is not necessarily gradient-related. This perspective pro­
vides another motivation for choosing ∇ in Algorithm 4 as the Riemannian 
connection. 

Note that an analytical expression of the Jacobian J(x) in the Newton 
equation (6.1) may not be available. The Jacobian may also be singular 
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or ill-conditioned, in which case the Newton equation cannot be reliably 
solved for ηk. Remedies to these difficulties are provided by the quasi-Newton 
approaches presented in Section 8.2. 

6.2 RIEMANNIAN NEWTON METHOD FOR REAL-VALUED 

FUNCTIONS 

We now discuss the case ξ = grad f , where f is a cost function on a Rie­
mannian manifold M. The Newton equation (6.1) becomes 

Hess f(xk)ηk = −grad f(xk), (6.2) 

where 

Hess f(x) : TxM→ TxM : η 7→ ∇η grad f (6.3) 

is the Hessian of f at x for the affine connection ∇. We formalize the method 
in Algorithm 5 for later reference. Note that Algorithm 5 is a particular case 
of Algorithm 4. 

Algorithm 5 Riemannian Newton method for real-valued functions 
Require: Riemannian manifold M; retraction R on M; affine connection 
∇ on M; real-valued function f on M. 

Goal: Find a critical point of f , i.e., x ∈M such that grad f(x) = 0. 
Input: Initial iterate x0 ∈M. 
Output: Sequence of iterates {xk}. 

1: for k = 0, 1, 2, . . . do 
2: Solve the Newton equation 

Hess f(xk)ηk = −grad f(xk) (6.4) 

for the unknown ηk ∈ Txk
M, where Hess f(xk)ηk := ∇ηk

grad f . 
3: Set 

xk+1 := Rxk
(ηk). 

4: end for 

In general, the Newton vector ηk, solution of (6.2), is not necessarily a 
descent direction of f . Indeed, we have 

Df (xk) [ηk] = 〈grad f(xk), ηk〉 = −〈grad f(xk), (Hess f(xk))−1 grad f(xk)〉, 
(6.5) 

which is not guaranteed to be negative without additional assumptions on 
the operator Hess f(xk). A sufficient condition for ηk to be a descent direction 
is that Hess f(xk) be positive-definite (i.e., 〈ξ, Hess f(xk)[ξ]〉 > 0 for all ξ =6
0xk

). When ∇ is a symmetric affine connection (such as the Riemannian 
connection), Hess f(xk) is positive-definite if and only if all its eigenvalues 
are strictly positive. 
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In order to obtain practical convergence results, quasi-Newton methods 
have been proposed that select an update vector ηk as the solution of 

(Hess f(xk) + Ek)ηk = −grad f(xk), (6.6) 

where the operator Ek is chosen so as to make the operator (Hess f(xk) + Ek) 
positive-definite. For a suitable choice of operator Ek this guarantees that 
the sequence {ηk} is gradient-related, thereby fulfilling the main hypothesis 
in the global convergence result of Algorithm 1 (Theorem 4.3.1). Care should 
be taken that the operator Ek does not destroy the superlinear convergence 
properties of the pure Newton iteration when the desired (local minimum) 
critical point is reached. 

6.3 LOCAL CONVERGENCE 

In this section, we study the local convergence of the plain geometric Newton 
method as defined in Algorithm 4. Well-conceived globally convergent mod­
ifications of Algorithm 4 should not affect its superlinear local convergence. 

The convergence result below (Theorem 6.3.2) shows quadratic conver­
gence of Algorithm 4. Recall from Section 4.3 that the notion of quadratic 
convergence on a manifold M does not require any further structure on M, 
such as a Riemannian structure. Accordingly, we make no such assumption. 
Note also that since Algorithm 5 is a particular case of Algorithm 4, the 
convergence analysis of Algorithm 4 applies to Algorithm 5 as well. 

We first need the following lemma. 

Lemma 6.3.1 Let ‖ · ‖ be any consistent norm on Rn×n such that ‖I‖ = 1. 
If ‖E‖ < 1, then (I − E)−1 exists and 

‖(I − E)−1 1 
.‖ ≤ 

1 − ‖E‖ 
If A is nonsingular and ‖A−1(B − A)‖ < 1, then B is nonsingular and 

‖B−1‖ ≤ 
‖A−1‖ 

. 
1 − ‖A−1(B − A)‖ 

Theorem 6.3.2 (local convergence of Newton’s method) Under the 
requirements and notation of Algorithm 4, assume that there exists x∗ ∈M 
such that ξx∗ 

= 0 and J(x∗)
−1 exists. Then there exists a neighborhood U of 

x∗ in M such that, for all x0 ∈ U , Algorithm 4 generates an infinite sequence 
{xk} converging superlinearly (at least quadratically) to x∗. 

Proof. Let (U , ϕ), x∗ ∈ U , be a coordinate chart. According to Section 4.3, it 
is sufficient to show that the sequence {ϕ(xk)} in Rd converges quadratically 
to ϕ(x∗). To simplify the notation, coordinate expressions are denoted by hat 
quantities. In particular, x̂k = ϕ(xk), ξ̂x̂k 

= Dϕ (xk) [ξ], Ĵ(x̂k) = (Dϕ(xk)) 
ˆ ˆ ˆJ(xk) (Dϕ(xk))−1 , Rx̂ζ = ϕ(Rxζ). Note that J(x̂k) is a linear operator 

◦ 
◦ 
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from Rd to Rd, i.e., a d × d matrix. Note also that R̂x̂ is a function from Rd 

to Rd whose differential at zero is the identity. 
The iteration defined by Algorithm 4 reads 

x̂k+1 = R̂x̂k
(−Ĵ(x̂k)−1ξ̂x̂k

), (6.7) 

whereas the classical Newton method applied to the function ξ̂ : Rd 7→ Rd 

would yield 

x̂k+1 = x̂k + (−Dξ̂(x̂k)−1ξ̂x̂k
). (6.8) 

The strategy in this proof is to show that (6.7) is sufficiently close to (6.8) 
that the superlinear convergence result of the classical Newton method is 
preserved. We are going to prove more than is strictly needed, in order 
to obtain information about the multiplicative constant in the quadratic 
convergence result. 

Let β := ‖Ĵ(x̂∗)
−1‖. Since ξ is a (smooth) vector field, it follows that Ĵ is 

smooth, too, and therefore there exists rJ > 0 and γJ > 0 such that 

‖Ĵ(x̂) − Ĵ(ŷ)‖ ≤ γJ‖x̂− ŷ‖ 
for all x̂, ŷ ∈ BrJ 

(x̂∗) := {x̂ ∈ Rd : ‖x̂− x̂∗‖ < rJ}. Let 
{ 

1 
} 

ǫ = min rJ , . 
2βγJ 

Assume that x̂k ∈ Bǫ(x̂∗). It follows that 

‖Ĵ(x̂∗)
−1(Ĵ(x̂k) − Ĵ(x̂∗))‖ ≤ ‖ Ĵ(x̂∗)‖−1‖Ĵ(x̂k) − Ĵ(x̂∗)‖ 

1 
.≤ βγJ‖x̂k − x̂∗‖ ≤ βγJǫ ≤ 

2 

It follows from Lemma 6.3.1 that Ĵ(x̂k) is nonsingular and that 

‖Ĵ(x̂k)−1 ‖Ĵ(x̂∗)
−1‖ 

J(x̂∗)
−1‖ ≤ 

1 − ‖ Ĵ(x̂∗)−1(Ĵ(x̂k) − Ĵ(x̂∗))‖
≤ 2‖ ˆ ‖ ≤ 2β. 

It also follows that for all x̂k ∈ Bǫ(x̂∗), the Newton vector η̂k := Ĵ(x̂k)−1ξ̂x̂k 

is well defined. Since R is a retraction (thus a smooth mapping) and x̂∗ is a 
zero of ξ̂, it follows that there exists rR and γR > 0 such that 

‖R̂x̂k
η̂k − (x̂k + η̂k)‖ ≤ γR‖x̂k − x̂∗‖2 

for all x̂k ∈ Bǫ(x̂∗). (Indeed, since ‖Ĵ(x̂k)−1‖ is bounded on Bǫ(x̂∗), and ξ̂
is smooth and ξ̂ˆ = 0, we have a bound ‖η̂k‖ ≤ c‖x̂k − x̂∗‖ for all xk in a 
neighborhood of x∗; and in view of the local rigidity property of R, we have 
‖R̂x̂k

η̂k − (x̂k + η̂k)‖ ≤ c‖η̂k‖2 for all xk in a neighborhood of x∗ and all ηk 

sufficiently small.) 

x∗ 

Define Γ̂ ˆ by Γ̂ ˆζ̂ := Ĵ(x̂)ζ̂ − Dξ̂ (x̂) 
[
ζ̂
]
; see (5.7). Note that Γ̂ ˆ is a x, ˆ x,ˆ ξ x,ξ ˆ ξ 

linear operator. Again by a smoothness argument, it follows that there exists 
rΓ and γΓ such that 

x, y,‖Γ̂ˆ ξ̂ − Γ̂ˆ ξ̂‖ ≤ γΓ‖x̂− ŷ‖ 



00˙AMS September 23, 2007

116 CHAPTER 6 

for all x̂, ŷ ∈ BrΓ
(x̂∗). In particular, since ξ̂x̂∗ 

= 0, it follows from the unique­
ness of the connection at critical points that Γ̂x̂∗,ξ̂ = 0, hence 

Γx,ˆ‖ˆˆ ξ‖ ≤ γΓ‖x̂k − x̂∗‖ 
for all x̂k ∈ Bǫ(x̂∗). 

We need a Lipschitz constant for Dξ̂. For all x̂, ŷ ∈ Bmin{rJ ,rΓ}(x̂∗), we 
have 

ξ(ˆ ξ(ˆ Γˆ ˆ Γ ˆ‖Dˆ x) − Dˆ y)‖ − ‖ˆx,ξ − ˆy,ˆ ξ‖ 

≤ ‖Dξ̂(x̂) + Γ̂x,ξ − 
(

Dξ̂(ŷ) + Γ̂ˆ

) 
J(ˆ J(ŷ)‖ ≤ γJ‖ˆ y‖,ˆ ˆ y,ξ̂ ‖ = ‖ ˆ x) − ˆ x − ˆ

hence 
‖Dξ̂(x̂) − Dξ̂(ŷ)‖ ≤ (γJ + γΓ)‖x̂− ŷ‖. 

From (6.7) we have 

x̂k+1 − x̂∗ = R̂x̂k
(−Ĵ(x̂k)−1ξ̂x̂k

) − x̂∗. 
Applying the bounds developed above, one obtains 
‖x̂k+1 − x̂∗‖ ≤‖x̂k − Ĵ(x̂k)−1ξ̂x̂k 

− x̂∗‖ + γR‖x̂k − x̂∗‖2 

≤‖Ĵ(x̂k)−1 
(
ξ̂x̂∗ 
− ξ̂x̂k 

− Ĵ(x̂k)(x̂∗ − x̂k)
) 
‖ + γR‖x̂k − x̂∗‖2 

≤‖Ĵ(x̂k)−1‖‖ξ̂x̂∗ 
− ξ̂x̂k 

− Dξ̂ (x̂k) [x̂∗ − x̂k] ‖ 
+ ‖Ĵ(x̂k)−1‖‖Γ̂x̂k,ξ̂(x̂∗ − x̂k)‖ + γR‖x̂k − x̂∗‖2 

1 2(γJ + γΓ)‖x̂k − x̂∗‖≤2 β 
2 

+ 2 β γΓ‖x̂k − x̂∗‖2 + γR‖x̂k − x̂∗‖2 
whenever ‖x̂k− x̂∗‖ ≤ min{ǫ, rΓ, rR}, where we have used Proposition A.6.1. 
This completes the proof. � 

It is interesting to note that in the classical Euclidean case, the proof holds 
with γR = 0 (because Rxζ := x + ζ) and γΓ = 0 (because J(x)ζ ≡ ∇ζξ := 
Dξ (x) [ζ]). 

In the case where M is a Riemannian metric and the Riemannian con­
nection is used along with a second-order retraction (e.g., the exponential 
retraction), it is also possible to obtain a better bound. Consider normal 
coordinates around the point x∗. The Christoffel symbols Γi vanish at x̂∗,jk 

and the constant γΓ can be replaced by O(‖x̂k − x̂∗‖). Since we are work­
ing in normal coordinates around x∗, it follows that the Christoffel sym­

bols at x∗ vanish, hence the acceleration condition d
D
t

2

2 Rx∗ 
(tζx∗ 

) = 0
∣∣∣
t=0 

yields d
d
t

2

2 R̂x̂∗ 
(tζ̂x̂∗ 

)
∣∣∣
t=0 

= 0 and, by the smoothness of R, we have D2R̂x̂k 
= 

O(‖x̂k − x̂∗‖). It follows that γR may be replaced by O(‖x̂k − x̂∗‖). Thus, 
the convergence bound becomes 

‖x̂k+1 − x̂∗‖ ≤2β 
2

1
(γJ + γΓ)‖x̂k − x̂∗‖2 + 2βγΓ‖x̂k − x̂∗‖2 + γR‖x̂k − x̂∗‖2 

≤βγJ‖x̂k − x̂∗‖2 + O(‖x̂k − x̂∗‖3). 
In normal coordinates at x∗ one has that dist(xk, x∗) = ‖x̂k − x̂∗‖. 
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6.3.1 Calculus approach to local convergence analysis 

Theorem 6.3.2 provides a strong convergence analysis of the geometric New­
ton method along with explicit convergence bounds. A weaker quadratic con­
vergence result can be obtained from a local coordinate analysis of the New­
ton iteration using the calculus-based convergence result of Theorem 4.5.3. 

Let x∗ be a critical point of a vector field ξ with a nondegenerate Jacobian 
∗ at x∗. Choose a coordinate chart around x and use the hat notation to 

represent the coordinate expression of geometric objects. Without loss of 
generality we choose x̂∗ = 0. The iteration defined in Algorithm 4 reads 

x̂k+1 = R̂x̂k
(η̂k), (6.9) 

∇̂η̂k
ξ̂ = −ξ̂x̂k

. (6.10) 

Since the vector field ξ and the retraction R are smooth by assumption, this 
defines a smooth iteration mapping ˆ xk+1(x̂k). Evaluating the Newton xk 7→ ˆ
equation (6.10) at x̂k = x̂∗ = 0 yields 

∇̂ˆ ξ̂ = 0 η0 

and thus η̂0 = 0 because the Jacobian J(x∗) : ζ ∈ Tx∗ 
M 7→ ∇ζξ ∈ Tx∗ 

M
is assumed to be nondegenerate. Since R satisfies the consistency prop­
erty Rx(0x) = x for all x, it follows that x̂∗ = 0 is a fixed point of the 
iteration mapping. Recalling Theorem 4.5.3, it is sufficient to show that 
Dx̂k+1(x∗) = 0 to prove local quadratic convergence. For clarity, we use the 
notation R̂(x̂, η̂) for R̂x̂(η̂), and we let D1R̂ and D2R̂ denote the differentials 
with respect to the first and second arguments of the function R̂. (Note that 
R̂ is a function from Rd × Rd into Rd, where d is the dimension of the mani­
fold M.) Differentiating the iteration mapping x̂k 7→ x̂k+1(x̂k) at 0 along ζ̂, 
one obtains 

Dx̂k+1(0)[ζ̂] = D1R̂(0, 0)[ζ̂] + D2R̂(0, 0)[Dη̂(0)[ζ̂]], (6.11) 

where ˆ η(x̂) is the function implicitly defined by the Newton equation x 7→ ˆ

∇̂η̂(x̂)ξ̂ = −ξ̂x̂. (6.12) 

We have D1R̂(0, 0)[ζ̂] = ζ̂ because of the consistency condition R(0x) = 
x. Moreover, the local rigidity condition DRx(0x) = idTxM (see Defini­

tion 4.1.1) ensures that D2R̂(0, 0)[Dη̂(0)[ζ̂]] = Dη̂(0)[ζ̂]. Hence (6.11) yields 

Dx̂k+1(0)[ζ̂] = ζ̂ + Dη̂(0)[ζ̂]. (6.13) 

Using the local expression (5.7) for the affine connection, the Newton equa­
tion (6.12) reads 

Dξ̂(x̂)[η̂(x̂)] + Γ̂ ˆ η̂(x̂) = −ξ̂x̂. x,ˆ ξx̂

(Recall that Γ̂x,ˆ ξ̂ˆ
is a matrix and Γ̂ˆ ξ̂x̂

η̂(x̂) is a matrix-vector product.) 
x x,

Differentiating this equation with respect to x̂ along ζ̂, one obtains 

D2ξ̂(x̂)[ˆ x), ˆ ξ(ˆ η(ˆ ζ]] + Dˆ
·, (ˆ ζ]ˆ x) + ˆˆ ˆ η(ˆ ζ]η(ˆ ζ] + Dˆ x)[Dˆ x)[ˆ Γ ˆ x)[ˆ η(ˆ Γx, Dˆ x)[ˆξ· ξx̂

= −Dξ̂(x̂)[ζ̂]. 
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Most of the terms in this equation vanish when evaluated at x̂ = 0 since 
ξ̂0 = 0 and η̂0 = 0. (In particular, observe that Γ̂0,0 = 0 in view of (5.8).) 
This leaves us with 

Dξ̂(0)[Dη̂(0)[ζ̂]] = −Dξ̂(0)[ζ̂]. (6.14) 

Since J(x∗) is nonsingular and Γ̂x̂∗,ξ̂x̂∗ 
= 0, it follows in view of (5.7) that 

the linear operator Dξ̂(0) = Ĵ(x̂∗) is nonsingular. Hence (6.14) reduces to 

Dη̂(0)[ζ̂] = −ζ. ˆ

Using this result in (6.13) yields Dx̂k+1(x∗) = 0. From Theorem 4.5.3, it 
follows that the iteration ˆ xk+1(x̂k) converges locally quadratically to xk 7→ ˆ
x̂∗. Since quadratic convergence is independent of coordinate representation, 
this property holds for the Newton iteration on the manifold. 

6.4 RAYLEIGH QUOTIENT ALGORITHMS 

In this section we show how the geometric Newton algorithms can be turned 
into practical numerical algorithms for the optimization of various cost func­
tions of the Rayleigh quotient type. 

6.4.1 Rayleigh quotient on the sphere 

Recall the example of the Rayleigh quotient on the sphere first considered 
in Section 4.6. The main points were summarized in Table 4.1. The cost 
function is the Rayleigh quotient 

f : Sn−1 → R : x 7→ x TAx, (6.15) 

on the unit sphere Sn−1, viewed as a Riemannian submanifold of the Eu­
clidean space Rn. We also use the extension 

f : Rn → R : x 7→ x TAx, 

whose restriction to Sn−1 is f . In Section 4.6, we obtained 

grad f(x) = 2 Px(Ax) = 2 (Ax − xx TAx), 

where Px is the orthogonal projector onto TxS
n−1, i.e., 

Pxz = z − xx T z. 

(Note that Px can also be viewed as the matrix (I −xxT ).) We also expressed 
a preference for the retraction 

x + ξ 
Rx(ξ) := . (6.16) ‖x + ξ‖ 

The geometric Newton method (Algorithm 4) requires an affine connec­
tion ∇. There is no reason not to pick the natural choice, the Riemannian 
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connection. Since Sn−1 is a Riemannian submanifold of the Euclidean space 
Rn, it follows from the material in Section 5.3.3 that 

∇ηξ = Px (Dξ (x) [η]) 

for every η in the tangent space TxS
n−1 = {z ∈ Rn : xT z = 0} and every 

vector field ξ on Sn−1 . 
We are ready to apply the geometric Newton method (Algorithm 4) to the 

vector field ξ := grad f , where f is the Rayleigh quotient (6.15). For every 
η ∈ Txk

Sn−1, we have 

∇η grad f(x) = 2Px (D grad f(x)[η]) 

= 2Px(Aη − ηxTAx) 

= 2(PxAPxη − ηxTAx), 

where we took into account that Pxx = 0 and Pxη = η. The last expression 
underscores the symmetry of the Hessian operator (in the sense of Proposi­
tion 5.5.3). Consequently, the Newton equation (6.1) reads 

{
PxAPxη − ηxTAx = −PxAx, 

xT η = 0, 
(6.17) 

where the second equation is the expression of the requirement η ∈ TxS
n−1 . 

In conclusion, application of the geometric Newton method to ξ := grad f , 
where f is the Rayleigh quotient (6.15) on the sphere Sn−1, viewed as a Rie­
mannian submanifold of Rn endowed with its Riemannian connection and 
with the retraction (6.16), yields the matrix algorithm displayed in Algo­
rithm 6. Since Algorithm 6 is a particular case of the forthcoming Algo­
rithms 7 and 8, we postpone its analysis to Section 6.5.1. 

Algorithm 6 Riemannian Newton method for the Rayleigh quotient on 
Sn−1 

Require: Symmetric matrix A. 
Input: Initial iterate x0 ∈M. 
Output: Sequence of iterates {xk}. 

1: for k = 0, 1, 2, . . . do 
2: Solve the linear system (6.17), i.e., 

T
{

Pxk
APxk

ηk − ηkxk Axk = −Pxk
Axk, 

xT
k ηk = 0, 

(6.18) 

for the unknown ηk ∈ Rn . 
3: Set 

xk+1 := Rxk
ηk, 

with R defined in (6.16). 
4: end for 
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6.4.2 Rayleigh quotient on the Grassmann manifold 

Consider the cost function 

f : Grass(p, n) R : span(Y ) 7→ tr 
(
(Y TY )−1Y TAY 

) 
. (6.19) → 

The first-order geometry of this cost function was investigated in Section 4.9 
(see Table 4.3). The Grassmann manifold Grass(p, n) was viewed as a Rie­
mannian quotient manifold of (Rn

∗
×p , g) with 

gY (Z1, Z2) = tr 
(
(Y TY )−1Z1 

TZ2

) 
. (6.20) 

The horizontal distribution is 

HY = {Z ∈ Rn×p : Y TZ = 0}, (6.21) 

the projection onto the horizontal space is 

Ph
Y = (I − Y (Y TY )−1Y T ), (6.22) 

and we obtained 

grad fY = 2Ph
Y AY = 2 

(
AY − Y (Y TY )−1Y TAY 

) 
. 

It follows from this expression that if grad f(span(Y )) = 0, then span(Y ) 
is an invariant subspace of A. Conversely, if span(Y ) is an invariant sub­
space of A, then there exists an M such that AY = YM ; premultiplying 
this equation by (Y TY )−1Y T yields M = (Y TY )−1Y TAY , and we obtain 
grad f(span(Y )) = 0. In conclusion, the critical points of f are the invariant 
subspaces of A. 

In Section 5.3.4, we established the formula 

∇η ξ = Ph 
(
Dξ (Y ) [ηY ]

) 
(6.23) Y 

for the Riemannian connection on the Grassmann manifold. This yields the 
following expression for the Hessian of the Rayleigh quotient cost function 
f : 

∇ηgrad f = Ph 
(
Dgrad f (Y ) [ηY ]

) 
= 2 Ph 

(
AηY − ηY (Y TY )−1Y TAY 

) 
,Y Y 

where we have utilized the identity Ph
Y (YM) = (Ph

Y Y )M = 0. Taking the 
horizontal lift of the Newton equation ∇η grad f = −grad f(x) yields the 
equation 

Ph 
(
AηY − ηY (Y TY )−1Y TAY 

) 
= −Ph

Y AY, ηY ∈ HY ,Y 

whose solution ηY in the horizontal space HY is the horizontal lift of the 
solution η of the Newton equation. 

In conclusion, the geometric Newton method in Algorithm 4, for the 
Rayleigh quotient cost function (6.19), with the affine connection ∇ cho­
sen as the Riemannian connection on Grass(p, n) seen as the Riemannian 
quotient manifold of (Rn

∗
×p , g) with g in (6.20), and with the retraction R 

chosen as (4.40) yields the matrix algorithm displayed in Algorithm 7. The 
notation Zk = ηYk 

is used to make the matrix expression resemble contem­
porary algorithms from the field of numerical linear algebra. The expression 
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Algorithm 7 Riemannian Newton method for the Rayleigh quotient on 
Grass(p, n) 
Require: Symmetric matrix A.

Input: Initial iterate Y0 ∈ Rn

∗
×p .


Output: Sequence of iterates {Yk} in Rn
∗
×p .


1: for k = 0, 1, 2, . . . do 
2: Solve the linear system 

{
Ph 

(
AZk − Zk(Y TYk)−1Y TAYk

) 
= −Ph (AYk)Yk k k Yk (6.24) 

Yk
TZk = 0 

for the unknown Zk, where Ph
Y is the orthogonal projector defined 

in (6.22). (The condition Yk
TZk expresses that Zk belongs to the hor­

izontal space HYk
.) 

3: Set 

Yk+1 = (Yk + Zk)Nk 

where Nk is a nonsingular p × p matrix chosen for normalization pur­
poses. 

4: end for 

in (6.24) can be simplified since Ph
Yk 
Zk = Zk. We will tend not to simplify 

such expressions in the matrix equations in order that the equations clearly 
reveal the underlying geometric structure (e.g., the quantity considered be­
longs to the range of Ph

Yk
) or to emphasize the symmetry of certain operators. 

Note that Algorithm 7 is the matrix expression of an algorithm defined on 
Grass(p, n). In other words, if {Yk} and {Y̌k} are two sequences generated 
by Algorithm 7 (with same matrix A) and if span(Y0) = span( Y̌0), then 
span(Yk) = span( Y̌k) for all k. Algorithm 7 thus could be written formally 
as an algorithm generating a sequence on Grass(p, n), by taking as input an 
element Y0 of Grass(p, n), picking Y0 ∈ Rn

∗
×p with span(Y0) = Y0, proceeding 

as in Algorithm 7, and returning the sequence {span(Yk)}. 
Note also that when p = 1 and Nk (now a scalar) is chosen as ‖Yk +Zk‖−1 , 

Algorithm 7 reduces to Algorithm 6. 

6.4.3 Generalized eigenvalue problem 

We assume that A and B are n × n symmetric matrices with B positive-
definite, and we consider the generalized eigenvalue problem 

Av = λBv 

described in Section 2.1. With a view towards computing eigenspaces of a 
pencil (A,B), we consider the Rayleigh quotient function 

f(span(Y )) = tr((Y TAY )(Y TBY )−1), (6.25) 
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where Y is a full-rank n × p matrix and span(Y ) denotes the column space 
of Y . It is readily checked that the right-hand side depends only on span(Y ), 
so that f is a well-defined real-valued function on the Grassmann manifold 
Grass(p, n). 

As in the previous section, we view Grass(p, n) as a Riemannian quotient 
manifold of (Rn

∗
×p , g) with 

gY (Z1, Z2) = tr((Y TY )−1Z1 
TZ2). (6.26) 

With a view towards applying the Riemannian Newton method given in Al­
gorithm 5, we need formulas for the gradient and the Hessian of the Rayleigh 
cost function (6.25). Mimicking the calculations in Section 4.9, we obtain 

1grad fY = PBY,Y AY (Y TBY )−1Y TY, (6.27) 2

where 

PU,V = I − U(V TU)−1V T 

denotes the projector parallel to the span of U onto the orthogonal com­
plement of the span of V . Note that the projection Ph

Y onto the horizontal 
space HY is given by 

Ph
Y = PY,Y . 

Using the result in Proposition 5.3.4 (on the Riemannian connection on 
Riemannian quotient manifolds) and the definition Hess f [ζ] = ∇ζ grad f , 
we also have 

1 1PY,Y Dgrad f (Y ) 
[
ζY 

] 
. (6.28) Hess f [ζ]Y = 2 2

Expanding this expression is possible but tedious and leads to a complicated 
Newton equation. Fortunately, simpler Newton equations can be obtained 
by exploiting the freedom in (i) the choice of the Riemannian metric g; (ii) 
the choice of the horizontal spaces HY , which need not be orthogonal to the 
vertical spaces VY with respect to g; (iii) the choice of the affine connection 
∇, which need not be the Riemannian connection induced by g. 

We first consider an alternative Riemannian metric. We still view the 
Grassmann manifold Grass(p, n) as the quotient Rn

∗
×p/ ∼, where the equiv­

alence classes of ∼ are the sets of elements of R∗ 
n×p that have the same 

column space. However, instead of (6.26), we consider on Rn
∗
×p the metric 

gY (Z1, Z2) = tr 
(
(Y TBY )−1Z1 

TBZ2

) 
, (6.29) 

where B is the symmetric positive-definite matrix that appears in the defi­
nition of f in (6.25). Defining again the horizontal space as the orthogonal 
complement—with respect to the new inner product (6.29)—of the vertical 
space 

VY := TY (π
−1(π(Y ))) = {YM : M ∈ Rp×p}, 

we obtain 

HY = {Z ∈ Rn×p : Y TBZ = 0}. (6.30) 
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span(U) span(V ) 

x 

0 

⊥ 

PU,V x := (I − U(V TU)−1V T ) x 

span(V )

Figure 6.1 The projector PU,V . 

The orthogonal projection onto HY is given by 

Ph
Y = PY,BY = I − Y (Y TBY )−1Y TB. 

The homogeneity property 

ξY M = ξY M 

of Proposition 3.6.1 still holds with the new Riemannian metric (6.29). More­
over, 

gY M (ξY M , ζY M ) = gY (ξY , ζY ). 

Therefore, the Grassmann manifold Grass(p, n) admits a unique Riemannian 
metric 

g(ξ, ζ) := gY (ξY , ζY ), (6.31) 

that makes (Grass(p, n), g) a Riemannian quotient manifold of (Rn
∗
×p , g) with 

g defined in (6.29). 
Before proceeding to obtain formulas for the gradient and the Hessian of f 

in (Grass(p, n), g), we first point out some useful properties of the projector 

PU,V = I − U(V TU)−1V T . (6.32) 

Recall that PU,V is the projector that projects parallel to span(U) onto 
span(V ); see Figure 6.1. Therefore, we have the identities 

PU,V UM = 0 and PU,V VM = V M. 

We also have the identity 

PU,V K = KPK−1U,KT V . 

Using the above identities and the technique of Section 3.6.2, we obtain 

grad fY = PY,BY B
−1AY = B−1PBY,Y AY. (6.33) 



00˙AMS September 23, 2007

124 CHAPTER 6 

It can be checked that the new Riemannian metric (6.29) is horizontally in­
variant. Consequently, it follows from Proposition 5.3.4 that the Riemannian 
Hessian is given by 

Hess f(Y)[η] = ∇η grad fY Y


= Ph
Y Dgrad f (Y ) [ηY ]


= PY,BY B
−1AηY − PY,BY ηY (Y TBY )−1Y TAY 

= B−1PBY,Y 

(
AηY − BηY (Y TBY )−1Y TAY 

) 
. (6.34) 

The Newton equation ∇η grad f = −grad f(x) thus yields the equation 

B−1PBY,Y 

(
AηY − BηY (Y TBY )−1Y TAY 

) 
= −B−1PBY,Y AY, 

or equivalently, 

PBY,Y 

(
AηY − BηY (Y TBY )−1Y TAY 

) 
= −PBY,Y AY. 

In conclusion, the geometric Newton method in Algorithm 4, for the Rayleigh 
quotient cost function (6.25), with the affine connection ∇ chosen as the Rie­
mannian connection on Grass(p, n) seen as the Riemannian quotient mani­
fold of (Rn

∗
×p , g) with g defined in (6.29), and with the retraction R chosen 

as (4.40), yields the matrix algorithm displayed in Algorithm 8. The notation 
Zk = ηYk 

is used so that the algorithm resembles contemporary algorithms 
from the field of numerical linear algebra. 

Algorithm 8 Riemannian Newton method for the Rayleigh quotient on 
Grass(p, n) 
Require: Symmetric matrix A, symmetric positive-definite matrix B.

Input: Initial iterate Y0 ∈ Rn

∗
×p .


Output: Sequence of iterates {Yk} in Rn
∗
×p .


1: for k = 0, 1, 2, . . . do 
2: Solve the linear system 

{
PBYk,Yk 

(
AZk − BZk(Y TBYk)−1Y TAYk

) 
= −PBYk,Yk

(AYk)k k


Yk
TBZk = 0


(6.35) 
for the unknown Zk, where PBY,Y = I − BY (Y TBY )−1Y T . (The 
condition Yk

TBZk expresses that Zk belongs to the horizontal space 
HYk 

(6.30).) 
3: Set 

Yk+1 = (Yk + Zk)Nk 

where Nk is a nonsingular p × p matrix chosen for normalization pur­
poses. 

4: end for 

Algorithm 8 is related to several eigenvalues methods; see Notes and Ref­
erences. 
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Rn
A 
×p 

concern with the Newton equation (6.35) is that the domain {Z ∈
: Y TBZ = 0} of the map 

F : Z 7→ PBY,Y 

(
AZ − BZ(Y TBY )−1Y TAY 

) 

differs from its range {Z ∈ Rn×p : Y TZ = 0}. Hence, powers of F cannot 
be formed, and linear equation solvers based on Krylov subspaces cannot be 
applied directly to (6.35). A remedy based on preconditioners is discussed 
in Section 6.5.2. Another remedy is to exploit the freedom in the choice of 
the affine connection ∇, which, according to Algorithm 5, need not be the 
Riemannian connection. To this end, let us view Grass(p, n) as a Riemannian 
quotient manifold of (Rn

∗
×p , g) with 

gY (Z1, Z2) = tr((Y TBY )−1Z1 
TZ2). (6.36) 

Note that this Riemannian metric is different from the canonical Riemannian 
metric (6.26). The horizontal space defined as the orthogonal complement of 
the vertical space is still given by (6.21), but the expression of the gradient 
becomes 

1grad fY = PBY,Y AY, (6.37) 2

which is simpler than (6.27). Now, instead of choosing the affine connection 
∇ as the Riemannian connection, we define ∇ by 

(
∇ηξ

) 
= PBY,Y Dξ (Y ) [ηY ] . (6.38) 

Y 

It is readily checked that (6.38) defines a horizontal lift, i.e., 
(
∇ηξ

) 
= 

Y M (
∇ηξ

) 
M , and that ∇ is indeed an affine connection (see Section 5.2). With 

Y 
this affine connection, the horizontal lift of the Newton equation ∇η grad f = 
−grad f(Y) reads 

PBY,Y 

(
AZ − BZ(Y TBY )−1Y TAY 

) 
= PBY,Y AY, Y TZ = 0, (6.39) 

where Z stands for ηY . Observe that the map 

Z 7→ PBY,Y 

(
AZ − BZ(Y TBY )−1Y TAY 

) 

involved in (6.39) is now from {Z ∈ Rn
∗
×p : Y TZ = 0} into itself. The result­

ing iteration is still guaranteed by Theorem 6.3.2 to converge locally at least 
quadratically to the spectral invariant subspaces of B−1A (see Section 6.5.1 
for details). 

Note that in this section we have always chosen the horizontal space as 
the orthogonal complement of the vertical space. The possibility of choosing 
other horizontal spaces is exploited in Section 7.5.3. 

6.4.4 The nonsymmetric eigenvalue problem 

The Rayleigh quotient 

f : Grass(p, n) R : span(Y ) 7→ tr 
(
(Y TY )−1Y TAY 

) 
→ 

depends only on the symmetric part of A; it is thus clear that when A 
is nonsymmetric, computing critical points of f in general does not pro­
duce invariant subspaces of A. A way to tackle the nonsymmetric eigenvalue 
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problem is to consider instead the tangent vector field on the Grassmann 
manifold defined by 

ξY := Ph
Y AY, (6.40) 

where Ph
Y denotes the projector (6.22) onto the horizontal space (6.21). This 

expression is homogeneous (ξY M = ξY M ) and horizontal; therefore, as a 
consequence of Proposition 3.6.1, it is a well-defined horizontal lift and de­
fines a tangent vector field given by ξY = Dπ (Y ) 

[
ξY 

] 
on the Grassmann 

manifold. Moreover, ξY = 0 if and only if Y is an invariant subspace of 
A. Obtaining the Newton equation (6.1) for ξ defined in (6.40) is straight­
forward: formula (6.23), giving the horizontal lift of the connection, leads 
to 

∇ηξY = Ph
Y (AηY − ηY (Y TY )−1Y TAY ) 

and the Newton equation (6.1) reads 
{

Ph (AηY − ηY (Y TY )−1Y TAY ) = −Ph AY, Y Y 

Y T ηY = 0, 
(6.41) 

where the second equation expresses that ηY is in the horizontal space. The 
resulting Newton iteration turns out to be identical to Algorithm 7, except 
that A is no longer required to be symmetric. 

6.4.5 Newton with subspace acceleration: Jacobi-Davidson 

The Jacobi-Davidson approach is a powerful technique for solving a variety 
of eigenproblems. It has recently become widely popular among chemists and 
solid-state physicists for computing a few extreme eigenpairs of large-scale 
eigenvalue problems. In this section, the principles of the Jacobi-Davidson 
approach are briefly reviewed and the method is interpreted as a Rayleigh­
based Riemannian Newton method within a sequential subspace optimiza­
tion scheme. 

For simplicity we focus on the standard eigenvalue problem and let A be 
a symmetric n × n matrix. Central to the Jacobi-Davidson approach is the 
Jacobi correction equation 

(I − xkx Tk )(A − τkI)(I − xkx Tk )sk = −(A − τkI)xk, x Tk sk = 0, (6.42) 

which, for the usual choice of shift τk = xk
TAxk, reduces to the Newton 

equation for the Rayleigh quotient on the sphere (see Algorithm 6). 
In the Riemannian Newton method the update vector sk is retracted onto 

the manifold to produce the next iterate xk+1 = Rxk
sk; for example, the 

choice (6.16) of the retraction R yields xk+1 = (xk + sk)/‖xk + sk‖. Instead, 
in the Jacobi-Davidson approach, the update vector is used to expand a 
low-dimensional search space on which the given eigenproblem is projected. 
This is the standard Rayleigh-Ritz procedure that underlies all Davidson-like 
methods, as well as the Lanczos and Arnoldi methods. The small projected 
problem is solved by standard techniques, and this leads to approximations 
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Algorithm 9 Jacobi-Davidson 
Require: Symmetric matrix A. 
Input: Select a set of k0 (≥ 1) orthonomal vectors v1, . . . , vk0 

and set V1 = 
[v1 . . . vk0

]. | |
Output: Sequence of iterates {xk}. 

1: for k = 1, 2, . . . do 
2:	 Compute the interaction matrix Hk = Vk

TAVk. 
3:	 Compute the leftmost eigenpair (ρk, yk) of Hk (with ‖yk‖ = 1). 
4:	 Compute the Ritz vector xk = Vkyk. 
5:	 If needed, shrink the search space: compute the jmin leftmost eigen­

pairs (ρ(
k
j)
, yk 

(j)
) of Hk and reset Vk := Vk[yk 

(1) | · · · |yk 
(jmin)

]. 
6:	 Obtain sk by solving (approximately) the Jacobi equation (6.42). 
7:	 Orthonormalize [Vk sk] into Vk+1.|
8: end for 

for the wanted eigenvector and eigenvalues of the given large problem. The 
procedure is described in Algorithm 9 for the case where the leftmost eigen­
pair of A is sought. 

Practical implementations of Algorithm 9 vary widely depending on the 
methods utilized to solve the Jacobi equation approximately and to reduce 
the search space. 

Concerning the solution of the Jacobi equation, anticipating the develop­
ment in Chapter 7, we point out that the solution sk of (6.42) is the critical 
point of the model 

mxk
(s) := xk

TAxk + 2s TAxk + s T (A − xk
TAxkI)s, xk

T s = 0. 

This model is the quadratic Taylor expansion of the cost function 

(xk + s)TA(xk + s)
f ◦ Rxk 

: Txk
Sn−1 → R : s 7→ 

(xk + s)T (xk + s) 

around the origin 0 of the Euclidean space Txk
Sn−1, where f denotes the 

Rayleigh quotient on the sphere and R denotes the retraction (6.16). When 
the goal of the algorithm is to minimize the Rayleigh quotient (in order to 
find the leftmost eigenpair), the idea of solving the Jacobi equation, which 
amounts to computing the critical point s∗ of the model mxk

(s), presents 
two drawbacks: (i) the critical point is not necessarily a minimizer of the 
model, it may be a saddle point or a maximizer; (ii) even when the critical 
point is a minimizer, it may be so far away from the origin of the Taylor 
expansion that there is an important mismatch between the model m̂xk

(s∗) 
and the cost function f Rxk

(s∗). The trust-region approach presented in ◦
Chapter 7 remedies these drawbacks by selecting the update vector sk as an 
approximate minimizer of the model ̂ , constrainted to a region around mxk

s = 0 where its accuracy is trusted. Therefore, algorithms for approximately 
solving trust-region subproblems (see Section 7.3) can be fruitfully used as 
“intelligent” approximate solvers for the Jacobi equation that are aware of 
the underlying Rayleigh quotient optimization problem. 
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Concerning the sequential subspace approach, if the sequence of computed 
sk’s is gradient-related, then the Jacobi-Davidson method fits within the 
framework of Algorithm 1 (an accelerated line search) and the convergence 
analysis of Section 4.3 applies. In particular, it follows from Theorem 4.3.1 
that every accumulation point of the sequence {xk} is a critical point of the 
Rayleigh quotient, and thus an eigenvector of A. A simple way to guarantee 
that {xk} stems from a gradient-related sequence is to include grad f(xk) = 
Axk − xkx

TAxk as a column of the new basis matrix Vk+1.k 

6.5 ANALYSIS OF RAYLEIGH QUOTIENT ALGORITHMS 

In this section, we first formally prove quadratic convergence of the New­
ton algorithms for the Rayleigh quotient developed in the previous section. 
After this, the remainder of the section is devoted to a discussion of the nu­
merical implementation of the proposed algorithms. Efficiently solving the 
Newton equations is an important step in generating numerically tractable 
algorithms. The structured matrix representation of the Newton equations 
that result from the approach taken in this book means that we can exploit 
the latest tools from numerical linear algebra to analyze and solve these 
equations. 

6.5.1 Convergence analysis 

For the convergence analysis, we focus on the case of Algorithm 8 (iteration 
on the Grassmann manifold for the generalized eigenvalue problem). The 
convergence analysis of Algorithm 7 (standard eigenvalue problem, on the 
Grassmann manifold) follows by setting B = I. These results also apply to 
Algorithm 6 (on the sphere) since it fits in the framework of Algorithm 7. 

Since Algorithm 8 is a particular instance of the general geometric Newton 
method (Algorithm 4), the convergence analysis in Theorem 6.3.2 applies to 
Algorithm 8. A p-dimensional subspace span(Y∗) is a critical point of the 
Rayleigh quotient (6.25) if and only if span(Y∗) is an invariant subspace of 
the pencil (A,B). The condition in Theorem 6.3.2 that the Jacobian (here, 
the Hessian of f) at span(Y∗) be invertible becomes the condition that the 
Hessian operator 

Z ∈ HY∗ 
7→ B−1PBY∗,Y∗ 

(
AZ − BZ(Y TBY∗)

−1Y TAY∗
) 
∈ HY∗∗ ∗ 

given in (6.34) be invertible. It can be shown that this happens if and only 
if the invariant subspace span(Y∗) is spectral , i.e., for every eigenvalue λ of 
B−1A|span(Y∗) the multiplicities of λ as an eigenvalue of B−1A|span(Y∗) and as 
an eigenvalue of B−1A are identical. (To prove this, one chooses a basis where 
B is the identity and A is diagonal with the eigenvalues of B−1A|span(Y∗) in 
the upper left block. The operator reduced to HY∗ 

turns out to be diagonal 
with all diagonal elements different from zero.) 
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Theorem 6.5.1 (local convergence of Algorithm 8) Under the re­
quirements of Algorithm 8, assume that there is a Y∗ ∈ Rn×p such that 
span(Y∗) is a spectral invariant subspace of B−1A. Then there exists a 
neighborhood U of span(Y∗) in Grass(p, n) such that, for all Y0 ∈ Rn×p 

with span(Y0) ∈ U , Algorithm 8 generates an infinite sequence {Yk} such 
that {span(Yk)} converges superlinearly (at least quadratically) to Y∗ on 
Grass(p, n). 

Concerning the algorithm for the nonsymmetric eigenvalue problem pre­
sented in Section 6.4.4, it follows by a similar argument that the iterates of 
the method converge locally superlinearly to the spectral invariant subspaces 
of A. 

6.5.2 Numerical implementation 

A crucial step in a numerical implementation of the Newton algorithms lies 
in solving the Newton equations. We first consider the Grassmann case with 
B = I (standard eigenvalue problem). For clarity, we drop the subscript k. 
The Newton equation (6.24) reads {

Ph 
(
AZ − Z(Y TY )−1Y TAY 

) 
= −Ph (AY ) 

Y 
Y
TZ = 0, 

Y (6.43) 

where Z is the unknown and P h = (I −Y (Y TY )−1Y T ). In order to make this Y 

equation simpler, the first thing to do is to choose Y orthonormal, so that 
Y TY = I. Since Y TAY is symmetric, it is possible to further choose Y such 
that Y TAY is diagonal. This can be done by computing a matrix M such 
that (YM)TAY M ≡ MT (Y TAY )M is diagonal and making Y ← YM . This 
corresponds to solving a small-scale p × p eigenvalue problem. The diagonal 
elements ρ1, . . . , ρp of the diagonal matrix Y TAY are called the Ritz values 
related to (A, span(Y )), and the columns of Y are the corresponding Ritz 
vectors. This decouples (6.43) into p independent systems of linear equations 
of the form {

Ph
Y (A − ρiI)Ph

Y zi = −PY
h Ayi, 

(6.44) 
Y T zi = 0, 

where z1, . . . , zp ∈ Rp are the columns of Z. Note that (6.44) resembles a par­
allel implementation of p Newton methods (6.17). However, the projection 
operator Ph in (6.44) is equal to (I − Y (Y TY )−1Y T ), whereas the parallel Y 

implementation of (6.17) would lead to {
Pyi

(A − ρiI)Pyi
zi = −Pyi

Ayi, 

yi
T zi = 0, 

i = 1, . . . , p, where Pyi 
= (I − yi(yi

T yi)
−1yi

T ). Methods for solving (6.44) 
include Krylov-based methods that naturally enforce the constraint Y T zi. 
Another approach is to transform (6.44) into the saddle-point problem [

A
Y
−

T 
ρiI Y 

0 

] [
z
ℓ 
i

] 

= 

[
−(A − f

0
(yi)I)yi

] 

, (6.45) 
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a structured linear system for which several algorithms have been proposed 
in the literature. 

We now look specifically into the p = 1 case, in the form of the Newton 
equation (6.17) on the sphere, repeated here for convenience: 

{
PxAPxη − ηxTAx = −PxAx, 

xT η = 0, 

where Px = (I − xxT ). The Newton equation (6.17) is a system of linear 
equations in the unknown ηk ∈ Rn. It admits several equivalent formulations. 
For example, using the fact that Pxx = 0, (6.17) can be rewritten as 

Px(A − f(x)I)(x + η) = 0, x T η = 0, 

where f(x) still stands for the Rayleigh quotient (6.15). Equation (6.17) is 
also equivalent to the saddle-point problem 

[
A − f(x)I x

] [
η
] [

−(A − f(x)I)y
] 

T = . (6.46) 
x 0 ℓ 0 

If A − f(x)I is nonsingular, then the solution η of (6.17) is given explicitly 
by 

η = −x + (A − f(x)I)−1 x
xT (A − f

1

(x)I)−1x
. (6.47) 

This points to an interesting link with the Rayleigh quotient iteration: with 
the retraction defined in (6.16), the next iterate constructed by Algorithm 6 
is given by 

x + η 
=

(A − f(x)I)−1x
, ‖x + η‖ ‖(A − f(x)I)−1x‖ 

which is the formula defining the Rayleigh quotient iteration. 
With U ∈ Rn×(n−1) chosen such that [x|U ]T [x|U ] = I, (6.17) is also 

equivalent to 

(UTAU − f(x)I)s = −UTAx, η = Us, (6.48) 

which is a linear system in classical form in the unknown s. Note that when 
A is a large sparse matrix, the matrix U is large and dense, and there may 
not be enough memory space to store it. Moreover, the sparsity of A is in 
general not preserved in the reduced matrix UTAU . The approach (6.48) 
should thus be avoided in the large sparse case. It is preferable to solve the 
system in the form (6.17) or (6.46) using an iterative method. 

We now briefly discuss the generalized case B = I. The Newton equa­
tion (6.35) can be decoupled into p independent equations of the form 

PBY,Y (A − ρiI)PY,BY zi = −PBY,Y Ayi, Y TBzi = 0. (6.49) 

The corresponding saddle-point formulation is 
[
A − ρiB BY 

] [
zi

] 

= 

[
−(A − ρiB)yi

] 

, (6.50) 
(BY )T 0 ℓ 0 
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where ρi := yi
TAyi/(yi

TByi). For the purpose of applying a Krylov-like it­
erative method, the Newton equations (6.49) present the difficulty that the 
operator on the left-hand side sends zi ∈ (span(BY ))⊥ to the subspace 
(span(Y ))⊥. A remedy is to solve the equivalent equation obtained by ap­

e

plying the projector PBY,BY to (6.49). 
This trick is a particular instance of a more general technique called pre-

denote the pseudo-inverse. Then (6.49) is equivalent to † 

(P KP ) P (A ρ I)P− zBY,Y Y,BY BY,Y i Y,BY i 

The advantage is that the operator acting on on the left-hand side of (6.51)zi 

is close to the identity, which improves the speed of convergence of Krylov-
based iterative solvers. In practice, applying this operator is made possible 

( )†
− −1 1P KP P P K P P K P P= = U,U Q,Q U,U Q,Q − −T1Q,Q U,U K Q,U Q,K Ue

conditioning. Assume that we have a matrix K that is a reasonably good 
approximation of (A − ρiB) and such that the operator K−1 is easily avail­
able (in other words, systems Kx = b are easy to solve). Let the superscript 

† 

= − (PBY,Y KPY,BY )
† 
PBY,Y Ayi, Y TBzi = 0. (6.51) 

ee

by the Olsen formula 

ee

since we have assumed that the operator K−1 is easily available. 

6.6 NOTES AND REFERENCES 

The history of Newton’s method on manifolds can be traced back to Luen­
berger [Lue72], if not earlier. Gabay [Gab82] proposed a Newton method on 
embedded submanifolds of Rn . Smith [Smi93, Smi94] and Udrişte [Udr94] 
formulated the method on general Riemannian manifolds, and Smith [Smi93, 
Smi94] provided a proof of quadratic convergence. Mahony’s thesis [Mah94, 
Mah96, MM02] develops a Newton method on Lie groups and homoge­
neous spaces. Related work includes [Shu86, EAS98, OW00, Man02, MM02, 
ADM+02, FS02, DPM03, HT04, ABM06]. 

Smith [Smi93, Smi94] proposes a geometric Newton method that seeks a 
zero of a one-form (instead of a vector field). The underlying idea is that 
affine connections can be extended to general tensors, and in particular to 
one-forms. This approach makes it possible to define a Newton method that 
seeks a critical point of a cost function defined on a manifold equipped with 
an affine connection and a retraction (cf. the requirements of Algorithm 4) 
but not necessarily with a Riemannian metric since the Riemannian metric 
is no longer needed to define the gradient vector field. (Smith nevertheless 
requires the manifold to be Riemannian, notably because his algorithms use 
the Riemannian exponential to perform the update.) 

Our convergence analysis (Theorem 6.3.2) of the geometric Newton 
method, which was built from the Rn proof given by Dennis and Schn­
abel [DS83, Th. 5.2.1] and is strongly based on coordinates. A coordinate-free 
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approach can be found in Smith [Smi93, Smi94] for the case of a real-valued 
function on a Riemannian manifold with its Riemannian connection and ex­
ponential retraction; this elegant proof exploits bounds on the second and 
third covariant derivatives of the cost function and on the curvature of the 
manifold in a neighborhood of the critical point. 

The calculus-based local analysis in Section 6.3.1 was inspired by the work 
of Hüper; see, e.g., [HH00, Hüp02, HT04]. 

In general, it cannot be guaranteed that the Jacobian J(xk) in Newton’s 
method (Algorithm 4) is nonsingular. In other words, the Newton equa­
tion (6.1) may not admit one and only one solution. Even if it does, the Ja­
cobian operator may be poorly conditioned, so that the linear system (6.1) 
cannot be reliably solved. If this happens while xk is far away from the so­
lution, a possible remedy is to fall back to a first-order, steepest-descent-like 
method. Several other remedies exist that pertain to globally convergent 
modifications of Newton’s method; see, e.g., Dennis and Schnabel [DS83] 
and Nocedal and Wright [NW99]. 

Several ways to combine Newton and line-search approaches are discussed 
in Dennis and Schnabel [DS83, Ch. 6]. For more information on positive-
definite modifications of the Hessian, see Nocedal and Wright [NW99, §6.3]. 

Theorem 6.3.2 states that the sequences {xk} generated by Algorithm 4 
(the geometric Newton method) converge to any nondegenerate zero x∗ of 
the vector field whenever the initial point x0 belongs to some neighborhood 
of x∗; however, Theorem 6.3.2 is silent about the size of this neighborhood. 
For Newton’s method in Rn applied to finding a zero of a function F , Kan­
torovich’s theorem [Kan52] (or see [Den71, DS83]) states that if the product 
of a Lipschitz constant for the Jacobian times a bound on the inverse of the 
Jacobian at x0 times a bound on the first Newton vector is smaller than 1

2 , 
then the function F has a unique zero x∗ in a ball around x0 larger than a 
certain bound and the iterates of Newton’s method converge to x∗. This is 
a very powerful result, although in applications it is often difficult to ensure 
that the Kantorovich condition holds. Kantorovich’s theorem was general­
ized to the Riemannian Newton method by Ferreira and Svaiter [FS02]. 
Another way to obtain information about the basins of attraction for New­
ton’s method is to use Smale’s γ and α theorems, which were generalized to 
the Riemannian Newton method by Dedieu et al. [DPM03]. 

For the application to the computation of invariant subspaces of a ma­
trix, Theorem 6.5.1 states that the sequences {span(Yk)} produced by Algo­
rithm 7 converge locally to any p-dimensional spectral invariant subspace V
of A provided that the initial point is in a basin of attraction that contains 
an open ball around V in the Grassmann manifold, but it does not give any 
information about the size of the basin of attraction. This is an important 
issue since a large basin of attraction means that the iteration converges to 
the target invariant subspace even if the initial estimate is quite imprecise. It 
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has been shown for previously available methods that the basins of attraction 
are prone to deteriorate when some eigenvalues are clustered. Batterson and 
Smillie [BS89] have drawn the basins of attraction of the Rayleigh quotient 
iteration (RQI) for n = 3 and have shown that they deteriorate when two 
eigenvalues are clustered. The bounds involved in the convergence results 
of the methods analyzed by Demmel [Dem87] blow up when the external 
gap vanishes. It was shown in [ASVM04], analytically and numerically, that 
the Riemannian Newton method applied to the Rayleigh quotient on the 
Grassmann manifold suffers from a similar dependence on the eigenvalue 
gap. It was also shown how this drawback can be remedied by considering a 
Levenberg-Marquardt-like modification of the Newton algorithm. The mod­
ified algorithm depends on a real parameter whose extreme values yield the 
Newton method on the one hand, and the steepest-descent method for the 
cost function ‖ξ‖ with ξ defined in (6.40) on the other hand. A specific choice 
for this parameter was proposed that significantly improves the size of the 
basins of attraction around each invariant subspace. 

The formula for the Hessian of the Brockett cost function (4.32) on the 
Stiefel manifold is straightforward using formula (5.15) for the Riemannian 
connection on Riemannian submanifolds of Euclidean spaces. The resulting 
Newton equation, however, is significantly more complex than the Newton 
equation (6.24) for the Rayleigh quotient on the Grassmann manifold. This 
outcome is due to the fact that the projection (3.35) onto the tangent space 
to the Stiefel manifold has one more term than the projection (3.41) onto 
the horizontal space of the Grassmann manifold (viewed as a quotient of 
the noncompact Stiefel manifold). The extra complexity introduced into the 
Newton equation significantly complicates the evaluation of each iterate and 
does not significantly add to the performance of the method since the Grass­
mann Newton method identifies an invariant p-dimensional subspace and the 
numerical cost of identifying the Ritz vectors of this subspace is a negligible 
additional cost on top of the subspace problem. 

The term “spectral invariant subspace” is used by Rodman et al. [GLR86, 
RR02]; Stewart [Ste01] uses the term “simple invariant subspace”. The ma­
terial in Section 6.4.4 comes from [AMS04]. There is a vast literature on 
saddle-point problems such as (6.46); see Benzi et al. [BGL05] for a survey. 
For the numerical computation of U in (6.48), we refer the reader to [NW99, 
§16.2], for example. Saad [Saa96] is an excellent reference on iterative solvers 
for linear systems of equations. Practical implementation issues for Newton 
methods applied to the Rayleigh quotient are further discussed in Absil et 
al. [ASVM04]. 

Several methods proposed in the literature are closely related to the eigen­
value algorithms proposed in this chapter. These methods differ on three 
points: (i) the matrix BY in the structured matrix involved in the Newton 
equation (6.50). (ii) the shifts ρi. (iii) the way the zi’s are used to compute 
the new iterate. 
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The modified block newton method proposed by Lösche et al. [LST98] 
corresponds to Algorithm 8 with B = I. The authors utilize formula (6.50) 
and prove quadratic convergence. In fact, the order of convergence is even 
cubic [AMS04]. 

The Newton method discussed by Edelman et al. [EAS98, p. 344] corre­
sponds to Algorithm 5 applied to the Rayleigh quotient (6.19) on the Grass­
mann manifold with ∇ chosen as the Riemannian connection and R chosen 
as the exponential mapping. 

Smith [Smi93, Smi94] mentions Algorithm 6 but focuses on the version 
where the retraction R is the exponential mapping. 

The shifted Tracemin algorithm of Sameh and Wisniewski [SW82, ST00] 
can be viewed as a modification of Algorithm 8 where the shifts ρi in (6.49)— 
or equivalently (6.50)—are selected using a particular strategy. The simple 
(unshifted) version of Tracemin corresponds to ρi = 0. This algorithm is 
mathematically equivalent to a direct subspace iteration with matrix A−1B. 
The choice ρi = 0 is further discussed and exploited in the context of a 
trust-region method with an adaptive model in [ABGS05]. 

Equation (6.47) corresponds to equation (2.10) in Sameh and Tong [ST00] 
and to algorithm 2 in Lundström and Elden [LE02, p. 825] to some extent. 

Relations between the RQI and various Newton-based approaches are 
mentioned in several references, e.g., [PW79, Shu86, Smi94, ADM+02, 
MA03]. This equivalence still holds when certain Galerkin techniques are 
used to approximately solve the Newton and RQI equations [SE02]. A block 
generalization of the RQI is proposed in [Smi97, AMSV02]. The connection 
with the Newton method does not hold for the block version [AMSV02]. 

The method proposed by Fattebert [Fat98] is connected with (6.50). The 
idea is to replace BY in (6.50) by thinner matrices where some columns that 
are not essential for the well conditioning of the linear system are omitted. 
This approach is thus midway between that of the Newton method and the 
RQI. 

As discussed in [EAS98, AMSV02], the Newton method proposed by 
Chatelin [Cha84, Dem87] corresponds to performing a classical Newton 
method in a fixed coordinate chart of the Grassmann manifold. In contrast, 
the algorithms proposed in this chapter can be viewed as using an adaptive 
coordinate chart, notably because the retraction used, for example, in Step 3 
of Algorithm 6 depends on the current iterate xk. 

For more information on the Jacobi-Davidson approach and related 
generalized Davidson methods, see Sleijpen et al. [SVdV96, SvdVM98], 
Morgan and Scott [MS86], Stathopoulos et al. [SS98, Sta05, SM06], No­
tay [Not02, Not03, Not05], van den Eshof [vdE02], Brandts [Bra03], and ref­
erences therein. Methods for (approximately) solving the Jacobi (i.e., New­
ton) equation can also be found in these references. The Newton algorithm 
on the sphere for the Rayleigh quotient (Algorithm 6) is very similar to 
the simplified Jacobi-Davidson algorithm given in [Not02]; see the discus­
sion in [ABG06b]. The Newton equations (6.24), (6.35), and (6.39) can be 
thought of as block versions of particular instances of the Jacobi correction 
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equations found in [SBFvdV96, HS03]. References related to sequential sub­
space optimization include Hager [Hag01, HP05], Absil and Gallivan [AG05], 
and Narkiss and Zibulevsky [NZ05]. 
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Chapter Seven


Trust-Region Methods 

The plain Newton method discussed in Chapter 6 was shown to be locally 
convergent to any critical point of the cost function. The method does not 
distinguish among local minima, saddle points, and local maxima: all (nonde­
generate) critical points are asymptotically stable fixed points of the Newton 
iteration. Moreover, it is possible to construct cost functions and initial con­
ditions for which the Newton sequence does not converge. There even exist 
examples where the set of nonconverging initial conditions contains an open 
subset of search space. 

To exploit the desirable superlinear local convergence properties of the 
Newton algorithm in the context of global optimization, it is necessary to 
embed the Newton update in some form of descent method. In Chapter 6 
we briefly outlined how the Newton equation can be used to generate a 
descent direction that is used in a line-search algorithm. Such an approach 
requires modification of the Newton equation to ensure that the resulting 
sequence of search directions is gradient-related and an implementation of 
a standard line-search iteration. The resulting algorithm will converge to 
critical points of the cost function for all initial points. Moreover, saddle 
points and local maxima are rendered unstable, thus favoring convergence 
to local minimizers. 

Trust-region methods form an alternative class of algorithms that com­
bine desirable global convergence properties with a local superlinear rate of 
convergence. In addition to providing good global convergence, trust-region 
methods also provide a framework to relax the computational burden of 
the plain Newton method when the iterates are too far away from the so­
lution for fast local convergence to set in. This is particularly important in 
the development of optimization algorithms on matrix manifolds, where the 
inverse Hessian computation can involve solving relatively complex matrix 
equations. 

Trust-region methods can be understood as an enhancement of Newton’s 
method. To this end, however, we need to consider this method from another 
viewpoint: instead of looking for an update vector along which the derivative 
of grad f is equal to −grad f(xk), it is equivalent to think of Newton’s method 
(in Rn) as the algorithm that selects the new iterate xk+1 to be the critical 
point of the quadratic Taylor expansion of the cost function f about xk. 

To this end, the chapter begins with a discussion of generalized quadratic 
models on manifolds (Section 7.1). Here again, a key role is played by the 
concept of retraction, which provides a way to pull back the cost function on 
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the manifold to a cost function on the tangent space. It is therefore sufficient 
to define quadratic models on abstract vector spaces and to understand how 
these models correspond to the real-valued function on the manifold M. 

Once the notion of a quadratic model is established, a trust-region algo­
rithm can be defined on a manifold (Section 7.2). It is less straightforward 
to show that all the desirable convergence properties of classical trust-region 
methods in Rn still hold, mutatis mutandis, for their manifold generaliza­
tions. The difficulty comes from the fact that trust-region methods on man­
ifolds do not work with a single cost function but rather with a succession 
of cost functions whose domains are different tangent spaces. The issue of 
computing an (approximate but sufficiently accurate) solution of the trust-
region subproblems is discussed in Section 7.3. The convergence analysis is 
carried out in Section 7.4. The chapter is concluded in Section 7.5 with a 
“checklist” of steps one has to go through in order to turn the abstract ge­
ometric trust-region schemes into practical numerical algorithms on a given 
manifold for a given cost function; this checklist is illustrated for several 
examples related to Rayleigh quotient minimization. 

7.1 MODELS 

Several classical optimization schemes rely on successive local minimization 
of quadratic models of the cost function. In this section, we review the notion 
of quadratic models in Rn and in general vector spaces. Then, making use 
of retractions, we extend the concept to Riemannian manifolds. 

7.1.1 Models in Rn 

The fundamental mathematical tool that justifies the use of local models is 
Taylor’s theorem (see Appendix A.6). In particular, we have the following 
results. 

Proposition 7.1.1 Let f be a smooth real-valued function on Rn , x ∈ Rn , 
U a bounded neighborhood of x, and H any symmetric matrix. Then there 
exists c > 0 such that, for all (x + h) ∈ U , 

∥∥f(x + h) − 
(
f(x) + ∂f(x)h + hTHh

)∥∥ ≤ c‖h‖1
2

2 , 

where ∂f(x) := (∂1f(x), . . . , ∂nf(x)). If, moreover, Hi,j = ∂i∂jf(x), then 
there exists c > 0 such that, for all (x + h) ∈ U , 

∥∥f(x + h) − 
(
f(x) + ∂f(x)h + hTHh

)∥∥ ≤ c‖h‖1
2

3 . 

7.1.2 Models in general Euclidean spaces 

The first step towards defining quadratic models on Riemannian manifolds 
is to generalize the above results to (abstract) Euclidean spaces, i.e., finite-
dimensional vector spaces endowed with an inner product 〈·, ·〉. This is read­
ily done using the results in Appendix A.6. (Note that Euclidean spaces 
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are naturally finite-dimensional normed vector spaces for the induced norm 
‖ξ‖ := 

√
〈ξ, ξ〉.) 

Proposition 7.1.2 Let f be a smooth real-valued function on a Euclidean 
space E, x ∈ E, U a bounded neighborhood of x, and H : E → E any sym­
metric operator. Then there exists c > 0 such that, for all (x + h) ∈ U , 

1 2
∥∥f(x + h) − 

(
f(x) + 〈grad f(x), h〉 + 2 〈H[h], h〉

)∥∥ ≤ c‖h‖ . 
If, moreover, H = Hess f(x) : h 7→ D(grad f)(x)[h], then there exists c > 0 
such that, for all (x + h) ∈ U , 

1 3
∥∥f(x + h) − 

(
f(x) + 〈grad f(x), h〉 + 2 〈H[h], h〉

)∥∥ ≤ c‖h‖ . 

7.1.3 Models on Riemannian manifolds 

Let f be a real-valued function on a Riemannian manifold M and let x ∈M. 
A model mx of f around x is a real-valued function defined on a neighbor­
hood of x such that (i) mx is a “sufficiently good” approximation of f and 
(ii) mx has a “simple” form that makes it easy to tackle with optimization 
algorithms. 

The quality of the model mx is assessed by evaluating how the discrepancy 
between mx(y) and f(y) evolves as a function of the Riemannian distance 
dist(x, y) between x and y. The model mx is an order-q model, q > 0, if there 
exists a neighborhood U of x in M and a constant c > 0 such that 

|f(y) − mx(y)| ≤ c (dist(x, y))
q+1 

for all y ∈ U . 
Note that an order-q model automatically satisfies mx(x) = f(x). The fol­
lowing result shows that the order of a model can be assessed using any 
retraction R on M. 

Proposition 7.1.3 Let f be a real-valued function on a Riemannian mani­
fold M and let x ∈M. A model mx of f is order-q if and only if there exists 
a neighborhood U of x and a constant c > 0 such that 

|f(y) − mx(y)| ≤ c ‖R−1(y)‖q+1 for all y ∈ U .x 

Proof. In view of the local rigidity property of retractions, it follows that 
D(Exp−1 Rx)(0x) = idTx x x x )(ExpxM, hence ‖R−1(y)‖ = ‖(R−1 Exp−1 y)‖ = ◦ ◦
Ω(‖Exp y‖) = Ω(dist(x, y)); see Section A.4 for the definition of the asymp­x 

totic notation Ω. In other words, there is a neighborhood U of x and constants 
c1 and c2 such that 

c1 dist(x, y) ≤ ‖R−1(y)‖ ≤ c2 dist(x, y) for all y ∈ U .x 

Proposition 7.1.3 yields a conceptually simple way to build an order-q 
model of f around x. Pick a retraction on M. Consider 

fx := f Rx,̂ ◦ 
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the pullback of f to TxM through Rx. Let ̂ be the order-q Taylor expan­mx 

sion of fx around the origin 0x of TxM. Finally, push m̂x forward through 
Rx to obtain mx = mx Rx 

−1. This model is an order-q model of f around ̂ ◦ 
x. In particular, the obvious order-2 model to choose is 

(ξ) = f̂  
x(0x) + Df̂  

x(0x)[ξ] + 1
2D2f̂  

x(0x)[ξ, ξ]mx

1
2 〈Hess f̂x(0x)[ξ], ξ〉.= f(x) + 〈grad f(x), ξ〉 +

Note that, since DRx(0x) = idTxM (see Definition 4.1.1), it follows that 
Df(x) = D f̂x(0x), hence grad f̂xk

(0x) = grad f(x), where grad f(x) denotes 
the (Riemannian) gradient of f (see Section 3.6). 

In practice, the second-order differentials of the function f̂x may be diffi­
cult to compute. (The first-order differential is always straightforward since 
the rigidity condition of the retraction ensures D f̂x(0x) = Df(x).) On the 
other hand, the Riemannian connection ∇ admits nice formulations on Rie­
mannian submanifolds and Riemannian quotient manifolds (see Section 5.3). 
This suggests the model 

mx = mx Rx 
−1 ̂ ◦ 

with 

mx(ξ) = f(x) + 〈grad f(x), ξ〉 + 1
2 〈Hess f(x)[ξ], ξ〉, ξ ∈ TxM, (7.1) 

where the quadratic term is given by the Riemannian Hessian 

Hess f(x)[ξ] = ∇ξ grad f(x). (7.2) 

In general, this model mx is only order 1 because Hess f(x) =6 Hess f̂x(0x). 
However, if R is a second-order retraction, then Hess f(x) = Hess f̂x(0x) 
(Proposition 5.5.5) and mx is order 2. More importantly, for any retrac­

tion, Hess f(x∗) = Hess f̂x∗ 
(0x∗ 

) when x∗ is a critical point of f (Proposi­
tion 5.5.6). 

The quadratic model (7.1) has a close connection to the Newton algorithm. 
Assuming that the Hessian is nonsingular at x, the critical point ξ∗ of m̂x 

satisfies the Newton equation 

Hess f(x)[η∗] + grad f(x) = 0. 

It follows that the geometric Newton method (Algorithm 5), with retraction 
R and affine connection ∇, defines its next iterate as the critical point of the 
quadratic model (7.1). 

We point out that all the models we have considered so far assume a 
quadratic form on TxM, i.e., there is a symmetric operator H : TxM → 
TxM such that 

mx(ξ) = f(x) + 〈grad f(x), ξ〉 + 1
2 〈H[ξ], ξ〉. 

Quadratic models are particularly interesting because the problem of mini­
mizing a quadratic function under trust-region constraints is well understood 
and several algorithms are available (see Section 7.3). 
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7.2 TRUST-REGION METHODS 

We first briefly review the principles of trust-region methods in Rn. Extend­
ing the concept to manifolds is straightforward given the material developed 
in the preceding section. 

7.2.1 Trust-region methods in Rn 

The basic trust-region method in Rn for a cost function f consists of adding 
to the current iterate x ∈ Rn the update vector η ∈ Rn, solving (up to some 
approximation) the trust-region subproblem 

min m(η) = f(x) + ∂f(x)η + T1η Hη, 2 ‖η‖ ≤ Δ, (7.3) 
η∈Rn 

where H is some symmetric matrix and Δ is the trust-region radius. Clearly, 
a possible choice for H is the Hessian matrix Hi,j = ∂i∂jf(x); classical 
convergence results guarantee superlinear convergence if the chosen H is 
“sufficiently close” to the Hessian matrix. The algorithm used to compute 
an approximate minimizer η of the model within the trust region is termed 
the inner iteration. Once an η has been returned by the inner iteration, the 
quality of the model m is assessed by forming the quotient 

ρ = 
f(x) − f(x + η) 

. (7.4) 
m(0) − m(η) 

Depending on the value of ρ, the new iterate x + η is accepted or discarded 
and the trust-region radius Δ is updated. A specific procedure (in the Rie­
mannian setting) is given in Algorithm 10, or see the textbooks mentioned 
in Notes and References. 

7.2.2 Trust-region methods on Riemannian manifolds 

We can now lay out the structure of a trust-region method on a Riemannian 
manifold (M, g) with retraction R. Given a cost function f : M→ R and a 
current iterate xk ∈M, we use Rxk 

to locally map the minimization problem 
for f on M into a minimization problem for the pullback of f under Rxk

, 

f̂xk 
: Txk

M→ R : ξ 7→ f(Rxk
ξ). (7.5) 

The Riemannian metric g turns Txk
M into a Euclidean space endowed with 

the inner product gxk
( , )—which we usually denote by 〈·, ·〉xk

—and the · ·
trust-region subproblem on Txk

M reads 

min mxk
(η) = f(xk) + 〈grad f(xk), η〉 +

η∈Txk 
M 
̂ 1

2 〈Hk[η], η〉, 
(7.6) 

subject to 〈η, η〉xk 
≤ Δ2 

k, 

where Hk is some symmetric operator on Txk
M. (A possible choice is Hk := 

Hess f(xk), the Riemannian Hessian (7.2).) This is called the trust-region 
subproblem. 
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Next, an (approximate) solution ηk of the Euclidean trust-region sub­
problem (7.6) is computed using any available method (inner iteration). The 
candidate for the new iterate is then given by Rxk

(ηk). Notice that the inner 
iteration has to operate on the Euclidean space TxM which, in the case of 
embedded submanifolds and quotient manifolds of a matrix space Rn×p, is 
represented as a linear subspace of Rn×p. Fortunately, most (or even all?) 
classical algorithms for the trust-region subproblem are readily adapted to 
Euclidean matrix spaces (see Section 7.3 for details). 

The decisions on accepting or rejecting the candidate Rxk
(ηk) and on 

selecting the new trust-region radius Δk+1 are based on the quotient 

ρk = 
f(xk) − f(Rxk

(ηk)) 
= 

f̂xk
(0xk

) − f̂xk
(ηk) 

. (7.7) 
mxk

(0xk
mxk

(ηk) mxk
(0xk

mxk
(ηk)̂ ) − ̂ ̂ ) − ̂

If ρk is exceedingly small, then the model is very inaccurate: the step must 
be rejected, and the trust-region radius must be reduced. If ρk is small but 
less dramatically so, then the step is accepted but the trust-region radius is 
reduced. If ρk is close to 1, then there is a good agreement between the model 
and the function over the step, and the trust-region radius can be expanded. 
If ρk ≫ 1, then the model is inaccurate, but the overall optimization iteration 
is producing a significant decrease in the cost. In this situation a possible 
strategy is to increase the trust region in the hope that your luck will hold 
and that bigger steps will result in a further decrease in the cost, regardless 
of the quality of the model approximation. This procedure is formalized in 
Algorithm 10. 

Later in the chapter we sometimes drop the subscript k and denote xk+1 

by x+. 
In general, there is no assumption on the operator Hk in (7.6) other than 

being a symmetric linear operator. Consequently, the choice of the retraction 
R does not impose any constraint on m̂xk

. In order to achieve superlinear 
convergence, however, Hk must approximate the Hessian (Theorem 7.4.11). 
The issue of obtaining an approximate Hessian in practice is addressed in 
Section 7.5.1. 

7.3 COMPUTING A TRUST-REGION STEP 

Step 2 in Algorithm 10 computes an (approximate) solution of the trust-
region subproblem (7.6), 

1 
min mxk

(η) = f(xk) + 〈grad f(xk), η〉 +
2 
〈Hk[η], η〉, 

η∈Txk 
M 
̂

subject to 〈η, η〉xk 
≤ Δ2 

k. 

Methods for solving trust-region subproblems in the Rn case can be roughly 
classified into two broad classes: (i) methods (based on the work of Moré and 
Sorensen) that compute nearly exact solutions of the subproblem; (ii) meth­
ods that compute an approximate solution to the trust-region subproblem 
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Algorithm 10 Riemannian trust-region (RTR) meta-algorithm 

Require: Riemannian manifold (M, g); scalar field f on M; retraction R 
from T M to M as in Definition 4.1.1. 

¯ ¯Parameters: Δ > 0, Δ0 ∈ (0, Δ), and ρ ′ ∈ [0, 1 4 ). 
Input: Initial iterate x0 ∈M. 
Output: Sequence of iterates {xk}. 

1: for k = 0, 1, 2, . . . do 
2: Obtain ηk by (approximately) solving (7.6); 
3: Evaluate ρk from (7.7); 
4: if ρk < 4

1 then 
5: Δk+1 = 4

1Δk; 
6: else if ρk > 4

3 and ‖ηk‖ = Δk then 
¯7: Δk+1 = min(2Δk, Δ); 

8: else 
9: Δk+1 = Δk; 

10: end if 
11: if ρk > ρ ′ then 
12: xk+1 = Rxηk; 
13: else 
14: xk+1 = xk; 
15: end if 
16: end for 

using a computationally simple iteration that achieves at least the decrease 
in cost obtained for the Cauchy point. For the trust-region subproblem (7.6), 
assuming that grad f(xk) = 0, we define the Cauchy point as the solution 
ηC 

6
of the one-dimensional problem k 

ηk
C = arg min mxk

(η) : η = −τ grad f(xk), τ > 0, (7.8) 
η 
{ ̂ ‖η‖ ≤ Δk}, 

which reduces to the classical definition of the Cauchy point when M = Rn . 
The Cauchy decrease is given by ̂ (0) − ̂ (ηC). We present a brief mxk

mxk k 

outline of the first method before providing a more detailed development of 
a conjugate gradient algorithm for the second approach that we prefer for 
the later developments. 

7.3.1 Computing a nearly exact solution 

The following statement is a straightforward adaptation of a result of Moré 
and Sorensen to the case of the trust-region subproblem on Txk

M as ex­
pressed in (7.6). 

Proposition 7.3.1 The vector η∗ is a global solution of the trust-region 
subproblem (7.6) if and only if there exists a scalar µ ≥ 0 such that the 
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following conditions are satisfied: 

(Hk + µ id)η ∗ = −grad f(xk), (7.9a) 

µ(Δk − ‖η ∗ ‖) = 0, (7.9b) 

(Hk + µ id) is positive-semidefinite, (7.9c) 

(7.9d) ‖η ∗ ‖ ≤ Δk. 

This result suggests a strategy for computing the solution of the subprob­
lem (7.6). Either solve (7.9) with µ = 0 or define 

η(µ) := −(Hk + µ id)−1 grad f(xk) 

and adjust µ to achieve ‖η(µ)‖ = Δk. Several algorithms have been proposed 
to perform this task; see Notes and References. 

7.3.2 Improving on the Cauchy point 

In many applications, the dimension d of the manifold M is extremely large 
(see, for example, computation of an invariant subspace of a large matrix 
A in Section 7.5). In such cases, solving the linear system (7.9a) of size d 
or checking the positive-definiteness of a d × d matrix (7.9c) is unfeasible. 
Many algorithms exist that scale down the precision of the solution of the 
trust-region subproblem (7.6) and lighten the numerical burden. 

A number of these methods start by computing the Cauchy point (7.8), 
and then attempt to improve on it. The improvement strategy is often de­
signed so that, when Hk is positive-definite, and given sufficient iterations, 
the estimate eventually reaches the minimizer ηk

N = (Hk)−1 grad f(xk) pro­
vided that the minimizer lies within the trust region. Among these strategies, 
the truncated conjugate-gradient method is one of the most popular. Algo­
rithm 11 is a straightforward adaptation of the truncated CG method in Rn 

to the trust-region subproblem (7.6) in Txk
M. Note that we use superscripts 

to denote the evolution of η within the inner iteration, while subscripts are 
used in the outer iteration. 

Several comments about Algorithm 11 are in order. 
The following result will be useful in the convergence analysis of trust-

region methods. 

Proposition 7.3.2 Let ηi , i = 0, . . . , j, be the iterates generated by Algo­
rithm 11 (truncated CG method). Then m̂xk

(ηi) is strictly decreasing and 
mxk

(ηk) ≤ m̂xk
(ηi), i = 0, . . . , j. Further, ‖ηi‖ is strictly increasing and 

‖
̂
ηk‖ > ‖ηi‖, i = 0, . . . , j. 

The simplest stopping criterion to use in Step 14 of Algorithm 11 is to 
truncate after a fixed number of iterations. In order to achieve superlinear 
convergence (see Section 7.4.2), one may take the stopping criterion 

‖rj+1‖ ≤ ‖r0‖ min(‖r0‖θ, κ), (7.10) 

where θ > 0 is a real parameter chosen in advance. 
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Algorithm 11 Truncated CG (tCG) method for the trust-region subprob­
lem 
Goal:	 This algorithm handles Step 2 of Algorithm 10. 

1: Set η0 = 0, r0 = grad f(xk), δ0 = −r0; j = 0; 
2: loop 
3: if 〈δj ,Hkδj〉xk 

≤ 0 then 
4:	 Compute τ such that η = ηj + τδj minimizes m̂xk

(η) in (7.6) and 
satisfies ‖η‖gx 

= Δ; 
5:	 return ηk := η; 
6: end if 
7: Set αj = 〈rj , rj〉xk

/〈δj ,Hkδj〉xk
; 

8: Set ηj+1 = ηj + αjδj ; 
9: if ‖ηj+1‖gx 

≥ Δ then 
10: Compute τ ≥ 0 such that η = ηj + τδj satisfies ‖η‖gx 

= Δ; 
11: return ηk := η; 
12: end if 
13: Set rj+1 = rj + αjHkδj ; 
14: if a stopping criterion is satisfied then 
15: return ηk := ηj+1; 
16: end if 
17: Set βj+1 = 〈rj+1, rj+1〉xk

/〈rj , rj〉xk
; 

18: Set δj+1 = −rj+1 + βj+1δj ; 
19: Set j = j + 1; 
20: end loop 

In Steps 4 and 10 of Algorithm 11, τ is found by computing the positive 
root of the quadratic equation 

τ2〈δj , δj〉xk 
+ 2τ 〈ηj , δj〉xk 

= Δ2 
k − 〈ηj , ηj〉xk

. 

Notice that the truncated CG algorithm is “inverse-free”, as it uses Hk 

only in the computation of Hk[δj ]. 
Practical implementations of Algorithm 11 usually include several addi­

tional features to reduce the numerical burden and improve the robustness 
to numerical errors. For example, the value of 〈rj+1, rj+1〉xk 

can be stored 
since it will be needed at the next iteration. Because the Hessian operator 
Hk is an operator on a vector space of dimension d, where d may be very 
large, it is important to implement an efficient routine for computing Hkδ. 
In many practical cases, the tangent space TxM to which the quantities η, r, 
and δ belong will be represented as a linear subspace of a higher-dimensional 
Euclidean space; to prevent numerical errors it may be useful from time to 
time to reproject the above quantities onto the linear subspace. 
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7.4 CONVERGENCE ANALYSIS 

In this section, we study the global convergence properties of the RTR 
scheme (Algorithm 10) without any assumption on the way the trust-region 
subproblems are solved (Step 2), except that the approximate solution ηk 

must produce a decrease in the model that is at least a fixed fraction of 
the Cauchy decrease. Under mild additional assumptions on the retraction 
and on the cost function, it is shown that the sequences {xk} produced by 
Algorithm 10 converge to the set of critical points of the cost function. This 
result is well known in the Rn case; in the case of manifolds, the convergence 
analysis has to address the fact that a different lifted cost function f̂xk 

is 
considered at each iterate xk. 

In the second part of the section we analyze the local convergence of Algo­
rithm 10-11 around nondegenerate local minima. Algorithm 10-11 refers to 
the RTR framework where the trust-region subproblems are approximately 
solved using the truncated CG algorithm with stopping criterion (7.10). It is 
shown that the iterates of the algorithm converge to nondegenerate critical 
points with an order of convergence of at least min{θ + 1, 2}, where θ is the 
parameter chosen for the stopping condition (7.10). 

7.4.1 Global convergence 

The objective of this section is to show that, under appropriate assumptions, 
the sequence {xk} generated by Algorithm 10 converges to the critical set of 
the cost function; this generalizes a classical convergence property of trust-
region methods in Rn. In what follows, (M, g) is a Riemannian manifold of 
dimension d and R is a retraction on M (Definition 4.1.1). We define the 
pullback cost 

f̂ : T M 7→ R : ξ 7→ f(Rξ) (7.11) 

and, in accordance with (7.5), f̂x denotes the restriction of f to TxM. We 
denote by Bδ(0x) = {ξ ∈ TxM : ‖ξ‖ < δ} the open ball in TxM of radius δ 
centered at 0x, and Bδ(x) stands for the set {y ∈ M : dist(x, y) < δ}, where 
dist denotes the Riemannian distance (i.e., the distance defined in terms of 
the Riemannian metric; see Section 3.6). We denote by Pγ

t←t0v the vector 
of Tγ(t)M obtained by parallel translation (with respect to the Riemannian 
connection) of the vector v ∈ Tγ(t0)M along a curve γ. 

As in the classical Rn proof, we first show that at least one accumulation 
point of {xk} is a critical point of f . The convergence result requires that 
m̂xk

(ηk) be a sufficiently good approximation of f̂xk
(ηk). In classical proofs, 

this is often guaranteed by the assumption that the Hessian of the cost 
function is bounded. It is, however, possible to weaken this assumption, 
which leads us to consider the following definition. 

Definition 7.4.1 (radially L-C1 function) Let f̂ : T M → R be defined 

as in (7.11). We say that f̂ is radially Lipschitz continuously differentiable 
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if there exist reals βRL > 0 and δRL > 0 such that, for all x ∈ M, for all 
ξ ∈ TxM with ‖ξ‖ = 1, and for all t < δRL, it holds that 

d d
∣∣∣∣ dτ f̂x(τξ) τ=t − 

dτ 
f̂x(τξ) τ=0 

∣∣∣∣ ≤ βRLt. (7.12) | |

For the purpose of Algorithm 10, which is a descent algorithm, this condition 
needs only to be imposed for all x in the level set 

{x ∈ M : f(x) ≤ f(x0)}. (7.13) 

A key assumption in the classical global convergence result in Rn is that 
the approximate solution ηk of the trust-region subproblem (7.6) produces 
at least as much decrease in the model function as a fixed fraction of the 
Cauchy decrease. The definition (7.8) of the Cauchy point is equivalent to 
the closed-form definition ηC = −τk grad f(xk) with k 

Δk
{ 

if 〈Hk[grad f(xk)], grad f(xk)〉xk 
≤ 0, 

τk = 
‖grad

Δ

f

k 

(xk)‖ ( 
‖grad f(xk)‖3 

)
min , 1 otherwise.‖grad f(xk)‖ Δk〈Hk[grad f(xk)],grad f(xk)〉xk 

(Note that the definition of the Cauchy point excludes the case grad f(xk) = 
0, for which convergence to a critical point becomes trivial.) The assumption 
on the decrease in f then becomes 

( 

Δk, 
‖grad f(xk)‖ ) 

mxk
(0) − m̂xk

(ηk) ≥ c1‖grad f(xk)‖ min , (7.14) ̂ ‖Hk‖ 
for some constant c1 > 0, where ‖Hk‖ is defined as 

‖Hk‖ := sup{‖Hkζ‖ : ζ ∈ Txk
M, ‖ζ‖ = 1}. (7.15) 

In particular, the Cauchy point satisfies (7.14) with c1 = 2
1 . Hence the tan­

gent vector ηk returned by the truncated CG method (Algorithm 11) satis­
fies (7.14) with c1 = 2

1 since the truncated CG method first computes the 
Cauchy point and then attempts to improve the model decrease. 

With these ideas in place, we can state and prove the first global conver­
gence result. Note that this theorem is presented under weak assumptions; 
stronger but arguably easier to check assumptions are given in Proposi­
tion 7.4.5. 

Theorem 7.4.2 Let {xk} be a sequence of iterates generated by Algo­
rithm 10 with ρ ′ ∈ [0, 1 ). Suppose that f is C1 and bounded below on the level 4

set (7.13), that f̂ is radially L-C1 (Definition 7.4.1), and that there is a con­
stant β such that ‖Hk‖ ≤ β for all k. Further suppose that all ηk’s obtained 
in Step 2 of Algorithm 10 satisfy the Cauchy decrease inequality (7.14) for 
some positive constant c1. We then have 

lim inf ‖grad f(xk)‖ = 0. 
k→∞ 
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Proof. From the definition of the ratio ρk in (7.7), we have 

= 
m̂xk

(ηk) − f̂  
xk

(ηk) 
. (7.16) |ρk − 1| 

∣∣∣∣∣ (0) − ̂ (ηk) 

∣∣∣∣∣m̂xk
mxk

Proposition A.6.1 (Taylor) applied to the function t 7→ f̂xk
(t ηk ) yields ‖ηk‖ 

f̂xk
(ηk) = f̂xk

(0xk
) + ‖ηk‖ 

d

d 
τ
f̂xk

(τ
ηk 

) + ǫ ′ ‖ηk‖ 

∣∣∣∣
τ=0 

= f(xk) + 〈grad f(xk), ηk〉xk 
+ ǫ ′ , 

where ǫ ′ = 1βRL‖ηk‖2 whenever ‖ηk‖ < δRL and βRL and δRL are the 2| |
constants in the radially L-C1 property (7.12). Therefore, it follows from the 
definition (7.6) of m̂xk 

that 

|m̂xk
(ηk) − f̂  

xk
(ηk)| = 

∣∣ 1
2 〈Hkηk, ηk〉xk 

− ǫ ′
∣∣ 

(7.17) 
1 2 1 2 2≤ 2β‖ηk‖ + 2βRL‖ηk‖ ≤ β ′ ‖ηk‖

whenever ‖ηk‖ < δRL, where β ′ = max(β, βRL). 
Assume for contradiction that the claim does not hold; i.e., assume there 

exist ǫ > 0 and a positive index K such that 

‖grad f(xk)‖ ≥ ǫ for all k ≥ K. (7.18) 

From (7.14), for k ≥ K, we have 
( 

Δk, 
‖grad f(xk)‖ ) 

m̂xk
(0) − m̂xk

(ηk) ≥ c1‖grad f(xk)‖ min ‖Hk‖ 
(7.19) ( 

ǫ 
) 

≥ c1ǫ min Δk,
β ′ 

. 

Substituting (7.17) and (7.19) into (7.16), we have that 

kρk − 1
β ′ ‖ηk‖2 β ′ Δ2 

(7.20) | | ≤ 
c1ǫ min 

(
Δk, β

ǫ 
′ 

) ≤ 
c1ǫ min 

(
Δk, β

ǫ 
′ 

) 

whenever ‖ηk‖ < δRL. Let ˆ Δ = min 
( 

c1ǫ ǫ 
)

Δ be defined as ˆ
2β′ , β′ 

ˆ
(

Δk, ǫ 
) 

= Δk and (7.20) becomes 

, δRL . If Δk ≤ 

Δ, then min β′ 

β ′ Δ̂Δk Δk 1 
= .|ρk − 1| ≤ 

c1ǫ min 
(

Δk, β
ǫ 
′ 

) ≤ 
2 min 

(
Δk, β

ǫ 
′ 

) 
2 

Therefore, ρk ≥ 1 1 whenever Δk ≤ ˆ> Δ, so that by the workings of Algo­2 4 
rithm 10, it follows (from the argument above) that Δk+1 ≥ Δk whenever 
Δk ≤ ˆ

4
1Δ. It follows that a reduction in Δk (by a factor of ) can occur in 

Algorithm 10 only when Δk > Δ̂. Therefore, we conclude that 

Δk ≥ min 
(

ΔK , Δ̂/4
) 

for all k ≥ K. (7.21) 
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Suppose now that there is an infinite subsequence K such that ρk ≥ 1 > ρ ′ 4 
for k ∈ K. If k ∈ K and k ≥ K, we have from (7.19) that 

f(xk) − f(xk+1) = fxk 
− f̂  

xk
(ηk) 

1 1 
( 

ǫ 
) 

≥ 
4

( ̂
4 
c1ǫ min Δk,

β ′ 
. (7.22) mxk

(0) − m̂xk
(ηk)) ≥ 

Since f is bounded below on the level set containing these iterates, it follows 
from this inequality that limk∈K,k→∞ Δk = 0, clearly contradicting (7.21). 
Then such an infinite subsequence as K cannot exist. It follows that we must 
have ρk < 1

4 for all k sufficiently large so that Δk will be reduced by a 
factor of 1 on every iteration. Then we have limk→∞ Δk = 0, which again 4 
contradicts (7.21). Hence our assumption (7.18) is false, and the proof is 
complete. � 

To further show that all accumulation points of {xk} are critical points, 
we need to make an additional regularity assumption on the cost function 
f . The convergence result in Rn requires that f be Lipschitz continuously 
differentiable. That is, for any x, y ∈ Rn , 

‖grad f(y) − grad f(x)‖ ≤ β1‖y − x‖. (7.23) 

A key to obtaining a Riemannian counterpart of this global convergence 
result is to adapt the notion of being Lipschitz continuously differentiable to 
the Riemannian manifold (M, g). The expression ‖x − y‖ on the right-hand 
side of (7.23) naturally becomes the Riemannian distance dist(x, y). For the 
left-hand side of (7.23), observe that the operation grad f(x) − grad f(y) is 
not well defined in general on a Riemannian manifold since grad f(x) and 
grad f(y) belong to two different tangent spaces, namely, TxM and TyM . 
However, if y belongs to a normal neighborhood of x, then there is a unique 
geodesic α(t) = Expx(t Exp−x 

1 y) in this neighborhood such that α(0) = x 
and α(1) = y, and we can parallel-translate grad f(y) along α to obtain the 
vector P 0←1 grad f(y) in TxM. A lower bound on the size of the normal α 

neighborhoods is given by the injectivity radius, defined as 

i(M) := inf ix, 
x∈M 

where 

ix := sup{ǫ > 0 : Expx| ) is a diffeomorphism for all x ∈ M}.Bǫ(0x

This yields the following definition. 

Definition 7.4.3 (Lipschitz continuously differentiable) Assume that 
(M, g) has a positive injectivity radius. A real function f on M is Lipschitz 
continuously differentiable if it is differentiable and if there exists β1 such 
that, for all x, y in M with dist(x, y) < i(M), it holds that 

‖P 0←1 grad f(y) − grad f(x)‖ ≤ β1 dist(y, x), (7.24) α 

where α is the unique minimizing geodesic with α(0) = x and α(1) = y. 
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Note that (7.24) is symmetric in x and y; indeed, since the parallel transport 
is an isometry, it follows that 

‖P 0←1 grad f(y) − grad f(x)‖ = ‖grad f(y) − P 1←0 grad f(x)‖.α α 

Moreover, we place one additional requirement on the retraction R, that 
there exist µ > 0 and δµ > 0 such that 

‖ξ‖ ≥ µ dist(x,Rxξ) for all x ∈M, for all ξ ∈ TxM, ‖ξ‖ ≤ δµ. (7.25) 

Note that for the exponential retraction, (7.25) is satisfied as an equality with 
µ = 1. The bound is also satisfied when M is compact (Corollary 7.4.6). 

We are now ready to show that under some additional assumptions, the 
gradient of the cost function converges to zero on the whole sequence of 
iterates. Here again we refer to Proposition 7.4.5 for a simpler (but slightly 
stronger) set of assumptions that yield the same result. 

Theorem 7.4.4 Let {xk} be a sequence of iterates generated by Algo­
rithm 10. Suppose that all the assumptions of Theorem 7.4.2 are satisfied. 
Further suppose that ρ ′ ∈ (0, 1 ), that f is Lipschitz continuously differen­4
tiable (Definition 7.4.3), and that (7.25) is satisfied for some µ > 0, δµ > 0. 
It then follows that 

lim grad f(xk) = 0. 
k→∞ 

Proof. Consider any index m such that grad f(xm) = 0. Define the scalars 

ǫ = 
2

1 ‖grad f(xm)‖, r = min 

( ‖grad 
2

f

β

(

1 

xm)‖ 
, i(M) 

) 

= min 

( 

β

ǫ 

1 
, i(M) 

) 

. 

In view of the Lipschitz property (7.24), we have for all x ∈ Br(xm), 

‖grad f(x)‖ = ‖P 0←1 grad f(x)‖α 

= ‖Pα 
0←1 grad f(x) + grad f(xm) − grad f(xm)‖ 

≥‖grad f(xm)‖ − ‖Pα 
0←1 grad f(x) − grad f(xm)‖ 

≥ 2ǫ − β1dist(x, xm) 

> 2ǫ − β1 min 

( ‖grad f(xm)‖ 
, i(M) 

) 

2β1 

1 ≥ 2ǫ − 
2 
‖grad f(xm)‖ 

= ǫ. 

If the entire sequence {xk}k≥m stays inside the ball Br(xm), then we have 
‖grad f(xk)‖ > ǫ for all k ≥ m, a contradiction to Theorem 7.4.2. Thus the 
sequence eventually leaves the ball Br(xm). Let the index l ≥ m be such that 
xl+1 is the first iterate after xm outside Br(xm). Since ‖grad f(xk)‖ > ǫ for 
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k = m,m+1, . . . , l, we have, in view of the Cauchy decrease condition (7.14), 

l


f(xm) − f(xl+1) = 
∑ 

f(xk) − f(xk+1)

k=m


l


≥ 
∑ 

ρ ′ ( ̂ (0) − m̂xk
(ηk)) mxk

k=m,xk 6=xk+1 

l∑ 
ρ ′ c1‖grad f(xk)‖ min 

( 

Δk, 
‖grad f(xk)‖ ) 

≥ 
k=m,xk 6

‖Bk‖
=xk+1 

l∑ 
ρ ′ c1ǫ min 

( 

Δk,
ǫ 
) 

.≥ 
β 

k=m,xk 6=xk+1 

We distinguish two cases. If Δk > ǫ/β in at least one of the terms of the 
sum, then 

. (7.26) f(xm) − f(xl+1) ≥ ρ ′ c1ǫ
ǫ 
β 

In the other case, we have 

l l

f(xm) − f(xl+1) ≥ ρ ′ c1ǫ 
∑ 

Δk ≥ ρ ′ c1ǫ 
∑ 

‖ηk‖. (7.27) 
k=m,xk 6 k=m,xk=xk+1 =xk+1 6

If ‖ηk‖ > δµ in at least one term in the sum, then 

f(xm) − f(xl+1) ≥ ρ ′ c1ǫδµ. (7.28) 

Otherwise, (7.27) yields 

l

f(xm) − f(xl+1) ≥ ρ ′ c1ǫ 
∑ 

µ dist(xk, Rxk
ηk) 

k=m,xk 6=xk+1 

l

= ρ ′ c1ǫµ 
∑ 

dist(xk, xk+1) 
k=m,xk 6=xk+1 ( 

ǫ 
) 

≥ ρ ′ c1ǫµr = ρ ′ c1ǫµ min , i(M) . (7.29) 
β1 

It follows from (7.26), (7.28), and (7.29) that 

f(xm) − f(xl+1) ≥ ρ ′ c1ǫ min 

( 
ǫ ǫµ 

) 

, δµ, , i(M)µ . (7.30) 
β β1 

Because {f(xk)}∞ is decreasing and bounded below, we have k=0 

f(xk) f ∗ (7.31) ↓ 
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for some f∗ > −∞. It then follows from (7.30) that 
f(xm) − f ∗ ≥ f(xm) − f(xl+1) 

≥ ρ ′ c1ǫ min 

( 
ǫ ǫµ 

) 

, δµ, , i(M)µ
β β1 

1 
= ρ ′ c1‖grad f(xm)‖

2 

min 

( ‖grad f(xm)‖ 
, δµ, 
‖grad f(xm)‖µ

, i(M)µ 

) 

. 
2β 2β1 

Taking m → ∞ in the latter expression yields limm→∞ ‖grad f(xm)‖ = 0. 

Note that this theorem reduces gracefully to the classical Rn case, tak­
ing M = Rn endowed with the classical inner product and Rxξ := x + ξ. 
Then i(M) = +∞ > 0, R satisfies (7.25), and the Lipschitz condition (7.24) 
reduces to the classical expression, which subsumes the radially L-C1 condi­
tion. 

The following proposition shows that the regularity conditions on f and f̂
required in the previous theorems are satisfied under stronger but possibly 
easier to check conditions. These conditions impose a bound on the Hessian of 
f and on the “acceleration” along curves t 7→ R(tξ). Note also that all these 
conditions need only be checked on the level set {x ∈M : f(x) ≤ f(x0)}. 
Proposition 7.4.5 Suppose that ‖grad f(x)‖ ≤ βg and that ‖Hess f(x)‖ ≤ 
βH for some constants βg, βH , and all x ∈M. Moreover, suppose that 

D d 
R(tξ) 

∥∥∥∥ ≤ βD (7.32) 
dt dt 

for some constant βD, for all ξ ∈ T M with ‖ξ‖ = 1 and all t < δD, where 
D denotes the covariant derivative along the curve t 7→ R(tξ). Then the dt 
Lipschitz-C1 condition on f (Definition 7.4.3) is satisfied with βL = βH ; 

the radially Lipschitz-C1 condition on f̂ (Definition 7.4.1) is satisfied for 
δRL < δD and βRL = βH(1 + βDδD) + βgβD; and the condition (7.25) on 
R is satisfied for values of µ and δµ satisfying δµ < δD and 2

1βDδµ < µ 
1 − 1. 

Proof. By a standard Taylor argument (see Lemma 7.4.7), boundedness of 
the Hessian of f implies the Lipschitz-C1 property of f . 

For (7.25), define u(t) = R(tξ) and observe that 
t 

dist(x,R(tξ)) ≤ ‖u ′ (τ )‖ dτ 
0 

where 
∫ 
0 

t ‖u ′ (τ )‖ dτ is the length of the curve u between 0 and t. Using the 
Cauchy-Schwarz inequality and the invariance of the metric by the connec­
tion, we have 

d d √
′ (τ), u = 

〈 dD 
t u ′ (τ), u ′ (τ)〉u(τ) 

= 

∣∣∣∣ dτ ‖u ′ (τ)‖ 
∣∣∣∣ 

∣∣∣∣ dτ 〈u ′ (τ)〉u(τ) 

∣∣∣∣ 

∣∣∣∣∣ ‖u ′ (τ )‖ 

∣∣∣∣∣ 

≤ 
βD

‖u 
‖
′ 

u 
(

′ 

τ 
(

)

τ

‖ 
)‖ ≤ βD 
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for all t < δD. Therefore 
t t∫ 
‖u ′ (τ)‖ dτ ≤ 

∫ 
‖u ′ (0)‖ + βDτ dτ = ‖ξ‖t + 12βDt

2 = t + 12βDt
2 , 

0 0 

which is smaller than t if 1βDt < µ 
1 − 1. µ 2

For the radially Lipschitz-C1 condition, let u(t) = R(tξ) and h(t) = 
f(u(t)) = f̂(tξ) with ξ ∈ TxM, ‖ξ‖ = 1. Then 

h ′ (t) = 〈grad f(u(t)), u ′ (t)〉u(t) 

and 

h ′′ (t) = 
d

D 
t 
〈grad f(u(t)), u ′ (t)〉u(t) 

= 〈 
d

D 
t 

grad f(u(t)), u ′ (t)〉u(t) + 〈grad f(u(t)), 
d

D 
t
u ′ (t)〉u(t). 

Now, d
D 
t grad f(u(t)) = ∇u ′ (t) grad f(u(t)) = Hess f(u(t))[u ′ (t)]. It follows 

that |h ′′ (t)| is bounded on t ∈ [0, δD) by the constant βRL = βH(1+βDδD)+ 
βgβD. Then 

t 

h ′ (t) − h ′ (0)

∫ 
h ′′ (τ ) dτ ≤ tβRL.| | ≤ 

0 

| | 

Corollary 7.4.6 (smoothness and compactness) If the cost function f 
is smooth and the Riemannian manifold M is compact, then all the condi­
tions in Proposition 7.4.5 are satisfied. 

The major manifolds considered in this book (the Grassmann manifold and 
the Stiefel manifold) are compact, and the cost functions based on the 
Rayleigh quotient are smooth. 

7.4.2 Local convergence 

We now state local convergence properties of Algorithm 10-11: local con­
vergence to local minimizers (Theorem 7.4.10) and superlinear convergence 
(Theorem 7.4.11). We begin with a few preparatory lemmas. 

As before, (M, g) is a Riemannian manifold of dimension d and R is a 
retraction on M (Definition 4.1.1). The first lemma is a first-order Taylor 
formula for tangent vector fields. 

Lemma 7.4.7 (Taylor’s theorem) Let x ∈ M, let V be a normal neigh­
borhood of x, and let ζ be a C1 tangent vector field on M. Then, for all 
y ∈ V, 

P 0←1ζy = ζx + ∇ξζ + 
∫ 

0

1 (
P 0←τ∇γ′ (τ)ζ −∇ξζ

) 
dτ, (7.33) γ γ 

where γ is the unique minimizing geodesic satisfying γ(0) = x and γ(1) = y, 
and ξ = Exp−x 

1 y = γ ′ (0). 
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Proof. Start from 
∫ 1 d 

∫ 1 ( 
d 

) 

P 0←1ζy = ζx + 
0 dτ

Pγ 
0←τζ dτ = ζx + ∇ξζ + 

0 dτ
P 0←τζ −∇ξζ dτγ γ 

and use the formula for the connection in terms of the parallel transport 
(see [dC92, Ch. 2, Ex. 2]), to obtain 

d d 
dτ dǫ

Pγ 
0←τPγ

τ←τ+ǫζ 

∣∣∣∣
ǫ=0 

= Pγ 
0←τ∇γ′ ζ. P 0←τζ = γ 

We use this lemma to show that in some neighborhood of a nondegenerate 
local minimizer v of f , the norm of the gradient of f can be taken as a 
measure of the Riemannian distance to v. 

Lemma 7.4.8 Let v and let f be a C2 cost function such that ∈ M 
grad f(v) = 0 and Hess f(v) is positive-definite with maximal and minimal 
eigenvalues λmax and λmin. Then, given c0 < λmin and c1 > λmax, there 
exists a neighborhood V of v such that, for all x ∈ V, it holds that 

c0 dist(v, x) ≤ ‖ grad f(x)‖ ≤ c1 dist(v, x). (7.34) 

Proof. From Taylor (Lemma 7.4.7), it follows that 

P 0←1 grad f(v) = Hess f(v)[γ ′ (0)] γ 

+ 
∫ 1 (

P 0←τ Hess f(γ(τ ))[γ ′ (τ)] − Hess f(v)[γ ′ (0)]
) 

dτ. (7.35) γ 
0 

Since f is C2 and since ‖γ ′ (τ)‖ = dist(v, x) for all τ ∈ [0, 1], we have the 
following bound for the integral in (7.35): 

∥∥∥∥
∫ 

0

1 

Pγ 
0←τ Hess f(γ(τ))[γ ′ (τ)] − Hess f(v)[γ ′ (0)] dτ

∥∥
∥∥

= 

∥∥∥∥
∫ 1 (

P 0←τ Hess f(γ(τ)) P τ←0 − Hess f(v)
) 

[γ ′ (0)] dτ 

∥∥∥∥
0 

γ ◦ ◦ γ 

≤ ǫ(dist(v, x)) dist(v, x), 

where limt→0 ǫ(t) = 0. Since Hess f(v) is nonsingular, it follows that λmin >| |
0. Take V sufficiently small so that λmin − ǫ(dist(v, x)) > c0 and λmax + 
ǫ(dist(v, x)) < c1 for all x in V. Then, using the fact that the parallel trans­
lation is an isometry, (7.34) follows from (7.35). � 

We need a relation between the gradient of f at Rx(ξ) and the gradient 
of f̂x at ξ. 

Lemma 7.4.9 Let R be a retraction on M and let f be a C1 cost function 
on M. Then, given v ∈ M and c5 > 1, there exists a neighborhood V of v 
and δ > 0 such that 

‖grad f(Rξ)‖ ≤ c5‖grad f̂(ξ)‖

for all x ∈ V and all ξ ∈ TxM with ‖ξ‖ ≤ δ, where f̂ is as in (7.11).
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Proof. Consider a parameterization of M at v and consider the correspond­
ing parameterization of T M (see Section 3.5.3). We have 

j∂if̂x(ξ) = 
∑ 

∂jf(Rξ)A (ξ),i

j 

where A(ξ) stands for the differential of Rx at ξ ∈ TxM. Then, 

‖grad f̂x(ξ)‖2 = 
∑ 

∂if̂x(ξ)gij(x) ∂j f̂x(ξ)

i,j


=	
∑ 

∂kf(Rxξ)A
k
i (ξ)g

ij(x)Aℓ
j(ξ) ∂ℓf(Rxξ) 

i,j,k,ℓ 

and 

‖grad f(Rxξ)‖2 = 
∑ 

∂if(Rxξ)g
ij(Rxξ) ∂jf(Rxξ). 

i,j 

The conclusion follows by a real analysis argument, invoking the smoothness 
properties of R and g, and the compactness of the set {(x, ξ) : x ∈ V, ξ ∈
TxM, ‖ξ‖ ≤ δ} and using A(0x) = id. � 

Finally, we will make use of Lemma 5.5.6 stating that the Hessians of f 
and f̂ coincide at critical points. 

We now state and prove the local convergence results. The first result 
states that the nondegenerate local minima are attractors of Algorithm 10­
11. 

Theorem 7.4.10 (local convergence to local minima) Consider Al­
gorithm 10-11—i.e., the Riemannian trust-region algorithm where the 
trust-region subproblems (7.6) are solved using the truncated CG algorithm 
with stopping criterion (7.10)—with all the assumptions of Theorem 7.4.2. 
Let v be a nondegenerate local minimizer of f , i.e., grad f(v) = 0 and 
Hess f(v) is positive-definite. Assume that x 7→ ‖Hx 

−1‖ is bounded on a 
neighborhood of v and that (7.25) holds for some µ > 0 and δµ > 0. Then 
there exists a neighborhood V of v such that, for all x0 ∈ V, the sequence 
{xk} generated by Algorithm 10-11 converges to v. 

Proof. Take δ1 > 0 with δ1 < δµ such that ‖H−1‖ is bounded on Bδ1
(v), x 

that Bδ1
(v) contains only v as critical point, and that f(x) > f(v) for all 

¯x ∈ Bδ1
(v). (In view of the assumptions, such a δ1 exists.) Take δ2 small 

enough that, for all x ∈ Bδ2
(v), it holds that ‖η∗(x)‖ ≤ µ(δ1 − δ2), where 

η∗ is the (unique) solution of Hxη
∗ = −grad f(x); such a δ2 exists because 

of Lemma 7.4.8 and the bound on ‖H−1‖. Consider a level set L of f such x 

that V := L∩ Bδ1
(v) is a subset of Bδ2

(v); invoke that f ∈ C1 to show that 
such a level set exists. Let ηtCG(x, Δ) denote the tangent vector ηk returned 
by the truncated CG algorithm (Algorithm 11) when xk = x and Δk = Δ. 
Then, V is a neighborhood of v, and for all x ∈ V and all Δ > 0, we have 

dist(x, x+) ≤ 
µ 
1 ‖ηtCG(x, Δ)‖ ≤ 

µ 
1 ‖η ∗ ‖ ≤ (δ1 − δ2), 
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where we used the fact that ‖η‖ is increasing along the truncated CG process 
(Proposition 7.3.2). It follows from the equation above that x+ is in Bδ1

(v). 
Moreover, since f(x+) ≤ f(x), it follows that x+ ∈ V. Thus V is invariant. 
But the only critical point of f in V is v, so {xk} goes to v whenever x0 is 
in V. � 

Now we study the order of convergence of sequences that converge to a 
nondegenerate local minimizer. 

Theorem 7.4.11 (order of convergence) Consider Algorithm 10-11 
with stopping criterion (7.10). Suppose that f is a C2 cost function on M
and that 

‖Hk − Hess f̂xk
(0k)‖ ≤ βH‖grad f(xk)‖, (7.36) 

i.e., Hk is a sufficiently good approximation of Hess f̂xk
(0xk

). Let v ∈M be 
a nondegenerate local minimizer of f (i.e., grad f(v) = 0 and Hess f(v) is 
positive-definite). Further assume that Hess f̂x is Lipschitz-continuous at 0x 

uniformly in x in a neighborhood of v, i.e., there exist βL2 > 0, δ1 > 0, and 
δ2 > 0 such that, for all x ∈ Bδ1

(v) and all ξ ∈ Bδ2
(0x), it holds that 

‖Hess f̂x(ξ) − Hess f̂x(0x)‖ ≤ βL2‖ξ‖, (7.37) 

where ‖·‖ on the left-hand side denotes the operator norm in TxM defined as 
in (7.15). Then there exists c > 0 such that, for all sequences {xk} generated 
by the algorithm converging to v, there exists K > 0 such that for all k > K, 

dist(xk+1, v) ≤ c (dist(xk, v))min{θ+1,2} (7.38) 

with θ > 0 as in (7.10). 

Proof. The proof relies on a set of bounds which are justified after the main 
′ result is proved. Assume that there exist Δ̃, c0, c1, c2, c3, c 3, c4, c5 such that, 

for all sequences {xk} satisfying the conditions asserted, all x ∈ M, all ξ 
with ‖ξ‖ < Δ̃, and all k greater than some K, it holds that 

c0 dist(v, xk) ≤ ‖grad f(xk)‖ ≤ c1 dist(v, xk), (7.39) 

‖ηk‖ ≤ c4‖grad m̂xk
(0)‖ ≤ Δ̃, (7.40) 

ρk > ρ ′ , (7.41) 

‖grad f(Rxk
ξ)‖ ≤ c5‖grad f̂xk

(ξ)‖, (7.42) 

‖grad ̂ (ξ) − grad ̂ (ξ)‖ ≤ c3‖ξ‖2 + c3
′ ‖grad f(xk)‖ ‖ξ‖, (7.43) mxk

fxk

‖grad m̂xk
(ηk)‖ ≤ c2‖grad m̂xk

(0)‖θ+1 , (7.44) 

where {ηk} is the sequence of update vectors corresponding to {xk}. 
Given the bounds (7.39) to (7.44), the proof proceeds as follows. For all 

k > K, it follows from (7.39) and (7.41) that 

c0 dist(v, xk+1) ≤ ‖grad f(xk+1)‖ = ‖grad f(Rxk
ηk)‖, 

from (7.42) and (7.40) that 

‖grad f(Rxk
ηk)‖ ≤ c5‖grad f̂xk

(ηk)‖, 
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from (7.40) and (7.43) and (7.44) that 

‖grad f̂xk
mxk

(ηk) − grad f̂xk
(ηk)‖ + ‖grad ̂ (ηk)‖mxk

(ηk)‖ ≤ ‖grad ̂
≤ (c3c4

2 + c3
′ c4)‖grad m̂xk

(0)‖2 + c2‖grad m̂xk
(0)‖1+θ , 

and from (7.39) that 

‖grad m̂xk
(0)‖ = ‖grad f(xk)‖ ≤ c1 dist(v, xk). 

Consequently, taking K larger if necessary so that dist(v, xk) < 1 for all 
k > K, it follows that 

c0 dist(v, xk+1) ≤ ‖grad f(xk+1)‖ (7.45) 

≤ c5(c3c4
2 + c3

′ c4)‖grad f(xk)‖2 + c5c2‖grad f(xk)‖θ+1 

(7.46) 
2 ′ 2 1+θ ≤ c5((c3c4 + c3c4)c1(dist(v, xk))2 + c2c1 (dist(v, xk))1+θ) 
2 ′ 2 1+θ ≤ c5((c3c4 + c3c4)c1 + c2c1 )(dist(v, xk))min{2,1+θ} 

for all k > K, which is the desired result. 
It remains to show that the bounds (7.39)–(7.44) hold under the assump­

tions or the theorem. 
Equation (7.39) comes from Lemma 7.4.8 and is due to the fact that v is 

a nondegenerate critical point. 
We prove (7.40). Since {xk} converges to the nondegenerate local mini­

mizer v where Hess f̂v(0v) = Hess f(v) (in view of Lemma 5.5.6), and since 
Hess f(v) is positive-definite with f ∈ C2, it follows from the approxima­
tion condition (7.36) and from (7.39) that there exists c4 > 0 such that, 
for all k greater than some K, Hk is positive-definite and ‖H−1‖ < c4.k 

Given a k > K, let η∗ be the solution of Hkη
∗ = −grad m̂xk

(0). It fol­k k 

lows that ‖ηk
∗ ‖ ≤ c4‖grad ̂ (0)‖. Since {xk} converges to a critical point mxk

of f and since grad m̂xk
(0) = grad f(xk) in view of (7.6), we obtain that 

‖η∗ c4‖grad ̂ (0)‖ ≤ Δ for any given k‖ ≤ mxk
˜

j 
Δ̃ > 0 by choosing K larger 

if necessary. Then, since the sequence of ηk’s constructed by the truncated 
CG inner iteration (Algorithm 11) is strictly increasing in norm (Propo­
sition 7.3.2) and would reach ηk 

∗ at j = d in the absence of the stopping 
criterion, it follows that (7.40) holds. 

We prove (7.41). Let γk denote ‖grad f(xk)‖. It follows from the definition 
of ρk that 

mxk
(ηk) − f̂xk

(ηk)
ρk − 1 = 

̂
. (7.47) 

mxk
(0xk

mxk
(ηk)̂ ) − ̂

From Taylor’s theorem, it holds that 

f̂xk
(ηk) = f̂xk

(0xk
) + 〈grad f(xk), ηk〉xk ∫ 1 

+ 〈Hess f̂xk
(τηk)[ηk], ηk〉xk

(1 − τ)dτ. 
0 
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It follows that ∣∣∣m̂xk
(ηk) − f̂xk

(ηk)
∣∣∣ 

= 

∣∣∣∣
∫ 1 (

〈Hk[ηk], ηk〉xk 
− 〈Hess f̂xk

(τηk)[ηk], ηk〉xk 

) 
(1 − τ ) dτ 

∣∣∣∣
0
∫ 1


≤ 
0 

∣∣∣〈(Hk − Hess f̂xk
(0xk

))[ηk], ηk〉xk 

∣∣∣ (1 − τ ) dτ


+ 
∫ 1 ∣∣∣〈(Hess f̂xk

(0xk
) − Hess f̂(τηk))[ηk], ηk〉xk 

∣∣∣ (1 − τ) dτ 
0 

1 2 1 3≤ 
2 
βHγk‖ηk‖ +

6 
βL2‖ηk‖ . 

It then follows from (7.47), using the Cauchy bound (7.14), that 

(3βHγk + βL2‖ηk‖) ‖ηk‖2 
,|ρk − 1| ≤ 

6γk min{Δk, γk/β} 
where β is an upper bound on the norm of Hk. Since ‖ηk‖ ≤ Δk and ‖ηk‖ ≤ 
c4γk, it follows that 

2
(3βH + βL2c4) (min{Δk, c4γk})|ρk − 1| ≤ 

6 min{Δk, γk/β} 
. (7.48) 

Either Δk is active in the denominator of (7.48), in which case we have 

(3βH + βL2c4) Δkc4γk (3βH + βL2c4) c4 |ρk − 1| ≤ 
6Δk 

=
6 

γk, 

or γk/β is active in the denominator of (7.48), in which case we have 

(3βH + βL2c4) (c4γk)
2 

(3βH + βL2c4) c4
2β |ρk − 1| ≤ 

6γk/β 
=

6 
γk. 

In both cases, limk→∞ ρk = 1 since, in view of (7.39), limk→∞ γk = 0. 
Equation (7.42) comes from Lemma 7.4.9. 
We prove (7.43). It follows from Taylor’s formula (Lemma 7.4.7, where 

the parallel translation becomes the identity since the domain of f̂xk 
is the 

Euclidean space Txk
M) that 

grad f̂xk
(ξ) = grad f̂xk

(0xk
) + Hess f̂xk

(0xk
)[ξ] 

+ 
∫ 1 (

Hess f̂xk
(τξ) − Hess f̂xk

(0xk
)
) 

[ξ] dτ. 
0 

The conclusion comes by the Lipschitz condition (7.37) and the approxima­
tion condition (7.36). 

Finally, equation (7.44) comes from the stopping criterion (7.10) of the 
inner iteration. More precisely, the truncated CG loop (Algorithm 11) ter­
minates if 〈δj ,Hkδj〉 ≤ 0 or ‖ηj+1‖ ≥ Δ or the criterion (7.10) is satisfied. 
Since {xk} converges to v and Hess f(v) is positive-definite, it follows that 
Hk is positive-definite for all k greater than a certain K. Therefore, for all 
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k > K, the criterion 〈δj ,Hkδj〉 ≤ 0 is never satisfied. In view of (7.40) 
and (7.41), it can be shown that the trust region is eventually inactive. 
Therefore, increasing K if necessary, the criterion ‖ηj+1‖ ≥ Δ is never 
satisfied for all k > K. In conclusion, for all k > K, the stopping crite­
rion (7.10) is satisfied each time a computed ηk is returned by the truncated 
CG loop. Therefore, the truncated CG loop behaves as a classical linear CG 
method. Consequently, grad ̂ (ηj) = rj for all j. Choose K such that for mxk

all k > K, ‖grad f(xk)‖ = ‖grad m̂xk
(0)‖ is so small—it converges to zero 

in view of (7.39)—that the stopping criterion (7.10) yields 

‖grad m̂xk
(ηj)‖ = ‖rj‖ ≤ ‖r0‖1+θ = ‖grad m̂xk

(0)‖1+θ . (7.49) 

This is (7.44) with c2 = 1. � 

The constants in the proof of Theorem 7.4.11 can be chosen as c0 < λmin, 
′ c1 > λmax, c4 > 1/λmin, c5 > 1, c3 ≥ βL2, c3 ≥ βH, c2 ≥ 1, where λmin 

and λmax are the smallest and largest eigenvalue of Hess f(v), respectively. 
Consequently, the constant c in the convergence bound (7.38) can be chosen 
as 

+ λ1+θc > 
1 ((

βL2/λ
2 

) 
λ2 

) 
. (7.50) min + βH/λmin max max λmin 

A nicer-looking bound holds when convergence is evaluated in terms of the 
norm of the gradient, as expressed in the theorem below which is a direct 
consequence of (7.45) and (7.46). 

Theorem 7.4.12 Under the assumptions of Theorem 7.4.11, if θ + 1 < 2, 
then given cg > 1 and {xk} generated by the algorithm, there exists K > 0 
such that 

‖grad f(xk+1)‖ ≤ cg‖grad f(xk)‖θ+1 

for all k > K. 

Nevertheless, (7.50) suggests that the algorithm may not perform well when 
the relative gap λmax/λmin is large. In spite of this, numerical experiments 
on eigenvalue problems have shown that the method tends to behave as well 
as, or even better than, other methods in the presence of a small relative 
gap. 

7.4.3 Discussion 

The main global convergence result (Theorem 7.4.4) shows that RTR-tCG 
method (Algorithm 10-11) converges to a set of critical points of the cost 
function for all initial conditions. This is an improvement on the pure New­
ton method (Algorithm 5), for which only local convergence results exist. 
However, the convergence theory falls short of showing that the algorithm 
always converges to a local minimizer. This is not surprising: since we have 
ruled out the possibility of checking the positive-definiteness of the Hessian 
of the cost function, we have no way of testing whether a critical point is 
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a local minimizer or not. (Note as an aside that even checking the positive-
definiteness of the Hessian is not always sufficient for determining if a critical 
point is a local minimizer or not: if the Hessian is singular and nonnegative-
definite, then no conclusion can be drawn.) In fact, for the vast majority 
of optimization methods, only convergence to critical points can be secured 
unless some specific assumptions (like convexity) are made. Nevertheless, it 
is observed in numerical experiments with random initial conditions that 
the algorithm systematically converges to a local minimizer; convergence to 
a saddle point is observed only on specifically crafted problems, e.g., when 
the iteration is started on a point that is a saddle point in computer arith­
metic. This is due to the fact that the algorithm is a descent method, i.e., 
f(xk+1) < f(xk) whenever xk+1 = xk. Therefore, saddle points or local 
maxima are unstable fixed points of the algorithm. 

There are cases where the bound (7.38) holds with order min{θ + 1, 3}; 
i.e., by choosing θ ≥ 2, one obtains cubic convergence. This situation occurs 
when the Taylor expansion of the cost function around the limit point has 
no third-order contribution. Thus, the second-order approximation used in 
the algorithm becomes an effective third-order approximation, and the order 
of convergence benefits as expected. In practice, this condition holds more 
often than one might guess since any cost function that is symmetric around 
the local minimizer v, i.e., f(Expx(ξ)) = f(Expx(−ξ)), will have only even 
contributions to its Taylor expansion. 

7.5 APPLICATIONS 

In this section, we briefly review the essential “ingredients” necessary for 
applying the RTR-tCG method (Algorithm 10-11), and we present two ex­
amples in detail as an illustration. One of these examples is optimization of 
the Rayleigh quotient, leading to an algorithm for computing extreme in­
variant subpaces of symmetric matrices. Since trust-region algorithms with 
an exact Hessian can be thought of as enhanced Newton methods, and since 
the Newton equation for Rayleigh quotient optimization is equivalent to the 
Jacobi equation (see Notes and References in Chapter 6), it is not surpris­
ing that this algorithm has close links with the celebrated Jacobi-Davidson 
approach to the eigenproblem. The Riemannian trust-region approach sheds 
new light on the Jacobi-Davidson method. In particular, it yields new ways 
to deal with the Jacobi equation so as to reduce the computational bur­
den while preserving the superlinear convergence inherited from the Newton 
approach and obtaining strong global convergence results supported by a 
detailed analysis. 

7.5.1 Checklist 

The following elements are required for applying the RTR method to opti­
mizing a cost function f on a Riemannian manifold (M, g): (i) a tractable 
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numerical representation for points x on M, for tangent spaces TxM, and 
for the inner products 〈·, ·〉x on TxM; (ii) a retraction Rx : TxM→M (Def­
inition 4.1.1); (iii) formulas for f(x), grad f(x) and an approximate Hessian 
Hx that satisfies the properties required for the convergence results in Sec­
tion 7.4. 

Formulas for grad f(x) and Hess f̂x(0x) can be obtained by identification 
in a Taylor expansion of the lifted cost function f̂x, namely 

fx(η) = f(x) + 〈grad f(x), η〉x + 2
1 〈Hess f̂x(0x)[η], η〉x + O(‖η‖3), 

where grad f(x) ∈ TxM and Hess f̂x(0x) is a linear transformation of TxM. 
A formula for Hess f̂x(0x) is not needed, though; the convergence theory 
requires only an “approximate Hessian” Hx that satisfies the approximation 
condition (7.36). To obtain such an Hx, one can pick Hx := Hess(f ◦R̃x)(0x), 
where R̃ is any retraction. Then, assuming sufficient smoothness of f , the 
bound (7.36) follows from Lemmas 7.4.8 and 5.5.6. In particular, the choice 
R̃x = Exp yields x 

Hx := ∇ grad f(x) (= Hess f(x)) , (7.51) 
where ∇ denotes the Riemannian connection, and the model ̂ takes the mx 

form (7.1). If M is a Riemannian submanifold or a Riemannian quotient of a 
Euclidean space, then ∇ grad f(x) admits a simple formula; see Section 5.3. 

7.5.2 Symmetric eigenvalue decomposition 

Let M be the orthogonal group 
M = On = {Q ∈ Rn×n : QTQ = In}. 

This manifold is an embedded submanifold of Rn×n (Section 3.3). The tan­
gent spaces are given by TQOn = {QΩ : Ω = −ΩT } (Section 3.5.7). The 
canonical Euclidean metric g(A,B) = tr(ATB) on Rn×n induces on On the 
metric 

〈QΩ1, QΩ2〉Q = tr(ΩT 
1 Ω2). (7.52) 

A retraction RQ : TQOn On must be chosen that satisfies the properties →
stated in Section 7.2. Several possibilities are mentioned in Section 4.1.1. 

Consider the cost function 
f(Q) = tr(QTAQN), 

where A and N are n × n symmetric matrices. For N = diag(µ1, . . . , µn), 
µ1 < < µn, the minimum of f is realized by the orthonormal matrices · · · 
of eigenvectors of A sorted in decreasing order of corresponding eigenvalue 
(this is a consequence of the critical points analysis in Section 4.8). Assume 
that the retraction R approximates the exponential at least to order 2. With 
the metric g defined as in (7.52), we obtain 

f̂Q(QΩ) := f(RQ(QΩ)) 

= tr((I + Ω + 12Ω2 + O(Ω3))TQTAQ(I + Ω + 12Ω2 + O(Ω3))N) 

= f(Q) + 2tr(ΩTQTAQN) 

+ tr(ΩTQTAQΩN − ΩT ΩQTAQN) + O(Ω3), 
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from which it follows that 

Df̂Q(0)[QΩ] = 2 tr(QTAQΩN ) 
1 D2fQ(0)[QΩ1, QΩ2] = tr(ΩT 

1 Q
TAQΩ2N − 1 (ΩT 

1 Ω2 + ΩT 
2 Ω1)QTAQN)2 

̂
2

grad f̂Q(0)= grad f(Q) = Q[QTAQ,N ] 

Hess f̂Q(0)[QΩ]= Hess f(Q)[QΩ] = 2
1Q[[QTAQ, Ω], N ] + 2

1Q[[N, Ω], QTAQ], 

where [A,B] := AB − BA. It is now straightforward to replace these expres­
sions in the general formulation of Algorithm 10-11 and obtain a practical 
matrix algorithm. 

An alternative way to obtain Hess f̂Q(0) is to exploit Proposition 5.5.5, 
which yields Hess f̂Q(0) = ∇ grad f(Q). Since the manifold M is an embed­
ded Riemannian submanifold of Rn×p, the covariant derivative ∇ is obtained 
by projecting the derivative in Rn×p onto the tangent space to M; see Sec­
tion 5.3.3. We obtain Hess f(Q)[QΩ] = Q skew(Ω[QTAQ,N ] + [ΩTQTAQ + 
QTAQΩ, N ], which yields the same result as above. 

All these ingredients can now be used in Algorithm 10-11 to obtain an it­
eration that satisfies the convergence properties proven in Section 7.4. Con­
vergence to the critical points of the cost function means convergence to the 
matrices whose column vectors are the eigenvectors of A. Only the matrices 
containing eigenvectors in decreasing order of eigenvalue can be stable fixed 
points for the algorithm. They are asymptotically stable, with superlinear 
convergence, when all the eigenvalues are simple. 

7.5.3 Computing an extreme eigenspace 

Following up on the geometric Newton method for the generalized eigenvalue 
problem obtained in Section 6.4.3, we assume again that A and B are n × n 
symmetric matrices with B positive-definite, and we consider the generalized 
eigenvalue problem 

Av = λBv. 

We want to compute the leftmost p-dimensional invariant subspace of the 
pencil (A,B). 

We consider the Rayleigh quotient function f defined by 

f(span(Y )) = tr((Y TAY )(Y TBY )−1), (7.53) 

where Y belongs to the set of full-rank n × p matrices and span(Y ) denotes 
the column space of Y . The critical points of f are the invariant subspaces 
of the pencil (A,B), and the minimizers of f correspond to the leftmost 
invariant subspaces of (A,B). 

In Section 6.4.3, we chose a noncanonical Riemannian metric (6.29) that 
yields a relatively short formula (6.34) for the Riemannian Hessian of f , 
obtained using the theory of Riemannian submersions (Proposition 5.3.4). 
In this section, we again use the definition 

HY = {Z ∈ Rn×p : Y TBZ = 0} 
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for the horizontal spaces, and we take 
RY (ξ) = span(Y + ξY ), (7.54) 

where Y = span(Y ) and ξY stands for the horizontal lift of the tangent 
vector ξ ∈ TY Grass(p, n). But now we define the Riemannian metric as 

T 〈ξ, ζ〉Y = tr 
(

(Y TBY )−1ξY ζY 

) 
. (7.55) 

Notice that the horizontal space is not orthogonal to the vertical space with 
respect to the new Riemannian metric (7.55), so we have to renounce using 
the Riemannian submersion theory. However, we will see that with these 
choices for the horizontal space, the retraction, and the Riemannian metric, 
the second-order Taylor development of f̂x := f Rx admits quite a simple ◦
form. 

For the Rayleigh cost function (7.53), using the notation 
PU,V = I − U(V TU)−1V T (7.56) 

for the projector parallel to the span of U onto the orthogonal complement 
of the span of V , we obtain 

f̂Y (ξ) 

= f(RY (ξ)) = tr 
((

(Y + ξY )
TB(Y + ξY )

)−1 (
(Y + ξY )

TA(Y + ξY )
)) 

T 
= tr 

(
(Y TBY )−1Y TAY 

) 
+ 2 tr 

(
(Y TBY )−1ξY AY 

) 

3)+ tr 
(

(Y TBY )−1ξY

T (
AξY − BξY (Y TBY )−1(Y TAY )

)) 
+ O(‖ξ‖

T 
= tr 

(
(Y TBY )−1Y TAY 

) 
+ 2 tr 

(
(Y TBY )−1ξY PBY,BY AY 

) 

T 
+ tr 

(
(Y TBY )−1ξY PBY,BY 

(
AξY − BξY (Y TBY )−1(Y TAY )

)) 

+ O(‖ξ‖3), 
(7.57) 

where the introduction of the projectors does not modify the expression since 
PBY,BY ξY = ξY . By identification, using the noncanonical metric (7.55), we 
obtain 

grad f(Y) = grad f̂Y (0) = 2PBY,BY AY (7.58) Y Y 

and 
Hess f̂Y (0Y )[ξ] = 2PBY,BY 

(
AξY − BξY (Y TBY )−1(Y TAY )

) 
. (7.59) Y 

Notice that Hess f̂Y (0Y ) is symmetric with respect to the metric, as required. 
We choose to take 

HY := Hess f̂Y (0Y ). (7.60) 
Consequently, the approximation condition (7.36) is trivially satisfied. The 
model (7.6) is thus 
m̂Y (ξ) = f(Y) + 〈grad f(Y), ξ〉Y + 2

1 〈HY ξ, ξ〉Y 

T 
= tr 

(
(Y TBY )−1Y TAY 

) 
+ 2 tr 

(
(Y TBY )−1ξY AY 

) 

(7.61) 

+ tr 
(

(Y TBY )−1ξY

T (
AξY − BξY (Y TBY )−1Y TAY 

)) 
. 
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(Observe that for B = I and p = 1, and choosing y = Y of unit norm, the 

model (7.61) becomes m̂Y (ξ) = tr(yTAy) + 2ξy

T 
Ay + ξy

T 
(A − yTAyI)ξy, 

yT ξy = 0. Assuming that the Hessian is nonsingular, this model has a unique 
critical point that is the solution of the Newton equation (6.17) for the 
Rayleigh quotient on the sphere.) 

Since the Rayleigh cost function (7.53) is smooth on Grass(p, n) and since 
Grass(p, n) is compact, it follows that all the assumptions involved in the 
convergence analysis of the general RTR-tCG algorithm (Section 7.4) are 
satisfied. The only complication is that we do not have a closed-form expres­
sion for the distance involved in the superlinear convergence result (7.38). 
But since B is fixed and positive-definite, the distances induced by the non-
canonical metric (7.55) and by the canonical metric—(7.55) with B := I— 
are locally equivalent, and therefore for a given sequence both distances 
yield the same rate of convergence. (Saying that two distances dist1 and 
dist2 are locally equivalent means that given x ∈ M, there is a neighbor­
hood U of x and constants c1, c2 > 0 such that, for all y in U , we have 
c1 dist1(x, y) ≤ dist2(x, y) ≤ c2 dist1(x, y). 

We have now all the required information to use the RTR-tCG method (Al­
gorithm 10-11) for minimizing the Rayleigh cost function (7.53) on the Grass­
mann manifold Grass(p, n) endowed with the noncanonical metric (7.55). A 
matrix version of the inner iteration is displayed in Algorithm 12, where we 
omit the horizontal lift notation for conciseness and define 

HY [Z] := PBY,BY (AZ − BZ(Y TBY )−1Y TAY ). (7.62) 
Note that omission of the factor 2 in both the gradient and the Hessian does 
not affect the sequence {η} generated by the truncated CG algorithm. 

According to the retraction formula (7.54), the returned ηk yields a can­
didate new iterate 

Yk+1 = (Yk + ηk)Mk, 
where Mk is chosen such that Yk

T 
+1BYk+1 = I. The candidate is accepted or 

rejected, and the trust-region radius is updated as prescribed in the outer 
RTR method (Algorithm 10), where ρ is computed using m̂ as in (7.61) and 
f̂ as in (7.57). 

The resulting algorithm converges to the set of invariant subspaces of 
(A,B)—which are the critical points of the cost function (7.53)—and con­
vergence to the leftmost invariant subspace V is expected to occur in practice 
since the other invariant subspaces are numerically unstable. Moreover, since 
V is a nondegenerate local minimum (under our assumption that λp < λp+1), 
it follows that the rate of convergence is min{θ +1, 2}, where θ is the param­
eter appearing in the stopping criterion (7.10) of the inner (truncated CG) 
iteration. 

Numerical experiments illustrating the convergence of the Riemannian 
trust-region algorithm for extreme invariant subspace computation are pre­
sented in Figures 7.1 and 7.2. The θ parameter of the inner stopping crite­
rion (7.10) was chosen equal to 1 to obtain quadratic convergence (see The­
orem 7.4.11). The right-hand plot shows a case with a small eigenvalue gap, 
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Algorithm 12 Truncated CG method for the generalized eigenvalue prob­
lem 
Require: Symmetric n × n matrices A and B with B positive-definite; a 

B-orthonormal full-rank n × p matrix Y (i.e., Y TBY = I); operator HY 

defined in (7.62); Δ > 0. 
1: Set η0 = 0 ∈ Rn×p, r0 = PBY,BY AY , δ0 = −r0; j = 0; 
2: loop 
3: if tr 

(
δj

THY [δj ]
) 
≤ 0 then 

4: Compute τ > 0 such that η = ηj + τδj satisfies tr 
(
ηT η

) 
= Δ; 

5: return ηk := η; 
6: end if 

T7: Set αj = tr 
(
rj rj

) 
/tr 
(
δj

THY [δj ]
)
; 

8: Set ηj+1 = ηj + αjδj ; 

9: if tr 
((
ηj+1

)T 
ηj+1

) 
≥ Δ then 

10: Compute τ ≥ 0 such that η = ηj + τδj satisfies tr 
(
ηT η

) 
= Δ; 

11: return ηk := η; 
12: end if 
13:	 Set rj+1 = rj + αHY [δj ]; 

T T14: Set βj+1 = tr 
(
rj+1rj+1

) 
/tr 
(
rj rj

)
; 

15: Set δj+1 = −rj+1 + βj+1δj ; 
16: if a stopping criterion is satisfied then 
17: return ηk := ηj ; 
18: end if 
19: end loop 

which implies that the smallest eigenvalue of the Hessian of the cost function 
at the solution is much smaller than its largest eigenvalue. This suggests that 
the multiplicative constant in the superlinear convergence bound (7.38) is 
large, which explains why superlinear convergence sets in less clearly than 
on the left-hand plot featuring a large eigenvalue gap. An experiment with a 
smaller machine epsilon would reveal a quadratic convergence pattern; i.e., 
the number of digits of accuracy eventually approximately doubles at each 
new iterate. (All the experiments described in this book were performed with 
a machine epsilon of approximately 2 10−16.) · 

The eigenvalue algorithm resulting from the proposed approach is surpris­
ingly competitive with other eigenvalue methods in spite of the fact that it 
is just a brute-force application of a general optimization scheme that does 
not make any attempt to exploit the specific form of the Rayleigh quotient 
cost function. The efficiency of the algorithm is supported by its similarity to 
the Jacobi-Davidson eigenvalue method, in particular to the JDCG method 
of Notay. Nevertheless, the algorithm admits several enhancements, includ­
ing subspace acceleration techniques and the possible monitoring of the ρ 
ratio within the inner iteration at a low computational cost. These enhance­
ments, as well as comparisons with state-of-the-art eigenvalue methods, are 
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Figure 7.1 Numerical experiments on a trust-region algorithm for minimizing the 
Rayleigh cost function (7.53) on the Grassmann manifold Grass(p, n), 
with n = 100 and p = 5. B = I, and A is chosen with p eigenvalues 
evenly spaced on the interval [1, 2] and the other (n − p) eigenvalues 
evenly spaced on the interval [10, 11]; this is a problem with a large 
eigenvalue gap. The horizontal axis gives the number of multiplications 
of A times a block of p vectors. The vertical axis gives the distance to the 
solution, defined as the square root of the sum of the canonical angles 
between the current subspace and the leftmost p-dimensional invariant 
subspace of A. (This distance corresponds to the geodesic distance on 
the Grassmann manifold endowed with its canonical metric (3.44).) 

presented in articles mentioned in Notes and References. 

7.6 NOTES AND REFERENCES 

The Riemannian trust-region approach was first proposed in [ABG04]. Most 
of the material in this section comes from [ABG07]. 

For more information on trust-region methods in Rn, we refer the reader 
to Conn et al. [CGT00]. Trust-region methods are also discussed in text­
books on numerical optimization such as Nocedal and Wright [NW99]; see 
also Hei [Hei03], Gould et al. [GOST05], and Walmag and Delhez [WD05] 
for recent developments. Algorithm 10 reduces to [NW99, Alg. 4.1] in the 
classical Rn case; variants can be found in Conn et al. [CGT00, Ch. 10]. 

The method for computing an accurate solution of the trust-region sub­
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Figure 7.2 Same situation as in Figure 7.1 but now with B = I and A = 
diag(1, . . . , n). 

problem is due to Moré and Sorensen [MS83]. Proposition 7.3.1 is a straight­
forward transcription of [CGT00, Th. 7.4.1], which itself generalizes results 
from [MS83] (or see [NW99, Th. 4.3]) to general norms. 

The truncated CG method presented in Algorithm 11 closely follows the 
algorithm proposed by Steihaug [Ste83]; see also the work of Toint [Toi81]. 
Proposition 7.3.2 is due to Steihaug [Ste83, Th. 2.1]. The reader interested in 
the underlying principles of the Steihaug-Toint truncated CG method should 
refer to [Ste83], [NW99], or [CGT00]. 

Besides the truncated CG method, available algorithms for (approxi­
mately) solving trust-region subproblems include the dogleg method of 
Powell [Pow70], the double-dogleg method of Dennis and Mei [DM79], the 
method of Moré and Sorensen [MS83], the two-dimensional subspace mini­
mization strategy of Byrd et al. [BSS88], the method based on the difference 
of convex functions proposed by Pham Dinh Tao and Le Thi Hoai An [TA98], 
the truncated Lanczos approach of Gould et al. [GLRT99], the matrix-free 
eigenproblem-based algorithm of Rojas et al. [RSS00], and the sequential 
subspace method of Hager [Hag01, HP05]. These and other methods are 
discussed in Conn et al. [CGT00, §7.5.4]. 

The classical global convergence results for trust-region methods in Rn 

can be found in Nocedal and Wright [NW99] (see in particular Theorem 4.8) 
and Conn et al. [CGT00]. A Taylor development similar to Lemma 7.4.7 can 
be found in Smith [Smi94]. The principle of the argument of Theorem 7.4.10 
is closely related to the capture theorem, see Bertsekas [Ber95, Th 1.2.5]. A 
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discussion on cubic versus quadratic convergence can be found in Dehaene 
and Vandewalle [DV00]. A proof of Corollary 7.4.6 is given in [ABG06a]. 

Experiments, comparisons, and further developments are presented 
in [ABG06b, ABGS05, BAG06] for the Riemannian trust-region ap­
proach to extreme invariant subspace computation (Section 7.5.3). Refer­
ence [ABG06b] works out a brute-force application of the Riemannian trust-
region method to the optimization of the Rayleigh quotient cost function on 
the sphere: comparisons are made with other eigenvalue methods, in par­
ticular the JDCG algorithm of Notay [Not02] and the Tracemin algorithm 
of Sameh, Wisniewski, and Tong [SW82, ST00], and numerical results are 
presented. Reference [ABGS05] proposes a two-phase method that combines 
the advantages of the (unshifted) Tracemin method and of the RTR-tCG 
method with and order-2 model; it allows one to make efficient use of a 
preconditioner in the first iterations by relaxing the trust-region constraint. 
The implicit RTR method proposed in Baker et al. [BAG06] makes use of 
the particular structure of the eigenvalue problem to monitor the value of 
the ratio ρ in the course of the inner iteration with little computational 
overhead, thereby avoiding the rejection of iterates because of poor model 
quality; for some problems, this technique considerably speeds up the itera­
tion while the iterates are still far away from the solution, especially when 
a good preconditioner is available. 
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Chapter Eight


A Constellation of Superlinear Algorithms 

The Newton method (Algorithm 5 in Chapter 6) applied to the gradient of 
a real-valued cost is the archetypal superlinear optimization method. The 
Newton method, however, suffers from a lack of global convergence and the 
prohibitive numerical cost of solving the Newton equation (6.2) necessary for 
each iteration. The trust-region approach, presented in Chapter 7, provides 
a sound framework for addressing these shortcomings and is a good choice 
for a generic optimization algorithm. Trust-region methods, however, are al­
gorithmically complex and may not perform ideally on all problems. A host 
of other algorithms have been developed that provide lower-cost numerical 
iterations and stronger global convergence properties than the Newton iter­
ation while still approximating the second-order properties of the Newton 
algorithm sufficiently well to obtain superlinear local convergence. The pur­
pose of this chapter is to briefly review some of these techniques and show 
how they can be generalized to manifolds. These techniques admit so many 
variations that we have no pretention of being exhaustive. Most available 
optimization schemes in Rn have never been formulated on abstract mani­
folds. Considering each algorithm in detail is beyond the scope of this book. 
We will instead focus on resolving a common issue underlying most of these 
algorithms—approximating derivatives by finite differences on manifolds. To 
this end, we introduce the concept of vector transport, which relaxes the 
computational requirements of parallel translation in very much the same 
way as the concept of retraction relaxes the computational requirements of 
exponential mapping. Vector transport is a basic ingredient in generalizing 
the class of finite-difference and conjugate-gradient algorithms on manifolds. 

We conclude the chapter by considering the problem of determining a 
solution, or more generally a least-squares solution, of a system of equations 
F (x) = 0, where F is a function on a manifold into Rn . Although this 
problem is readily rewritten as the minimization of the squared norm of F , 
its particular structure lends itself to specific developments. 

8.1 VECTOR TRANSPORT 

In Chapter 4, on first-order algorithms, the notion of retraction was intro­
duced as a general way to take a step in the direction of a tangent vector. 
(The tangent vector was, typically, the steepest-descent direction for the cost 
function.) In second-order algorithms, when the second-order information is 
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not readily available through a closed-form Jacobian or Hessian, it will be 
necessary to approximate second derivatives by “comparing” first-order in­
formation (tangent vectors) at distinct points on the manifold. The notion 
of vector transport T on a manifold M, roughly speaking, specifies how to 
transport a tangent vector ξ from a point x ∈M to a point Rx(η) ∈M. 

Vector transport, as defined below, is not a standard concept of differential 
geometry. (Neither is the notion of retraction.) However, as we will see, it 
is closely related to the classical concept of parallel translation. The reason 
for considering the more general notion of vector transport is similar to the 
reason for considering general retractions rather than the specific exponen­
tial mapping. Parallel translation along geodesics is a vector transport that 
is associated with any affine connection in a natural way. Conceptually ap­
pealing (like the exponential mapping), it can, however, be computationally 
demanding or cumbersome in numerical algorithms. Another vector trans­
port may reduce (in some cases dramatically) the computational effort while 
retaining the convergence properties of the algorithm. 

Let T M⊕ T M denote the set 

T M⊕ T M = {(ηx, ξx) : ηx, ξx ∈ TxM, x ∈ M}. 
This set admits a natural manifold structure for which the mappings 

(ηx, ξx) ∈ T M⊕ T M 7→ (ϕ1(x), . . . , ϕd(x), ηxϕ1, . . . , ηxϕd, ξxϕ1, . . . , ξxϕd) 

are charts whenever ϕ is a chart of the manifold M. The operation ⊕ is 
called the Whitney sum. 

We refer to Figure 8.1 for an illustation of the following definition. 

x 

M 

TxM 

ηx 

Rx(ηx) 

ξx 

Tηx ξx 

Figure 8.1 Vector transport. 

Definition 8.1.1 (vector transport) A vector transport on a manifold 
M is a smooth mapping 

T M⊕ T M→ T M : (ηx, ξx) 7→ Tηx 
(ξx) ∈ T M 

satisfying the following properties for all x ∈M: 
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(i) (Associated retraction) There exists a retraction R, called the retrac­
tion associated with T , such that the following diagram commutes 

(ηx, ξx) T �� Tηx 
(ξx) 

π 

�� ��

ηx 
R 

�� π (Tηx 
(ξx)) 

where π (Tηx 
(ξx)) denotes the foot of the tangent vector Tηx 

(ξx). 
(ii) (Consistency) T0x 

ξx = ξx for all ξx ∈ TxM; 
(iii) (Linearity) Tηx 

(aξx + bζx) = aTηx 
(ξx) + bTηx 

(ζx). 

The first point in Definition 8.1.1 means that Tηx 
ξx is a tangent vector 

in TRx(ηx)M, where R is the retraction associated with T . When it exists, 
(Tηx 

)−1(ξRx(ηx)) belongs to TxM. If η and ξ are two vector fields on M, 
then (Tη)−1ξ is naturally defined as the vector field satisfying 

−1(
(Tη)−1ξ

) 
= (Tηx 

) (ξRx(ηx)). x 

8.1.1 Vector transport and affine connections 

There is a close relationship between vector transport and affine connections. 
If T is a vector transport and R is the associated retraction, then 

d −1∇ηx 
ξ := 

dt 
Ttηx 

ξR(tηx) (8.1) 

∣∣∣∣
t=0 

defines an affine connection. The properties are readily checked from the 
definition. 

Conversely, parallel translation is a particular vector transport that can be 
associated with any affine connection. Let M be a manifold endowed with an 
affine connection ∇ and recall from Section 5.4 the notation t 7→ P t←aξ(a)γ 

for the parallel vector field on the curve γ that satisfies Pγ
a←a = γ(a) and 

D (
P t←aξ(a)

) 
= 0. 

dt γ 

Proposition 8.1.2 If ∇ is an affine connection and R is a retraction on a 
manifold M, then 

Tηx 
(ξx) := Pγ 

1←0ξx (8.2) 

is a vector transport with associated retraction R, where Pγ denotes the par­
allel translation induced by ∇ along the curve t 7→ γ(t) = Rx(tηx). Moreover, 
T and ∇ satisfy (8.1). 

Proof. It is readily checked that (8.2) defines a vector transport. For the 
second claim, let R be a retraction and let T be defined by the parallel 
translation induced by ∇, i.e., 

D 
(Ttηx 

ξx) = 0 (8.3)
dt 
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with π(Ttηx 
ξx) = R(tηx) and T0x 

ξx = ξx. Let ∇̂ be defined by 

ˆ ξ := 
d ∇ηx dt 
Ttη
−

x 

1ξR(tηx) . 

∣∣∣∣
t=0 

We want to show that ∇ηx 
ξ = ∇̂ηx 

ξ for all ηx, ξ. Let ξ̃ denote the vector 
field defined by ξ̃y = TR−1 y ξx for all y sufficiently close to x. We have 

x 

∇̂ηx 
ξ = ∇̂ηx 

(ξ − ξ̃) + ∇̂ηx 
ξ̃ = ∇̂ηx 

(ξ − ξ̃) = ∇ηx 
(ξ − ξ̃) = ∇ηx 

ξ, 

where we have used the identities ∇̂ηx 
ξ̃ = 0 (which holds in view of the 

definitions of ∇̂ and ξ̃), ∇̂ηx 
(ξ − ξ̃) = ∇ηx 

(ξ − ξ̃) (in view of ξx − ξ̃x = 0), 

and ∇ηx 
ξ̃ = 0 (since ∇ηx 

ξ̃ = d
D 
t ξ̃R(tηx) 

∣∣∣
t=0 

= d
D 
t Ttηx 

ξx 

∣∣
t=0 

= 0). � 

We also point out that if M is a Riemannian manifold, then the parallel 
translation defined by the Riemannian connection is an isometry, i.e., 

〈Pγ
t←aξ(a), P γ

t←aζ(a)〉 = 〈ξ(a), ζ(a)〉. 

Example 8.1.1 Sphere 
We consider the sphere Sn−1 with its structure of Riemannian submanifold 

of Rn. Let t 7→ x(t) be a geodesic for the Riemannian connection (5.16) on 
Sn−1 1; see (5.25). Let u denote x(0)‖ ẋ(0). The parallel translation (associated ‖ ̇

with the Riemannian connection) of a vector ξ(0) ∈ Tx(0) along the geodesic 
is given by 

ξ(t) = −x(0) sin(‖ẋ(0)‖t)u T ξ(0) + u cos(‖ẋ(0)‖t)x T (0)ξ(0) + (I − uu T )ξ(0). 
(8.4) 

Example 8.1.2 Stiefel manifold 
There is no known closed form for the parallel translation along geodesics 

for the Stiefel manifold St(p, n) endowed with the Riemannian connection 
inherited from the embedding in Rn×p. 

Example 8.1.3 Grassmann manifold 
Consider the Grassmann manifold viewed as a Riemannian quotient man­

ifold of Rn×p with the inherited Riemannian connection. Let t 7→ Y(t) be a 

geodesic for this connection, with Y(0) = span(Y0) and Ẏ(0) = UΣV T , a Y0 

thin singular value decomposition (i.e., U is n × p orthonormal, V is p × p 
orthonormal, and Σ is p × p diagonal with nonnegative entries). We assume 
for simplicity that Y0 is chosen orthonormal. Let ξ(0) be a tangent vector at 
Y(0). Then the parallel translation of ξ(0) along the geodesic is given by 

ξ(t)Y (t) = −Y0V sin(Σt)UT ξ(0)Y0 
+ U cos(Σt)UT ξ(0)Y0 

+ (I − UUT )ξ(0)Y0 
. 

(8.5) 

Parallel translation is not the only way to achieve vector transport. As 
was the case with the choice of retraction, there is considerable flexibility 
in how a vector translation is chosen for a given problem. The approach 
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taken will depend on the problem considered and the resourcefulness of the 
scientist designing the algorithm. In the next three subsections we present 
three approaches that can be used to generate computationally tractable 
vector translation mappings for the manifolds associated with the class of 
applications considered in this book. 

8.1.2 Vector transport by differentiated retraction 

Let M be a manifold endowed with a retraction R. Then a vector transport 
on M is defined by 

Tηx 
ξx := DRx (ηx) [ξx] ; (8.6) 

i.e., 
d 
Rx(ηx + tξx) ;Tηx 

ξx = 
dt 

∣∣∣∣
t=0 

see Figure 8.2. Notice in particular that, in view of the local rigidity condition 
DRx(0x) = id, the condition T0x 

ξ = ξ for all ξ ∈ TxM is satisfied. 

x 

M 

TxM 

η 

Rx(η) 
Tηξx 

Rx(η + ξ) 

ξ 

Figure 8.2 The vector transport Tη(ξ) := DRx (η) [ξ]. 

The definition (8.6) also provides a way to associate an affine connection 
with a retraction using (8.6) and (8.1). 

We also point out that the vector transport (8.6) of a tangent vector along 
itself is given by 

d Tηx 
ηx =

dt 
(Rx(tηx)) . 

∣∣∣∣
t=1 

Example 8.1.4 Sphere 
On the sphere Sn−1 with the projection retraction


Rx(ξx) = (x + ξx)/ x + ξx ,
|| ||
the vector transport (8.6) yields 

1 Tηx 
ξx = ‖x + ηx‖ 

Px+ηx 
ξx 

1 
( 

1 
) 

= ‖x + ηx‖ 
I − ‖x + ηx‖2

(x + ηx)(x + ηx)T ξx, 
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where, as usual, we implicitly use the natural inclusion of TxS
n−1 in Rn . 

Example 8.1.5 Stiefel manifold 
Consider the QR-based retraction (4.8) on the Stiefel manifold: 

RX(Z) = qf(X + Z). 

We need a formula for Dqf (Y ) [U ] with Y ∈ R
n
∗
×p and U ∈ TY R

n
∗
×p = 

Rn×p. Let t 7→ W (t) be a curve on Rn
∗
×p with W (0) = Y and Ẇ (0) = U and 

let W (t) = X(t)R(t) denote the QR decomposition of W (t). We have 

Ẇ = ˙ R. XR + X ˙ (8.7) 

Since XXT + (I − XXT ) = I, we have the decomposition 

Ẋ X + (I − XXT ) ˙ (8.8) = XXT ˙ X. 

Multiplying (8.7) by I − XXT on the left and by R−1 on the right yields the 
expression (I − XXT )Ẋ = (I − XXT )ẆR−1 for the second term of (8.8). 
It remains to obtain an expression for XT Ẋ. Multiplying (8.7) on the left 
by XT and on the right by R−1 yields 

XT ˙ ˙WR−1 = XT Ẋ + RR−1 . (8.9) 

In view of the form 

TX St(p, n) = {XΩ + X⊥K : ΩT = −Ω, K ∈ R(n−p)×p} 
for the tangent space to the Stiefel manifold at a point X, it follows that the 
term XT Ẋ in (8.9) belongs to the set of skew-symmetric p×p matrices, while 
the term ṘR−1 belongs to the set of upper triangular matrices. Let ρskew(B) 
denote the the skew-symmetric term of the decomposition of a square matrix 
B into the sum of a skew-symmetric term and an upper triangular term, i.e, 


Bi,j if i > j, 

(ρskew(B))i,j = 0 if i = j, 
if i < j. −Bj,i 

From (8.9), we have XT Ẋ = ρskew(XT ˙ Replacing these results WR−1). 
in (8.8) gives 

Ẋ = XXT Ẋ + (I − XXT )Ẋ WR−1) + (I − XXT ) ˙ ,= Xρskew(XT ˙ WR−1 

hence 

Dqf (Y ) [U ] = qf(Y )ρskew(qf(Y )TU(qf(Y )TY )−1) 

+ (I − qf(Y )qf(Y )T )U(qf(Y )TY )−1 . 

Finally, we have, for Z,U ∈ TX St(p, n), 

TZU = DRX (Z) [U ] 

= Dqf (X + Z) [U ] 

= RX(Z)ρskew(RX(Z)TU (RX(Z)T (X + Z))−1) 

+ (I − RX(Z)RX(Z)T )U(RX(Z)T (X + Z))−1 . 
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Example 8.1.6 Grassmann manifold 
As previously, we view the Grassmann manifold Grass(p, n) as a Rieman­

nian quotient manifold of Rn
∗
×p. We consider the retraction 

RY (η) = span(Y + ηY ). 

We obtain 

DRY (η) [ξ]RY(η) = PY
h 
+ηY 

ξY , 

where PY
h denotes the orthogonal projection onto the orthogonal complement 

of the span of Y ; see (3.41). 

8.1.3 Vector transport on Riemannian submanifolds 

If M is an embedded submanifold of a Euclidean space E and M is endowed 
with a retraction R, then we can rely on the natural inclusion TyM⊂ E for 
all y ∈ N to simply define the vector transport by 

Tηx 
ξx := PRx(ηx)ξx, (8.10) 

where Px denotes the orthogonal projector onto TxN . 

Example 8.1.7 Sphere 
On the sphere Sn−1 endowed with the retraction R(ηx) = (x + ηx)/‖x + 

ηx‖, (8.10) yields 

Tηx 
ξx = 

( 

I − 
(x + ηx)(x + ηx)T 

) 

ξx ∈ TR(ηx)S
n−1 . ‖x + ηx‖2 

Example 8.1.8 Orthogonal Stiefel manifold 
Let R be a retraction on the Stiefel manifold St(p, n). (Possible choices of 

R are given in Section 4.1.1.) Formula (8.10) yields 

TηX 
ξX = (I − Y Y T )ξX + Y skew(Y T ξX) ∈ TY St(p, n), 

where Y := RX(ηX). 

8.1.4 Vector transport on quotient manifolds 

Let M = M/ ∼ be a quotient manifold, where M is an open subset of 
a Euclidean space E (this includes the case where M itself is a Euclidean 
space). Let H be a horizontal distribution on M and let Ph : TxM → Hxx 

denote the projection parallel to the vertical space Vx onto the horizontal 
space Hx. Then (using the natural identification TyM≃ E for all y ∈M), 

:= Ph
x+η ξ (8.11) x(Tηx 

ξx)x+ηx x 

defines a vector transport on M. 
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Example 8.1.9 Projective space 
As in Section 3.6.2, we view the projective space RP

n−1 as a Riemannian 
quotient manifold of Rn 

∗ . Equation (8.11) yields 

ξ ,(TηxR ξxR)x+η x 
= Ph

x+η x x

where Phz = z − yyT z denotes the projection onto the horizontal space at y.y

Example 8.1.10 Grassmann manifold 
Again as in Section 3.6.2, we view the Grassmann manifold Grass(p, n) 

as the Riemannian quotient manifold Rn
∗
×p/GLp. Equation (8.11) leads to 

(TηY 
ξY )Y +ηY 

= PY
h 

+ηY 
ξY , (8.12) 

where Ph Z = Z −Y (Y TY )−1Y TZ denotes the projection onto the horizontal Y 

space at Y . 

8.2 APPROXIMATE NEWTON METHODS 

Let M be a manifold equipped with a retraction R and an affine connection 
∇. Let ξ be a vector field on M and consider the problem of seeking a zero 
of ξ. The Newton equation (6.1) reads 

∇ηx 
ξ = −ξx 

for the unknown ηx ∈ TxM. In Chapter 6, it was assumed that a procedure 
for computing ∇ηx 

ξ is available at all x ∈ M. In contrast, approximate 
Newton methods seek to relax the solution of Newton’s equation in a way 
that retains the superlinear convergence of the algorithm. The kth iteration 
of the algorithm thus replaces (6.1) with the solution ηk ∈ Txk

M of a relaxed 
equation 

(J(xk) + Ek)ηk = −ξxk 
+ εk, (8.13) 

where J(xk) is the Jacobian of ξ defined by 

J(xk) : Txk
M→ Txk

M : ηk 7→ ∇ηk
ξ. 

The operator Ek denotes the approximation error on the Jacobian, while the 
tangent vector εk denotes the residual error in solving the (inexact) Newton 
equation. 

The next result gives sufficiently small bounds on Ek and εk to preserve 
the fast local convergence of the exact Newton method. 

Theorem 8.2.1 (local convergence of inexact Newton) Suppose that 
at each step of Newton’s method (Algorithm 4), the Newton equation (6.1) 
is replaced by the inexact equation (8.13). Assume that there exists x∗ ∈M 
such that ξx∗ 

= 0 and J(x∗) is invertible. Let (U ′ , ϕ), x∗ ∈ U ′ , be a chart of 
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the manifold M and let the coordinate expressions be denoted by .̂ Assume ·
that there exist constants βJ and βη such that 

(8.14) ‖Êk‖ ≤ βJ‖ξ̂k‖ 
and 

‖ε̂k‖ ≤ min{‖ξ̂k‖θ, κ}‖ξ̂k‖ (8.15) 

for all k, with θ > 0. Then there exists a neighborhood U of x∗ in M such 
that, for all x0 ∈ U , the inexact algorithm generates an infinite sequence 
{xk} converging superlinearly to x∗. 

Proof. (Sketch.) The assumptions and notation are those of the proof of 
Theorem 6.3.2, and we sketch how that proof can be adapted to handle 
Theorem 8.2.1. By a smoothness argument, 

‖ξ̂x̂‖ ≤ γξ‖x̂− x̂∗‖. 
It follows from Lemma 6.3.1 that 

‖(Ĵ(x̂k) + Êk)−1‖ ≤ ‖ Ĵ(x̂k)−1‖‖(I − (Ĵ(x̂k))−1Êk)−1‖

1 1 1


.≤ 2β 
1 − ‖ Ĵ(x̂k))−1Êk‖

≤ 2β 
1 − 2β‖Êk‖

≤ 2β 
1 − 2ββJγξ‖x̂k − x̂∗‖ 

Consequently, by choosing U sufficiently small, ‖(Ĵ(x̂k)+ Êk))−1‖ is bounded 
by a constant, say 2β ′ , for all x ∈ U . From there, it is direct to update the 
end of the proof of Theorem 6.3.2 to obtain again a bound 

‖x̂k+1 − x̂∗‖ ≤ (β ′ (γJ + γΓ) + 2β ′ γΓ + 2β ′ βJγξ + γR)‖x̂k − x̂∗‖2 

+ 2β ′ γξ
θ+1 ‖x̂k − x̂∗‖θ+1 

for all xk in some neighborhood of x∗. � 

Condition (8.15) on the residual in the Newton equation is easily enforced 
by using an iterative solver that keeps track of the residual of the linear 
system of equations; the inner iteration is merely stopped as soon as the 
required precision is reached. Pointers to the literature on iterative solvers 
for linear equations can be found in Notes and References. Enforcing condi­
tion (8.14), on the other hand, involves differential geometric issues; this is 
the topic of the next section. 

8.2.1 Finite difference approximations 

A standard way to approximate the Jacobian J(xk) without having to com­
pute second-order derivatives is to evaluate finite differences of the vector 
field ξ. On manifolds, the idea of evaluating finite differences on ξ is hindered 
by the fact that when y =6 z, the quantity ξy − ξz is ill-defined, as the two 
tangent vectors belong to two different abstract Euclidean spaces TyM and 
TzM. In practice, we will encounter only the case where a tangent vector ηy 

is known such that z = R(ηy). We can then compare ξy and ξR(ηy) using a 
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M 

y 

ηy 

z 

ξy 

Tηy (ξy) 

ζz 

(Tηy )
−1(ζz) 

Figure 8.3 To compare a tangent vector ξy ∈ TyM with a tangent vector ζz ∈ 
TzM, z = R(ηy), it is possible to transport ξy to TzM through the 
mapping Tηy or to transport ζz to TyM through the mapping (Tηy )−1 . 

vector transport, as introduced in Section 8.1. Depending on the situation, 
we may want to compare the vectors in any of the two tangent spaces; see 
Figure 8.3. 

To define finite differences in a neighborhood of a point x∗ on a manifold 
M endowed with a vector transport T , pick (smooth) vector fields Ei, i = 
1, . . . , d, such that ((E1)x, . . . , (Ed)x) forms a basis of TxM for all x in 
a neighborhood U of x∗. Let R denote the retraction associated with the 
vector transport T . Given a smooth vector field ξ and a real constant h > 0, 
let A(x) : TxM→ TxM be the linear operator that satisfies, for i = 1, . . . , d, 

(Th(Ei)x 
)−1ξR(h(Ei)x) − ξx 

A(x)[Ei] = . (8.16) 
h 

We thus have A(x)[ηx] = 
∑

i
d 
=1 η

i|xA(x)[Ei], where ηx = 
∑

i
d 
=1 η

i|x(Ei)x is 
the decomposition of ηx in the basis ((E1)x, . . . , (Ed)x). 

The next lemma gives a bound on how well A(x) approximates the Ja­
cobian J(x) : ηx ξ in a neighborhood of a zero of ξ. This result is 7→ ∇ηx 

instrumental in the local convergence analysis of the finite-difference quasi-
Newton method introduced below. 

Lemma 8.2.2 (finite differences) Let ξ be a smooth vector field on a 
manifold M endowed with a vector transport T (Definition 8.1.1). Let x∗ be 
a nondegenerate zero of ξ and let (E1, . . . , Ed) be a basis of X(U), where U
is a neighborhood of x∗. Let A be defined by finite differences as in (8.16). 
Then there is c > 0 such that, for all x sufficiently close to x∗ and all h 
sufficiently small, it holds that 

‖A(x)[Ei] − J(x)[Ei]‖ ≤ c(h + ‖ξx‖). (8.17) 
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Proof. This proof uses notation and conventions from the proof of Theo­
rem 6.3.2. We work in local coordinates and denote coordinate expressions 
with a hat. (For example, Ĵ(x̂) denotes the coordinate expression of the op­
erator J(x).) There is a neighborhood U of x∗ and constants c1, . . . , c6 such 
that, for all x ∈ U and all h > 0 sufficiently small, the following bounds hold: 

‖hA(x)[Ei] − J(x)[hEi]‖ 
≤ c1‖hA(̂x)[Ei] − J (̂x)[hEi]‖ 
= ‖(T̂  

hEi
)−1ξ̂ ˆ (hÊi) 

− ξ̂x̂ − Dξ̂ (x̂) 
[
hÊi 

] 
Γˆ ˆ[hÊi]‖Rx̂

− ˆx,ξ

≤‖ξ̂x̂+hÊi 
− ξ̂x̂ − Dξ̂ (x̂) 

[
hÊi 

] 
‖ + ‖(T̂  

hEi
)−1ξ̂R̂x̂(hÊi) 

− ξ̂R̂x̂(hÊi)
‖ 

+ ‖ξ̂R̂x̂(hÊi) 
− ξ̂x̂+hÊi

‖ + ‖Γ̂x,ξ̂[hÊi]‖ˆ

≤ c2h
2 + c3h(‖x̂− x̂∗‖ + h) + c4h

2 + c5‖x̂− x̂∗‖h 

≤ c6h(h + ‖ξx‖). 
(A bound of the form ‖x̂ − x̂∗‖ ≤ c‖ξx‖ comes from the fact that x∗ is a 
nondegenerate zero of ξ.) The claim follows. � 

In the classical case, where M is a Euclidean space and the term 

(Th(Ei)x 
)−1ξR(h(Ei)x) 

in (8.16) reduces to ξx+hEi
, the bound (8.17) can be replaced by 

‖A(x)[Ei] − J(x)[Ei]‖ ≤ ch, (8.18) 

i.e., ‖ξx‖ no longer appears. The presence of ‖ξx‖ is the counterpart to the 
fact that our definition of vector transport is particularly lenient. Fortu­
nately, the perturbation ‖ξx‖ goes to zero sufficiently fast as x goes to a zero 
of ξ. Indeed, using Lemma 8.2.2 and Theorem 8.2.1, we obtain the following 
result. 

Proposition 8.2.3 Consider the geometric Newton method (Algorithm 4) 
where the exact Jacobian J(xk) is replaced by the operator A(xk) defined 
in (8.16) with h := hk. If 

lim hk = 0, 
k→∞ 

then the convergence to nondegenerate zeros of ξ is superlinear. If, moreover, 
there exists some constant c such that 

hk ≤ c‖ξxk
‖ 

for all k, then the convergence is (at least) quadratic. 

8.2.2 Secant methods 

An approximate Jacobian at x ∈M is a linear operator in the d-dimensional 
tangent space TxM. Secant methods in Rn construct an approximate Jaco­
bian Ak+1 by imposing the secant equation 

ξxk+1 
− ξxk 

= Ak+1ηk, (8.19) 
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which can be seen as an underdetermined system of equations with d2 un­
knowns. The remaining degrees of freedom in Ak+1 are specified according 
to some algorithm that uses prior information where possible and also pre­
serves or even improves the convergence properties of the underlying Newton 
method. 

The generalization of the secant condition (8.19) on a manifold M en­
dowed with a vector transport T is 

ξxk+1 
− Tηk

ξxk 
= Ak+1[Tηk

ηk], (8.20) 

where ηk is the update vector at the iterate xk, i.e., Rxk
(ηk) = xk+1. 

In the case where the manifold is Riemannian and ξ is the gradient of a 
real-valued function f of which a minimizer is sought, it is customary to re­
quire the following additional properties. Since the Hessian J(x) = Hess f(x) 
is symmetric (with respect to the Riemannian metric), one requires that the 
operator Ak be symmetric for all k. Further, in order to guarantee that 
ηk remains a descent direction for f , the updating formula should generate 
a positive-definite operator Ak+1 whenever Ak is positive-definite. A well-
known updating formula in Rn that aims at satisfying these properties is 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme. On a manifold M
endowed with a vector transport T , the BFGS scheme generalizes as follows. 
With the notation 

sk := Tηk
ηk ∈ Txk+1

M, 

yk := grad f(xk+1) − Tηk
(grad f(xk)) ∈ Txk+1

M, 

we define the operator Ak+1 : Txk+1
M 7→ Txk+1 

M by 

Ak+1η = Ãkη − 
〈
〈
s

s

k

k

,

,

A

A
˜

˜

k

k

s

η

k

〉
〉 
Ãksk + 〈

〈
y

y

k

k

, s

, η

k

〉
〉 yk for all p ∈ Txk+1

M, 

with 

Ãk = Tηk 
◦ Ak ◦ (Tηk

)−1 . 

Note that the inner products are taken with respect to the Riemannian met­
ric. Assume that Ak is symmetric positive-definite on Txk

M (with respect 
to the inner product defined by the Riemannian metric) and that Tηk 

is an 
isometry (i.e., the inverse of Tηk 

is equal to its adjoint). Then Ãk is symmet­
ric positive-definite, and it follows from the classical BFGS theory that Ak+1 

is symmetric positive-definite on Txk+1
M if and only if 〈yk, sk〉 > 0. The ad­

vantage of Ak is that it requires only first-order information that has to be 
computed anyway to provide the right-hand side of the Newton equation. 

The local and global convergence analysis of the BFGS method in Rn is 
not straightforward. A careful generalization to manifolds, in the vein of the 
work done in Chapter 7 for trust-region methods, is beyond the scope of the 
present treatise. 



00˙AMS September 23, 2007

6

180 CHAPTER 8 

8.3 CONJUGATE GRADIENTS 

In this section we depart the realm of quasi-Newton methods to briefly con­
sider conjugate gradient algorithms. We first summarize the principles of CG 
in Rn . 

The linear CG algorithm can be presented as a method for minimizing 
the function 

φ(x) = 1 x TAx − x T b, (8.21) 2

where b ∈ Rn and A is an n × n symmetric positive-definite matrix. One of 
the simplest ways to search for the minimizer of φ is to use a steepest-descent 
method, i.e., search along 

−grad φ(xk) = b − Axk := rk, 

where rk is called the residual of the iterate xk. Unfortunately, if the matrix 
A is ill-conditioned, then the steepest-descent method may be very slow. 
(Recall that the convergence factor r in Theorem 4.5.6 goes to 1 as the 
ratio between the smallest and the largest eigenvalues of A—which are the 
eigenvalues of the constant Hessian of φ—goes to zero.) Conjugate gradients 
provide a remedy to this drawback by modifying the search direction at each 
step. Let x0 denote the initial iterate and let p0, . . . , pk denote the successive 
search directions that can be used to generate xk+1. A key observation is 
that, writing xk+1 as 

xk+1 = x0 + Pk−1y + αpk, 

where Pk−1 = [p1| . . . |pk−1], y ∈ Rk−1, and α ∈ R, we have 

α2 
Tφ(xk+1) = φ(x0 + Pk−1y) + αyTPk

T 
−1Apk + pk Apk − αpT 

k r0. 2 
Hence the minization of φ(xk+1) splits into two independent minimizations— 
one for y and one for α—when the search direction pk is chosen to be A-
orthogonal to the previous search directions, i.e., 

Pk
T 
−1Apk = 0. 

It follows that if the search directions p0, . . . , pk are conjugate with respect 
to A, i.e., 

T pi Apj = 0 for all i = j, 

then an algorithm, starting from x0 and performing successive exact line-
search minimizations of φ along p0, . . . , pk, returns a point xk+1 that is the 
minimizer of φ over the set x0 + span{p0, . . . , pk}. 

Thus far we have only required that the search directions be conjugate 
with respect to A. The linear CG method further relates the search direc­
tions to the gradients by selecting each pk to be in the direction of the mini­
mizer of ‖p − rk‖2 over all vectors p satisfying the A-orthogonality condition 
[p1| . . . |pk−1]TAp = 0. It can be shown that this requirement is satisfied by 

pk = rk + βkpk−1, (8.22) 
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where 

βk 
rk

TApk−1 
. (8.23) = − 

pT
k−1Apk−1 

Summarizing, the linear CG iteration is 

xk+1 = xk + αkpk, 

where αk is chosen as 
Trk pk 

T
αk = − 

pk Apk 

to achieve exact minimization of φ along the line xk + αpk and where pk 

is selected according to (8.22), (8.23). The first search direction p0 is sim­
ply chosen as the steepest-descent direction at x0. This algorithm is usually 
presented in a mathematically equivalent but numerically more efficient for­
mulation, which is referred to as the (linear) CG algorithm. Notice that, since 
the minimizer of φ is x = A−1b, the linear CG algorithm can also be used to 
solve systems of equations whose matrices are symmetric positive-definite. 

Several generalizations of the linear CG algorithm have been proposed 
for cost functions f that are not necessarily of the quadratic form (8.21) 
with A = AT positive-definite. These algorithms are termed nonlinear CG 
methods. Modifications with respect to the linear CG algorithm occur at 
three places: (i) the residual rk becomes the negative gradient −grad f(xk), 
which no longer satisfies the simple recursive formula rk+1 = rk +αkApk; (ii) 
computation of the line-search step αk becomes more complicated and can 
be achieved approximately using various line-search procedures; (iii) several 
alternatives are possible for βk that yield different nonlinear CG methods 
but nevertheless reduce to the linear CG method when f is strictly convex-
quadratic and αk is computed using exact line-search minimization. Popular 
choices for βk in the formula 

pk = −grad f(xk) + βkpk−1 (8.24) 

are 

(grad f(xk))T grad f(xk)
βk = (Fletcher-Reeves) 

(grad f(xk−1))T grad f(xk−1) 

and 

(grad f(xk))T (grad f(xk) − grad f(xk−1)) 
βk = (Polak-Ribière). 

(grad f(xk−1))T grad f(xk−1) 

When generalizing nonlinear CG methods to manifolds, we encounter a 
familiar difficulty: in (8.24), the right-hand side involves the sum of an el­
ement grad f(xk) of Txk

M and an element pk−1 of Txk−1
M. Here again, 

the concept of vector transport provides an adequate and flexible solution. 
We are led to propose a “meta-algorithm” (Algorithm 13) for the conjugate 
gradient. 
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Algorithm 13 Geometric CG method 
Require: Riemannian manifold M; vector transport T on M with associ­

ated retraction R; real-valued function f on M. 
Goal: Find a local minimizer of f . 
Input: Initial iterate x0 ∈M. 
Output: Sequence of iterates {xk}. 

1: Set η0 = −grad f(x0). 
2: for k = 0, 1, 2, . . . do 
3: Compute a step size αk and set 

xk+1 = Rxk
(αkηk). (8.25) 

4: Compute βk+1 and set 

ηk+1 = −grad f(xk+1) + βk+1Tαkηk
(ηk). (8.26) 

5: end for 

In Step 3 of Algorithm 13, the computation of αk can be done, for example, 
using a line-search backtracking procedure as described in Algorithm 1. If the 
numerical cost of computing the exact line-search solution is not prohibitive, 
then the minimizing value of αk should be used. Exact line-search minimiza­

tion yields 0 = d
d 
t f(Rxk

(tηk))
∣∣
t=αk 

= Df (xk+1) 
[ 

d
d 
t Rxk

(tηk)
∣∣
t=αk 

] 
. As­

suming that Tαkηk
(ηk) is collinear with d Rxk

(tηk)
∣∣
t=αk 

(see Section 8.1.2), dt 

this leads to 〈grad f(xk+1), Tαkηk
(ηk)〉 = Df (xk+1) [Tαkηk

(ηk)] = 0. In view 
of (8.26), one finds that 

〈grad f(xk+1), ηk+1〉 = −〈grad f(xk+1), grad f(xk+1)〉 < 0, 

i.e., ηk+1 is a descent direction for f . 
Several choices are possible for βk+1 in Step 4 of Algorithm 13. Impos­

ing the condition that ηk+1 and Tαkηk
(ηk) be conjugate with respect to 

Hess f(xk+1) yields 

βk+1 = 
〈Tαkηk

(ηk), Hess f(xk+1)[grad f(xk+1)]〉 
. (8.27) 〈Tαkηk

(ηk), Hess f(xk+1)[Tαkηk
(ηk)]〉 

The β of Fletcher-Reeves becomes 

βk+1 = 
〈grad f(xk+1), grad f(xk+1)〉 

, (8.28) 〈grad f(xk), grad f(xk)〉 
whereas the β of Polak-Ribière naturally generalizes to 

βk+1 = 
〈grad f(xk+1), grad f(xk+1) − Tαkηk

(grad f(xk))〉 
. (8.29) 〈grad f(xk), grad f(xk)〉 

Whereas the convergence theory of linear CG is well understood, nonlinear 
CG methods have convergence properties that depend on the choice of αk 

and βk, even in the case of Rn. We do not further discuss such convergence 
issues in the present framework. 



00˙AMS September 23, 2007

183 A CONSTELLATION OF SUPERLINEAR ALGORITHMS 

8.3.1 Application: Rayleigh quotient minimization 

As an illustration of the geometric CG algorithm, we apply Algorithm 13 
to the problem of minimizing the Rayleigh quotient function (2.1) on the 
Grassmann manifold. For simplicity, we consider the standard eigenvalue 
problem (namely, B := I), which leads to the cost function 

f : Grass(p, n) → R : span(Y ) 7→ tr((Y TY )−1Y TAY ), 

where A is an arbitrary n×n symmetric matrix. As usual, we view Grass(p, n) 
as a Riemannian quotient manifold of Rn

∗
×p (see Section 3.6.2). Formulas for 

the gradient and the Hessian of f can be found in Section 6.4.2. For Step 3 
of Algorithm 13 (the line-search step), we select xk+1 as the Armijo point 
(Definition 4.2.2) with α = 1, σ = 0.5, and β = 0.5. For Step 4 (selection 
of the next search direction), we use the Polak-Ribière formula (8.29). The 
retraction is chosen as in (4.11), and the vector transport is chosen accord­
ing to (8.12). The algorithm further uses a restart strategy that consists of 
choosing βk+1 := 0 when k is a multiple of the dimension d = p(n − p) of 
the manifold. Numerical results are presented in Figures 8.4 and 8.5. 

The resulting algorithm appears to be an efficient method for computing 
an extreme invariant subspace of a symmetric matrix. One should bear in 
mind, however, that this is only a brute-force application of a very general 
optimization scheme to a very specific problem. As such, the algorithm ad­
mits several enhancements that exploit the simple structure of the Rayleigh 
quotient cost function. A key observation is that it is computationally inex­
pensive to optimize the Rayleigh quotient over a low-dimensional subspace 
since this corresponds to a small-dimensional eigenvalue problem. This sug­
gests a modification of the nonlinear CG scheme where the next iterate xk+1 

is obtained by minimizing the Rayleigh quotient over the space spanned 
by the columns of xk, ηk−1 and grad f(xk). The algorithm obtained using 
this modification, barring implementation issues, is equivalent to the locally 
optimal CG method proposed by Knyazev (see Notes and References in 
Chapter 4). 

An interesting point of comparison between the numerical results displayed 
in Figures 7.1 and 7.2 for the trust-region approach and in Figures 8.4 and 8.5 
is that the trust-region algorithm reaches twice the precision of the CG 
algorithm. The reason is that, around a minimizer v of a smooth cost function 
f , one has f(Rv(η)) = f(v) + O(‖η‖2), whereas ‖grad f(Rv(η))‖ = O(‖η‖). 
Consequently, the numerical evaluation of f(xk) returns exactly f(v) as soon 
as the distance between xk and v is of the order of the square root of the 
machine epsilon, and the line-search process in Step 3 of Algorithm 13 just 
returns xk+1 = xk. In contrast, the linear CG method used in the inner 
iteration of the trust-region method, with its exact minimization formula for 
αk, makes it possible to obtain accuracies of the order of the machine epsilon. 
Another potential advantage of the trust-region approach over nonlinear CG 
methods is that it requires significantly fewer evaluations of the cost function 
f since it relies only on its local model mxk 

to carry out the inner iteration 
process. This is important when the cost function is expensive to compute. 
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Figure 8.4 Minimization of the Rayleigh quotient (2.1) on Grass(p, n), with n = 
100 and p = 5. B = I and A is chosen with p eigenvalues evenly spaced 
on the interval [1, 2] and the other (n − p) eigenvalues evenly spaced 
on the interval [10, 11]; this is a problem with a large eigenvalue gap. 
The distance to the solution is defined as the square root of the sum 
of the canonical angles between the current subspace and the leftmost 
p-dimensional invariant subspace of A. (This distance corresponds to 
the geodesic distance on the Grassmann manifold endowed with its 
canonical metric (3.44).) 

8.4 LEAST-SQUARE METHODS 

The problem addressed by the geometric Newton method presented in Al­
gorithm 4 is to compute a zero of a vector field on a manifold M endowed 
with a retraction R and an affine connection ∇. A particular instance of this 
method is Algorithm 5, which seeks a critical point of a real-valued function 
f by looking for a zero of the gradient vector field of f . This method itself 
admits enhancements in the form of line-search and trust-region methods 
that ensure that f decreases at each iteration and thus favor convergence to 
local minimizers. 

In this section, we consider more particularly the case where the real-
valued function f takes the form 

, (8.30) f : M→ R : x 7→ 2
1‖F (x)‖2 

where 

F : M→ E : x 7→ F (x) 
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Figure 8.5 Same situation as in Figure 8.4 but now with B = I and A = 
diag(1, . . . , n). 

is a function on a Riemannian manifold (M, g) into a Euclidean space E . 
The goal is to minimize f(x). This is a least-squares problem associated with 
the least-squares cost 

∑
i(Fi(x))2, where Fi(x) denotes the ith component of 

F (x) in some orthonormal basis of E . We assume throughout that dim(E) ≥
dim(M), in other words, there are at least as many equations as “unknowns”. 
Minimizing f is clearly equivalent to minimizing ‖F (x)‖. Using the squared 
cost is important for regularity purposes, whereas the 1 factor is chosen to 2 
simplify the equations. 

Recall that ‖F (x)‖2 := 〈F (x), F (x)〉, where 〈·, ·〉 denotes the inner product 
on E . We have, for all ξ ∈ TxM, 

Df (x) [ξ] = 〈DF (x) [ξ] , F (x)〉 = 〈ξ, (DF (x)) ∗ [F (x)]〉, 

where (DF (x))∗ denotes the adjoint of the operator DF (x) : TxM→ E , i.e., 

〈y, DF (x) [ξ]〉 = g((DF (x)) ∗ [y], ξ) 

for all y ∈ TF (x)E ≃ E and all ξ ∈ TxM. Hence 

grad f(x) = (DF (x)) ∗ [F (x)]. 

Further, we have, for all ξ, η ∈ TxM, 

∇2 f(x)[ξ, η] = 〈DF (x) [ξ] , DF (x) [η]〉 + 〈F (x), ∇2 F (x)[ξ, η]〉, (8.31) 

where ∇2 f(x) is the (0, 2)-tensor defined in Section 5.6. 
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8.4.1 Gauss-Newton methods 

Recall that the geometric Newton method (Algorithm 5) computes an update 
vector η ∈ TxM by solving the equation 

grad f(x) + Hess f(x)[η] = 0, 

or equivalently, 

Df (x) [ξ] + ∇2 f(x)[ξ, η] = 0 for all ξ ∈ TxM. 

The Gauss-Newton method is an approximation of this geometric Newton 
method for the case where f(x) = ‖F (x)‖2 as in (8.30). It consists of approx­
imating ∇2 f(x)[ξ, η] by the term 〈DF (x) [ξ] , DF (x) [η]〉; see (8.31). This 
yields the Gauss-Newton equation 

〈DF (x) [ξ] , F (x)〉 + 〈DF (x) [ξ] , DF (x) [η]〉 = 0 for all ξ ∈ TxM, 

or equivalently, 

(DF (x)) ∗ [F (x)] + ((DF (x)) ∗ DF (x))[η] = 0.◦ 
The geometric Gauss-Newton method is given in Algorithm 14. (Note that 

the affine connection ∇ is not required to state the algorithm.) 

Algorithm 14 Riemannian Gauss-Newton method 
Require: Riemannian manifold M; retraction R on M; function F : M→ 
E where E is a Euclidean space. 

Goal: Find a (local) least-squares solution of F (x) = 0. 
Input: Initial iterate x0 ∈M. 
Output: Sequence of iterates {xk}. 

1: for k = 0, 1, 2, . . . do 
2: Solve the Gauss-Newton equation 

((DF (xk)) ∗ ◦ DF (xk)) [ηk] = −(DF (xk)) ∗ [F (xk)] (8.32) 

3: 

for the unknown ηk ∈ Txk
M. 

Set 

xk+1 := Rxk
(ηk). 

4: end for 

In the following discussion, we assume that the operator DF (xk) is in­
jective (i.e., full rank, since we have assumed n ≥ d). The Gauss-Newton 
equation (8.32) then reads 

ηk = ((DF (xk)) ∗ (DF (xk)))−1 [(DF (xk)) ∗ [F (xk)]]; ◦ 
i.e., 

ηk = (DF (xk))†[F (xk)], (8.33) 

where (DF (xk))† denotes the Moore-Penrose inverse or pseudo-inverse of 
the operator DF (xk). 
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Key advantages of the Gauss-Newton method over the plain Newton meth­
od applied to f(x) := ‖F (x)‖2 are the lower computational complexity of 
producing the iterates and the property that, as long as DF (xk) has full 
rank, the Gauss-Newton direction is a descent direction for f . Note also 
that the update vector ηk turns out to be the least-squares solution 

2arg min 
M 
‖DF (xk)[η] + F (xk)‖

η∈Txk

. 

In fact, instead of finding the critical point of the quadratic model of f , the 
Gauss-Newton method computes the minimizer of the norm of the “model” 
F (xk) + DF (xk)[η] of F . 

Usually, Algorithm 14 is used in combination with a line-search scheme 
that ensures a sufficient decrease in f . If the sequence {ηk} generated by 
the method is gradient-related, then global convergence follows from Theo­
rem 4.3.1. 

The Gauss-Newton method is in general not superlinearly convergent. In 
view of Theorem 8.2.1, on the convergence of inexact Newton methods, it 
is superlinearly convergent to a nondegenerate minimizer x∗ of f when the 
neglected term 〈F (x), ∇2 F (x)[ξ, η]〉 in (8.31) vanishes at x∗. In particular, 
this is the case when F (x∗) = 0, i.e., the (local) least-squares solution x∗ 
turns out to be a zero of F . 

8.4.2 Levenberg-Marquardt methods 

An alternative to the line-search enhancement of Algorithm 14 (Gauss-
Newton) is to use a trust-region approach. The model is chosen as 

mxk
(η) = 1

2‖F (xk)‖2 + g(η, (DF (x)k) ∗ [F (xk)]) 

+ 1
2g(η, ((DF (x)) ∗ DF (x))[η]]) ◦ 

so that the critical point of the model is the solution ηk of the Gauss-Newton 
equation (8.32). (We assume that DF (xk) is full rank for simplicity of the 
discussion.) All the convergence analyses of Riemannian trust-region meth­
ods apply. 

In view of the characterization of the solutions of the trust-region subprob­
lems in Proposition 7.3.1, the minimizer of mxk

(η) within the trust region 
‖η‖ ≤ Δk is either the solution of the Gauss-Newton equation (8.32) when 
it falls within the trust region, or the solution of 

((DF (xk)) ∗ ◦ DF (xk) + µk id)η = −(DF (xk)) ∗ F (xk), (8.34) 

where µk is such that the solution ηk satisfies ‖ηk‖ = Δk. Equation (8.34) 
is known as the Levenberg-Marquard equation. 

Notice that the presence of µ id as a modification of the approximate 
Hessian (DF (x))∗ DF (x) of f is analogous to the idea in (6.6) of making the ◦
modified Hessian positive-definite by adding a sufficiently positive-definite 
perturbation to the Hessian. 
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8.5 NOTES AND REFERENCES 

On the Stiefel manifold, it is possible to obtain a closed form for the par­
allel translation along geodesics associated with the Riemannian connection 
obtained when viewing the manifold as a Riemannian quotient manifold of 
the orthogonal group; see Edelman et al. [EAS98]. We refer the reader to 
Edelman et al. [EAS98] for more information on the geodesics and paral­
lel translations on the Stiefel manifold. Proof that the Riemannian parallel 
translation is an isometry can be found in [O’N83, Lemma 3.20]. 

More information on iterative methods for linear systems of equations can 
be found in, e.g., Axelsson [Axe94], Saad [Saa96], van der Vorst [vdV03], 
and Meurant [Meu06]. 

The proof of Lemma 8.2.2 is a generalization of the proof of [DS83, 
Lemma 4.2.1]. 

For more information on quasi-Newton methods in Rn, see, e.g., Dennis 
and Schnabel [DS83] or Nocedal and Wright [NW99]. An early reference on 
quasi-Newton methods on manifolds (more precisely, on submanifolds of Rn) 
is Gabay [Gab82]. The material on BFGS on manifolds comes from [Gab82], 
where we merely replaced the usual parallel translation by the more general 
notion of vector transport. Hints for the convergence analysis of BFGS on 
manifolds can also be found in [Gab82]. 

The linear CG method is due to Hestenes and Stiefel [HS52]. Major results 
for nonlinear CG algorithms are due to Fletcher and Reeves [FR64] and 
Polak and Ribiere [PR69]. More information can be found in, e.g., [NW99]. 
A counterexample showing lack of convergence of the Polak-Ribière method 
can be found in Powell [Pow84]. 

Smith [Smi93, Smi94] proposes a nonlinear CG algorithm on Riemannian 
manifolds that corresponds to Algorithm 13 with the retraction R chosen as 
the Riemannian exponential map and the vector transport T defined by the 
parallel translation induced by the Riemannian connection. Smith points 
out that the Polak-Ribière version of the algorithm has n-step quadratic 
convergence towards nondegenerate local minimizers of the cost function. 

The Gauss-Newton method on Riemannian manifolds can be found in 
Adler et al. [ADM+02] in a formulation similar to Algorithm 14. 

The original Levenberg-Marquardt algorithm [Lev44, Mar63] did not make 
the connection with the trust-region approach; it proposed heuristics to 
adapt µ directly. 

More information on the classical version of the methods presented in this 
chapter can be found in textbooks on numerical optimization such as [Fle01, 
DS83, NS96, NW99, BGLS03]. 
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Appendix A


Elements of Linear Algebra, Topology, and Calculus 

A.1 LINEAR ALGEBRA 

We follow the usual conventions of matrix computations. Rn×p is the set of 
all n×p real matrices (m rows and p columns). Rn is the set Rn×1 of column 
vectors with n real entries. A(i, j) denotes the i, j entry (ith row, jth column) 
of the matrix A. Given A ∈ Rm×n and B ∈ Rn×p, the matrix product 
AB ∈ Rm×p is defined by (AB)(i, j) = 

∑n 
A(i, k)B(k, j), i = 1, . . . ,m,k=1 

j = 1, . . . , p. AT is the transpose of the matrix A: (AT )(i, j) = A(j, i). The 
entries A(i, i) form the diagonal of A. A matrix is square if is has the same 
number of rows and columns. When A and B are square matrices of the 
same dimension, [A,B] = AB − BA is termed the commutator of A and 
B. A matrix A is symmetric if AT = A and skew-symmetric if AT = −A. 
The commutator of two symmetric matrices or two skew-symmetric matrices 
is symmetric, and the commutator of a symmetric and a skew-symmetric 
matrix is skew-symmetric. The trace of A is the sum of the diagonal elements 
of A, 

min(n,p) 

tr(A) = 
∑ 

A(i, i). 
i=1 

We have the following properties (assuming that A and B have adequate 
dimensions) 

tr(A) = tr(AT ), (A.1a) 

tr(AB) = tr(BA), (A.1b) 

tr([A,B]) = 0, (A.1c) 

tr(B) = 0 if BT = −B, (A.1d) 

tr(AB) = 0 if AT = A and BT = −B. (A.1e) 

An n×n matrix A is invertible (or nonsingular) if there exists an n×n matrix 
B such that AB = BA = In, where In denotes the n×n identity matrix with 
ones on the diagonal and zeros everywhere else. If this is the case, then B is 
uniquely determined by A and is called the inverse of A, denoted by A−1. A 
matrix that is not invertible is called singular . A matrix Q is orthonormal if 
QTQ = I. A square orthonormal matrix is termed orthogonal and satisfies 
Q−1 = QT . 

The notion of an n-dimensional vector space over R is an abstraction of Rn 

endowed with its operations of addition and multiplication by a scalar. Any 



00˙AMS September 23, 2007

6

190 APPENDIX A 

n-dimensional real vector space E is isomorphic to Rn. However, producing 
a diffeomorphism involves generating a basis of E , which may be computa­
tionally intractable; this is why most of the following material is presented 
on abstract vector spaces. We consider only finite-dimensional vector spaces 
over R. 

A normed vector space E is a vector space endowed with a norm, i.e., a 
mapping x ∈ E 7→ ‖x‖ ∈ R with the following properties. For all a ∈ R and 
all x, y ∈ E , 

1. ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x is the zero vector; 
2. ‖ax‖ = |a| ‖x‖ ; 
3. ‖x + y‖ ≤ ‖x‖ + ‖y‖. 
Given two normed vector spaces E and F , a mapping A : E 7→ F is 

a (linear) operator if A[αx + βy] = αA[x] + βA[y] for all x, y ∈ E and 
all α, β ∈ R. The set L(E ; F) of all operators from E to F is a vector 
space. An operator A ∈ L(Rn; Rm) can be represented by an m × n matrix 
(also denoted by A) such that A[x] = Ax for all x ∈ Rn . This represen­
tation is an isomorphism that matches the composition of operators with 
the multiplication of matrices. Let E , F , and G be normed vector spaces, 
let ‖ · ‖L(E;F) be a norm on L(E ; F), ‖ · ‖L(F ;G) be a norm on L(F ; G), and 
‖·‖L(E;G) be a norm on L(E ; G). These norms are called mutually consistent if 
‖B◦A‖L(E;G) ≤ ‖A‖L(E;F)‖B‖L(F ;G) for all A ∈ L(E ; F) and all B ∈ L(F ; G). 
A consistent or submultiplicative norm is a norm that is mutually consistent 
with itself. The operator norm or induced norm of A ∈ L(E ; F) is 

‖A‖ := max 
‖A[x]‖ 

. 
x∈E,x6=0 ‖x‖ 

Operator norms are mutually consistent. 
Given normed vector spaces E1, E2, and F , a mapping A from E1 × E2 

to F is called a bilinear operator if for any x2 ∈ E2 the linear mapping 
x1 7→ A[x1, x2] is a linear operator from E1 to F , and for any x1 ∈ E1 the 
linear mapping x2 7→ A[x1, x2] is a linear operator from E2 to F . The set of 
bilinear operators from E1 × E2 to F is denoted by L(E1, E2; F), and we use 
the notation L2(E ; F) for L(E , E ; F). These definitions are readily extended 
to multilinear operators. A bilinear operator A ∈ L2(E ; F) is symmetric if 
A[x, y] = A[y, x] for all x, y ∈ E . A symmetric bilinear operator A ∈ L2(E , R) 
is positive-definite if A[x, x] > 0 for all x ∈ E , x = 0. 6

By Euclidean space we mean a finite-dimensional vector space endowed 
with an inner product, i.e., a bilinear, symmetric positive-definite form 〈·, ·〉. 
The canonical example is Rn, endowed with the inner product 

T〈x, y〉 := x y. 

An orthonormal basis of an n-dimensional Euclidean space E is a sequence 
(e1, . . . , en) of elements of E such that 

{
1 if i = j, 〈ei, ej〉 = 
0 if i = j. 
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Given an orthonormal basis of E , the mapping that sends the elements of E to 
their vectors of coordinates in Rd is an isomorphism (an invertible mapping 
that preserves the vector space structure and the inner product). An operator 
T : E → E is termed symmetric if 〈T [x], y〉 = 〈x, T [y]〉 for all x, y ∈ E . 
Given an operator T : E → F between two Euclidean spaces E and F , the 
adjoint of T is the operator T ∗ : F → E satisfying 〈T [x], y〉 = 〈x, T ∗[y]〉
for all x ∈ E and all y ∈ F . The kernel of the operator T is the linear 
subspace ker(T ) = {x ∈ E : T [x] = 0}. The range (or image) of T is the set 
range(T ) = {T [x] : x ∈ E}. Given a linear subspace S of E , the orthogonal 
complement of S is S⊥ = {x ∈ E : 〈x, y〉 = 0 for all y ∈ S}. Given x ∈ E , 
there is a unique decomposition x = x1 + x2 with x1 ∈ S and x2 ∈ S⊥; 
x1 is the orthogonal projection of x onto S and is denoted by ΠS (x). The 
Moore-Penrose inverse or pseudo-inverse of an operator T is the operator 

T † : F → E : y 7→ (T |(ker(T ))⊥)−1[Πrange(T )y], 

where the restriction T | : (ker(T ))⊥ → range(T ) is invertible by (ker(T ))⊥ 

construction and Πrange(T ) is the orthogonal projector in F onto range(T ). 
The Euclidean norm on a Euclidean space E is 

‖x‖ := 
√
〈x, x〉. 

The Euclidean norm on Rn is 

‖x‖ := 
√
xTx. 

The Euclidean norm on Rn×p endowed with the inner product 〈X,Y 〉 = 
tr(XTY ) is the Frobenius norm given by ‖A‖F = (

∑
(A(i, j))2)1/2 . The i,j

operator norm on Rn×n ≃ L(Rn; Rn), where Rn is endowed with its Eu­
clidean norm, is the spectral norm given by 

‖A‖2 = λmax(ATA), 

where λmax(ATA) is the largest eigenvalue of the positive-semidefinite matrix 
ATA. 

An operator T in L(E ; E) is invertible if for all y ∈ E there exists x ∈ E 
such that y = T [x]. An operator that is not invertible is termed singular . 
Let idE denote the identity operator on E : idE [x] = x for all x ∈ E . Let 
T ∈ L(E ; E) be a symmetric operator. A real number λ is an eigenvalue of 
T if the operator T − λ idE is singular; any vector x =6 0 in the kernel of 
T − λ idE is an eigenvector of T corresponding to the eigenvalue λ. 

References: [GVL96], [Hal74], [Die69]. 

A.2 TOPOLOGY 

A topology on a set X is an abstraction of the notion of open sets in Rn . 
Defining a topology on X amounts to saying which subsets of X are open 
while retaining certain properties satisfied by open sets in Rn. Specifically, a 
topology on a set X is a collection T of subsets of X, called open sets , such 
that 
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1.	 X and ∅ belong to T ; 
2.	 the union of the elements of any subcollection of T is in T ; 
3. the intersection of the elements of any finite subcollection of T is in T . 
A topological space is a couple (X, T ) where X is a set and T is a topology 

on X. When the topology is clear from the context or is irrelevant, we simply 
refer to the topological space X. 

Let X be a topological space. A subset A of X is said to be closed if 
the set X − A := {x ∈ X : x ∈/ A} is open. A neighborhood of a point 
x ∈ X is a subset of X that includes an open set containing x. A limit 
point (or accumulation point) of a subset A of X is a point x of X such 
that every neighborhood of x intersects A in some point other than x itself. 
A subset of X is closed if and only if it contains all its limit points. A 
sequence {xk}i=1,2,... of points of X converges to the point x ∈ X if, for 
every neighborhood U of x, there is a positive integer K such that xk belongs 
to U for all k ≥ K. 

In view of the limited number of axioms that a topology has to satisfy, 
it is not suprising that certain properties that hold in Rn do not hold for 
an arbitrary topology. For example, singletons (subsets containing only one 
element) may not be closed; this is the case for the overlapping interval 
topology, a topology of [−1, 1] whose open sets are intervals of the form 
[−1, b) for b > 0, (a, 1] for a < 0, and (a, b) for a < 0, b > 0. Another 
example is that sequences may converge to more than one point; this is the 
case with the cofinite topology of an infinite set, whose open sets are all the 
subsets whose complements are finite (i.e., have finitely many elements). To 
avoid these strange situations, the following separation axioms have been 
introduced. 

Let X be a topological space. X is T1, or accessible or Fréchet , if for any 
distinct points x and y of X, there is an open set that contains x and not 
y. Equivalently, every singleton is closed. X is T2, or Hausdorff , if any two 
distinct points of X have disjoint neighborhoods. If X is Hausdorff, then 
every sequence of points of X converges to at most one point of X. 

Let T1 and T2 be two topologies on the same set X. If T1 ⊆ T2, we say 
that T2 is finer than T1. 

A basis for a topology on a set X is a collection B of subsets of X such 
that 

1.	 each x ∈ X belongs to at least one element of B; 
2.	 if x ∈ (B1 ∩ B2) with B1, B2 ∈ B, then there exists B3 ∈ B such that 
x ∈ B3 ⊆ B1 ∩ B2. 

If B is a basis for a topology T on X, then T equals the collection of all 
unions of elements of B. A topological space X is called second-countable if 
it has a countable basis (i.e., a basis with countably many elements) for its 
topology. 

Let X and Y be topological spaces. The product topology on X × Y is the 
topology having as a basis the collection B of all sets of the form U × V , 
where U is an open subset of X and V is an open subset of Y . 
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If Y is a subset of a topological space (X, T ), then the collection TY = 
{Y ∩ U : U ∈ T } is a topology on Y called the subspace topology . 

If ∼ is an equivalence relation on a topological space X, then the collection 
of all subsets U of the quotient set X/ ∼ such that π−1(U) is open in X is 
called the quotient topology of X/∼. (We refer the reader to Section 3.4 for 
a discussion of the notions of equivalence relation and quotient set.) 

Subspaces and products of Hausdorff spaces are Hausdorff, but quotient 
spaces of Hausdorff spaces need not be Hausdorff. Subspaces and countable 
products of second-countable spaces are second-countable, but quotients of 
second-countable spaces need not be second-countable. 

Let X be a topological space. A collection A of subsets of X is said to 
cover X, or to be a covering of X, if the union of the elements of A is equal 
to X. It is called an open covering of X if its elements are open subsets of X. 
The space X is said to be compact if every open covering A of X contains a 
finite subcollection that also covers X. The Heine-Borel theorem states that 
a subset of Rn (with the subspace topology) is compact if and only if it is 
closed and bounded. 

Let F denote either R or C. The set Fn has a standard topology; the 
collection of “open balls” {y ∈ Fn : 

∑
i |yi − xi|2 < ǫ}, x ∈ Fn , ǫ > 0, is a 

basis of that topology. A finite-dimensional vector space E over a field F (R 
or C) inherits a natural topology: let F : E → Fn be an isomorphism of E
with Fn and endow E with the topology where a subset X of E is open if 
and only if F (X) is open in Fn . Hence, Rn×p has a natural topology as a 
finite-dimensional vector space, and the noncompact Stiefel manifold Rn

∗
×p 

has a natural topology as a subset of Rn×p. 
Reference: [Mun00]. 

A.3 FUNCTIONS 

There is no general agreement on the way to define a function, its range, 
and its domain, so we find it useful to state our conventions. A function (or 
map, or mapping) 

f : A B→ 

is a set of ordered pairs (a, b), a ∈ A, b ∈ B, with the property that, if (a, b) 
and (a, c) are in the set, then b = c. If (a, b) ∈ f , we write b as f(a). Note 
that we do not require that f(a) be defined for all a ∈ A. This is convenient, 
as it allows us to simply say, for example, that the tangent is a function from 
R to R. The domain of f is dom(f) := {a ∈ A : ∃b ∈ B : (a, b) ∈ f}, and 
the range (or image) of f is range(f) := {b ∈ B : ∃a ∈ A : (a, b) ∈ f}. If 
dom(f) = A, then f is said to be on A. If range(f) = B, then f is onto B. 
An onto function is also called a surjection. An injection is a function f with 
the property that if x = y, then f(x) = f(y). A function from a set A to a 
set B is a bijection or a one-to-one correspondence if it is both an injection 
and a surjection from A to B. The preimage f−1(Y ) of a set Y ⊆ B under 
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f is the subset of A defined by 

f−1(Y ) = {x ∈ A : f(x) ∈ Y }. 
Given y ∈ B, the set f−1(y) := f−1({y}) is called a fiber or level set of f . 

A function f : A B between two topological spaces is said to be con­→
tinuous if for each open subset V of B, the set f−1(V ) is an open subset 
of A. By the extreme value theorem, if a real-valued function f is contin­
uous on a compact set X, then there exist points c and d in X such that 
f(c) ≤ f(x) ≤ f(d) for every x ∈ X. 

A.4 ASYMPTOTIC NOTATION 

Let E , F , G be normed vector spaces and let F : E → F and G : E → G be 
defined on a neighborhood of x∗ ∈ E ∪ {∞}. The notation 

F (x) = O(G(x)) as x x∗ → 

(or simply F (x) = O(G(x)) when x∗ is clear from the context) means that 

lim sup 
‖F (x)‖ 

x→x∗ ‖G(x)‖ < ∞. 
x6=x∗ 

In other words, F (x) = O(G(x)) as x x∗, x∗ ∈ E , means that there is →
C ≥ 0 and δ > 0 such that 

‖F (x)‖ ≤ C‖G(x)‖ (A.2) 

for all x with ‖x − x∗‖ < δ, and F (x) = O(G(x)) as x → ∞ means that 
there is C ≥ 0 and δ > 0 such that (A.2) holds for all x with ‖x‖ > δ. The 
notation 

F (x) = o(G(x)) as x x∗→ 

means that 

‖F (x)‖
lim = 0. 

x→x∗ 
x6

‖G(x)‖
=x∗ 

Finally, the notation 

F (x) = Ω(G(x)) as x x∗→ 

means that there exist C > 0, c > 0, and a neighborhood N of x∗ such that 

c‖G(x)‖ ≤ ‖F (x)‖ ≤ C‖G(x)‖ 
for all x ∈ N . 

We use similar notation to compare two sequences {xk} and {yk} in two 
normed spaces. The notation yk = O(xk) means that there is C ≥ 0 such 
that 

‖yk‖ ≤ C‖xk‖ 
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for all k sufficiently large. The notation yk = o(xk) means that 

‖yk‖
lim = 0. 

k→∞ ‖xk‖ 
The notation yk = Ω(xk) means that there exist C > 0 and c > 0 such that 

c‖xk‖ ≤ ‖yk‖ ≤ C‖xk‖ 
for all k sufficiently large. 

The loose notation yk = O(xp
k) is used to denote that ‖yk‖ = O(‖xk‖p), 

and likewise for o and Ω. 

A.5 DERIVATIVES 

We present the concept of a derivative for functions between two finite-
dimensional normed vector spaces. The extension to manifolds can be found 
in Chapter 3. 

Let E and F be two finite-dimensional vector spaces over R. (A partic­
ular case is E = Rm and F = Rn.) A function F : E → F is (Fréchet)­
differentiable at a point x ∈ E if there exists a linear operator 

DF (x) : E → F : h 7→ DF (x)[h], 

called the (Fréchet) differential (or the Fréchet derivative) of F at x, such 
that 

F (x + h) = F (x) + DF (x)[h] + o(‖h‖); 
in other words, 

‖F (y) − F (x) − DF (x)[y − x]‖
lim = 0. 
y→x ‖y − x‖ 

The element DF (x)[h] ∈ F is called the directional derivative of F at x 
along h. (We use the same notation DF (x) for the differential of a function 
F between two manifolds M1 and M2; then DF (x) is a linear operator from 
the vector space TxM1 to the vector space TF (x)M2; see Section 3.5.) 

By convention, the notation “D” applies to the expression that follows. 
Hence D(f g)(x) and Df(g(x)) are two different things: the derivative of ◦
f g at x for the former, the derivative of f at g(x) for the latter. We have ◦
the chain rule 

D(f g)(x) = Df(g(x)) Dg(x); ◦ ◦ 
i.e., 

D(f g)(x)[h] = Df(g(x)) [Dg(x)[h]] ◦ 
for all h. 

The function F : E → F is said to be differentiable on an open domain 
Ω ⊆ E if F is differentiable at every point x ∈ Ω. Note that, for all x ∈ Ω, 
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DF (x) belongs to the vector space L(E ; F) of all linear operators from E to 
F , which is itself a normed vector space with the induced norm 

max ‖u‖ = 
‖x‖=1 

‖u(x)‖, u ∈ L(E ; F). 

The function F is termed continuously differentiable (or C1) on the open 
domain Ω if DF : E → L(E ; F) is continuous on Ω. 

′ ′ Assume that bases (e1, . . . , em) and (e1, . . . , e n) are given for E and F and 
ˆ ˆ ′ let F : Rm → Rn be the expression of F in these bases; i.e., 

∑
j F j(x̂)ej = 

iF (
∑

i x̂ ei). Then F is continuously differentiable if and only if the partial 
derivatives of F̂ exist and are continuous, and we have 

′ DF (x)[h] = 
∑∑ 

∂iF̂
j(x̂)ĥi ej .


j i


It can be shown that this expression does not depend on the chosen bases.

If f is a real-valued function on a Euclidean space E , then, given x ∈ E , 

we define grad f(x), the gradient of f at x, as the unique element of E that 
satisfies 

〈grad f(x), h〉 = Df(x)[h] for all h ∈ E . 
Given an orthonormal basis (e1, . . . , ed) of E , we have 

1grad f(x) = 
∑ 

∂if̂(x , . . . , x d)ei, 
i 

where x1e1 + + xded = x and f̂ is the expression of f in the basis. · · · 
If F : E → F is a linear function, then DF (x)[h] = F (h) for all x, h ∈ E . 

In particular, the derivative of the function tr : Rn×n R is given by → 

D tr(X)[H] = tr(H). 

For the function inv : Rp
∗
×p → R∗ 

p×p : M 7→ M−1, we have 

D inv(X)[Z] = −X−1ZX−1 . 

In other words, if t 7→ X(t) is a smooth curve in the set of invertible matrices, 
then 

dX−1 dX 
= −X−1 X−1 . (A.3) 

dt dt 
The derivative of the determinant is given by Jacobi’s formula, 

D det(X)[Z] = tr(adj(X)Z), 

where adj(X) := det(X)X−1. For X ∈ Rn×p, let qf(X) denote the Q factor 
of the thin QR decomposition X = QR, where Q ∈ Rn×p is orthonormal and 
R ∈ Rp×p is upper triangular with strictly positive diagonal elements. We 
have 

D qf(X)[Z] = Xρskew(QTZR−1) + (I − XXT )ZR−1 , 

where X = QR is the thin QR decomposition of X and ρskew(A) denotes 
the skew-symmetric part of the decomposition of A into the sum of a skew-
symmetric matrix and an upper triangular matrix. 
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If the mapping DF : E → L(E ; F) is differentiable at a point x ∈ E , we say 
that F is twice differentiable at x. The differential of DF at x is called the 
second derivative of F at x and denoted by D2F (x). This is an element of 
L(E ; L(E ; F)), but this space is naturally identified with the space L2(E ; F) 
of bilinear mappings of E × E into F , and we use the notation D2F (x)[h1, h2] 
for (D2F (x)[h1])[h2]. The second derivative satisfies the symmetry property 
D2F (x)[h1, h2] = D2F (x)[h2, h1] for all x, h1, h2 ∈ E . If g ∈ E and h is a 
differentiable function on E into E , then 

D (DF ( ) [h( )]) (x) [g] = D2F (x)[h(x), g] + DF (x) [Dh (x) [g]] .· ·

If E is a Euclidean space and f is a twice-differentiable, real-valued func­
tion on E , then the unique symmetric operator Hess f(x) : E → E defined 
by 

〈Hess f(x)[h1], h2〉 = D2f(x)[h1, h2] for all h1, h2 ∈ E , 
is termed the Hessian operator of f at x. We have 

Hess f(x)[h] = D(grad f)(x)[h] 

for all h ∈ E . Given an orthonormal basis (e1, . . . , ed) of E , we have 

1Hess f(x)[ei] = 
∑ 

∂i∂j f̂(x , . . . , x d)ej 

j 

and 

D2f(x)[ei, ej ] = ∂i∂j f̂(x 1 , . . . , x d), 

where f̂ is the expression of f in the basis. 
The definition of the second derivative is readily generalized to derivatives 

of higher order. By induction on p, we define a p-times-differentiable map­
ping F : E → F as a (p − 1)-times-differentiable mapping whose (p − 1)th 
derivative Dp−1F is differentiable, and we call the derivative D(Dp−1F ) the 
pth derivative of F , written DpF . The element DpF (x) is identified with an 
element of the space Lp(E ; F) of the p-linear mappings of E into F , and we 
write it 

(h1, . . . , hp) 7→ DpF (x)[h1, . . . , hp]. 

The function F : Rn Rm is smooth if it is continuously differentiable to → 
ˆall orders. This happens if and only if the partial derivatives of F exist and 

are continuous to all orders, and we have 

DpF (x)[h1, . . . , hp] = 
∑ ∑ 

∂ip 
F̂ j(x̂)ĥi1 ĥp

ip ej
′ ,∂i1 · · · 1 · · · 

j i1,...,ip 

where the superscripts of ĥ1, . . . , ĥp denote component numbers. 
Reference: [Die69] and [Deh95] for the derivatives of several matrix func­

tions. 
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A.6 TAYLOR’S FORMULA 

Let E and F be two finite-dimensional normed vector spaces and let F : E → 
F be (p + 1)-times continuously differentiable on an open convex domain 
Ω ⊆ E . (The set Ω is convex if it contains all the line segments connecting 
any pair of its points.) Taylor’s theorem (with the remainder in Cauchy 
form) states that, for all x and x + h in Ω, 

1 1 
F (x + h) = F (x) + DF (x)[h] + D2F (x)[h, h]

1! 2! 
1 

+ +· · · 
p!

DpF (x)[h, . . . , h] + Rp(h; x), (A.4) 

where 

Rp(h; x) = 
∫ 1 (1 − t)p 

Dp+1F (x + th)[h, . . . , h] dt = O(‖h‖p+1). 
0 p! 

If F is real-valued, then the remainder Rp(h; x) can also be expressed in 
Lagrange form: for all x and x + h in Ω, there exists t ∈ (0, 1) such that 

1 1 
F (x + h) = F (x) + DF (x)[h] + D2F (x)[h, h]

1! 2! 
1 1 

+ + DpF (x)[h, . . . , h] + Dp+1F (x + th)[h, . . . , h]. (A.5) · · · 
p! (p + 1)! 

The function 
1 1 1 

h 7→ F (x) + 
1! 

DF (x)[h] + 
2! 

· · · 
p! 

D2F (x)[h, h] + + DpF (x)[h, . . . , h] 

is called the pth-order Taylor expansion of F around x. 
The result Rp(h; x) = O(‖h‖p+1) can be obtained under a weaker differ­

entiability assumption. A function G between two normed vector spaces A
and B is said to be Lipschitz-continuous at x ∈ A if there exist an open set 
U ⊆ A, x ∈ U , and a constant α such that for all y ∈ U , 

‖G(y) − G(x)‖ ≤ α‖y − x‖. (A.6) 

The constant α is called a Lipschitz constant for G at x. If this holds for a 
specific U , then G is said to be Lipschitz-continuous at x in the neighborhood 
U . If (A.6) holds for every x ∈ U , then G is said to be Lipschitz-continuous 
in U with Lipschitz constant α. If G is continuously differentiable, then it is 
Lipschitz-continuous in any bounded domain U . 

Proposition A.6.1 Let E and F be two finite-dimensional normed vector 
spaces, let F : be p-times continuously differentiable in an open E → F 
convex set U ⊆ E, x ∈ U , and let the differential DpF : E → Lp(E ; F) be 
Lipschitz continuous at x in the neighborhood U with Lipschitz constant α 
(using the induced norm in Lp(E ; F)). Then, for any x + h ∈ U , 

1 1
∥∥∥∥F (x + h) − F (x) − 

1! 
DF (x)[h] − · · · − 

p!
DpF (x)[h, . . . , h] 

∥∥∥∥ 

α p+1 .≤ 
(p + 1)! 

‖h‖
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In particular, for p = 1, i.e., F continuously differentiable with a Lipschitz­
continuous differential, we have 

α 2 .‖F (x + h) − F (x) − DF (x) [h] ‖ ≤ 
2 
‖h‖
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[Cou20] R. Courant. Über die Eigenwert bei den Differentialgleichungen
der Mathematischen physik. Math. Z., 7:1–57, 1920.

[Dar94] R. W. R. Darling. Differential Forms and Connections. Cam-
bridge University Press, Cambridge, 1994.

[dC76] Manfredo P. do Carmo. Differential Geometry of Curves and
Surfaces. Prentice-Hall Inc., Englewood Cliffs, NJ, 1976. Trans-
lated from the Portuguese.

[dC92] M. P. do Carmo. Riemannian geometry. Mathematics: The-
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