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Preface

The design and implementation of numerical models that accurately capture the ap-
propriate model features of complex physical systems described by time-dependent
coupled systems of nonlinear PDEs present one of the main challenges in today’s
scientific computing. This volume integrates works by experts in computational
mathematics, and its applications focused on the modern algorithms which are
in the core of accurate modeling: adaptive finite-element methods, conservative
finite-difference and finite-volume methods, and multilevel solution techniques.
Fundamental theoretical results are revisited in several survey articles, and new tech-
niques in numerical analysis are introduced. Applications showing the efficiency,
reliability, and robustness of the algorithms in porous media, structural mechanics,
and electromagnetism are presented.

The volume consists of papers prepared in the context of the International
Symposium “Numerical Solution of Partial Differential Equations: Theory, Algo-
rithms and their Applications” in honor of Professor Raytcho Lazarov’s 40 years of
research in computational methods and applied mathematics and on the occasion of
his 70th birthday.

The symposium was organized and sponsored by the Institute of Information
and Communication Technologies (IICT), Bulgarian Academy of Sciences (BAS),
Lawrence Livermore National Laboratory (USA), and Department of Mathematics,
The Pennsylvania State University (USA). Members of the program committee are
Oleg Iliev (ITWM Fraunhofer, Kaiserslautern, Germany), Peter Minev (University
of Alberta, Canada), Svetozar Margenov (Institute of Information and Commu-
nication Technologies, BAS), Panayot Vassilevski (Lawrence Livermore National
Laboratory, USA), and Ludmil Zikatanov (The Pennsylvania State University,
USA).

The list of participants who were invited to contribute and authored or coauthored
a paper included in this volume is:

Owe Axelsson (Uppsala University, Sweden; KAU, Saudi Arabia; Academy of
Sciences, Czech Republic)
Carsten Carstensen (Humboldt University of Berlin, Germany)

v
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Panagiotis Chatzipantelidis (University of Crete, Greece)
Ivan Dimov (IICT, Bulgarian Academy of Sciences, Bulgaria)
Stefka Dimova (Sofia University, Bulgaria)
Oleg Iliev (ITWM Fraunhofer, Germany)
Ulrich Langer (Johannes Kepler University and RICAM, Austria)
Svetozar Margenov (IICT, Bulgarian Academy of Sciences, Bulgaria)
Peter Minev (University of Alberta, Canada)
Joseph Pasciak (Texas A&M, USA)
Petr Vabishchevich (IMM, Russian Academy of Sciences, Russia)
Panayot Vassilevski (Lawrence Livermore National Laboratory, USA)
Junping Wang (National Science Foundation, USA)
Joerg Willems (RICAM, Austrian Academy of Sciences, Austria)
Ludmil Zikatanov (The Pennsylvania State University, USA)

The editors are grateful to the Institute of Information and Communication
Technologies (IICT), Bulgarian Academy of Sciences, the Lawrence Livermore
National Laboratory, and the Department of Mathematics at Penn State for the
support of the symposium.

On behalf of all the contributors, we dedicate this volume to our teacher, friend,
and colleague Raytcho Lazarov.

Kaiserslautern, Germany Oleg P. Iliev
Sofia, Bulgaria Svetozar D. Margenov
Edmonton, AB, Canada Peter D. Minev
Livermore, CA, USA Panayot S. Vassilevski
University Park, PA, USA Ludmil T. Zikatanov



Preface vii

On the Occasion of the 70th Anniversary of Raytcho Lazarov

With great pleasure we introduce this collection of papers in honor of Raytcho
Lazarov, professor at the Texas A&M University and Doctor of Sciences and Doctor
Honoris Causa of the “St. Kliment Ohridski” University of Sofia, Bulgaria.

Raytcho Lazarov is a computational mathematician of extraordinary depth
and breadth whose work has had and continues to have exceptional impact on
computational and applied mathematics. He has authored or coauthored more than
200 journal publications and 4 books spanning all major areas in computational
mathematics and bridging mathematical theory and scientific computing with
sciences and engineering.

Raytcho Lazarov was born in Kardzhali (��������), Bulgaria, on January 23,
1943. He graduated from “St. Antim I” High School in Zlatograd (	��
�����) and
in 1961 went to Sofia University “St. Kliment Ohridski” to continue his studies
in the Department of Mathematics (industrial profile). During his first year as a
college student, Raytcho demonstrated his talent for mathematics, and his dedication
to study it, and he was selected to continue his education at the University of
Wroclaw in Poland in 1963. In Wroclaw Raytcho was able to interact with many
distinguished mathematicians from the Polish mathematical school and received
first-rate mathematical training.

In 1968 Raytcho Lazarov was admitted to the PhD program of the Moscow State
University. As a graduate student in Moscow, he studied and worked under the
supervision of Academician A. A. Samarskii who was one of the best contemporary
computational mathematicians in the world. Lazarov’s thesis work was on “Finite
difference schemes for elasticity problems in curvilinear domains,” among the first
rigorous studies of numerical approximations of problems in structural mechanics.

After receiving his PhD degree in 1972, Raytcho Lazarov worked as a research
associate and senior research associate in the Institute of Mathematics (IM) of the
Bulgarian Academy of Sciences (BAS) until 1987. During this time he established
himself as one of the leading experts in numerical analysis. In 1976 Raytcho
Lazarov visited the Rutherford Laboratory in Didcot, UK, for one year, and this
visit had notable impact on his future research. His focus shifted to the theory and
applications of the finite element method (FEM) which remains to be his primary
field of research to this day.

Lazarov earned the degree of doctor of sciences in June 1982 with a thesis on
“Error estimates of the difference schemes for some problems of mathematical
physics having generalized solutions.” This thesis contained several breakthrough
results, which were published in more than 10 papers and formed the basis for
a research monograph that he coauthored with A. A. Samarskii and V. Makarov,
Difference Schemes for Differential Equations Having Generalized Solutions,
which was published in 1987.

In 1986 Lazarov’s superb scientific achievements earned him the title of a
professor of mathematics at the Institute of Mathematics of the Bulgarian Academy
of Sciences, a position that he continues to hold to this day. His leadership ability
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was also recognized by his colleagues, and in 1985 he became the head of the
Laboratory on Numerical Analysis, BAS, and a deputy-director of the Laboratory
on Parallel Algorithms and High Performance Computer Systems, BAS. In 1986
Lazarov became deputy-director of the newly established Center for Informatics
and Computer Technology (CICT) at BAS. This was one of the first interdisciplinary
centers worldwide for mathematical research on advanced algorithms for the emerg-
ing parallel computer systems. He played a crucial role in hiring a cohort of the
best young applied mathematicians in Bulgaria—Djidjev, Vassilevski, Margenov,
Dimov, Bochev, and many more. In fact, Raytcho Lazarov’s leadership was the
key in making CICT one of the best places for large-scale scientific computing and
parallel algorithms. In 1984 Raytcho initiated a series of international conferences
on numerical methods and applications in Sofia, Bulgaria, which helped to publicize
the results and achievements of the Bulgarian numerical analysts and to integrate
them into the international community.

Such accomplishments were noticed by his colleagues around the world. Vidar
Thomée helped Raytcho to get a visiting position at the University of Wyoming in
1987. This turned out to be a critical point in Lazarov’s career. In Wyoming he met
and befriended Richard Ewing who at that time was a director of the Enhanced Oil
Recovery Institute (EORI) and the Institute of Scientific Computation (ISC) at the
University of Wyoming. During his stay in Laramie in 1988–1992, Lazarov worked
on superconvergenceand local refinement techniques for mixed FE methods. During
that time Raytcho initiated many collaborations and friendships with prominent
mathematicians such as Jim Bramble, Joe Pasciak, Panayot Vassilevski, Junping
Wang, Tom Russell, Yuri Kuznetsov, Steve McCormick, Tom Manteuffel, and Owe
Axelsson. At that time Raytcho Lazarov led the development of algorithms based
on the Bramble–Ewing–Pasciak–Schatz (BEPS) preconditioner and locally refined
mixed FE and finite-volume methods that were also implemented in the EORI
proprietary codes.

The friendship and collaboration with Dick Ewing initiated another change in
Raytcho’s career, and in 1992 he moved to Texas A&M University as a professor
of mathematics, a position that he continues to hold now. This coincided with
the establishment of the Institute of Scientific Computation (ISC) at Texas A&M
under the directorship of Richard Ewing, which quickly attracted a team of world-
renowned experts in this area like J. Bramble, J. Pasciak, R. Lazarov, and, more
recently, Y. Efendiev, J.-L. Guermond, G. Petrova, B. Popov, W. Bangerth, and
A. Bonito. The work they did in the last 20 years on computational mathematics
and its applications in flows in porous media, multiphysics problems, modeling
of fluids, structures and their interactions, etc. had a significant impact on these
and in other research areas. Raytcho’s pivotal role in this research is well known
from his results on least-squares FEM; discontinuous Galerkin methods; multigrid,
multilevel, and multiscale methods, mixed FEM, and more recently fractional order
partial differential equations.

In recognition of his achievements Raytcho Lazarov has been awarded several
honorary titles and degrees: the medal “St. Kl. Ohridski” with blue ribbon (2003–
the highest honors given by Sofia University, Bulgaria, to scientists); Doctor Honoris
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Causa of Sofia University “St. Kl. Ohridski” (2006); the medal of the Institute
of Mathematics, Bulgarian Academy of Sciences 2008; Pichoridis Distinguished
Lectureship, University of Crete, Greece (2008); and Erasmus Mundus Visiting
Scholar Award, University of Kaiserslautern (2008). Most recently he was named
a recipient of the medal of the Bulgarian Academy of Sciences “Marin Drinov”
with ribbon (2013), which is given to scholars for outstanding contributions in the
advancement of science.

During his career Lazarov has held visiting positions and contributed to advance-
ment of research in many institutions around the globe: Joint Institute for Nuclear
Research in Dubna, Russia (1980); Australian National University, Canberra (1990);
Mittag Leffler Institute of Mathematics, Stockholm, Sweden (1998); University
of Linz and RICAM, Austria (2005); Fraunhofer Institute of Industrial Mathe-
matics, Kaiserslautern, Germany (2006); Lawrence Livermore National Laboratory
(regularly from 1998 to 2010); and KAUST in Saudi Arabia (2008–2013). He is
a member of the editorial board of five international journals and a number of
conference proceedings, and he is also serving on the scientific committees of
several international conferences.

Raytcho Lazarov is an outstanding scholar, and his work has had a profound im-
pact on mathematics and other fields of science and engineering during the last four
decades. His extraordinary personality, with strict academic integrity requirements
for himself and his collaborators complemented by truly compassionate care about
their needs, has influenced the professional and personal development of those who
have had a chance to work with him. The teams which he has created over the
years combined research interests, philosophy, and personal friendship, and they
withstood the test of time.

We congratulate Raytcho on the occasion of his 70th birthday and wish him the
best of health and enjoyment in his personal life and in continuing and expanding
his successful research achievements.

Kaiserslautern, Germany Oleg P. Iliev
Sofia, Bulgaria Svetozar D. Margenov
Edmonton, AB, Canada Peter D. Minev
Livermore, CA, USA Panayot S. Vassilevski
University Park, PA, USA Ludmil T. Zikatanov
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Preconditioners for Some Matrices of Two-by-Two Block
Form, with Applications, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Owe Axelsson

A Multigrid Algorithm for an Elliptic Problem
with a Perturbed Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Andrea Bonito and Joseph E. Pasciak

Parallel Unsmoothed Aggregation Algebraic Multigrid
Algorithms on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
James Brannick, Yao Chen, Xiaozhe Hu, and Ludmil Zikatanov

Aspects of Guaranteed Error Control in CPDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
C. Carstensen, C. Merdon, and J. Neumann

A Finite Volume Element Method for a Nonlinear Parabolic Problem . . . . 121
P. Chatzipantelidis and V. Ginting

Multidimensional Sensitivity Analysis of Large-Scale
Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Ivan Dimov and Rayna Georgieva

Structures and Waves in a Nonlinear Heat-Conducting Medium . . . . . . . . . . 157
Stefka Dimova, Milena Dimova, and Daniela Vasileva

Efficient Parallel Algorithms for Unsteady Incompressible Flows . . . . . . . . . 185
Jean-Luc Guermond and Peter D. Minev

xi



xii Contents

Efficient Solvers for Some Classes of Time-Periodic Eddy
Current Optimal Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Michael Kolmbauer and Ulrich Langer

Robust Algebraic Multilevel Preconditioners for Anisotropic
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
J. Kraus, M. Lymbery, and S. Margenov

A Weak Galerkin Mixed Finite Element Method
for Biharmonic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Lin Mu, Junping Wang, Yanqiu Wang, and Xiu Ye

Domain Decomposition Scheme for First-Order Evolution
Equations with Nonselfadjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Petr Vabishchevich and Petr Zakharov

Spectral Coarse Spaces in Robust Two-Level Schwarz Methods . . . . . . . . . . . 303
J. Willems

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327



Improving Conservation for First-Order System
Least-Squares Finite-Element Methods

J.H. Adler and P.S. Vassilevski

Abstract The first-order system least-squares (FOSLS) finite element method for
solving partial differential equations has many advantages, including the construc-
tion of symmetric positive definite algebraic linear systems that can be solved
efficiently with multilevel iterative solvers. However, one drawback of the method
is the potential lack of conservation of certain properties. One such property is
conservation of mass. This paper describes a strategy for achieving mass conser-
vation for a FOSLS system by changing the minimization process to that of a
constrained minimization problem. If the space of corresponding Lagrange mul-
tipliers contains the piecewise constants, then local mass conservation is achieved
similarly to the standard mixed finite-element method. To make the strategy more
robust and not add too much computational overhead to solving the resulting
saddle-point system, an overlapping Schwarz process is used.

Keywords Conservation • First-order system least-squares • Finite elements •
Domain decomposition • Two-level
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2 J.H. Adler and P.S. Vassilevski

1 Introduction

The first-order system least-squares (FOSLS) approach is a finite-element
discretization, which solves a system of linear partial differential equations (PDEs)
by minimizing the L2 norm of the residual of the PDE [14–16,30,31]. Least-squares
finite-element methods, in general, have several nice properties and have been used
on a wide variety of problems, e.g., [4,6,7,9,13,29,34]. One advantage is that they
yield symmetric positive definite (SPD) algebraic systems, which are amenable
to multilevel techniques. This is true for any PDE system, including systems like
Stokes where a mixed finite-element method would yield a saddle-point problem
and an indefinite linear system [10]. Another advantage is that they yield sharp
and reliable a posteriori estimates [3]. This is useful for implementing adaptive
local refinement techniques, which allow the approximations to be resolved more
accurately in regions of higher error [11, 19]. A disadvantage of the least-squares
methods noted in the literature is a loss of conservation for certain properties in
a given system. For instance, the Stokes’ or Navier–Stokes’ system contains an
equation for the conservation of momentum and one for the conservation of mass
[20, 21]. Since the least-squares principle minimizes both equations equally, both
quantities are only conserved up to the error tolerance given for the simulation.
Attempts to improve the conservation of mass would result in a loss of accuracy in
the conservation of momentum. Despite this, in several applications, conservation of
a certain quantity is considered essential to capturing the true physics of the system.
For instance, in electromagnetic problems, such as magnetohydrodynamics (the
treatment of plasmas as charged fluids), loss of accuracy in the solenoidal constraint
of the magnetic field, ∇ ·B = 0, can lead to instabilities in the system [2, 8].

In this paper, we consider methods for improving the conservation of a
divergence constraint, such as mass conservation, in a system, using the FOSLS
finite-element method. There are many ways to improve the accuracy of mass
conservation in such systems, including adaptive refinement to increase the spatial
resolution of the discretization [6, 7], higher temporal accuracies or higher-order
elements for time-dependent problems [32], using divergence-free finite-element
spaces [1, 4, 17, 18], reformulating the first-order system into a more conservative
one [23], as well as using a compatible least-squares method [5], which use ideas
from mixed Galerkin methods to improve the mass conservation. In addition, an
alternative approach called FOSLL∗ [27, 28] has been developed, in which an
adjoint system is considered, and the error is minimized in the L2 norm directly.
This has been shown to improve conservation in satisfying the divergence constraint
in incompressible fluid flow and electromagnetic problems. In this paper, we
discuss an approach that simply corrects the solution approximated by the FOSLS
discretization so that it conserves the given quantity. The goal is to keep the
discretization as is, preserving all of the special properties of the least-squares
minimization while still obtaining the appropriate conservation. As a result, the
a posteriori error estimates and the simple finite-element spaces can still be
used. More specifically, the aim of this paper is to show that it is possible to
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conserve a certain quantity in the least-squares finite-element setting by using a
local subdomain correction post-processing scheme at relatively little extra cost.

The paper is outlined as follows. In Sect. 2, we consider the FOSLS discretization
applied to a Poisson problem and show how the scheme can result in a type of
“mass loss.” Section 3 investigates a way of transforming the minimization principle
into a constrained minimization problem and investigates what types of constraints
are possible. Next, in Sect. 4, a local subdomain and coarse-grid correction solver
is used to make the method more robust. This uses an overlapping Schwarz
(Vanka-like) smoother with a coarse-grid correction to solve the constrained
problem [35–37]. Finally, concluding remarks and a discussion of future work is
given in Sect. 5.

2 First-Order System Least-Squares

To illustrate the FOSLS finite-element method, consider a PDE system that is first
put into a differential first-order system of equations, denoted by Lu = f . Here,
L is a mapping from an appropriate Hilbert space, V , to an L2 product space.
In many contexts, V is chosen to be an H1 product space with appropriate boundary
conditions.

This minimization is written as

u∗ = argmin
u∈V

G(u; f ) := argmin
u∈V

||Lu− f ||20, (1)

where u∗ is the solution in an appropriate H1 space. The minimization results in the
weak form of the problem:

Find u∗ ∈ V such that

〈Lu∗,Lv〉 = 〈 f ,Lv〉 ∀v ∈ V , (2)

where 〈·, ·〉 is the usual L2 inner product on the product space, (L2)k, for k equations
in the linear system. If the following properties of the bilinear form 〈Lu,Lv〉 are
assumed,
∃ constants, c1 and c2, such that

continuity 〈Lu,Lv〉 ≤ c2||u||V ||v||V ∀ u,v ∈ V , (3)

coercivity 〈Lu,Lu〉 ≥ c1||u||2V ∀ u ∈ V , (4)

then, by the Riesz representation theorem, this bilinear form is an inner product
on V [26]. In addition, these properties imply the existence of a unique solution,
u∗ ∈ V , for the weak problem (2). Here, c1 and c2 depend only on the operator, L,
and the domain of the problem. They are independent of u and v.
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Next, u∗ is approximated by restricting (1) to a finite-dimensional space, V h ⊆
V , which leads to (2) restricted to V h. Since V h is a subspace of V , the discrete
problem is also well posed. Choosing an appropriate basis, V h = span{Φ j}, and
restricting (2) to this basis yields an algebraic system of equations involving the
matrix, A, with elements

(A)i j = 〈LΦ j ,LΦi〉. (5)

It has been shown that, in the context of a SPD H1-equivalent bilinear form
restricted to a finite-element subspace, a multilevel technique exists that yields
optimal convergence to the linear system [15].

2.1 Sample Problem and Loss of Conservation

To illustrate possible losses in conservation, consider the convection–diffusion
equation for unknown p in two dimensions,

−∇ ·D∇p+ r ·∇p+ cp= f , (6)

with D an SPD matrix that could depend on the domain, r a vector, and c a
nonnegative constant, respectively. In order to make the system first order, a new
variable, u = D∇p, is introduced. The resulting FOSLS system becomes

−∇ ·u+D−1r ·u+ cp = f , (7)

∇×D−1u = 0, (8)

D−1/2u−D1/2∇p = 0. (9)

Here, a scaling on D is performed to allow the resulting discrete system to be
better conditioned and, thus, more amenable to multigrid methods. Also, the extra
curl equation is introduced so that the weak system is continuous and coercive and,
therefore, H1 equivalent [14, 15]. For simplicity, let D = I, r = 0, and c = 0. Then,
the following functional is minimized:

G = ||∇ ·u+ f ||20 + ||∇×u||20 + ||u−∇p||20.

The resulting discrete system is

AU = b,

where U = (u, p)T . Here, A is the matrix as defined in (5), where L now refers to
system (7)–(9). Similarly, the right-hand side vector, b, is defined as bi = 〈f,LΦi〉,
where f = ( f ,0,0)T . When minimizing this functional, equal weight is given to
each term in the system. Therefore, if better accuracy is needed on a certain
term, such as the divergence constraint, accuracy is lost in the other portions.
In many applications, however, exact conservation of certain terms is important for
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developing an accurate model of a physical system. For instance, one may want to
conserve the “mass” of the system. This is defined as

ˆ

Ω

−∇ ·udΩ =

ˆ

Ω

f dΩ . (10)

In other words, the amount of flow in or out of the system is equal to the
flow contributed by the source (this has more physical meaning in a system like
Stokes, where we assume ∇ ·u = 0 [20]). In fact, in many applications local mass
conservation is desired instead, where the mass is conserved in all regions of the
domain, including a single element. Mixed finite-element methods can satisfy this
exactly and are commonly used in these situations. However, for the least-squares
methods, since the part of the functional concerned with this property is only
minimized to a certain degree (i.e., truncation error of the scheme at best), this
cannot be satisfied exactly. Another issue concerns the fact that in many applications
of the FOSLS finite-element method, the same order of polynomials is chosen as
the basis for every unknown in the discrete space. For instance, linear functions
are chosen to approximate both u and p. As a result, in trying to satisfy the
term u−∇p = 0, one is trying to match linears with the gradient of linears or
constants. This is not approximated very well and accuracy is lost. As a result the
conservation property is also lost. Choosing higher-order elements does remedy this
to some extent, especially in two dimensions. However, using higher-order elements
increases the complexity of the discrete system and the grid hierarchy in a multigrid
scheme, making the systems harder to solve. In addition, the effect of higher-order
elements is lessened when going to three dimensions [22, 24, 32].

To improve on this, here, the idea of adding the mass conservation as a constraint
to the system is considered. Thus, instead of just minimizing the FOSLS functional,
the functional is minimized subject to a constraint. This constraint enforces
the desired mass conservation, while still allowing the FOSLS functional to be
minimized as usual, thus retaining its nice properties. We mention that the modified
method can achieve full local mass conservation, if the space of corresponding
Lagrange multipliers contains the piecewise constants, similarly to the standard
mixed finite-element method. Next, several approaches for implementing this
constraint are described.

3 Constrained FOSLS

To enforce the constraint mentioned above, a Lagrange multiplier, λ , is introduced,
and the FOSLS system is augmented as follows:

(
A CT

C 0

)(
U

λ

)
=

(
b
g

)
. (11)
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Here, A and U are as before for the FOSLS discretization, λ is the Lagrange
multiplier, and C is a finite-element assembly of the constraint; in this example,−∇ ·
u = f . Two possible ways to construct C are considered. For the rest of the paper,
we consider a triangulation of a mesh in two dimensions, Th, with grid spacing h.
In addition, consider the polynomial spaces of order k defined on this triangulation
as Pk. The following notation is used for matrices and spaces:

Definition 1. Let Φ j ∈
[
Pk1

]2
be a vector and let qi ∈ Pk2 be a scalar. Let f

be some right-hand side function as defined in (6). Then, we define the following
matrices:

(B̃)i j = 〈−∇ ·Φ j,qi〉,

Λ ⇒ (Λ)i j = 〈−∇ ·Φ j,−∇ ·Φi〉,

and vectors:

(g̃)i = 〈 f ,qi〉, (g)i = 〈 f ,−∇ ·Φi〉.

3.1 “Galerkin Constraint”

Letting C = B̃, a standard Galerkin-type construction of the divergence constraint is
obtained. It should be noted that the order of the polynomials for the constraints, k2,
can be different from the order for the FOSLS unknowns, k1, and, in fact, should be
chosen to have less degrees of freedom so as not to over-constrain the system. The
pairs chosen in this paper are quadratics–linears (P2−P1), quadratics–constants
(P2 −P0), and linears–constants (P1 −P0). In this context, U ∈

[
Pk1

]3
and

λ ∈Pk2 . The resulting system is

(
A B̃T

B̃ 0

)(
U

λ

)
=

(
b
g̃

)
. (12)

3.2 “Least-Squares Constraint”

To keep faith with the FOSLS methodology, a constraint is proposed that is of the
same form as that is used in the FOSLS discretization, namely, letting C = Λ . This
allows the same finite-element spaces for the FOSLS unknowns to be used for the
Lagrange multiplier. The system is then

(
A Λ
Λ 0

)(
U

λ

)
=

(
b
g

)
, (13)

where U ∈
[
Pk1

]3
and λ ∈

[
Pk1

]2
.
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As is shown below, the system that needs to be solved in the least-squares
constraint approach may not be well conditioned. However, one can construct the
constraint matrix C in such a way that it can be decomposed into a form which
is much easier to solve. For instance, decompose Λ = BT B (see definition of B in
Sect. 3.3.1), and thus, the system is rewritten as

(
A BT B

BT B 0

)(
U

λ

)
=

(
b
g

)
. (14)

However, the construction of B is not trivial in many cases (again, see Sect. 3.3.1)
and it is easier to work with B̃ instead. If the system in the “Galerkin” approach is
taken and modified, the following is obtained:

(
A B̃T B̃

B̃T B̃ 0

)(
Ũ

λ̃

)
=

(
b

B̃T g̃

)
. (15)

As it turns out, due to the following lemma, it is reasonable to solve system (15)
instead of system (14).

Lemma 1. Consider systems (12) and (15). Let A, B̃, U , λ , λ̃ , g, and g̃ be all
defined as above in Definition 1, then,

λ = B̃λ̃ and Ũ = U .

Proof. First combine the two systems:

AU + B̃T λ = b, (16)

B̃U = g̃, (17)

AŨ + B̃T B̃λ̃ = b, (18)

B̃T B̃Ũ = B̃T g̃. (19)

Next, multiply (17) on the left by B̃T and subtract the bottom two equations from
the top two. Let eU = U − Ũ and eλ = λ − B̃λ̃ to obtain

AeU + B̃T eλ = 0,

B̃T B̃eU = 0.

Since B̃T is equivalent to a gradient operator, it can be shown that it is a one-to-one
operator (since divergence and, thus, B̃ is onto). Therefore, B̃eU = 0 and the system
becomes (

A B̃T

B̃ 0

)(
eU

eλ

)
=

(
0
0

)
,

which is the global “Galerkin” system, which is known to be invertible. As a result,
eU = eλ = 0 and, more importantly, U = Ũ , meaning solving either system results
in the same solution.
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Therefore, (12) and (15) are both viable options for the constraint system. Next,
each of these and some variations are tested to see which yield the best mass
conservation with little extra computational work.

3.3 Solvers

To solve the constrained system, the conjugate gradient (CG) method on the Schur
complement is used [33]. Solving the system in this way yields the following set of
equations:

U = A−1b−A−1CT λ ,

CA−1CT λ =CA−1b− g.

The second equation is solved for λ via CG and a backsolve is used to get the
original U . For the results presented here, a direct solver is used to compute A−1,
but in the future a multigrid solver, or whatever is used to solve the FOSLS system
itself, will be substituted instead.

For the first approach (12) and second (13), the system is solved exactly as
described above. In the second approach, we consider Λ = BT B, where (B)i j

represents the construction of 〈−∇ ·Φ j,ri〉, but where ri =∇ ·Φi is in the divergence
of the space used for A, i.e., ∇ · [Pk1 ]

2 as opposed to the full Pk2 . As a result, the
Schur complement equation becomes

BT BA−1BT Bλ = BT BA−1b− g. (20)

This is badly conditioned as the system BT B is equivalent to a −∇∇· (grad-div)
equation. However, to remedy this, the equation is multiplied on the left by BA−1,
resulting in

(BA−1BT )(BA−1BT )Bλ = (BA−1BT )BA−1b− (BA−1)g.

Notice that BBT is equivalent to a −∇ ·∇, or Laplace system, and, thus, BA−1BT is
well conditioned. In addition, one only needs to solve for Bλ . This system simplifies
further by eliminating one of the BA−1BT blocks to obtain

(BA−1BT )Bλ = BA−1b− (BA−1BT )−1BA−1g. (21)

However, in (21), two solves of BA−1BT are required, increasing the number of
iterations required to solve the system.

In addition, a problem with this approach is the construction of B. A simpler way
is to construct B̃ and use this instead to get system (15). This results in

B̃T B̃A−1B̃T B̃λ = B̃T B̃A−1b− B̃T g̃. (22)
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Multiplying on the left by B̃A−1 yields

(B̃A−1B̃T )(B̃A−1B̃T )B̃λ = (B̃A−1B̃T )B̃A−1b− (B̃A−1B̃T )g̃

(B̃A−1B̃T )B̃λ = B̃A−1b− g̃. (23)

This, however, is the same system obtained from (12) and, as shown in Lemma 1,
results in the same solution for U .

3.3.1 Construction of B

Despite being able to use the simpler construction, B̃, it is possible to construct B for
the type of constraint considered here, ∇ ·u = f . In fact, the matrix B is constructed
locally using the simpler construction of B̃. Consider an element (triangle) T and
let [Pk1 ]

2(T ) be the vector polynomials of degree k1. Next, consider the “least-
squares” constraint, where the space of Lagrange multipliers, λ , is ∇ · [Pk1 ]

2(T ),
which is a subspace of [Pk1−1](T ). Let {ϕs}l

s=1 be the basis (restricted to T )
of [Pk1−1](T ). For k1 = 2, l = 3 (since [Pk1−1](T ) = [P1](T )—the space of
linears). Also, let {Φi}n

i=1 be the basis of [Pk1 ]
2(T ). Since ∇ ·Φi ∈∇ · [Pk1 ]

2(T )⊂
[Pk1−1](T ),

∇ ·Φi =
l

∑
s=1

ci,sϕs = [ϕ1, . . . , ϕl ]ci, (24)

for some coefficients ci = (ci,s) ∈ R
l . Therefore,

(
B̃T
)

s,i = 〈∇ ·Φi, ϕs〉= [〈ϕs,ϕ1〉, . . . , 〈ϕs,ϕl〉]ci = eT
s Mci.

Here, es ∈ R
l is the sth unit coordinate vector and M = MT is the element mass

matrix coming from the space [Pk1−1](T ). In conclusion, the element matrix B̃ =
B̃T = (〈∇ ·Φi, ϕs〉)1≤i≤n, 1≤s≤l admits the following form:

B̃T = MT [c1, c2, . . . , cn].

For the entries 〈∇ ·Φ j, ∇ ·Φi〉= (BT
T BT )i j, using the representation (24) yields

(BT
T BT )i j = 〈∇ ·Φ j, ∇ ·Φi〉= cT

j (〈ϕr, ϕs〉)l
r,s=1 ci = cT

j MT ci =
(
B̃T

T M−1
T B̃T

)
i j .

Therefore,

BT = M
− 1

2
T B̃T .

Thus, B is constructed relatively easily. Namely, over each element the local matrix,
B̃T , is built, which is the Galerkin finite-element construction of the divergence

operator using Pk1 −Pk1−1 elements. Then, BT = M−1/2
T B̃T , where M−1/2

T is the
mass matrix associated with the given element and Pk1−1.
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3.4 Numerical Results

In the following numerical tests, four approaches are considered:

• Method 1: Solve the “Galerkin” constraint system (12), resulting in (23).
Note that this is the same as solving system (15) and simplifying the Schur
complement system.

• Method 2: Solve the “least-squares” constraint system (13), resulting in (20).
• Method 3: Solve the “least-squares” constraint system using the simpler con-

struction, (15), resulting in (22).
• Method 4: Solve the “least-squares” constraint system (14), with the simplified

Schur complement system (21).

Again, D = I, r = 0, and c = 0. The right-hand side is chosen as
f = 2π2 sin(πx)sin(πy) so that the true solution is p= sin(πx)sin(πy). The problem
is solved on a unit square with homogeneous Dirichlet boundary conditions for p.
The system is solved using the four approaches described above for a combination
of the finite-element spaces, P2, P1, and P0. The L2 norms of the errors of the
numerical solutions, p and u = ∇p, are shown in the following tables. Here, uerr =
||u−u∗||0/||u∗||0 and perr = ||p− p∗||0/||p∗||0 for the constrained system, where
u∗ and p∗ are the true solutions. The FOSLS functional, F = ||LU − f ||0, is given
for both the unconstrained system, F , and the constrained system, Fc. In addition,
the mass conservation (or mass loss) is shown as

mL =

∣∣∣∣∣∣
ˆ

Ω

(∇ ·u+ f )dΩ

∣∣∣∣∣∣ ,
for the unconstrained FOSLS system as well as with the constraint, mc

L. In addition,
we consider local conservation of mass by integrating over each element measuring
the largest mass loss over all elements in the domain,

m̂L = max
T

∣∣∣∣∣∣
ˆ

T

(∇ ·u+ f )dT

∣∣∣∣∣∣ ,
as this is a more practical measurement for satisfying physical conservation laws.
Finally, the number of iterations needed in the CG algorithm to reduce the algebraic
residual by 10−8 is shown (Tables 1–4).

3.5 Discussion

A couple of things to note are the fact that the first test yields some of the most
optimal results. Method 2 attempts to solve the ill-conditioned ∇∇·-like system
and, as is shown, requires too many iterations to be used reliably. Methods 3 and 4
improve on this; however, as they require extra matrix inversions in the solution
process, they require more work than in the first case.
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Table 1 (Method 1) Solve B̃A−1B̃T λ = B̃A−1b− g̃

k1 k2 h m̂L m̂c
L mL mc

L F Fc uerr perr Iterations

1 0 1/16 6.9e−4 5.5e−12 2.8e−2 4.9e−11 0.90 1.12 0.181 0.015 113
1 0 1/32 6.6e−5 1.6e−12 1.0e−2 2.9e−11 0.48 0.86 0.181 0.004 232

2 0 1/16 1.7e−5 1.2e−14 3.7e−5 5.7e−14 3.7e−2 3.7e−2 1.16e−3 1.40e−4 4
2 0 1/32 1.1e−6 9.5e−16 2.4e−6 3.0e−14 9.5e−3 9.5e−3 1.82e−4 1.73e−5 2

2 1 1/16 1.7e−5 1.7e−5 3.7e−5 1.9e−13 3.7e−2 3.7e−2 1.12e−3 1.38e−4 13
2 1 1/32 1.1e−6 1.0e−6 2.4e−6 3.4e−14 9.5e−3 9.5e−3 1.81e−4 1.72e−5 7

This approach is equivalent to using the “Galerkin” approach (12) and the “least-squares” approach
plus simplification of the Schur complement system on B̃ (15)

Table 2 (Method 2) Solve ΛA−1Λλ =ΛA−1b−g

k1 k2 h m̂L m̂c
L mL mc

L F Fc uerr perr Iterations

1 1 1/16 6.9e−4 2.9e−12 2.8e−2 5.1e−12 0.90 1.12 0.181 0.015 1,730
1 1 1/32 6.6e−5 1.6e−11 1.0e−2 8.1e−11 0.48 0.86 0.181 0.004 20,375

2 2 1/16 1.7e−5 1.6e−13 3.7e−5 1.5e−11 3.7e−2 9.8e−2 0.012 1.38e−4 1,100
2 2 1/32 1.1e−6 9.8e−15 2.4e−6 1.7e−12 9.5e−3 4.8e−2 4.94e−3 1.72e−5 4,319

This approach is equivalent to using the “least-squares” approach, but without splitting the
constraint matrix and solving the full Schur complement system (13)

Table 3 (Method 3) Solve B̃T B̃A−1B̃T B̃λ = B̃T B̃A−1b− B̃T g̃

k1 k2 h m̂L m̂c
L mL mc

L F Fc uerr perr Iterations

1 1 1/16 6.9e−4 2.2e−12 2.8e−2 2.8e−12 0.90 1.12 0.181 0.015 1,600
1 1 1/32 6.6e−5 1.4e−11 1.0e−2 2.9e−11 0.48 0.86 0.181 0.004 15,268

2 1 1/16 1.7e−5 9.2e−14 3.7e−5 9.3e−13 3.7e−2 3.7e−2 1.16e−3 1.40e−4 15
2 1 1/32 1.1e−6 1.2e−14 2.4e−6 7.5e−14 9.5e−3 9.5e−3 1.82e−4 1.73e−5 4

2 2 1/16 1.7e−5 1.7e−5 3.7e−5 5.9e−14 3.7e−2 3.7e−2 1.15e−3 1.38e−4 12
2 2 1/32 1.1e−6 1.0e−6 2.4e−6 7.3e−14 9.5e−3 9.5e−3 1.81e−4 1.72e−5 6

This approach is equivalent to using the “least-squares” approach with the simpler construction of
the constraint, but without splitting the constraint matrix and solving the full Schur complement
system (15)

Table 4 (Method 4) Solve ΛA−1Λλ =ΛA−1b−g

k1 k2 h m̂L m̂c
L mL mc

L F Fc uerr perr Iterations

1 1 1/16 6.9e−4 3.9e−8 2.8e−2 1.3e−10 0.90 1.12 0.181 0.015 84+134
1 1 1/32 6.6e−5 4.0e−8 1.0e−2 7.8e−10 0.48 0.86 0.181 0.004 146+307

2 2 1/16 1.7e−5 9.6e−10 3.7e−5 5.1e−10 3.7e−2 9.8e−2 0.012 1.38e−4 72+101
2 2 1/32 1.1e−6 5.7e−10 2.4e−6 1.7e−9 9.5e−3 4.8e−2 7.73e−3 1.72e−5 124+198

This approach is equivalent to using the “least-squares” approach and using the simplification of
the full Schur complement system using B (21). Note that since two solves of BA−1BT are required,
the iterations for both solves are displayed in the last column of the table
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In addition, only when a stable pair of elements with the constraint is used
(i.e., P2 −P0 or P2 −P1) are the optimal results obtained. This results from
the fact that only for the stable combinations is there enough room to minimize
the FOSLS functional. All cases yield improved conservation as this is enforced
directly. However, for the unstable pairings as the constraint is enforced, only a
few possible solutions are allowed and, as a result, when the FOSLS functional
is minimized, there is no longer enough room to minimize certain terms in the
functional any more (such as u−∇p= 0). Thus, the best u is not found. The solution
has better mass conservation, but the approximation is not necessarily capable of
minimizing the FOSLS functional. This can be seen by looking at the reduction
in the error of u. In all cases, the solution, p, is approximated well and the error
is reduced with h as expected. However, for the unstable pairs, the gradient, u, is
not approximated well. Thus, the functional is no longer estimating the H1 error
accurately and the a posteriori error estimator is lost. Therefore, the conclusion is
that the constraint always needs to be chosen from a space which gives a stable
finite-element pair with whatever unknowns from the FOSLS system that you wish
to conserve. This requires considering an inf–sup condition for the FOSLS unknown
and Lagrange multiplier pairs, but in many applications these pairs of spaces are
well known [12, 20, 21]. In addition, it should be noted that we also obtain local
conservation across the elements when the constraint space uses discontinuous
elements (i.e., P0, ∇ · [P1]

2, or ∇ · [P2]
2). This is similar to mixed finite-element

methods where
´

T (∇ ·u+ f ) dT will be zero (or small if the system is solved only
approximately) for each element T .

Alternatively, we may use for the constraints test functions from a coarse sub-
space of a space that generally may not provide a stable fine–grid pair. For instance,
if the constraint matrix, B̃, is constructed using the “Galerkin-like” approach using
the same polynomial space as the FOSLS system, the finite-element pairs are not
stable. However, if this operator is restricted to a coarser space, H, and the Lagrange
multiplier, λH , is chosen in that coarser space, stability is regained (assuming the
coarse space is “coarse enough”). In the following results, this is tested using linears
and quadratics. An interpolation operator is constructed via standard finite-element
interpolation, QH , which takes DOF from a grid of size H and interpolates it to the
fine–grid, h. Thus, the constrained system becomes

(
A B̃T QH

QT
HB̃ 0

)(
U

λH

)
=

(
b

QT
Hg̃

)
. (25)

As is seen in Table 5, using P1−P1 and P2−P2 pairs yields conservation and
still allows the FOSLS functional to be minimized as expected. Thus, the solution,
p, and its gradient, u, are approximated well with only a handful of extra iterations
needed. Again, if the coarse Lagrange multiplier space were discontinuous, local
conservation would also be obtained over the coarse elements.
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Table 5 (Alternative approach) solve (25), where QT
H B̃ is the “Galerkin” constraint on a coarser

mesh

k1 k2 h H mL mc
L F Fc uerr perr Iterations

1 1 1/8 1/4 5.3e−2 1.9e−12 1.65 1.70 0.222 0.056 21
1 1 1/16 1/8 2.8e−2 9.0e−12 0.90 0.91 0.132 0.013 27
1 1 1/16 1/4 2.8e−2 3.0e−11 0.90 0.90 0.134 0.015 17
1 1 1/32 1/16 1.0e−2 6.6e−13 0.48 0.48 0.053 0.003 25
1 1 1/32 1/8 1.0e−2 7.1e−12 0.48 0.48 0.053 0.004 17
1 1 1/32 1/4 1.0e−2 4.0e−12 0.48 0.48 0.053 0.004 13

2 2 1/8 1/4 5.5e−4 1.5e−11 0.14 0.15 0.008 0.001 31
2 2 1/16 1/8 3.7e−5 7.0e−13 3.7e−2 3.9e−2 1.10e−3 1.88e−4 28
2 2 1/16 1/4 3.7e−5 8.6e−13 3.7e−2 3.8e−2 1.11e−3 1.39e−4 22
2 2 1/32 1/16 2.4e−6 4.6e−13 9.5e−3 9.9e−3 1.79e−4 3.69e−5 22
2 2 1/32 1/8 2.4e−6 7.5e−14 9.5e−3 9.6e−3 1.79e−4 2.32e−5 17
2 2 1/32 1/4 2.4e−6 9.4e−14 9.5e−3 9.5e−3 1.80e−4 1.83e−5 16

4 Locally Constrained FOSLS Correction

4.1 Overlapping Schwarz Corrections

Now that it has been shown that augmenting the FOSLS system with a constraint
gives better mass conservation with only a few extra iterations, a more robust local
way of solving the problem is described here. An overlapping Schwarz process, as
described in [37] (Sect. 9.5), is considered to break the constrained problem into
smaller local problems. First consider that the FOSLS discrete system has been
solved. In other words, no constraints are yet imposed. Then, the following post-
processing step is performed. Let {Ωi}Nsd

i=1 be an overlapping partition of Ω into Nsd

mesh subdomains (i.e., each Ωi is a union of fine–grid elements). Then, correct the
current solution U with

Ui ∈V 0
h (Ωi) =

{
v ∈Vh : supp (vi)⊂Ω i

}
,

by solving the locally constrained minimization problem for Ui ∈V 0
h (Ωi) and λi ∈

Ri = ∇ ·V 0
h (Ωi) posed in Ωi:

a(U +Ui, vi)+ 〈λi, ∇ ·vi〉 = 〈F, vi〉, for all vi ∈V 0
h (Ωi),

〈∇ · (U +Ui), ϕ〉 = 〈 f , ϕ〉 for ϕ ∈Ri.

Here, for the local space Ri ≡ ∇ ·V 0
h (Ωi), the local systems can be constructed

as in Sect. 3.3.1. Likewise, a computational basis, based on QR or SVD, can be
obtained as well. This is feasible if the domains Ωi are relatively small. Next, set
U := U +Ui and move onto the next subdomain Ωi+1.
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After several loops over the Schwarz subdomains, a global coarse-space
correction is performed. For this, a coarse space, RH ⊂ ∇ ·Vh, is needed with
an explicit locally supported basis such that the pair (Vh, RH) is LBB-stable
(Ladyzenskaya–Babuska–Brezzi condition) [10, 12]. Alternatively, based on a
coarse space, VH ⊂ Vh, and coarser subdomains, {Ω H

i } (i.e., union of coarse
elements in TH ), for the current approximation U ∈ Vh, local coarse-space

corrections, U H
i ∈ V 0

H(Ω H
i ) = {vH ∈ VH : supp (vH) ⊂ Ω H

i }, are obtained by
solving the local saddle-point problems for U H

i ∈ V 0
H(Ωi) and λ H

i ∈ RH
i =

∇ ·V 0
H(Ω H

i ) posed in Ω H
i :

a(U +U H
i , vH

i )+ 〈λ H
i , ∇ ·vH

i 〉 = 〈F, vH
i 〉, for all vH

i ∈V 0
H(Ω H

i ),

〈∇ · (U +U H
i ), ϕ〉 = 〈 f , ϕ〉 for ϕ ∈RH

i .

Here, the coarse spaces can be constructed in a variational way by using standard
interpolation and restriction operators for polynomial finite-element spaces. Finally,
let U := U +U H

i and move onto the next coarse subdomain Ω H
i+1. The process

can be applied recursively in a V -cycle iteration exploiting the above constrained
overlapping Schwarz (Vanka-like) smoothing corrections [36]. For this paper,
however, we consider only a two-level method with one global coarse space.

4.2 Numerical Results

To test the scheme described above in Sect. 4.1, the “Galerkin”-like constrained
system (12) is considered on subdomains and a coarse grid. This system gave the
most optimal results (fewer iterations and better mass conservation) and, there-
fore, appears to be the natural choice for performing the subdomain corrections.
As described above, the standard FOSLS system is solved yielding, U0, which
is used as the initial guess for the overlapping Schwarz method. Next, the finite-
element triangulation of Ω is divided into overlapping subdomains, Ti of Ωi. The
restriction of the FOSLS system, A, and the constraint equation, B̃, is formed by
a simple projection onto the subdomains giving, Ai = PT

i APi and Bi = QT
i B̃Pi.

Here, Pi and Qi are the natural injection operators of DOFs on Ti to the original
mesh, T , for elements of Pk1 and Pk2 , respectively. Then, on each subdomain the
Schur complement system of the error equations is solved as described above in
Sect. 4.1. Once all corrections on subdomains are updated, the system is projected
onto a coarse grid, TH , where an update is again solved for. We use the standard
finite-element interpolation operators to move between a coarse grid of size H to
a fine grid of size h. We define these as PH for Pk1 and QH for Pk2 . Note that
PH is a block matrix of interpolation operators for each unknown in the FOSLS
system. The transposes are used as restriction operators from fine grid to coarse grid.
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The algorithm is described below, letting Ms be the maximum number of subdomain
smoothing steps and Nsd being the number of overlapping subdomains:

Solve FOSLS System: AU0 = b.
Compute Residuals: rA = b−AU0 and rB = g̃− B̃U0.
Set U = U0 and λ = 0.
Perform Subdomain Smoothing Steps:
for s = 1 to Ms do

for i = 1 to Nsd do
Restrict Matrices and Residuals to Subdomains.

Solve:

(
Ai BT

i

Bi 0

)(
Ui

λi

)
=

(
PT

i rA

QT
i rB

)
.

Update: U = U +PiUi and λ = λ +Qiλi.
Recompute Residuals: rA = b−AU − B̃T λ and rB = g̃− B̃U0.

end
end
Perform Coarse-Grid Correction:

Solve:

(
PT

H APH PT
H B̃T QH

QT
HB̃PH 0

)(
UH

λH

)
=

(
PT

H rA

QT
HrB

)
.

Update: U = U +PHUH .

The results for P2 −P0 and P1 −P0 pairs of elements for the FOSLS
solution and the constraint variable are given in Table 6 using various grid spacings.
The first set of results is given for the original FOSLS system with no constraint
correction. The FOSLS functional is reduced by hk1 as expected and it gives a good
approximation of the reduction in error for both u and p. However, the mass loss is
rather large. Using quadratics improves the results but not exactly. The remaining
blocks of data give the results using various numbers of smoothing steps and with or
without coarse-grid corrections. In all cases, using P2−P0 elements gives much
better results. As seen in Tables 1 and 2, mass conservation is obtained, and the
FOSLS functional is still minimized, retaining its error approximation properties.
Moreover, using unstable pairs of elements can even result in the divergence of
the FOSLS functional. In the context of this problem, the solution is still obtained
accurately, but the gradient of the solution is not captured well. The solution process
is no longer minimizing the residual in the H1 norm.

In addition, the results show that the use of a coarse grid improves the
performance of the method. The second block in Table 6 shows results for perform-
ing one smoothing step of the subdomain solver with no coarse-grid correction.
This does improve the conservation results, but not significantly. Performing 100
smoothing steps of the subdomain solver with no coarse-grid correction improves
the mass conservation, but of course these iterations are expensive. Finally, the
fourth set shows results for using one step of the subdomain solver with one
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Table 6 Mass loss, least-squares functional, and relative errors of solutions for P1−P0 elements
(left) and P2−P0 elements (right)

P1−P0 P2−P0

mL F uerr perr mL F uerr perr

1/h FOSLS
8 5.3e−2 1.65 0.223 0.070 5.5e−4 0.14 8.3e−3 1.2e−3
16 2.8e−2 0.90 0.134 0.019 3.7e−5 0.04 1.1e−3 1.4e−4
32 1.0e−2 0.48 0.053 0.005 2.4e−6 0.01 1.8e−4 1.7e−5

1/h Nsd = 9, Ms = 1, No coarse-grid correction
8 2.6e−3 1.77 0.180 0.061 2.3e−6 0.14 8.4e−3 1.2e−3
16 1.3e−3 1.09 0.185 0.016 1.0e−7 0.04 1.2e−3 1.4e−4
32 2.9e−5 1.47 0.201 0.004 9.2e−9 0.01 1.8e−4 1.7e−5

1/h Nsd = 9, Ms = 100, No coarse-grid correction
8 4.2e−12 1.83 0.184 0.059 1.0e−11 0.14 8.4e−3 1.2e−3
16 4.7e−8 1.12 0.181 0.015 9.1e−11 0.04 1.2e−3 1.4e−4
32 2.2e−1 7.81 0.413 0.005 4.5e−11 0.01 1.8e−4 1.7e−5

1/h Nsd = 9, Ms = 1, H = 2h
8 8.8e−11 1.83 0.181 0.060 2.3e−13 0.14 8.3e−3 1.2e−3
16 1.3e−12 1.92 0.188 0.015 1.2e−13 0.04 1.2e−3 1.4e−4
32 1.1e−10 10.09 0.209 0.004 2.5e−14 0.01 1.8e−4 1.7e−5

1/h Nsd = 9, Ms = 1, H = 4h
8 5.3e−3 1.84 0.191 0.060 1.2e−6 0.14 8.3e−3 1.2e−3
16 1.2e−3 1.20 0.186 0.016 1.8e−8 0.04 1.2e−3 1.4e−4
32 2.8e−4 2.63 0.200 0.004 3.0e−9 0.01 1.8e−4 1.7e−5

1/h Nsd = 9, Ms = 10, H = 4h
8 3.9e−4 1.83 0.195 0.060 1.1e−7 0.14 8.3e−3 1.2e−3
16 4.0e−3 1.29 0.192 0.015 7.8e−9 0.04 1.2e−3 1.4e−4
32 4.3e−2 9.93 0.363 0.007 6.7e−10 0.01 1.8e−4 1.7e−5

solve on a coarse grid. The mass conservation is retained and not much work is
needed. Combining with the results from Table 1, this process requires around four
iterations of MINRES for each local subdomain and for the coarse grid. Each of
these subdomains has less DOFs, and therefore, the work required to solve the
constrained system is a fraction of the cost of solving the original FOSLS system.

5 Conclusions

In summary, the results of this paper have shown that properties such as mass
conservation can be obtained using the least-squares finite-element method and
a post-process subdomain correction method. There are many other methods, as
mentioned in the Introduction (Sect. 1), that also improve conservation proper-
ties for least-squares problems. These may involve reformulating the system or
choosing better finite-element spaces for the original FOSLS system. For instance,
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nonconforming elements can be used that satisfy the mass conservation across
interfaces much better than the standard polynomial spaces used here [1,17,18,25].
The goal of our approach in this paper is to show that the system can be solved as
is, with no alterations to the original FOSLS method. Thus, it should be considered
a robust finite-element method for such systems which obtains physically accurate
solutions efficiently. Care needs to be given in choosing the right spaces for the
constraint system, so that a stable method is obtained and the FOSLS functional re-
tains its important a posteriori error estimator properties. This includes considering
discontinuous spaces, in order to ensure local conservation across smaller regions
of the domain. However, since this post-processing is done on local subdomains
and/or on coarse grids, only a fractional amount of computational cost is added to
the solution process. Future work involves implementing the above algorithms in a
multilevel way and including the coarse-space constraints in the local subdomain
process. Also, other applications such as Stokes flow and magnetohydrodynamics
are worth considering.
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Abstract In this work, we construct energy-minimizing coarse spaces for the finite
element discretization of mixed boundary value problems for displacements in
compressible linear elasticity. Motivated from the multiscale analysis of highly
heterogeneous composite materials, basis functions on a triangular coarse mesh
are constructed, obeying a minimal energy property subject to global pointwise
constraints. These constraints allow that the coarse space exactly contains the rigid
body translations, while rigid body rotations are preserved approximately. The
application is twofold. Resolving the heterogeneities on the finest scale, we
utilize the energy-minimizing coarse space for the construction of robust two-level
overlapping domain decomposition preconditioners. Thereby, we do not assume that
coefficient jumps are resolved by the coarse grid, nor do we impose assumptions on
the alignment of material jumps and the coarse triangulation. We only assume that
the size of the inclusions is small compared to the coarse mesh diameter. Our numer-
ical tests show uniform convergence rates independent of the contrast in the Young’s
modulus within the heterogeneous material. Furthermore, we numerically observe
the properties of the energy-minimizing coarse space in an upscaling framework.
Therefore, we present numerical results showing the approximation errors of the
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1 Introduction

Constantly rising demands on the range of application of today’s industrial prod-
ucts require the development of innovative, highly effective composite materials,
specifically adapted to their field of application. Virtual material design provides
essential support in the development process of new materials as it substantially
reduces costs and time for the construction of prototypes and performing mea-
surements on their properties. Of special interest is the multiscale analysis of
particle-reinforced composites. They combine positive features of their components
such as light weight and high stiffness.

Due to large variations in the material parameters, the linear system arising from
the finite element discretization of the linear elasticity PDE on such heterogeneous
materials is in general very ill-conditioned. Our goal is to develop two-level
domain decomposition preconditioners which are robust w.r.t. the jumps in the
material coefficients of the PDE. Two-level overlapping domain decomposition
preconditioners for the equations of linear elasticity are presented in several papers
[9,19,22]. Under certain conditions on the alignment of the material jumps with the
coarse grid, the aggregation-based method in [19] (see also [26] in the context of
AMG) promises mesh and coefficient independent condition number bounds. These
methods might not be fully robust when variations in the coefficients appear on a
very small scale where the coefficients cannot be resolved by a coarse mesh. A more
recent approach in [23] guarantees robustness w.r.t. arbitrary coefficient variations
by solving generalized eigenvalue problems in the overlapping regions of the coarse
basis functions. The dimension of the resulting coarse space strongly depends on
the coefficient distribution. This approach is a variation of the method in [7, 30],
where it is applied to abstract symmetric positive definite operators in a multiscale
framework.

Further robust methods for solving linear elasticity problems include multilevel
methods studied in [14] and further developed in [11] and [12]. A purely algebraic
multigrid method for linear elasticity problems is constructed, based on computa-
tional molecules, a new variant of AMGe [3]. Such an approach has been studied
earlier for scalar elliptic PDEs in [15]. Classical AMG methods for linear elasticity
problems are presented in [1, 5] and the references therein.

In this paper, we construct coarse basis functions with a minimal energy
property subject to the constraints that the coarse space exactly contains the rigid
body translations, while the rigid body rotations are preserved approximately.
Energy-minimizing methods have been proposed in [29] and [16] and were further
studied in [25, 31]. In [17], such an approach is generalized and applied to
non-Hermitian matrices. The approach was motivated in [29] from experimental
results of one-dimensional problems. It is based on improving the approximation
properties of the coarse space by reducing its dependence on the PDE coefficients.
In [25], energy-minimizing coarse spaces were motivated from developments in
the convergence theory for two-level Schwarz methods of scalar elliptic PDEs in
[8]. In [16], energy-minimizing coarse spaces are presented also for isotropic linear
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elasticity, in the context of smoothed aggregation. The novel part in the paper at
hand is the application to the multiscale framework. The construction on a coarse
tetrahedral mesh allows large overlaps in the supports of the basis functions and the
coarse space promises good upscaling properties.

An interesting method proposed in [20] constructs basis functions by minimizing
their energy subject to a set of functional rather than pointwise constraints.
This approach is applied to scalar elliptic PDEs. Similar to the method in [7], the
objective is to prove the approximation property in a weighted Poincaré inequality.
By a proper choice of the functional constraints, mesh and coefficient independent
convergence rates can be obtained. Further variants of coarse spaces with a minimal
energy property, including local variants, can be found in [6, 10, 13, 28].

The outline of the paper is as follows. We proceed with the continuous
formulation of the governing PDE system and the discretization on the fine grid in
Sect. 2. In Sect. 3 we shortly recapitulate the two-level additive Schwarz method,
followed by introducing the precise structure of the underlying fine and coarse
grid in three spatial dimensions. In Sect. 4, we present a detailed construction of
the energy-minimizing basis. Section 5 is devoted to numerical results, a short
discussion follows in Sect. 6.

2 Governing Equations and Their Discretization

2.1 The Equations of Linear Elasticity

For the sake of simplicity, let Ω ⊂ R
3 be a Lipschitz domain. We shall assume

that Γ = ∂Ω admits the decomposition into two disjoint subsets ΓDi and ΓNi ,
Γ = ΓDi ∪Γ Ni

and meas(ΓDi) > 0 for i ∈ {1,2,3}. We consider a solid body in Ω ,
deformed under the influence of volume forces fff and traction forces ttt. Assuming a
linear elastic material behavior, the displacement field uuu of the body is governed by
the mixed b.v.p. [2]

−divσσσ(uuu) = fff in Ω , (1)

σσσ(uuu) =CCC : εεε(uuu) in Ω , (2)

ui = gi on ΓDi , i = 1,2,3,

σi jn j = ti on ΓNi , i = 1,2,3,

where σσσ is the stress tensor, the strain tensor εεε is given by the symmetric part of the
deformation gradient,

εεε(uuu) =
1
2

(
∇uuu+∇uuuT )

and nnn is the unit outer normal vector on Γ and σi jn j = (σσσ · nnn)i. The fourth-order
elasticity tensor CCC =CCC(x),x ∈Ω describes the elastic stiffness of the material under
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mechanical load. The coefficients ci jkl ,1 ≤ i, j,k, l ≤ 3 may contain large jumps
within the domain Ω . They depend on the parameters of the particular materials
which are enclosed in the composite. The boundary conditions are imposed
separately for each component ui, i = 1,2,3 of the vector-field uuu = (u1,u2,u3)

T :
Ω̄ → R

3.
Equation (1) is the general form of the PDE system for anisotropic linear

elasticity, which simplifies when the solid body consists of one or more isotropic
materials. In this case, (2) can be expressed in terms of the Lamé coefficients λ ∈R

and μ > 0, which are characteristic constants of the specific material. The stiffness
tensor of an isotropic material is given by ci jkl = λ δi jδkl + μ(δikδ jl + δilδ jk), and
the stress is σσσ(uuu) = λ tr(εεε(uuu))III + 2μεεε(uuu).

2.2 Weak Formulation

Consider the Sobolev space V := [H1(Ω)]3 of vector-valued functions whose
components are square-integrable with weak first-order partial derivatives in the
Lebesgue space L2(Ω). We define the subspace V0 ⊂ V ,

V0 :=
{

vvv ∈ [H1(Ω)]3 : vi = 0 on ΓDi , i = 1,2,3
}
. (3)

Additionally, we define the manifold

Vg :=
{

vvv ∈ [H1(Ω)]3 : vi = gi on ΓDi , i = 1,2,3
}
. (4)

The Sobolev space V inherits its scalar product from H1(Ω); it is given by

(uuu,vvv)[H1(Ω)]3 :=
3

∑
i=1

(ui,vi)H1(Ω).

We assume fff ∈V ′
0 to be in the dual space of V0, ttt ∈ [H− 1

2 (ΓN)]
3 is in the trace space,

and ci jkl ∈ L∞(Ω) to be uniformly bounded. Additionally, we require the stiffness
tensor CCC to be positive definite, i.e., it holds (CCC : εεε(vvv)) : εεε(vvv) ≥C0 εεε(vvv) : εεε(vvv) for a
constant C0 > 0. Note that for an isotropic material with the parameters λ and μ ,
this condition holds when C0/2 < μ < ∞ and C0 ≤ 2μ + 3λ < ∞. We define the
bilinear form a : V ×V →R,

a(uuu,vvv) :=
ˆ

Ω
(CCC : εεε(uuu)) : εεε(vvv)dx. (5)

This form is symmetric, continuous, and coercive. The coercivity, i.e.,

∃ c0 > 0 : a(vvv,vvv)≥ c0 ‖vvv‖[H1(Ω)]3 ∀vvv ∈ V0,
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can be shown by using Korn’s inequality (cf. [2]). Furthermore, we define the
continuous linear form F : V →R,

F(vvv) :=
ˆ

Ω
fff · vvvdx+

ˆ
ΓN

ttt · vvvds.

The weak solution of (1) is then given in terms of a(·, ·) and F(·) by uuu∈Vg, such that

a(uuu,vvv) = F(vvv) ∀vvv ∈ V0. (6)

Under the assumptions above, a unique solution of the weak formulation in (6) is
guaranteed by the Lax–Milgram lemma [2].

2.3 Finite Element Discretization

We want to approximate the solution of (6) in a finite dimensional subspace V h ⊂V .
Therefore, let Th be a quasi-uniform triangulation of Ω ⊂ R

3 into tetrahedral finite
elements with mesh parameter h, and let Σ̄h be the set of vertices of Th contained
in Ω̄ . Furthermore, let ¯Nh denote the corresponding index set of nodes in Σ̄h.
We denote the number of grid points in Σ̄h by np. In Sect. 3, the regular grid and
its triangulation are introduced in more detail. Let

V h := span
{

ϕ j,h
k : Ω̄ →R

3, j ∈ ¯Nh, k = 1,2,3
}

be the space of continuous piecewise linear vector-valued functions on Th. Each
such basis function is of the form

ϕ j,h
k = (ϕ j,h

k1 ,ϕ j,h
k2 ,ϕ j,h

k3 )T , ϕ j,h
kl (xi) = δi jδkl , xi ∈ Σ̄h, l ∈ {1,2,3},

where δi j denotes the Kronecker delta. For the sake of simplifying the notation, we
assume a fixed numbering of the basis functions to be given. To be more specific, we
assume that there exists a suitable surjective mapping {ϕ j,h

k }→ {1, . . . ,nd}, ϕ j,h
k �→

( j,k). Here, nd = 3np denotes the total number of degrees of freedom (DOFs) of V h.
Note that this mapping automatically introduces a renumbering from {1, . . . ,np}×
{1,2,3}→ {1, . . . ,nd}. We introduce the discrete analogies to the space in (3) and
the manifold in (4) by

V h
0 : =

{
vvvh ∈ V h : vh

i = 0 on ΓDi , i = 1,2,3
}
, (7)

V h
g : =

{
vvvh ∈ V h : vh

i = gi on ΓDi , i = 1,2,3
}
. (8)

We want to find uuuh ∈ V h
g , where uuuh = wwwh + gggh, with wwwh ∈ V h

0 and gggh ∈ V h
g . More

precisely, we seek uuuh = (uh
1,u

h
2,u

h
3)

T with
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uh
k =

np

∑
j=1

u( j,k)ϕ
j,h

k , k = 1,2,3,

such that

a(wwwh,vvvh) = F(vvvh)− a(gggh,vvvh) ∀vvvh ∈ V h
0 .

We define the index set of DOFs of V h by Dh = {1, . . . ,nd} and introduce the subset

Dh
0 : =

{
(i,k) ∈ N : i ∈ ¯Nh, xi �∈ ΓDk

}
.

Furthermore, we may introduce Dh
ΓD

:=Dh\Dh
0 �= /0. The bilinear form in (5) applied

to the basis functions of V h reads

a(ϕ i,h
m ,ϕ j,h

k ) =

ˆ
Ω

εεε(ϕ i,h
m ) : CCC : εεε(ϕ j,h

k )dx. (9)

We define A ∈ R
nd×nd , f ∈ R

nd by

A(i,m)( j,k) =

⎧⎪⎪⎨
⎪⎪⎩

a(ϕ i,h
m ,ϕ j,h

k ) if (i,m) ∈Dh
0 ,( j,k) ∈Dh

0 ,

a(ϕ i,h
m ,ϕ j,h

k ) if (i,m) = ( j,k) ∈Dh
ΓD
,

0 otherwise

and

f( j,k) =

⎧⎪⎪⎨
⎪⎪⎩

F(ϕ j,h
k )− ∑

(i,m)∈Dh
ΓD

a(ϕ i,h
m ,ϕ j,h

k )gm(xi) if ( j,k) ∈Dh
0 ,

F(ϕ j,h
k ) = a(ϕ j,h

k ,ϕ j,h
k )gk(x j) if ( j,k) ∈Dh

ΓD
.

Observe that common supports of basis functions ϕ i,h
m and ϕ j,h

k with (i,m) ∈ Dh
0 ,

( j,k) ∈ Dh
ΓD

do not have a contribution to the entries in A. They only contribute to
the loadvector f. This leads to the sparse linear system

Au = f (10)

with the symmetric positive definite (spd) stiffness matrix A. The symmetry of A
is inherited from the symmetry of a(·, ·), while the positive definiteness is a direct
consequence of the coercivity of the bilinear form. Note that in the construction
above, the essential DOFs in Dh

ΓD
are not eliminated from the linear system. Degrees

of freedom related to Dirichlet boundary values are contained in A by strictly
imposing uh

i = gh
i on ΓDi , i ∈ {1,2,3}, i.e., any row in A related to a Dirichlet DOFs

contains only a nonzero entry on the diagonal. The remaining Dirichlet DOFs in the
columns of A vanish as they are transferred to the right-hand side in (10).
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3 The Two-Level Method

We are interested in solving the linear system (10) iteratively and the construction of
preconditioners for A which remove the ill-conditioning due to (i) mesh parameters
and (ii) variations in the PDE coefficients. Such preconditioners involve corrections
on local subdomains as well as a global solve on a coarse grid. Specifically, we
apply the two-level additive Schwarz preconditioner, which we shortly recapitulate
in this section. Furthermore, we precisely introduce the fine and coarse triangulation
on a structured grid. The structure is such that the coarse elements can be formed by
an agglomeration of fine elements.

3.1 Two-Level Additive Schwarz

Let {Ωi, i = 1, . . . ,N} be an overlapping covering of Ω̄ , such that Ωi \ ∂Ω is open
for i ∈ {1, . . . ,N}. Ωi \ ∂Ω is assumed to consist of the interior of a union of fine
elements τ ∈Th. The part of Ωi which is overlapped with its neighbors should be of
uniform width δi > 0. We define the local submatrices of A corresponding to the
subdomains Ωi ⊂ Ω̄ by Ai = RiART

i . Roughly speaking, Ri is the restriction matrix
of a vector defined in Ω to Ωi (more details can be found in [24]).

Additionally to the local subdomains, we need a coarse triangulation TH of Ω̄
into coarse elements. Here, we assume again that each coarse element T consists
of a union of fine elements τ ∈ Th of the fine triangulation. We will construct a
coarse basis whose values are determined on the coarse grid points in Ω̄ (excluding
coarse DOFs on the Dirichlet boundaries), given by the vertices of the coarse
elements in TH . The coarse space V H

0 ⊂ V h
0 is constructed such that it is a subspace

of the vector-field of piecewise linear basis functions on the fine grid. That is,
each function φH ∈ V H

0 omits a complete representation w.r.t. the fine-scale basis.
The restriction matrix RH describes a mapping from the coarse to the fine space
and contains the corresponding coefficient vectors of the coarse basis functions
by row. The coarse grid stiffness matrix is then defined as the Galerkin product
AH :=RHART

H . With these tools in hand, the action of the two-level additive Schwarz
preconditioner M−1

AS is defined implicitly by

M−1
AS = RT

HA−1
H RH +

N

∑
i=1

RT
i A−1

i Ri.

In the following, we write A0 and R0 instead of AH and RH . The following two
theorems are basic results in domain decomposition theory. Proofs can be found in
[24]. Theorem 1 also states a reasonable assumption on the choice of the overlapping
subdomains.
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Theorem 1 (Finite Covering). The set of overlapping subspaces {Ωi, i= 1, . . . ,N}
can be colored by NC ≤N different colors such that if two subspaces Ωi and Ω j have
the same color, it holds Ωi∩Ω j = /0. For the smallest possible number NC, the largest
eigenvalue of the two-level preconditioned Schwarz linear system is bounded by

λmax(M
−1
AS A)≤ NC + 1

Theorem 2 (Stable Decomposition). Suppose there exists a number C1 ≥ 1, such
that for every uuuh ∈ V h

0 , there exists a decomposition uuuh = ∑N
i=0 uuui with uuu0 ∈ V H

0 and
uuui ∈ V h(Ωi), i = 1, . . . ,N such that

N

∑
i=0

a(uuui,uuui)≤C2
1 a(uuuh,uuuh).

Then, it holds

λmin(M
−1
AS A)≥C−2

1 .

As we can see, the choice of the coarse space has no influence on the estimate of the
largest eigenvalue of the preconditioned system. However, it is crucial for obtaining
a small constant C1 in the estimate of the smallest eigenvalue in Theorem 2.
We continue with introducing the structured fine and coarse grid.

3.2 Fine and Coarse Triangulation

The Fine Grid

Let the domain Ω be a 3D cube, i.e., Ω̄ = [0,Lx]× [0,Ly]× [0,Lz] ⊂ R
3 for given

Lx,Ly,Lz > 0. The fine grid is constructed from an initial voxel structure which is
further decomposed into tetrahedral finite elements [21]. More precisely, the set of
grid points in Ω̄ is given by

Σ̄h :=
{
(xi,y j,zk)

T : xi = ihx, y j = jhy, zk = khz, (11)

i = 0, . . . ,nx, j = 0, . . . ,ny, k = 0, . . . ,nz
}

where nx = Lx/hx,, ny = Ly/hy, nz = Lz/hz. For simplicity, we may assume that
L := Lx = Ly = Lz and h := hx = hy = hz, and thus nh := nx = ny = nz. That is, the fine
grid can be decomposed into nh× nh× nh grid blocks of size h× h× h. We denote
such a fine grid block by �i jk

h , 1≤ i, j,k≤ nh. The triple (i, j,k) uniquely determines
the position of the corresponding block in Ω̄ . Each block is further decomposed into
5 tetrahedral elements. The decomposition depends on the position of the specific
grid block. To identify them, we introduce the notation si jk := s(�i jk

h ) = i+ j + k.
We distinguish between two different decompositions, depending on the value of
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Fig. 1 Decomposition of grid block into 5 tetrahedral elements

si jk mod 2. We follow the numbering of the 8 vertices of a block as given in Fig. 1.
If si jk is even (see Fig. 1a), block �i jk

h is decomposed into 5 tetrahedra which are
defined by the set of their four vertices within each block,

{
{1,2,4,6},{1,3,4,7},{1,5,6,7},{4,6,7,8},{1,4,6,7}

}
.

If si jk is odd (see Fig. 1b), the decomposition of block �i jk
h into the tetrahedra is

done such that their vertices are given by
{
{1,2,3,5},{2,3,4,8},{2,5,6,8},{3,5,7,8},{2,3,5,8}

}
.

With the given decomposition, a conformal triangulation of Ω into tetrahedral
elements is uniquely defined, we denote this partition by Th. Th is referred to as
the fine grid triangulation, whereas the coarse grid triangulation, introduced in the
following, is denoted by TH .

Forming Coarse Elements by Agglomeration

The coarse elements T ∈ TH are constructed by an agglomeration of the fine
elements. We construct a set of agglomerated elements {T} = TH such that each
T =

⋃nT
i=1 τi, τi ∈ Th is a simply connected union of fine grid elements. Thus, for

any two τi,τ j ∈Th, there exists a connecting path of elements {τk}k ⊂ T beginning
in τi and ending in τ j. Each fine grid element τ should belong to exactly one
agglomerated element T . Due to the regular structure of the underlying grid, the
agglomeration is done such that the coarse elements have the same tetrahedral
form as the fine elements, and automatically form a coarser grid of equal structure.
The table AE element (cf. [27]) is used to store the fine elements which belong
to an agglomerated (coarse) element. Given the fine triangulation Th of Ω , the
agglomeration process proceeds as follows:
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1. Given a fixed coarsening-factor c f , compute the position of the coarse nodes to

decompose the domain Ω into imaginary coarse blocks �i jk
H of size H×H×H,

where 1≤ i, j,k ≤ nH ∈N, nH = nh/c f , and H = c f h.
2. Build the CB element table:

For each τ ∈ Th, obtain the position of τ in Ω and assign it to the belonging
coarse block �i jk

H .
3. Build the AE element table:

For each coarse block �i jk
H ⊂ Ω̄ and each τ ⊂ �i jk

H (CB element), measure the

position of τ in �i jk
H and assign it to the belonging coarse tetrahedron.

In step 3 of the agglomeration process, we use again the mapping si jk := s(�i jk
H ) =

i+ j+ k to identify the coarse tetrahedra into which a given block is decomposed.
This partition automatically defines a set of coarse grid points, given by the vertices
of the coarse elements. It remains to show that a straightforward decomposition of
a coarse block into coarse tetrahedral elements leads to the same result as forming
the coarse tetrahedra by agglomerating fine elements. The proof of this concept is
given in Lemma 1.

Lemma 1 (Mesh Alignment). The meshes Th and TH are aligned.

Proof. Let �i jk
h ⊂ Ω̄ be a fine grid block. We introduce the four vectors n1 =

(−1,1,1)T , n2 = (1,−1,1)T , n3 = (1,1,−1)T , and n4 = (−1,−1,−1)T . If si jk
h is

odd (see Fig. 1a), they form the inner normal vectors on the four faces of the
tetrahedron which is centered in the interior of the block �i jk

h ; if si jk
h is even (see

Fig. 1b), they form the outer normal vectors on the faces of the tetrahedron in
the center of �i jk

h . The given normal vectors n�, � = 1, . . . ,4, characterize the four
families of planes Ξh

� :=
{

n� · x = 2zh, x ∈ Ω̄ , z ∈ Z
}

. We want to show that these

families induce the splitting of any fine voxel �i jk
h ⊂ Ω̄ into the five tetrahedra by

their intersection with �i jk
h . To see this, let us first assume that si jk

h is odd, that is,
the fine voxel is decomposed according to the splitting in Fig. 1a. We denote by
F�(�i jk

h ) the face of the tetrahedra in �i jk
h which is normal to n�, � ∈ {1, . . . ,4}.

Moreover, let xi′ j′k′ = (i′h, j′h,k′h)T be the vertex of �i jk
h which is closest to the

origin (node 1 in Fig. 1a), that is, (i′, j′,k′) = (i−1, j−1,k−1). Then it holds indeed
that (n� ·x)/h mod 2 = (i′+ j′+k′) mod 2 for all x∈F�(�i jk

h ), �= 1, . . . ,4. Since
i+ j+k is odd by assumption, we have that (i′+ j′+k′) mod 2= 0. Hence, it holds
F�(�i jk

h ) = Ξh
� ∩�i jk

h , and the decomposition of �i jk
h into tetrahedra is induced

by the families Ξ�, � = 1, . . . ,4. Assuming now that si jk
h is even, the fine voxel

is decomposed according to the splitting in Fig. 1b. For � = 1, . . . ,4, let F�(�i jk
h )

denote the angular face of the tetrahedra in �i jk
h to which n� is normal. We denote

by xi jk = (ih, jh,kh)T the vertex of �i jk
h which is most distant form the origin (node

8 in Fig. 1b). It holds for all x ∈F�(�i jk
h ), � ∈ {1, . . . ,4}, that (n� · x)/h mod 2 =

(i+ j + k) mod 2. Since i+ j + k is even by assumption, we conclude again that
Ξh
�∩�

i jk
h defines the decomposition of �i jk

h into tetrahedra. The same arguments can
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be applied to show that for �∈{1, . . . ,4}, the sets ΞH
� :=

{
n� ·x= 2zH, x∈ Ω̄ , z∈Z

}
form the family of planes which induce the decomposition of the coarse blocks into
tetrahedra. Since the families Ξh

� and ΞH
� , �= 1, . . . ,4, intersect in the origin and due

to H = c f h for some c f ∈ N, the coarse grid family of planes is a subset of the fine
ones which shows that fine and coarse meshes are aligned.

3.3 Abstract Multiscale Coarse Space

In Sect. 3.2, we introduced the structured fine and coarse mesh which will be used
in our numerical tests. For the construction of the basis functions, the assumptions
on TH can be slightly weakened. In general, we require that TH is a conforming
tetrahedral coarse mesh, such that each T ∈ TH consists of a union of fine elements
τ ∈ Th with TH being shape-regular w.r.t. H := maxT∈TH HT , HT = diam(T ).
Let Σ̄H be the set of coarse nodes of TH in Ω̄ . We denote the index set of coarse
nodes of TH on Ω̄ by ¯NH . For each coarse grid point xp ∈ Σ̄H , we introduce the set

ωp := interior

⎛
⎝ ⋃
{T∈TH :xp∈T}

T

⎞
⎠, (12)

given by the interior of the union of coarse elements which are attached to node
xp. We will construct a coarse vector-valued basis whose values are determined on
the coarse grid points in Ω̄ , given by the vertices of the coarse elements in TH .
The coarse basis functions are constructed such that they can be represented w.r.t.
the vector-field of piecewise linear basis functions V h on the fine grid. Given the
coarse basis functions, we introduce the coarse space in abstract form by

V H := span
{

φ p,H
m , p ∈ ¯NH , m = 1,2,3

}
. (13)

This space can be viewed as a generalization of the space of piecewise linear vector-
fields on TH . The coarse basis functions are constructed to have the following form.

Assumption 3.1 (Abstract Coarse Space).

(C1) φ p,H
m = (φ p,H

m1 ,φ p,H
m2 ,φ p,H

m3 )T , φ p,H
mk (xq) = δpq δmk, p ∈ ¯NH , k ∈ {1,2,3},

(C2) supp φ p,H
m ⊂ ω̄p,

(C3) ‖φ p,H
mk ‖L∞(Ω) ≤C, k ∈ {1,2,3},

(C4) ∑p∈ ¯NH
φ p,H

mk (x) = δmk, x ∈ Ω̄ , k ∈ {1,2,3},

Assumption (C4) implies that the rigid body translations are globally contained in
the coarse space. Additionally, we might require that the coarse space also contains
the rigid body rotations, and thus,

(C5) RBM ⊂ span
{

φ p,H
m : p ∈ ¯NH , k ∈ {1,2,3}

}
,
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where the space RBM of rigid body modes in Ω̄ is defined by

RBM = {v ∈ [L2(Ω̄ )]3 : v = a+ b× x, a,b ∈ R
3,x ∈ Ω̄}.

It is shown in [4] that multiscale finite element coarse spaces for linear elasticity
with vector-valued linear boundary conditions contain the rigid body modes glob-
ally. Although the construction of the energy-minimizing coarse space which we
present in Sect. 4 does not guarantee that the three rigid body rotations are globally
contained in the coarse space, the numerical tests in Sect. 5 validate the robustness
of the method for problems where the boundary conditions prohibit global rotations,
i.e., meas(ΓDi)> c0, i = 1,2,3, with c0 > 0.

4 Energy Minimization for the Elasticity System

In this section we present the construction of the energy-minimizing coarse space
for the 3D system of linear elasticity. We start with the definition of the basis and the
corresponding coarse space V H =V EMin, followed by some details of its properties.
Furthermore, we provide a precise definition of the interpolation operators which are
determined by the coarse basis and show how these basis functions can be computed
efficiently.

4.1 The Energy-Minimizing Coarse Space

We construct the energy-minimizing coarse space V H on TH according to
assumption 3.1. We denote by | · |a,Ω := a(·, ·)1/2 the semi-norm on [H1(Ω)]3,
induced by the bilinear form in (5). For m = 1,2,3 and each p ∈ ¯NH , we construct
a basis function

φ p,EMin
m : ωp → R

3.

Ensuring that the three translations are exactly contained in the coarse space, the
construction is done separately for m ∈ {1,2,3}, such that

∑
p∈ ¯NH

|φ p,EMin
m |2a,Ω → min (14)

subject to ∑
p∈ ¯NH

φ p,EMin
mk = δmk k = 1,2,3, in Ω . (15)

Thus, the basis is constructed such that the coarse basis preserves the three
translations exactly. The rigid body rotations are contained only approximately.
The basis satisfies Assumption 3.1 (C1)–(C4). Hence, the given functions are
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linearly independent and the energy-minimizing coarse space is defined as in (13).
Note that we define the subspace V EMin

0 ⊂ V EMin as the subspace which contains
only basis functions which correspond to coarse nodes xp ∈ Σ̄H which do not touch
the global Dirichlet boundary. Furthermore, we exclude any fine grid DOFs on
the boundary ΓDi , i = 1,2,3 when constructing the interpolation operator. More
details are given in Sect. 4.3. In the following, we give a constructive proof for
the existence and uniqueness of the solution of the minimization problem in (14)
and (15). Therefore, we denote by Ā ∈ R

nd×nd the global stiffness matrix where no
essential boundary conditions are applied. The entries of Ā are determined by (9).
Furthermore, we denote by Rp the matrix describing the restriction to ωp of a vector
which corresponds to DOFs on V h in Ω̄ . The principal submatrix of Ā is then given
by Āp = RpĀRT

p . Note that Āp is non-singular for any suitable Rp. Furthermore, let
1m ∈ R

nd be the coefficient vector which represents a rigid body translation in the
component m ∈ {1,2,3} in terms of the fine-scale basis of V h.

Theorem 3. The solution of the minimization problem in (14) and (15) on the space
V h is given by

Φ p,EMin
m = RT

p Ā−1
p RpΛm, (16)

where Λm ∈ R
nd is the vector of Lagrange multipliers, which satisfies

∑
p∈ ¯NH

RT
p Ā−1

p RpΛm = 1m.

Proof. The minimization problem couples the quadratic objective function in (14)
with linear constraints, given in (15). Introducing the Lagrange multiplier Λm, a
solution can be found by the extrema of the quadratic Lagrange functional

Lm

({
Φ p,EMin

m

}
,Λm

)
=

1
2 ∑

p∈ ¯NH

Φ p,EMin
m

T
ĀΦ p,EMin

m −Λm
T
(

∑
p∈ ¯NH

Φ p,EMin
m −1m

)
.

We enforce an additional constraint on the support of the basis functions by
substituting Φ p,EMin

m = RT
p Φ̂ p,EMin

m . The vector Φ̂ p,EMin
m can be considered as the

local representation of Φ p,EMin
m on its support ωp w.r.t. the basis of V h(ωp) . To find

the critical point of this functional, we impose ∇Λm Lm = 0 and ∇Φ̂ p,EMin
m

Lm = 0,
which results in the saddle point problem

ĀpΦ̂ p,EMin
m −RpΛm = 0 ∀ p ∈ ¯NH , (17)

∑
p∈ ¯NH

RT
p Φ̂ p,EMin

m − 1m = 0. (18)

From (17), we conclude

Φ̂ p,EMin
m = Ā−1

p RpΛm ∀ p ∈ ¯NH . (19)
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Substituting (19) into (18) yields

1m = ∑
p∈ ¯NH

RT
p Ā−1

p RpΛm.

We introduce L := ∑p∈ ¯NH
RT

p Ā−1
p Rp and obtain for m ∈ {1,2,3},

Λm = L−11m. (20)

�
Thus, to compute the basis, we have to solve the global Lagrange multiplier system
in (20) for each m ∈ {1,2,3} and solve local subproblems in (19) to compute the
particular basis functions.

4.2 Properties of the Energy-Minimizing Coarse Space

As we can conclude from the construction, the coarse space contains the three
rigid body translations globally in Ω̄ . However, it is not clear how well this coarse
space approximates the set of rigid body rotations. The rotations are, in general, not
exactly contained in V H . The energy-minimizing construction of the basis functions
allows quite general supports, and the method is easily applicable to unstructured
meshes. If we denote by ω int

p := {x ∈ ωp : x �∈ ωq for any q �= p} the subset of
ωp which is not overlapped with the support of any other basis function, it is clear
that rigid body rotations cannot be globally contained in the coarse space as long
as meas(ω int

p ) > 0. Thus, to ensure that the presented construction of the coarse
space allows an adequate approximation of the rigid body rotations, a necessary
requirement needs to be stated on the supports of the basis functions. Defining the
coarse basis functions on the coarse mesh TH as introduced before yields large
overlaps in the supports of neighboring basis functions. It holds ω int

p = {xp}, and
thus, we obtain meas(ω int

p ) = 0. However, this requirement is not sufficient to ensure
that all the rigid body rotations are preserved exactly by the coarse space.

An important property, showing the multiscale character of the presented
energy-minimizing coarse space, is summarized in the following. We show that
the Lagrange multipliers Λm,m = 1,2,3, are supported on the coarse element
boundaries, and thus, the energy-minimizing basis functions are given by a discrete
PDE-harmonic extension of local boundary data. Before proving this statement, we
introduce the following notation. For T ∈TH , let

range(T ) :=
⋂

p∈ ¯NH(T)

range(RT
p )

be the set of vectors in R
nd which correspond to functions in V h which are supported

in the interior of T . We show that the Lagrange multiplier Λm, m = 1,2,3, has
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nonzero values only in a set which is complementary to {range(T ) : T ∈ TH}.
The nonzero entries correspond to fine basis functions which are supported on the
boundaries of the coarse elements T ∈ TH .

Lemma 2. Let m ∈ {1,2,3} be fixed and let Λm = L−11m. Then for each T ∈ TH,
we have

ξ T Λm = 0 ∀ξ ∈ range(T ).

Proof. Let nT = #{p ∈ ¯NH(T )} be the number of vertices of T . For m ∈ {1,2,3},
it holds

∑
p∈ ¯NH(T )

Φ p,EMin
m = 1m on T.

For each ξ ∈ range(T), let ξ̂p := Rpξ , p ∈ ¯NH(T ) be the local representation of ξ
in ωp ⊂ Ω . Note that it also holds RT

p ξ̂p = ξ since ξp is supported in range(RT
p ) by

assumption. We have by (17),

nT ξ T Λm = ∑
p∈ ¯NH(T )

ξ̂ T
p RpΛm = ∑

p∈ ¯NH(T )

ξ̂ T
p ĀpΦ̂ p,EMin

m = ξ T Ā1m = 0,

where we used ξ ∈ range(T) twice. The last equality follows since 1m ∈Ker(Ā). �
This shows that the basis functions are locally PDE-harmonic, a well-known prop-
erty (cf. [31]) of the energy-minimizing basis. From the solution of the Lagrange
multiplier system, optimal boundary conditions for the local basis functions are
extracted on {∂T,T ∈TH}. It is obvious that the energy-minimizing basis functions
are continuous along the boundaries of the coarse elements and lead to a conforming
coarse space.

4.3 The Interpolation Operator

In the following, we construct the interpolation operator which is given by the
energy-minimizing coarse space. Let us first summarize some notations. The num-
ber of grid points in Ω̄ on the fine grid is denoted by np; the number of grid
points on the coarse grid is denoted by Np. To each grid point, fine or coarse,
we associate a vector-field u = (u1,u2,u3)

T : Ω̄ → R
3 of displacements. We denote

the corresponding components ui, i = 1,2,3 of the vector-field by unknowns. The
number of fine and coarse DOFs on the fine and coarse triangulation (in Ω̄ ) is given
by nd = 3np, Nd = 3Np, respectively. Furthermore, for β ∈ {h,H}, the set Dβ =

Dβ (Ω̄ ) denotes the index set of fine (β = h), respectively, coarse (β = H) DOFs of
V β . For any subset W ⊂ Ω̄ , let Dβ (W ) ⊂ Dβ (Ω̄ ) be the restriction of Dβ to the
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local set of DOFs in W , given in a local numbering. To keep the notation with indices
more intuitive for the reader, we use the following convention. To indicate DOFs in
Dh, we use (i,k) or ( j, l) to indicate DOFs, while the index (p,m) or (q,r) are
used for the indication of a coarse degree of freedom in DH . We use the fine-scale
representation of a coarse basis function φ p,EMin

m to define the interpolation operator,
respectively, the restriction operator. Each energy-minimizing basis function omits
the representation

φ p,EMin
m =

3

∑
k=1

np

∑
i=1

r̄(p,m),(i,k)ϕ
i,h
k . (21)

This representation defines a matrix R̄ ∈ R
Nd×nd which contains the coefficient

vectors, representing a coarse basis function in terms of the fine-scale basis, by rows.
Note that R̄ does not define the final restriction operator used in the additive Schwarz
setting. The restriction operator RH , which we use in the additive Schwarz algorithm
is then constructed as a submatrix of R̄, which contains only the rows corresponding
to coarse basis functions of V H

0 . Thus, it contains the rows related to coarse basis
functions which vanish on the global Dirichlet boundaries ΓDi , i = 1,2,3 and do not
contain any fine DOFs on the global Dirichlet boundary. Denoting the entries of RH

by (rp′, j′)p′, j′ , we define

rp′, j′ =

{
R̄p′, j′ if p′ ∈DH(Ω ∗), j′ ∈Dh

0 (Ω̄),

0 if p′ ∈DH(Ω ∗), j′ ∈Dh
ΓD
(Ω̄ ),

where DH(Ω ∗), Ω ∗ := Ω̄\(∪iΓDi) denotes the coarse interior DOFs in Ω ∗. The
matrix representing the interpolation from the coarse space V H

0 to the fine space V h
0

is simply given by the transposed, RT
H . The coarse stiffness matrix can be computed

by the Galerkin product AH = RHART
H .

5 Numerical Experiments

In this section, we give a series of examples involving binary media, showing the
performance of the energy-minimizing preconditioner under variations of the mesh
parameters as well as the material coefficients. In addition to that, we measure
the approximation error of the energy-minimizing coarse space to a fine-scale
solution. In each numerical test, we compare the energy-minimizing coarse space
with a standard linear coarse space. We perform our simulations on the domain
Ω̄ = [0,1]× [0,1]× [0,L],L> 0, with fine and coarse mesh as introduced in Sect. 3.2.
Dirichlet conditions in the first unknown are given on Γ1 = {(x,y,z)T ∈ ∂Ω : x =
0,x = 1}, in the second unknown on Γ2 = {(x,y,z)T ∈ ∂Ω : y = 0,y = 1}, and in
the third unknown on Γ3 = {(x,y,z)T ∈ ∂Ω : z = 0,z = L}. For the numerical tests,
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Fig. 2 Medium 1: binary composite; matrix material and 1× 1× 1 inclusions; discretization in
12× 12× 12 voxels; each voxel is decomposed in 5 tetrahedra; inclusions lie in the interior of a
coarse tetrahedral element; 3D view (left) and 2D projection with fine mesh, showing the position
of the inclusions (right)

Fig. 3 Medium 2: binary composite: discretization in 240×240×12 voxels; matrix material and
1×1×1 inclusions identically distributed; 3D view (left) and 2D projection (right)

we consider different heterogeneous media. First, we assume that the discontinuities
are isolated, that is, the material jumps occur only in the interior of coarse elements.
Figure 2 shows such a binary medium with one inclusion inside each coarse
tetrahedral element.

For a second medium, we do not impose any restriction on the position of the
small inclusions. More precisely, we generate a binary medium whose inclusions
are identically distributed. An example of such a medium is given in Fig. 3.

In the following, we refer to the binary medium where inclusions are isolated
in the interior of coarse elements as medium 1, while the medium with identically
distributed inclusions is referred to as medium 2. For each medium, the Young’s
modulus E as well as Poisson ratio ν for matrix material and inclusions are given in
Table 1. The contrast ΔE := Einc/Emat may vary over several orders of magnitude.
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Table 1 Young’s modulus and Poisson ratio of matrix material and
inclusions

Young’s modulus Poisson ratio

Emat = 1 MPa νmat = 0.2
Einc = ΔE Emat νinc = 0.2

Table 2 Iteration numbers nit and condition numbers κ(M−1
AS A)

for experiment 1; geometry: 1/h × 1/h × H/h, h = 1/240,
H = 12h; linear and energy-minimizing coarsening for different
contrasts ΔE ≥ 1

Lin EMin

ΔE nit κ(M−1
AS A) nit κ(M−1

AS A)

100 13 4.4 14 4.9
103 21 18.7 14 5.0
106 25 109.0 14 5.0
109 25 109.0 14 5.0

5.1 Coarse Space Robustness

We choose the overlapping subdomains such that they coincide with the supports
ω̄p, p ∈ ¯NH of the coarse basis functions. Then, {Ωi, i = 1, . . . ,N} = {ωp, p ∈

¯NH} defines an overlapping covering of Ω̄ with overlap width δ = O(H), often
referred to as a generous overlap. We perform tests observing the performance of
the two-level additive Schwarz preconditioner using linear and energy-minimizing
coarsening. We show condition numbers as well as iteration numbers of the
preconditioned conjugate gradient (PCG) algorithm. The stopping criterion is to
reduce the preconditioned initial residual by six orders of magnitude, i.e., ‖r‖M−1

AS
≤

10−6‖r0‖M−1
AS

. For the construction of the energy-minimizing basis functions, the

Lagrange multiplier systems are solved using the CG algorithm; the initial residual
is reduced by three orders of magnitude. The estimated condition numbers of
κ(M−1

AS A) are computed based on the three-term recurrence which is implicitly
formed by the coefficients within the PCG algorithm (cf. [18]).

In a first experiment (1), we test the robustness of the method on medium 1 for
fixed mesh parameters under the variation of the contrast ΔE . Tables 2 and 3 show
the corresponding condition numbers and iteration numbers having stiff (ΔE > 1)
and soft (ΔE < 1) inclusions. In the former case, robustness is achieved only for
the energy-minimizing coarse space, while linear coarsening leads to nonuniform
convergence results.

In experiment 2, performed on medium 1, we measure the condition numbers
and iteration numbers under variation of the mesh parameters, while the PDE
coefficients remain fixed. We observe similar results as in experiment 1.

Table 4 shows the condition numbers for linear and energy-minimizing coarsen-
ing. For the linear coarse space, the condition number shows a linear dependence
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Table 3 Iteration numbers nit and condition numbers κ(M−1
AS A)

for experiment 1; geometry: 1/h × 1/h × H/h, h = 1/240,
H = 12h; linear and energy-minimizing coarsening for different
contrasts ΔE ≤ 1

Lin EMin

ΔE nit κ(M−1
AS A) nit κ(M−1

AS A)

10−0 13 4.4 13 4.9
10−3 13 4.4 13 5.0
10−6 13 4.4 13 5.0
10−9 13 4.4 13 5.0

Table 4 Iteration numbers nit and condition numbers κ(M−1
AS A) for

experiment 2; geometry: 1/h×1/h×H/h; H = 12h; linear and energy-
minimizing coarsening for different h; contrast: ΔE = 106

Lin EMin

h nit κ(M−1
AS A) nit κ(M−1

AS A)

1/60 14 7.9 13 4.4
1/120 17 28.1 14 5.0
1/180 21 61.8 14 4.9
1/240 25 109.0 14 5.0

Table 5 Iteration numbers nit and condition numbers κ(M−1
AS A)

for experiment 1 on medium 2; geometry: 1/h×1/h×H/h, h =
1/240, H = 12h; linear and energy-minimizing coarsening for
different contrasts ΔE ≥ 1

Lin EMin

ΔE nit κ(M−1
AS A) nit κ(M−1

AS A)

100 13 4.4 14 4.9
103 27 19.3 14 4.9
106 66 414 14 5.0
109 68 427 14 5.0

on the number of subdomains, while the condition number for energy-minimizing
coarsening is uniformly bounded.

In the experiment above, we obtained coefficient independent convergence rates
of the energy-minimizing coarse space on medium 1. In a second part, we test the
performance of the method on medium 2, where the small inclusions are identically
distributed. This is what we see in Tables 5 and 6 for experiment 1 on medium 2:
For fixed mesh parameters under the variation of the contrast ΔE , they show the
corresponding condition numbers and iteration numbers having stiff (ΔE > 1) and
soft (ΔE < 1) inclusions. Robustness for the linear coarse space is only achieved
in the later case where soft inclusions are considered. For stiff inclusions, the
linear coarsening strategy leads to iteration numbers and condition numbers which
strongly depend on the contrast in the medium. The energy-minimizing coarse space
is fully robust w.r.t. coefficient variations.



40 M. Buck et al.

Table 6 Iteration numbers nit and condition numbers κ(M−1
AS A)

for experiment 1 on medium 2; geometry: 1/h×1/h×H/h, h =
1/240, H = 12h; linear and energy-minimizing coarsening for
different contrasts ΔE ≤ 1

Lin EMin

ΔE nit κ(M−1
AS A) nit κ(M−1

AS A)

10−0 13 4.4 14 4.9
10−3 13 4.4 14 5.0
10−6 13 4.4 14 5.0
10−9 13 4.4 14 5.0

Table 7 Iteration numbers nit and condition numbers κ(M−1
AS A)

for experiment 2 on medium 2; geometry: 1/h×1/h×H/h;
H=12h; linear and energy-minimizing coarsening for different
h; contrast: ΔE=106

Lin EMin

h nit κ(M−1
AS A) nit κ(M−1

AS A)

1/60 26 39.2 13 4.4
1/120 48 154 14 5.0
1/180 52 261 14 4.9
1/240 66 414 14 5.0

Now, we perform experiment 2 on medium 2 and measure the condition
numbers and iteration numbers under variation of the mesh parameters and fixed
PDE coefficients. Table 7 shows iteration and condition numbers for linear and
energy-minimizing coarsening. Mesh independent bounds are achieved for the
energy-minimizing coarse space, while for the linear coarse space, iteration numbers
as well as condition numbers grow with the number of subdomains.

5.2 Coarse Space Approximation

In a second set of experiments, we test the approximation properties of the energy-
minimizing coarse space. The domain Ω̄ = [0,1]× [0,1]× [0,L] contains a binary
medium with small inclusions. Again, we distinguish between medium 1 (Fig. 2:
inclusions in the interior of each coarse element) and medium 2 (Fig. 3: identically
distributed inclusions). We solve the linear system −divσσσ(uuu) = fff in Ω̄ \ΓD with
a constant volume force fff = (1,1,0)T in the x- and y-component. Homogeneous
Dirichlet and Neumann boundary conditions are applied on the boundary ∂Ω .

Let uuuh denote the approximate solution on a fine mesh Th. With the bilinear form
defined in (6) and the space V h

0 of piecewise linear vector-valued basis functions as
defined in (7), it holds a(uuuh,vvvh) = F(vvvh) ∀vvvh ∈ V h

0 . This formulation leads to the
linear system Auh = fh. Let V H

0 be the space of energy-minimizing basis functions
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Table 8 Approximation of fine-scale solution by linear and energy-minimizing
coarse space for medium 1; geometry: 1/h×1/h×H/h, h = 1/120, H = 12h

‖uh−uc‖l2
‖uh‖l2

‖uh−uc‖A
‖uh‖A

ΔE Lin EMin Lin EMin

10−9 8.63×10−3 1.09×10−1 8.92×10−2 3.32×10−1

10−6 8.63×10−3 1.09×10−1 8.92×10−2 3.32×10−1

10−3 8.63×10−3 1.09×10−1 8.91×10−2 3.32×10−1

100 8.09×10−3 1.09×10−1 8.53×10−2 3.31×10−1

103 7.39×10−1 1.07×10−1 8.60×10−1 3.28×10−1

106 9.97×10−1 1.07×10−1 9.99×10−1 3.28×10−1

109 9.97×10−1 1.07×10−1 9.99×10−1 3.28×10−1

on the coarse triangulation TH which vanish on the Dirichlet boundary Γi, i = 1,2,3
(see Sect. 4.3). The energy-minimizing solution is given by uuuEMin ∈ V H

0 , such that
a(uuuEMin,vvvH) = F(vvvH) ∀vvvH ∈ V H

0 . Using the fine-scale representation of an energy-
minimizing basis function as defined in (21), the equivalent linear system reads
AHuH = fH . Here, AH = RHART

H is the coarse stiffness matrix, fH = RH fh, and
uEMin = RT

HuH is the vector whose entries define the fine-scale representation of
uuuEMin in terms of the basis of V h

0 .
For fixed mesh parameters h and H, under the variation of the contrast ΔE ,

Tables 8 and 9 show the relative approximation errors ‖uh − uc‖ in l2 and in the
“energy”-norm for linear (c=Lin) and energy-minimizing (c=EMin) coarse space
for medium 1 and medium 2, respectively.

The fine solution uh is computed approximately within the PCG algorithm by
reducing the initial preconditioned residual by 12 orders of magnitude. The coarse
solution uH is computed exactly by a sparse direct solve of the coarse linear system.
For both media, the energy-minimizing coarse space gives stable approximation
errors, only slightly varying with the contrast. The linear coarse space only shows
a poor approximation of the fine-scale solution for high contrasts ΔE � 1. The
explanation is that for ΔE � 1, the fine-scale solution is contained in a space which
is nearly A-orthogonal to the space spanned by the linear coarse basis functions.
Note that this is in agreement with the results presented in Table 4, where the
condition number grows almost linearly with the number of subdomains.

We also observe from Tables 8 and 9 that for soft inclusions (ΔE ≤ 1),
the approximation error is smaller by the linear coarse space than by the energy-
minimizing coarse space. The latter is due to the circumstance that the vector-valued
energy-minimizing basis is, even for homogeneous coefficients, not piecewise linear
on the coarse triangulation. It is known that the shape of the energy-minimizing
basis functions is in general mesh dependent, e.g., for the discretization of the scalar
Poisson problem on a regular mesh in 2D, an energy-minimizing basis is observed to
be piecewise linear in [29] (see also [25]). However, for the vector-valued problem
considered here with the mesh as in Sect. 3.2, the vector-valued energy-minimizing
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Table 9 Approximation of fine-scale solution by linear and energy-minimizing
coarse space for medium 2; geometry: 1/h×1/h×H/h, h = 1/120, H = 12h

‖uh−uc‖l2
‖uh‖l2

‖uh−uc‖A
‖uh‖A

ΔE Lin EMin Lin EMin

10−9 8.60×10−3 1.09×10−1 8.90×10−2 3.32×10−1

10−6 8.60×10−3 1.09×10−1 8.90×10−2 3.32×10−1

10−3 8.60×10−3 1.09×10−1 8.90×10−2 3.32×10−1

100 8.09×10−3 1.09×10−1 8.53×10−2 3.31×10−1

103 7.01×10−1 1.15×10−1 8.37×10−1 3.40×10−1

106 9.99×10−1 1.12×10−1 1.00×10−0 3.36×10−1

109 1.00×10−0 1.12×10−1 1.00×10−0 3.36×10−1

basis is not piecewise linear on the coarse mesh for reasonable mesh sizes H > h> 0.
The latter also implies that the rigid body rotations are only approximated globally.

We can summarize the numerical results obtained in this section as follows. The
energy-minimizing construction allows a low-energy approximation of the basis
functions, independently of the Young’s modulus of the inclusions. We considered
different media where the discontinuities are either isolated in the interior of
coarse elements or randomly distributed. Using an energy-minimizing coarse space,
our experiments show uniform condition number bounds w.r.t. both, coefficient
variations in the Young’s modulus and the mesh size. In contrast, robustness is not
achieved with the linear coarse space. The linear basis function cannot capture the
smallest eigenvalues associated to the discontinuities in the material parameters.
The energy of the basis function strongly depends on the Young’s modulus of
the inclusion. As the experiments show, no uniform iteration number or condition
number bounds are achieved. This observation holds for all considered media.

6 Discussion

We constructed energy-minimizing coarse spaces for microstructural problems
in 3D linear elasticity. The coarse basis is such that it contains the rigid body
translations exactly, while the rigid body rotations are preserved approximately.
We used the coarse basis for the construction of two-level overlapping domain
decomposition preconditioners in the additive version and performed experiments
on binary media. For the class of problems which excludes pure traction boundary
values, the results show uniform condition number bounds w.r.t. both, coefficient
variations in the Young’s modulus and the mesh size. Furthermore, we tested
the fine-scale approximation of the energy-minimizing coarse space and observed
uniform results, independent of the contrast in the composite material.
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26. Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured
meshes. SIAM J. Sci. Comput. 21, 900–923 (1999)

27. Vassilevski, P.S.: Multilevel Block Factorization Preconditioners: Matrix-Based Analysis and
Algorithms for Solving Finite Element Equations. Springer, New York (2008)

28. Vassilevski, P.S.: General constrained energy minimizing interpolation mappings for AMG.
SIAM J. Sci. Comput. 32, 1–13 (2010)

29. Wan, W., Chan, T.F., Smith, B.: An energy-minimizing interpolation for robust multigrid
methods. SIAM J. Sci. Comput. 21, 1632–1649 (2000)

30. Willems, J.: Robust multilevel methods for general symmetric positive definite operators.
Technical Report 2012–06, RICAM Institute for Computational and Applied Mathematics
(2012)

31. Xu, J., Zikatanov, L.T.: On an energy minimizing basis in algebraic multigrid methods.
Comput. Vis. Sci. 7, 121–127 (2004)



Preconditioners for Some Matrices
of Two-by-Two Block Form, with Applications, I

Owe Axelsson

Abstract Matrices of two-by-two block form with matrix blocks of equal order
arise in various important applications, such as when solving complex-valued
systems in real arithmetics, in linearized forms of the Cahn–Hilliard diffusive phase-
field differential equation model and in constrained partial differential equations
with distributed control. It is shown how an efficient preconditioner can be con-
structed which, under certain conditions, has a resulting spectral condition number
of about 2. The preconditioner avoids the use of Schur complement matrices and
needs only solutions with matrices that are linear combinations of the matrices
appearing in each block row of the given matrix and for which often efficient
preconditioners are already available.

Keywords Two-by-two block-structured matrices • Preconditioning • Complex-
valued system • Cahn–Hilliard phase-field model • Optimal control • Distributed
control
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1 Introduction

To motivate the study, we give first some examples of two-by-two block matrices
where blocks of equal order, i.e. square blocks, appear. Although the matrices are
of special type, as we shall see there are several important applications where
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they arise. One such example is related to the solution of systems with complex-
valued matrices. Complex-valued systems arise, for instance, when solving certain
partial differential equations (PDE) appearing in electromagnetics and wave propa-
gation; see [1]. Complex arithmetics requires more memory storage and may require
more involved implementation. Therefore it is desirable to rewrite a complex-valued
matrix system in a form that can be handled using real arithmetics.

Using straightforward derivations, for a complex-valued matrix A+ iB, where A
and B are real and A is nonsingular, it holds

(A+ iB)(I− iA−1B) = A+BA−1B

so
(A+ iB)−1 = (I− iA−1B)(A+BA−1B)−1.

It follows that a complex-valued system

(A+ iB)(x+ iy) = f+ ig,

where x,y, f,g are real vectors, can be solved by solving two real-valued systems
with matrix A+BA−1B with right-hand sides f and g respectively, in addition to a
matrix vector multiplication with B and two solutions of systems with the matrix A.

In many applications, A+BA−1B can be ill conditioned and costly to construct
and solve systems with, in particular as it involves solutions with inner systems with
the matrix A. Therefore, this approach is normally less efficient.

As has been shown in [2] (see also [1,3]), it may be better to rewrite the equation
in real-valued form [

A −B
B A

][
x
y

]
=

[
f
g

]
. (1)

A matrix factorization shows that

[
A 0
B A+BA−1B

][
I −A−1B
0 I

][
x
y

]
=

[
f
g

]
,

where I is the identity matrix. It is seen that here it suffices with one solution
with matrix A+BA−1B, in addition to two solves with A. However, we will show
that the form (1) allows for an alternative solution method based on iteration and
the construction of an efficient preconditioner that involves only two systems with
matrices that are linear combinations of matrices A and B and that a corresponding
iterative solution of (1) can substantially lower the computational expense. We shall
show that such a preconditioner can be constructed for a matrix in the more general
form

A=

[
A −BT

β 2B α2A

]
, (2)

where α,β are positive numbers. By the introduction of a new, scaled second
variable vector y := 1

α2 y, the systems transform into the alternative form
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A=

[
A −aBT

bB A

]
, (3)

where a = 1
α2 ,b = β 2. This form arises in the two-phase version of the Cahn–

Hilliard equation used to track interfaces between two fluids with different densities
using a stationary grid; see [4, 5].

As we shall see in the sequel, a matrix in the form (2), with β = 1 arises also in
optimization problems for PDE, with a distributed control function, that is, a control
function defined in the whole domain of definition of the PDE. For an introduction
to such problems, see [6, 7].

Problems of this kind appear in various applications in engineering and geo-
sciences but also in medicine [8] and finance [9]. As a preamble to this topic, we
recall that the standard form of a constrained optimization problem with a quadratic
function takes the form

min
u

{
1
2

uT Au−uT f
}

subject to the constraint Bu = g. Here, u, f ∈ℜn,g ∈ℜm, and A is a symmetric and
positive definite (spd) matrix of order n× n and B has order m× n, m ≤ n. For the
existence of a solution, if m = n we must assume that dimℜ(B) < m, where ℜ(B)
denotes the range of B. The corresponding Lagrangian function with multiplier p
and regularization term −αpTCp, where α is a small positive number and C is spd,
takes the form

L(u,p) =
1
2

uT Au−uT f+pT (Bu− g)− 1
2

αpTCp.

By the addition of the regularization term, the Lagrange multiplier vector p becomes
unique.

The necessary first-order conditions for an optimal, saddle point solution lead to

[
A BT

B −αC

] [
u
p

]
=

[
f
g

]
. (4)

Here, we can extend the matrix B with n−m zero rows and the vector g with n−m
zero components, to make B of the same order as A. Similarly, C is extended. It
is possible to let C = A. (Then the n−m correspondingly added components of
p become zero.) As we shall see, in optimal control problems with a distributed
control, we get such a form with no need to add zero rows to B.

If we change the sign of p, the corresponding matrix takes the form

[
A −BT

B A

]
, i.e.

the same form as in (1). The matrix in (4) is indefinite. It can be preconditioned with
a block-diagonal matrix, but it leads to eigenvalues on both sides of the origin, which
slows down the convergence of the corresponding iterative acceleration method,
typically of a conjugate gradient type, such as MINRES in [10]. In this paper we
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show that much faster convergence can be achieved if instead we precondition A
with a matrix that is a particular perturbation of it, since this leads to positive
eigenvalues and no Schur complements need to be handled. We consider then
preconditioning of matrices of the form (2) or (3). Thereby we assume that A
is symmetric and positive definite, or at least positive semidefinite and ker(A)∩
ker(B) = { /0}, which will be shown to guarantee that A is nonsingular.

In Sect. 2 we present a preconditioner to this matrix, but given in the still more
general form

A=

[
A −aB2

bB1 A

]
, (5)

where it is assumed that Hi = A +
√

abBi, i = 1,2 are regular. It involves only
solutions with the matrices H1 and H2. Hence, no Schur complements needed to
be handled arise here.

In Sect. 3 we perform an eigenvalue analysis of the preconditioning method.
This result extends the applicability of the previous results, e.g. in [2] and [4].
Furthermore, the present proofs are sharper and more condensed.

In Sect. 4 we show that certain constrained optimal control problems for PDE
with a distributed control can be written in the above two-by-two block form. The
results in that section extend related presentations in [7].

Further development of the methods and numerical tests will be devoted to part II
of this paper.

The notation A ≤ B for symmetric matrices A,B means that A−B is positive
semidefinite.

2 The Preconditioner and Its Implementation

Given a matrix in the form (2), we consider first a preconditioner to A in the form

B =

[
A 0

β 2B α̃A+β B

][
A−1 0

0 A−1

][
A −BT

0 α̃A+β BT

]
(6)

where α̃ is a positive preconditioning method parameter to be chosen. A computa-
tion shows that

B =A+

[
0 0
0 (α̃2−α2)A+ α̃β (B+BT )

]

We show now that an action of its inverse requires little computational work.

Proposition 1. An action of the inverse of the form of the matrix B in (6) requires
one solution of each of the matrices A, α̃A+β B and A, α̃A+β BT , in this order.
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Proof. To solve a system

B
[

x
y

]
=

[
f
g

]
,

solve first [
A 0

β 2B α̃A+β B

][
x̃
ỹ

]
=

[
f
g

]
,

which requires a solution with A and α̃A+β B. Solve then

[
A −BT

0 α̃A+β BT

][
x
y

]
=

[
Ax̃
Aỹ

]
=

[
f

Aỹ

]

by solving

(α̃A+β B)y = Aỹ,

z := A−1BT y as

z =
1
β
(ỹ− α̃y)

to finally obtain
x = x̃+ z. �

In applications, often A is a mass matrix and B is a stiffness matrix. When
A depends on heterogeneous material coefficients, the matrices α̃A + β B and
α̃A+β BT can be better conditioned than A. We show now that by applying the
explicit expression for B−1, the separate solution with A in (6) can be avoided.

We find it convenient to show this first for preconditionersB applied to the matrix
A in the form (3). Here,

B =

[
A −aBT

bB A+
√

ab(B+BT )

]
. (7)

For its inverse the following proposition holds. For its proof, we assume first that
A is spd.

Proposition 2. Let A be spd. Then

B−1 =

[
A −aBT

bB A+
√

ab(B+BT )

]−1

=

[
H−1 +H−T −H−T AH−1

√ a
b(I−H−T A)H−1

−
√

b
a H−T (I−AH−1) H−T AH−1

]
,

where H = A+
√

abB, which is assumed to be nonsingular.
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Proof. For the derivation of the expression for the inverse we use the form of the
inverse of a general matrix in two-by-two block form. (However, clearly we can
verify the correctness of the expression directly by computation of the matrix times
its inverse. An alternative derivation can be based on the Schur–Banachiewicz form
of the inverse.) Assume that Aii, i = 1,2 are nonsingular. Then

[
A11 A12

A21 A22

]−1

=

[
S−1

1 −A−1
11 A12S−1

2
−S−1

2 A21A−1
11 S−1

2

]
.

Here, the Schur complements Si, i = 1,2 equal

Si = Aii−Ai jA
−1
j j A ji, i, j = 1,2, i �= j.

Further, S−1
2 A21A−1

11 = A−1
22 A21S−1

1 .
For the given matrix it holds

S2 = A+
√

ab(B+BT )+ abBA−1BT

= (A+
√

abB)A−1 (A+
√

abBT ).

Further,

− A−1
11 A12S−1

2 = aA−1BT (A+
√

abBT )−1A(A+
√

abB)−1

=

√
a
b

A−1((
√

abBT +A)−A)(A+
√

abBT )−1A(A+
√

abB)−1

=

√
a
b
(H−1−HT AH−1) =

√
a
b
(I−H−T A)H−1.

Similarly,

−A−1
22 A21S−1

1 =−
√

b
a

H−T (I−AH−1).

Finally, since the pivot block in the inverse matrix equals the inverse of the Schur
complement, the corresponding equality holds for the pivot block in the matrix itself,
that is,

A11 = (S−1
1 −A−1

11 A12S−1
2 A21A−1

11 )
−1. (8)

Therefore,

S−1
1 = A−1

11 +A−1
11 A12S−1

2 A21A−1
11

= A−1[A− (I−AH−T )A(I−H−1A)]A−1

= H−1 +H−T −H−T AH−1 �
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Remark 1. Incidently, relation (8) can be seen as a proof of the familiar Sherman–
Morrison–Woodbury formula.

We show now that Proposition 2 implies that an action of the matrix B−1 needs
only a solution with each of the matrices H and HT . This result has appeared
previously in [4], but the present proof is more condensed and more generally
applicable. We will then show it for a matrix in the general form (5).

Guided by the result in Proposition 2, we give now the expression for the inverse
of the preconditioner to a matrix in the form (5).

Proposition 3. Let

B =

[
A −aB2

bB1 A+
√

ab(B1 +B2)

]

then

B−1 =

[
H−1

1 +H−1
2 −H−1

2 AH−1
1

√ a
b (I−H−1

2 A)H−1
1

−
√

b
a H−1

2 (I−AH−1
1 ) H−1

2 AH−1
1

]

where Hi = A+
√

abBi, i = 1,2, which are assumed to be nonsingular.

Proof. We show first that B is nonsingular. If

B
[

x
y

]
=

[
0
0

]
. (9)

then Ax = aB2y and

Ay+ bB1x+
√

ab(B1 +B2)y = 0.

Then

(A+
√

abB1)y+

√
b
a
(
√

abB1x+ aB2y) = 0

or

(A+
√

abB1)(

√
b
a

x+ y) = 0.

Hence, x = −
√a

b y, so
√ a

b (A+
√

abB2)y = 0 or y = 0, so (9) has only the trivial
solution. The expression for B−1 follows by direct inspection. �
Proposition 4. Assume that A+

√
abBi, i = 1,2 are nonsingular. Then B is nonsin-

gular and a linear system with the preconditioner B,
[

A −aB2

bB1 A+
√

ab(B1 +B2)

][
x
y

]
=

[
f1

f2

]

can be solved with only one solution with A+
√

abB1 and one with A+
√

abB2.
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Proof. It follows form Proposition 3 that an action of the inverse of B can be written
in the form

[
A −aB2

bB1 A+
√

ab(B1 +B2)

]−1 [
f1

f2

]
=

=

⎡
⎣H−1

1 f1 +H−1
2 f1−H−1

2 AH−1
1 f1 +

√a
b (I−H−1

2 A)H−1
1 f2

−
√

b
a H−1

2 (I−AH−1
1 )f1 +H−1

2 AH−1
1 f2

⎤
⎦

=

⎡
⎣ H−1

2 f1 + g−H−1
2 Ag

−
√

b
a H−1

2 f1 +
√

b
a H−1

2 Ag

⎤
⎦

=

⎡
⎣ g+H−1

2 (f1−Ag)

−
√

b
a H−1

2 (f1−Ag)

⎤
⎦=

⎡
⎣ g+h

−
√

b
a h

⎤
⎦

where

g = H−1
1 (f1 +

√
a
b

f2), h = H−1
2 (f1−Ag).

The computation can take place in the following order:

(i) Solve H1g = f1 +
√a

b f2.
(ii) Compute Ag and f1−Ag.

(iii) Solve H2h = f1−Ag.

(iv) Compute x = g+h and y =−
√

b
a h. �

Remark 2. In some applications H1 = A +
√

abB1, and H2 = A +
√

abB2 may
be better conditioned than A itself. Even if it is not, often software for these
combinations exists.

3 Condition Number Bounds

To derive condition number bounds for the preconditioned matrix B−1A, we
consider two cases:

(i) B1 = B, B2 = BT , A is symmetric, A and B+BT are positive semidefinite, and

ker(A)∩ ker(Bi) = { /0} , i = 1,2

(ii) A is symmetric and positive definite and certain conditions, to be specified later,
hold for B1 and B2.
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3.1 A Is Symmetric and Positive Semidefinite

Assume that conditions (i) hold. Then it follows that A+
√

abB and A+
√

abBT ,
and hence also B, are nonsingular. We show first that then A is also nonsingular.

Proposition 5. Let condition (i) hold. Then A is nonsingular.

Proof. If [
A −aBT

bB A

][
x
y

]
=

[
0
0

]

then
x∗Ax− ax∗BT y = 0,
by∗Bx+ y∗Ay = 0

so 1
a x∗Ax+ 1

b y∗Ay = 0, where x∗, y∗ denote the complex conjugate vector.
Since A is positive semidefinite, it follows that x,y∈ kerA. But then BT y = 0 and

Bx = 0, implying that x,y ∈ kerB, so A
[

x
y

]
=

[
0
0

]
has only the trivial solution. �

Proposition 6. Let A =

[
A aBT

−bB A

]
, where a,b are nonzero and have the

same sign and let B =

[
A aBT

−bB A+
√

ab(B+BT )

]
. If conditions (i) hold, then the

eigenvalues of B−1A, are contained in the interval [ 1
2 ,1].

Proof. For the generalized eigenvalue problem

λB
[

x
y

]
=A

[
x
y

]

it follows from Proposition 5 that λ �= 0. It holds

(
1
λ
− 1

)
A
[

x
y

]
=

[
0√

ab(B+BT )y

]

Here, λ = 1 if y ∈ ker(B+BT ). If λ �= 1, then

Ax =−aBT y

and (
1
λ
− 1

)
(y∗Ay− by∗Bx) =

√
aby∗(B+BT )y

or (
1
λ
− 1

)
(y∗Ay+

b
a

x∗Ax) =
√

aby∗(B+BT )y.
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Since both A and B+BT are positive semidefinite, it follows that λ ≤ 1.
Further it holds,

−y∗Ax = ay∗BT y

so (
1
λ
− 1

)
(ay∗BT y+ bx∗Bx) =−

√
abx∗(B+BT )y

or (
1
λ
− 1

)
(ay∗(B+BT )y+ bx∗(B+BT )x) =−2

√
abx∗(B+BT )y.

Since B+BT is positive semidefinite, | x | + | y |�= 0, and a and b have the same
sign, it follows that

1
λ
− 1≤ 2

√
ab | x∗(B+BT )y |

| a | y∗(B+BT )y+ | b | x∗(B+BT )x
≤ 1,

that is, λ ≥ 1
2 . �

3.2 A Is Symmetric and Positive Definite

Assume now that A is symmetric and positive definite. Let A be defined in (5) and
let B̃i =

√
abA−1/2BiA−1/2, i = 1,2. Assume that the eigenvalues of the generalized

eigenvalue problem,

μ(I+ B̃1B̃2)z = (B̃1 + B̃2)z, z �= 0 (10)

are real and μmax ≥ μ ≥ μmin >−1.

Proposition 7. Let A be defined in (5), let B̃i =
√

abA−1/2BiA−1/2, i = 1,2, and
assume that B̃1 + B̃2 is spd and (10) holds. Then the eigenvalues of B−1A are

contained in the interval
[

1
1+μmax

, 1
1+μmin

]
.

Proof. λB
[

x
y

]
=A

[
x
y

]
implies

(λ − 1)

[
Ax − aB2y
Ay+ bB1x+

√
ab(B1 +B2)y

]
=

[
0√

ab(B1 +B2)y

]
.

Hence, a block-diagonal transformation with

[
A−1/2 0

0 A−1/2

]
shows that
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(λ − 1)

[
x̃−
√a

b B̃2ỹ

ỹ+
√

b
a B̃1x̃+(B̃1 + B̃2)ỹ

]
=

[
0

−(B̃1 + B̃2)ỹ

]
,

where x̃ = A1/2x, ỹ = A1/2y.
If λ �= 1, then

(1−λ )
[
I+ B̃1B̃2

]
ỹ = λ (B̃1 + B̃2)ỹ,

Hence, by (10),

1
λ
− 1 = μ orλ =

1
1+ μ

,

which implies the stated eigenvalue bounds. �
Corollary 1. If B1 = B, B2 = BT , and I + B̃ is nonsingular, then

1
2
≤ λ ≤ 1

1+ μmin
,

where μmin >−1. If the symmetric part of B is positive semidefinite, then

1
2
≤ λ ≤ 1.

Proof. Since

(I− B̃)(I− B̃T )≥ 0

it follows that

I+ B̃B̃T ≥ B̃+ B̃T

which implies μ ≤ 1 in (10). Similarly,

(I + B̃)(I + B̃T )≥ 0,

that is,

I + B̃B̃T ≥−(B̃+ B̃T )

implies μmin ≥ −1. But μmin > −1 since I + B̃, and hence I + B̃T , are nonsingular.
If B+BT ≥ 0, then μmin = 0. �
Corollary 2. If B1 = B, B2 = B−δ/

√
abA for some real number δ , where B is spd

and 2B > δ/
√

abA, that is, B1 +B2 = 2B− δ/
√

abA is spd, then

√
4− δ 2

2+
√

4− δ 2
≤ λ ≤ 1.
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Proof. Here, (10) takes the form

μ(I + B̃2− δ B̃)z̃ = (2B̃− δ I)z̃,

where B̃ =
√

abA−1/2BA−1/2. Let β be an eigenvalue of B̃.
Then

μ =
2β − δ

1+β 2−β δ
.

Since δ < 2β , it follows that μ > 0, that is, λ ≤ 1. Further, a computation shows
that μ takes its largest value when

(2β − δ )2 = 2(1+β 2−β δ )

or

(2β − δ )2 = 2+
1
2
(2β − δ )2− δ 2

2
,

that is when

2β − δ =
√

4− δ 2.

Then μ = 2/
√

4− δ 2 and the statement follows from λ = 1/(1+ μ). �
Remark 3. Matrices in the form as given in Corollary 2 appear in phase-field
models; see, e.g. [4, 5]. For complex-valued systems, normally the coefficients are
a = b = 1. In other applications, such as those in Sects. 4.1 and 4.2, a form such as
in Proposition 1 arises. One can readily transform from one form into the other.

Propositions 6 and 7 show that if A is spd and B+BT is positive semidefinite,
then the condition number of the preconditioned matrix satisfies

K(B−1A)≤ 1+ μmax ≤ 2.

Using a preconditioning parameter, as in (6), we derive now a further-improved
condition number bound under the assumption that matrix B is symmetric. We
consider then the form (2) of matrix A.

Proposition 8. Let A =

[
A −BT

β 2B α2A

]
, where α > 0, β > 0, and let B be defined

in (6). Assume that A and B are symmetric and that A is positive definite.
Let B̃ = β A−1/2BA−1/2 and assume that B̃ has eigenvalues μ in the interval

[μmin,μmax], where 0 ≤| μmin |< μmax, and that α̃
α = |μ̃min|+

√
1+ μ̃2

min where

μ̃min = μmin/α, μ̃max = μmax/α . Then the eigenvalues of B−1A satisfy

λ (B−1A) =
α2 + μ2

(α̃ + μ)2 .
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For its condition number it holds

min
α̃

κ(B−1A) =

(
1− δ
1+ γ

)2

+(1+ μ̃2
max)

(
γ + δ
1+ δ

)2

,

where δ =| μmin | /μmax and γ =
√
(1+ μ̃2

min)/(1+ μ̃2
max). Here it holds

α̃
α

=
α̃opt

α
=
| μ̃min |+γ μ̃2

max

1− γ
.

If B is positive semidefinite, then

κ(B−1A)≤ 1+ 1/

(
1+

1√
1+ μ̃2

max

)2

,

where the upper bound is taken for

α̃
α

=
1

μ̃max
+

√
1+

1
μ̃2

max
.

Proof. Since both A and B are nonsingular, the eigenvalues λ of the generalized
eigenvalue problem,

λB
[

x
y

]
=A
[

x
y

]

are nonzero. Using (2) and (6), we find

(
1
λ
− 1

)
A
[

x
y

]
=

[
0[

(α̃2−α2)A+ α̃β (B+BT )
]

y

]
.

If y = 0, then for all x �= 0 it follows that λ = 1. For λ �= 1, it follows that Ax = BT y
and, since A is spd,

(
1
λ
− 1

)(
β 2BA−1BT +α2A

)
y =
[
(α̃2−α2)A+ α̃β (B+BT )

]
y,

or
1
λ
(
B̃B̃T +α2I

)
ỹ =
(
α̃2I + B̃B̃T + α̃(B̃+ B̃T )

)
ỹ,

where B̃ = β A−1/2BA−1/2 and ỹ = A1/2y. Since B̃ is symmetric, if B̃ỹ = μ ỹ, ỹ �= 0,
i.e. μ is an eigenvalue of B̃, it follows that μ is real and
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Fig. 1 λ (μ) = (α2 +μ2)/(α̃ +μ)2

λ = λ (μ) =
α2 + μ2

α̃2 + μ2 + 2α̃μ
=

α2 + μ2

(α̃ + μ)2 .

The eigenvalues vary as indicated in Fig. 1.
Consider first the case where there exists negative eigenvalues. To get λ < 1 for

negative values of μ , we must choose (α̃ +μ)2 > α2 +μ2, i.e. α̃2 +2α̃μ−α2 > 0,
that is,

α̃ > | μ |+
√

μ2 +α2 or

α̃
α

> | μ̃min |+
√

1+ μ̃2
min.

The minimum value of λ (μ) can be found from

λ ′(μ) =
2

(α̃ + μ)3

(
α̃μ−α2)= 0,

that is,

minλ (μ) = λmin = λ (α2/α̃) =
α2 +α4/α̃2

(α̃ +α2/α̃)2 =
1

1+(α̃/α)2

To minimize the condition number, it can be seen (cf. Fig. 1) that we must choose α̃
such that

λ (μmin) = λ (μmax),

that is,

λmax =
α2 + μ2

min

(α̃−|μmin|)2 =
α2 + μ2

max

(α̃ + μmax)2 ,
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or
α̃/α− μ̃min

α̃/α + μ̃max
= γ :=

(
1+ μ̃2

min

1+ μ̃2
max

)1/2

.

Here γ < 1, since by assumption μmax >| μmin |. Hence,

α̃
α

=
α̃opt

α
=
| μ̃min |+γ μ̃max

1− γ

Then

κ(B−1A) =
λmax

λmin
=

1+ μ̃2
max(

|μ̃min|+γ μ̃max
1−γ + μ̃max

)2 [1+

(
| μ̃min |+γ μ̃max

1− γ

)2

]

=
1+ μ̃2

max

(| μ̃min |+μ̃max)2

[
(1− γ)2 +(| (μ̃min |+γ μ̃max)

2] .
It holds

(1− γ)2 =

(
1− γ2

1+ γ

)2

=
(μ̃2

max− μ̃2
min)

2

(1+ μ̃2
max)(1+ γ)2 =

(μ̃max+ | μ̃min |)2(μ̃max + μ̃min |)2

(1+ μ̃2
max)(1+ γ)2 .

Hence,

κ(B−1A) =

(
1− δ
1+ γ

)2

+(1+ μ̃2
max)

(
γ + δ
1+ δ

)2

.

If B is positive semidefinite, then we let μmin = 0 so δ = 0,γ = 1/
√

1+ μ̃2
max and

κ(B−1A)≤ 1+
1

(1+ 1√
1+μ̃2

max
)2

which is taken for
α̃
α

=
1

μ̃max
+

√
1+

1
μ̃2

max
�

Remark 4. If μmin = 0 then κ(B−1A) < 2 and if μmax → ∞ then α̃ → α and
κ(B−1A)→ 2. If μ̃max = 1 then α̃/α = 1+

√
2 and

κ(B−1A)≤ 1+
1

(1+ 1√
2
)2
≈ 1.34.

Remark 5. As is well known, when eigenvalue bounds of a preconditioned matrix,
as in the case with B−1A, are known, then one can replace the conjugate gradient
(CG) with a Chebyshev acceleration method. This can be important, for instance, if
one uses some domain decomposition method for massively parallel computations,
as it avoids the global communication of inner products used in CG methods.
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4 Distributed Optimal Control of Elliptic
and Oseen Equations

Let Ω be a bounded domain in ℜd , d = 1,2 or 3, and let ∂Ω be its boundary which
is assumed to be sufficiently smooth. Let L2(Ω),H1(Ω) and H1

0 (Ω) denote the
standard Lebesgue and Sobolev spaces of functions in Ω , where H1

0 (Ω) denotes
functions with homogeneous Dirichlet boundary values at Γ0 ⊂ ∂Ω where Γ0 has
a nonzero measure. Further, let (·, ·) and ‖ · ‖ denote the inner product and norm,
respectively, in L2(Ω), both for scalar and vector functions. Extending, but follow-
ing [7], and based on [6], we consider now two optimal control problems. In [7]
a block-diagonal preconditioner is used. Here we apply instead the preconditioner
presented in Sect. 2.

4.1 An Elliptic State Equation

The problem is to find the state u ∈ H1
0 (Ω) and the control function y ∈ L2(Ω) that

minimizes the cost function

J(u,y) =
1
2
‖ u− ud ‖2 +

α
2
‖ y ‖2

subject to the state equation

⎧⎨
⎩
−Δu+(b ·∇)u= y in Ω
with boundary conditions
u = 0 on Γ0 ; ∇u ·n = 0 on Γ1 = ∂Ω \Γ0.

(11)

Here b is a given, smooth vector. For simplicity, assume that b ·n |Γ1= 0. Further,
ud denotes a given, desired state (possibly obtained by measurements at some
discrete points and then interpolated to the whole of Ω ). The forcing term y acts
as a control of the solution to the state equation. By including the control in the
cost functional, the problem becomes well posed. The regularization parameter α ,
chosen a priori, is a positive parameter chosen sufficiently small to obtain a solution
close to the desired state, but not too small and also not too large as this leads to ill
conditioning. This is similar to the familiar Tikhonov regularization. The variational
(weak) formulation of (11) reads

(∇u,∇v)+ (b ·∇u,v) = (y,v) ∀v ∈H1
0 (Ω). (12)

The Lagrangian formulation associated with the optimization problem takes the
form

L(u,y, p) = J(u,y)+ (∇u,∇p)+ (b ·∇u, p)− (y, p),
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where p ∈ H1
0 (Ω) is the Lagrange multiplier corresponding to the constraint (12).

The weak formulation of the corresponding first-order necessary conditions,

(
∂L
∂u

,v

)
= 0 ∀v ∈ H1

0 (Ω)

(
∂L
∂y

,z

)
= 0 ∀z ∈ L2(Ω)

(
∂L
∂ p

,q

)
= 0 ∀q ∈ H1

0 (Ω)

gives now the system of optimality equations:

⎧⎨
⎩

(u,v)+ (∇v,∇p)+ (b ·∇v, p) = (ud ,v) ∀v ∈H1
0 (Ω)

α(y,z)− (z, p) = 0 ∀z ∈ L2(Ω)

(∇u, ∇q)+ (b ·∇u, q)− (y,q) = 0 ∀q ∈ H1
0 (Ω)

,

which defines the solution (u,y) ∈ H1
0 (Ω)×L2(Ω) of the optimal control problem

with Lagrange multiplier p ∈ H1
0 (Ω). From the second equation, it follows that the

control function y is related to the Lagrange multiplier as y = 1
α p. Eliminating y and

applying the divergence theorem, this leads to the reduced system

(u,v)+ (∇v,∇p)− (b ·∇p,v) = (ud ,v) ∀v ∈H1
0 (Ω)

(∇u,∇q)+ (b ·∇u,q)− 1
α (p,q) = 0 ∀q ∈ H1

0 (Ω).

Since the problem is regularized, we may here use equal-order finite element
approximations, for instance, piecewise linear basis functions on a triangular mesh
(in 2D), for both the state variable u and the co-state variable p. This leads to a
system of the form

[
M KT

K −α−1M

][
uh

ph

]
=

[
fh

0

]
,

where index h denotes the corresponding mesh parameter. Here M corresponds to
a mass matrix and K, which has the same order as M, to the second-order elliptic
operator with a first-order advection term.

By a change of sign of ph, it can be put in the form

[
M −KT

K α−1M

][
uh

−ph

]
=

[
fh

0

]

and we can directly apply the preconditioner from Sects. 2 and 3, and the derived
spectral condition number bounds. If
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ˆ

Ω

(
|∇u|2− 1

2
(∇ ·b)u2

)
≥ 0,

i.e. if the operator is semi-coercive, then K + KT is positive semidefinite and it
follows from Proposition 6 that the corresponding spectral condition number is
bounded by 2, with eigenvalues in the interval 1/2≤ λ ≤ 1.

Remark 6. In [7], a block-diagonal preconditioner,

D =

[
A+α1/2B 0

0 α−1A+α−1/2B

]
,

is used for the saddle point matrix

A=

[
A B
B −α−1A

]
,

where B = BT and A is symmetric and positive semidefinite, and ker(A)∩ker(B) =
{0}, so A+α1/2B is symmetric and positive definite.

By assumptions made, from the generalized eigenvalue problem

Az = μ(A+α1/2B)z,

it follows that here μ ∈ [0,1] and it follows further readily that the preconditioned
matrix D−1A has eigenvalues that satisfy

| λ |=
√

μ2
i +(1− μi)2 for some μi ∈ [0,1],

that is, 1/
√

2≤| λ |≤ 1. Hence, the eigenvalues are located in the double interval:

I = [−1,−1/
√

2]∪ [1/
√

2,1].

For such eigenvalues in intervals on both sides of the origin, an iterative method
of conjugate gradient type, such as MINRES, needs typically the double number
of iterations, as for eigenvalues in a single interval on one (positive) side of the
origin, to reach convergence; see e.g. [11]. This can be seen from the polynomial
approximation problem

min
x∈I, Pk∈π0

k

| Pk(x) |≤ ε

where π0
k denotes the set of polynomials of degree k, normalized at the origin, i.e.

Pk(0) = 1.
Since the number of iterations increases as O(

√
κ), where κ =| λmax | / | λmin | is

the condition number, it follows that an indefinite interval condition number κ =
√

2
typically corresponds to a one-sided condition number of 4

√
2.
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The method proposed in the present paper has a condition number bounded by

2 and needs therefore a number of iterations about �
√

2

25/4
=

21/4

2
� 0.6 times

those for a corresponding block diagonal preconditioner. However, even if the
block-diagonal preconditioning method requires more iterations, each iteration may
be cheaper than in the method proposed in this paper. An actual comparison of the
methods will appear.

4.2 Distributed Optimal Control of the Oseen Problem

In [7], Stokes equation is considered. Here, we extend the method to the Oseen
equation and consider the velocity tracking problem for the stationary case, which
reads as follows:

Find the velocity u ∈ H1
0 (Ω)d ; the pressure p ∈ L2

0(Ω), where L2
0(Ω) = {q ∈

L2(Ω),
´

Ω qdx = 1}; and the control function f, which minimize the cost function

J (u, f) =
1
2
‖u−ud‖2 +

1
2

α‖f‖2,

subject to state equation for an incompressible fluid velocity u, such that

{
−Δu+(b ·∇)u+∇p = f in Ω

∇ ·u = 0 in Ω

and boundary conditions u = 0 on ∂Ω1, u · n = 0 on ∂Ω2 = ∂Ω\∂Ω1, where n
denotes the outward normal vector to the boundary ∂Ω .

Here ud is the desired solution and α > 0 is a regularization parameter, used to
penalize too large values of the control function. Further, b is a given, smooth vector.
For simplicity we assume that b = 0 on ∂Ω1 and b ·n = 0 on ∂Ω2.

In a Navier–Stokes problem, solved by a Picard iteration using the frozen
coefficient framework, b equals the previous iterative approximation of u, in which
case normally ∇ ·u = 0 in Ω . For simplicity, we assume that this holds here also,
that is, ∇ ·b = 0.

The variational form of the state equation reads as follows:

{
(∇u,∇ũ)+ (b ·∇u, ũ)− (∇ũ, p) = (f, ũ) ∀ũ ∈ H1

0 (Ω)

(∇ ·u, p̃) = 0 ∀p̃ ∈ L2
0(Ω)

The Lagrangian functional, corresponding to the optimization problem, is given by

L(u, p,v,q, f) = J (u, f)+ (∇u,∇v)+ (b ·∇u,v)− (∇ ·v, p)− (∇ ·u,q)− (f,v)
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where v is the Lagrange multiplier function for the state equation and q for its
divergence constraint. Applying the divergence theorem, the divergence condition
∇ ·b = 0 and the boundary conditions, we can write

ˆ

Ω

b ·∇ũ ·vdΩ =−
ˆ

Ω

(b ·∇v) · ũdΩ .

The five first-order necessary conditions for an optimal solution take then the
form

(u, ũ)+ (∇v,∇ũ)− (b ·∇v, ũ)− (∇ · ũ,q) = (ud , ũ) ∀ũ ∈ H1
0 (Ω)d

(∇ ·v, p̃) = 0 ∀p̃ ∈ L2
0(Ω)

(∇u,∇ṽ)+ (b ·∇u, ṽ)− (∇ · ṽ, p)− (f, ṽ) = 0 ∀ṽ ∈ H1
0 (Ω)d

(∇ ·u, q̃) = 0 ∀q̃ ∈ L2
0(Ω)

α(f, f̃)− (f̃,v) = 0 ∀f̃ ∈ L2(Ω)

(13)

Here u, p, f are the solutions of the optimal control problem with v,q as Lagrange
multipliers for the state equation, and ũ, ṽ, p̃, q̃, f̃ denote corresponding test
functions.

As in the elliptic control problem, the control function f can be eliminated,
f = α−1v, resulting in the reduced system,

(u, ũ)+ (∇v,∇ũ)− (b ·∇v, ũ)− (∇ · ũ,q) = (ud , ũ) ∀ũ ∈ H1
0 (Ω)d

(∇u,∇ṽ)+ (b ·∇u, ṽ)− (∇ · ṽ, p)−α−1(v, ṽ) = 0 ∀ṽ ∈H1
0 (Ω)d

(∇ ·v, p̃) = 0 ∀p̃ ∈ L2
0(Ω)

(∇ ·u, q̃) = 0 ∀q̃ ∈ L2
0(Ω)

, (14)

To discretize (14) we use an LBB-stable pair of finite element spaces for the pair
(u,v) and (p,q). In [7] the Taylor–Hood pair with {Q2,Q2,Q1,Q1} is used, namely,
piecewise quadratic basis functions for u,v and piecewise bilinear basis functions
for p,q for a triangular mesh. The corresponding discrete system takes the form

⎡
⎢⎢⎣

M −L+C 0 DT

L+C α−1M DT 0
0 D 0 0
D 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
−v
p
q

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Mud

0
0
0

⎤
⎥⎥⎦ , (15)

where we have changed the sign of v. Here D comes from the divergence terms.
Further, M is the mass matrix and L+C is the discrete operator, corresponding to
the convection–diffusion term−Δu+b ·∇u and−L+C to Δv+b ·∇v, respectively.
Due to the use of an inf–sup (LBB)-stable pairs of finite element spaces, the
divergence matrix D has full rank.

As for saddle point problems of similar type, one can use either a grad–
div stabilization or a div–grad stabilization. In the first case we add the matrix
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DTW−1D to M and α−1DTW−1D to α−1M, respectively, possibly multiplied with
some constant factor, where W is a weight matrix. If W is taken as the discrete
Laplacian matrix, then DTW−1D becomes a projection operator onto the orthogonal
complement of the solenoidal vectors.

The other type of stabilization consists of perturbing the zero block matrix in

(15) by ε
[

Δ 0
0 Δ

]
, where ε is a small parameter, typically ε = O(h2) with h being

the space discretization parameter. In that case there is no need to use LBB-stable
elements; see, e.g. [12] for more details. In the present paper, however, we use
LBB-stable elements and there is no need to use any additional regularization at all
but consider instead the solution of the system with the Schur complement matrix
system:

[
0 D
D 0

][
M −L+C

L+C α−1M

]−1([
0 DT

DT 0

][
p
q

]
−
[

Mud

0

])
=

[
0
0

]
(16)

This system can be solved by inner–outer iterations. To compute the residuals,

we must then solve inner systems with the matrix

[
M −L+C

L+C α−1M

]
, which takes

place in the way discussed earlier in Sect. 2. To recall, only systems with M +√
α(L+C) and M+

√
α(L−C) have to be solved. Further, as is seen from (16), the

corresponding systems which actually arise have the form D[M+
√

α(L+C)]−1DT

and D[M+
√

α(L−C)]−1DT . At least for not too large convection terms, related to
the diffusion term, these systems are well conditioned and can be preconditioned
with a mass matrix or a mass matrix minus a small multiple times the Laplacian.

To avoid the need to solve inner systems and for stronger convections, it may be
better to use a block-triangular factorization of the matrix in (15). For the arising
inner systems with M +

√
α(L+C) and M +

√
α(L−C), it can be efficient to use

some off-the-shelf software, such as some algebraic multigrid (AMG) method; see
[13, 14]. In [15] and [13] numerical tests are reported, showing that AGMG [13],
as one choice of an AMG method, performs much better than some other possible
methods.

The perturbations due to the use of inner iterations with stopping criteria lead
in general to complex eigenvalues. A generalized conjugate gradient method of
GMRES [16] type can be used. Such methods go under different names and have
been referred to as nonlinear conjugate gradient, variable preconditioned conjugate
gradient [17] and flexible GMRES [18]. Since, due to the accurate preconditioning,
there are few iterations, the additional cost for having a full length Krylov subspace,
involving all previous search directions, is not much heavier than if a conjugate
gradient method with vectors, orthogonal with respect to a proper inner product
and, hence, short recursions, is used.

We remark, however, that such a method has been constructed for indefinite
matrices in [19], based on inner products, defined by the matrix
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D =

[
M̂− M̂0 0

0 S0

]
,

where M̂0 is an approximation of M̂, such that M̂0 < M̂ and S0 < B̂M̂−1B̂T is an spd
approximation of the Schur complement matrix for the two-by-two block system[

M̂ B̂T

B̂ 0

]
. This makes the matrix

[
M̂0 0
B̂ −S0

]−1 [
M̂ B̂T

B̂ 0

]
self-adjoint with respect to

that inner product. The drawback of the method is the need to properly scale the
approximation M̂0 to satisfy M̂0 < M̂, and furthermore, M̂0 must be fixed, i.e. cannot
be implicitly defined via variable inner iterations.

In our case, the corresponding preconditioning matrix defined in Sect. 2 satisfies
M̂0 > M̂, but there is no need to scale it. Furthermore, we may apply inner
iterations for this preconditioner and also for the Schur complement matrix, hence
the corresponding matrix M̂0 is in general not fixed so the above inner product
method is not applicable.

The presentation of block-triangular factorization preconditioner and approxima-
tions of the arising Schur complement preconditioners with numerical tests will be
devoted.
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A Multigrid Algorithm for an Elliptic Problem
with a Perturbed Boundary Condition

Andrea Bonito and Joseph E. Pasciak

Abstract We discuss the preconditioning of systems coupling elliptic operators in
Ω ⊂ R

d , d = 2,3, with elliptic operators defined on hypersurfaces. These systems
arise naturally when physical phenomena are affected by geometric boundary
forces, such as the evolution of liquid drops subject to surface tension. The
resulting operators are sums of interior and boundary terms weighted by parameters.
We investigate the behavior of multigrid algorithms suited to this context and
demonstrate numerical results which suggest uniform preconditioning bounds that
are level and parameter independent.

Keywords Multigrid • Laplace-Beltrami • Surface Laplacian • Parameter
dependent problems

Mathematics Subject Classification (2010): 65N30, 65N55

1 Introduction

There has been considerable interest in geometric differential equations in recent
years as they play a crucial role in many applications. In this paper, we consider one
aspect of developing efficient preconditioners for the systems of algebraic equations
resulting from finite element approximation to these problems.

Let Ω ⊂ R
d , d = 2,3, be a bounded domain separated into two subdomains by

an interface γ . We denote the subdomains by Ωi, i = 1,2. This paper focuses on the
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study of an optimal multigrid algorithm for interactions between “bulk” perturbed
elliptic operators and the surface Laplacian. Such variational problems involving
interaction between diffusion operators on domains and surfaces appear in many
different contexts, see, for example, [1, 4, 10, 15, 18, 20, 21].

As an illustration, we now describe an application involving capillary flow [1].
We consider the evolution of two different fluids inside a domain Ω separated by
a moving interface γ(t), t > 0. The interface γ is described as the deformation of a
smooth reference domain γ̂ . We denote by x(t) : γ̂ → γ(t) the mapping relating the
two interfaces. Typically, x(t) is bi-Lipschitz, but we will require more smoothness
on γ and therefore on x. The fluids are assumed to be governed by the Stokes
equations, i.e., the velocities ui and the pressures pi, i = 1,2, satisfy on each
subdomain Ωi:

∂
∂ t

ui− 2div(D(ui))+∇pi = fi, div(ui) = 0, on Ωi,

where D(v) := 1
2((∇v)+(∇v)T ) and {fi} are given body forces. The surface tension

effect appears together with the continuity of the velocity, i.e.,

u1 = u2, on γ,

(2D(u1)− p1)ννν1 +(2D(u2)− p2)ννν2 = αΔcx, on γ,

where ννν i are unit outward pointing normals, Δγ is the Laplace–Beltrami operator,
and α > 0 is the surface tension coefficient. The term Δγ x is the total vector
curvature (sum of principal curvatures in the normal direction) [13]. In addition,
the system of equations is supplemented by the interface motion relation

ẋ = u on γ, (1)

where u = u1 = u2 is the fluid velocity at the interface γ .
Following an original idea of Dziuk [11] in the context of purely geometric

flows (see also [12]), Bänsch [1] proposes a first-order scheme in time leading
to a semi-implicit discretization of the curvature, thereby taking advantage of the
stability property inherent to surface tension effects. It relies on an implicit Euler
discretization of the interface motion (1)

x≈ xold + τ u on γ,

where τ is the time-stepping parameter. Injecting the above relation in the interface
condition, we obtain an approximate interface relation

(D(u1)− p1) ννν1 +(D(u2)− p2) ννν2 ≈ ταΔγ u+αΔγxold on γ.

Hence, denoting by u the combined velocity, i.e., u = ui on Ωi and by p the
combined pressure, one arrives at a semi-discrete approximation in time: Given an
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interface position xold ∈W 1
∞(γ̂) and a previous velocity uold ∈ V d , seek u ∈ V d and

p ∈ L2(Ω) such that for all v ∈V d

ˆ
Ω

u ·v+ 2τ
ˆ

Ω
D(u) ·D(v)− τ

ˆ
Ω

p ·div(v)+ατ2
ˆ

γ
∇γ u ·∇γv

=

ˆ
Ω

uold ·v+ τ
ˆ

Ω
f ·v−ατ2

ˆ
γ

∇γ xold ·∇γv

(2)

and for all q ∈ L2(Ω) ˆ
Ω

div(u) q = 0. (3)

Here V denotes the set of functions in H1(Ω) whose trace are in H1(γ). The
above weak formulation assumes, in addition, that γ is closed and avoids additional
terms involving ∂γ . A more general variational formulation taking into account the
possible intersection of γ with the ∂Ω is considered by Bänsch [1].

There are a variety of well-known iterative methods for saddle-point problems
whose efficiency depends on effective preconditioning of the velocity system and a
Schur complement system [5,8,19]. This paper addresses the preconditioning of the
velocity system. The efficient preconditioning of the Schur complement system is a
topic of future research. Moreover, we report results for a simplified scalar system
involving the form

A(u,v) := α0(u,v)+α1D(u,v)+α2 Dγ(u,v),u,v ∈V, (4)

where

(u,v) :=
ˆ

Ω
u v, D(u,v) :=

ˆ
Ω

∇u ·∇v

and

Dγ (u,v) :=
ˆ

γ
∇γ u ·∇γv.

Here αi, i = 0,1,2 are nonnegative constants. From a preconditioning point of view,
the problem of preconditioning the velocity system of (2) and that of (4) is more or
less equivalent.

The goal of this paper is to investigate the behavior of multigrid algorithms
applied to preconditioning the form A(·, ·). We shall demonstrate numerical results
which suggest level- and parameter-independent convergence rates. In a subsequent
manuscript [2], we shall provide theoretical results which guarantee such conver-
gence in the case α0 = 0. Level- and parameter-independent convergence results for
multigrid algorithms in the case when α2 = 0 have been considered before; see, e.g.,
[9]. The approach for the analysis in the case of α0 = 0 will also be described.
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2 Preliminaries

For theoretical purposes, we take α0 = 0 and restrict our attention to the case where
Ω is a polygonal or polyhedral domain in R

2 or R3, respectively, which has been
triangulated with an initial coarse mesh. Moreover, we consider the case when γ
coincides with Γ , the boundary of Ω . Clearly, Γ = ∪Γ̄j where {Γj} denotes the set
of polygonal faces of Γ .

We assume that we have a nested sequence of globally refined partitioning of Ω
into triangles or tetrahedra, i.e., T j, j = 1,2, . . . ,J. These are developed by uniform
refinement of a coarse triangulation T1 of Ω and have a mesh size h j ≈ ε j for some
ε ∈ (0,1). In particular, we assume there are positive constants C and c satisfying

cε j ≤ h j ≤Cε j .

The corresponding multilevel spaces of piecewise linear continuous functions are
denote by Wj. The functions in Wj with zero mean value on Γ are denoted by Vj,
and Vj restricted to Γ is denoted by Mj. Conceptually, we use θ i

j := ϕ i
j−|Γ |−1

´
Γ ϕ i

j

as our computational basis for Vj, where |Γ | denotes the measure of Γ , and ϕ i
j are

the nodal basis associated to the subdivision j. Technically, this means that our basis
functions no longer have compact support. However, because the form A(·, ·) kills
constants (for α0 = 0), the stiffness matrix is still sparse. The action of the smoother
is more or less local as discussed in Remark 4.7 in [3].

There is one fundamental difference between the cases of α1 = 0 and α1 �= 0. In
the first case, the form A(·, ·) is indefinite and hence, for uniqueness, one computes
in the subspace of reduced dimension, VJ . It is natural to develop the multigrid
analysis on the sequence {Vj}. Keeping track of the mean value is mostly an
implementation issue, see, e.g., [3]. Moreover, standard smoothing procedures work
provided that the smoother on Vj is based on the natural decompositions in the larger
space Wj. An alternative point of view for the indefiniteness issue in the multigrid
context is taken in [16, 17].

The analysis of the multigrid algorithm involves the interaction between the
quadratic form A(·, ·) and a base inner product. The analysis of [2] involves the
use of a boundary extension operator E j : Mj →Vj. Let {xi

j} denote the grid points
of the mesh T j. Given a function in Mj, we first define E j : Mj →Vj by setting

(E ju)(x
i
j) =

{
u(xi

j) : if xi
j ∈ Γ ,

0 : otherwise.

We then set

E ju =
j

∑
�=1

E�((q�− q�−1)u). (5)

Here q�, for � > 0 denotes the L2(Γ ) projection onto M� and q0 ≡ 0. Note that even
though E j is based on the telescoping decomposition
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u|Γ =
j

∑
�=1

((q�− q�−1)u)Γ ,

the sum in (5) does not telescope.
The critical property of this extension is given in the following proposition

proven in [2].

Proposition 1. For s = 0,1, the extension E j : Mj →Vj satisfies

‖E ju‖Hs(Ω) ≤C‖u‖s−1/2,Γ , for all u ∈Mj.

This extension operator was proposed by [14] for developing computable
boundary extension operators for domain decomposition preconditioners. The s = 1
case of the above theorem was also given there.

3 The Multigrid Algorithm

The analysis of the multigrid algorithm requires the use of a base inner product.
We note that even though the operators appearing in the multigrid algorithm below
are defined in terms of the base inner product, the base inner product disappears in
the implementation as long as the smoothers are defined by Jacobi or Gauss–Seidel
iteration. We introduce the base norm (corresponding to α0 = 0):

‖|u|‖=
[
α1(‖u−EJu‖2

L2(Ω) + ‖u‖2
−1/2,Γ )+α2‖u‖2

L2(Γ )

]1/2
,

for u ∈ VJ. This is the diagonal of the inner product which we denote by (((·, ·))).
This norm and inner product play a major role in the multigrid analysis in [2].

Following [7], we define the operators:

1. A j : Vj →Vj is defined by

(((A jv,θ ))) = A(v,θ ) for all v,θ ∈Vj.

2. Pj : V →Vj is defined by

A(Pjv,θ ) = A(v,θ ) for all v ∈V,θ ∈Vj.

3. Q̂ j : VJ →Vj is defined by

(((Q̂ jv,θ ))) = (((v,θ )))) for all v ∈VJ,θ ∈Vj.

Along with these operators, we require a sequence of “smoothing” operators R j :
Vj → Vj, j = 2,3, . . . ,J. The smoothing iteration associated with R j is the operator
S j : Vj ×Vj → VJ defined by S j(x, f ) = x+ R j( f − A jx). The adjoint of R j with
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respect to the base inner product is denoted by Rt
j, and we set S∗j(w, f ) =w+Rt

j( f −
A jw). The solution w = A−1

j f is a fixed point of the smoother iteration, and we find

that for x = A−1
j f , (x− S j(w, f )) = S j(x−w,0) = (I−R jA j)(x−w) ≡ Kj(x−w).

Thus, Kj relates the error before smoothing to that after. Similarly, we define K∗
j =

I−Rt
jA j and note that K∗

j is the A(·, ·) adjoint of Kj , i.e.,

A(Kjx,y) = A(x,K∗
j y) for all x,y ∈Vj.

The multigrid algorithms can be defined abstractly in terms of the above
operators. We include this definition for completeness as it is certainly classical. For
simplicity, we shall consider the V-cycle algorithm. The definitions of other variants
such as the W-cycle or F-cycle algorithm are similar, and their analysis follows
along the same lines. We define the multigrid operator as a map Mg j : Vj×Vj →Vj

given as follows:

Multigrid Algorithm (Mg j : Vj×Vj →Vj)

(a) If j = 1, set Mg1(V,F) = A−1
1 F .

(b) Otherwise, for j = 2,3, . . . ,J define Mg j(W,F) from Mg j−1(·, ·) by:

(i) V = S j(W,F) (pre-smoothing).
(ii) U =V +Mg j−1(0, Q̂ j−1(F−A jV )) (correction).

(iii) Mg j(W,F) = S∗j(U,F) (post-smoothing).

4 Multigrid Analysis

The goal of the computational results of this paper and the analysis of [2] is
the demonstration that the natural multigrid algorithm applied to our parameter-
dependent problem converges uniformly independently of the parameters. We
have developed a framework in [2] which allows the use of classical abstract
multigrid theory to obtain parameter-independent convergence. The key to this is
the introduction of the base norm and the analysis of the related projector:

π ju = E ju+Q j(u−E ju).

Here Q j denotes the projection onto the subspace of Vj consisting of functions
vanishing on Γ . The base inner product and above projector work as long as α1 and
α0 are of the same magnitude. This framework fails to provide uniform convergence
estimates when α1 � α0.

There are two fundamental ingredients in the algorithm of the previous section.
We have already discussed the nested spaces {Vj} and their natural embeddings. The
other ingredient is the smoothing iterations. These are naturally defined in terms of
a subspace decomposition of Vj, i.e.,
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Vj = ∪iV
i
j , i = 1, . . .Nj .

The above decomposition may or may not be a direct sum. This gives rise to two
distinct smoothing algorithms, specifically, block Jacobi and block Gauss–Seidel
smoothing, see [6, 7]. Either of these gives rise to the operators R j, S j, Kj, Rt

j, S∗j
and K∗

j .

Remark 1 (Implementation). Even though the algorithm of the previous section is
defined in terms of operators involving the base inner product (((·, ·))), this inner
product never appears in the implementation. In fact, the implementation of the
resulting multigrid algorithm only requires the sparse stiffness matrices on each
of the levels, a solver for the stiffness matrices corresponding to j = 1 and the
smoother subspaces, and a “prolongation” matrix which takes coefficients of the
representation of a function v j ∈ Vj (in the basis for Vj) into the coefficients for v j

represented in the basis for Vj+1.

Our smoothers will be required to satisfy the following two conditions:

(C.1) For some ω ∈ (0,1] not depending on j,

A(Kjx,Kjx)≤ A((I−ωλ−1
j A j)x,x) for all x ∈Vj, (6)

where λ j := supu∈Vj

A(u,u)
|||u|||2 .

(C.2) For some θ < 2 not depending on j,

A(R jv,R jv)≤ θ (((R jv,v))), for all v ∈Vj. (7)

These conditions are just (SM.1) and (SM.2) in [7].
To analyze the multigrid algorithm, we apply abstract results which can be found

in [7]. Along with conditions (C.1) and (C.2) above, we introduce two additional
conditions ((A.5) and (A.6) of [7]):

(C.3) There exists operators π j : VJ →Vj (with π0 = 0) satisfying

J

∑
j=1

λ j‖|(π j−π j−1)v|‖2 ≤CaA(v,v), for all v ∈VJ.

(C.4) There is an ε1 ∈ (0,1) and a positive constant Ccs such that for v j ∈ Vj and
w� ∈V� with � > j,

A(v j,w�)≤Ccsε�− j
1 A(v j,v j)

1/2(λ 1/2
� ‖|w�|‖).

The following theorem is Theorem 5.2 of [7].

Theorem 1. Assume that conditions (C.1)–(C.4) hold. Then

0≤ A(EJv,v)≤ (1− 1/CM)A(v,v), for all v ∈VJ,
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where

CM =

[(
1+

Ca

ω

)1/2

+

(
Ccsε1

1− ε1

)(
Caθ
2−θ

)1/2]
.

We use standard Jacobi or Gauss–Seidel smoothing but with subspaces asso-
ciated with the nodal decomposition on Wj. The analysis of these smoothers is
classical once one verifies the following proposition.

Proposition 2. Assume that α0 = 0, 0 < α1 and 0 < α2 ≤ α1. Then there is a
constant C not depending on j, such that

∑
i

A(vi
j,v

i
j)≤Cλ j‖|v j|‖2 for all vJ ∈Vj.

Here v j = ∑i vi
j is the expansion of v j into the finite element basis of Vj.

The above proposition implies [2] that (C.1) and (C.2) hold for the Gauss–Seidel
smoother as well as a properly scaled Jacobi smoother. We first show [2] that

[
α1(‖u−EJu‖2

H1(Ω) + ‖u‖2
1/2,Γ )+α2‖u‖2

H1(Γ )

]1/2

provides a norm that is equivalent to A(u,u) for u ∈ VJ. This and Proposition 1
eventually lead to (C.3) and (C.4) (cf. [2]).

5 Numerical Results

To illustrate the theory suggested in the previous sections, we report the results of
numerical computations. We consider two simple domains in R

2, the first being the
unit square and the second being the disk of radius one (centered at the origin).

The case of the unit square fits the theory discussed earlier. The square boundary
can be mapped via a piecewise smooth map to the circle. Moving the square so that
it is centered about the origin, the map takes the point (x,y) on the boundary to the
point of unit absolute value in the same direction.

The multigrid algorithm is variational and so λ = 1 is always the largest
eigenvalue of the preconditioned system. The coarsest mesh in the multigrid
algorithm was h = 1/4, and we used one forward and one reverse sweep of the
Gauss–Seidel iteration as a pre- and post-smoother (four sweeps per V-cycle
iteration on each positive level). In Table 1, we report the condition number K =
1/λ0

1 for the preconditioned multigrid algorithm when α0 = 0. We consider three
cases corresponding to (α1 = 1,α2 = 1), (α1 = 1,α2 = 0.1), and (α1 = 1,α2 = 0).

1λ0 is the smallest eigenvalue of the preconditioned system.
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Table 1 Condition numbers
for the square, α0 = 0

h α1 = 1, α2 = 1 α1 = 1, α2 = 0.1 α1 = 1, α2 = 0

1/16 1.162 1.167 1.176
1/32 1.180 1.194 1.200
1/64 1.207 1.208 1.211
1/128 1.214 1.214 1.216
1/256 1.217 1.217 1.218
1/512 1.219 1.219 1.219

Table 2 Condition numbers for the square, α0 = 1

h α1 = 1,α2 = 0 α1 = k, α2 = k2, k = 0.1 α1 = k, α2 = k2, k = 0.01

1/16 1.173 1.144 1.078
1/32 1.198 1.180 1.133
1/64 1.209 1.200 1.172
1/128 1.215 1.210 1.195
1/256 1.218 1.215 1.208
1/512 1.219 1.219 1.214
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Fig. 1 The grids with 172 and 332 vertices

In all cases, the numerical results illustrate the uniform convergence suggested by
the theory given in [2].

In Table 2, we consider the case when α0 = 1. In this case, the multigrid
algorithm is based on the original finite element spaces {Wj}. Again we report
the condition numbers for three cases. The first is α1 = 1,α2 = 0 and corresponds
to a uniformly elliptic second-order problem. The second and third are singularly
perturbed problems of the form α1 = τ , α2 = τ2 with τ representing the time step
size. Because of the lower-order term, this case does not fit into the theory of [2].

As a final example, we consider the case when Ω is the unit disk. We set up a
sequence of triangulations providing successively better approximations to Ω . The
coarsest grid contained 52 vertices or h≈ 1/2. The meshes with 172 and 332 vertices
are given in Fig. 1. The resulting finite element spaces are no longer nested, and the
multigrid algorithm is no longer variational. Non-variational multigrid algorithms
for the surface Laplacian were investigated in [3]. We believe that the techniques in
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Table 3 Condition numbers for the disk, α0 = 0

# Vertices α1 = 1, α2 = 1 α1 = 1, α2 = 0.1 α1 = 1, α2 = 0

172 1.206 1.250 1.304
332 1.286 1.316 1.360
652 1.348 1.364 1.397
1292 1.395 1.399 1.421
2572 1.432 1.426 1.437
5132 1.463 1.448 1.456

[2, 3] can be combined to give rise to uniform convergence for the non-variational
V-cycle multigrid algorithm. The computational results reported in Table 3 clearly
illustrate uniform parameter-independent convergence.
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Parallel Unsmoothed Aggregation Algebraic
Multigrid Algorithms on GPUs

James Brannick, Yao Chen, Xiaozhe Hu, and Ludmil Zikatanov

Abstract We design and implement a parallel algebraic multigrid method for
isotropic graph Laplacian problems on multicore graphical processing units (GPUs).
The proposed AMG method is based on the aggregation framework. The setup
phase of the algorithm uses a parallel maximal independent set algorithm in forming
aggregates, and the resulting coarse-level hierarchy is then used in a K-cycle
iteration solve phase with a �1-Jacobi smoother. Numerical tests of a parallel
implementation of the method for graphics processors are presented to demonstrate
its effectiveness.

Keywords Multigrid methods • Unsmoothed aggregation • Adaptive aggregation

Mathematics Subject Classification (2010): 65N55, 65T08, 65F10

1 Introduction

We consider development of a multilevel iterative solver for large-scale sparse linear
systems corresponding to graph Laplacian problems for graphs with balanced vertex
degrees. A typical example is furnished by the matrices corresponding to the (finite
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difference)/(finite volume)/(finite element) discretizations of scalar elliptic equation
with mildly varying coefficients on unstructured grids.

Multigrid (MG) methods have been shown to be very efficient iterative solvers
for graph Laplacian problems, and numerous parallel MG solvers have been
developed for such systems. Our aim here is to design an algebraic multigrid (AMG)
method for solving the graph Laplacian system and discuss the implementation
of such methods on multiprocessor parallel architectures, with an emphasis on
implementation on graphical processing units (GPUs).

The programming environment which we use in this paper is the Compute
Unified Device Architecture (CUDA) toolkit introduced in 2006 by NVIDIA which
provides a framework for programming on GPUs. Using this framework in the
last 5 years several variants of geometric multigrid (GMG) methods have been
implemented on GPUs [6, 13, 14, 16–18], and a high level of parallel performance
for the GMG algorithms on CUDA-enabled GPUs has been demonstrated in these
works.

On the other hand, designing AMG methods for massively parallel heteroge-
neous computing platforms, e.g., for clusters of GPUs, is very challenging mainly
due to the sequential nature of the coarsening processes (setup phase) used in
AMG methods. In most AMG algorithms, coarse-grid points or basis are selected
sequentially using graph theoretical tools (such as maximal independent sets and
graph partitioning algorithms). Although extensive research has been devoted to
improving the performance of parallel coarsening algorithms, leading to notable
improvements on CPU architectures [8, 9, 11, 21, 22, 27, 28, 28], on a single GPU
[4, 19, 26], and on multiple GPUs [12], the setup phase is still considered a
bottleneck in parallel AMG methods. We mention the work in [4], where a smoothed
aggregation setup is developed in CUDA for GPUs.

In this paper, we describe a parallel AMG method based on the unsmoothed
aggregation AMG (UA-AMG) method. The setup algorithm we develop and imple-
ment has several notable design features. A key feature of our parallel aggregation
algorithm (PAA) is that it first chooses coarse vertices using a parallel maximal
independent set algorithm [11] and then forms aggregates by grouping coarse- level
vertices with their neighboring fine-level vertices, which, in turn, avoids ambiguity
in choosing fine-level vertices to form aggregates. Such a design eliminates both
the memory write conflicts and conforms to the CUDA programming model. The
triple matrix product needed to compute the coarse-level matrix (a main bottleneck
in parallel AMG setup algorithms) simplifies significantly in the UA-AMG setting,
reducing to summations of entries in the matrix on the finer level. The parallel
reduction sums available in CUDA are quite an efficient tool for this task during
the AMG setup phase. Additionally, the UA-AMG setup typically leads to low grid
and operator complexities.

In the solve phase of the proposed algorithm, a K-cycle [1, 2, 29] is used to
accelerate the convergence rate of the multilevel UA-AMG method. Such multilevel
method optimizes the coarse-grid correction and results in an approximate two-level
method. Two parallel relaxation schemes considered in our AMG implementation
are a damped Jacobi smoother and a parameter-free �1-Jacobi smoother introduced
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in [25] and its weighted version in [7]. To further accelerate the convergence rate
of the resulting K-cycle Method we apply it as a preconditioner to a nonlinear
conjugate gradient method.

The remainder of the paper is organized as follows. In Sect. 2, we review the UA-
AMG method. Then, in Sect. 3, a parallel graph aggregation method is introduced,
which is our main contribution. The parallelization of the solve phase is discussed in
Sect. 4. In Sect. 5, we present some numerical results to demonstrate the efficiency
of the parallel UA-AMG method.

2 Unsmoothed Aggregation AMG

The linear system of interest has as coefficient matrix the graph Laplacian corre-
sponding to an undirected connected graph G = (V ,E). Here, V denotes the set of
vertices and E denotes the set of edges of G. We set n = |V| (cardinality of V).
By (·, ·) we denote the inner product in �2(IRn) and the superscript t denotes the
adjoint with respect to this inner product. The graph Laplacian A : IRn �→ IRn is then
defined via the following bilinear form:

(Au,v) = ∑
k=(i, j)∈E

ωi j(ui− u j)(vi− v j)+ ∑
j∈S

ωD
j u jv j, S ⊂ V .

We assume that the weights ωi j and ωD
j are strictly positive for all i and j. The first

summation is over the set of edges E (over k∈ E connecting the vertices i and j), and
ui and u j are the i-th and j-th coordinate of the vector u ∈ IRn, respectively. We also
assume that the subset of vertices S is such that the resulting matrix A is symmetric
positive definite (SPD). If the graph is connected, S could contain only one vertex
and A will be SPD. For matrices corresponding to the discretization scalar elliptic
equation on unstructured grids, S is the set of vertices near (one edge away from)
the boundary of the computational domain. The linear system of interest is then

Au = f . (1)

With this system of equation, we associate a multilevel hierarchy which consists
of spaces V0 ⊂ V1 ⊂ . . . ⊂ VL = IRn; each of the spaces is defined as the range of
interpolation/prolongation operator Pl

l−1 : IRnl−1 �→Vl with Range(Pl
l−1) =Vl−1.

Given the l-th level matrix Al ∈ R
nl×nl , the aggregation-based prolongation

matrix Pl
l−1 is defined in terms of a non-overlapping partition of the nl unknowns

at level l into the nl−1 nonempty disjoint sets Gl
j, j = 1, . . . ,nl−1, called aggregates.

An algorithm for choosing such aggregates is presented in the next section. The
prolongation Pl

l−1 is the nl × nl−1 matrix with columns defined by partitioning the
constant vector, 1= (1, . . . ,1)t , with respect to the aggregates:

(Pl
l−1)i j =

{
1 if i ∈ Gl

j

0 otherwise
i = 1, . . . ,nl , j = 1, . . . ,nl−1. (2)
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Algorithm 1: UA-AMG
Setup Phase:
1: Given n0 (size of the coarsest level) and L (maximum levels)
2: l ← L,
3: while Nl ≥ n0 & l > 0 do
4: Construct the aggregation N i

l , i = 1,2, . . . ,Nl+1 based on Al ,
5: Compute Al−1 by (4),
6: l ← l−1,
7: end while

Solve Phase:
1: if (On the coarsest level) then
2: solve Alul = fl exactly,
3: else
4: Pre-smoothing: ul ← smooth(ul ,Al , fl),
5: Restriction: compute rl−1 = (Pl

l−1)
T ( fl −Alul),

6: Coarse grid correction: solve Al−1el−1 = rl−1 approximately by recursively calling the
AMG on coarser level l−1 and get el−1,

7: Prolongation: compute ul ← ul +Pl
l−1el−1,

8: Post-smoothing: ul ← smooth(ul ,Al , fl).
9: end if

The resulting coarse-level matrix Al−1 ∈ R
nl−1×nl−1 is then defined by the so-called

triple matrix product, namely,

Al−1 = (Pl
l−1)

tAl(P
l
l−1). (3)

Note that since we consider UA-AMG, the interpolation operators are Boolean
matrices such that the entries in the coarse-grid matrix Al−1 can be obtained from a
simple summation process:

(Al−1)i j = ∑
s∈Gi

∑
t∈Gj

(Al)st , i, j = 1,2, · · · ,nl−1. (4)

Thus, the triple matrix product, typically the costly procedure in an AMG setup,
simplifies significantly for UA-AMG to reduction sums.

We now introduce a general UA-AMG method (see Algorithm 1), and in the
subsequent sections we describe the implementation of each of the components of
Algorithm 1 for GPUs.

3 The Setup Phase

Consider the system of linear equations (1) corresponding to an unweighted graph
G = {V ,E} partitioned into two subgraphs Gk = {Vk,Ek},k = 1,2. Further assume
that the two subgraphs are stored on separate computes. To implement a Jacobi
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or Gauss–Seidel smoother for the graph Laplacian equation with respect to G, the
communication between the two computers is proportional to the number of edge
cuts of such a partitioning, given by

|E\(E1∪E2)|.

Therefore, a partition corresponding to the minimal edge cut in the graph results
in the fastest implementation of such smoothers. This in turn gives a heuristic
argument, as also suggested in [23, 24], that when partitioning the graph in
subgraphs (aggregates), the subgraphs should have a similar number of vertices
and have a small “perimeter.” Such a partitioning can be constructed by choosing
any vertex in the graph, naming it as a coarse vertex, and then aggregating it
with its neighboring vertices. This heuristic motivates our aggregation method.
The algorithm consists of a sequence of two subroutines: first, a parallel maximal
independent set algorithm is applied to identify coarse vertices; then a parallel graph
aggregation algorithm follows, so that subgraphs (aggregates) centered at the coarse
vertices are formed.

In the algorithm, to reduce repeated global memory read access and write
conflicts, we impose explicit manual scheduling on data caching and flow control in
the implementations of both algorithms; the aim is to achieve the following goals:

1. (Read access coalescence): To store the data that a node uses frequently locally
or on a fast connecting neighboring node.

2. (Write conflicting avoidance): To reduce or eliminate the situation that several
nodes need to communicate with a center node simultaneously.

3.1 A Maximal Independent Set Algorithm

The idea behind such algorithm is to simplify the memory coalescence and design a
random aggregation algorithm where there are as many as possible threads loading
from a same memory location, while as few as possible threads writing to a same
memory location. Therefore, it is natural to have one vertex per thread when
choosing the coarse vertices. For vertices that are connected, the corresponding
processing threads should be wrapped together in a group. By doing so, repeated
memory loads from the global memory can be avoided.

However, we also need to ensure that no two coarse vertices compete for a fine-
level point, because either atomic operations as well as inter-thread communication
is costly on a GPU. Therefore, the coarse vertices are chosen in a way that any two of
them are of distance 3 or more, which is the same as finding a maximal independent
set of vertices for the graph corresponding to A2, where A is the graph Laplacian
of a given graph G, so that each fine-level vertex can be determined independently
which coarse vertex it associates with.

Given an undirected unweighted graph G = {V ,E}, we first find a set C of coarse
vertices such that

d(i, j) ≥ 3, ∀i, j ∈C, i �= j. (5)
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Here, d(·, ·) is the graph distance function defined recursively as

d(i, j) =

{
0, i = j;

min
k:(i,k)∈ε

d(k, j)+ 1, i �= j.

Assume we obtain such set C, or even a subset of C, we can then form aggregates,
by picking up a vertex i in C and defining an aggregate as a set containing i and its
neighbors. The condition (5) guarantees that two distinct vertices in C do not share
any neighbors. The operation of marking the numberings of subgraphs on the fine-
grid vertices is write conflict-free, and the restriction imposed by (5) ensures that
aggregates can be formed independently and simultaneously.

The rationale of the independent set algorithm is as follows: First, a random
vector v is generated, each component of which corresponds to a vertex in the graph.
Then we define the set C as the following:

C =
{

i | vi > v j,∀ j : 0 < d(i, j)< 3
}
.

If C is not empty, then such construction results in a collection of vertices in C is of
distance 3 or more. Indeed, assume that d(i, j)< 3 for i, j ∈C; let vi > v j. From the
definition of the set C, we immediately conclude that i /∈C. Of course, more caution
is needed when C defined above is empty (a situation that may occur depending on
the vector v). However, this can be remedied, by assuming that the vector v (with
random entries) has a global maximum, which is also a local maximum. The C
contains at least this vertex. The same algorithm can be applied then recursively to
the remaining graph (after this vertex is removed). In practice, C does not contain
one but more vertices.

3.2 Parallel Graph Aggregation Algorithm

We here give a description of the parallel aggregation algorithm (PAA, Algorithm 2),
running the exact copies of the code on each thread.

Within each pass of the PAA, the following two steps are applied to each
vertex i:

(A) Construct a set C which contains coarse vertices.
(B) Construct an aggregate for each vertex in C.

Note that these two subroutines can be executed in a parallel fashion. Indeed, step
(A) does not need to be applied to the whole graph before starting step (B). Even if C
is partially completed, any operation in step (B) will not interfere step (A), running
on the neighboring vertices and completing the construction of C. A problem for this
approach is that it usually cannot give a set of aggregates that cover the vertex set V
after 1 pass of step (A) and step (B). We thus run several passes and the algorithm
terminates when a complete cover is obtained. The number of passes is reduced if
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Algorithm 2: Parallel Aggregation Algorithm (PAA)
(1) Generate a quasi-random number and store it in vi, as

vi ←− quasi random(i);

mark vertex i as “unprocessed”; wait until all threads complete these operations.
(2) (2a) Goto (2d) if i is marked “processed”, otherwise continue to (2b).

(2b) Determine if the vertex i is a coarse vertex, by check if the following is true.

vi > v j, ∀ j : (A2)i j �= 0 and j is unprocessed .

If so, continue to (2c); if not, goto (2d).
(2c) Form an aggregate centered at i. Let Si be a set of vertices defined as

Si =
{

j | vi ≥ v j,∀ j : Ai j �= 0 and j is unprocessed
}
.

Define a column vector w such that

wk =

{
1, k ∈ Si;
0, k �∈ Si.

Mark vertices j ∈ Si “processed” and request an atomic operation to update the
prolongator P as

P←− [P,w] .

(2d) Synchronize all threads (meaning: wait until all threads reach this step).
(2e) Stop if i is marked “processed”, otherwise goto step (2a).

we make the set C as large as possible in each pass; therefore, the quasi-random
vector v needs to have a lot of local maximums. Another heuristic argument is that
C needs to be constructed in a way that every coarse vertex has a large number of
neighboring vertices. Numerical experiments suggest that the following is a good
way of generating the vector v with the desired properties:

vi ←− quasi random(i) := di +
(
(i mod 12)+ rand()

)
/12, (6)

where di is the degree of the vertex i and rand() generates a random number
uniformly distributed on the interval [0,1].

3.3 Aggregation Quality Improvements

To improve the quality of the aggregates, we can either impose some constraints
during the aggregation procedure (which we call in-line optimization) or reshape
an existing aggregation in order to improve it (which we call post-processing). One
in-line strategy that we use to improve the quality of the aggregation is to limit
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the number of vertices in an aggregate during the aggregation procedure. However,
such limitations may result in a small coarsening ratio. In such case, numerical
results suggest that applying aggregation process twice, which is equivalent to
skipping a level in a multilevel hierarchy, can compensate that. Our focus is on
a post-processing strategy, which we name “rank one optimization.” It uses an a
priori estimate to adjust the interface (boundary) of a pair of aggregates, so that the
aggregation-based two-level method, with a fixed smoother, converges fast locally
on those two aggregates.

We consider the connected graph formed by a union of aggregates (say, a pair
of them, which will be the case of interest later), and let n̂ be the dimension of
the underlying vector space. Let Â : IRn̂ �→ IRn̂ be a semidefinite weighted graph
Laplacian (representing a local subproblem) and R̂ be a given local smoother. As
is usual for semidefinite graph Laplacians, we consider the subspace �2-orthogonal
to the null space of Â and we denote it by V . The �2 orthogonal projection on V
is denoted here by ΠV . Let Ŝ = I− R̂Â be the error propagation operator for the
smoother R̂. We consider the two-level method whose error propagation matrix is

E(Vc) = E(Vc; Ŝ) = (I−QÂ(Vc))(I− R̂Â).

Here Vc ⊂V is a subspace and QÂ(Vc) is the Â-orthogonal projection of the elements
of V onto the coarse space Vc. In what follows we use the notation E(Vc; Ŝ) when
we want to emphasize the dependence on Ŝ. We note that QÂ(Vc) is well defined
on V because Â is SPD on V and hence it (Â·, ·) is an inner product on V . We also
have that QÂ(Vc) self-adjoint on V and under the assumption Vc ⊂ V , we obtain
QÂ(Vc) = ΠV QÂ(Vc) and ΠV QÂ(Vc) = QÂ(Vc)ΠV . Also, ŜV = ΠV Ŝ is self-adjoint
on V in the (Â·, ·) inner product iff R̂ is self-adjoint in the �2-inner product on IRn̂.

We now introduce the operator T (Vc) (recall that Vc ⊂V )

T (Vc) = T (Vc; Ŝ) = Ŝ−E(Vc) = QÂ(Vc)(I− R̂Â) = QÂ(Vc)Ŝ,

and from the definition of QÂ for all v ∈V we have

|E(Vc)v|2Â = |ΠV E(Vc)v|2Â = |ΠV Ŝv|2
Â
−|ΠV T (Vc)v|2Â = |ŜV v|2

Â
−|T (Vc)v|2Â. (7)

We note the following identities which follow directly from the definitions above
and the assumption Vc ⊂V :

|E(Vc; Ŝ)|Â = |ΠV E(Vc; ŜV )|Â, |T (Vc; Ŝ)|Â = |ΠV T (Vc; ŜV )|Â. (8)

The relation (7) suggests that, in order to minimize the seminorm |E(Vc)v|Â with
respect to the coarse space Vc, we need to make |T (Vc)|Â maximal. The following
lemma quantifies this observation and is instrumental in showing how to optimize
locally the convergence rate when the subspaces Vc are one dimensional. In the
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statement of the lemma we use argmin to denote a subset of minimizers of a given,
not necessarily linear, functional F(x) on a space X . More precisely, we set

y ∈ argmin
x∈X

F(x), if and only if, F(y) = min
x∈X

F(x).

We have similar definition (with obvious changes) for the set argmax
x∈X

F(x).

Lemma 3.1. Let ŜV = ΠV Ŝ be the projection of the local smoother on V and Vc be
the set of all one dimensional subspaces of V . Then we have the following:

|ŜV |Â = max
Vc∈Vc

|T (Vc)|Â, (9)

If Wc ∈ arg max
Vc∈Vc

|T (Vc)|Â, then Wc ∈ arg min
Vc∈Vc

|E(Vc)|Â, (10)

where E(Vc) = (I−QÂ(Vc))Ŝ and T (Vc) = QÂ(Vc)Ŝ.

Proof. From the identities (8) it follows that we can restrict our considerations on
V ⊂ R

n̂ and that we only need to prove the Lemma with E(Vc) = ΠV E(Vc; ŜV )
and T (Vc) = ΠV T (Vc; ŜV ). In order to make the presentation more transparent, we
denote | · |= | · |Â, Π = QÂ. Let us mention also that by orthogonality in this proof
we mean orthogonality in the (Â·, ·) inner product on V . The proof then proceeds as
follows.

Let ϕ ∈ V be such that |ŜV ϕ | = |ŜV ||ϕ |. We set Wc = span{ŜV ϕ}. Note that for
such choice of Wc we have Π(Wc)ŜV ϕ = ŜV ϕ and hence

|ŜV |=
|ŜV ϕ |
|ϕ | =

|T (Wc)ϕ |
|ϕ | ≤ |T (Wc)|.

On the other hand, for all Vc ∈ Vc we have |Π(Vc)|= 1 and we then conclude that

|T (Vc)|= |Π(Vc)ŜV | ≤ |Π(Vc)||ŜV |= |ŜV | ≤ |T (Wc)|. (11)

By taking a maximum on Vc in (11), we conclude the following thus prove (9):

|T (Wc)| ≤ max
Vc∈Vc

|T (Vc)| ≤ |ŜV | ≤ |T (Wc)|.

To prove (10), we observe that for any Wc ∈ arg max
Vc∈Vc

|T (Vc)|, the inequalities

in (11) become equalities and hence

|Π(Wc)ŜV |= |ŜV |= |ŜV Π(Wc)|.

This implies that |ŜV |= max
w∈Wc

|ŜV w|
|w| . It is also clear that |ŜV w|= |ŜV ||w| for all w ∈

Wc, because Wc is one dimensional. In addition, since ŜV is self-adjoint, it follows
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that Wc is the span of the eigenvector of ŜV with eigenvalue of magnitude |ŜV |. Next,
for any Vc ∈ Vc we have

|E(Vc)|= |(I−Π(Vc))ŜV |= |ŜV (I−Π(Vc))|= max
v∈V⊥

c

|ŜV v|
|v| .

By the mini-max principle (see [10, pp. 31–35] or [20]) we have that |E(Vc)| ≥ σ2,
where σ2 is the second largest singular value of ŜV and with equality holding iff
Vc =Wc. This completes the proof. �

We now move on to consider a pair of aggregates. Let Â be the graph Laplacian
of a connected positively weighted graph Ĝ which is union of two aggregatesV1 and
V2. Furthermore, let 1V1 be the characteristic vector for V1, namely, a vector with
components equal to 1 at the vertices of V1 and equal to zero at the vertices of V2.
Analogously we have a characteristic vector 1V2 for V2. Finally, let Vc(V1,V2) be
the space of vectors that are linear combinations of 1V1 and 1V2 . More specifically,
the subspace Vc is defined as

Vc(V1,V2) = span

{(
1
|V1|

1V1 −
1
|V2|

1V2

)}
.

Let Vc be the set of subspaces defined above for all possible pairs of V1 and V2,
such that Ĝ = V1 ∪V2. Note that by the definition above, every pair (V1,V2) gives
us a space Vc ∈ Vc which is orthogonal to the null space of Â, i.e., orthogonal to
1= 1V1 +1V2 .

We now apply the result of Lemma 3.1 and show how to improve locally the
quality of the partition (the convergence rate |E(Vc)|Â) by reducing the problem of
minimizing the Â-norm of E(Vc) to the problem of finding the maximum of the Â-
norm of the rank one transformation T (Vc). Under the assumption that the spaces
Vc are orthogonal to the null space of Â (which they satisfy by construction) from
Lemma 3.1, we conclude that the spaces Wc which minimize |E(Vc)|Â also maximize
|T (Vc)|Â.

For the pair of aggregates, |T (Vc)|Â is the largest eigenvalue of ŜT AQÂ(Vc)ŜÂ†,
where A† is the pseudo inverse of A. Clearly, the matrix ŜT AQÂ(Vc)ŜÂ† is also a
rank one matrix and hence

|T (Vc)|Â = tr(ŜT AQÂ(Vc)ŜÂ†).

During optimization steps, we calculate the trace using the fact that for any rank
one matrix W , we have

tr(W ) =
W̃ T

k Wk

Wkk
=

W̃ T
k Wk

eT
k Wkek

, (12)
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Algorithm 3: Subgraph Reshaping Algorithm
Input: Two set of vertices, V1 and V2, corresponding to a pair of neighboring subgraphs.
Output: Two sets of vertices, Ṽ1 and Ṽ2 satisfying that

Ṽ1∪ Ṽ2 = V1∪V2, and
∣∣|Ṽ1|− |Ṽ2|

∣∣≤ 1,

and the subgraphs corresponding to Ṽ1 and Ṽ2 are both connected.
(1) Let n = |Ṽ1|+ |Ṽ2|, then compute m = �n/2�.
(2) Run in parallel to generate all partitionings such that the vertices set

Ṽ1∪ Ṽ2 = V1∪V2, |Ṽ1|= m,

and the subgraphs derived by Ṽ1 and Ṽ2 are connected.
(3) Run in parallel to compute the norm |T(Vc)|Â for all partitionings get from step (2), and

return the partitioning that results in maximal |T (Vc)|Â.

where Wkk is a nonzero diagonal entry (any nonzero diagonal entry), Wk is the k-th
column of W and W̃ T

k is the k-th row of W . The formula (12) is straightforward
to prove if we set W = uvT for two column vectors u and v and also suggests a
numerical algorithm. We devise a loop computing Wk = Wek and Wkk = eT

k Wkek,
for k = 1, . . . ,m, where m is the dimension of W . The loop is terminated whenever
Wkk �= 0, and we compute the trace via (12) for this k. In particular for the examples
we have tested, W = ŜT ÂQÂ(Vc)ŜÂ† is usually a full matrix and we observed that
the loop almost always terminated when k = 1.

The algorithm which traverses all pairs of neighboring aggregates and optimizes
their shape is as follows.

The subgraph reshaping algorithm fits well the programming model of a multi-
core GPU. We demonstrate this algorithm on two example problems and later show
its potential as a post-process for the PAA (Algorithm 2) outlined in the previous
section. In the examples that follow next we use the rank one optimization and then
measure the quality of the coarse space also by computing the energy norm of the
|Q|Â, where Q is the �2-orthogonal projection to the space Wc.

Example 3.2. Consider a graph Laplacian Â corresponding to a graph which is a 4×
4 square grid. The weights on the edges are all equal to 1. We start with an obviously
non-optimal partitioning as shown on the left of Fig. 1, of which the resulting two-
level method, consisting of �1-Jacobi pre- and post-smoothers and an exact coarse-
level solver, has a convergence rate |E|Â = 0.84 and |Q|2

Â
= 1.89. After applying

Algorithm 3, the refined aggregates have the shapes shown on the right of Fig. 1,
of which the two-level method has the same convergence rate |E|Â = 0.84 but the
square of the energy seminorm is reduced to |Q|2

Â
= 1.50.

Example 3.3. Consider a graph Laplacian Â corresponding to a graph which is a
4× 4 square grid, on which all horizontal edges are weighted 1 while all vertical
edges are weighted 10. Such graph Laplacian represents anisotropic coefficient
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Fig. 1 Subgraph reshaping algorithm applied on a graph representing an isotropic coefficient
elliptic PDE

Fig. 2 Subgraph reshaping algorithm applied on a graph representing an anisotropic coefficient
elliptic PDE

elliptic equations with Neumann boundary conditions. Start with a non-optimal
partitioning as shown on the left of Fig. 2, of which the resulting two-level method
has a convergence rate |E|Â = 0.96 and |Q|2

Â
= 4.88. After applying Algorithm 3, the

refined aggregates have the shapes shown on the right of Fig. 2, of which the two-
level convergence rate is reduced to |E|Â = 0.90 and the energy of the coarse-level
projection is also reduced as |Q|2

Â
= 1.50.

4 Solve Phase

In this section, we discuss the parallelization of the solver phase on GPU. More
precisely, we will focus on the parallel smoother, prolongation/restriction, MG
cycle, and sparse matrix-vector multiplication.

4.1 Parallel Smoother

An efficient parallel smoother is crucial for the parallel AMG method. For the
sequential AMG method, Gauss–Seidel relaxation is widely used and has been
shown to have a good smoothing property. However the standard Gauss–Seidel is
a sequential procedure that does not allow efficient parallel implementation. To
improve the arithmetic intensity of the smoother and make it work better with
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SIMD-based GPUs, we adopt the well-known Jacobi relaxation and introduce a
damping factor to improve the performance of the Jacobi smoother. For a matrix
A ∈ R

n×n and its diagonals are denoted by D = diag(a11,a22, · · · ,ann), the Jacobi
smoother can be written in the following matrix form

xm+1 = xm +ωD−1rm, where rm = b−Axm,

or component-wise

xm+1
i = xm

i +ωa−1
ii rm

i .

This procedure can be implemented efficiently on GPUs by assigning one thread to
each component and update the corresponding components locally and simultane-
ously. We also consider the so-called �1-Jacobi smoother, which is parameter-free.
Define

M = diag(M11,M22, · · · ,Mnn),

where Mii = aii+dii with dii = ∑ j �=i |ai j|, and the �1-Jacobi has the following matrix
form:

xm+1 = xm +M−1rm, where rm = b−Axm,

or component-wise

xm+1
i = xm

i +M−1
ii rm

i .

In [7, 25] it has been show that if A is SPD, the smoother is always convergent
and has multigrid smoothing properties comparable to full Gauss–Seidel smoother
if aii ≥ θdii and θ is bounded away from zero. Moreover, because its formula
is very similar to the Jacobi smoother, it can also be implemented efficiently on
GPUs by assigning one thread to each component, and update the corresponding
the component locally and simultaneously.

4.2 Prolongation and Restriction

For UA-AMG method, the prolongation and restriction matrices are piecewise
constant and characterize the aggregates. Therefore, we can perform the pro-
longation and restriction efficiently in UA-AMG method. Here, the output array
aggregation (column index of P), which contains the information of aggregates,
plays an important rule.

• Prolongation: Let vl−1 ∈ R
nl−1 , so that the action vl = Pl

l−1vl−1 can be written
component-wise as follows:

(vl)i = (Pl
l−1vl−1)i = (vl−1) j, j ∈ Gl−1

i
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Assign each thread to one element of vl , and the array aggregation can be
used to obtain information about j ∈ Gl−1

i , i.e., i = aggregation[ j], so that
prolongation can be efficiently implemented in parallel.

• Restriction: Let vl ∈R
nl , so that the action (Pl

l−1)
T vl can be written component-

wise as follows:

(vl−1)i = ((Pl
l−1)

T vl)i = ∑
j∈Gl−1

i

(vl) j.

Therefore, each thread is assigned to an element of vl−1, and the array
aggregation can be used to obtain information about j ∈ G j−1

i , i.e., to
find all j such that aggregation[ j] = i. By doing so, the action of restriction
can also be implemented in parallel.

4.3 K-Cycle

Unfortunately, in general, UA-AMG with V-cycle is not an optimal algorithm in
terms of convergence rate. But on the other hand, in many cases, UA-AMG using
two-grid solver phase gives optimal convergence rate for graph Laplacian problems.
This motivated us to use other cycles instead of V-cycle to mimic the two-grid
algorithm. The idea is to invest more works on the coarse grid and make the method
become closer to an exact two-level method; then hopefully, the resulting cycle will
have optimal convergence rate.

The particular cycle we will discuss here is the so-called K-cycle (nonlinear
AMLI-cycle), and we refer to [1, 2, 29] for details on its implementation in general.

4.4 Sparse Matrix-Vector Multiplication on GPUs

As the K-cycle will be used as a preconditioner for nonlinear preconditioned con-
jugate gradient (NPCG) method, the sparse matrix-vector multiplication (SpMV)
has major contribution to the computational work involved. An efficient SpMV
algorithm on GPU requires a suitable sparse matrix storage format. How different
storage formats perform in SpMV is extensively studied in [3]. This study shows
that the need for coalesce accessing of the memory makes ELLPACK (ELL) format
one of the most efficient sparse matrix storage formats on GPUs when each row of
the sparse matrix has roughly the same nonzeros. In our study, because our main
focus is on the PAA and the performance of the UA-AMG method, we still use the
compressed row storage (CSR) format, which has been widely used for the iterative
linear solvers on CPU. Although this is not an ideal choice for GPU implementation,
the numerical results in the next section already show the efficiency of our parallel
AMG method.



Parallel Unsmoothed Aggregation Algebraic Multigrid Algorithms on GPUs 95

5 Numerical Tests

In this section, we present numerical tests using the proposed parallel AMG
methods. Whenever possible we compare the results with the CUSP libraries [15].
CUSP is an open source C++ library of generic parallel algorithms for sparse linear
algebra and graph computations on CUDA-enabled GPUs. All CUSP’s algorithms
and implementations have been optimized for GPU by NVIDIA’s research group.
To the best of our knowledge, the parallel AMG method implemented in the CUSP
package is the state-of-the-art AMG method on GPU. We use as test problems
several discretizations of the Laplace equation.

5.1 Numerical Tests for PAA

Define Q, the �2 projection on the piecewise constant space Range(P), as the
following:

Q = P(PT P)−1PT .

We present several tests showing how the energy norm of this projection changes
with respect to different parameters used in the PAA, since the convergence rate is
an increasing function of ‖Q‖A.

The tests involving ‖Q‖A further suggest two additional features necessary to get
a multigrid hierarchy with predictable results. First, the sizes of aggregates need
to be limited, and second, the columns of the prolongator P need to be ordered in
a deterministic way, regardless of the order that aggregates are formed. The first
requirement can be fulfilled simply by limiting the sizes of the aggregates in each
pass of the PAA. We make the second requirement more specific. Let ck to be the
index of the coarse vertex of the k-th aggregate. We require that ck should be an
increasing sequence and then use the k-th column of P to record the aggregate with
the coarse vertex numbered ck. This can be done by using a generalized version of
the prefix sum algorithm [5].

We first show in Table 1 the coarsening ratios (in the parenthesis in the table)
and the energy norms ‖Q‖2

A of a two-grid hierarchy, for a Laplace equation with
Dirichlet boundary conditions on a structured grid containing n2 vertices. The limit
on the size of an aggregate is denoted by t, which suggests that any aggregate can
include t vertices or less, which directly implies that the resulting coarsening ratio
is less or equal to t.

For the same aggregations on the graphs that represent Laplace equations with
Neumann boundary conditions, the corresponding coarsening ratio (in parenthesis)
and |Q|2A seminorms with respect to grid size n and limiting threshold t are shown
in Table 2.
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Table 1 (Coarsening ratios) and energy norm of a two-grid hierarchy
of a Laplace equation on a uniform grid with Dirichlet boundary
conditions

t = 2 t = 3 t = 4 t = 5

n = 128 (1.99) 1.71 (2.03) 2.04 (2.41) 2.46 (2.97) 3.15
n = 256 (1.99) 1.72 (2.39) 2.57 (2.96) 2.59 (2.99) 3.20
n = 512 (2.00) 1.72 (2.01) 2.08 (2.40) 2.48 (2.99) 3.22

Table 2 (Coarsening ratios) and energy norm of a two-grid hierarchy
of a Laplace equation on a uniform grid with Neumann boundary
conditions

t = 2 t = 3 t = 4 t = 5

n = 128 (1.99) 1.87 (2.03) 2.11 (2.41) 2.48 (2.97) 3.24
n = 256 (1.99) 1.74 (2.39) 2.59 (2.96) 2.62 (2.99) 3.24
n = 512 (2.00) 1.87 (2.01) 2.11 (2.40) 2.49 (2.99) 3.24

Table 3 (Coarsening ratios) and energy norm of a two-grid hierarchy
of a Laplace equation on a uniform grid with Neumann boundary
conditions

t = 2 t = 3 t = 4 t = 5

n = 126 (2.00) 2.11 (2.00) 2.07 (2.36) 2.73 (2.36) 2.73
n = 127 (1.99) 1.86 (2.01) 1.98 (2.01) 2.49 (2.01) 2.34
n = 128 (1.99) 1.71 (2.03) 2.04 (2.41) 2.47 (2.97) 3.15
n = 129 (1.99) 1.84 (2.02) 2.04 (2.03) 2.31 (2.02) 2.42
n = 130 (1.99) 1.77 (2.40) 2.21 (2.92) 2.86 (2.94) 2.94
n = 131 (1.99) 2.61 (2.01) 2.41 (2.01) 2.45 (2.00) 2.49
n = 132 (1.98) 2.09 (2.21) 2.81 (2.33) 2.89 (2.26) 2.94

In Table 3 we present the computed bounds on the coarsening ratio and energy of
a two-level hierarchy2 when the fine level is an n× n. Such results are valid for any
structured grid with n2 vertices (not just n = 126, . . . ,132) This is seen as follows:
(1) From (6), it follows that if we consider two grids of sizes n1× n1 and n2× n2,
respectively, and such that

(n1− n2)≡ 0 mod 12, or (n1 + n2)≡ 0 mod 12,

then our aggregation algorithm results in the same pattern of C points on these two
grids; (2) as a consequence grids of size n× n for n = 126 ≡ 6 mod 12 to n =
132 ≡ 0 mod 12 give all possible coarsening patterns that can be obtained by our
aggregation algorithm on any 2D tensor product grid. As a conclusion, the values

2By energy of a two-level hierarchy here, we mean the seminorm of the �2 projection on the coarse
space.
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Table 4 (Coarsening ratios) and energy norm of a two-grid hierarchy of a
Laplace equation with Dirichlet boundary conditions discretized on an unstruc-
tured grid

t = 2 t = 3 t = 4 t = 5 t = ∞
n = 128 (1.80) 2.39 (2.53) 2.44 (3.17) 3.10 (3.73) 3.46 (4.91) 3.30
n = 256 (1.79) 2.39 (2.52) 2.60 (3.15) 3.18 (3.69) 3.46 (4.91) 3.41
n = 512 (1.80) 2.38 (2.55) 2.67 (3.19) 3.26 (3.72) 3.56 (4.93) 3.40

Table 5 (Coarsening ratios) and energy norm of a two-grid hierarchy of
a Laplace equation with Neumann boundary conditions discretized on an
unstructured grid

t = 2 t = 3 t = 4 t = 5 t = ∞
n = 128 (1.80) 2.39 (2.53) 2.54 (3.17) 3.18 (3.73) 3.48 (4.91) 3.33
n = 256 (1.79) 2.49 (2.52) 2.65 (3.15) 3.20 (3.69) 3.48 (4.91) 3.41
n = 512 (1.80) 2.47 (2.55) 2.80 (3.19) 3.27 (3.72) 3.57 (4.93) 3.53

of the coarsening ratios and the energy seminorm given in Table 3 are valid for any
2D structured grid.

We also apply this aggregation method on graphs corresponding to Laplace
equations on two-dimensional unstructured grids with Dirichlet or Neumann bound-
ary conditions. The unstructured grids are constructed by perturbing nodes in
an n× n square lattice (n = 128,256,512), followed by triangulating the set of
perturbed points using a Delaunay triangulation. The condition numbers of the
Laplacians, derived using finite element discretization of the Laplace equations
on the mentioned unstructured grids with Dirichlet boundary conditions, are about
1.2× 104, 5.0× 104, and 2.1× 105, respectively. The coarsening ratios and |Q|2A
are listed in Tables 4 and 5. We remark here that we also apply the PAA without
imposing limit on the size of an aggregate, and the corresponding numerical results
are listed in columns named “t = ∞.”

We note that in Tables 4 and 5, the coarsening ratios are not large enough to result
in small operator complexity. We then estimate the energy norm |Q|2A when Q is the
�2 orthogonal projection from any level of the multigrid hierarchy to any succeeding
sublevels. We start with a Laplace equation on a 1282 structured square grid, set the
limit of sizes of aggregates as t = 5 on each iteration of aggregation, and stop when
the coarsest level is of less than 100 degrees of freedom. If we number the levels
starting with the finest level (level 0), then, in this example, the coarsest level will
be level 5. The coarsening ratios and energy norm |Q|2A between any two levels are
shown in Tables 6 and 7.

We observe that, on the diagonal of Tables 6 and 7, the energy norms are
comparable to the coarsening ratios, until the last level where the grid becomes
highly unstructured. This suggests that a linear or nonlinear AMLI solving cycle can
give both a good convergence rate and a favorable complexity. It is also observed
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Table 6 (Coarsening ratios) and energy norms squares of a multigrid
hierarchy of a Laplace equation with Dirichlet boundary conditions
discretized on a 1282 grid

0 1 2 3 4

1 (2.97) 3.15 – – – –
2 (11.3) 7.34 (3.81) 3.09 – – –
3 (38.6) 15.3 (13.0) 6.74 (3.41) 2.68 – –
4 (113.8) 31.9 (38.3) 13.9 (10.1) 5.25 (2.95) 3.91 –
5 (321.3) 54.5 (108.2) 22.5 (28.4) 9.09 (8.33) 4.53 (2.82) 4.77

Table 7 (Coarsening ratios) and energy norm of a multigrid hierarchy
of a Laplace equation with Neumann boundary conditions discretized
on a 1282 grid

0 1 2 3 4

1 (2.97) 3.23 – – – –
2 (11.3) 7.68 (3.81) 3.28 – – –
3 (38.6) 16.9 (13.0) 7.99 (3.41) 2.94 – –
4 (113.8) 42.5 (38.3) 20.6 (10.1) 7.07 (2.95) 4.23 –
5 (321.3) 98.6 (108.2) 48.3 (28.4) 17.0 (8.33) 7.11 (2.82) 5.75

that, on the lower triangular part of Tables 6 and 7, the energy norms are always
smaller than the corresponding coarsening ratios, which suggests that flexible cycles
that detect and skip unnecessary levels can be more efficient.

Another inspiring observation is that, in Table 1, even if we set a limit t = 5 for
the maximal number of vertices in an aggregate, the resulting aggregates have an
average number of vertices ranging from 2.97 to 2.99. We plot the aggregates of
an unweighted graph corresponding to a 16× 16 square grid on the left of Fig. 3
and observe that some aggregates contain five vertices and some contain only one.
We then use the rank one optimization discussed in Sect. 3.3 and apply subgraph
reshaping algorithm (Algorithm 3) as a post-process of the GPU PAA (Algorithm 2)
and plot the resulting aggregates on the right of Fig. 3. Since the subgraph reshaping
algorithm does not change the number of aggregates, the coarsening ratios on the
left and right of Fig. 3 are identical and are equal to 2.72. The energy of the �2

projection is deceased from |Q|2
Â
= 2.51 (left of Fig. 3) to |Q|2

Â
= 2.19 (right of

Fig. 3). However, two-level convergence rate increases from |E|Â = 0.67 (left of
Fig. 3) to |E|Â = 0.69 (right of Fig. 3).

Some more comments on the reshaping algorithm are in order. For isotropic
problems, the reshaping does not have significant impact of on the convergence
rate because aggregation obtained by standard approach already results in a good
convergence rate. However, for anisotropic problems, reshaping improves the
convergence rate. In this case, starting with aggregates of arbitrary shape, the
reshaping procedure results in aggregates aligned with the anisotropy and definitely
improves the overall convergence rate.
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Fig. 3 Before (left) and after (right) the subgraph reshaping algorithm applied on partitioning
given by PAA

In addition, even for isotropic case, the numerical results in the manuscript
indicate that subgraph reshaping can be essential for a variety of cycling algorithms
when aggressive coarsening is applied. As shown in Examples 3.2 and 3.3, the
aggregation reshaping helps for some isotropic and anisotropic problems when
coarsening ratio is 8. In Tables 6 and 7, we observe that such coarsening ratio can
be achieved by skipping every other level in our current multilevel hierarchy.

Clearly, further investigation about the reshaping is needed for more general
problems that have both anisotropic and isotropic regions. Analyzing such cases
as well as testing how much improvement in the convergence can be achieved by
subgraph reshaping for specific coarsening and cycling strategies is subject of an
ongoing and future research.

5.2 Numerical Tests for GPU Implementation

In this section, we perform numerical experiments to demonstrate the efficiency of
our proposed AMG method and discuss the specifics related to the use of GPUs as
main platform for computations. We test the parallel algorithm on Laplace equation
discretized on quasi-uniform grids in 2D. Our test and comparison platform is the
NVIDIA Tesla C2070 together with a Dell computing workstation. Details in regard
to the machine are given in Table 8.

Because our aim is to demonstrate the improvement of our algorithm on GPUs,
we concentrate on comparing the method we describe here with the parallel
smoothed aggregation AMG method implemented in the CUSP package [15].

We consider the standard linear finite element method for the Laplace equation
on unstructured meshes. The results are shown in Table 9. Here, CUSP uses
smoothed aggregation AMG method with V-cycles, and our method is UA-AMG
with K-cycles. The stopping criterion is that the �2 norm of the relative residual is
less than 10−6. According to the results, we can see that our parallel UA-AMG
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Table 8 Test platform CPU type Intel
CPU clock 2.4 GHz
Host memory 16 GB

GPU type NVIDIA Tesla C2070
GPU clock 1.15GHz
Device memory 6 GB
CUDA capability 2.0

Operating system RedHat
CUDA driver CUDA 4.1
Host complier gcc 4.1
Device complier nvcc 4.1
CUSP v0.3.0

Table 9 Comparison between the parallel AMG method in CUSP
package (smoothed aggregation AMG with V-cycles) and our new
parallel AMG method (UA-AMG with K-cycles)

#DoF = 1 million #DoF = 4 million

# Iter. Setup Solve Total # Iter. Setup Solve Total

CUSP 36 0.63 0.35 0.98 41 2.38 1.60 3.98
New 19 0.13 0.47 0.60 19 0.62 2.01 2.63

method converges uniformly with respect to the problem size. This is due the
improved aggregation algorithm constructed by our parallel aggregation method and
the K-cycle used in the solver phase. We can see that our method is about 3 to 4 times
faster in setup phase, which demonstrate the efficiency of our PAA. In the solver
phase, due to the factor that we use K-cycle, which does much more work on the
coarse grids, our solver phase is a little bit slower than the solver phase implemented
in CUSP. However, the use of a K-cycle yields a uniformly convergent UA-AMG
method, which is an essential property for designing scalable solvers. When the size
of the problem gets larger, we expect the computational time of our AMG method to
scale linearly, whereas the AMG method in CUSP seems to grows faster than linear
and will be slower than our solver phase eventually. Overall, our new AMG solver
is about 1.5 times faster than the smoothed aggregation AMG method in CUSP in
terms of total computational time, and the numerical tests suggest that it converges
uniformly for the Poisson problem.
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27. Krechel, A., Stüben, K.: Parallel algebraic multigrid based on subdomain blocking. Parallel
Comput. 27(8), 1009–1031 (2001)

28. Tuminaro, R.S.: Parallel smoothed aggregation multigrid: aggregation strategies on massively
parallel machines. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing
(CDROM). IEEE, New York (2000)

29. Vassilevski, P.S.: Multilevel Block Factorization Preconditioners. Springer, New York (2008)



Aspects of Guaranteed Error Control in CPDEs

C. Carstensen, C. Merdon, and J. Neumann

Abstract Whenever numerical algorithms are employed for a reliable computa-
tional forecast, they need to allow for an error control in the final quantity of interest.
The discretization error control is of some particular importance in computational
PDEs (CPDEs) where guaranteed upper error bound (GUB) are of vital relevance.
After a quick overview over energy norm error control in second-order elliptic
PDEs, this paper focuses on three particular aspects: first, the variational crimes
from a nonconforming finite element discretization and guaranteed error bounds in
the discrete norm with improved postprocessing of the GUB; second, the reliable
approximation of the discretization error on curved boundaries; and finally, the
reliable bounds of the error with respect to some goal functional, namely, the error
in the approximation of the directional derivative at a given point.

Keywords Guaranteed error control • Equilibration error estimators • Poisson
model problem • Conforming finite element methods • Crouzeix–Raviart noncon-
forming finite element methods • Curved boundaries • Guaranteed goal-oriented
error control

Mathematics Subject Classification (2010): 65N30, 65N15

C. Carstensen (�) • C. Merdon
Humboldt-Universität zu Berlin, Unter den Linden 6,
10099 Berlin, Germany

Department of Computational Science and Engineering,
Yonsei University, 120-749 Seoul, Korea
e-mail: cc@mathematik.hu-berlin.de; merdon@mathematik.hu-berlin.de

J. Neumann
Weierstraß-Institut, Mohrenstr. 39, 10117 Berlin, Germany
e-mail: Johannes.Neumann@wias-berlin.de

O.P. Iliev et al. (eds.), Numerical Solution of Partial Differential Equations: Theory,
Algorithms, and Their Applications, Springer Proceedings in Mathematics & Statistics 45,
DOI 10.1007/978-1-4614-7172-1 6, © Springer Science+Business Media New York 2013

103

mailto:cc@mathematik.hu-berlin.de
mailto:merdon@mathematik.hu-berlin.de
Johannes.Neumann@wias-berlin.de


104 C. Carstensen et al.

1 Introduction

A posteriori finite element error control of second-order elliptic boundary value
problems usually involves residuals of the prototype

Res(v) =
ˆ

Ω
( f v−σh ·∇v)dx for v ∈V := H1

0 (Ω) (1)

with some given Lebesgue integrable function f and the discrete flux σh [10, 16].
Its dual norm with respect to some energy norm ||| · ||| reads

|||Res|||� := sup
v∈V

Res(v)/ |||v|||.

For instance, the Poisson model problem seeks u ∈V with f +Δu = 0 and leads to
the variational formulationˆ

Ω
∇u ·∇vdx =

ˆ
Ω

f vdx for all v ∈V.

In this example, the energy norm reads |||·||| := ‖∇·||L2(Ω), and σh = ∇uh might be
the gradient of the piecewise affine conforming finite element solution uh.

Section 2 summarizes techniques and recent advances from the ongoing com-
putational surveys [4, 11, 13] to compute guaranteed upper bounds for |||Res|||�, or
error majorants in the sense of Repin [22], via the design of some q ∈ H(div,Ω)
such that, by a triangle inequality,

|||Res|||� ≤ ||| f + divq|||�+ |||div(q−σh)|||�.

While ||| f + divq|||� may lead to oscillations or other higher-order terms, the second
term is often estimated suboptimally as |||div(q−σh)|||� ≤ ‖q−σh||L2(Ω). A new
generation of equilibration error estimators is based on

|||div(q−σh)|||� = min
v∈H1(Ω)

‖q−σh−Curlv||L2(Ω)

and the novel postprocessing from [13] improves the efficiency at almost no
extra costs. Section 2 reports on the superiority of those error estimates with an
application to the conforming P1 finite element method for the Poisson model
problem.

Section 3 examines the nonconforming Crouzeix–Raviart approximations uCR

and its discrete flux σh = ∇NCuCR for the Poisson model problem. The Helmholtz
decomposition allows a split of the broken energy error norm into

|||u− uCR|||2NC = |||Res|||2�+ |||ResNC|||2�.

The two residuals Res and ResNC allow an estimation via all known a posteriori error
estimators. Furthermore, the special structure of the nonconforming residual ResNC

allows an alternative analysis by the design of conforming companions of uCR [12].
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In this paper, we also apply the postprocessed equilibration error estimators to the
first residual for even sharper error control beyond [12].

Section 4 extends guaranteed error control to domains with curved boundaries
and exemplifies the modifications for some sector domain.

Section 5 establishes guaranteed goal-oriented error estimation where the error
u− uh between the exact and the discrete P1-FEM solution is not measured in
the energy norm but with respect to some goal functional Q ∈ H1(Ω). Its Riesz
representation solves some dual problem [3,5] that links the error Q(e) to the energy
norms of two perturbed Poisson problems [21]. Lower and upper bounds for those
quantities lead to guaranteed bounds for Q(u− uh).

2 Review of Guaranteed Energy Norm Error Control

This section deals with guaranteed upper bounds for dual norms of residuals by
equilibration error estimators. An application to the P1 conforming finite element
method for the Poisson model problem concludes the section.

2.1 Notation

Consider a regular triangulation T of the simply connected, polygonal, and
bounded Lipschitz domain Ω ⊂R

2 into triangles with edges E , nodes N , boundary
nodes N (∂Ω), and free nodes N (Ω) := N \N (∂Ω). The midpoints of all
edges are denoted by mid(E ) := {mid(E)

∣∣E ∈ E }, and the boundary edges along
∂Ω are denoted by E (∂Ω) := {E ∈ E

∣∣E ⊆ ∂Ω}, while E (Ω) := E \ E (∂Ω)
denotes the set of interior edges. The set T (E) := {T ∈ T

∣∣E ⊂ ∂T} contains
the neighboring triangles of the edge E ∈ E . The open set ωz := {x ∈Ω

∣∣ϕz(x)> 0}
for the nodal basis function ϕz is the interior of

⋃
T (z) for the subtriangulation

T (z) := {T ∈ T
∣∣z ∈ N (T )}. The diameter diam(T ) of a triangle T is denoted

by hT . The red refinement red(T ) of T is a regular triangulation that refines
each triangle T ∈ T into four congruent subtriangles by straight lines through the
midpoints of the three edges. With the set Pk(T ) of elementwise polynomials of
total degree ≤ k, the Raviart–Thomas finite element space of order m reads

RTm(T ) :=
{

q ∈ H(div,Ω)
∣∣∀T ∈T ∃aT ,bT ,cT ∈ Pm(T )

∀x ∈ T, q(x) = aT x+
(
bT ,cT

)}
.

The set C0(Ω) contains continuous functions with zero boundary conditions along
∂Ω .
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2.2 Equilibration Error Estimators

Consider some residual of the form (1) with source function f ∈ L2(Ω) and discrete
flux σh ∈ P0(T ;R2) such that Res(ϕz) = 0 for all z ∈ N (Ω). Equilibration error
estimators design some quantity q ∈ H(div,Ω) such that ||| f + divq|||� is of higher
order and

|||Res|||� ≤ ||| f + divq|||�+ |||div(σh− q)|||�.

Two examples for such a design are given through the Braess equilibration error
estimator [6, 8] and the Luce–Wohlmuth error estimator [13, 18] which solve at
most one-dimensional linear systems of equations around each node z ∈ N and
design some Raviart–Thomas function qB ∈ RT0(T ) or qLW ∈ RT0(T

�) on the
dual triangulation T �.

The dual mesh T � divides every triangle T ∈ T into six subtriangles of same
area by connection of the center mid(T ) with the three vertices and the three edge
midpoints of T . This results in the two guaranteed upper bounds:

ηB := ‖hT ( f − fT )||L2(Ω)/ j1,1 + ‖σh− qB||L2(Ω), (2)

ηLW := ‖hT ( f − f �)||L2(Ω)/ j1,1 + ‖σh− qLW||L2(Ω) (3)

for the piecewise integral mean fT ∈ P0(T ), i.e., fT |T :=
ffl

T f dx for T ∈ T
and f � ∈ P0(T

�) with f �|T � := 3
ffl

T f ϕz dx on the two subtriangles T � ∈ T �(z)
of T ∈T (z). The function f � is our preferred approximation of f in the Luce–
Wohlmuth design [13, 15] that allows this very easy estimation of ||| f − f �|||�. The
number j1,1 is the first positive root of the Bessel function J1 from the Poincaré
constant [17].

Definitions (2)–(3) employ the estimate |||div(σh− q)|||� ≤ ‖σh− q||L2(Ω), which
is suboptimal, because of

|||div(q−σh)|||� = min
γ∈H1(Ω)

‖q−σh−Curlγ||L2(Ω).

The novel postprocessing from [13] designs some piecewise affine γh that is cheap
to compute and leads to sharper estimates. The computation runs some simple PCG
scheme with k iterations on a refined triangulation red(T ) or red2(T ) for ηB and
T � for ηLW. In the numerical examples below, the number of cg iterations of the
postprocessing is added to the label in brackets. Every additional “r” in front of this
number is related to one red refinement. For example, the error estimator ηBrr(3) is
the postprocessed ηB on two red refinements with 3 cg iterations. The case k = ∞
means an exact solve and leads to the best possible γ; further details on the algorithm
are included in [13].
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Fig. 1 History of efficiency indices ηxyz/ |||e||| of the standard and postprocessed Braess and
Luce–Wohlmuth error estimators ηxyz labeled xyz as functions of ndof on uniform meshes in
Sect. 2.3

2.3 Poisson Model Problem with Big Oscillations

The Poisson model problem seeks u ∈ H1
0 (Ω) with f +Δu = 0 for some source

function f ∈ L2(Ω) on the unit square Ω := (0,1)2. The conforming FEM seeks
uh ∈VC := P1(T )∩C0(Ω) with

ˆ
Ω

∇uh ·∇vh dx =
ˆ

Ω
f vh dx for all vh ∈VC.

This leads to the residual (1) with σh = ∇uh and VC ⊆ kerRes. Elementary
calculations, e.g., in [9], reveal that |||Res|||� = |||u− uh||| := ‖∇(u− uh)||L2(Ω).

The remaining parts of this section concern the benchmark problem with an
oscillating source term f :=−Δu that matches the exact solution:

u(x,y) = x(x− 1)y(y− 1)exp(−100(x− 1/2)2− 100(y− 117/1000)2) ∈H1
0 (Ω).

Figures 1 and 2 show the efficiency indices ηxyz/ |||u− uh||| for various GUB ηxyz

after Braess and Luce–Wohlmuth for uniform and adaptive mesh refinement. The
Dörfler marking drives the adaptive mesh refinement with the refinement indicators:

η(T )2 := |T ||‖ f ||2L2(T) + |T ||
1/2 ∑

E∈E (T)

‖[σh]E ·νE ||2L2(E). (4)
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Fig. 2 History of efficiency indices ηxyz/ |||e||| of the standard and postprocessed Braess and
Luce–Wohlmuth error estimators ηxyz labeled xyz in the figure as functions of ndof on adaptive
meshes in Sect. 2.3

On coarse triangulations, the oscillations dominate the guaranteed upper bounds,
and the postprocessing is almost effectless. However, as the number of degrees
of freedom grows and the oscillations decrease, the efficiency improves and the
postprocessing unfolds its full effectivity.

The postprocessing ηBr(1) of ηB based on red(T ) and the postprocessing ηLW(1)
of ηLW based on T � reduce the efficiency indices about 20 % to values between
1.1 and 1.15, respectively. The optimal postprocessing with k = ∞ shows only very
little further improvement over the postprocessing with k = 1. The postprocessing
ηBrr(3) of ηB based on two red refinements red2(T ) and k = 3 iterations even leads
to striking efficiency indices of about 1.05.

Similar treatment is possible for conforming obstacle problems [14].

3 Guaranteed Error Control for CR-NCFEM

This section develops sharp guaranteed upper bounds for the broken energy norm

|||u− uCR|||2NC := ∑
T∈T

‖∇(u− uCR)||2L2(T )

for the error between the exact solution u and the Crouzeix–Raviart nonconforming
FEM (CR-NCFEM) solution uCR.
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3.1 Main Result

The CR-NCFEM employs the Crouzeix–Raviart functions:

CR1(T ) := {v ∈ P1(T )
∣∣v is continuous at mid(E )},

CR1
0(T ) := {v ∈ CR1(T )

∣∣∀E ∈ E (∂Ω), v(mid(E)) = 0}.

The nonconforming finite element approximation uCR ∈ CR1
0(T ) for the Poisson

model problem with its piecewise gradient ∇NCuCR satisfies

ˆ
Ω

∇NCuCR∇NCvCRdx =
ˆ

Ω
f vCR dx for all vCR ∈ CR1

0(T ).

The main result from [12] for the 2D case with a simply connected domain Ω and
homogeneous Dirichlet boundary conditions requires the Helmholtz decomposition
of ∇NC(u− uCR) = ∇α + curlβ for α ∈ H1

0 (Ω) and β ∈ H1(Ω). It follows

|||u− uCR|||2NC = |||α|||2 + ‖curlβ ||2L2(Ω)
= |||Res|||2�+ |||ResNC|||2�

with the residuals

Res(v) :=
ˆ

Ω
f vdx−

ˆ
Ω

∇NCuCR ·∇vdx for v ∈ H1
0 (Ω),

ResNC(v) :=−
ˆ

Ω
curlNC uCR ·∇vdx for v ∈H1(Ω).

The dual norm of the second residual allows the alternative characterization

|||ResNC|||� = min
v∈V

|||uCR− v|||NC ≤ |||u− uCR|||NC. (5)

3.2 Guaranteed Upper Bounds for |||Res|||�

The dual norm of the first residual is controlled [1, 12] by the explicit bound

|||Res|||2� ≤ η2 := ∑
T∈T

(
hT

j1,1
‖ f − fT ||L2(T ) +

fT

2
‖•−mid(T )||L2(T )

)2

. (6)

Here, mid(T ) denotes the triangle center of T ∈ T , and the quantity osc( f ,T ) :=
‖hT ( f − fT )||L2(Ω) denotes the oscillations of f . Since VC ⊆ kerRes, |||Res|||� can
also be estimated by any other guaranteed error estimator [10], e.g., the equilibration
error estimators from Sect. 2.
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Table 1 Guaranteed upper bounds for |||Res|||� by η and the equilibration error estimators ηB,
ηLW, and some of their postprocessings for uniform mesh refinements in the example of Sect. 3.2

ndof 8 40 176 736 3008 12160 48896

|||u−uCR|||NC 0.0583 0.0527 0.0287 0.0198 0.0103 0.00517 0.00259
osc( f ) 0.223 0.0952 0.0391 0.00938 0.00243 0.000613 0.000154
η 0.233 0.112 0.0521 0.0190 0.00769 0.00336 0.00156
B 0.253 0.140 0.0672 0.0219 0.00835 0.00352 0.00160
LW 0.230 0.116 0.0490 0.0178 0.00737 0.00328 0.00154
Br(1) 0.249 0.133 0.0657 0.0210 0.00796 0.00333 0.00151
Br(∞) 0.248 0.131 0.0654 0.0210 0.00795 0.00333 0.00151
LW(1) 0.229 0.113 0.0477 0.0172 0.00705 0.00312 0.00146
LW(∞) 0.228 0.112 0.0474 0.0172 0.00704 0.00312 0.00146
Brr(3) 0.247 0.128 0.0645 0.0206 0.00782 0.00327 0.00148

The oscillations osc( f ) are displayed to show its declining influence to η

The numerical example from Sect. 2.3 allows for a comparison of the per-
formance of η with that of the Braess and the Luce–Wohlmuth error estimator
from Sect. 2 for the estimation of |||Res|||�. Table 1 shows that there is only small
improvement of up to 8 % possible compared to η by ηLW(1); the estimator ηB

is even worse than η . This led to the decision in [12] to employ only η for the
estimation of |||Res|||� in the error control for the nonconforming FEM for the
Poisson problem. It seems more favorable to spend effort in the sharp estimation
of |||ResNC|||�.

3.3 Guaranteed Upper Bounds for |||ResNC|||�

Since ResNC(ϕz) = 0 for all z ∈N , any equilibration error estimator from Sect. 2
is applicable (with σh = curluCR and f ≡ 0 in (1)) and leads, e.g., via qxyz = qB or
qLW, to the upper bounds

|||ResNC|||� ≤
∣∣|curluCR− qxyz

∣∣|L2(Ω) =: μxyz.

The second characterization (5) of |||ResNC|||� allows an upper bound for |||ResNC|||�
by the design of conforming functions vxyz ∈V such that

|||ResNC|||� ≤
∣∣||uCR− vxyz

∣∣||NC =: μxyz.

Since qxyz := curlvxyz ∈ H(div,Ω), those can also be seen as equilibration error
estimators and allow the postprocessing of Sect. 2.2. Three designs for some vxyz

from [1, 12] are repeated in the sequel.
Ainsworth [1] designs some piecewise linear vA ∈ P1(T )∩C0(Ω) by averaging

on node patches T (z) := {T ∈T
∣∣z ∈ T},
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vA(z) :=

{
0 if z ∈N \N (Ω),(
∑T∈T (z) uCR|T (z)

)
/ ||T (z)|| if z ∈N (Ω).

The averaging of the auxiliary function from [2, 7, 23]

v0 := uCR− fT ψ/2 ∈ P2(T ),

where ψ(x) := ||x−mid(T )||2/2−
ffl

T ||y−mid(T )||2 dy for x ∈ T ∈ T , leads to
vAP2 ∈ P2(T )∩C0(Ω) via

vAP2(z) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if z ∈N (∂Ω)∪mid(E (∂Ω)),(
∑T∈T (z) v0|T (z)

)
/ ||T (z)|| if z ∈N (Ω),(

∑T∈T (E) v0|T (z)
)
/ ||T (E)|| if z = mid(E),E ∈ E (Ω).

The novel design from [12] employs the red-refined triangulation and defines
vRED(z) ∈ P1(red(T ))∩C0(Ω) via

vRED(z) :=

⎧⎪⎪⎨
⎪⎪⎩

uCR(z) for z ∈mid(E (Ω)),

0 for z ∈N (∂Ω)∪mid(E (∂Ω)),

vz for z ∈N (Ω).

The values vz for z ∈ N (Ω) may be chosen by an averaging as above or by
patchwise minimization as in [12]; this leads to the two averagings vARED and
vPMRED.

3.4 Numerical Experiment with Big Oscillations

This section concludes with the revisit of the example of Sect. 2.3 for the CR-
NCFEM. Figures 3 and 4 display the efficiency indices ηxyz/ |||e||| for all error
estimators of Sect. 3.3. Under the label B and LW, both residuals were estimated
with the same error estimator, i.e., |||u− uCR|||NC is bound by ηB + μB and ηLW +
μLW, respectively. The error estimators based on conforming interpolations xyz ∈
{A,AP2,ARED,PMRED} involve |||Res|||� ≤ η and hence bound |||u− uCR|||NC

by η + μxyz. The same holds for their postprocessings. Notice that r(3) applied to
ARED or PMRED means altogether two red refinements.

The energy error is estimated very effectively with efficiency indices between 1.5
for unpostprocessed estimators like ηB and ηA and about 1.05 for the postprocessed
estimators ηBrr(3) or ηArr(3).
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Fig. 3 History of efficiency indices ηxyz/ |||e||| of various error estimators ηxyz labeled xyz as
functions of ndof on uniform meshes in Sect. 3
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Fig. 4 History of efficiency indices ηxyz/ |||e||| of various error estimators ηxyz labeled xyz in the
figure as functions of ndof on adaptive meshes in Sect. 3

4 Guaranteed Error Control for Curved Boundaries

Particular attention requires the inexact approximation of the geometry by the
polygonal boundary of a triangulation into triangles. This section is devoted to an
example for a convex boundary where there is no real need of curved finite elements.
The benchmark problem on the sector domain
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Fig. 5 Triangulation T (left, solid lines) and extended triangulation T̂ (right, solid lines) with⋃
T ⊆ Ω ⊆⋃ T̂ for the sector domain Ω (dashed lines) from Sect. 4

Ω =
{

x = (r cosϕ ,r sinϕ)
∣∣0 < ϕ < 3π/2, 0 < r < 1

}

from [1] employs the exact solution u(r,ϕ) = (r2/3− r2)sin(2ϕ/3) with a typical
corner singularity at the reentrant corner.

Since the domain is not matched exactly,
⋃

T ⊂Ω requires extra considerations
for uh extended by zero outside of

⋃
T such that uh ∈ H1

0 (Ω). The reflection of
boundary triangles of Fig. 5 yields an extended triangulation T̂ with Ω ⊂ ⋃T̂
where the extended source function f (ϕ) = 32sin(2ϕ/3)/9 is well defined. The
new triangles involve only Dirichlet nodes and allow the Braess or Luce–Wohlmuth
design of an equilibration qB or qLW from Sect. 2.2 on the extended triangulation,
possibly with a postprocessing γh ∈ H1(

⋃
T̂ ). This results in

|||Res|||� ≤
∣∣|hT̂ ( f + div q̂)

∣∣|L2(
⋃

T̂ )/ j1,1 + ||q̂−σh−Curlγh||L2(Ω).

The integration of q̂−σh−Curlγh over the non-polygonal domain Ω separates into
an exact integration over triangles in T and an integration over intersections T ∩Ω
of triangles T ∈ T̂ \T . The latter integration employs polar coordinates and Gauss
quadrature with at least 100 quadrature points.

To consider also the domain approximation error in the adaptive refinement, the
refinement indicators (4) are replaced by

η(T )2 + 2width(T̂ ∩Ω)/π || f ||L2(T̂∩Ω) for T ∈ T with a reflection T̂ ∈ T̂ \T .

Additionally, modified refinement routines shift the midpoints of all bisected edges
along the curved boundary onto the unit circle. For simplicity, the postprocessing
of Sect. 2.2 is only applied to vertices z ∈ N with ω̂z ⊆ Ω where ω̂z is the patch
with respect to the extended triangulation T̂ . Undocumented experiments show to
us that otherwise the efficiency becomes worse.

The oscillations in this example are not as large as in the square example from
Sect. 2.3, but the conclusions appear similar. Figure 6 displays the efficiency indices
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Fig. 6 History of efficiency indices ηxyz/ |||e||| of the standard and postprocessed Braess and
Luce–Wohlmuth error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on uniform (solid lines) and adaptive (dashed lines) meshes for the sector example
of Sect. 4

of the two error estimators ηLW and ηB. The postprocessed equilibration error
estimator ηLW(1) or ηBrr(3) permits efficiency indices around 1.2, while ηBr(1) leads
to 1.3 for adaptive mesh refinement. Due to the simple extension of the solution
from T to T̂ , there is a large refinement along the circular boundary edges, but the
efficiency is almost as good as in the other examples. As a result, even for curved
boundaries, reliable error control is possible and accurate.

For the nonconforming solution uCR, a similar treatment is possible ( cf. [12] for
details).

5 Guaranteed Goal-Oriented Error Estimation

This section is devoted to guaranteed error control with respect to some functional
like the derivative −∂/∂x1δx0 evaluated at a point x0 = (π/7,49/100). Section 5.1
describes a way to recast that problem into a computable term plus a linear and
bounded goal functional Q ∈ H−1(Ω) which in Sect. 5.2 is controlled via the
parallelogram identity in terms of energy error estimates. Figure 7 displays the
numerical results for a benchmark with an overestimation by a guaranteed bound
by just one order of magnitude.



Aspects of Guaranteed Error Control in CPDEs 115

101 102 103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

ηC

|Q(u−uh)|

||u−uh||

|η+
A − η−

A|/2

Fig. 7 Convergence history of the error ||Q(u−uh)||,
∣∣|η+

A −η−
A

∣∣|/2, ηC, and ||u−uh||L2(Ω)

5.1 Reduction to L2 Functionals

Given some fixed point x0 in the domain Ω = (0,1)2, this section aims at guaranteed
error bounds of the x1 derivative ∂u(x0)/∂x1. This point value −∂δx0/∂x1 is not
well defined for any Sobolev function. This subsection discusses a split of

∂δu(x0)/∂x1 = Q(u)+M( f )

in a bounded functional Q(u) and an unbounded functional M( f ) independent of
u [19] that can be computed beforehand. The fundamental solution of the Laplace
operator Δ in 2D is logr/2π in polar coordinates (r,φ) at x0, in symbolic notation
2π∂δx0 = Δ logr. The derivative −2π∂δx0/∂x1 = Δ cosφ/r leads to the formula
(recall x = x0 + r(cosφ ,sin φ))

2π
∂v(x0)

∂x1
=

ˆ
Ω
(cosφ/r)Δv(x)dx for all v ∈D(Ω). (7)

This identity is the clue to cast the point derivative of the solution of the Laplace
equation as a function of the right-hand side f ∈ L2(Ω) ∩ Lp(U) for some
neighborhood U of x0 and some p > 2. By local elliptic regularity, u is C1 in a
neighborhood of x0 and Δv=− f allows for f/r ∈ L1(U). Hence, formula (7) makes
sense for the exact solution u. The boundary conditions, however, do not allow to
utilize the formula directly for v = u in (7) and so involve some cutoff function χ ,
which is identically one in some neighborhood of x0 and vanishes outside U .
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In the example of this section, the spline function η of order 6 on the interval
(0.1,0.45) with natural boundary conditions has been evaluated with MATLAB by

spapi(6,[0.1*ones(1,5),0.275,0.45*ones(1,5)],[zeros(1,5),1,zeros(1,5)])

to define

1− χ(r,φ) :=

´ r
0 η(s)ds´ 1
0 η(s)ds

for 0 < r < 1.

With v := χu in (7), Δu = f in some neighborhood of x0 where r = 0 is some
singularity in the volume integral. The product rule Δv = χ f + 2∇χ ·∇u+ uΔ χ
shows that

∂u(x0)

∂x1
=

ˆ
Ω

cosφ
2πr

χ(x) f (x)dx+Q(u). (8)

The point is that the linear functional Q(u) involves smooth functions like ∇χ/r
(which vanishes near x0) as well as u and its derivative ∇u and hence is linear,
bounded, and Q ∈ H−1(Ω). Indeed, some further integration by parts reveals that

Q(u) =
ˆ

Ω
g(x)u(x)dx for g(x) :=−∇χ(x) ·∇(

cosφ
πr

)− cosφ
2πr

Δ χ . (9)

Recall that χ ≡ 1 in a neighborhood of r = 0, and so g∈ L2(Ω) is smooth. Since the
first integral on the right-hand side of (8) is known and computable, the computation
of the unbounded functional−∂δx0/∂x1 is reduced to that of the bounded functional
Q of the following subsection.

5.2 Guaranteed Bounds for Goal Functionals

Given some L2 function g and the goal functional Q from (9), the estimation of
Q(u− uh) is driven by g ∈ L2(Ω) as the right-hand side, the exact solution z, and
the discrete solution zh of the adjoint problem [3,5]. Then, the parallelogram identity
for any α �= 0 yields

Q(u− uh) =
1
4

∣∣∣∣||α(u− uh)+
z− zh

α

∣∣∣∣||2− 1
4

∣∣∣∣||α(u− uh)−
z− zh

α

∣∣∣∣||2. (10)

As in [21], upper and lower bounds for the energy norm terms imply correspond-
ing bounds for the error Q(u− uh). Note that lower bounds can be designed from
upper bounds and vice versa with the hyper circle identity
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||p− pRT||2L2(Ω) + ||p−∇uh||2L2(Ω) = ||pRT−∇uh||2L2(Ω) + 2(u− uh, f − fT )

for the Raviart–Thomas solution pRT ∈ RT0(T ) [6, 20]. The upper bound

||p− pRT||2L2(Ω) ≤
osc2( f ,T )

j2
1,1

+ dist2
(

pRT,∇H1
0 (Ω)

)

employs the Helmholtz decomposition p− pRT = ∇α +Curlβ with ∇α ⊥ Curlβ
and the Poincaré constant from Sect. 2.2. Any v ∈ H1

0 (Ω) satisfies

||p− pRT||2L2(Ω) = |||α|||2 + |||β |||2 = (∇α, p− pRT)+ (Curlβ , p− pRT)

=−(α,div p− div pRT)+ (Curlβ ,∇v− pRT)

= (α−αT , f − fT )+ (Curlβ ,∇v− pRT)

≤ |||α|||osc( f ,T )

j1,1
+ |||β |||dist

(
pRT,∇H1

0 (Ω)
)

≤
(

osc2( f ,T )

j1,1
+ dist2

(
pRT,∇H1

0 (Ω)
))1/2 (

|||α|||2 + |||β |||2
)1/2

.

The upper bound |||u− uh||| ≤ osc( f ,T )/ j1,1 + |||uM− uh||| incorporates a function
uM similar to v0 from Sect. 3.3, but here uCR is the CR solution for the right-hand
side fT to ensure ∇NCuM = pRT [23]. This leads to

|||u− uh|||= sup
|||v|||=1

(F(v)− a(uh,v)) = sup
|||v|||=1

(( f − div pRT,v)+ (pRT−∇uh,∇v))

≤ osc( f ,T )

j1,1
+ sup
|||v|||=1

(∇v,∇NCuM −∇uh).

With the convention scheme u+ = αu+ z/α , u− = αu− z/α , f+ = α f +g/α , and
f− = α f − g/α , those bounds imply guaranteed upper and lower bounds for (10).
As in Sect. 3.3, an averaging of uM results in a continuous P2(T ) function uA which
gives an upper bound for dist

(
pRT,∇H1

0 (Ω)
)
. Altogether, this leads to guaranteed

upper and lower bounds for Q(u− uh):

η+
A =

1
4

((
osc( f+,T )

j1,1
+
∣∣||u+M− u+h

∣∣||
)2

−
∣∣|p−RT−∇u−h

∣∣|2L2(Ω) +
3osc2( f−,T )

2 j2
1,1

+
∣∣|p−RT−∇uA

∣∣|L2(Ω) + 2
∣∣||u−M− u−h

∣∣||osc( f−,T )

j1,1

)
,
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η−
A =

1
4

(∣∣|p+RT−∇u+h
∣∣|2L2(Ω)−

3osc2( f+,T )

2 j2
1,1

−
∣∣|p+RT−∇uA

∣∣|L2(Ω)

− 2
∣∣||u+M − u+h

∣∣||osc( f+,T )

j1,1
−
(

osc( f−,T )

j1,1
+
∣∣||u−M − u−h

∣∣||
)2
)
.

Elementary calculations show that αA := (|||zM − zh|||/ |||uM − uh|||)1/2 is the optimal
choice for the parameter α . The same bounds yield an upper bound ηC for the
Cauchy inequality ||Q(u− uh)|| ≤ |||u− uh||| |||z− zh||| ≤ ηC.

5.3 Benchmark Example

The function f=2x−2x2+2y−2y2 with the analytical solution u=x(1−x)y(1−y)
and the reduction from Sect. 5.1 leads to some smooth known function g. Standard
quadrature resolves the unbounded functional, and adaptive goal-oriented FEM han-
dles the bounded functional Q. The adaptive mesh-refinement algorithm employs
the refinement rules from [19]. They employ Dörfler marking separately for the
primal and the dual problem and choose the smaller set of marked edges for the
final mesh refinement.

Figure 7 displays the error ||Q(u− uh)||, ηC, the guaranteed error bound∣∣|η+
A −η−

A

∣∣|/2 for
∣∣|Q(u− uh)− (η+

A +η−
A )/2

∣∣|, and the L2 norm of the error u−uh

in the primal problem. The a posteriori error control of the L2 error ||u− uh||L2(Ω) in
the primal problem is possible in this example on a convex domain but significantly
harder for nonconvex polygons. In the general case, the duality argument requires
the precise values for the reduced elliptic regularity to deduce guaranteed error
bounds.
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A Finite Volume Element Method
for a Nonlinear Parabolic Problem

P. Chatzipantelidis and V. Ginting

Abstract We study a finite volume element discretization of a nonlinear parabolic
equation in a convex polygonal domain. We show the existence of the discrete
solution and derive error estimates in L2- and H1-norms. We also consider a
linearized method and provide numerical results to illustrate our theoretical findings.

Keywords Nonlinear parabolic problem • Finite volume element method • Error
estimates
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1 Introduction

We consider the nonlinear parabolic problem for t ∈ [0,T ], T > 0,

ut −∇ · (A(u)∇u) = f , in Ω , u = 0, on ∂Ω , with u(0) = u0, in Ω , (1)

where Ω is a bounded convex polygonal domain in R
2 and A(v)= diag(a1(v),a2(v)),

a strictly positive definite and bounded real-valued matrix function, such that there
exists β > 0.
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|x�A′(y)x| ≤ β x�x, ∀y ∈ R, ∀x ∈R
2. (2)

Further, we assume that A′ is Lipschitz continuous, i.e., ∃L > 0

|a′i(y)− a′i(ỹ)| ≤ L|y− ỹ|, ∀y, ỹ ∈ R, i = 1,2, (3)

and that there exists a sufficiently smooth unique solution u of (1).
Questions about the existence and regularity of solutions for (1) have been

intensively investigated, for example, in [7, Chap. 5]. Nonlinear parabolic problems
such as (1) occur in many applied fields. To name a few, in the chemotaxis model,
see Keller and Segel [6]; in groundwater hydrology, see L.A. Richards [10]; and
in modeling and simulation of oil recovery techniques in the presence of capillary
pressure, see [3].

We shall study fully discrete approximations of (1) by the finite volume element
method (FVEM). The FVEM, which is also called finite volume method or
covolume method in some literatures, is a class of important numerical methods
for solving differential equations, especially those arising from conservation laws
including mass, momentum, and energy, because this method possesses local
conservation property, which is crucial in many applications. It is popular in compu-
tational fluid mechanics, groundwater hydrology, reservoir simulations, and others.
Many researchers have studied this method for linear and nonlinear problems. We
refer to the monographs [5, 9] for the general presentation of this method and
references therein for details.

The approximate solution will be sought in the space of piecewise linear
functions

Xh = {χ ∈ C : χ |K linear, ∀K ∈ Th; χ |∂Ω = 0},

where Th is a family of quasiuniform triangulations Th = {K} of Ω , with h denoting
the maximum diameter of the triangles K ∈Th and C= C(Ω) the space of continuous
functions on Ω̄ .

The FVEM is based on a local conservation property associated with the
differential equation. Namely, integrating (1) over any region V ⊂ Ω and using
Green’s formula we obtain for t ∈ [0,T ]

ˆ
V

ut dx−
ˆ

∂V
(A(u)∇u) ·ndσ =

ˆ
V

f dx, (4)

where n denotes the unit exterior normal vector to ∂V . The semidiscrete FVEM
approximation uh(t) ∈ Xh will satisfy (4) for V in a finite collection of subregions
of Ω called control volumes, the number of which will be equal to the dimension
of the finite element space Xh. These control volumes are constructed in the
following way. Let zK be the barycenter of K ∈ Th. We connect zK with line
segments to the midpoints of the edges of K, thus partitioning K into three
quadrilaterals Kz, z ∈ Zh(K), where Zh(K) are the vertices of K. Then with each
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Vz

z

z

Kz

zK

K

Fig. 1 Left: a union of triangles that have a common vertex z; the dotted line shows the boundary
of the corresponding control volume Vz . Right: a triangle K partitioned into the three subregions Kz

vertex z ∈ Zh = ∪K∈ThZh(K) we associate a control volume Vz, which consists of
the union of the subregions Kz, sharing the vertex z (see Fig. 1). We denote the
set of interior vertices of Zh by Z0

h . The semidiscrete FVEM for (1) is then to find
uh(t) ∈ Xh, for t ∈ [0,T ], such that

ˆ
Vz

uh,t dx−
ˆ

∂Vz

(A(uh)∇uh) ·nds =
ˆ

Vz

f dx, ∀z ∈ Z0
h , (5)

with uh(0) = u0
h, where u0

h ∈ Xh is a given approximation of u0. Note that different
choices for zK , e.g., the circumcenter of K, lead to other methods than the one
considered here; see [8, 12].

In our analysis of the FVEM we use existing results associated with the finite
element method approximation ũh(t) ∈ Xh of u(t), defined by

(ũh,t ,χ)+ a(ũh; ũh,χ) = ( f ,χ), ∀χ ∈ Xh, for t > 0, (6)

with ( f ,g) =
´

Ω f gdx, a(w;v,g) = (A(w)∇v,∇g) and ‖w‖ = (w,w)1/2 the norm
in L2 = L2(Ω). Further let H1

0 = H1
0 (Ω) be the standard Sobolev space with zero

boundary conditions. Thus, in order to rewrite (5) in a weak formulation, we
introduce the finite dimensional space of piecewise constant functions

Yh = {η ∈ L2 : η |Vz = constant, ∀z ∈ Z0
h ; η |Vz = 0, ∀z ∈ Zh \Z0

h}.

We now multiply (5) by η(z) for an arbitrary η ∈ Yh and sum over all z ∈ Z0
h to

obtain the Petrov–Galerkin formulation for t ∈ [0,T ]

(uh,t ,η)+ ah(uh;uh,η) = ( f ,η), ∀η ∈ Yh, with uh(0) = u0
h, (7)
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where ah(·; ·, ·) : Xh×Xh×Yh →R is defined by

ah(w;v,η) =− ∑
z∈Z0

h

η(z)
ˆ

∂Vz

(A(w)∇v) ·ndσ , ∀v,w ∈ Xh, η ∈ Yh. (8)

We shall now rewrite the Petrov–Galerkin method (7) as a Galerkin method in Xh.
For this purpose, we introduce the interpolation operator Jh : C �→ Yh by

Jhw = ∑
z∈Z0

h

w(z)Ψz,

whereΨz is the characteristic function of the control volume Vz. It is known that Jh is
self-adjoint and positive definite (see [4]), and hence the following defines an inner
product 〈·, ·〉 on Xh:

〈χ ,ψ〉= (χ ,Jhψ), ∀χ ,ψ ∈ Xh. (9)

Further, in [4] it is shown that the corresponding norm is equivalent to the L2norm,
uniformly in h, i.e., with C ≥ c > 0,

c‖χ‖ ≤ |||χ ||| ≤C‖χ‖, ∀χ ∈ Xh, where |||χ ||| ≡ 〈χ ,χ〉1/2.

With this notation, (7) may equivalently be written in Galerkin form as

〈uh,t ,χ〉+ ah(uh;uh,Jhχ) = ( f ,Jhχ), ∀χ ∈ Xh, for t ≥ 0. (10)

Then let N ∈ N, N ≥ 1, k = T/N, and tn = nk, n = 0, . . . ,N. Discretizing in time
(10), with the backward Euler method, we approximate u(tn) by Un ∈ Xh, for
n = 1, . . . ,N, such that

〈∂̄Un,χ〉+ ah(U
n;Un,Jhχ) = ( f n,Jhχ), ∀χ ∈ Xh, with U0 = u0

h, (11)

where ∂̄Un = (Un−Un−1)/k and f n = f (tn).
To show the existence of the semidiscrete solution ũh of the finite element method

(6), one can employ Brouwer’s fixed point theorem and the coercivity property of
a(·; ·, ·):

a(w; χ ,χ)≥ α‖∇χ‖2, ∀χ ∈ Xh, ∀w ∈ L2 (12)

(see [11]). However, the corresponding coercivity property for ah(·; ·, ·),

ah(w; χ ,Jhχ)≥ α̃‖∇χ‖2, ∀χ ∈ Xh, (13)

holds for ‖∇w‖L∞ in a bounded ball, where ‖w‖L∞ = supx∈Ω |w(x)|. For this reason,
we will employ a different argument than the one in [11] to show the existence
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of Un. It is known that for fixed w, in general, the bilinear form ah(w;ψ ,Jhχ)
is nonsymmetric on Sh, but (for a linear problem) it is not far from being
symmetric, or |ah(χ ,Jhψ)− ah(ψ ,Jhχ)| ≤ Ch‖∇χ‖‖∇ψ‖, cf. [4]. Note that if zK

is the circumcenter of K, it is shown in [8] that (13) is satisfied for w ∈ L2, and thus,
one may show the existence of the solution of the finite volume method analogously
to the one for the finite element method. We show the existence and uniqueness
of the solution Un of (11) and derive error estimates in L2- and H1-norms; see
Theorems 3.1 and 4.1. Recently in [12], a two-grid FVEM was considered, for
circumcenter-based control volumes, with suboptimal estimates in L2- and H1-
norms.

Our analysis follows the corresponding one for the FVEM nonlinear elliptic and
linear parabolic problems in [1, 2]. This is based in bounds for the error functionals
εh(·, ·) defined by

εh( f ,χ) = ( f ,Jhχ)− ( f ,χ), ∀ f ∈ L2, χ ∈ Xh, (14)

and εa(·; ·, ·) defined by

εa(w;vh,χ) = ah(w;vh,Jhχ)− a(w;vh,χ) ∀vh,χ ∈ Xh, w ∈ L2. (15)

Following [11], we introduce the projection Rh : H1
0 →Xh defined by

a(v;Rhv,χ) = a(v;v,χ), ∀χ ∈ Xh. (16)

In [11] optimal order error estimates in L2- and H1-norms were established for
the difference Rhu(t)−u(t). Here we combine these error estimates with bounds for
the difference ϑ n =Un−Rhun, which satisfies

〈∂̄ϑ n,χ〉+ ah(U
n;ϑ n,Jhχ) = δ (tn;Un,χ), for χ ∈ Xh, (17)

with
δ (tn;v,χ)≡−(ωn,Jhχ)− εh( f n− un

t ,χ)+ εa(v;Rhun,χ)

+ ((A(un)−A(v))∇Rhun,∇χ)≡
4

∑
j=1

I j,
(18)

and ωn = (Rh− I)∂̄un +(∂̄un− un
t ). Further we analyze a linearized fully discrete

scheme and provide numerical examples to illustrate our results.
The rest of the paper is organized as follows. In Sect. 2 we recall known results

and derive error bounds for the error functional δ . In Sect. 3 we derive error
estimates and in Sect. 4 existence of the nonlinear fully discrete method. In Sect. 5
we consider a linearized version of the backward Euler scheme, and finally in Sect. 6
we present our numerical examples.
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2 Preliminaries

In this section we recall known results about the projection Rh defined by (16) and
the error functionals εh and εa introduced in (14) and (15). We also derive bounds
for the error functional δ defined in (18).

We consider quasiuniform triangulations Th for which the following inverse
inequalities hold (see, e.g., [11]):

‖∇χ‖ ≤Ch−1‖χ‖, and ‖∇χ‖L∞ ≤Ch−1‖∇χ‖, for χ ∈ Xh. (19)

In such meshes, it is shown in [11, Lemma 13.2] that there exists M0 > 0,
independent of h, such that

‖∇u(t)‖L∞ + ‖∇Rhu(t)‖L∞ ≤M0, for t ≤ T, (20)

and the following error estimates for Rhu− u.

Lemma 2.1. With Rh defined by (16) and ρ = Rhu − u, we have under the
appropriate regularity assumptions on u, with Cu > 0 independent of t,

‖∇sD�
t ρ(t)‖ ≤Cuh2−s, 0 < t ≤ T, and s, � = 0,1, where Dt = ∂/∂ t.

Our analysis is based on error estimates for the difference ϑ n =Un−Rhun. Thus,
in view of the error equation (17) for ϑ n, we recall necessary bounds for the error
functionals εh and εa derived in [1, 2].

Lemma 2.2. For the error functional εh, defined by (14), we have

|εh( f ,χ)| ≤Ch2‖∇ f‖‖∇χ‖, ∀ f ∈ H1, χ ∈ Xh.

To this end, for M = max(2M0,1), we consider

BM = {χ ∈ Xh : ‖∇χ‖L∞ ≤M}.

Lemma 2.3. For the error functional εa, defined in (15), we have

|εa(wh;vh,χ)| ≤Ch‖∇wh ·∇vh‖‖∇χ‖, ∀wh,vh,χ ∈ Xh. (21)

Further, if u is the solution of (1), then for v ∈ BM,

|εa(v;Rhu(t),χ)| ≤Ch2‖∇χ‖. (22)

Proof. The first bound is shown in [1, Lemma 2.3]. The second bound is a direct
result of Lemma 2.1, [1, Lemma 2.4], and the fact that v ∈ BM .  !
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Then, in view of Lemma 2.3 there exists a constant c > 0 such that for h sufficiently
small, the coercivity property (13) for ah holds for w ∈ BM. Further, in [1] we
showed the following “Lipschitz”-type estimation for εa.

Lemma 2.4. For the error functional εa, defined in (15), there exists a constant C,
independent of h, such that for χ ,ψ ∈ Xh

|εa(v;ψ ,χ)− εa(w;ψ ,χ)| ≤Ch‖∇ψ‖L∞
(1+ ‖∇w‖L∞

)‖∇(v−w)‖‖∇χ‖.

Finally, we show appropriate bounds for the functional δ , defined by (18).

Lemma 2.5. For δ defined by (18), we have for χ ∈ Xh and v ∈ BM

|δ (tn;v,χ)| ≤C(k+ h2)‖χ‖+Ch2‖∇χ‖+
{

C‖v−Rhun‖‖∇χ‖
C‖∇(v−Rhun)‖‖χ‖.

Proof. Using the splitting in (18) we bound each of the terms I j, j = 1, . . . ,4. Recall
that ωn = (Rh− I)∂̄un +(∂̄un− un

t ); then in view of Lemma 2.1, we have

‖ωn‖ ≤Ck−1
ˆ tn

tn−1
‖ρt‖ds+C

ˆ tn

tn−1
‖utt‖ds≤C(k+ h2), (23)

and hence

|I1| ≤C(k+ h2)‖χ‖. (24)

To bound I2 + I3, we use Lemma 2.2 and (22) to get

|I2 + I3| ≤Ch2‖∇χ‖. (25)

Finally, employing (2) and (20) and adding and subtracting Rhun and using
Lemma 2.1, we get

|I4|= |((A(un)−A(v))∇Rhun,∇χ)| ≤C‖v− un‖‖∇χ‖

≤Ch2‖∇χ‖+C‖v−Rhun‖‖∇χ‖.
(26)

Combining now (24)–(26) we get the first one of the desired bounds. To show the
second estimate of this lemma, we bound I4 differently. Using integration by parts,
we rewrite I4 as

I4 = ((A(un)−A(Rhun))∇Rhun,∇χ)+ ((A(Rhun)−A(v))∇Rhun,∇χ)

= ((A(un)−A(Rhun))∇Rhun,∇χ)+ (div [(A(Rhun)−A(v))∇Rhun],χ)

= Ii
4 + Iii

4 .
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Then, in view of (2), Lemma 2.1, and (20), we have

|Ii
4| ≤Ch2‖∇χ‖. (27)

Further, employing (2), (3), and (20), we obtain

|Iii
4 | ≤C(‖(A′(Rhun)−A′(v))∇Rhun‖+ ‖A′(v)∇(Rhun− v)‖)‖χ‖

≤C(‖v−Rhun‖+ ‖∇(v−Rhun)‖)‖χ‖.
(28)

Therefore combining (27) and (28), we have

|I4| ≤C‖∇(v−Rhun)‖‖χ‖+Ch2‖∇χ‖. (29)

Thus, combining (24), (25), (29), and (26), we obtain the second of the desired
estimates of the lemma.  !

3 Error Estimates for the Backward Euler Method

In this section we derive error estimates for the FVEM (11) in L2- and H1-norms,
under the assumption that U j ∈ BM, for j = 0, . . . ,n. In Sect. 4 we will show the
existence of Un ∈ BM.

Theorem 3.1. Let Un and u be the solutions of (11) and (1), with U0 = Rhu0. If
U j ∈ BM, for j = 0, . . . ,n, n ≥ 1, and k, h be sufficiently small, then there exist
C > 0, independent of k and h, such that

‖∇s(Un− un)‖ ≤C(k+ k−s/2h2−s), for s = 0,1. (30)

Proof. Using the error splitting Un − un = (Un −Rhun)+ (Rhun− un) = ϑ n + ρn

and Lemma 2.1, it suffices to show

‖∇sϑ n‖ ≤Cs(k+ k−s/2h2−s), for s = 0,1. (31)

We start with the estimation of ‖ϑ n‖. Due to the symmetry of 〈χ ,ψ〉, we have
the following identity:

〈∂̄ ϑ n,ϑ n〉= 1
2k

(|||ϑ n|||2−|||ϑ n−1|||2)+ 1
2k
|||ϑ n−ϑ n−1|||2. (32)

Choosing χ = ϑ n in (17) and using the fact that Un ∈ BM, (13), and (32), we get
after eliminating |||ϑ n−ϑ n−1|||

1
2k

(|||ϑ n|||2−|||ϑ n−1|||2)+ α̃‖∇ϑ n‖2 ≤ δ (tn;Un,ϑ n). (33)
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Employing now the first estimate of Lemma 2.5, with v =Un and χ = ϑ n, to bound
the right-hand side of (33), we obtain

1
2k

(|||ϑ n|||2−|||ϑ n−1|||2)+ α̃‖∇ϑ n‖2 ≤C(k+ h2)‖ϑ n‖+C(k‖ϑ n‖+ h2)‖∇ϑ n‖.

Then, after eliminating ‖∇ϑ n‖2 and moving |||ϑ n|||2 to the left, we have for k
sufficiently small

|||ϑ n|||2 ≤ (1+Ck)|||ϑ n−1|||2 +CkE, with E = O(k2 + h4).

Hence, using the fact that ϑ 0 = 0, we obtain

|||ϑ n|||2 ≤CkE
n

∑
�=0

(1+Ck)n−�+1 ≤C(k2 + h4).

Thus, there exists C0 > 0, such that |||ϑ n||| ≤C0(k+ h2). Since ||| · ||| and ‖ · ‖ are
equivalent norms, the first part of the proof is complete.

Next we turn to the estimation of ‖∇ϑ n‖. Choosing this time χ = ∂̄ ϑ n in (17),
we obtain

|||∂̄ϑ n|||2 + a(Un;ϑ n, ∂̄ ϑ n) = δ (tn;Un, ∂̄ ϑ n)+ εa(U
n;ϑ n, ∂̄ ϑ n). (34)

Note now that since a(·; ·, ·) is symmetric, we have the identity

2ka(Un;ϑ n, ∂̄ ϑ n) = a(Un;ϑ n,ϑ n)− a(Un;ϑ n−1,ϑ n−1)+ k2a(Un; ∂̄ ϑ n, ∂̄ϑ n).

Using now this and (12) in (34), we get, after subtracting a(Un−1;ϑ n−1,ϑ n−1) from
both parts of (34),

2k|||∂̄ϑ n|||2 + a(Un;ϑ n,ϑ n)− a(Un−1;ϑ n−1,ϑ n−1)+αk2‖∇∂̄ϑ n‖2

≤ 2kδ (tn;Un, ∂̄ ϑ n)+ 2kεa(U
n;ϑ n, ∂̄ ϑ n)

+ {a(Un;ϑ n−1,ϑ n−1)− a(Un−1;ϑ n−1,ϑ n−1)}= I+ II+ III.

(35)

Employing the second bound of Lemma 2.5, with v =Un and χ = ∂̄ϑ n, we have

|I| ≤Ck(k+ h2)‖∂̄ϑ n‖+Ckh2‖∇∂̄ϑ n‖+Ck‖∇ϑ n‖‖∂̄ϑ n‖

≤ k|||∂̄ϑ n|||2 +Ck‖∇ϑ n‖2 +
αk2

2
‖∇∂̄ϑ n‖2 +CkE,

(36)
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with E = O(k2 + k−1h4). Next, using Lemma 2.3 and the fact that Un ∈ BM , we
obtain

|II| ≤Ckh‖∇Un‖L∞ ‖∇ϑ n‖‖∇∂̄ϑ n‖ ≤Ch2‖∇ϑ n‖2 +
αk2

2
‖∇∂̄ϑ n‖2. (37)

Finally, using again (2), the fact that ϑ n−1 ∈ B2M, and (23), we have

|III| ≤Ck‖|∇ϑ n−1| |∂̄Un|‖‖∇ϑ n−1‖

≤Ck(‖|∇ϑ n−1| |∂̄ ϑ n|‖ + ‖|∇ϑ n−1| |Rh∂̄un|‖)‖∇ϑ n−1‖

≤ k|||∂̄ ϑ n|||2 +Ck‖∇ϑ n−1‖2.

(38)

Therefore applying (36)–(38), in (35), eliminating |||∂̄ϑ n||| and ‖∇∂̄ϑ n‖ and using
(12), we obtain for k and h sufficiently small,

a(Un;ϑ n,ϑ n)≤ (1+Ck)a(Un−1;ϑ n−1,ϑ n−1)+CkE.

Thus, using the fact that ϑ 0 = 0 and A is strictly positive definite, we get

c‖∇ϑ n‖2 ≤ a(Un;ϑ n,ϑ n)≤CkE
n

∑
�=0

(1+Ck)n−�+1 ≤C(k2 + k−1h4).

Thus, there exists C1 > 0, such that

‖∇ϑ n‖ ≤C1(k+ k−1/2h2), (39)

which completes the second part of the proof.  !

4 Existence of the Backward Euler Approximation

Here we show the existence of the solution of the nonlinear fully discrete scheme
(11), if U0 = Rhu0 and the discretization parameters k and h are sufficiently small
and satisfy k = O(h1+ε), with 0 < ε < 1.

Let Gn : Xh →Xh, be defined by

〈Gnv−Un−1,χ〉+ kah(v;Gnv,Jhχ) = k( f n,Jhχ), ∀χ ∈ Xh. (40)

Obviously, if Gn has a fixed point v, then Un = v is the solution of (11).
In view of (39), recall that if Un−1 ∈ BM, then

‖∇(Un−1−Rhun−1)‖ ≤C1(k+ k−1/2h2). (41)
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Then the following two lemmas hold:

Lemma 4.6. Let Un−1 ∈ BM such that (41) holds. Then for k = O(h1+ε) with
0 < ε < 1, there exists a constant C2 > 0, independent of h, sufficiently large such
that Un−1 ∈ B̃, where

B̃n = {w ∈ Xh : ‖∇(w−Rhun)‖ ≤C2h1+ε̃}, with ε̃ = min(ε,
1− ε

2
). (42)

Proof. Using the stability property of Rh and the fact that k = O(h1+ε), we have

‖∇(Un−1−Rhun)‖ ≤ ‖∇(Un−1−Rhun−1)‖+ k‖∇Rh∂̄un‖

≤C1(k+ k−1/2h2)+ k‖∇∂̄un‖ ≤C2h1+ε̃ .  !

Lemma 4.7. Let Un−1,v ∈ BM such that (41) holds and v ∈ B̃n, with B̃n defined by
(42). Then for k =O(h1+ε), with 0 < ε < 1, Gnv ∈ B̃n.

Proof. Let us now denote by ξ n = Gnv−Rhun and ξ n−1 = Un−1−Rhun−1. Then,
using (40), (1), and (16), ξ n satisfies a similar equation to (17), with ξ n and v instead
of ϑ n and Un; hence,

〈∂̄ ξ n,χ〉+ ah(v;ξ n,Jhχ) = δ (tn;v,χ), for χ ∈ Xh. (43)

Choosing χ = ∂̄ ξ n in (43) and following the proof of Theorem 3.1, we obtain
the corresponding inequality to (35), without the last term III, with ξ n and v in the
place of ϑ n and Un:

2k|||∂̄ ξ n|||2 + a(v;ξ n,ξ n)− a(v;ξ n−1,ξ n−1)+αk2‖∇∂̄ξ n‖2

≤ 2kδ (tn;v, ∂̄ ξ n)+ 2kεa(v;ξ n, ∂̄ ξ n) = I+ II.
(44)

Similarly as before we obtain the corresponding estimates to (36) and (37), with ξ n

and v in the place of ϑ n and Un. Thus,

|I| ≤ 2k|||∂̄ ξ n|||2 + αk2

2
‖∇∂̄ξ n‖2 +Ck‖∇(v−Rhun)‖2 +CkE, (45)

with E = O(k2 + k−1h4) and

|II| ≤Ch2a(v;ξ n,ξ n)+
αk2

2
‖∇∂̄ξ n‖2. (46)

Then using (45) and (46) in (44) and eliminating |||∂̄ ξ n|||2 and ‖∇∂̄ξ n‖2, we get for
h sufficiently small

a(v;ξ n,ξ n)≤ (1+Ck)a(v;ξ n−1,ξ n−1)+Ck‖∇(v−Rhun)‖2 +CkE.
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Finally, using in this inequality, (41), the facts that v ∈ B̃n and ε < 1 and (13), we
obtain the desired bound for k sufficiently small.  !

Theorem 4.1. Let Th satisfy the inverse assumption (19) and Un−1,v ∈ BM such
that (41) holds. Then for h sufficiently small and k =O(h1+ε), with 0 < ε < 1, there
exists Un ∈ BM satisfying (11).

Proof. Obviously, in view of Lemmas 4.6 and 4.7, starting with v0 =Un−1, through
Gn, we obtain a sequence of elements v j+1 =Gnv j ∈ B̃n, j≥ 0. Thus, combining this
with (20) and the facts that M > M0 and ε̃ > 0, we get Gnv j ∈ BM for h sufficiently
small, i.e.,

‖∇Gnv j‖L∞ ≤ ‖∇Rhun‖L∞ +Ch−1‖∇(Gnv j −Rhun)‖ ≤M, j ≥ 0.

To show now the existence of Un ∈ BM, it suffices that

|||Gnv−Gnw|||< L|||v−w|||, ∀v,w ∈ BM, with 0 < L < 1.

Employing (40) for v,w ∈ BM and χ ∈ Xh, we obtain

〈Gnv−Gnw,χ〉+ kah(v;Gnv,Jhχ)− kah(w;Gnw,Jhχ) = 0.

Hence, for χ = Gnv−Gnw, this gives

|||χ |||2 + kah(w; χ ,Jhχ) = k(ah(w;Gnv,Jhχ)− ah(v;Gnv,Jhχ))

= k(a(w;Gnv,χ)− a(v;Gnv,χ))

+ k(εa(v;Gnv,χ)− εa(w;Gnv,χ)) = I+ II.

(47)

To bound I we use (2) and the fact that Gnv ∈ BM to get

|I| ≤Ck‖∇Gnv‖L∞ ‖v−w‖‖∇χ‖≤Ck‖v−w‖‖∇χ‖. (48)

For II, we use Lemma 2.4, the inverse inequality (19), and the fact that v,Gnv ∈ BM

to obtain

|II| ≤Ckh‖∇(v−w)‖‖∇χ‖ ≤Ck‖v−w‖‖∇χ‖. (49)

Employing now (13), (48), and (49) into (47), we have

|||χ |||2 + kα̃ ‖∇χ‖2 ≤Ck‖v−w‖‖∇χ‖≤Ck‖v−w‖2 + kα̃ ‖∇χ‖2,

which in view of the fact that ‖ · ‖ and ||| · ||| are equivalent norms gives for
sufficiently small k the desired bound.  !
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5 A Linearized Fully Discrete Scheme

In this section we analyze a linearized backward Euler (LBE) scheme for the
approximation of (1). This time for U0 = Rhu0, we define the nodal approximations
Un ∈ Xh to un, n = 1, . . . ,N, by

〈∂̄Un,χ〉+ ah(U
n−1;Un,Jhχ) = ( f n,Jhχ), ∀χ ∈ Xh, n≥ 1. (50)

Theorem 5.2. Let Un and u be the solutions of (50) and (1), with U0 = Rhu0.
Then, for Un−1 ∈ BM, h sufficiently small and k = O(h1+ε), with 0 < ε < 1, we have
Un ∈ BM and

‖∇s(Un− u(tn))‖ ≤C(k+ k−s/2h2−s), with s = 0,1.

Proof. Since the discrete scheme (50) is linear, the existence of Un ∈Xh is obvious.
The proof is analogous to that for Theorem 3.1; thus, it suffices to bound ‖∇sϑ n‖,
s = 0,1. This time ϑ n satisfies a similar equation to (17) with Un−1 in the place
of Un:

〈∂̄ϑ n,χ〉+ ah(U
n−1;ϑ n,Jhχ) = δ (tn;Un−1,χ), ∀χ ∈ Xh.

We start with the estimation for ‖ϑ n‖. In an analogous way to (33), we obtain the
following inequality:

1
2k

(|||ϑ n|||2−|||ϑ n−1|||2)+ α̃‖∇ϑ n‖2 ≤ δ (tn;Un−1,ϑ n).

To bound now the right-hand side of this inequality we employ the first estimate of
Lemma 2.5, with v =Un−1 and χ = ϑ n, using the fact that Un−1−Rhun = ϑ n−1−
kRh∂̄un and the stability of Rh, to get

1
2k

(|||ϑ n|||2−|||ϑ n−1|||2)+ α̃‖∇ϑ n‖2

≤C(k+ h2)‖ϑ n‖+C(k‖Un−1−Rhun‖+ h2)‖∇ϑ n‖

≤C|||ϑ n|||2 + α̃‖∇ϑ n‖2 +Ck|||ϑ n−1|||2 +CE, with E = O(k2 + h4).

Next, after eliminating ‖∇ϑ n‖, we get for k sufficiently small

|||ϑ n|||2 ≤ (1+Ck)|||ϑ n−1|||2 +CkE.

Hence, since ϑ 0 = 0, we have by repeated application |||ϑ n||| ≤C(k+ h2), which,
in view of the fact that ||| · ||| and ‖ · ‖ are equivalent norms, completes the first part
of the proof. Next we turn to the bound for ‖∇ϑ n‖. In an analogous way to (34), we
get

|||∂̄ϑ n|||2 + a(Un−1;ϑ n, ∂̄ ϑ n) = δ (tn;Un−1, ∂̄ ϑ n)+ εa(U
n−1;ϑ n, ∂̄ϑ n).



134 P. Chatzipantelidis and V. Ginting

Hence, similarly as in (35), we have

2k|||∂̄ϑ n|||2 + a(Un;ϑ n,ϑ n)− a(Un−1;ϑ n−1,ϑ n−1)+αk2‖∇∂̄ϑ n‖2

≤ 2kδ (tn;Un−1, ∂̄ϑ n)+ 2kεa(U
n−1;ϑ n, ∂̄ ϑ n)

+ {a(Un;ϑ n,ϑ n)− a(Un−1;ϑ n,ϑ n)} = I.

(51)

Thus, in a similar way that we obtained (36)–(38), we have

|I| ≤ 2k|||∂̄ϑ n|||2 +Ck‖∇(Un−1−Rhun)‖2 +C(k+ h2)‖∇ϑ n‖2

+αk2‖∇∂̄ϑ n‖2 +CkE,

with E =O(k2+k−1h4). Combining these in (51), using the fact that Un−1−Rhun =
ϑ n−1− kRh∂̄un and the stability of Rh, we obtain for k sufficiently small

a(Un;ϑ n,ϑ n)≤ (1+Ck)a(Un−1;ϑ n−1,ϑ n−1)+CkE.

Therefore, since ϑ 0 = 0, we obtain

α‖∇ϑ n‖2 ≤ a(Un;ϑ n,ϑ n)≤CkE
n

∑
�=0

(1+Ck)n−�+1 ≤C(k2 + k−1h4),

which gives the desired bound. Finally, this estimate, the inverse inequality (19),
and the fact that k = O(h1+ε) give, for sufficiently small h, that Un ∈ BM, which
completes the proof.  !

6 Numerical Examples

In this section we give numerical examples to illustrate the error estimates pre-
sented in the previous sections. Let {φi}d

i=1 be the standard piecewise linear basis
functions of Xh and for χ ∈ Xh, let χ̃ = (χ̃1, . . . , χ̃d) ∈ R

d be the vector such that
χ = ∑d

i=1 χ̃iφi. Then the backward Euler method (11) can be written as

(D+ kS(Ũn))Ũn = DŨn−1 + kQn,

where D is the mass matrix with elements Di j =
´

Vi
φ j dx, Q the vector with entries

Qi =
´

Vi
f dx, and S(χ̃) the resulting stiffness matrix for χ ∈ Xh, i.e.,

Si j(χ̃) =−
ˆ

∂Vi

A(χ)∇φ j ·nds, for χ ∈ Xh.
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Table 1 Comparison of errors of backward Euler (BE) and LBE methods for various h
withk = h1.01

BE LBE

h ‖u−uh‖ Rate |u−uh|1 Rate ‖u−uh‖ Rate |u−uh|1 Rate

0.125 3.6569e−03 – 8.8974e−02 – 4.9954e−03 – 8.8928e−02 –
0.0625 9.0420e−04 2.02 4.4710e−02 0.99 1.6205e−03 1.62 4.4763e−02 0.99
0.03125 2.0321e−04 2.15 2.2382e−02 1.00 6.4270e−04 1.33 2.2460e−02 1.00
0.015625 4.1362e−05 2.20 1.1194e−02 1.00 2.7213e−04 1.24 1.12480e−02 1.00
0.0078125 8.3814e−06 2.30 5.5974e−03 1.00 1.2512e−04 1.12 5.6268e−03 1.00

Since, this is a nonlinear problem, we employ the following iteration: Set ξ̃ 0 = Ũn−1

and for m = 1,2, . . . , we solve

(D+ kS(ξ̃ m−1))ξ̃ m = DŨn−1 + kQn,

until some specified convergence. We note that if the iteration is stopped at m = 1,
we recover the LBE method. For all examples below, we use as a stopping criteria

‖(D+ kS(ξ̃ m−1))ξ̃ m−DŨn−1− kQn‖l∞ ≤ ε,

for some preassigned small number ε , with ‖χ̃‖l∞ = maxi |χ̃i|.
We consider Ω = [0,1]× [0,1] and partition [0,1] into N equidistant intervals;

thus, N2 squares are formed and divide each one into two triangles, which results in
a mesh with size h=

√
2/N. Once the spatial mesh size is determined, the time step k

is computed in such a way that k = h1.01. Note that our numerical examples indicate
that we could choose k = h; however, we do not know at this point how to proceed
with the analysis under this assumption. We consider u(x,y, t) = 8e−t(x−x2)(y−y2)
and use the nonlinear coefficient A(u) = 1/(1−0.8sin2(4u)), with forcing function
f such that u satisfies the parabolic equation (1). We compute the error at final
time T = 1 and the results are shown in Table 1. In both methods, the error
convergence rate does follow the a priori estimates. We also see that in the LBE, that
as we decrease h, the error contribution from k starts to dominate. This is indicated
by the decrease of the convergence order in the L2-norm.
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Multidimensional Sensitivity Analysis
of Large-Scale Mathematical Models

Ivan Dimov and Rayna Georgieva

Abstract Sensitivity analysis (SA) is a procedure for studying how sensitive are
the output results of large-scale mathematical models to some uncertainties of the
input data. The models are described as a system of partial differential equations.
Often such systems contain a large number of input parameters. Obviously, it is
important to know how sensitive is the solution to some uncontrolled variations or
uncertainties in the input parameters of the model. Algorithms based on analysis
of variances technique for calculating numerical indicators of sensitivity and
computationally efficient Monte Carlo integration techniques have recently been
developed by the authors. They have been successfully applied to sensitivity studies
of air pollution levels calculated by the Unified Danish Eulerian Model with respect
to several important input parameters. In this paper a comprehensive theoretical and
experimental study of the Monte Carlo algorithm based on symmetrised shaking of
Sobol sequences has been done. It has been proven that this algorithm has an optimal
rate of convergence for functions with continuous and bounded second derivatives in
terms of probability and mean square error. Extensive numerical experiments with
Monte Carlo, quasi-Monte Carlo (QMC) and scrambled QMC algorithms based on
Sobol sequences are performed to support the theoretical studies and to analyze
applicability of the algorithms to various classes of problems. The numerical tests
show that the Monte Carlo algorithm based on symmetrised shaking of Sobol
sequences gives reliable results for multidimensional integration problems under
consideration.
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1 Introduction

Most existing methods for providing SA rely on special assumptions connected to
the behavior of the model (such as linearity, monotonicity and additivity of the
relationship between model input and model output) [22]. Such assumptions are
often applicable to a large range of mathematical models. At the same time there
are models that include significant nonlinearities and/or stiffness. For such models
assumptions about linearity and additivity are not applicable. This is especially
true when one deals with nonlinear systems of partial differential equations. The
numerical study and results reported in this paper have been done by using a
large-scale mathematical model called Unified Danish Eulerian Model (UNI-DEM)
[33, 34]. The model enables us to study the transport of air pollutants and other
species over a large geographical region. The system of partial differential equations
describes the main physical processes, such as advection, diffusion, deposition as
well as chemical and photochemical processes between the studied species. The
emissions and the quickly changing meteorological conditions are also described.
The nonlinearity of the equations is mainly introduced when modeling chemical
reactions [33]. If the model results are sensitive to a given process, one can describe
it mathematically in a more adequate way or more precisely. Thus, the goal of
our study is to increase the reliability of the results produced by the model and
to identify processes that must be studied more carefully, as well as to find input
parameters that need to be measured with a higher precision. A careful sensitivity
analysis is needed in order to decide where and how simplifications of the model
can be made. That is why it is important to develop and study more adequate and
reliable methods for sensitivity analysis. A good candidate for reliable sensitivity
analysis of models containing nonlinearity is the variance-based method [22]. The
idea of this approach is to estimate how the variation of an input parameter or a
group of inputs contributes into the variance of the model output. As a measure
of this analysis we use the total sensitivity indices (TSI) (see, Sect. 2) described as
multidimensional integrals:

I =
ˆ

Ω
g(x)p(x)dx, Ω ⊂ Rd , (1)

where g(x) is a square integrable function in Ω and p(x)≥ 0 is a probability density
f unction (p.d.f.), such that

´
Ω p(x)dx = 1.

Clearly, the progress in the area of sensitivity analysis is closely related to the
progress in reliable algorithms for multidimensional integration.
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2 Problem Setting

2.1 Modeling and Sensitivity

Assume that the mathematical model can be presented as a function

u = f (x), where x = (x1,x2, . . . ,xd) ∈Ud ≡ [0;1]d (2)

is the vector of input parameters with a joint p.d.f. p(x) = p(x1, . . . ,xd). Assume
also that the input variables are independent (noncorrelated) and the density function
p(x) is known, even if xi are not actually random variables (r.v.). The TSI of an input
parameter xi, i∈{1, . . . ,d} is defined in the following way [9, 26]:

Stot
i = Si + ∑

l1 �=i

Sil1 + ∑
l1,l2 �=i,l1<l2

Sil1l2 + . . .+ Sil1...ld−1 , (3)

where Si is called the main effect (first-order sensitivity index) of xi and Sil1...l j−1

is the j-th order sensitivity index. The higher-order terms describe the interaction
effects between the unknown input parameters xi1 , . . . ,xiν ,ν ∈ {2, . . . ,d} on the
output variance.

The method of global SA used in this work is based on a decomposition of
an integrable model function f in the d-dimensional factor space into terms of
increasing dimensionality [26]:

f (x) = f0 +
d

∑
ν=1

∑
l1<...<lν

fl1...lν (xl1 ,xl2 , . . . ,xlν ), (4)

where f0 is a constant. The representation (4) is referred to as the ANOVA
representation of the model function f (x) if each term is chosen to satisfy the
following condition [26]:

ˆ 1

0
fl1...lν (xl1 ,xl2 , . . . ,xlν )dxlk = 0, 1≤ k ≤ ν, ν = 1, . . . ,d.

Let us mention the fact that if the whole presentation (4) of the right-hand side is
used, this does not make the problem simpler. The hope is that a truncated sequence
f0 +∑dtr

ν=1 ∑l1<...<lν fl1...lν (xl1 ,xl2 , . . . ,xlν ), where dtr < d (or even dtr � d), can be
considered as a good approximation to the model function f .

The quantities

D =

ˆ
Ud

f 2(x)dx− f 2
0 , Dl1 ... lν =

ˆ
f 2
l1 ... lν dxl1 . . .dxlν (5)
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are the so-called total and partial variances, respectively, and are obtained after
squaring and integrating over Ud the equality (4) on the assumption that f (x)
is a square integrable function (thus, all terms in (4) are also square integrable
functions). Therefore, the total variance of the model output is split into partial
variances in the analogous way as the model function, that is, the unique ANOVA-
decomposition: D=∑d

ν=1 ∑l1<...<lν Dl1...lν . The use of probability theory concepts is
based on the assumption that the input parameters are random variables distributed
in Ud that defines fl1 ... lν (xl1 ,xl2 , . . . ,xlν ) also as random variables with variances
(5). For example, fl1 is presented by a conditional expectation: fl1(xl1) = E(u|xl1)−
f0 and, respectively, Dl1 = D[ fl1(xl1)] = D[E(u|xl1)]. Based on these assumptions
about the model function and the output variance, the following quantities

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . ,d} (6)

are referred to as the global sensitivity indices [26]. Based on the formulas
(5)–(6), it is clear that the mathematical treatment of the problem of providing
global sensitivity analysis consists in evaluating total sensitivity indices (3) of
corresponding order that, in turn, leads to computing multidimensional integrals
of the form (1). It means that to obtain Stot

i in general, one needs to compute 2d (or
2dtr , with dtr � d) integrals of type (5).

The procedure for computing global sensitivity indices (see [26]) is based on the
following representation of the variance:

Dy : Dy =

ˆ
f (x) f (y,z′)dxdz′ − f 2

0 , (7)

where y = (xk1 , . . . ,xkm), 1 ≤ k1 < .. . < km ≤ d, is an arbitrary set of m variables
(1 ≤ m ≤ d− 1) and z is the set of d−m complementary variables, i.e. x = (y,z).
The equality (7) enables the construction of a Monte Carlo algorithm for evaluating
f0,D and Dy:

1
n

n

∑
j=1

f (ξ j)
P−→ f0,

1
n

n

∑
j=1

f (ξ j) f (η j,ζ ′j)
P−→Dy + f 2

0 ,

1
n

n

∑
j=1

f 2(ξ j)
P−→D+ f 2

0 ,
1
n

n

∑
j=1

f (ξ j) f (η ′
j,ζ j)

P−→Dz + f 2
0 ,

where ξ = (η ,ζ ) is a random sample and η corresponds to the input subset denoted
by y.

Instead of randomized (Monte Carlo) algorithms for computing the above sensi-
tivity parameters, one can use deterministic quasi-Monte Carlo (QMC) algorithms
or randomized QMC [13, 14]. Randomized (Monte Carlo) algorithms have proven
to be very efficient in solving multidimensional integrals in composite domains
[3, 23]. At the same time the QMC based on well-distributed Sobol sequences
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can be considered as a good alternative to Monte Carlo algorithms, especially for
smooth integrands and not very high effective dimensions (up to d = 15) [12].
Sobol ΛΠτ are good candidates for efficient QMC algorithms. Algorithms based
on ΛΠτ sequences while being deterministic mimic the pseudorandom sequences
used in Monte Carlo integration. One of the problems with ΛΠτ sequences is
that they may have bad two-dimensional projection. In this context bad means
that the distribution of the points is far from being a uniform distribution. If such
projections are used in a certain computational problem, then the lack of uniformity
may provoke a substantial lost of accuracy. To overcome this problem randomized
QMC can be used. There are several ways of randomization and scrambling is
one of them. The original motivation of scrambling [10, 19] aims toward obtaining
more uniformity for quasi-random sequences in high dimensions, which can be
checked via two-dimensional projections. Another way of randomisation is to shake
the quasi-random points according to some procedure. Actually, the scrambled
algorithms obtained by shaking the quasi-random points can be considered as Monte
Carlo algorithms with a special choice of the density function. It is a matter of
definition. Thus, there is a reason to be able to compare two classes of algorithms:
deterministic and randomized.

3 Complexity in Classes of Algorithms

One may pose the task to consider and compare two classes of algorithms:
deterministic algorithms and randomized (Monte Carlo) algorithms. Let I be the
desired value of the integral. Assume for a given r.v. θ one can prove that the
mathematical expectation satisfies Eθ = I. Suppose that the mean value of n values
of θ : θ (i), i = 1, . . . ,n is considered as a Monte Carlo approximation to the solution:
θ̄n = 1/n∑n

i=1 θ (i)≈ I, where θ (i)(i = 1,2, . . . ,n) correspond to values (realizations)
of a r.v. θ . In general, a certain randomized algorithm can produce the result
with a given probability error. So, dealing with randomized algorithms one has to
accept that the result of the computation can be true only with a certain (although
high) probability. In most practical computations it is reasonable to accept an error
estimate with a probability smaller than 1.

Consider the following integration problem:

S( f ) := I =
ˆ

Ud
f (x)dx, (8)

where x ≡ (x1, . . . ,xd) ∈ Ud ⊂ Rd and f ∈ C(Ud) is an integrable function on
Ud . The computational problem can be considered as a mapping of function f :
{[0,1]d → R} to R: S( f ) : f → R, where S( f ) =

´
Ud f (x)dx and f ∈ F0 ⊂C(Ud).

We refer to S as the solution operator. The elements of F0 are the data, for which the
problem has to be solved, and for f ∈ F0, S( f ) is the exact solution. For a given f ,
we want to compute exactly or approximately S( f ). One may be interested in cases
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when the integrand f has a higher regularity. It is because in many cases of practical
computations f is smooth and has high-order bounded derivatives. If this is the case,
then is it reasonable to try to exploit such a smoothness. To be able to do that we
need to define the functional class F0 ≡Wk(‖ f‖;Ud) in the following way:

Definition 3.1. Let d and k be integers, d,k≥ 1. We consider the class Wk(‖ f‖;Ud)
(sometimes abbreviated to Wk) of real functions f defined over the unit cube Ud =

[0,1)d , possessing all the partial derivatives
∂ r f (x)

∂xα1
1 . . .∂xαd

d

, α1 + · · ·+αd = r ≤ k,

which are continuous when r < k and bounded in sup norm when r = k. The
seminorm ‖·‖ on Wk is defined as

‖ f‖ = sup

{∣∣∣∣∣
∂ k f (x)

∂xα1
1 . . .∂xαd

d

∣∣∣∣∣ , α1 + · · ·+αd = k, x≡ (x1, . . . ,xd) ∈Ud

}
.

We keep the seminorm ‖ f‖ into the notation for the functional class Wk(‖ f‖;Ud)
since it is important for our further consideration. We call a quadrature formula any
expression of the form

AD( f ,n) =
n

∑
i=1

ci f (x(i)),

which approximates the value of the integral S( f ). The real numbers ci ∈ R are
called weights and the d-dimensional points x(i) ∈Ud are called nodes. It is clear
that for fixed weights ci and nodes x(i) ≡ (xi,1, . . . ,xi,d), the quadrature formula
AD( f ,n) may be used to define an algorithm with an integration error err( f ,AD)≡´

Ud f (x)dx−AD( f ,n). We call a randomized quadrature formula any formula of
the following kind: AR( f ,n) =∑n

i=1 σi f (ξ (i)), where σi and ξ (i) are random weights
and nodes, respectively. The algorithm AR( f ,n) belongs to the class of randomized
(Monte Carlo) denoted by A R.

Definition 3.2. Given a randomized (Monte Carlo) integration formula for the
functions from the space Wk, we define the integration error

err( f ,AR)≡
ˆ

Ud
f (x)dx−AR( f ,n)

by the probability error εP( f ) in the sense that εP( f ) is the least possible real
number, such that

Pr
(∣∣err( f ,AR)

∣∣< εP( f )
)
≥ P,

and the mean square error

r( f ) =
{

E
[
err2( f ,AR)

]}1/2
.

We assume that it suffices to obtain an εP( f )-approximation to the solution with
a probability 0 < P < 1. If we allow equality, i.e. 0 < P ≤ 1 in Definition 3.2, then



Multidimensional Sensitivity Analysis 143

εP( f ) can be used as an accuracy measure for both randomized and deterministic
algorithms. In such a way it is consistent to consider a wider class A of algorithms
that contains both classes: randomized and deterministic algorithms.

Definition 3.3. Consider the set A of algorithms A:

A = {A : Pr(|err( f ,A)| ≤ ε)≥ c}, A ∈ {AD,AR}, 0 < c < 1

that solve a given problem with an integration error err( f ,A).

In such a setting it is correct to compare randomized algorithms with algorithms
based on low-discrepancy sequences like Sobol ΛΠτ sequences.

4 The Algorithms

The algorithms we study are based on Sobol ΛΠτ sequences.

4.1 ΛΠτ Sobol Sequences

ΛΠτ sequences are uniformly distributed sequences (u.d.s.) The term u.d.s. was
introduced by Hermann Weyl in 1916 [30]. For practical purposes a u.d.s. should
satisfy the following three requirements [23, 25]: (i) the best asymptote as n → ∞,
(ii) well-distributed points for small n and (iii) a computationally inexpensive
algorithm.

All ΛΠτ sequences given in [25] satisfy the first requirement. Suitable distri-
butions such as ΛΠτ sequences are also called (t,m,s)-nets and (t,s)-sequences in
base b ≥ 2. To introduce them, define first an elementary s-interval in base b as a

subset of Us of the form E = ∏s
j=1

[
a j

bd j
,

a j+1

bd j

]
, where a j,d j ≥ 0 are integers and

a j < bd j for all j ∈ {1, . . . ,s}. Given two integers 0≤ t ≤m, a (t,m,s)-net in base b
is a sequence x(i) of bm points of Us such that Card E∩{x(1), . . . ,x(b

m)}= bt for any
elementary interval E in base b of hypervolume λ (E) = bt−m. Given a non-negative
integer t, a (t,s)-sequence in base b is an infinite sequence of points x(i) such that
for all integers k ≥ 0,m≥ t, the sequence {x(kbm), . . . ,x((k+1)bm−1)} is a (t,m,s)-net
in base b.

Sobol [23] defines his Πτ -meshes and ΛΠτ sequences, which are (t,m,s)-nets
and (t,s)-sequences in base 2, respectively. The terms (t,m,s)-nets and (t,s)-
sequences in base b (also called Niederreiter sequences) were introduced in 1988
by Niederreiter [18].

To generate the j-th component of the points in a Sobol sequence, we need
to choose a primitive polynomial of some degree s j over the Galois field of
two elements GF(2) Pj = xs j + a1, jxs j−1 + a2, jxs j−2 + . . .+ as j−1, jx + 1, where
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the coefficients a1, j, . . . ,as j−1, j are either 0 or 1. A sequence of positive integers
{m1, j,m2, j, . . .} are defined by the recurrence relation

mk, j = 2a1, jmk−1, j⊕ 22a2, jmk−2, j⊕ . . .⊕ 2s jmk−s j , j⊕mk−s j , j,

where ⊕ is the bit-by-bit exclusive-or operator. The values m1, j, . . . ,ms j , j can be
chosen freely provided that each mk, j,1≤ k≤ s j , is odd and less than 2k. Therefore,
it is possible to construct different Sobol sequences for the fixed dimension s. In
practice, these numbers must be chosen very carefully to obtain really efficient
Sobol sequence generators [27]. The so-called direction numbers {v1, j,v2, j, . . .}
are defined by vk, j =

mk, j

2k
. Then the j-th component of the i-th point in a Sobol

sequence is given by xi, j = i1v1, j ⊕ i2v2, j ⊕ . . . , where ik is the k-th binary digit of
i = (. . . i3i2i1)2. Subroutines to compute these points can be found in [2, 24]. The
work [15] contains more details.

4.2 The Monte Carlo Algorithms Based on Modified Sobol
Sequences: MCA-MSS

One of the algorithms based on a procedure of shaking was proposed recently in
[6]. The idea is that we take a Sobol ΛΠτ point (vector) x of dimension d. Then x
is considered as a centrum of a sphere with a radius ρ < 1. A random point ξ ∈Ud

uniformly distributed on the sphere is taken. Consider a random variable θ defined
as a value of the integrand at that random point, i.e. θ = f (ξ ). Consider random
points ξ (i)(ρ) ∈ Ud, i = 1, . . . ,n. Assume ξ (i)(ρ) = x(i) + ρω(i), where ω(i) is a
unique uniformly distributed vector in Ud . The radius ρ is relatively small ρ � 1

2d j
,

such that ξ (i)(ρ) is still in the same elementary i-th interval Ed
i =∏d

j=1

[
a(i)j

2d j
,

a(i)j +1

2d j

]
,

where the pattern ΛΠτ point x(i) is. We use a subscript i in Ed
i to indicate that the

i-th ΛΠτ point x(i) is in it. So, we assume that if x(i) ∈ Ed
i , then ξ (i)(ρ) ∈ Ed

i too.
It was proven in [6] that the mathematical expectation of the random variable

θ = f (ξ ) is equal to the value of the integral (8), that is, Eθ = S( f ) =
´

Ud f (x)dx.
This result allows for defining a randomized algorithm. One can take the Sobol ΛΠτ
point x(i) and shake it somewhat. Shaking means to define random points ξ (i)(ρ) =
x(i)+ρω(i) according to the procedure described above. For simplicity the algorithm
described above is abbreviated as MCA-MSS-1.

The probability error of the algorithm MCA-MSS-1 was analysed in [7]. It was
proved that for integrands with continuous and bounded first derivatives, i.e. f ∈
W1(L;Ud), where L = ‖ f‖, it holds

err( f ,d) ≤ c
′
d ‖ f‖n

− 1
2−

1
d and r( f ,d) ≤ c

′′
d ‖ f‖n

− 1
2−

1
d
,

where the constants c
′
d and c

′′
d do not depend on n.



Multidimensional Sensitivity Analysis 145

In this work a modification of algorithm MCA-MSS-1 is proposed and analysed.
The new algorithm will be called MCA-MSS-2.

It is assumed that n = md , m ≥ 1. The unit cube Ud is divided into md disjoint
subdomains, such that they coincide with the elementary d-dimensional subintervals

defined in Sect. 4.1 Ud =
⋃md

j=1 Kj, where Kj =∏d
i=1[a

( j)
i ,b( j)

i ), with b( j)
i −a( j)

i =
1
m

for all i = 1, . . . ,d.
In such a way in each d-dimensional subdomain Kj, there is exactly one ΛΠτ

point x( j). Assuming that after shaking, the random point stays inside Kj, i.e.
ξ ( j)(ρ) = x( j) +ρω( j) ∈ Kj, one may try to exploit the smoothness of the integrand
in case if the integrand f belongs to W2(L;Ud).

Then, if p(x) is a p.d.f., such that
´

Ud p(x)dx = 1, then

ˆ
Kj

p(x)dx = p j ≤
c( j)

1

n
,

where c( j)
1 are constants. If d j is the diameter of Kj, then

d j = sup
x1,x2∈Kj

|x1− x2| ≤
c( j)

2

n1/d
,

where c( j)
2 are another constants.

In the particular case when the subintervals are with edge 1/m for all constants,

we have c( j)
1 = 1 and c( j)

2 =
√

d. In each subdomain Kj the central point is denoted

by s( j), where s( j) = (s( j)
1 ,s( j)

2 , . . . ,s( j)
d ).

Suppose two random points ξ ( j) and ξ ( j)′ are chosen, such that ξ ( j) is selected
during our procedure used in MCA-MSS-1. The second point ξ ( j)′ is chosen to be
symmetric to ξ ( j) according to the central point s( j) in each cube Kj. In such a
way the number of random points is 2md . One may calculate all function values
f (ξ ( j)) and f (ξ ( j)′), for j = 1, . . . ,md , and approximate the value of the integral in
the following way:

I( f )≈ 1
2md

2n

∑
j=1

[
f (ξ ( j))+ f (ξ ( j)′)

]
. (9)

This estimate corresponds to MCA-MSS-2. We prove later on that this algorithm
has an optimal rate of convergence for functions with bounded second derivatives,
i.e. for functions f ∈W2(L;Ud), while the algorithm MCA-MSS-1 has an optimal
rate of convergence for functions with bounded first derivatives: f ∈W1(L;Ud).



146 I. Dimov and R. Georgieva

One can prove the following:

Theorem 1. The quadrature formula (9) constructed above for integrands f from
W2(L;Ud) satisfies

err( f ,d) ≤ c̃ ′
d ‖ f‖n

− 1
2−

2
d

and

r( f ,d) ≤ c̃ ′′
d ‖ f‖n

− 1
2−

2
d
,

where the constants c̃ ′
d and c̃ ′′

d do not depend on n.

Proof. One can see that

E

{
1

2md

2n

∑
j=1

[
f (ξ ( j))+ f (ξ ( j)′)

]}
=

ˆ
Ud

f (x)dx.

For the fixed ΛΠτ point x( j) ∈ Kj one can use the d-dimensional Taylor formula
to present the function f (x( j)) in Kj around the central point s( j). Since f ∈
W2(L;Ud), there exists a d-dimensional point η( j) ∈ Kj lying between x( j) and
s( j) such that

f (x( j)) = f (s( j)) + ∇ f (s( j)) (x( j)− s( j))

+
1
2
(x( j)− s( j))T [D2 f (η( j))](x( j)− s( j)), (10)

where ∇ f (x)=

[
∂ f (x)
∂x1

, . . . ,
∂ f (x)
∂xd

]
and [D2 f (x)] =

[
∂ 2 f (x)
∂xi∂xk

]d

i,k=1
. For simplicity

the superscript of the argument ( j) in the last two formulas is omitted assuming that
the formulas are written for the j-th cube Kj. Now, we can write formula (10) at
previously defined random points ξ and ξ ′ both belonging to Kj. In such a way we
have

f (ξ ) = f (s)+∇ f (s) (ξ − s)+
1
2!
(ξ − s)T [D2 f (η)](ξ − s), (11)

f (ξ ′) = f (s)+∇ f (s) (ξ ′ − s)+
1
2!
(ξ ′ − s)T [D2 f (η ′)](ξ ′ − s), (12)

where η ′ is another d-dimensional point lying between ξ ′ and s. Adding (11) and
(12), we get

f (ξ )+ f (ξ ′) = 2 f (s) +
1
2

{
(ξ − s)T [D2 f (η)](ξ − s) +

+ (ξ ′ − s)T [D2 f (η ′)] (ξ ′ − s)
}
.
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Because of the symmetry there is no term depending on the gradient D f (s) in the
previous formula. If we consider the variance D[ f (ξ )+ f (ξ ′)] taking into account
that the variance of the constant 2 f (s) is zero, then we get

D[ f (ξ ) + f (ξ ′)] =

= D
{

1
2

[
(ξ − s)T [D2 f (η)](ξ − s)+ (ξ ′ − s)T [D2 f (η ′)](ξ ′ − s)

]}

≤ E
{

1
2

[
(ξ − s)T [D2 f (η)](ξ − s)+ (ξ ′ − s)T [D2 f (η ′)](ξ ′ − s)

]}2
.

Since f ∈W2(L;Ud), we can strengthen the last inequality if the terms [D2 f (η)]
and [D2 f (η ′)] are substituted by the seminorm L (and removing front bracket) and
the products (ξ − s)T (ξ − s) and (ξ ′ − s)T (ξ ′ − s) by the squared diameter of the
subdomain Kj . Now we return back to the notation with superscript, taking into
account that the above consideration is just for an arbitrary subdomain Kj. The
variance can be estimated from above in the following way:

D[ f (ξ )+ f (ξ ′)] ≤ L2 sup
x
( j)
1 ,x

( j)
2

∣∣∣x( j)
1 − x( j)

2

∣∣∣4 ≤ L2(c( j)
2 )4n−4/d.

Now the variance of θn = ∑n
j=1 θ ( j) can be estimated:

Dθn =
n

∑
j=1

p2
jD[ f (ξ )+ f (ξ ′)] ≤

n

∑
j=1

(c( j)
1 )2n−2L2(c( j)

2 )4n−4/d

≤
(

Lc( j)
1 c( j)2

2

)2
n−1−4/d. (13)

Therefore, r( f ,d) ≤ c̃ ′′
d ‖ f‖n

− 1
2−

2
d . The application of Tchebycheff’s inequality to

the variance (13) yields

ε( f ,d) ≤ c̃ ′
d ‖ f‖n

− 1
2−

2
d

for the probable error ε , where c̃ ′
d =

√
2d, which concludes the proof.

One can see that the Monte Carlo algorithm MCA-MSS-2 has an optimal rate of
convergence for functions with continuous and bounded second derivative [3]. This

means that the rate of convergence (n−
1
2−

2
d ) cannot be improved for the functional

class W2 in the class of the randomized algorithms A R.
Note that both MCA-MSS-1 and MCA-MSS-2 have one control parameter, that

is, the radius ρ of the sphere of shaking. At the same time, to be able to efficiently
use this control parameter, one should increase the computational complexity. The
problem is that after shaking the random point may leave the multidimensional
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subdomain. That is why after each such a procedure, one should be checking if
the random point is still in the same subdomain. It is clear that the procedure
of checking if a random point is inside the given domain is a computationally
expensive procedure when one has a large number of points. A small modification
of MCA-MSS-2 algorithm allows to overcome this difficulty. If we just generate
a random point ξ ( j) ∈ Kj uniformly distributed inside Kj and after that take the
symmetric point ξ ( j)′ according to the central point s( j), then this procedure will
simulate the algorithm MCA-MSS-2. Such a completely randomized approach
simulates algorithm MCA-MSS-2, but the shaking is with different radiuses ρ in
each subdomain. We call this algorithm MCA-MSS-2-S, because this approach
looks like the stratified symmetrised Monte Carlo. Obviously, MCA-MSS-2-S is
less expensive than MCA-MSS-2, but there is not such a control parameter like
the radius ρ , which can be considered as a parameter randomly chosen in each
subdomain Kj.

It is important to notice that all three algorithms MCA-MSS-1, MCA-MSS-2
and MCA-MSS-2-S have optimal (unimprovable) rate of convergence for the
corresponding functional classes, that is, MCA-MSS-1 is optimal in W1(L;Ud) and
both MCA-MSS-2 and MCA-MSS-2-S are optimal in W2(L;Ud).

We also consider the known Owen nested scrambling algorithm [19] for which it
is proved that the rate of convergence is n−3/2(log n)(d−1)/2, which is very good
but still not optimal even for integrands in W1(L;Ud). One can see that if the
logarithmic function from the estimate can be omitted, then the rate will become
optimal. Let us mention that it is still not proven that the above estimate is exact,
that is, we do not know if the logarithm can be omitted. It should be mentioned that
the proved convergence rate for the Owen nested scrambling algorithm improves
significantly the rate for the unscrambled nets, which is n−1(log n)d−1. That is why
it is important to compare numerically our algorithms MCA-MSS with the Owen
nested scrambling. The idea of Owen nested scrambling is based on randomization
of a single digit at each iteration. Let x(i) = (xi,1,xi,2, . . . ,xi,s), i = 1, . . . ,n be
quasi-random numbers in [0,1)s, and let z(i) = (zi,1,zi,2, . . . ,zi,s) be the scrambled
version of the point x(i). Suppose that each xi, j can be represented in base b as
xi, j = (0.xi1, j xi2, j . . .xiK, j . . .)b with K being the number of digits to be scrambled.
Then nested scrambling proposed by Owen [19, 20] can be defined as follows:
zi1, j = π•(xi1, j), and zil, j = π•xi1, jxi2, j ...xil−1, j (xil, j), with independent permutations
π•xi1, jxi2, j ...xil−1, j for l ≥ 2. Of course, (t,m,s)-net remains (t,m,s)-net under nested

scrambling. However, nested scrambling requires bl−1 permutations to scramble the
l-th digit. Owen scrambling (nested scrambling), which can be applied to all (t,s)-
sequences, is powerful; however, from the implementation point of view, nested
scrambling or so-called path-dependent permutations require a considerable amount
of bookkeeping and lead to more problematic implementation. There are various
versions of scrambling methods based on digital permutation, and the differences
among those methods are based on the definitions of the πl’s. These include
Owen nested scrambling [19, 20], Tezuka’s generalized Faure sequences [29] and
Matousek’s linear scrambling [17].
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5 Case Study: Variance-Based Sensitivity Analysis
of the Unified Danish Eulerian Model

The input data for the sensitivity analysis performed in this paper has been
obtained during runs of a large-scale mathematical model for remote transport
of air pollutants (UNI-DEM, [33]). The model enables us to study concentration
variations in time of a high number of air pollutants and other species over a
large geographical region (4,800 × 4,800 km), covering the whole of Europe,
the Mediterranean and some parts of Asia and Africa. Such studies are important
for environmental protection, agriculture and health care. The model presented
as a system of partial differential equations describes the main processes in the
atmosphere including photochemical processes between the studied species, the
emissions and the quickly changing meteorological conditions. Both nonlinearity
and stiffness of the equations are mainly introduced when modeling chemical
reactions [33]. The chemical scheme used in the model is the well-known condensed
CBM-IV (Carbon Bond Mechanism). Thus, the motivation to choose UNI-DEM is
that it is one of the models of atmospheric chemistry, where the chemical processes
are taken into account in a very accurate way.

This large and complex task is not suitable for direct numerical treatment. For
the purpose of numerical solution, it is split into submodels, which represent the
main physical and chemical processes. The sequential splitting [16] is used in
the production version of the model, although other splitting methods have also
been considered and implemented in some experimental versions [4,5]. Spatial and
time discretization makes each of the above submodels a huge computational task,
challenging for the most powerful supercomputers available nowadays. That is why
parallelization has always been a key point in the computer implementation of DEM
since its very early stages.

Our main aim here is to study the sensitivity of the ozone concentration according
to the rate variation of some chemical reactions. We consider the chemical rates
to be the input parameters and the concentrations of pollutants to be the output
parameters.

6 Numerical Results and Discussion

Some numerical experiments are performed to study experimentally various proper-
ties of the algorithms. We are interested in both smooth and non-smooth integrands.
The reason to consider both cases is that we deal with many different output
functions using the UNI-DEM model. Formally the output functions should have
enough smoothness, because the solution has bounded second derivatives by defini-
tion. Nevertheless, some functions of concentrations that depend on photochemical
reactions in the air have computational irregularities. It means that the derivative of
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Table 1 Relative error and computational time for numerical integration of a smooth function
(S( f2)≈ 0.10897)

SFMT Sobol QMCA Owen scrambling MCA-MSS-1

Rel. Time Rel. Time Rel. Time ρ Rel. Time
n error (s) error (s) error (s) ×103 error (s)

102 0.0562 0.002 0.0365 < 0.001 0.0280 0.001 3.9 0.0363 0.001
13 0.0036 0.001

103 0.0244 0.004 0.0023 0.001 0.0016 0.001 1.9 0.0038 0.010
6.4 0.0019 0.010

104 0.0097 0.019 0.0009 0.002 0.0003 0.003 0.8 0.0007 0.070
2.8 0.0006 0.065

the function is very high by modulo and it causes computational difficulties—the
function behaves as a non-smooth function.

The expectations based on theoretical results are that for non-smooth functions
MCA-MSS algorithms based on the shaking procedures outperform the QMC even
for relatively low dimensions. It is also interesting to observe how behave the
randomized QMC based on scrambled Sobol sequences.

For our numerical tests we use the following non-smooth integrand:

f1(x1,x2,x3,x4) =
4

∑
i=1
|(xi− 0.8)−1/3|, (14)

for which even the first derivative does not exist. Such kinds of applications appear
also in some important problems in financial mathematics. The referent value of the
integral S( f1) is approximately equal to 7.22261. To make a comparison we also
consider an integral with a smooth integrand:

f2(x1,x2,x3,x4) = x1 x2
2 ex1x2 sinx3 cosx4. (15)

The second integrand (15) is a function f2 ∈ C∞(Ud) with a referent value of the
integral S( f2) approximately equal to 0.10897. The integration domain in both cases
is U4 = [0,1]4.

Some results from the numerical integration tests with a smooth (15) and a non-
smooth (14) integrand are presented in Tables 1 and 2, respectively. As a measure of
the efficiency of the algorithms, both the relative error (defined as the absolute error
divided by the referent value) and computational time are shown. For generating
Sobol quasi-random sequences, the algorithm with Gray code implementation [1]
and sets of direction numbers proposed by Joe and Kuo [11] are used. The MCA-
MSS-1 algorithm [6] involves generating random points uniformly distributed on a
sphere with radius ρ . One of the best available random number generators, SIMD-
oriented Fast Mersenne Twister (SFMT) [21, 32] 128-bit pseudorandom number
generator of period 219937 − 1 has been used to generate the required random
points. SFMT algorithm is a very efficient implementation of the plain Monte
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Table 2 Relative error and computational time for numerical integration of a non-smooth function
(S( f1)≈ 7.22261)

n

SFMT Sobol QMCA Owen scrambling MCA-MSS-1

Rel. Time Rel. Time Rel. Time ρ Rel. Time
error (s) error (s) error (s) ×103 error (s)

103 0.0010 0.011 0.0027 0.001 0.0021 0.002 1.9 0.0024 0.020
6.4 0.0004 0.025

7.103 0.0009 0.072 0.0013 0.009 0.0003 0.011 1.0 0.0004 0.110
3.4 0.0005 0.114

3.104 0.0005 0.304 0.0003 0.032 0.0003 0.041 0.6 0.0001 0.440
1.9 0.0002 0.480

5.104 0.0007 0.513 0.0002 0.053 2e-05 0.066 0.4 7e-05 0.775
1.4 0.0001 0.788

Carlo method [23]. The radius ρ depends on the integration domain, number of
samples and minimal distance between Sobol deterministic points δ . We observed
experimentally that the behavior of the relative error of numerical integration is
significantly influenced by the fixed radius of spheres. That is why the values
of the radius ρ are presented according to the number of samples n used in our
experiments, as well as to a fixed coefficient, radius coefficient κ = ρ/δ . The latter
parameter gives the ratio of the radius to the minimal distance between Sobol points.
The code of scrambled quasi-random sequences used in our studies is taken from the
collection of NAG C Library [31]. This implementation of scrambled quasi-random
sequences is based on TOMS Algorithm 823 [10]. In the implementation of the
scrambling, there is a possibility to make a choice of three methods of scrambling:
the first is a restricted form of Owen scrambling [19], the second is based on the
method of Faure and Tezuka [8] and the last method combines the first two (it is
referred to as a combined approach).

Random points for the MCA-MSS-1 algorithm have been generated using the
original Sobol sequences and modeling a random direction in d-dimensional space.
The computational time of the calculations with pseudorandom numbers generated
by SFMT (see columns labeled as SFMT and MCA-MSS in Tables 1 and 2) has been
estimated for all 10 algorithm runs.

Comparing the results in Tables 1 and 2 one observes that:

• All algorithms under consideration are efficient and converge with the expected
rate of convergence.

• In the case of smooth functions, the Sobol algorithm is better than SFMT (the
relative error is up to 10 times smaller than for SFMT).

• The scrambled QMC and MCA-MSS-1 are much better than the classical Sobol
algorithm; in many cases even the simplest shaking algorithm MCA-MSS-1 gives
a higher accuracy than the scrambled algorithm.

• In the case of non-smooth functions, SFMT algorithm implementing the plain
Monte Carlo method is better than the Sobol algorithm for relatively small
samples (n).
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Table 3 Relative error and computational time for numerical integration of a smooth function
(S( f )≈ 0.10897)

No. of points n Sobol QMCA MCA-MSS-1 MCA-MSS-2 MCA-MSS-2-S

(No. of double Rel. Time ρ Rel. Time Rel. Time Rel. Time
points 2n) error (s) ×103 error (s) error (s) error (s)

29 0.0059 < 0.001 2.1 0.0064 0.009 0.0033 0.010 0.0016 0.005
(2×29) 6.4 0.0061 0.010 0.0032 0.010
210 0.0035 0.002 1.9 0.0037 0.010 9e-05 0.020 0.0002 0.007
(2×210) 6.4 0.0048 0.010 0.0002 0.020
216 2e-05 0.027 0.4 3e-05 1.580 7 e-06 1.340 9e-06 0.494
(2×216) 1.2 0.0001 1.630 5e-06 1.380

• In the case of non-smooth functions, our Monte Carlo shaking algorithm MCA-
MSS-1 gives similar results as the scrambled QMC; for several values of n, we
observe advantages for MCA-MSS-1 in terms of accuracy.

• Both MCA-MSS-1 and scrambled QMC are better than SFMT and Sobol quasi
MC algorithm in the case of non-smooth functions.

Another observation is that for the chosen integrands the scrambling algorithm
does not outperform the algorithm with the original Sobol points, but the scrambled
algorithm and Monte Carlo algorithm MCA-MSS-1 are more stable with respect to
relative errors for relatively small values of n.

In Table 3 we compare Sobol QMCA with MCA-MSS-2 and MCA-MSS-2-S,
as well as with simplest shaking algorithm MCA-MSS-1. The results show that the
simplest shaking algorithm MCA-MSS-1 gives relative errors similar to errors of
the Sobol QMCA, which is expected since the ΛΠτ Sobol sequences are already
quite well distributed. That is why one should not expect improvement for a very
smooth integrand. But the symmetrised shaking algorithm MCA-MSS-2 improves
the relative error. The effect of this improvement is based on the fact that the second
derivatives of the integrand exists, they are bounded and the construction of the
MCA-MSS-2 algorithm gives a better convergence rate of order O(n−1/2−2/d). The
same convergence rate has the algorithm MCA-MSS-2-S, but the latter one does
not allow to control the value of the radius of shaking. As expected MCA-MSS-2-S
gives better results than MCA-MSS-1. The relative error obtained by MCA-MSS-
2 and MCA-MSS-2-S are of the same magnitude (see Table 3). The advantage of
MCA-MSS-2-S is that its computational complexity is much smaller. A comparison
of the relative error and computational complexity for different values of n is
presented in Table 4. To have a fair comparison we have to consider again a smooth
function (15). The observation is that MCA-MSS-2-S algorithm outperforms the
simplest shaking algorithm MCA-MSS-1 in terms of relative error and complexity.

After testing the algorithms under consideration on the smooth and non-smooth
functions, we studied the efficiency of the algorithms on real-life functions obtained
after running UNI-DEM. Polynomials of 4th degree with 35 unknown coefficients
are used to approximate the mesh functions containing the model outputs.
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Table 4 Relative error and computational time for numerical integration of a smooth function
(S( f )≈ 0.10897) (comparison between MCA-MSS-1 and MCA-MSS-2-S algorithms)

n

Sobol QMCA MCA-MSS-1 MCA-MSS-2-S

Rel. Time ρ Rel. Time Rel. Time
×103 error (s) error (s) error (s)

2×44 0.0076 < 0.001 2.1 0.0079 < 0.001 0.0016 0.005
(512) 6.4 0.0048 < 0.001
2×64 0.0028 0.001 1.2 0.0046 0.030 0.0004 0.009
(2,592) 4.1 0.0046 0.030
2×84 0.0004 0.004 0.9 0.0008 0.090 0.0002 0.025
(8,192) 2.9 0.0024 0.090
2×104 0.0002 0.008 0.6 0.0001 0.220 5e-05 0.070
(20,000) 2.0 0.0013 0.230
2×134 0.0001 0.022 0.4 0.0001 0.630 4e-06 0.178
(57,122) 1.2 0.0007 0.640
2×144 5e-06 0.029 0.4 1e-05 0.860 1e-05 0.237
(76,832) 1.2 0.0005 0.880
2×154 8e-06 0.036 0.4 0.0001 1.220 9e-07 0.313
(101,250) 1.2 0.0005 1.250

We use various values of the number of points that corresponds to situations
when one needs to compute the sensitivity measures with different accuracy. We
have computed results for g0 (g0 is the integral over the integrand g(x) = f (x)− c,
f (x) is the approximate model function of UNI-DEM and c is a constant obtained as
a Monte Carlo estimate of f0, [28]), the total variance D as well as total sensitivity
indices Stot

i , i = 1,2,3. The above-mentioned parameters are presented in Table 5.
Table 5 presents the results obtained for a relatively low sample size n = 6,600.

One can notice that for most of the sensitivity parameters, the simplest shaking
algorithm MCA-MSS-1 outperforms the scrambled Sobol sequences, as well as the
algorithm based on the ΛΠτ Sobol sequences in terms of accuracy. For higher values
of sample sizes this effect is even stronger.

One can clearly observe that the simplest shaking algorithm MCA-MSS-1
based on modified Sobol sequences improves the error estimates for non-smooth
integrands. For smooth functions modified algorithms MCA-MSS-2 and MCA-
MSS-2-S give better results than MCA-MSS-1. Even for relatively large radiuses
ρ the results are good in terms of accuracy. The reason is that centers of spheres
are very well uniformly distributed by definition. So that even for large values of
radiuses of shaking the generated random points continue to be well distributed.
We should stress on the fact that for relatively low number of points (< 1,000) the
algorithm based on modified Sobol sequences gives results with a high accuracy.
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Table 5 Relative error (in absolute value) and computational time for estimation of
sensitivity indices of input parameters using various Monte Carlo and quasi-Monte
Carlo approaches (n = 6,600,c≈ 0.51365,δ ≈ 0.08)

MCA-MSS-1Estimated
quantity Sobol QMCA Owen scrambling ρ Rel. error

g0 1e-05 0.0001 0.0007 0.0001
0.007 6e-05

D 0.0007 0.0013 0.0007 0.0003
0.007 0.0140

Stot
1 0.0036 0.0006 0.0007 0.0009

0.007 0.0013
Stot

2 0.0049 6e-05 0.0007 2e-05
0.007 0.0034

Stot
3 0.0259 0.0102 0.0007 0.0099

0.007 0.0211

7 Conclusions

A comprehensive theoretical and experimental study of the Monte Carlo algorithm
MCA-MSS-2 based on symmetrised shaking of Sobol sequences has been done.
The algorithm combines properties of two of the best available approaches—Sobol
QMC integration and a high-quality SFMT pseudorandom number generator. It has
been proven that this algorithm has an optimal rate of convergence for functions
with continuous and bounded second derivatives in terms of probability and mean
square error.

A comparison with the scrambling approach, as well as with the Sobol QMC
algorithm and the algorithm using SFMT generator, has been provided for numerical
integration of smooth and non-smooth integrands. The algorithms mentioned above
are tested numerically also for computing sensitivity measures for UNI-DEM model
to study sensitivity of ozone concentration according to variation of chemical rates.
All algorithms under consideration are efficient and converge with the expected rate
of convergence. It is important to notice that the Monte Carlo algorithm MCA-
MSS-2 based on modified Sobol sequences when symmetrised shaking is used has
a unimprovable rate of convergence and gives reliable numerical results.
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Structures and Waves in a Nonlinear
Heat-Conducting Medium

Stefka Dimova, Milena Dimova, and Daniela Vasileva

Abstract This paper is an overview of the main contributions of a Bulgarian team
of researchers to the problem of finding the possible structures and waves in the open
nonlinear heat-conducting medium, described by a reaction–diffusion equation.
Being posed and actively worked out by the Russian school of A.A. Samarskii and
S.P. Kurdyumov since the seventies of the last century, this problem still contains
open and challenging questions.

Keywords Nonlinear heat-conducting medium • Self-organization • Reaction-
diffusion equation • Self-similar solutions • Blow-up • Finite element method.
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1 Introduction

A very general form of the model of heat structures reads as follows:

ut =
N

∑
i=1

(ki(u)uxi)xi +Q(u), t > 0, x ∈ R
N , (1)
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where the heat conductivity coefficients ki(u)≥ 0 and the heat source Q(u)≥ 0 are
nonlinear functions of the temperature u(t,x)≥ 0.

Models such as (1) are studied by many researchers in various contexts. A part
of this research is devoted to semilinear equations: ki(u) ≡ 1, Q(u) = λ eu (Frank–
Kamenetskii equation) and Q(u) = uβ , β > 1. After the pioneer work of Fujita [28],
these equations and some generalizations of theirs are studied intensively by many
authors, including J. Bebernes, A. Bressan, H. Brezis, D. Eberly, A. Friedman, V.A.
Galaktionov, I.M. Gelfand, M.A. Herrero, R. Kohn, L.A. Lepin, S.A. Posashkov,
A.A. Samarskii, J.L. Vázquez, and J.J. L. Velázquez. The book [6] contains a part
of these investigations and a large bibliography.

The quasilinear equation is studied by D.G. Aronson, A. Friedman, H.A. Levine,
S. Kaplan, L.A. Peletier, J.L. Vázquez, and others. The contributions of the Russian
school are significant. The unusual localization effect of the blow-up boundary
regimes is discovered by numerical experiment in the work of A.A. Samarskii and
M.I. Sobol in 1963 [49]. The problem of localization for quasilinear equations with
a source is posed by S.P. Kurdyumov [42] in 1974. The works of I.M. Gelfand, A.S.
Kalashnikov, and the scientists of the school of A.A. Samarskii and S.P. Kurdyumov
are devoted to the challenging physical and mathematical problems, related with
this model and its generalizations. Among them are localization in space of the
process of burning, different types of blow-up, and arising of structures—traveling
and standing waves, complex structures with varying degrees of symmetry. The
combination of the computational experiment with the progress in the qualitative
and analytical methods of the theory of ordinary and partial differential equations,
the Lie and the Lie–Bäcklund group theory, has been crucial for the success of
these investigations. The book [52] contains many of these results, achieved till
1986; in the review [32], there are citations of later works. A special part of these
investigations is devoted to finding and studying different kinds of self-similar and
invariant solutions of (1) with power nonlinearities:

ki(u) = uσi , Q(u) = uβ . (2)

This choice is suggested by the following reasoning:

First, such temperature dependencies are usual for many real processes [5,54,57].
For example, when σi = σ = 2.5, β ≤ 5.2, (1) describes thermonuclear combustion
in plasma in the case of electron heat conductivity, the parameters σ = 0, 2 ≤
β ≤ 3 correspond to the models of autocatalytic processes with diffusion in the
chemical reactors, σ≈6.5 corresponds to the radiation heat conductivity of the high-
temperature plasma in the stars, and so on.

Second, it is shown in [25] that in the class of power functions, the symmetry of (1)
is maximal in some sense—the equation admits a rich variety of invariant solutions.
In general, almost all of the dissipative structures known so far are invariant
or partially invariant solutions of nonlinear equations. The investigations of the
dissipative structures provide reasons to believe that the invariant solutions describe
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the attractors of the dissipative structures’ evolution and thus they characterize
important internal properties of the nonlinear dissipative medium.

Third, this rich set of invariant solutions of (1) with power nonlinearities is
necessary for the successful application of the methods for investigating the same
equation in the case of more general dependencies ki(u), Q(u). By using the methods
of operator comparison [29] and stationary states [34], it is possible to analyze the
properties of the solutions (such as localization, blow-up, asymptotic behavior) of
whole classes general nonlinear equations. The method of approximate self-similar
solutions [33], developed in the works of A.A. Samarskii and V.A. Galaktionov,
makes it possible to put in accordance with such general equations some other, basic
equations. The latter could have invariant solutions even if the original equations do
not have such. Moreover, the original equations may significantly differ from the
basic equations, and nevertheless their solutions tend to the invariant solutions of
the basic equations at the asymptotic stage.

Finally, in the case of power coefficients, the dissipation and the source are
coordinated so that complex structures arise; moreover, a spectrum of structures,
burning consistently, occurs.

Below we report about the main contributions of the Bulgarian research team,
S.N. Dimova, M.S. Kaschiev, M.G. Koleva, D.P. Vasileva, and T.P. Chernogorova,
to the problem of finding the possible evolution patterns in the heat-conducting
medium, described by the reaction–diffusion Eq. (1), (2). The outline of this paper
is as follows. The main notions, needed further, are introduced in Sect. 2 on the
simplest and the most-studied radially symmetric case. The specific peculiarities of
the numerical methods, developed and applied to solve the described problems, are
systematized in Sect. 3. A brief report on the main achievements of the team is made
in Sect. 4. Section 5 contains some open problems.

2 The Radially Symmetric Case, the Main Notions

Let us introduce the main notions to be used further on the Cauchy problem for (1)
with initial data:

u(0,x) = u0(x)≥ 0, x ∈R
N , supu0(x)< ∞.

This problem could have global or blow-up solutions. The global in time solution is
defined and bounded in R

N for every t. The unbounded (blow-up) solution is defined
in R

N on a finite interval [0,T0), moreover

limt→T−0
sup

x∈RN
u(t,x) = +∞.

The time T0 is called blow-up time.
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The unbounded solution of the Cauchy problem with finite support initial data
u0(x) is called localized (in a strong sense), if the set

ΩL = {x ∈ R
N : u(T−0 ,x) := limt→T−0

u(t,x)> 0}

is bounded in R
N . The set ΩL is called localization region. The solution localized in

a strong sense grows infinitely for t → T−0 in a finite region

ωL = {x ∈ R
N : u(T−

0 ,x) = ∞}

in general different from ΩL.
If for ki(u)≡ 0 the condition

ˆ ∞

1

du
Q(u)

<+∞ (3)

holds, then the solution of the Cauchy problem is unbounded [52]. The heating of
the medium happens in a blow-up regime; moreover, the blow-up time of every point
of the medium is different, depending on its initial temperature.

If for Q(u)≡ 0 the condition

ˆ 1

0

ki(u)
u

du <+∞, i = 1,2, . . . ,N, (4)

holds, then a finite speed of heat propagation takes place for a finite support initial
perturbation in an absolutely cold medium [52].

In the case (2) of power nonlinearities, it is sufficient to have σi > 0,β > 1 for the
conditions (3) and (4) to be satisfied. Then ki(0) = 0 and (1) degenerates. In general
it has a generalized solution, which could have discontinuous derivatives on the
surface of degeneration {u = 0}.

2.1 The Basic Blow-Up Regimes

The basic blow-up regimes will be explained on the radially symmetric version of
the Cauchy problem for (1):

ut =
1

xN−1 (x
N−1uσ ux)x + uβ , x ∈ R

1
+, t > 0, σ > 0, β > 1, (5)

ux(t,0) = 0, u(0,x) = u0(x)≥ 0, 0≤ x < l, u0(x)≡ 0, x ≥ l. (6)

If u0(x) satisfies the additional conditions u0(x) ∈ C(R1
+), (uσ

0 u′0)(0) = 0, there
exists unique local (in time) generalized solution u = u(t,x) of problem (5)–(6),
which is a nonnegative continuous function in R

1
+× (0,T ), where T ∈ (0,∞] is the
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finite or infinite time of existence of the solution (see the bibliography in the review
[39]). Moreover u(t,x) is a classical solution in a vicinity of every point (t,x), where
u(t,x) is strictly positive. It could not have the necessary smoothness at the points of
degeneracy, but the heat flux−xN−1uσ ux must be continuous. It means that uσ ux = 0
everywhere u = 0. Equation (5) admits a self-similar solution (s.-s.s.) [52]:

us(t,x) = ϕ(t)θs(ξ ) =
(

1− t
T0

) −1
β−1

θs(ξ ), (7)

ξ = x/ψ(t) = x/

(
1− t

T0

) m
β−1

, m =
β −σ − 1

2
. (8)

The s.-s.s. corresponds to initial data us(0,x) = θs(x). The function ϕ(t) determines
the amplitude of the solution. The self-similar function (s.-s.f.) θs(ξ )≥ 0 determines
the space-time structure of the s.-s.s. (7). This function satisfies the degenerate
ordinary differential equation in R

1
+:

L(θs)≡− 1
ξ N−1 (ξ

N−1θ σ
s θ ′s)

′+
β −σ − 1
2(β − 1)T0

ξ θ ′s +
1

(β − 1)T0
θs−θ β

s = 0 (9)

and the boundary conditions:

θ ′s(0) = 0, θs(∞) = 0, θ σ
s θ ′s(ξ0) = 0, if θs(ξ0) = 0. (10)

Equation (9) has two constant solutions: θs(ξ ) ≡ θH = (T0(β − 1))
−1

β−1 and
θs(ξ )≡ 0. These two solutions play an important role in the analysis of the different
solutions of (9). For blow-up regimes we assume T0 > 0. Without loss of generality
we set

T0 = 1/(β − 1), then θH ≡ 1. (11)

The analysis of the solutions of problem (9), (10), carried out in the works [1,26,
50, 51], (see also [52], Chap. IV), gives the following results:

• For arbitrary 1 < β ≤ σ + 1 there exist a finite support solution θs(ξ )≥ 0.
• For β < σ + 1, N ≥ 1 and β = σ + 1, N > 1 the problem has no nonmonotone

solutions. The uniqueness is proved only for β < σ + 1, N = 1.
The graphs of the s.-s.f. θs(ξ ) for β = σ + 1 = 3, N = 1,2,3 are shown in

Fig. 1, the graphs of the s.-s.f. θs(ξ ) for β = 2.4 < σ + 1 = 3, N = 1,2,3 in
Fig. 2.

• For β > σ + 1, N ≥ 1 the problem has no finite support solutions.
• If σ + 1 < β < βs = (σ + 1)(N + 2)/(N− 2)+, (βs—the critical Sobolev expo-

nent), the problem has at least one solution θs(ξ ) > 0 in R
1
+, strictly monotone

decreasing in ξ and having the asymptotics
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θs(ξ ) =Csξ−2/(β−σ−1)[1+ω(ξ )], ω(ξ )→ 0, ξ → ∞, (12)

Cs = Cs(σ ,β ,N) is a constant. Later on in [31] the interval in β has been
extended.

• For N = 1, β > σ + 1 the problem has at least

K =−[−a]− 1, a =
β − 1

β −σ − 1
> 1 (13)

different solutions [1,26,52]. Let us introduce the notations θs,i(ξ ), i= 1,2, . . . ,K
for them. On the basis of linear analysis and some numerical results in the works
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[43, 44], it has been supposed that the number of different solutions θs,i(ξ ) for
β > σ + 1 and N ≥ 1 is K + 1. For N = 1 this result was refined [45] by using
bifurcation analysis: the number of solutions is K = [a], if a is not an integer, and
K = a− 1, if a is an integer. For N = 2,3 the bifurcation analysis gives the same
estimate for the number of different solutions, but for β ≈ σ + 1, β > σ + 1 it is
violated (see Sect. 4.1).

The graphs of the four self-similar functions, existing for σ = 2,β = 3.6 > σ +1
(K = 4), are shown in Fig. 3 (N = 1) and Fig. 4 (N = 3).
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These results determine the basic regimes of burning of the medium, described
by the s.-s.s. (7), (8). The following notions are useful for their characterization:

– Semi-width xs = xs(t), determined by the equation u(t,xs) = u(t,0)/2 for
solutions, monotone in x and having a single maximum at the point x = 0.

– Front-point x f : u(t,x f ) = 0, uσ ux(t,x f ) = 0.

2.1.1 HS-Evolution, Total Blow-Up, 1 < β < σ + 1

The heat diffusion is more intensive than the heat source. The semi-width and the
front tend to infinity; a heat wave, which covers the whole space for time T0, is
formed. The process is not localized: mes ΩL = mes ωL = ∞, xs → ∞, x f →
∞, t → T−

0 .

2.1.2 S-Evolution, Regional Blow-Up, β = σ + 1

The heat diffusion and the source are correlated in such a way that leads to
localization of the process in a region ΩL = ωL = {|x|< Ls/2} of diameter Ls,
called a fundamental length of the S-regime. The semi-width is constant; inside
ΩL the medium is heated to infinite temperature for time T0 : xs = const, x f = Ls/2.
In the case N = 1 the solution θs(ξ ) (Zmitrenko–Kurdyumov solution) is found [50]
explicitly:

θs(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

(
2(σ + 1)

σ + 2
cos2 πξ

Ls

)1/σ
, |ξ | ≤ Ls

2

0 |ξ |> Ls

2
,

(14)

Ls = diam ΩL = (2π
√

σ + 1)/σ , xs = Ls arccos((2−
σ
2 )/π). The solution (14) is

called elementary solution of the S-regime for N = 1. In this case (9) is autonomous,
and every function, consisting of k elementary solutions, k = 1,2, . . ., is a solution
as well, i.e., (9) has a countable set of solutions.

2.1.3 LS-Evolution, Single Point Blow-Up, σ + 1 < β < βf = σ + 1+ 2
N

Here β f is the critical Fujita exponent [46]. The intensity of the source is bigger than
the diffusion. The front of the s.-s.s. is at infinity (12), the semi-width decreases, and
the medium is heated to infinite temperature in a single point:

mes ωL = 0, xs → 0, t → T−0 .
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According to the different s.-s.f. θs,i(ξ ), i = 1,2, . . . , the medium burns as a simple
structure (i = 1) and as complex structures (i > 1) with the same blow-up time.

2.2 Stability of the Self-similar Solutions

To show the important property of the s.-s.s. as attractors of wide classes of other
solutions of the same equation, we will need of additional notions.

In the case of arbitrary finite support initial data u0(x) (6), the so-called self-
similar representation [26] of the solution u(t,x) of problem (5), (6) is defined. It is
determined at every time t according to the structure of the s.-s.s. (7), (8):

Θ(t,ξ ) = (1− t/T0)
1

β−1 u
(

t,ξ (1− t/T0)
m

β−1

)
= ϕ−1(t)u(t,ξ ψ(t)). (15)

The s.-s.s. us(t,x) is called asymptotically stable [52] if there exists a sufficiently
large class of solutions u(t,x) of problem (5), (6) for initial data u0(x) �≡ θs(x),
whose self-similar representations Θ(t,ξ ) tend in some norm to θs(ξ ) when
t → T−

0 :

‖Θ(t,ξ )−θs(ξ )‖→ 0, t → T−
0 . (16)

The definition of the self-similar representation (15) contains the blow-up time
T0. For theoretical investigations this is natural, but for numerical investigations def-
inition (15) is unusable since for arbitrary initial data u0(x) �= θs(x) T0 is not known.
Therefore, another approach has been proposed and numerically implemented (for
N = 1) in [26, 51]. This approach gives a possibility to investigate the structural
stability of the unbounded solutions in a special “self-similar” norm, consistent for
every t with the geometric form of the solution and not using explicitly the blow-up
time T0. A new self-similar representation, consistent with the structure of the s.-s.s.
(7), (8), is introduced:

Θ(t,ξ ) = u(t,ξ (γ(t))−m)/γ(t), γ(t) =
maxxu(t,x)
maxξ θs(ξ )

. (17)

If the limit (16) takes place for Θ(t,ξ ), given in (17), then the self-similar solution
us(t,x) is called structurally stable.

The notion of structural stability, i.e., the preservation in time of some character-
istics of the structures, such as geometric form, rate of growth, and localization in
space, is tightly connected with the notion invariance of the solutions with respect
to the transformations, involving the time [30]. This determines its advisability for
investigating the asymptotic behavior of the blow-up solutions.

In the case of complex structures, another notion of stability is needed, namely,
metastability. The self-similar solution us(t,x) is called metastable if for every ε >
0 there exists a class of initial data u(0,x) ≈ θs(x) and a time T , T0−T � T0 such
that
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‖Θ(t,ξ )−θs(ξ ) ‖≤ ε, for 0≤ t ≤ T

holds for the self-similar representations (17) of the corresponding solutions. This
means, that the metastable s.-s.s. preserves its complex space-time structure during
the evolution up to time T , very close to the blow-up time T0. After that time the
complex structure could degenerate into one or several simple structures.

3 Numerical Methods

To solve the reaction–diffusion problem (5), (6) and the corresponding self-similar
problem (9), (10), as well as their generalizations both for systems of such equations
and for the 2D case, appropriate numerical methods and algorithms were developed.

The difficulties, common for the nonstationary and for the self-similar problems,
were the nonlinearity, the dependence on a number of parameters (not less than 3),
and insufficient smoothness of the solutions on the degeneration surface, where the
solutions vanish. In the case of radial symmetry for N > 1 and polar coordinates in
the 2D case, additional singularity at x = 0 (ξ = 0) occurs.

The main challenge in solving the self-similar problems is the nonuniqueness
of their solutions for some ranges of the parameters. The following problems
arise: to find a “good” approximation to each of the solutions; to construct an
iteration process, converging fast to the desired solution (corresponding to the
initial approximation) and ensuring sufficient accuracy; to construct a computational
process, which enables finding all different solutions for given parameters (σ ,β ,N)
in one and the same way; and to determine in advance where to translate the
boundary conditions from infinity, for example (10), for the asymptotics (12) to
be fulfilled.

The main difficulty in solving the nonstationary problems is the blow-up of their
solutions: blow-up in a single point, in a finite region, and in the whole space. Two
other difficulties are connected with—the moving front of the solution, where it is
often not sufficiently smooth, and the instability of the blow-up solutions.

3.1 Initial Approximations to the Different s.-s.f. for a Given
Set of Parameters

To overcome the difficulty with the initial approximations to the different s.-s.f.,
we have used the approach proposed and used in the works [43, 44]. Based on the
hypothesis that in the region of their nonmonotonicity the s.-s.f. have small oscilla-
tions around the homogeneous solution θH , this approach consists of “linearization”
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of the self-similar equation around θH and followed by “sewing” the solutions of the
resulting linear equation with the known asymptotics at infinity, e.g., (12).

Our experiments showed [19] that when β → σ + 1+ 0, the hypothesis about
small oscillations of the s.-s.f. around θH is not fulfilled. The detailed analytical
and numerical investigations [12, 19, 38] of the “linear approximations” in the
radially symmetric case for N = 1,2,3 showed that even in the case that these
approximations take negative values in vicinity of the origin, they still give the true
number of crossings with θH and, thus, the character of nonmonotonicity of the s.-s.
functions. Recommendations of how to use the linear approximations in these cases
are made in [19]. Let us note, the “linear approximations” are expressed by different
special functions: the confluent hypergeometric function 1F1(a,b;z) and the Bessel
function Jk(z) for different parameter ranges within the complex plane for a and b
and different ranges of the variable z. To compute these special functions, various
methods were used: Taylor series expansions, expansions in ascending series of
Chebyshev polynomials, rational approximations, and asymptotic series [15, 17].

3.2 Numerical Method for the Self-similar Problems

To solve the self-similar problem (9), (10) and its generalization for systems of
ODE and for the 2D case, the continuous analog of the Newton’s method (CANM)
was used [12–16, 19–23, 38, 40, 41]. Proposed by Gavurin [35], this method was
further developed in [48, 56] and used for solving many nonlinear problems. The
idea behind it is to reduce the stationary problem L(θ ) = 0 to the evolution one:

L′(θ )
∂θ
∂ t

=−L(θ ), θ (ξ ,0) = θ0(ξ ), (18)

by introducing a continuous parameter t, 0 < t < ∞, on which the unknown solution
depends: θ = θ (ξ , t). By setting v = ∂θ/∂ t and applying the Euler’s method to the
Cauchy problem (18), one comes to the iteration scheme:

L′(θn)vn =−L(θn), (19)

θn+1 = θn + τnvn, 0 < τn ≤ 1, n = 0,1, . . . ,

θn = θn(ξ ) = θ (ξ , tn), vn = vn(ξ ) = v(ξ , tn),
θ0(ξ ) being the initial approximation.

(20)

The linear equations (19) (or the system of such equations in the case of a two-
component medium) are solved by the Galerkin finite element method (GFEM) at
every iteration step. The combination of the CANM and the GFEM turned out to be
very successful. The linear system of the FEM with nonsymmetric matrix is solved
by using the LU decomposition. The iteration process (20) converges very fast—
usually less than 15–16 iterations are sufficient for stop-criterium ‖L(θn)‖ < 10−7.
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The numerical investigation of the accuracy of the method being implemented
shows errors (a) of order O(h4) when using quadratic elements in the radially
symmetric case and (b) of optimal-order O(h2) when using linear elements in the
same case or bilinear ones in the 2D case. To achieve the same accuracy in vicinity
of the origin in the radially symmetric case for N ≥ 3, the nonsymmetric Galerkin
method [27] was developed [14, 38].

The computing of the solutions of the linearized self-similar equation and their
sewing with the known asymptotics is implemented in a software, so the process is
fully automatized. The software enables the computing of the self-similar functions
for all of the blow-up regimes; moreover, in the case of LS-regime, only the number
k of the self-similar function θs,k(ξ ) must be given.

3.3 Numerical Method for the Reaction–Diffusion Problems

The GFEM, based on the Kirchhoff transformation of the nonlinear heat-conductivity
coefficient:

G(u) =
ˆ u

0
sσ ds = uσ+1/(σ + 1), (21)

was used [3, 4, 12–15, 17, 18, 20–23, 53] for solving the reaction–diffusion prob-
lems. This transformation is crucial for the further interpolation of the nonlinear
coefficients on the basis of the finite element space and for optimizing of the
computational process:

Here below we point out the main steps of the method on the problem (5), (6) in
a finite interval [0, X(t)] under the boundary condition u(X(t)) = 0. Because of the
finite speed of heat propagation we choose X = X(t) so as to avoid the influence of
the boundary condition on the solution. The discretization is made on the Galerkin
form of the problem:

Find a function u(t,x) ∈ D,

D = {u : x(N−1)/2u, x(N−1)/2∂u(σ+1)/2/∂x ∈ L2, u(X(t)) = 0},

which for every fixed t satisfies the integral identity

(ut ,v) = A(t;u,v), ∀v ∈ H1(0,X(t)), 0 < t < T0, (22)

and the initial condition (6).
Here

(u,v) =
ˆ X(t)

0
xN−1u(x)v(x)dx, A(t;u,v) =

ˆ X(t)

0

[
xN−1 ∂G(u)

∂x
∂v
∂x

+ xuβ v

]
dx,

H1(0,X(t)) = {v : x(N−1)/2v, x(N−1)/2v′ ∈ L2(0,X(t)), v(X(t)) = 0.}
The lumped mass finite element method [55] with interpolation of the nonlinear
coefficients G(u) (21) and q(u) = uβ :



Structures and Waves in a Nonlinear Heat-Conducting Medium 169

G(u)∼ GI =
n

∑
i=1

G(ui)ϕi(x), q(u)∼ qI =
n

∑
i=1

q(ui)ϕi(x)

on the basis {ϕi}, i = 1, . . . ,n, of the finite element space is used for discretization
of (22). The resulting system of ordinary differential equations with respect to the
vector U(t) = (u1(t),u2(t), . . . ,un(t))T of the nodal values of the solution u(t,x) at
time t is:

U̇ = M̃−1(−KG(U))+ q(U), U(0) =U0. (23)

Here the following denotations are used: G(U) = (G(u1), . . . ,G(un))
T , q(U) =

(q(u1), . . . ,q(un))
T , M̃ is the lumped mass matrix, and K is the stiffness matrix.

Let us mention, thanks to the Kirchhoff transformation and the interpolation of the
nonlinear coefficients, only the two vectors G(U) and q(U) contain the nonlinearity
of the problem, while the matrix K does not depend on the unknown solution.

To solve the system (23) an explicit Runge–Kutta method [47] of second order
of accuracy and an extended region of stability was used. A special algorithm for
choosing the time step τ ensures the validity of the weak maximum principle and,
in the case of smooth solutions, the achievement of a given accuracy ε up to the end
of the time interval. The stop criterion is τ < 10−16, and then T̃0 is the approximate
blow-up time, found in the computations.

It is worth mentioning that the nonlinearity has changed the prevailing opinion
about the explicit methods. Indeed, there are at least two reasons for an explicit
method to be preferred over the implicit one for solving the system (23):

– The condition for solvability of the nonlinear discrete system on the upper time
level imposes the same restriction on the relation “time step—step in space”, as
does the condition for validity of the weak maximum principle for the explicit
scheme (see [52], Chap. VII, Sect. 5).

– The explicit method for solving large discrete systems has a significant advantage
over the implicit one with respect to the computational complexity.

Let us also mention that in the case of blow-up solutions, the discrete system
on the upper time level would connect solution values differing by 6–12 orders of
magnitude, which causes additional difficulties to overcome. Finally the explicit
methods allow easy parallelization.

The special achievements of the proposed methods are the adaptive meshes in
the LS-regime (refinement of the mesh) and in the HS-regime (stretching meshes
with constant number of mesh points), consistent with the self-similar low. Let us
briefly describe this adaptation idea on the differential problem

ut = Lu, u = u(t,x), x ∈R
N, t > 0, (24)

which admits a self-similar solution of the kind

us(t,x) = ϕ(t)θs(ξ ), ξ = x/ψ(t), us(0,x) = θs(x). (25)
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Since the invariant solution us(x, t) is an attractor of the solutions of (24) for large
classes of initial data different from θs(x), it is important to incorporate the structure
(25) in the numerical method for solving (24). The relation (25) between ξ and
x gives the idea how to adapt the mesh in space. Let Δx(0) be the initial step in
space, Δx(k)—the step in space at t = tk. Then Δx(k) must be chosen so that Δξ (k)

is bounded from below and from above

Δx(0)/λ ≤ Δξ (k) ≤ λ Δx(0)

for an appropriate λ (usually λ = 2).
Further, by using the relation between ψ(t) and ϕ(t), it is possible to incorporate

the structure (25) of the s.-s.s. in the adaptation procedure. In the case of (5), we
have

ξ = xΓ (t)m, Δξ =ΔxΓ (t)m, m=(β −σ− 1)/2, Γ (t) =
maxx u(t,x)
maxx u0(x)

. (26)

On the basis of the relations (26), the following strategy is accepted.
In the case of a single point blow-up, m > 0, we choose the step Δx(k) so that the

step Δξ (k) be bounded from above:

Δξ (k) = Δx(k)Γ (t)m ≤ λ Δx(0). (27)

When condition (27) is violated, the following procedure is carried out: every
element in the region, in which the solution is not established with a given accuracy
δu (usually δu = 10−7), is divided into two equal elements, and the values of the
solution in the new mesh points are found by interpolating from the old values;
the elements, in which the solution is established with a given accuracy δu, are
neglected.

In the case of a total blow-up, m < 0, we choose the step Δx(k) so that the step
Δξ (k) be bounded from below:

Δξ (k) = Δx(k)Γ (t)m ≥ λ Δx(0). (28)

When condition (28) is violated, the lengths of the elements are doubled, and so
is the interval in x: X(tk+1) = 2X(tk); thus, the number of mesh points remains
constant.

This adaptation procedure makes it possible to compute efficiently the single
point blow-up as well as the total blow-up solutions up to amplitudes 106–1012,
depending on the medium parameters. It ensures the authenticity of the results
of investigation of the structural stability and the metastability of the self-similar
solutions. Let us note, this approach does not require an auxiliary differential
problem for the mesh to be solved, unlike the moving mesh methods [10]. The idea
to use the invariant properties of the differential equations and their solutions [7] and
to incorporate the structural properties (e.g., geometry, different kind of symmetries,
the conservation laws) of the continuous problems in the numerical method lies at
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the basis of an important direction of the computational mathematics—geometric
integration, to which many works and monographs are devoted—see [9, 24, 37] and
the references therein.

The numerous computational experiments carried out with the exact self-similar
initial data (14) for N = 1,β = σ + 1, as well as with the computed self-similar
initial data, show a good blow-up time restoration (set into the self-similar problem)
in the process of solving the reaction–diffusion problem. The preservation of the
self-similarity and the restoration of the blow-up time demonstrate the high quality
of the numerical methods for solving both the self-similar and the nonstationary
problems.

4 Results and Achievements

The developed numerical technique was used to analyze and solve a number of open
problems. Below we present briefly some of them.

4.1 The Transition LS- to S-Regime in the Radially Symmetric
Case

The investigation of the limit case β → σ + 1+ 0 resolved the following paradox
for N > 1: there exists one simple-structure s.-s. function in S-regime (β = σ + 1),
whereas in LS-regime for β → σ +1+0, their number tends to infinity according to
formula (13). The detailed numerical experiment in [19, 38] yielded the following
results. First, it was shown that the structure of the s.-s.f. for N > 1 and β ∼ σ +
1, β > σ + 1 is substantially different from the one for N = 1. Second, for N = 1
the transition β → σ + 1+ 0 is “continuous”—the self-similar function θs,k(ξ ) for
the LS-regime tends to a s.-s.f. of the S-regime, consisting of k elementary solutions.
For N > 1 the transition behaves very differently.

For σ fixed and β → σ + 1 + 0 the central minimum of the “even” s.-s.f.

θ (N)
2 j , j = 1,2, . . . , decreases and surprisingly becomes zero for some β = β ∗j (σ ,N)

(Fig. 5, left). For β < β ∗j (σ ,N) all of the s.-s.f. have zero region around the center
of symmetry, and the radius of this region tends to infinity for β → σ + 1+ 0. All

of the maxima of θ (N)
s,2 j(ξ ) tend to the maximum of the s.-s.f. of the S-regime for the

corresponding σ and for N = 1. Thus, the s.-s.f. θ (N)
s,2 j(ξ ), “going to infinity” when

β →σ +1+0, tends to a s.-s.f. of the S-regime for N = 1 and the same σ , consisting
of j elementary solutions.

For fixed σ there exists such a value β ∗∗j (σ ,N) that for σ + 1 < β < β ∗∗j the

“odd” s.-s.f. θ (N)
s,2 j+1(ξ ), j = 1,2, . . . split into two parts: a central one, tending to the

s.-s.f. of the S-regime for the same N, and second one, coinciding with the s.-s.f.

θ (N)
s,2 j(ξ ), “going to infinity” when β → σ + 1+ 0 (Fig. 5, right).
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Fig. 5 Graphs of the s.-s.f. θs,2 for N = 3, σ = 2, β = {3.6(1); 3.38(2); 3.2(3); 3.08(4); 3.03(5)}
(left) and θs,3 for N = 3, σ = 2, β = {3.2(1); 3.1(2); 3.08(3); 3.06(4); 3.03(5)} (right)

According to the described “scenario”, when β → σ + 1+ 0 only the first s.-s.f.
of the LS-regime remains, and it tends to the unique s.-s.f. of the S-regime.

As a result of this investigation, new-structure s.-s.f. were found—s.-s.f. with a
left front. The existence of such s.-s. functions was confirmed by an asymptotic
analysis, i.e., the asymptotics in the neighborhood of the left front-point were found
analytically [12]. This new type of solutions initiated investigations of other authors
[36, 45] by other methods (the method of dynamical analogy, bifurcation analysis).
Their investigations confirmed our results.

4.2 The Asymptotic Behavior of the Blow-Up Solutions of
Problem (5), (6) Beyond the Critical Fujita Exponent

For β > β f = σ + 1 + 2/N the problem (5), (6) could have blow-up or global
solutions depending on the initial data. For the s.-s. blow-up solution (7), (8)
it holds us(t,r) �∈ L1(R

N). The qualitative theory of nonstationary averaging
“amplitude-semi-width” predicts a self-similar behavior of the amplitude of the
blow-up solutions and a possible non-self-similar behavior of the semi-width [52].
A question was posed there: what kind of invariant or approximate s.-s.s. describes
the asymptotic stage (t → T−

0 ) of the blow-up process?
The detailed numerical experiment carried out in [18, 53] showed that the

s.-s.s. (7), (8), corresponding to θs,1(ξ ), is structurally stable: all of the numerical
experiments with finite support initial data (6), ensuring blow-up, yield solutions
tending to the self-similar one on the asymptotic stage.

4.3 Asymptotically Self-similar Blow-Up Beyond Some Other
Critical Exponents

The numerical investigation of the blow-up processes in the radially symmetric case
for high space dimensions N was carried out in [13, 14]. The aim was to check
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some hypotheses [31] about the solutions of the s.-s. problem (9), (10) and about
the asymptotic stability of the corresponding s.-s. solutions for parameters beyond
the following critical exponents:

βs = (σ + 1)(N + 2)/(N− 2), N ≥ 3 (Sobolev’s exponent).

βu = (σ + 1)(1+ 4/(N− 4− 2
√

N− 1)), N ≥ 11.

βp = 1+ 3(σ+1)+ (σ2(N− 10)2+2σ(5σ+1)(N−10)+9(σ+1)2)1/2/(N−10),

N ≥ 11.

Self-similar functions, monotone in space, were constructed numerically for all
of these cases, thus confirming the hypotheses of their existence (not proved for
β > βu). It was also shown that the corresponding s.-s.s. are structurally stable, thus
confirming another hypothesis of [31]. Due to the strong singularity at the origin,
the nonsymmetric Galerkin method and the special refinement of the finite element
mesh [14] were crucial for the success of these investigations.

4.4 Two-Component Nonlinear Medium

The methods, developed for the radially symmetric problems (5), (6) and (9), (10),
were generalized in [22, 40, 53] for the case of two-component nonlinear medium,
described by the system:

∣∣∣∣∣∣∣∣
u1t =

1
xN−1 (x

N−1uσ1
1 u1x)x + uβ1

1 uγ2
2 , x ∈R

1
+, N = 1,2,3,

u2t =
1

xN−1 (x
N−1uσ2

2 u2x)x + uγ1
1 uβ2

2 , σi > 0, βi > 1, γi ≥ 0, i = 1,2.

(29)

This system admits blow-up s.-s.s. of the form

u1s = (1− t/T0)
m1θ1s(ξ ), ξ = x/(1− t/T0)

n,

u2s = (1− t/T0)
m2θ2s(ξ ), mi < 0, i = 1,2,

(30)

where

mi =
αi

p
, αi = γi + 1−βi, i = 1,2, p = (β1− 1)(β2− 1)− γ1γ2,

n =
m1σ1 + 1

2
=

m2σ2 + 1
2

, σ1(γ2 + 1−β2) = σ2(γ1 + 1−β1).

The s.-s.f. satisfy the system of nonlinear ODE:
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∣∣∣∣∣∣∣
L1(θ1s,θ2s)≡− 1

ξ N−1 (ξ N−1θ σ1
1s θ ′1s)

′+ nξ θ ′1s−m1θ1s−θ β1
1s θ γ2

2s = 0,

L2(θ1s,θ2s)≡− 1
ξ N−1 (ξ N−1θ σ2

2s θ ′2s)
′+ nξ θ ′2s−m2θ2s−θ γ1

1s θ β2
2s = 0

(31)

and the boundary conditions

lim
ξ→0

ξ N−1θ σ1
is θ ′is = 0, lim

ξ→∞
θis = 0, i = 1,2. (32)

Superconvergence of the FEM (of order O(h4)) for solving the s.-s. problem (31)–
(32) by means of quadratic elements and optimal-order convergence (O(h2)) by
means of linear elements was achieved. The structural stability of the s.-s.s. (30)
for parameters σi, βi, γi, i = 1,2, corresponding to the LS-regime (n > 0), was
analyzed in [22,40,53]. It was shown that only the s.-s.s. of systems (29) with strong
feedback (p< 0), corresponding to the s.-s.f. with two simple-structure components,
were structurally stable. All the other s.-s.s. were metastable—self-similarity was
preserved to times not less than 99.3%T̃0.

The proposed computational technique can be applied to investigating the self-
organization processes in wide classes of nonlinear dissipative media described by
nonlinear reaction–diffusion systems.

4.5 Directed Heat Diffusion in a Nonlinear Anisotropic
Medium

Historically the first Bulgarian contribution to the topic under consideration was the
numerical realization of the self-similar solutions, describing directed heat diffusion
and burning of a two-dimensional nonlinear anisotropic medium. It was shown in
[25] that the model of heat structures in the anisotropic case

ut = (uσ1ux1)x1 +(uσ2ux2)x2 +uβ , x = (x1,x2) ∈R
2, σ1 > 0, σ2 > 0, β > 1 (33)

admits invariant solutions of the kind

us(t,x1,x2) =

(
1− t

T0

)− 1
β−1

θs(ξ ), ξ = (ξ1,ξ2) ∈ R
2,

ξi = xi/

(
1− t

T0

) mi
β−1

, mi =
β −σi− 1

2
, i = 1,2.

The self-similar function θs(ξ1,ξ2) satisfies the nonlinear elliptic problem

L(θs)≡
2

∑
i=1

(
− ∂

∂ξi

(
θ σi

s
∂θs

∂ξi

)
+

β −σi− 1
2

ξi
∂θs

∂ξi

)
+θs−θ β

s = 0, (34)
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Fig. 6 S-regime: σ1 = 2, σ2 = 2, β = 3

Fig. 7 HS–S-regime: σ1 = 3, σ2 = 2, β = 3

Fig. 8 HS–LS-regime: σ1 = 3, σ2 = 1, β = 3

∂θs

∂ξi

∣∣∣∣∣
ξi=0

= 0, i = 1,2; θs(ξ )→ 0, |ξ | → ∞. (35)

The Cauchy problem for equation (33) was investigated in the works [3, 4] for
different parameters σ1,σ2 and β . Depending on the parameters, different mixed
regimes S–HS, HS–LS, and S–LS of heat transfer and burning were implemented
numerically. The evolution in time of one and the same initial perturbation is shown
for the cases of the 2D radially symmetric S-regime (Fig. 6), the mixed HS–S-regime
(Fig. 7), and the mixed HS–LS-regime (Fig. 8).
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Fig. 9 Self-similar functions EjMm, j = 1, m = 2,3,4,5,6,7, σ = 2, β = 3.25

To solve the Cauchy problem for (33), a modification of the TERMO Package
of Applied Programs [8], designed initially for solving isotropic problems with
piecewise constant coefficients, was done. TERMO had been worked out by an IMI-
BAS team, after the idea of Raytcho Lazarov and under his guidance, a merit worth
mentioning here.

The s.-s. functions for the corresponding mixed regimes were found in [3] by
self-similar processing of the solution of the Cauchy problem for (33). Later, in [16],
they were found as solutions of the self-similar problem (34), (35). The self-similar
functions of complex symmetry for the isotropic case in Cartesian coordinates
(denoted in [44] as Ei/ j) were found as a special case.

Later on, in [40, 41], the numerical methods were modified for the isotropic
2D self-similar problem in polar coordinates to construct numerically another class
of self-similar functions of complex symmetry (denoted in [44] as E jMm) in LS-
regime and to investigate their structural stability.

Graphical representations of the evolution of the anisotropic invariant solutions,
as well as the s.-s. functions E jMm for some different values of j,m,σ ,β , are
included in the Handbook [11]. We show some of the s.-s.f. E jMm in Fig. 9.
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4.6 Spiral Waves in HS-Regime

The numerical realization of the invariant solutions, describing “spiral” propagation
of the nonhomogeneities in two-dimensional isotropic medium, appears to be one
of the most interesting contributions of ours. The mathematical model in polar
coordinates reads:

ut =
1
r
(ruσ ur)r +

1
r2 (u

σ uϕ)ϕ + uβ , σ > 0, β > 1. (36)

It admits s.-s.s. of the kind [4, 30]:

us(t,r,ϕ) =
(

1− t
T0

)− 1
β−1

θs(ξ ,φ), (37)

ξ = r/

(
1− t

T0

) m
β−1

, φ = ϕ +
c0

β − 1
ln

(
1− t

T0

)
, m =

β −σ − 1
2

. (38)

The self-similar function θs(ξ ,φ) satisfies the nonlinear elliptic equation

L(θs)≡ − 1
ξ

∂
∂ξ

(
ξ θ σ

s
∂θs

∂ξ

)
− 1

ξ 2

∂
∂φ

(
θ σ

s
∂θs

∂φ

)
+

β −σ − 1
2

ξ
∂θs

∂ξ

−c0
∂θs

∂φ
+θs−θ β

s = 0, T0 =
1

β − 1
.

(39)

Here c0 �= 0 is the parameter of the family of solutions. From (38) it follows

ξ esφ = resϕ = const, s =
β −σ − 1

2c0
.

This means that the trajectories of the nonhomogeneities in the medium (say local
maxima) are logarithmic spirals for β �=σ +1 or circles for β =σ +1.The direction
of movement for fixed c0, for example, c0 > 0, depends on the relation between σ
and β : for β > σ + 1 towards the center (twisting spirals) and for β < σ + 1 from
the center (untwisting spirals).

The problem for the numerical realization of the spiral s.-s.s. (37), (38) was posed
in 1984, when the possibility for their existence has been established by the method
of invariant group analysis in the Ph.D. Thesis of S.R. Svirshchevskii. As it was
stated in [2], there were significant difficulties for finding such solutions. First, the
linearization of the self-similar Eq. (39) was not expected to give the desired result,
because it is not possible to separate the variables in the linearized equation. Second,
the asymptotics at infinity of the solutions of the self-similar equation were not
known.
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The first successful step was the appropriate (complex) separation of variables
in the linearized equation. Using the assumption for small oscillations of the s.-s.f.
θs(ξ ,φ) around θ 1

H ≡ 1, i. e., θs(ξ ,φ) = 1+αy(ξ ,φ), α = const, |αy|� 1 and the
idea of linearization around it, the following linear equation for y(ξ ,φ) was found
[17]:

− 1
ξ

∂
∂ξ

(
ξ

∂y
∂ξ

)
− 1

ξ 2

∂ 2y
∂φ2 +

β −σ − 1
2

ξ
∂y
∂ξ

− c0
∂y
∂φ

+(1−β )y = 0.

Seeking for particular solutions Yk(ξ ,φ) = Rk(ξ )ei,k,φ , k ∈ N, it was found: for
β = σ + 1

Rk(ξ ) = Jk(z), z = (σ + c0ki)1/2ξ ,

where Jk(z) is the first kind Bessel function of order k, and for β �= σ + 1

Rk(ξ ) = ξ k
1F1(a,b;z), a =−β − 1+ c0ki

β −σ − 1
+

k
2
, b = 1+ k, z =

β −σ − 1
4

ξ 2,

where 1F1(a,b,z) is the confluent hypergeometric function. The detailed analytical
and numerical investigation [17] of the functions yk(ξ ,φ) = ℜ(Yk(ξ ,φ)) showed
that their asymptotics at infinity are self-similar as well as that the functions

θ̃s,k(ξ ,φ) = 1+αyk(ξ ,φ), |αyk| � 1 (40)

are very close to the sought-after solutions θs(ξ ,φ). Moreover, the amplitude of the
linear approximations yk(ξ ,φ) tends to zero for ξ → ∞ in the case of HS-regime
and to infinity in the case of LS-regime. This gave the idea to seek for s.-s.s. of the
HS-regime, tending to the nontrivial constant solution θs ≡ θH , i.e., to generalize the
notion of s.-s. functions, and, consequently, the notion of the structures and waves,
which arise and preserve themselves in the absolutely cold medium. Although not
exploited earlier, this change is reasonable and fully adequate to the real systems.

All stated above enabled us to predict the asymptotics of the solutions of (39), to
derive a boundary condition by using this asymptotics and to close the s.-s. problem
by the following boundary and periodic conditions [15, 21, 23]:

lim
ξ→0

ξ θ σ
s,k

∂θs,k

∂ξ
= 0, φ ∈

[
0,

2π
k

]
,

∂θs,k

∂ξ
=

θs,k− 1
m̄ξ

− γk

sξ 1− 1
m̄

sin(kφ +
k
s

lnξ + μ), ξ = l � 1, φ ∈
[

0,
2π
k

]
,

θs,k(ξ ,0) = θs,k

(
ξ ,

2π
k

)
,

∂θs,k

∂φ
(ξ ,0) =

∂θs,k

∂φ

(
ξ ,

2π
k

)
, 0≤ ξ ≤ l,

(41)
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Fig. 10 One-armed spiral solution (k = 1), two-armed spiral solution (k = 2), three-armed spiral
solution (k = 3), c0 = 1, σ = 3, β = 3.6

where m̄ = m/(β −1), γ and μ are constants, depending on σ ,β ,c0. The numerical
solving of the problem (39), (41) for c0 �= 0 with initial approximations (40) gives
“the spiral” s.-s. functions of the HS-regime; some of them and their evolution in
time by solving (36) were investigated in [15, 21, 23]. The graphs of the s.-s.f. for
k = 1 (one-armed spiral), k = 2 (two-armed spiral), and k = 3 (three-armed spiral)
are shown in Fig. 10. The rest of the parameters are σ = 3, β = 3.6, c0 = 1.

The evolution of three-armed s.-s.f. for parameters σ = 2, β = 2.4, k = 3,
c0 = 1 is shown in Fig. 11. The exact blow-up time is (11) T0 = 1/(β − 1) =
0.(714285). Similarly to all complex-symmetry s.s.-s., the three-armed spiral one
is metastable—at T → T0 it degenerates into the simplest radially symmetric s.-
s.s. for the same parameters σ ,β . The mesh adaptation in r-direction when solving
(36) is realized again in consistency with the self-similar law, keeping the same
number of mesh points during the whole process of evolution. Having to solve two
nonlinear 2D problems (elliptic and reaction–diffusion), going through a number
of approximations, it is astonishing that the restoration (with accuracy 10−6) of the
exact blow-up time is practically perfect (Fig. 11, right most bottom).

The existence of spiral structures in LS-regime is an open question by now. The
“ridges” of the linear approximations of the s.-s.f. in the LS-regime tend also to the
self-similar ones for ξ → ∞ [17], but their amplitudes tend to infinity, and it is not
clear by what asymptotics to sew the linear approximations.

4.7 Complex-Symmetry Waves in HS-Regime and S-Regime

In the process of solving the problem for the spiral s.-s.s., an idea arose to seek
for complex nonmonotone waves, tending to the nonzero homogeneous solution for
ξ → ∞ in HS-regime and c0 = 0.

Figure 12 shows a complex-symmetry s.-s.f. and its evolution in time for the same
parameters σ ,β , as in Fig. 11, and k = 2, c0 = 0. Note the same perfect restoration
of the blow-up time.

The results about the spiral and the complex-symmetry s.-s.f. are included in the
book [54].
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Fig. 11 Evolution of three-armed spiral wave: σ = 2, β = 2.4, c0 = 1, k = 3, T0 = 0.(714285)

Fig. 12 Evolution of a complex wave in HS-regime: σ = 2, β = 2.4, c0 = 0, k = 2, T0 =
0.(714285)
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Fig. 13 Evolution of a complex wave in S-regime: σ = 2, β = 3, c0 = 0, k = 2, T0 = 0.5

Later the problem of finding nonmonotone s.-s.f. in the S-regime, tending to the
nontrivial homogeneous solution θH , was posed and successfully solved [20]. The
self-similar equation was solved with boundary conditions

∂θs,k

∂ξ
=

1−θs,k

2ξ
− γ

√
2

π
√

σξ
sin

(√
σξ − kπ

2
− π

4

)
cos(kφ), ξ = l � 1,φ ∈

[
0,

2π
k

]
.

The s.-s.f. for β = σ + 1 = 3 and its evolution in time are shown in Fig. 13.
Let us mention that the existence of continuum of solutions to the radially

symmetric s.-s. problem in HS- and S-regimes, which tend to the nontrivial
homogeneous solution θH for ξ → ∞, was mentioned in [52], but this result has
remained without attention. As it turned out, it is these solutions that determine the
spiral structures and the complex structures in HS- and S-regimes.

5 Open Problems

In spite of the numerous achievements related to the problems considered here,
many interesting questions are still open: how many complex-symmetry s.-s.f. of
the kind Ei/ j and EiM j, tending to the trivial constant solution θs ≡ 0, exist; how
can the self-similar problem for the spiral s.-s.f. in the LS-regime be closed, and
therefore how to construct these spiral s.-s.f. numerically; how wide are the different
classes of spiral s.-s.f. for β < σ +1 and the different classes of complex-symmetry
s.-s.f. in S- and HS-regimes.
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Although the method of invariant group analysis shows that the differential
problem admits some kind of self-similar solutions and their numerical realization
is a constructive “proof” of their existence, theoretical proofs are still missing in
most of the cases.

The numerical investigation of the accuracy of the approximate solutions on
embedded grids shows optimal-order and even superconvergence results, but it
would be interesting to find theoretical estimates as well.

All these questions pose challenging problems both from theoretical and compu-
tational points of view.
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Abstract The objective of this paper is to give an overview of recent developments
on splitting schemes for solving the time-dependent incompressible Navier–Stokes
equations and to discuss possible extensions to the variable density/viscosity case.
A particular attention is given to algorithms that can be implemented efficiently on
large parallel clusters.
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1 Introduction

Most of the algorithms that are currently used for solving the time-dependent
incompressible fluid flows are based on three basic ideas:

(i) The advection operator is discretized explicitly.
(ii) The diffusion is treated implicitly to avoid the stability constraint on the time

step induced by the second-order diffusion operator. (This rule does not apply
to direct simulation of turbulence since in that case the stability restriction is
set by the advection term.)
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(iii) The pressure and velocity are decoupled to avoid solving the coupled saddle-
point problem. In most cases this decoupling is done by using the so-called
projection methods; see Chorin [5] and Temam [27] for the earliest examples
and Guermond et al. [15] for a review on this class of techniques.

This paper reviews recent developments related to item (iii). In particular we
discuss a method recently introduced in Guermond and Minev [8]. It is a fractional
time stepping technique that departs from the projection paradigm in the sense that
it uses a pressure equation derived from a perturbation of the incompressibility
constraint induced by direction splitting. This approach is particularly suitable for
implementation on parallel platforms. We also discuss some new implicit schemes
for the approximation of the parabolic subproblem listed in item (ii) in case of flows
with variable density and viscosity.

This paper is organized as follows. The pressure-velocity decoupling schemes
that are the most widely used are summarized in Sect. 2, and the corresponding
convergence results are recalled. We propose in Sect. 3 some new schemes for flows
with variable density and viscosity, and we analyze their stability for first-order time
discretization.

2 Pressure-Velocity Decoupling Schemes

2.1 Notation and Preliminaries

We consider the time-dependent Navier–Stokes equations on a finite time interval
[0,T ] and in a domain Ω = (0,1)3.

As suggested in item (i) above, it is reasonable to discretize the nonlinear term in
the Navier–Stokes equations explicitly. Even if it is treated semi-implicitly, this term
has no significant influence on the pressure-velocity coupling, and we henceforth
mainly consider the time-dependent Stokes equations written in terms of velocity
u and pressure p, restricting ourselves for the time being to the case of constant
density and viscosity:

⎧⎪⎪⎨
⎪⎪⎩

∂tu−ν∇2u+∇p= f in Ω × [0,T ],

∇·u= 0 in Ω × [0,T ],

u|∂Ω = 0 in [0,T], and u|t=0 = u0 in Ω ,

(1)

where f is a smooth source term and u0 is a solenoidal initial velocity field with zero
normal trace at the boundary of Ω . We consider homogeneous Dirichlet boundary
conditions on the velocity for the sake of simplicity.

Let Δ t > 0 be a time step and set tk = kΔ t for 0 ≤ k ≤ K = [T/Δ t]. Let
φ0,φ1, . . .φK be some sequence of functions in a Hilbert space E . We denote by
φΔ t this sequence, and we define the following discrete norms:
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‖φΔ t‖�2(E) :=

(
Δ t

K

∑
k=0

‖φ k‖2
E

)1/2

, ‖φΔ t‖�∞(E) := max
0≤k≤K

(
‖φ k‖E

)
. (2)

In addition, we denote the first divided differences of the elements of the sequence
by δtφ k = Δ t−1(φ k − φ k−1) and the sequence of first divided differences by δtφΔ t ,
i.e., δtφΔ t = δtφ k,k = 1, . . . ,K.

Given the functional space X(Ω), we denote by X´=0(Ω) its subspace of
functions with a zero mean, i.e., X´=0(Ω) = {v ∈ X :

´
Ω

vdΩ = 0}.

We denote by c a generic constant that is independent of Δ t but possibly depends
on the data, the domain, and the solution. We shall use the expression A � B to say
that there exists a generic constant c such that A ≤ cB.

2.2 Projection Schemes

Historically the oldest and probably the most widely used decoupling algorithms
nowadays contain two basic steps. The first one consists of an implicit discretization
of the momentum equation in which the pressure is approximated explicitly or just
ignored. The second step updates the pressure by solving a Poisson equation with
a Neumann boundary condition. This step is equivalent to a L2-projection of the
predicted velocity onto the divergence-free subspace of H0(div,Ω). Depending on
the way these two steps are organized, these schemes can be subdivided into two
broad categories: pressure correction and velocity correction. The most accurate
variants of these schemes are second-order accurate in time on the velocity in the
L2-norm.

2.2.1 Pressure-Correction Projection Algorithm

In this class of schemes the momentum equation is approximated first by solving

1
2Δ t (3ũk+1− 4uk + uk−1)−ν∇2ũk+1 +∇pk = f (tk+1), ũk+1|∂Ω = 0. (3)

Then the predicted velocity, ũk+1, is projected onto the divergence-free subspace of
H0(div,Ω) by solving the following elliptic problem in mixed form:

{ 1
2Δ t (3uk+1− 3ũk+1)+∇φ k+1 = 0,

∇·uk+1 = 0, uk+1·n|∂Ω = 0.
(4)

Finally, the pressure is updated explicitly by setting

pk+1 = φ k+1 + pk− χν∇·ũk+1. (5)
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The scheme is said to be in standard form if χ = 0 and is said to be in rotational
form if 0 < χ ≤ 1. The rotational form of the algorithm was introduced in this
form in Timmermans et al. [28] and in a somewhat different form in Kim and
Moin [18]. It is also sometimes referred to in the literature as the Gauge method,
E and Liu [29]. The classification in incremental and non-incremental form was
introduced in Guermond and Quartapelle [14]. The classification in standard and
rotational form was introduced in Guermond and Shen [13].

It is sometimes debated in the literature whether the projection step should be
solved in mixed form or in primal form, i.e.,

{ 1
2Δ t (3uk+1− 3ũk+1)+∇φ k+1 = 0,

∇·uk+1 = 0, uk+1·n|∂Ω = 0.
(6)

or {
Δφ k+1 = 3

2Δ t ∇·ũk+1, ∂nφ k+1|∂Ω = 0,

uk+1 = ũk+1− 2Δ t
3 φ k+1.

(7)

This issue has been thoroughly investigated in Guermond [7], and it is shown therein
that all the discrete implementations of these two variants of the projection step are
equivalent in terms of stability and approximation.

The stability and convergence properties of the scheme are stated in the following
theorem:

Theorem 2.1. Under suitable initialization hypothesis and provided that the solu-
tion to (1) is smooth enough in time and space, the solution (uΔ t , ũΔ t , pΔ t) of (3)–(5)
satisfies the estimate:

‖uΔ t − uΔ t‖�2(L2(Ω)) + ‖uΔ t − ũΔ t‖�2(L2(Ω)) � Δ t2,

‖uΔ t − ũΔ t‖�∞(H1(Ω)) + ‖pΔ t − pΔ t‖�∞(L2(Ω)) � Δ t, if χ = 0

‖uΔ t − uΔ t‖�2(H1(Ω)) + ‖uΔ t − ũΔ t‖�2(H1(Ω)) + ‖pΔ t − pΔ t‖�2(L2(Ω)) � Δ t
3
2 ,

if 0 < χ ≤ 1

Proof. See Guermond and Shen [13].

2.2.2 Velocity-Correction Projection Algorithm

In this class of methods one first computes an implicit approximation for the
pressure at each time step by using an explicit approximation for the velocity,
and then one uses this pressure approximation to update the velocity implicitly.
The second-order incremental velocity-correction algorithm in rotational form is
given by
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{ 1
2Δ t (3uk+1− 4ũk + ũk−1)+ν∇×∇×ũ�,k+1 +∇pk+1 = f (tk+1),

∇·uk+1 = 0, uk+1·n|∂Ω = 0,
(8)

and

1
2Δ t (3ũk+1− 3uk+1)−ν∇2ũk+1−ν∇×∇×ũ�,k+1 = 0, ũk+1|∂Ω = 0. (9)

This scheme was introduced in this form in Guermond and Shen [11,12]. It has been
introduced in a somewhat different (although equivalent) form by Orszag et al. [21]
and Karniadakis et al. [17]. The difference between the standard and rotational
forms of the velocity-correction algorithm is that in the standard form, the ∇×∇×
operator in (8) and (9) is substituted by the ∇2 operator. Similarly to the pressure-
correction algorithm, the rotational form of the velocity-correction algorithm yields
a better pressure approximation than the standard form as stated in the following
theorem.

Theorem 2.2. If the solution to (1) is smooth enough in time and space, and under
suitable initialization hypothesis, the solution (uΔ t , ũΔ t , pΔ t) to (8)–(9) satisfies the
estimates:

‖uΔ t − uΔ t‖�2(L2(Ω)) + ‖uΔ t − ũΔ t‖�2(L2(Ω)) � Δ t2,

‖uΔ t − ũΔ t‖�2(H1(Ω)) + ‖pΔ t − pΔ t‖�2(L2(Ω)) � Δ t
3
2 .

Proof. We refer to Guermond and Shen [12].

Remark 2.1. Note that the Poisson problems in mixed form (4) and (8), arising in
the two schemes above, are in fact a consistent perturbation of the incompressibility
constraint. This fact has been used by Rannacher [22] and Shen [25, 26] to analyze
the first- and second-order pressure-correction schemes.

2.3 Direction-Splitting Schemes

The computational bottleneck that is common to both schemes discussed in the
previous subsection is the solution of the Poisson problem (7) for the pressure
which, if solved iteratively, requires many more iterations to converge than the
problem for the velocity. This problem can be tackled using geometric or algebraic
multigrid algorithms that scale well on large distributed clusters. Alternatively,
taking into account that the pressure Poisson equation of the projection schemes
is just a regularization of the incompressibility constraint, we can explore other
regularization options. This idea was explored in Guermond and Salgado [10]
and Guermond and Minev [8] where we proposed to abandon the L2-projection
paradigm, which yields the Poisson equation (4) or (8), and to use instead a
perturbation of the incompressibility that allows for a faster computation of the
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pressure. It is shown in Guermond and Minev [8] that a general perturbation of
the form

∇·ũk+1

Δ t
= Aφ k+1, (10)

can be used if the operator A : D(A)⊂ L2́
=0(Ω)→ L2́

=0(Ω), with domain D(A)⊂
H 1́

=0(Ω), satisfies the following properties:

{
‖∇q‖2

L2 ≤ 〈Aq,q〉, ∀q ∈D(A),

〈Ap,q〉= 〈p,Aq〉, ∀p,q ∈D(A).
(11)

This is a natural generalization of the usual Poisson equation used in the classical
projection schemes. If the domain Ω is a rectangle in 2D or a parallelepiped in 3D,
a good choice for A is

⎧⎪⎪⎨
⎪⎪⎩

A := (1− ∂xx)(1− ∂yy),

D(A) :=
{

p ∈ H 1́
=0(Ω) : ∂yy p,Ap ∈ L2(Ω) :

∂y p|y=0,1 = 0, ∂x(1− ∂yy)p|x=0,1 = 0
}
,

(12)

in two space dimensions and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A := (1− ∂xx)(1− ∂yy)(1− ∂zz),

D(A) :=
{

p ∈ H 1́
=0(Ω) : ∂zz p,(1− ∂yy)(1− ∂zz)p,Ap ∈ L2(Ω) :

∂z p|z=0,1 = 0, ∂y(1− ∂zz)p|y=0,1 = 0,

∂x(1− ∂yy)(1− ∂zz)p|x=0,1 = 0
}
,

(13)

in three space dimensions. The most important advantage of this perturbation
is that the computation of the pressure requires the solution of one-dimensional
tridiagonal systems only, and this can be done efficiently by using the Thomas
algorithm. Another possible choice is the BPX preconditioner (see Bramble et al. [4]
and Bramble and Zhang [3, Chap. II, Sect. 4] for the proof of uniform spectral
equivalence) or the multigrid V -cycle with a variable number of smoothing steps
per level (see Bramble and Zhang [3, Chap. II, Sect. 7.4]).

We concentrate in the rest of this section on the direction-splitting perturbation
(12) and (13). When combined with a direction-splitting technique for the momen-
tum equations, the resulting scheme is very simple and efficient, particularly on large
distributed clusters. For instance, upon using the Douglas scheme for approximating
the momentum equation (see Douglas [6]), the overall procedure in three space
dimensions is given by:
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• Pressure predictor: Denoting by p0 the pressure field at t = 0 and φ�,− 1
2 an

approximation of 1
2 Δ t∂tp(0), the algorithm is initialized by setting p−

1
2 = p0

and φ−
1
2 = φ�,− 1

2 . Then for all k≥ 0 a pressure predictor is computed as follows:

p�,k+
1
2 = pk− 1

2 +φ k− 1
2 . (14)

• Velocity update: The velocity field is initialized by setting u0 = u0, and for all
k ≥ 0 the velocity update is computed by solving the following series of one-
dimensional problems: Find ξ k+1, ηk+1, ζ k+1, and uk+1 such that

ξ k+1− uk

Δ t
−∇2uk +∇p�,k+

1
2 = f k+ 1

2 , ξ k+1|∂Ω = 0, (15)

ηk+1− ξ k+1

Δ t
− 1

2
∂xx(ηk+1− uk) = 0, ηk+1|x=0,1 = 0, (16)

ζ k+1−ηk+1

Δ t
− 1

2
∂yy(ζ k+1− uk) = 0, ζ k+1|y=0,1 = 0, (17)

uk+1− ζ k+1

Δ t
− 1

2
∂zz(u

k+1− uk) = 0, uk+1|z=0,1 = 0. (18)

• Penalty step: The pressure-correction φ k+ 1
2 is computed by solving

Aφ k+ 1
2 =− 1

Δ t
∇·uk+1. (19)

• Pressure update: The last sub-step of the algorithm consists of updating the
pressure as follows:

pk+ 1
2 = pk− 1

2 +φ k+ 1
2 − χ

2
∇·
(

uk+1 + uk
)
. (20)

The two-dimensional version of the algorithm is obtained by skipping the last step
in (18) and setting uk+1 = ζ k+1. The best error estimate proven to date for this
algorithm is stated in the following theorem:

Theorem 2.3 (�2(L2) Velocity Estimate). Assume that the space dimension is two.
If 0 < χ ≤ 1, u,p is smooth enough, and under suitable initialization assumptions,
the solution (uΔ t , pΔ t) of the scheme (14)–(20) in two space dimensions satisfies

‖uΔ t − uΔ t‖�2(L2) ≤ cΔ t
3
2 .

Proof. See Theorem 4.2 in Guermond et al. [16].

Note that this is a suboptimal convergence estimate and it cannot be easily extended
to 3D since the usual argument used in the estimation of the error for the rotational
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form of the projection schemes does not apply in this case. Nevertheless, various
numerical tests suggest that the scheme is as accurate on both, pressure and velocity,
as the classical incremental projection schemes (see, e.g., Guermond et al. [16],
Fig. 2).

In this paper we do not pay much attention to the spatial approximation for the
velocity and pressure, but we should mention that it needs to satisfy the usual in f −
sup condition. An obvious candidate that suits the needs of the direction-splitting
algorithms is the staggered finite volume grid based on the so-called MAC stencil.
All our numerical experience with direction-splitting schemes so far is based on this
discretization although other options can certainly be exploited.

The scheme discussed in this section has several advantages. It is quite clear
that on a staggered MAC grid it requires the storage of only d(d + 1) one-
dimensional tridiagonal matrices. This is much better than storing the entire d-
dimensional matrix and allows to solve significantly larger local problems (per
processor) on a parallel cluster. In addition, it requires the solution of tridiagonal
systems only, which can be performed very efficiently with the Thomas algorithm.
Its implementation on a parallel cluster is also very efficient since the Schur
complements for the interface unknowns are also tridiagonal and therefore can also
be solved with the same algorithm. Probably the most important advantage of this
scheme is that it has very low communication costs. Indeed, if we presume that
the grid is partitioned into blocks of equal size, then the solution of the Navier–
Stokes equations per time step would require only one communication, per internal
interface, of the unknowns on this interface, for each of the velocity components and
the pressure. Therefore, the parallel performance of the scheme is very efficient.
More details on the parallel implementation of the algorithm can be found in
Guermond and Minev [9].

2.4 Non-commutative One-Dimensional Operators

The algorithms and the results mentioned in the previous section are applicable
only if the domain Ω is simple, i.e., a rectangle in 2D or a parallelepiped in 3D.
Otherwise, the integration by parts of the mixed derivative that appear in (Aq,q)
and in the momentum equation cannot be done. This difficulty is probably one
of the main reasons direction-splitting schemes were abandoned after massive
computer resources have become readily available. However, this problem can
be tackled, at least partially, by the use of penalty or fictitious domain methods
(see Korobytsina [19], Angot [1], Kuttykozhaeva et al. [20]). Unfortunately, the
accuracy of the spatial approximation achievable by these approaches is usually
suboptimal for the momentum equation. This problem can be solved by modifying
the approximation of second-order spatial derivatives in the vicinity of the boundary
of the domain to achieve optimal approximation there (see Angot et al. [2]).
When all the fixes mentioned above are applied, the resulting one-dimensional
discrete operators no longer commute. Nevertheless, as shown by Samarskii and
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Vabishchevich [24], Sect. 2.2.3, the 2D version of the Douglas scheme (15)–(18)
is still unconditionally stable even if the one-dimensional operators involved in
the direction splitting do not commute. This proof does not generalize to the
3D case. In fact, it was experimentally verified in Angot et al. [2] that the 3D
direction-splitting scheme (15)–(18) is unconditionally unstable in some cases of
non-commutative operators. Therefore, the authors of Angot et al. [2] proposed the
following modification of the Douglas scheme, which seems to be unconditionally
stable for parabolic problems with non-commutative one-dimensional second-order
operators (this property was verified only numerically):

ξξξ n+1−un

Δ t
− (A1ηηηn +A2ζζζ n

+A3un) = fn+1/2, (21)

ηηηn+1− ξξξ n+1

Δ t
− 1

2
A1
(
ηηηn+1−ηηηn)= 0, (22)

ζζζ n+1−ηηηn+1

Δ t
− 1

2
A2

(
ζζζ n+1− ζζζ n

)
= 0, (23)

un+1− ζζζ n+1

Δ t
− 1

2
A3
(
un+1−un)= 0. (24)

Here A1,A2,A3 are positive, possibly non-commutative operators, resulting from a
penalty approximation of the original problem in a complex-shaped domain (see
Angot et al. [2] for details). The above stability claim is based only on numerical
evidence; a rigorous analysis of this scheme is yet to be done.

Another second-order scheme is provided by Samarskii and Vabishchevich [24],
Sect. 4.3.2:

ηηηn+1−ηηηn−1

Δ t
+ μA1

(
ηηηn+1− 2ηηηn +ηηηn−1)+A1ηηηn +A2ζζζ n

+A3un = fn+1/2,

ζζζ n+1− ζζζ n−1

Δ t
+ μA2

(
ζζζ n+1− 2ζζζn

+ ζζζ n−1
)
+A1ηηηn +A2ζζζ n

+A3un = fn+1/2,

un+1−un−1

Δ t
+ μA3

(
un+1− 2un +un−1)+A1ηηηn +A2ζζζ n

+A3un = fn+1/2. (25)

The scheme has been proved therein to be unconditional stable if the parameter μ is
large enough.

For more details on the accuracy and stability of direction splittings with non-
commutative operators, and on the spatial discretization of the Navier–Stokes
equations in case of complex-shaped domains, the reader is referred to Angot et
al. [2] and Samarskii and Vabishchevich [24].
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3 Variable Density or Viscosity Flows

The scheme (14)–(20) is applicable only when the density and the viscosity
are both constant. The computational practice often requires the solution of
incompressible problems with variable density and viscosity, multicomponent flows
being the most obvious example. Therefore, we propose in this note an extension
of the direction-splitting scheme which is unconditionally stable in the variable
density/viscosity case.

3.1 The Perturbation Algorithms

Since the major difficulty in this case arises when splitting the momentum equation,
we simplify the analysis by focusing our attention on the heat equation with variable
coefficients:

{
ρ∂tu−∇·ν∇u= f in Ω × [0,T ],

u|∂Ω = 0 in [0,T], and u|t=0 = u0 in Ω ,
(26)

where ρ ,ν are functions of the spatial variables and time. We further assume that
there exist strictly positive numbers ρ̌ , ν̌ , ρ̂ , and ν̂ so that ρ̌ ≤ ρ(x, t) ≤ ρ̂ , ν̌ ≤
ν(x, t)≤ ν̂ for all (x, t) ∈Ω × [0,T ]. We also assume that ν ∈W 1,∞((0,T );L∞(Ω))
and we set ν̂t = ‖∂tν‖L∞(Ω×(0,T )).

We start with the following implicit scheme with nonconstant coefficients

ρkδt u
k = ∇·

(
νk+1∇uk

)
, uk|∂Ω = 0

Next we perturb it so that the resulting fully discrete linear system has time-
independent matrices:

γδt u
k+1−σ∇2uk+1 =

(
γ−ρk

)
δt u

k +∇·
(
(νk+1−σ)∇uk

)
, (27)

where γ,σ are positive constants yet to be fully defined (see Theorem 3.1 below).
Note that Samarskii [23] proposed to use similar perturbations in order to regularize
unconditionally or conditionally stable schemes. In the present case we start with a
stable scheme and employ Samarskii’s trick solely to make the matrix of the discrete
problem time independent and suitable for further direction splitting. Provided γ and
σ are chosen appropriately, the scheme remains unconditionally stable as stated in
the following theorem:

Theorem 3.1. Assume that γ ≥ ρ̂ , σ ≥ 0.5ν̂, ‖∂tν‖L∞(Ω×[0,T ])≤ ν̂t <∞, and choose
δt u0 to satisfy ρ0δtu0 = ∇·

(
ν0∇u0

)
. Then if the solution of (26) is smooth enough
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and under suitable initialization assumptions, the following stability estimate for
the solution of (27) holds:

Δ tγ‖δt uΔ t‖2
�∞(L2(Ω))

+ ρ̌‖δt uΔ t‖2
�2(L2(Ω))

+

(2σ − ν̂)Δ t‖∇δtuΔ t‖2
�2(L2(Ω)) + ‖

√
ν∇uΔ t‖2

�∞(L2(Ω)) <

Δ t (γ− ρ̌)‖δt u
0‖2

L2(Ω) + ‖
√

ν0∇u0‖2
L2(Ω) +Δ tν̂t

K−1

∑
k=0

‖∇uk‖2
L2(Ω).

Proof. We first rewrite (27) as follows: γδt uk+1−σΔ t∇2δt uk+1 =
(
γ−ρk

)
δtuk +

∇·
(
νk+1∇uk

)
, and then following an idea from Samarskii and Vabishchevich [24],

Sect. 1.2.2, we multiply the equation by δt uk+1 and use the identity uk = 0.5(uk+1+
uk)− 0.5Δ tδtuk+1 to obtain

γ‖δt u
k+1‖2

L2(Ω) +σΔ t‖δt∇uk+1‖2
L2(Ω) =

(
(γ−ρ)δtu

k,δt u
k+1
)
+

Δ t
2

(
νk+1∇δt u

k+1,∇δt u
k+1
)
− 1

2Δ t

(
νk+1∇

(
uk+1 + uk

)
,∇
(

uk+1− uk
))

.

The inequality |γ −ρk| ≤ γ − ρ̌ and the conditions γ ≥ ρ̂ , σ ≥ 0.5ν̂ immediately
yield

1
2
(γ + ρ̌)‖δtu

k+1‖2
L2(Ω) +

(
σ − ν̂

2

)
Δ t‖δt∇uk+1‖2

L2(Ω)+

1
2Δ t

‖
√

νk+1∇uk+1‖2
L2(Ω) ≤

1
2
(γ− ρ̌)‖δtu

k‖2
L2(Ω)+

1
2Δ t

‖
√

νk∇uk‖2
L2(Ω) +

1
2Δ t

((
νk+1−νk

)
∇uk,∇uk

)
,

which after summing for k = 0, . . .K− 1, taking into account that γ − ρ̌ < γ , and
setting ν̂t := ‖∂tν‖L∞(Ω×[0,T ]), gives

Δ tγ‖δt uΔ t‖2
�∞(L2(Ω)) + ρ̌‖δt uΔ t‖2

�2(L2(Ω))+

(2σ − ν̂)Δ t‖∇δtuΔ t‖2
l2(L2(Ω)) + ‖

√
ν∇uΔ t‖2

�∞(L2(Ω)) <

Δ t (γ− ρ̌)‖δt u
0‖2

L2(Ω) + ‖
√

ν0∇u0‖2
L2(Ω) +Δ tν̂t

K−1

∑
k=0

‖∇uk‖2
L2(Ω),

(28)

which concludes the proof.

Note that this scheme is useful for equations with time-dependent coefficients since
it avoids recomputing the stiffness and mass matrices at each time step.
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3.2 Direction-Splitting Algorithms

If Ω is a rectangle in two space dimensions or a parallelepiped in three space dimen-
sions, the above algorithm is suitable for further direction splitting. The factorized
form of the direction-splitting algorithm for the three-dimensional version of (27) is
given by (

I− σ
γ

Δ t∂xx

)(
I− σ

γ
Δ t∂yy

)(
I− σ

γ
Δ t∂zz

)
δt u

k+1 =

(
1− ρk

γ

)
δt u

k +
1
γ

∇·
(

νk+1∇uk
)
,

(29)

where I is the identity operator. The factorized form in two space dimensions is
obtained by truncating the operator product in the left- hand side. This direction-
splitting scheme is also unconditionally stable and satisfies stability estimates that
are similar to those stated Theorem 3.1:

Theorem 3.2. Under the assumptions of Theorem 3.1, the following stability
estimate holds for the solution of (29) in three space dimensions:

Δ tγ‖δtuΔ t‖2
�∞(L2(Ω)) + ρ̌‖δtuΔ t‖2

�2(L2(Ω))+

(2σ − ν̂)Δ t‖∇δt uΔ t‖2
l2(L2(Ω)) + ‖

√
ν∇uΔ t‖2

�∞(L2(Ω)) ≤

Δ t (γ− ρ̌)‖δtu
0‖2

L2(Ω) + ‖
√

ν0∇u0‖2
L2(Ω) +Δ tν̂t

K−1

∑
k=0

‖∇uk‖2
L2(Ω).

Proof. We first note that (29) can be rewritten as follows:

γδt u
k+1−σΔ t∇2δt u

k+1 +Bδtu
k+1 = (γ−ρ)δt u

k +∇·νk+1∇uk,

where the operator B, with domain H1
0 (Ω)∩H3(Ω), is defined as follows:

Bv =
(σΔ t)2

γ
∂xx∂yyv+

(σΔ t)2

γ
∂yy∂zzv+

(σΔ t)2

γ
∂xx∂zzv−

(σΔ t)3

γ2 ∂xx∂yy∂zzv.

It is remarkable that all the mixed derivatives can be integrated by parts if the
domain has a simple shape as shown in Guermond et al. [16], i.e., the operator B
is nonnegative. Then we can apply the same arguments as in Theorem 3.1 to obtain
the desired result.
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3.3 Variable Density Navier–Stokes Equations

In the case of Navier–Stokes equations with variable density, the perturbation of the
incompressibility constraint (19) needs some modification too. The usual pressure
Poisson equation associated with the projection schemes in such situation is

∇·
(

1
ρ

∇φ k+1
)
=

β
Δ t

∇·uk+1, ∂nφ k+1|∂Ω = 0, (30)

with β being a coefficient depending on the discretization of the velocity time
derivative. This formulation is inconvenient for a direction splitting. Besides, in case
of large density variations, the resulting linear system is hard to solve. To avoid this
difficulty, Guermond and Salgado [10] proposed to use the following perturbation
of the incompressibility:

Δφ k+1 =
β ρ̌
Δ t

∇·uk+1, ∂nφ k+1|∂Ω = 0, (31)

with ρ̌ being a positive constant such that ρ̌ ≤ ρ(x, t),∀x, t. Then, the overall first-
order approximation to the time-dependent Stokes problem is given by

⎧⎨
⎩

γδt u
k+1−σΔuk+1 =

(
γ−ρk

)
δt u

k +∇·
(
(νk+1−σ)∇uk

)
−∇pk + f k+1,

Δ pk+1 =
ρ̌
Δ t

∇·uk+1, ∂n pk+1|∂Ω = 0.
(32)

The unconditional stability and optimal convergence of this scheme can be proven
along the same lines as the analysis in Guermond and Salgado [10]; however, the
proof is very technical and is beyond the scope of this paper.

Similarly, this idea can be combined with the direction-splitting perturbation into
the equation

Apk+1 =
ρ̌
Δ t

∇·uk+1, ∂n pk+1|∂Ω = 0, (33)

which can in turn be combined with the following discretization of the momentum
equation

(
I− σ

γ
Δ t∂xx

)(
I− σ

γ
Δ t∂yy

)(
I− σ

γ
Δ t∂zz

)
δt u

k+1 =

(
1− ρk

γ

)
δt u

k +
1
γ

∇·
(

νk+1∇uk
)
−∇pk + f k+1,

(34)

to yield a first-order direction-splitting scheme. The analysis of this scheme would
be significantly more complicated than the analysis of (32).

Both schemes in this section can be extended to second order of accuracy.
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4 Schemes for Equations Involving Mixed Derivatives

In some cases the momentum equations of the (unsteady) Stokes system may need
to be used in the following equivalent form:

∂tu−ν∇·
(
∇u+∇uT)−λ ∇∇·u+∇p= 0, ∇·u= 0, (35)

where we assume for simplicity that ν is constant. Examples of such situations
are flows involving fluid-structure interaction or floating rigid particles. Using the
relation ∇·∇uT = ∇∇·u, the above equation can be reformulated as follows:

∂tu−νΔu− (ν +λ )∇∇·u+∇p= 0, ∇·u= 0, (36)

Sometimes, an additional term ∇∇·u is added to the momentum equation for a
better control of the divergence of the velocity field. This term couples the different
Cartesian components of the velocity and makes the overall solution procedure
clumsy. This additional coupling can be avoided if we use the following scheme.
For simplicity we present the scheme in two space dimensions (its extension to
three space dimensions is evident) and ignore the pressure because it can be handled
by any of the splitting approaches described above. The first-order version of the
scheme is as follows:

{
1

Δ t (u
k+1
1 − uk

1) −ν∇2uk+1
1 − γ∂xxuk+1

1 − γα∂xx(u
k+1
1 − uk

1) = ν∂xyuk
2

1
Δ t (u

k+1
2 − uk

2) −ν∇2uk+1
2 − γ∂yyuk+1

2 − γα∂yy(u
k+1
2 − uk

2) = ν∂xyuk
1, (37)

where α ≥ 1, uk
j is the j-th Cartesian component of the velocity vector uk, and we set

γ := ν +λ . The stability of this algorithm is established in the following theorem:

Theorem 4.3. Under suitable initialization and smoothness assumptions and as-
suming that α ≥ 1, the algorithm (37) is unconditionally stable, i.e.,

‖uΔ t‖2
�∞(L2(Ω)) +Δ t‖δtu‖2

�2(L2(Ω)) +ν‖∇u‖2
�2(L2(Ω)) + γ‖∇·uΔ t‖2

�2(L2(Ω))

(α + 1)γΔ t
(
‖∂xuk+1

1Δ t ‖
2
�∞(L2(Ω)) + ‖∂yu2Δ t‖2

�∞(L2(Ω))

)
≤ (38)

‖u0‖2
L2(Ω) + (α + 1)γΔ t

(
‖∂xu0

1‖2
L2(Ω) + ‖∂yu0

2‖2
L2(Ω)

)

Proof. Multiplying (37) by 2Δ tuk+1 and using the identity 2(a−b,a)= ‖a‖2+‖a−
b‖2−‖b‖2, we obtain

‖uk+1
1 ‖2

L2(Ω) +Δ t2‖δt u
k+1
1 ‖2

L2(Ω) +νΔ t‖∇uk+1
1 ‖2

L2(Ω)+

2γΔ t
(
‖∂xuk+1

1 ‖2
L2(Ω) + (∂xuk+1

1 ,∂yuk+1
2 )+ (∂xuk+1

1 ,∂y(u
k
2− uk+1

2 ))
)
+
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2αγΔ t(∂xuk+1
1 ,∂x(u

k+1
1 − uk

1)) = ‖uk
1‖2

L2(Ω)

‖uk+1
2 ‖2

L2(Ω) +Δ t2‖δt u
k+1
2 ‖2

L2(Ω) +νΔ t‖∇uk+1
2 ‖2

L2(Ω)+

2γΔ t
(
‖∂yuk+1

2 ‖2
L2(Ω) + (∂yuk+1

2 ,∂xuk+1
1 )+ (∂yuk+1

2 ,∂x(u
k
1− uk+1

1 ))
)
+

2αγΔ t(∂yuk+1
2 ,∂y(u

k+1
2 − uk

2)) = ‖uk
2‖2

L2(Ω)

Summing the two equations gives

‖uk+1‖2
L2(Ω) +Δ t2‖δtu

k+1‖2
L2(Ω) +νΔ t‖∇uk+1‖2

L2(Ω)+

2γΔ t
(
‖∇·uk+1‖2

L2(Ω) + (∇·uk+1,∂x(u
k
1− uk+1

1 )+ ∂y(u
k
2− uk+1

2 ))
)

+ 2(α + 1)γΔ t
(
(∂xuk+1

1 ,∂x(u
k+1
1 − uk

1))+ (∂yuk+1
2 ,∂y(u

k+1
2 − uk

2)
)
= ‖uk‖2

L2(Ω).

Using the inequality |ab| ≤ 1
4 a2 + b2, we obtain

‖uk+1‖2
L2(Ω) +Δ t2‖δtu

k+1‖2
L2(Ω) +νΔ t‖∇uk+1‖2

L2(Ω) + 2γΔ t
(1

2
‖∇·uk+1‖2

L2(Ω)−

‖∂x(u
k
1− uk+1

1 ‖2
L2(Ω)−‖∂y(u

k
2− uk+1

2 ‖2
L2(Ω)

)
+(α + 1)γΔ t

(
‖∂xuk+1

1 ‖2
L2(Ω)+

‖∂x(u
k+1
1 − uk

1))‖2
L2(Ω) + ‖∂yuk+1

2 ‖2
L2(Ω) + ‖∂y(u

k+1
2 − uk

2))‖2
L2(Ω)

)

≤ ‖uk‖2
L2(Ω) + (α + 1)γΔ t(‖∂xuk

1‖2
L2(Ω) + ‖∂yuk

2‖2
L2(Ω)).

Using the assumption that α ≥ 1, we finally derive

‖uk+1‖2
L2(Ω)

+Δ t2‖δtu
k+1‖2

L2(Ω)
+νΔ t‖∇uk+1‖2

L2(Ω)
+ γΔ t‖∇·uk+1‖2

L2(Ω)

+ (α + 1)γΔ t
(
‖∂xuk+1

1 ‖2
L2(Ω)

+ ‖∂yuk+1
2 ‖2

L2(Ω)

)

≤ ‖uk‖2
L2(Ω) + (α + 1)γΔ t(‖∂xuk

1‖2
L2(Ω) + ‖∂yuk

2‖2
L2(Ω)).

Summing for k = 1, . . . ,K− 1 yields the desired result.

This scheme is also suitable for a further direction splitting.

5 Conclusions

From the discussions above we can draw the following conclusions: (a) The most
efficient schemes for the unsteady Navier–Stokes equations are based on some
sort of decoupling of pressure and velocity at each time step. A very efficient
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algorithm for parallel clusters is provided by (14)–(20). (b) There exist direction-
splitting algorithms that are unconditionally stable for the momentum equation in
complex-shaped domains. The pressure equation, however, must be extended to a
simple-shaped domain if the perturbation of the incompressibility constraint is in the
form of (19). It is an open question whether this type of pressure equation can “fit”
the boundary of a complex domain with appropriate boundary conditions. (c) In case
of variable density/viscosity flows, which include, for instance, multicomponent
flows, there is no need for recomputation of the implicit discrete operator at each
time step. The perturbation of the momentum equation in the form of (27) is
unconditionally stable (the advection is not taken into account in this statement).
The example provided in this paper is first-order accurate in time, but it can easily
be extended to higher order.
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Efficient Solvers for Some Classes
of Time-Periodic Eddy Current
Optimal Control Problems

Michael Kolmbauer and Ulrich Langer

Abstract In this paper, we present and discuss the results of our numerical studies
of preconditioned MinRes methods for solving the optimality systems arising from
the multiharmonic finite element approximations to time-periodic eddy current
optimal control problems in different settings including different observation and
control regions, different tracking terms, as well as box constraints for the Fourier
coefficients of the state and the control. These numerical studies confirm the
theoretical results published by the first author in a recent paper.
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finite element discretization • MinRes solver • Preconditioners
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1 Introduction

This work is devoted to the study of efficient solution procedures for the following
time-periodic eddy current optimal control problem: Minimize the functional
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J(y,u) =
α
2

ˆ
Ω1×(0,T)

|y− yd|2dxdt+
β
2

ˆ
Ω1×(0,T)

|curly− yc|2dxdt

+
λ
2

ˆ
Ω2×(0,T)

|u|2dxdt,

(1)

subject to the state equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ
∂y
∂ t

+ curl(ν curly) = u, in Ω × (0,T),

div(σy) = 0, in Ω × (0,T),

y× n = 0, on ∂Ω × (0,T),

y(0) = y(T ), in Ω ,

(2)

where Ω is a bounded, simply connected Lipschitz domain with the boundary ∂Ω .
The domains Ω1 and Ω2 are nonempty Lipschitz subdomains of Ω , i.e., Ω1,Ω2 ⊂
Ω ⊂ R

3. The reluctivity ν ∈ L∞(Ω) and the conductivity σ ∈ L∞(Ω) are supposed
to be uniformly positive, i.e.,

0 < νmin ≤ ν(x)≤ νmax, and 0 < σmin ≤ σ(x)≤ σmax, x ∈Ω .

We mention that the electric conductivity σ vanishes in regions consisting of
nonconducting materials. In order to fulfill the assumption made above on the
uniform positivity of σ , one can replace σ(x) by max{ε,σ(x)} with some suitably
chosen positive ε; see, e.g., [10, 12] for more details. We here assume that the
reluctivity ν is independent of |curly|, i.e., we only consider linear eddy current
problems. The regularization parameter λ also representing a weight for the cost
of the control is assumed to be a suitably chosen positive real number. The weight
parameters α and β are nonnegative. In fact, we only study the cases (α = 1,β = 0)
and (α = 0,β = 1). The functions yd and yc from L2((0,T ),L2(Ω)) are the given
desired state and the desired curl of the state, respectively.

The problem setting (1)–(2) has been analyzed in [11, 12], wherein, due to the
time-periodic structure, a time discretization in terms of a truncated Fourier series,
also called multiharmonic approach, is used. In [12], we consider the special case
of a fully distributed optimal control problem for tracking some yd in the complete
computational domain, i.e., Ω1 = Ω2 = Ω and β = 0 in (1), whereas [11] is devoted
to the various other settings including different observation and control regions,
different tracking terms, as well as box constraints for the Fourier coefficients of the
state and the control. Similar optimal control problems for time-periodic parabolic
equations and their numerical treatment by means of the multiharmonic finite ele-
ment method (FEM) have recently been considered in [9] and [8]. Other approaches
to time-periodic parabolic optimal control problems have been discussed in [1].
There are many publications on optimal control problems with PDE constraints
given by initial-boundary value problems for parabolic equations; see, e.g., [14]
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for a comprehensive presentation. There are less publications on optimal control
problems where initial-boundary value problems for eddy current equations are
considered as PDE constraints; see, e.g., [15,16], where one can also find interesting
applications. The multiharmonic approach allows us to switch from the time domain
to the frequency domain and, therefore, to replace a time-dependent problem by
a system of time-independent problems for the Fourier coefficients. Since we are
here interested in studying robust solvers, this special time discretization technique
justifies the following assumption: Let us assume that the desired states yd and yc

are multiharmonic, i.e., yd and yc have the form of a truncated Fourier series:

yd =
N

∑
k=0

yc
d,k cos(kωt)+ ys

d,k sin(kωt),

yc =
N

∑
k=0

yc
c,k cos(kωt)+ ys

c,k sin(kωt).

(3)

Consequently, the state y and the control u are multiharmonic as well and, therefore,
have a representation in terms of a truncated Fourier series with the same number of
modes N, i.e.,

y =
N

∑
k=0

yc
k cos(kωt)+ ys

k sin(kωt),

u =
N

∑
k=0

uc
k cos(kωt)+ us

k sin(kωt).

(4)

Using the multiharmonic representation of yd, yc, y, and u, the minimization
problem (1)–(2) can be stated in the frequency domain: Minimize the functional

JN =
1
2

N

∑
k=0

[
∑

j∈{c,s}

[
α
ˆ

Ω1

|yj
k− yj

d,k|
2dx+β

ˆ
Ω1

|curlyj
k− yj

c,k|
2dx

+λ ∑
j∈{c,s}

ˆ
Ω2

|uj
k|

2dx
]]
,

(5a)

subject to the state equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

kω σys
k + curl(ν curlyc

k) = uc
k, in Ω ,k = 1, . . . ,N,

−kω σyc
k + curl(ν curlys

k) = us
k, in Ω ,k = 1, . . . ,N,

curl(ν curlyc
0) = uc

0, in Ω ,

yc
k× n = ys

k× n = 0, on ∂Ω ,k = 1, . . . ,N,

y0
k× n = 0, on ∂Ω ,

(5b)



206 M. Kolmbauer and U. Langer

completed by the divergence constraints

⎧⎪⎪⎨
⎪⎪⎩

kω div(σyc
k) = 0, in Ω ,k = 1, . . . ,N,

kω div(σys
k) = 0, in Ω ,k = 1, . . . ,N,

div(σyc
0) = 0, in Ω .

(5c)

Additionally, we add control constraints associated to the Fourier coefficients of the
control u, i.e.,

uc
k ≤ uc

k ≤ uc
k, a.e. in Ω ,k = 0,1, . . . ,N,

us
k ≤ us

k ≤ us
k, a.e. in Ω ,k = 1, . . . ,N,

(5d)

and state constraints associated to the Fourier coefficients of the state y, i.e.,

yc
k
≤ yc

k ≤ yc
k, a.e. in Ω ,k = 0,1, . . . ,N,

ys
k
≤ ys

k ≤ ys
k, a.e. in Ω ,k = 1, . . . ,N.

(5e)

This minimization problem is typically solved by deriving the corresponding
optimality system, which fortunately decouples in terms of the mode k. The
decoupled systems are then discretized in space by means of the FEM. Since even
the simple box constraints (5d)–(5e) give rise to nonlinear optimality systems, we
apply a primal–dual active set strategy (semi-smooth Newton) approach for their
solution [5]. The resulting procedure is summarized in Algorithm 1.

Algorithm 1: Primal–dual active set strategy

Input: number of modes N, initial guesses x(k,0) ∈ R
n(k = 0, . . . ,N) .

Output: approximate solution x(k,l) ∈ R
n(k = 0, . . . ,N).

for k ← 0 to N do
Determine the active sets Ec

k,0 and E s
k,0;

end
Set l := 0;
while not converged do

for k ← 0 to N do

Compute b(k,l+1)
E , A(k,l+1)

E ;

Solve A(k,l+1)
E x(k,l+1) = b(k,l+1)

E ;
Determine the active sets Ec

k,l+1 and E s
k,l+1;

end
Set l := l + 1;

end

The specific structure of the Jacobi matrix A(k,l+1)
E depends on the actual

computational setting. In our applications, the matrixA(k,l+1)
E has either the formA1

(cf. (6a)) or the form A2, cf. (6b). It is clear that the efficient and parameter-robust
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solution of the (N + 1) linear systems of equations at each semi-smooth Newton
step is essential for the efficiency of the proposed method. For further details we
refer to [11].

2 Parameter-Robust and Efficient Solution Procedures

In order to discretize the problems in space, we use the edge (Nédélec) finite element
space ND0

0(Th), that is a conforming finite element subspace of H0(curl,Ω), and
the nodal (Lagrange) finite element space S1

0 (Th), that is a conforming finite element
subspace of H1

0 (Ω). Let {ϕi}i=1,Nh and {ψi}i=1,Mh denote the usual edge basis of
ND0

0(Th) and the usual nodal basis of S1
0 (Th), respectively. We are now in the

position to define the following FEM matrices:

(Kν)i j = (ν curlϕi,curlϕj)0,Ω ,

(Mσ ,kω)i j = kω(σϕi,ϕj)0,Ω ,

(M)i j = (ϕi,ϕj)0,Ω ,

(Dσ ,kω)i j = kω(σϕi,∇ψ j)0,Ω ,

where (·, ·)0,Ω denotes the inner product in L2(Ω). Throughout this paper we are
repeatedly faced with the following two types of system matrices:

A1 =

⎛
⎜⎜⎝

∗ 0 Kν −Mσ ,kω
0 ∗ Mσ ,kω Kν

Kν Mσ ,kω −λ−1∗ 0
−Mσ ,kω Kν 0 −λ−1∗

⎞
⎟⎟⎠ (6a)

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 Kν −Mσ ,kω 0 0 Dσ ,kω
T 0

0 ∗ Mσ ,kω Kν 0 0 0 Dσ ,kω
T

Kν Mσ ,kω −λ−1∗ 0 Dσ ,kω
T 0 0 0

−Mσ ,kω Kν 0 −λ−1∗ 0 Dσ ,kω
T 0 0

0 0 Dσ ,kω 0 0 0 0 0
0 0 0 Dσ ,kω 0 0 0 0

Dσ ,kω 0 0 0 0 0 0 0
0 Dσ ,kω 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6b)

Therein, the placeholder ∗ stands for a symmetric and positive semi-definite
matrix, that actually depends on the considered setting (cf. Table 1). We refer
to problems described by matrices of the types A1 and A2 as Formulation OC-
FEM 1 and Formulation OC-FEM 2, respectively. In fact, the system matrices A1
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and A2 are symmetric and indefinite and have a two- or threefold saddle point
structure, respectively. Since A1 and A2 are symmetric, the corresponding systems
can be solved by a preconditioned minimal residual (MinRes) method (cf. [13]).
Typically, the convergence rate of any iterative Krylov subspace method applied
to the unpreconditioned system deteriorates, with respect to the mesh size h, the
parameters k = 0,1, . . . ,N and ω involved in the spectral time discretization and the
problem parameters ν , σ , and λ (cf. also Tables 2 and 3). Therefore, preconditioning
is an important issue.

The proper choice of parameter-robust and efficient preconditioners has been
addressed by the authors in [11, 12]. While for equations with system matrices of
type (6a), we propose to use the preconditioner

C := diag

(√
λ F,

√
λF,

1√
λ

F,
1√
λ

F

)
, (7)

with the block F = Kν +Mσ ,kω + 1/
√

λM; for equations with system matrices of
type (6b), we advise to use the preconditioner

CM = diag

(√
λF,

√
λ F,

1√
λ

F,
1√
λ

F,
1√
λ

SJ,
1√
λ

SJ,
√

λ SJ,
√

λSJ

)
, (8)

where SJ =Dσ ,kω
T F−1Dσ ,kω . In a MinRes setting, the quality of the preconditioners

C and CM , used for the system matrices A1 and A2, respectively, is in general
determined by the condition number κ1 or κ2 of the preconditioned system, defined
as follows:

κ1 := ‖C−1A1‖C‖A−1
1 C‖C and κ2 := ‖C−1

M A2‖CM‖A−1
2 CM‖CM . (9)

In Table 1, we list the theoretical results that have been derived for different settings
of (5) in [11, 12]. We especially want to point out that the bounds for the condition
numbers are at least uniform in the space discretization parameter h as well as
the time discretization parameters ω and N. This has the important consequence
that the proposed preconditioned MinRes method converges within a few iterations,
independent of the discretization parameters that are directly related to the size of
the system matrices.

3 Numerical Validation

The main aim of this paper is to verify the theoretical proven convergence rates
by numerical experiments. We consider an academic test problem of the form (1)–
(2) or rather (5) in the unit cube Ω = (0,1)3 and report on various numerical test
for various computational settings and varying parameters. Since we are here only



Efficient Solvers for Eddy Current Optimal Control Problems 209

Table 1 Condition number estimates for different settings. Here (σ ) denotes robustness with
respect to σ ∈R

+

Test case α β Domains Equations Condition number estimate

I 1 0 Ω1 = Ω2 (5a)–(5b) κ1 ≤
√

3 �= c(h,ω,N,σ ,ν ,λ )
II 1 0 Ω1 = Ω2 (5a)–(5c) κ2 ≤

√
3(1+

√
5) �= c(h,ω,N,σ ,ν ,λ )

III 0 1 Ω1 = Ω2 (5a)–(5c) κ2 ≤ c �= c(h,ω,N, (σ ))

IV 1 0 Ω1 �= Ω2 (5a)–(5c) κ2 ≤ c �= c(h,ω,N, (σ ),Ω1,Ω2)

V 1 0 Ω1 = Ω2 (5a)–(5d) κ2 ≤ c �= c(h,ω,N, (σ ), index sets)
VI 1 0 Ω1 = Ω2 (5a)–(5b) + (5e) κ1 ≤ c �= c(h,ω,N,σ ,ν ,λ , index sets)

interested in the study of the robustness of the solver, it is obviously sufficient to
consider the solution of the system corresponding to the block of the mode k = 1.
The numerical results presented in this section were attained using ParMax.1 We
demonstrate the robustness of the block-diagonal preconditioners with respect to the
involved parameters. Therefore, for the solution of the preconditioning equations
arising from the diagonal blocks F, we use the sparse direct solver UMFPACK,2

that is very efficient for several thousand unknowns in the case of three-dimensional
problems [2–4]. For numerical tests, where the diagonal blocks are replaced by an
auxiliary space preconditioner [6, 7], we refer the reader to [10] and [12].

3.1 Test Case I

Tables 2–5 provide the number of MinRes iterations needed for reducing the initial
residual by a factor of 10−8. These experiments demonstrate the independence of
the MinRes convergence rate of the parameters ω , σ , λ and the mesh size h for
all computed constellations. Indeed, the number of iterations is bounded by 28, that
is very close to the theoretical bound 30 given by the condition number estimate√

3. We mention that varying ω also covers the variation of kω in terms of k.
Furthermore, in Tables 2 and 3, we also report the number of unpreconditioned
MinRes iterations, that are necessary for reducing the initial residual by a factor of
10−8. The large number of iterations in the unpreconditioned case underlines the
importance of appropriate preconditioning.

3.2 Test Case II

Table 6 provides the number of MinRes iterations needed for reducing the initial
residual by a factor 10−8. These experiments demonstrate the independence of the

1http://www.numa.uni-linz.ac.at/P19255/software.shtml.
2http://www.cise.ufl.edu/research/sparse/umfpack/.

http://www.numa.uni-linz.ac.at/P19255/software.shtml
http://www.cise.ufl.edu/research/sparse/umfpack/
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Table 2 Formulation OC-FEM 1 for test case I. Number of MinRes iterations for DOF = 2,416,
ν = σ = 1, and different values of λ and ω . [·] denotes the number of MinRes iterations without
preconditioner

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 7 7 7 7 7 7 7 7 7 6 4
[587] [587] [586] [587] [587] [587] [587] [591] [485] [263] [116]

10−6 21 21 21 21 21 21 20 12 6 4 4
[373] [373] [373] [373] [373] [373] [373] [263] [116] [114] [114]

10−2 20 20 20 20 20 20 20 12 6 4 4
[1,134] [1,134] [1,134] [1,136] [1,135] [1,134] [227] [114] [114] [114] [114]

1 10 10 10 10 10 14 20 12 6 4 4
[2,349] [2,351] [2,349] [2,350] [2,350] [2,274] [222] [114] [114] [114] [114]

102 6 6 6 6 8 10 20 12 6 4 4
[2,688] [2,681] [2,696] [2,667] [3,291] [2,494] [224] [114] [114] [114] [114]

106 4 4 4 6 6 10 20 12 6 4 4
[1,152] [1,159] [3,434] [4,697] [4,867] [2,493] [222] [114] [114] [114] [114]

1010 2 4 4 4 4 10 20 12 6 4 4
[1,157] [1,163] [4,937] [5,881] [4,791] [2,501] [224] [114] [114] [114] [114]

Table 3 Formulation OC-FEM 1 for test case I. Number of MinRes iterations for DOF = 16,736,
ν = σ = 1, and different values of λ and ω . [·] denotes the number of MinRes iterations without
preconditioner. [-] indicates that MinRes did not converge within 10,000 iterations

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 9 9 9 9 9 9 9 10 6 4 4
[708] [708] [708] [708] [708] [708] [708] [711] [578] [308] [134]

10−6 21 21 21 21 21 21 20 18 6 4 4
[825] [824] [825] [825] [825] [825] [824] [307] [134] [132] [132]

10−2 18 18 18 18 18 20 22 20 6 4 4
[6,698] [6,669] [6,696] [6,698] [6,690] [6,676] [1,095] [132] [132] [132] [132]

1 10 10 10 10 10 14 22 20 6 4 4
[-] [-] [-] [-] [-] [-] [1,094] [132] [132] [132] [132]

102 6 6 6 6 8 10 22 20 6 4 4
[-] [-] [-] [-] [-] [-] [1,094] [132] [132] [132] [132]

106 4 4 4 6 6 10 22 20 6 4 4
[7,365] [7,547] [-] [-] [-] [-] [1,094] [132] [132] [132] [132]

1010 2 4 4 4 4 10 22 20 6 4 4
[7,381] [1,545] [-] [-] [-] [-] [1,094] [132] [132] [132] [132]

MinRes convergence rate of the parameters ω , σ , λ and the mesh size h since the
number of iterations is bounded by 88 for all computed constellations. The condition
number estimate from Table 1 yields 106 as a bound for the maximal number of
iterations.
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Table 4 Formulation OC-FEM 1 for test case I. Number of MinRes iterations for
DOF = 124,096, ν = σ = 1, and different values of λ and ω

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 13 13 13 13 13 13 13 13 8 4 4
10−8 21 21 21 21 21 21 21 17 8 4 4
10−6 21 21 21 21 21 21 21 20 8 4 4
10−4 20 20 20 20 20 20 28 22 8 4 4
10−2 16 16 16 16 16 18 22 22 8 4 4
1 10 10 10 10 10 12 20 22 8 4 4
102 6 6 6 6 8 10 20 22 8 4 4
104 4 4 4 6 6 10 20 22 8 4 4
106 4 4 4 4 6 10 20 22 8 4 4
108 2 4 4 4 6 10 20 22 8 4 4
1010 3 4 4 4 4 10 20 22 8 4 4

Table 5 Formulation OC-FEM 1 for test case I. Number of MinRes iterations for
DOF = 124,096, ω = σ = 1, and different values of λ and ν

λ \ ν 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 2 2 3 3 5 13 21 16 6 4 3
10−8 2 2 3 4 7 21 20 10 4 4 3
10−6 2 3 3 5 13 21 16 6 4 4 4
10−4 2 3 4 7 21 20 10 6 4 4 4
10−2 3 4 6 13 21 18 8 4 4 6 6
1 4 4 8 17 28 12 6 4 6 6 9
102 4 4 8 20 22 10 6 4 6 6 8
104 4 4 8 22 20 10 6 4 4 4 8
106 4 4 8 22 20 10 4 4 4 4 8
108 4 4 8 22 20 10 4 4 4 4 8
1010 4 4 8 22 20 10 4 2 4 4 8

Table 6 Formulation OC-FEM 2 for test case II. Number of MinRes iterations for ν = σ = 1,
different values of λ and ω , and DOF = 19,652 / 143,748

λ \ ω 10−10 10−6 10−2 1 102 106 1010

10−10 21 / 27 19 / 25 17 / 25 17 / 25 17 / 25 12 / 16 10 / 10
10−6 33 / 32 33 / 32 33 / 32 33 / 32 29 / 33 10 / 14 8 / 8
10−2 22 / 20 22 / 20 26 / 23 31 / 29 34 / 35 14 / 16 10 / 10
1 12 / 12 14 / 14 14 / 14 14 / 14 24 / 24 10 / 12 8 / 8
102 11 / 11 13 / 13 13 / 13 18 / 18 34 / 34 14 / 16 10 / 10
106 13 / 13 13 / 15 21 / 21 28 / 30 56 / 58 22 / 24 14 / 14
1010 31 / 46 34 / 65 33 / 33 42 / 42 80 / 88 30 / 38 16 / 16

3.3 Test Case III

Numerical results for the observation of the magnetic flux density are reported
in Tables 7–9. The robustness with respect to the space and time discretization
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Table 7 Observation of the magnetic flux density B in Formulation OC-FEM 2 for test case III .
Number of MinRes iterations for ν = σ = λ = 1 and for different values of ω and various DOF

ω
DOF 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

500 13 13 14 14 14 16 23 12 9 8 7
2,916 11 12 13 13 13 15 29 16 10 8 8
19,652 11 11 12 12 12 14 30 21 11 8 8
143,748 11 11 12 12 12 14 28 27 13 8 8

Table 8 Observation of the magnetic flux density B in Formulation OC-FEM 2 for test case III .
Number of MinRes iterations for σ = ω = 1, different values of λ and ν , and DOF =
19,652/143,748. [-] indicates that MinRes did not converge within 10,000 iterations

λ \ ν 10−10 10−6 10−2 1 102 106 1010

10−10 174 / 325 175 / 326 175 / 327 213 / 411 290 / 505 14 / 14 8 / 8
10−6 146 / 289 146 / 289 177 / 359 215 / 392 58 / 53 8 / 10 8 / 8
10−2 272 / 543 272 / 543 306 / 523 55 / 52 13 / 13 9 / 8 13 / 15
1 290 / 543 290 / 541 240 / 325 14 / 14 8 / 8 8 / 8 12 / 14
102 475 / 948 479 / 941 83 / 79 18 / 18 12 / 12 14 / 14 26 / 36
106 193 / 688 195 / 680 55 / 55 28 / 30 18 / 18 24 / 26 360 / [-]
1010 36 / 56 39 / 55 84 / 88 42 / 42 26 / 26 50 / 54 [-] / [-]

Table 9 Observation of the magnetic flux density B in Formulation OC-FEM 2 for test case III .
Number of MinRes iterations for ν = σ = ω = 1 and for different values of λ and various DOF

λ
DOF 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

500 36 36 37 39 40 16 19 26 30 36 44
2,916 115 113 121 121 55 15 18 24 28 38 44
19,652 213 214 215 195 55 14 18 24 28 36 42
143,748 411 402 392 265 52 14 18 24 30 36 42

parameters h and ω is demonstrated in Table 7. Table 8 describes the non-robust
behavior with respect to the parameters λ and ν . In Table 9 we observe that for large
mesh sizes, good iteration numbers are observed even for small λ . Nevertheless, for
fixed λ , the iteration numbers are growing with respect to the involved degrees of
freedom.

The next experiment demonstrates that robustness with respect to the time
discretization parameter ω cannot be achieved by using the preconditioner C in
Formulation OC-FEM 1. In Table 10 the number of MinRes iteration needed for
reducing the initial residual by a factor of 10−8 is displayed. In Table 11, the same
experiment as in Table 8 is performed, but using Formulation OC-FEM 1 instead of
Formulation OC-FEM 2. Indeed, comparing Table 7 with Table 10 and Table 8 with
Table 11 clearly shows that it is essential to work with Formulation OC-FEM 2.
Besides the robustness with respect to the frequency ω , that is related to the time
discretization parameters, we additionally observe better iteration numbers with
respect to the regularization parameter λ in the interesting region 0 < λ < 1.
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Table 10 Observation of the magnetic flux density B in Formulation OC-FEM 1 for test case III .
Number of MinRes iterations for ν = σ = λ = 1 and for different values of ω and various DOF .
[-] indicates that MinRes did not converge within 10,000 iterations

ω
DOF 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

392 4,133 [-] 46 20 16 15 21 9 5 4 3
2,416 [-] [-] 64 29 15 13 27 12 6 4 4
16,736 [-] [-] 102 28 15 13 26 18 7 4 4
124,096 [-] [-] 28 13 12 26 24 9 5 4 4

Table 11 Observation of the magnetic flux density B in Formulation OC-FEM 1 for test case III .
Number of MinRes iterations for DOF = 16,736, σ = ω = 1, and different values of λ and ν . [-]
indicates that MinRes did not converge within 10,000 iterations

λ \ ν 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 739 901 1,073 1,140 1,462 1,153 1,548 182 32 19 [-]
10−6 357 361 357 385 478 607 96 17 10 9 18
10−2 234 234 234 253 279 50 9 6 7 6 9
1 260 260 260 259 214 13 7 5 6 6 8
102 462 462 469 440 76 11 6 4 6 6 7
106 79 79 79 73 21 10 4 4 4 4 6
1010 10 10 9 19 22 10 4 3 4 4 6

Table 12 Different control and observation domains in Formulation OC-FEM 2 / OC-
FEM 1 for test case IV. Number of MinRes iterations for ν = σ = λ = 1 and for different
values of ω and various DOF

ω
DOF 10−10 10−6 10−2 1 102 106 1010

2,916 19 / 34 20 / 67 23 / 52 30 / 30 30 / 22 12 / 6 8 / 4
19,652 19 / 32 20 / 82 24 / 51 30 / 30 32 / 22 12 / 6 8 / 4
143,748 19 / 29 19 / 83 23 / 48 29 / 30 32 / 20 14 / 8 8 / 4

3.4 Test Case VI

In this subsection we consider a numerical example with different observation and
control domains Ω1 and Ω2, i.e., Ω1 = Ω = (0,1)3 and Ω2 = (0.25,0.75)3. Let
us mention that we have to ensure that Ω1 and Ω2 are resolved by the mesh. The
corresponding numerical results are documented in Tables 12–14. Robustness with
respect to the space and time discretization parameters h and ω is demonstrated in
Table 12. Table 13 describes the non-robust behavior with respect to the parameters
λ and ν . Table 12 in combination with Table 14 indicates that, for the Formulation
OC-FEM 1 in combination with the preconditioner C, robustness with respect to the
frequency ω , that is related to the time discretization parameters, cannot be obtained.
Here, we want to mention that the good iteration numbers observed in Table 12 are
caused by the special choice of λ = 1.
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Table 13 Different control and observation domains in Formulation OC-FEM 2 / OC-FEM 1 for
test case IV. Number of MinRes iterations for DOF = 19,652 / 16,736, σ = ω = 1, and different
values of λ and ν . [-] indicates that MinRes did not converge within 10,000 iterations

λ \ ν 10−10 10−6 10−2 1 102 106 1010

10−10 1,038 / 34 661 / 36 [-] / 2,701 [-] / [-] [-] / 983 49 / 60 9 / [-]
10−6 342 / 31 363 / 32 6,843 / 2,630 7,142 / 828 619 / 81 26 / 41 8 / 73
10−2 188 / 29 209 / 37 607 / 169 204 / 61 114 / 43 79 / 37 106 / 47
1 40 / 19 41 / 22 52 / 39 30 / 30 26 / 25 26 / 22 26 / 24
102 41 / 10 42 / 11 70 / 22 40 / 13 26 / 12 22 / 11 28 / 10
106 24 / 6 30 / 6 76 / 22 38 / 10 24 / 6 26 / 6 414 / 6
1010 22 / 4 34 / 6 148 / 22 46 / 10 44 / 4 68 / 4 [-] / 6

Table 14 Different control and observation domains in Formulation OC-FEM 1 for test case IV.
Number of MinRes iterations for DOF = 16,736, σ = ν = 1, and different values of λ and ω . [-]
indicates that MinRes did not converge within 10,000 iterations

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 9,338 9,347 9,346 9,340 [-] [-] 2,630 66 11 6 4
10−6 571 571 571 1,075 983 828 169 20 6 4 4
10−2 49 49 122 103 81 61 22 20 6 4 4
1 32 33 82 67 51 30 22 20 6 4 4
102 23 112 60 46 43 13 22 20 6 4 4
106 [-] 46 41 39 12 10 22 20 6 4 4
1010 [-] 58 37 12 6 10 22 20 6 4 4

3.5 Test Case V

Numerical results for the case of state constraints imposed on the Fourier coeffi-
cients are presented in Tables 15, 16. Here we choose 15,512 random points as
the active sets Ec and E s and solve the resulting Jacobi system. The dependence of
the MinRes convergence rate on the Moreau–Yosida regularization parameter ε is
demonstrated in Table 15. Table 16 clearly demonstrates the robustness with respect
to the parameters λ and ω . We refer the reader to [11] for a detailed description
of the treatment of state constraints via the Moreau–Yosida regularization. Further-
more, we mention that the presence of constrains imposed on the control Fourier
coefficients finally results in (linearized) systems with system matrices having the
same structure as the system matrix arising from the case of different observation
and control domains.

4 Summary and Conclusion

We demonstrated in many numerical experiments that the preconditioners derived
and analyzed in [12] and [11] lead to parameter-robust and efficient solvers in many
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Table 15 State constraints in Formulation OC-FEM 1 for test case VI. Number of MinRes
iterations for ν = σ = ω = 1, different values of λ and ε , and DOF = 16,736 / 124,096. [-]
indicates that MinRes did not converge within 10,000 iterations

λ \ ε 10−10 10−6 10−2 1 102 106 1010

10−10 88 / 142 59 / 94 31 / 46 17 / 22 9 / 13 9 / 13 9 / 13
10−6 992 / 3,275 612 / 1,930 220 / 372 36 / 35 21 / 21 21 / 21 21 / 21
10−2 [-] / [-] [-] / [-] 351 / 383 29 / 29 20 / 18 20 / 18 20 / 18
1 [-] / [-] [-] / [-] 191 / 206 24 / 24 16 / 16 14 / 13 14 / 12
102 [-] / [-] [-] / [-] 120 / 124 13 / 13 12 / 12 10 / 10 10 / 10
106 [-] / [-] 5,882 / 6,619 12 / 11 10 / 10 10 / 10 10 / 10 10 / 10
1010 [-] / [-] 162 / 167 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10

Table 16 State constraints in Formulation OC-FEM 1 for test case VI. Number of MinRes
iterations for DOF = 124,096, ν = σ = ε = 1, and different values of λ and ω

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 22 22 22 22 22 22 22 22 12 6 4
10−6 35 35 35 35 35 35 35 22 8 4 4
10−2 30 30 30 30 30 29 22 22 8 4 4
1 20 20 20 20 20 24 20 22 8 4 4
102 16 16 16 16 18 13 20 22 8 4 4
106 13 13 14 18 12 10 20 22 8 4 4
1010 13 13 16 12 6 10 20 22 8 4 4

practically important cases. Therefore, we reported on a broad range of numerical
experiments, that confirm the theoretical convergence rates. Consequently, the
multiharmonic finite element discretization technique in combination with efficient
and parameter-robust solvers leads to a very competitive method. Furthermore, we
want to mention that due to the decoupling nature of the frequency domain equations
with respect to the individual modes, a parallelization of the proposed method is
straightforward (cf. Algorithm 1).
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Abstract We present an overview on the state of the art of robust AMLI
preconditioners for anisotropic elliptic problems. The included theoretical
results summarize the convergence analysis of both linear and nonlinear AMLI
methods for finite element discretizations by conforming and nonconforming
linear elements and by conforming quadratic elements. The initially proposed
hierarchical basis approach leads to robust multilevel algorithms for linear but not
for quadratic elements for which an alternative AMLI method based on additive
Schur complement approximation (ASCA) has been developed by the authors just
recently. The presented new numerical results are focused on cases beyond the
limitations of the rigorous AMLI theory. They reveal the potential and prospects
of the ASCA approach to enhance the robustness of the resulting AMLI methods
especially in situations when the matrix-valued coefficient function is not resolved
on the coarsest mesh in the multilevel hierarchy.
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1 Introduction

Anisotropy arises in many applications such as heat transfer, electrostatics,
magnetostatics, flow in porous media (see, e.g., [12]), and many other areas in
science and engineering. For instance, in porous media a strong anisotropy of
conductivity can be due to fractures, where the direction of dominating anisotropy is
determined by the orientation of the fractures. The presence of fracture corridors can
form long and tiny highly anisotropic channels. The network of channels is resolved
at the finest mesh. The ratio of anisotropy in the channels can be of 5–6 orders of
magnitude. Such kind of high-contrast and high-frequency anisotropic problems are
still beyond the limits of robust algebraic multilevel preconditioning. At the end of
the paper we experimentally study the robustness of algebraic multilevel iteration
(AMLI) methods on model problems with channels.

In this paper we consider the elliptic boundary value problem

Lu ≡−∇ · (a(x)∇u(x)) = f (x) in Ω ,

u = 0 on ΓD,

(a(x)∇u(x)) ·n = 0 on ΓN ,

(1)

where Ω is a polygonal domain in R
2, f (x) is a given function in L2(Ω), the

coefficient matrix a(x) is symmetric positive definite and uniformly bounded in
Ω , and n is the outward unit vector normal to the boundary Γ = ∂Ω , where
Γ = Γ̄D ∪ Γ̄N . We assume also that the elements of the diffusion coefficient matrix
a(x) are piecewise smooth functions on Ω̄ .

The weak formulation of the problem reads as follows: Given f ∈ L2(Ω), find
u ∈ V ≡ H1

D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}, satisfying

A(u,v) = ( f ,v) :=
´

Ω f (x)v(x)dx ∀v ∈ H1
D(Ω), where

A(u,v) :=
´

Ω a(x)∇u(x) ·∇v(x)dx.
(2)

We assume that the domain Ω is discretized by the triangulation T0 which is
obtained by a proper number of � uniform refinement steps of a given coarser
triangulation T�. We suppose also that T� is aligned with the discontinuities of
a(x) so that over each element T ∈ T�, the entries of the coefficient matrix
(diffusion tensor) a(x) are smooth functions. This assumption is mainly needed
for theoretical considerations and is disregarded in the computational examples
presented in Sect. 5.

The variational problem (2) is discretized using the finite element method (FEM),
i.e., the continuous space V is replaced by a finite-dimensional space Vh. Then the
finite element formulation is the following: find uh ∈ Vh, satisfying

Ah(uh,vh) = ( f ,vh) ∀vh ∈ Vh, where
Ah(uh,vh) := ∑e∈Th

´
e a(e)∇uh ·∇vhdx.

(3)



Robust Algebraic Multilevel Preconditioners for Anisotropic Problems 219

We note that the element-by-element additive setting of Ah(uh,vh) is applicable to
both conforming and nonconforming FEM discretizations.

Here a(e) is a piecewise constant symmetric positive definite matrix, defined
by the integral averaged values of a(x) over each element from the coarsest
triangulation T�, i.e.,

a(e) =
1
|e|

ˆ
e
a(x)dx, ∀e ∈ T�.

In this way strong coefficient jumps across the boundaries between adjacent finite
elements from T� are allowed.

The resulting FEM linear system of equations reads as

Ahuh = fh, (4)

with Ah and fh being the corresponding global stiffness matrix and global right-
hand side and h being the discretization (mesh size) parameter for the underlying
triangulation T0 = Th of Ω .

The stiffness matrix is symmetric, positive definite, and sparse. The sparsity
property means that the number of nonzero entries in each row/column is uniformly
bounded with respect to the number of the unknowns N = O(h−2).

In the case of advanced real-life applications (and in the context of this paper),
Ah could be very large, that is, N is of order 106 up to 109. For such problems,
the advantages of the iterative solution methods increase quickly with the size
of the problem. The conjugate gradient (CG) method invented 60 years ago by
Hestenes and Stiefel [15] is the fastest basic iterative scheme for such kind of
problems. It provides a sequence of best approximations to the exact solution in the
Krylov subspaces generated by the stiffness matrix. The number of CG iterations
nCG

it depends on the spectral condition number of the matrix κ(Ah). In the case
of two-dimensional FEM elliptic systems, κ(Ah) = O(N) and nCG

it = O(
√

κ(Ah)) =

O(N1/2). The aim of the preconditioning is to relax the mesh-size dependency of the
iterations’ count. The following estimate characterizes the preconditioned conjugate
gradient (PCG) method:

nPCG
it ≤ 1

2

√
κ (B−1Ah) ln

(
2
ε

)
+ 1, (5)

where B is a symmetric and positive definite preconditioning matrix (also called
preconditioner) and nPCG

it is the related number of PCG iterations sufficient to get
a prescribed relative accuracy of ε > 0. The general strategy for efficient precondi-
tioning simply follows from the estimate (5). It reads as follows: (i) The condition
number of the preconditioned matrix is much less than the original one, i.e.,
κ
(
B−1A

)
<< κ(A); (ii) The computational complexity to solve the preconditioned

system is much smaller than the complexity to solve the original problem, i.e.,
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N
(
B−1v

)
<< N

(
A−1v

)
. One could say that these conditions are contradictory.

Indeed, when κ
(
B−1A

)
tends to its minimal value, the preconditioner should tend

to A and N
(
B−1v

)
→ N

(
A−1v

)
. Fortunately, such kind of reasonings are too

pessimistic according to the recent state of the art of the preconditioning algorithms.

Definition 1. The preconditioner is called optimal if the related PCG algorithm has
optimal order of computational complexity N PCG = O(N), that is, if κ

(
B−1A

)
=

O(1) and N
(
B−1v

)
= O(N).

The existence of optimal iterative solution methods has been an open question
before the early 1960s. Now, the optimal order multigrid and multilevel methods are
well known in the community of researchers and engineers dealing with large-scale
scientific computations and their advanced applications.

This paper is devoted to some recent achievements in the development of robust
preconditioners for FEM elliptic systems belonging to the class of multilevel block
factorization methods of the AMLI type. It provides a survey on robust AMLI
methods for anisotropic elliptic problems, covering a significantly enriched state
of the art in this field as compared to the related earlier paper [21].

Based on a sequence of nested finite element meshes, the AMLI methods were
originally introduced by Axelsson and Vassilevski in [6] for the case of isotropic
elliptic problems discretized by conforming linear finite elements. They are optimal
with respect to the mesh parameter (problem size) and can handle straightforwardly
arbitrary coefficient jumps on the coarsest mesh. The originally introduced AMLI
methods are based on a hierarchical basis (HB) splitting of the stiffness matrix and a
recursive application of HB two-level preconditioning. Since then the AMLI theory
has evolved beyond the HB framework; see, e.g., [2,16,17,25]. The construction of
AMLI is always based on a recursive approximate (two-by-two) block factorization.
Under rather general assumptions, the HB AMLI methods are robust in the case
of linear (conforming and nonconforming) elements which does not hold for
higher-order FEM. Here we present complimentary some very recent results for
quadratic elements where the approximate block factorization on each level exploits
an additive Schur complement approximation (ASCA), thereby avoiding the HB
splitting; see [18, 20] for further details. The resulting (nonlinear) AMLI is very
robust with respect to anisotropy that does not have to be aligned with the grid
if it is complemented by a proper block-relaxation process. The efficiency of the
interplay between these two components can be enhanced if one applies the ASCA
and the block smoother on specific, augmented coarse grids (cf. Sect. 4 and [20]).

In our presentation we follow the mathematical concept of high anisotropy or
orthotropy introduced in [12]. For any x∈Ω , we denote the eigenvalues 0< μ1(x)≤
μ2(x) and eigenvectors q j(x), j = 1,2 (written as vector columns) of the coefficient
(diffusion) matrix a(x). Then

a(x) = μ1(x)q1(x)q1(x)
T + μ2(x)q2(x)q2(x)

T .

In this notation, obviously,

μ1(x)q
T q≤ qT a(x)q≤ μ2(x)q

T q, ∀q ∈ IR2.
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Depending on the variation of the eigenvalues μ j(x), we may have various scenarios
of highly anisotropic materials. The aspect ratio of coefficient anisotropy is
introduced as

κ(a) = max
x

μ2(x)
μ1(x)

= max
e

μ2(e)
μ1(e)

.

The direction of dominating anisotropy is determined by the eigenvector q2(x).
The following simple examples illustrate the general mathematical concept of

high anisotropy, where η � 1: (a) In the case of orthotropic problem we have, e.g.,
a = [1,0;0,η ]. Then μ1 = 1, μ2 = η , consequently κ = η , and q2 = [0,1]T , i.e.,
the direction of dominating anisotropy is along the coordinate y-axis. (b) Let a =
[1+η ,η − 1;η − 1,1+η ]. Then μ1 = 2, μ2 = 2η , and κ = η . The direction of
dominating anisotropy is determined by q2 = [1+η ,1−η ]T/

√
2(1+η2) where

q2 → [1,−1]T/
√

2 when η → ∞.
In what follows later, two representative variants of the coefficient a(e) are

considered:

(a) The isotropic/orthotropic problem associated with

a(e) =
[

1 0
0 ε

]
. (6)

(b) The rotated diffusion problem associated with

a(e) =
[

cosθ −sinθ
sinθ cosθ

][
1

ε

][
cosθ −sinθ
sinθ cosθ

]T

, (7)

where ε > 0 and θ = θe is a piecewise constant angle.

The setting of (7) allows to study problems with a given fixed or varying direction
(angle) of anisotropy. Nongrid-aligned anisotropy in general is much more difficult
to handle than orthotropy (or grid-aligned anisotropy) thus far.

The remainder of the paper is organized as follows. The theoretical background
of the AMLI methods is presented next. Together with the classical formulations,
Sect. 2 contains the main convergence results for linear and nonlinear AMLI
methods. A complete set of robustness results for anisotropic linear FEM systems
is presented in Sect. 3, where the HB AMLI method is considered. The estimates
are robust with respect to coefficient and mesh anisotropy for both conforming and
nonconforming elements. Section 4 is devoted to preconditioning of quadratic FEM
systems. It starts with a few comments on HB splittings, which are not robust in this
case. Then some very recent results are presented on an AMLI method based on
ASCA. In the latter method two additional stabilizing components are incorporated,
namely, augmented coarse grids and a global (block) smoothing. The numerical
results in Sect. 5 demonstrate the potential of this approach for complicated
and more realistic problems which are still beyond the scope of rigorous theory.
The survey concludes with final remarks given in Sect. 6.
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2 Algebraic Multilevel Methods

The AMLI methods have originally been introduced and studied in a multiplicative
form; see [6, 7]. The presentation in this section follows [27]. Consider the linear
system (4) where Ah =: A(0) is the fine-grid stiffness matrix. We assume that
the standard components of a multigrid (MG) method, that is, the kth-level
matrices A(k), smoothers M(k), and coarse-to-fine interpolation matrices P(k), have

been defined and that the Galerkin relation A(k+1) = P(k)T
A(k)P(k) holds for k =

0,1, . . . , �− 1.
The AMLI preconditioner B(k) is defined recursively via its inverse. On the

coarsest level � we set

B(�)−1
= A(�)−1

. (8)

Then, assuming that B(k+1)−1
has already been defined for k+1≤ �, one constructs

B(k)−1
in two steps. First, an approximation Z(k+1) of A(k+1) is defined by

Z(k+1) := A(k+1)
(

I− p(k)(B(k+1)−1
A(k+1))

)−1
, (9)

where p(k) denotes a polynomial of degree ν = νk, satisfying

p(k)(0) = 1. (10)

It is important to note that in view of (10) Eq. (9) is equivalent to

B(k+1)
ν

−1
:= Z(k+1)−1

= B(k+1)−1
q(k)(A(k+1)B(k+1)−1

) (11)

where the polynomial q(k) is given by

q(k)(x) =
1− p(k)(x)

x
(12)

showing that the application of B(k+1)
ν

−1
= Z(k+1)−1

requires only applications of

A(k+1) and B(k+1)−1
but not of the inverse of the coarse-level matrix A(k+1) (as this

is the case in the exact two-level method). Second, the AMLI preconditioner B(k) at
level k is defined by

B(k)−1
:= M̄(k)−1

+
(

I−M(k)−T
A(k)
)

P(k)B(k+1)
ν

−1
P(k)T

(
I−A(k)M(k)−1

)
(13)
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where B(k+1)
ν

−1
is given by (11) and M̄(k) denotes the symmetrized smoother at

level k, that is,

M̄(k)−1
= M(k)−1

+M(k)−T −M(k)−T
A(k)M(k)−1

. (14)

We observe that the multilevel preconditioner defined via (11) and (13) is getting
close to an exact two-level method when the polynomial (12) approximates well 1/x

in which case B(k+1)
ν

−1
≈A(k+1)−1

. In order to obtain an efficient multilevel method,

the action of B(k+1)
ν

−1
on an arbitrary vector should be much cheaper to compute (in

terms of the number of arithmetic operations) than the action of A(k+1)−1
. Optimal

order solution algorithms typically require the arithmetic work for one application

of B(k+1)
ν

−1
to be of the orderO(Nk+1) where Nk+1 denotes the number of unknowns

at level k+ 1.
In the classical AMLI method, as it has been introduced in [6,7], the coarse-grid

matrix A(k+1) is retrieved from a (two-level) hierarchical basis transformation of
A(k). The preconditioner B̃(k) (in its multiplicative variant) then is defined by

(B̃(k))−1 =

[
B(k)

11

−1
0

0 0

]
+

[
−B(k)

11

−1
Â(k)

12
I

]
B(k+1)

ν
−1
[
−Â(k)

21 B(k)
11

−1
, I

]

=

[
B(k)

11

−1
0

0 0

]
+(L̃(k))T

[
0
I

]
B(k+1)

ν
−1

[0, I] L̃(k)

where

L̃(k) =

[
I−A(k)

11 B(k)
11

−1
0

−Â(k)
21 B(k)

11

−1
I

]
.

Writing the equation above in the form (13), one finds that

M(k)−1
= M(k)−T

=

[
B(k)

11

−1
0

0 0

]
(15)

is a smoother that acts only on the hierarchical complement of the coarse space,

where B(k)
11 is a proper approximation of A(k)

11 . The corresponding symmetrized
smoother then is given by

M̄(k)−1
=

[
2B(k)

11

−1
−B(k)

11

−1
A(k)

11 B(k)
11

−1
0

0 0

]
, (16)

and P(k) takes the simple form

P(k) =

[
0
I

]
. (17)



224 J. Kraus et al.

The latter is due to the fact that the (classical) AMLI preconditioner is defined for
the hierarchical two-level matrix Â(k), which contains the coarse-level matrix as a
sub-matrix in its lower right block, i.e.,

A(k+1) = [0, I] Â(k)
[

0
I

]
.

This, however, is in agreement with the Galerkin relation A(k+1) = P(k)T
A(k)P(k) as

is used in (algebraic) multigrid methods.
The convergence theory of the classical AMLI methods (in the multiplicative

variant) is based on the spectral equivalence of the k-th level hierarchical matrix
Â(k) and its (multiplicative) two-level preconditioner

B̂(k) =

[
B(k)

11 0

Â(k)
21 Â(k)

22

][
I B(k)

11

−1
Â(k)

12
0 I

]
, (18)

that is,

ϑ̂kB̂(k) ≤ Â(k) ≤ B̂(k), k = �− 1, . . . ,0. (19)

Note that if B(k)
11 = A(k)

11 then ϑ̂k = 1− γ2
k where γk is the constant in the strengthened

Cauchy–Bunyakovsky–Schwarz (CBS) inequality associated with the hierarchical
matrix Â(k). The subscript of γ is usually skipped when uniform estimate of the
CBS constant with respect to the refinement level k is assumed (see, e.g., (35)). We
conclude that the polynomial acceleration techniques described in this paper can
be exploited in various implementations of AMLI preconditioners, which can be
viewed as inexact two-level methods. The performance of these methods crucially
depends on the particular choice of the polynomial q(k) in Eq. (11) and on two-level
estimates like (19) or (31).

2.1 Condition Number Estimates for AMLI Preconditioners

Let us first summarize the main result of the analysis of the AMLI-cycle multigrid
preconditioner as presented in [27].

The AMLI-cycle is a ν-fold multigrid (MG) cycle with variable ν = νk. In the
following, let ν ≥ 1 and k0 ≥ 1 be two fixed integers. We set νsk0 = ν > 1 for
s = 1,2,3, . . . and νk = 1 otherwise. That is, we let

B((s+1)k0)
ν

−1
= B((s+1)k0)

−1
qν−1(A

((s+1)k0)B((s+1)k0)
−1
) (20)

if k+ 1 = (s+ 1)k0, and

B(k+1)
ν

−1
= B(k+1)−1

(21)
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otherwise. Then for the AMLI-cycle MG preconditioner B(k) defined in (13), the
following result can be proven (cf. Theorem 5.29 in [27]).

Theorem 1 ([27]). With a proper choice of the parameters k0 and ν , and for a
proper choice of the polynomial p(k)(x) = pν(x) satisfying (10), the condition num-

ber of B(k)−1
A(k) can be uniformly bounded provided the V-cycle preconditioners

with bounded level difference �−k≤ k0 have uniformly bounded condition numbers
K� �→k

MG .

More specifically, for a fixed k0, and ν >
√

K� �→k
MG , we can choose α > 0 such that

αK� �→k
MG +K� �→k

MG
(1−α)ν[

∑ν
j=1(1+

√
α)ν− j(1−

√
α) j−1

]2 ≤ 1

and employ the polynomial

pν(x) =
1+Tν

( 1+α−2x
1−α

)
1+Tν

(
1+α
1−α
)

where Tν is the Chebyshev polynomial of the first kind of degree ν .
Alternatively, we can choose α ∈ (0,1) such that

αK� �→k
MG +K� �→k

MG
(1−α)ν

∑ν
j=1(1−α) j−1 ≤ 1

and use the polynomial pν(x) = (1−x)ν to define qν−1(x) := (1− pν(x))/x in (20).
Then for both choices of the polynomial pν (respectively qν−1), the resulting

AMLI-cycle preconditioner B=B(0), as defined via (8)–(13), is spectrally equivalent
to the matrix A = A(0), and the following estimate holds

vT Av≤ vT Bv≤ 1
α

vT Av ∀v, (22)

with the respective α ∈ (0,1] depending on the choice of the polynomial.

2.2 Nonlinear AMLI-Cycle Method

Consider a sequence of two-by-two block matrices

A(k) =

[
A(k)

11 0

A(k)
21 S(k)

][
I A(k)

11

−1
A(k)

12
0 I

]
=

[
A(k)

11 A(k)
12

A(k)
21 S(k) +A(k)

21 A(k)
11

−1
A(k)

12

]
(23)



226 J. Kraus et al.

associated with a (nested) sequence of meshes Tk, k = 0,1,2, . . . , �, where T� denotes
the coarsest mesh (and A(k) could also be in hierarchical basis). Let S(k) be the Schur
complement in the exact block factorization (23) of A(k). Moreover, the following
abstract (linear) multiplicative two-level preconditioner

B̄(k) =

[
B(k)

11 0

A(k)
21 Q(k)

][
I B(k)

11

−1
A(k)

12
0 I

]
=

[
B(k)

11 A(k)
12

A(k)
21 Q(k) +A(k)

21 B(k)
11

−1
A(k)

12

]
(24)

to A(k) is defined at levels k = 0,1,2, . . . , �− 1. Here B(k)
11 is a preconditioner to A(k)

11
and Q(k) is a sparse approximation of S(k). In order to relate the two sequences
(A(k))k=0,1,2,...,�−1 and (B̄(k))k=0,1,2,...,�−1 to each other, one sets

A(0) := Ah = A, (25)

where Ah is the stiffness matrix in (4), and defines

A(k+1) := Q(k), k = 0,1,2, . . . , �− 1. (26)

Next the nonlinear AMLI-cycle preconditioner B(k)[·] : IRNk �→ IRNk for k = �−
1, . . . ,0 is defined recursively by

B(k)−1
[y] :=U (k)D(k)[L(k)y], (27)

where

L(k) :=

[
I 0

−A(k)
21 B(k)

11

−1
I

]
, (28)

U (k) = L(k)T
, and

D(k)[z] =

[
B(k)

11

−1
z1

Z(k+1)−1
[z2]

]
. (29)

The (nonlinear) mapping Z(k+1)−1
[·] is defined by

Z(�)−1
[·] = A(�)−1

,

Z(k)−1
[·] := B(k)−1

[·] if ν = 1 and k < �,

Z(k)−1
[·] := B(k)

ν
−1
[·] if ν > 1 and k < �,

(30)

with

B(k)
ν
−1
[d] := x(ν)

where x(ν) is the ν-th iterate obtained when applying the generalized conjugate

gradient (GCG) algorithm (see [8]) to the linear system A(k)x = d using B(k)[·]
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as a preconditioner and starting with the initial guess x(0) = 0. The vector ννν =

(ν1,ν2, . . . ,ν�−1)
T specifies how many inner GCG iterations are performed at each

of the levels k = �− 1, . . . ,1, and ν0 = mmax denotes the maximum number of
orthogonal search directions at level 0. Typically the algorithm is restarted after
every mmax iterations. If a fixed number ν of inner GCG-type iterations is performed
at every intermediate level, i.e., νk = ν for k = �−1, . . . ,1, the method is referred to
as (nonlinear) ν-fold W-cycle AMLI method.

Convergence: Next the main convergence result from [16] is presented.
Denoting by x(i) the i-th iterate generated by the nonlinear AMLI method, the

goal is to derive a bound for the error reduction factor in A norm. This can be done
by assuming, for example, that the two-level preconditioners (24) and the matrices
(23) are spectrally equivalent, i.e.,

ϑ kB̄(k) ≤ A(k) ≤ ϑ kB̄(k), k = �− 1, . . . ,0. (31)

A slightly different approach to analyze the nonlinear AMLI-cycle method is based
on the assumption that all fixed-length V-cycle multilevel methods from any coarse-
level k+ k0 to level k with exact solution at level k+ k0 are uniformly convergent in
k with an error reduction factor δk0 ∈ [0,1); see [26,27]. Both approaches, however,
are based on the idea to estimate the deviation of the nonlinear preconditioner B(k)[·]
from an SPD matrix B̄(k).

The following theorem (see [16, 18]) summarizes the main convergence result.

Theorem 2 ([16]). Consider the linear system A(0)x = d(0) where A(0) is an SPD
stiffness matrix, and let x(i) be the sequence of iterates generated by the nonlinear
AMLI algorithm. Further, assume that the approximation property (31) holds and
let ϑ := max0≤k<�ϑ k/ϑ k. If ν , the number of inner GCG iterations at every coarse

level (except level � where Z(�)−1
[·] = A(�)−1

) is chosen such that

δ (ν):=
(

1− 4ϑ(1− ε)2

(1+ϑ− 2ε +ϑε2)2

)ν/2

≤ ε (32)

for some positive ε < 1 then

‖x− x(i+1)‖A(0)

‖x− x(i)‖A(0)
≤

√
1− 4ϑ(1− ε)2

(1+ϑ − 2ε +ϑε2)2 = δ (1) =: δ < 1. (33)

Remark 1. Note that the relative condition number κ(Q(k)−1
S(k)) affects the ap-

proximation property (31). In the simplest case in which the multiplicative two-level

preconditioner (24) is considered under the assumption B(k)
11 = A(k)

11 , this results in

ϑ = κ(Q(k)−1
S(k)).
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2.3 Optimality Conditions

As has been stated in Theorem 2, uniform convergence of the AMLI method can
be proven under the assumption (31), which guarantees that the (multiplicative)
two-level preconditioner satisfies a certain approximation property. Equivalently,
uniform convergence of the multilevel V-cycle preconditioner (ν = 1) with bounded
level difference can be required as the basic assumption to prove uniform conver-
gence of the AMLI method for unbounded level difference as this was done in
Theorem 1 in case of the linear preconditioner. In many cases these assumptions
can be verified by studying the angle between the coarse space and its hierarchical
complement. In fact, and this was shown in the original convergence analysis
of linear AMLI methods [7], a stabilization of the condition number of the
(multiplicative) multilevel preconditioner can be achieved under the assumption

A(k)
11 ≤ B(k)

11 ≤ ωA(k)
11 (34)

on the approximation of the pivot block A(k)
11 if

1√
1− γ2

< ν. (35)

Assuming now that we have a fully stabilized multilevel method, i.e., the
solutions for a repeatedly refined mesh (in principle for any number of regular
refinement steps) are obtained at a constant number of iterations. Then the second
condition to be fulfilled for an optimal order solution process is that the computa-
tional cost of each single iteration is proportional to the total number of degrees of
freedom (DOF).

The computational work (operation count) of the ν-fold W-cycle of either linear
or nonlinear AMLI at level 0 (associated with the finest mesh) can be estimated by

w(0) ≤ c(N0 +ν N1 + . . .+ν�N�)

= cN0

(
1+

ν
ρ
+

(
ν
ρ

)2

+ . . .+

(
ν
ρ

)�
)

= cN0

1−
(

ν
ρ

)�+1

1− ν
ρ

.

Assuming that the number of DOF at level k+ 1 is (approximately) 1/ρ times the
number of DOF at level k, each visit of level k must induce less than ρ visits
of level k + 1 (at least in average). This means that if the coarsening ratio is,
for example, four, i.e., ρ = 4, then two but also three inner GCG iterations, or,
alternatively, the employment of second- but also third-degree matrix polynomials
at every intermediate level, result in a computational complexity O(N) = O(N0) of
one (outer) iteration. The condition for optimal order single iterations is thus

ν < ρ , (36)
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which combined with (35) results in the (combined) optimality conditions

1√
1− γ2

< ν < ρ . (37)

In what follows, we assume that the default meaning of AMLI is the multiplicative
one.

Remark 2. The optimality conditions for the symmetric preconditioner of block-
diagonal (additive) form are given by

√
1+ γ
1− γ

< ν < ρ . (38)

Stabilization techniques for additive multilevel iteration methods and nearly
optimal order parameter-free block-diagonal preconditioners of AMLI type are
discussed in [4, 5].

3 Linear Elements

The material selected in this section follows the spirit of the robust AMLI methods
as originally presented in [3,4,9,10,22,24] as well as the earlier survey paper [21].
The hierarchical basis approach is followed for both conforming and nonconforming
elements. This allows systematically to use local constructions and analysis at the
level of element and macroelement matrices.

3.1 Conforming Elements

Some Basic Relations: Let us remind that the analysis for an arbitrary triangle (e)
can be done on the reference triangle (ẽ). Transforming the finite element functions
between these triangles, the element bilinear form Ae(., .) takes the form

Aẽ(ũ, ṽ) =
ˆ

ẽ
∑
i, j

ãi j
∂ ũ
∂ x̃i

∂ ṽ
∂ x̃ j

, (39)

where the coefficients ãi j depend on both the coordinates in e and the coefficients
ai j in the differential operator.

The important conclusion is that it suffices for the local analysis to consider the
(macro)element stiffness matrices for the reference triangle and arbitrary anisotropic
coefficients [ai j] or, alternatively, for the isotropic operator −Δ and an arbitrary
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triangle e. In this sense, the mesh and coefficient anisotropy are equivalent, which
obviously holds true for any conforming or nonconforming triangular finite element.

Following the FEM assembling procedure, we write the global stiffness matrix A
in the form

A = ∑
e∈Tk

RT
e AeRe, (40)

where Ae is the element stiffness matrix and Re stands for the restriction mapping of
the global vector of unknowns to the local one corresponding to element e ∈ Tk.

Consider now the Laplace operator and an arbitrary shaped linear triangular finite
element (mesh anisotropy). Then, the element stiffness matrix Ae can be written in
the form

Ae =
1
2

⎡
⎣ b+ c −c −b
−c a+ c −a
−b −a a+ b

⎤
⎦ , (41)

where a, b, and c equal the cotangent of the angles in e ∈ Th. Without loss of
generality, we assume in the local analysis that |a| ≤ b ≤ c, which follows from
the next lemma; see, e.g., [3].

Lemma 1. Let θ1,θ2,θ3 be the angles in an arbitrary triangle. Then with a =
cotθ1, b = cotθ2, c = cotθ3, it holds

(i) a = (1− bc)/(b+ c)
(ii) If θ1 ≥ θ2 ≥ θ3 then |a| ≤ b≤ c
(iii) a+ b > 0.

Applying Lemma 1, we simply get the scaled representation of the element stiffness
matrix:

Ae =
c
2

⎡
⎣β + 1 −1 −β
−1 α + 1 −α
−β −α α +β

⎤
⎦ , (42)

α = a/c, β = b/c, and (α,β ) ∈ D, where

D = {(α,β ) ∈R
2 :−1

2
< α ≤ 1,max{− α

α + 1
, |α|} ≤ β ≤ 1}. (43)

The local analysis in terms of (α,β ) belonging to the convex curvilinear triangle D
plays a key role in the derivation of robust estimates for anisotropic problems; see
[3, 10].

Uniform Estimates of the Constant in the Strengthened CBS Inequality:
Consider two consecutive meshes Tk+1 ⊂ Tk. A uniform refinement procedure is
set as a default assumption where the current coarse triangle e ∈ Tk+1 is subdivided
in four congruent triangles by joining the mid-edge nodes to get the macroelement
E ∈Tk. The related macroelement stiffness matrix consists of blocks which are 3×3
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matrices and, the local eigenproblem to compute γE has a reduced dimension of
2× 2.

In the so-arising six node-points of the macroelement, we can also use hierarchi-
cal basis functions, where we keep the linear basis functions in the vertex nodes and
add piecewise quadratic basis functions in the mid-edge nodes with support on the
whole triangle. Let us denote by γ̂E the corresponding CBS constant. The following
relation between γE and γ̂E holds.

Theorem 3 ([23]). Let us consider a piecewise Laplacian elliptic problem on an
arbitrary finite element triangular mesh Tk+1, and let each element from Tk+1 be
refined into four congruent elements to get Tk. Then

γ̂2
E =

4
3

γ2
E , (44)

where γ̂E , γE are the local CBS constants for the hierarchical piecewise quadratic
and the piecewise linear finite elements, respectively.

Taking into account that γ̂E < 1, we get the local estimate

γ2
E <

3
4

(45)

which holds uniformly with respect to the mesh anisotropy. Then, the next funda-
mental result follows directly from the local estimate (45), the equivalence relation
(39), and the inequality γ ≤maxE γE .

Theorem 4. Consider the problem (3) discretized by conforming linear finite
elements, where the coarsest grid T� is aligned with the discontinuities of the
coefficient a(e), e ∈ T�. Let us assume also that Tk+1 ⊂ Tk are two consecutive
meshes where each element from Tk+1 is refined into four congruent elements to
get Tk. Then, the estimate

γ2 <
3
4

(46)

of the CBS constant holds uniformly with respect to the coefficient jumps, mesh
or/and coefficient anisotropy, and the refinement level k.

Preconditioning of the Pivot Block: When applicable, we will skip the super-
scripts of the pivot block and its approximation. Here, we will write A11, B11,

instead of A(k)
11 , B(k)

11 . The construction and the analysis of the preconditioners B11

are based on a macroelement-by-macroelement assembling procedure. Following
(40), we write A11 in the form

A11 = ∑
E∈Tk+1

RT
EAE:11RE . (47)

Following the scaled representation (42), we get



232 J. Kraus et al.

AE:11 = rT cT

⎡
⎣α +β + 1 −1 −β

−1 α +β + 1 −α
−β −α α +β + 1

⎤
⎦ . (48)

Then, the additive preconditioner of A11 is defined as follows:

B(A)
11 = ∑

E∈Tk+1

RT
EB(A)

E:11RE , (49)

where

B(A)
E:11 = 2rT cT

⎡
⎣α +β + 1 −1 0

−1 α +β + 1 0
0 0 α +β + 1

⎤
⎦ . (50)

As one can see, the local matrix B(A)
E:11 is obtained by preserving only the strongest

off-diagonal entries. Alternatively, the multiplicative preconditioner B(M)
E is defined

as a symmetric block Gauss–Seidel preconditioner of A11 subject to a proper node
numbering (see, e.g., [3]).

Theorem 5 ([3, 4]). The additive and multiplicative preconditioners of A11 are
uniform, i.e.,

κ
(

B(A)
11

−1
A11

)
<

1
4
(11+

√
105)≈ 5.31, (51)

κ
(

B(M)
11

−1
A11

)
<

15
8

= 1.875. (52)

These condition number bounds hold independently on shape and size of each
element (mesh anisotropy) and on the coefficient matrix a(e) of the FEM problem
(coefficient anisotropy).

3.2 Nonconforming Elements

For the nonconforming Crouzeix–Raviart finite element, where the nodal basis
functions are defined at the midpoints along the edges of the triangle rather than
at its vertices (cf. Fig. 1), the natural vector spaces VH(E) := span{φI ,φII ,φIII} and
Vh(E) := span{φi}9

i=1 (cf. the macroelement in Fig.1) are no longer nested, i.e.,
VH(E)� Vh(E). A simple computation shows that the element stiffness matrix for
the Crouzeix–Raviart (CR) element, ACR

e , coincides with that of the corresponding
conforming linear element up to a factor 4, i.e.,



Robust Algebraic Multilevel Preconditioners for Anisotropic Problems 233

6 1 2 5

8 9

3

7 4

I

III

II

Fig. 1 Macroelement composed of four Crouzeix–Raviart elements

ACR
e = 2

⎡
⎢⎢⎣

b+ c −c −b

−c a+ c −a

−b −a a+ b

⎤
⎥⎥⎦ , (53)

(cf., (41)). The construction of the hierarchical stiffness matrix at macroelement
level starts with the assembly of four such matrices according to the numbering
of the nodal points, as shown in Fig. 1. It further utilizes a transformation, which
is based on a proper decomposition of the vector space V(E) = Vh(E), which is
associated with the fine-grid basis functions related to this macroelement E . We
consider hierarchical splittings, which make use of half-difference and half-sum
basis functions. Let us denote by ΦE := {φ (i)}9

i=1 the set of the “midpoint” basis
functions of the four congruent elements in the macroelement E , as depicted in
Fig. 1. The splitting of V(E) can be defined in the general form (see [22]):

V1(E) := span{φ1, φ2, φ3, φD
1 +φ4−φ5, φD

2 +φ6−φ7, φD
3 +φ8−φ9} ,

V2(E) := span{φC
1 +φ4 +φ5, φC

2 +φ6 +φ7, φC
3 +φ8 +φ9} ,

(54)

where φD
i := ∑k dikφk and φC

i := ∑k cikφk with i,k ∈ {1,2,3}. The transformation
matrix is given by

JT
E = JT

E (C,D) =

[
I3 D C

0 J− J+

]
(∈ R

9×9), (55)

where I3 denotes the 3× 3 identity matrix and C and D are 3× 3 matrices whose
entries ci j, respectively, di j are to be specified later. The 3× 6 matrices



234 J. Kraus et al.

J−:=
1
2

⎡
⎢⎢⎣

1 −1

1 −1

1 −1

⎤
⎥⎥⎦

T

and J+:=
1
2

⎡
⎢⎢⎣

1 1

1 1

1 1

⎤
⎥⎥⎦

T

(56)

introduce the so-called half-difference and half-sum basis functions associated with
the sides of the macroelement triangle. The matrix JE transforms the vector of the
macroelement basis functions φE := (φ (i))9

i=1 to the hierarchical basis vector φ̃E :=
(φ̃ (i))9

i=1 = JT
E φE , and the hierarchical stiffness matrix at macroelement level is

obtained as

ÃE = JT
E AEJE =

[
ÃE:11 ÃE:12

ÃT
E:12 ÃE:22

]
} ∈ V1(E)

} ∈ V2(E)
. (57)

The related global stiffness matrix is obtained as Ãh := ∑E∈TH
RT

EÃERE .
The transformation matrix J = J(C,D) such that φ̃ = JT φ is then used for the

transformation of the global matrix Ah to its hierarchical form Ãh = JT AhJ, and
(by a proper permutation of rows and columns) the latter admits the 3× 3-block
representation:

Ãh =

⎡
⎢⎢⎣

Ã11 Ã12 Ã13

ÃT
12 Ã22 Ã23

ÃT
13 ÃT

23 Ã33

⎤
⎥⎥⎦

}
∈ V1

} ∈ V2

(58)

according to the interior, half-difference, and half-sum basis functions, which are
associated with (54). The next two variants follow [9].

Definition 2 (Differences and Aggregates (DA)). The splitting based on differ-
ences and aggregates corresponds to D = 0 and C = 1

2 diag(1,1,1).

Definition 3 (First Reduce (FR) Splitting). The splitting based on differences and
aggregates incorporating a “first reduce” (static condensation) step is characterized
by setting D = 0 and C =−A−1

11 Ā13 in (55).

Theorem 6 ([22]). Consider the problem (3) discretized by nonconforming linear
finite elements, where the multilevel meshes satisfy the conditions from Theorem 4.
Then, the estimate

γ2
FR ≤ γ2

DA ≤
3
4

(59)

of the CBS constants corresponding to FR and DA splittings holds uniformly with
respect to the coefficient jumps, the mesh or/and coefficient anisotropy, and the
refinement level k.
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The preconditioning of the pivot blocks for FR and DA splittings is studied in
[10]. The structure of the related systems (after a static condensation for the case of
DA) coincides with those for conforming linear elements. Although the derivation
of the related condition number estimates is rather different, it is based again on
a macroelement analysis in terms of (α,β ) belonging to the convex curvilinear
triangle D; see (43). In both FR and DA cases, the construction of the additive and
multiplicative preconditioners and the related robust upper bounds are the same as
in the case of conforming elements; see Theorem 6.

Let us summarize the main results in this section. The results of Theorems 4–5
for the case of conforming elements, Theorem 6 and the analogue of Theorem 5
for nonconforming elements, in combination with the optimal solvers for systems
with the additive and multiplicative preconditioners for the corresponding pivot
blocks (see for more details [3]), ensure the optimal complexity of the related W-
cycle AMLI algorithms with polynomial degree β ∈ {2,3}. All presented results
are robust with respect to both mesh and/or coefficient anisotropy.

4 Quadratic Elements

In [23] and [1], it has been demonstrated that the standard (P2 to P1) hierarchical two-
level splitting of piecewise quadratic basis functions does not result in robust two-
and multilevel methods for highly anisotropic elliptic problems in general. A more
recent paper, [19], proves that for orthotropic problems it is possible to construct a
robust two-level preconditioner for FEM discretizations using conforming quadratic
elements via the HB approach. In the general setting of an arbitrary elliptic operator,
however, the standard techniques, based on HB two-level splittings (cf. [13]) and on
the direct assembly of local Schur complements (cf. [14]), do not result in splittings
in which the angle between the coarse space and its (hierarchical) complement is
uniformly bounded with respect to the mesh and/or coefficient anisotropy.

One way to overcome this problem has been suggested in [20]. The idea is
to construct a multilevel approximate block factorization based on ASCA and to
combine the standard (nonlinear) AMLI with a block smoother. The recursive
application of ASCA on a sequence of augmented coarse grids will be described
in some more detail in the remainder of this section.

4.1 Notation

Let HA = (VA,EA) denote the (undirected) graph of a matrix A ∈ IRN×N . The set of
vertices (nodes) of A is denoted by VA := {vi : 1 ≤ i ≤ N} and the set of edges by
EA := {ei j : 1≤ i < j ≤ N and ai j �= 0}.
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Definition 4. Any subgraph F of HA is referred to as a structure. The set of
structures whose relevant (local) structure matrices AF satisfy the assembling
property

∑
F∈F

RT
FAF RF = A. (60)

is denoted by F .

Definition 5. Any union G of structures F ∈ F is referred to as a macrostructure.
The set of macrostructures is denoted by G. It is assumed that any set of correspond-
ing macrostructure matrices AG = {AG : G ∈ G} has the assembling property

∑
G∈G

RT
GAGRG = A. (61)

Definition 6. If Fi∩Fj = /0 (or Gi∩G j = /0) for all i �= j, we refer to the set F (or G)
as a nonoverlapping covering; otherwise, we call F (or G) an overlapping covering.

4.2 Additive Schur Complement Approximation

Let S = S(k) be the exact Schur complement of A= A(k) that we wish to approximate
on a specific (augmented) coarse grid, and let us denote the corresponding graph
by H. To give an example, in case of a uniform mesh as illustrated in Fig. 3c, we
construct overlapping coverings of H by structures F and macrostructures G where
each macrostructure G ∈ G is composed of nine 13-node structures F ∈ F which
overlap with half of their width or height as shown on Fig. 2. Then the following
algorithm for approximating Q can be applied (see [18]):

1. For all G ∈ G assemble the macrostructure matrix AG.
2. To each AG perform a permutation of the rows and columns according to the

global two-level splitting of the DOF and compute the Schur complement:

SG = AG:22−AG:21A−1
G:11AG:12.

3. Assemble a sparse approximation Q to the exact global Schur complement S =
A22−A21(A11)

−1A12 from the local macrostructure Schur complements:

Q := SG = ∑
G∈G

RT
G:2SGRG:2.



Robust Algebraic Multilevel Preconditioners for Anisotropic Problems 237

Fig. 2 One macrostructure Gi used in the computation of Q; Gi is composed of nine overlapping
structures, Fi1 ,Fi2 , . . . ,Fi9

a b c

Fig. 3 (a) Uniform mesh consisting of conforming quadratic elements, (b) standard coarse grid,
and (c) augmented coarse grid

4.3 Recursive Approximate Block Factorization
on Augmented Grids

Consider a uniform fine mesh as depicted in Fig. 3a, the standard coarse grid as
depicted in Fig. 3b, and the augmented coarse grid as illustrated in Fig. 3c.
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Then, since the original problem is formulated on a standard (and not on an
augmented) grid, as a first step, one has to define a preconditioner B̄(0) at the level
of the original finite element mesh with mesh size h, i.e.,

B̄(0) ≈ A(0) := Ah (62)

where B̄(0) := B̄h is defined by

B̄h :=

[
I

Ah:21A−1
h:11 I

][
Ah:11

Qh

][
I A−1

h:11Ah:12

I

]
. (63)

Note that (63) involves the Schur complement approximation Q(0) := Qh, which
refers to the first augmented (coarse) grid. This is the starting point for constructing
B̄(k) as defined in (24), which is used to approximate A(k) for all subsequent levels
k = 1,2, . . . , �−1. The sequence of (approximate) two-level factorizations defines a
multilevel block factorization algorithm if A(k+1) serves as an approximation to the
Schur complement of A(k), that is, A(k+1) is used in the construction of B̄(k). Hence
it is quite natural to set A(k+1) = Q(k) where Q(k) is obtained from ASCA for all
k≥ 0. Here it is assumed that the same construction can be applied recursively using
the Schur complement approximation Q(k) to define the next coarse(r) problem;
see (26). At levels k ≥ 1 the use of the augmented coarse grids is advocated since
it results in a very efficient combined AMLI algorithm with block (line) smoothing
at every coarse level. The numerical experiments presented in Sect. 5 demonstrate
that based on this approach it is possible to construct robust multilevel methods for
anisotropic elliptic problems even in the more difficult situations of using quadratic
elements and/or when the direction of dominating anisotropy is not aligned with the
grid, and/or the diffusion tensor has large jumps which cannot be resolved on the
coarsest mesh.

4.4 Remarks on the Analysis

The following theorem can be proved for the error propagation of one block Jacobi
iteration; see [20].

Theorem 7. Consider the elliptic model problem (1) with a constant diffusion
coefficient a(x) = (ai j)

2
i, j=1 scaled such that a11 = 1, and discretized on a uniform

mesh with mesh size h, and Dirichlet boundary conditions. Further, let Q = D+
L+LT denote the related ASCA where D and L are the block-diagonal and lower
block-triangular parts of Q. Then the following bound holds for the iteration matrix
of the block Jacobi method:

‖I−D−1Q‖2
Q ≤ 1− 1

1+ c0
=: 1− c1, (64)

where c0 := (a22 + |a12|)/(ch2) and hence c1 is in the interval (0,1).
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Fig. 4 (a) Grid-aligned anisotropy, ε = 2−t , t ∈ {0,1, . . .,20}: estimated convergence factor 1−α
plotted against t . (b) Rotated diffusion problem, ε ∈ {10−1,10−2,10−3}, θ ∈ {0◦,1◦, . . .,90◦}:
estimated convergence factor 1−α plotted against θ

The norm of the error propagation matrix of the two-level method corresponding
to the preconditioner B̄ as defined in (24) but with B11 = A11 satisfies

‖I− B̄−1A‖2
A ≤ 1−αλmin(Q

−1S)≤ 1−α, (65)

where α can be estimated locally.
In Fig. 4 it is plotted a local estimate of the error reduction factor of the two-level

method when considering grid-aligned and nongrid-aligned anisotropy. As it can be
seen, in the first case, there is uniform convergence, i.e., the method is robust with
respect to the parameter ε in (6) that has been varied in the range from 20 to 2−20.
However, the results are worse for the rotated diffusion problem associated with (7)
where the convergence estimate in general deteriorates when ε tends to 0. Still, for
a (moderate) fixed value of ε , the estimate is uniform with respect to the angle of
the direction of strong anisotropy.

5 Numerical Tests

In this section 2D numerical results are presented for the studied FEM discretiza-
tions based on conforming linear (P1) and quadratic (P2) finite elements. On the level
of the coarsest discretization, the considered domain Ω = [0,1]× [0,1] is split into
2×8×8 = 2×23×23 linear elements or, alternatively, into 2×4×4 = 2×22×22

quadratic elements. Dirichlet boundary conditions are imposed upon the entire
boundary Γ = ∂Ω . The finest mesh in all experiments is obtained via � = 2, . . . ,7
steps of uniform mesh refinement resulting in 2× 2�+3× 2�+3 linear elements or
2× 2�+2× 2�+2 quadratic elements.

The numerical tests demonstrate the performance of the nonlinear AMLI W-
cycle algorithm with 2 inner GCG iterations and an optional pre-smoothing step
at every coarse level. The underlying multilevel block factorization is constructed
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Fig. 5 Coarse mesh and coefficient, Example 1

based on the ASCA described in Sect. 4; see also [18,20]. The following variants of
complementary subspace correction are tested:

(a) One-point Gauss–Seidel (PGS) iteration
(b) One-line Gauss–Seidel (LGS) iteration
(c) One-tree Gauss–Seidel (TGS) iteration

The blocks in variant (b) correspond to grid lines parallel to the x-axis. The blocks
in variant (c) are constructed algebraically, by extracting strong paths from a
previously computed nearly maximum spanning tree. The tree is constructed via
a modified version of Kruskal’s algorithm in which the global sorting of the edges
according to their weights is replaced by a partial (local) sorting (cf. [16]). For a
given edge ei j = (i, j), its weight wi j is defined by wi j := |Ai j|/

√
AiiA j j (cf. [11]).

If wi j > ρ for some threshold ρ , e.g., ρ = 0.25, then ei j is called a strong edge.

Example 1. In the first set of experiments we consider a permeability field with
inclusions and channels on a background of conductivity one, as shown in Fig. 5.
The diffusion tensor a(x) equals the identity matrix outside the channels, whereas
inside the channels it corresponds to highly anisotropic material and is determined
by {a11,a12,a22}= {105,0,1}.

The results presented in Table 1 show that no additional smoothing (complemen-
tary subspace correction) is required when the direction of dominating anisotropy is
aligned with the grid. The method performs absolutely robustly and very similar for
both P1 and P2 elements, although the channels are NOT resolved on the coarsest
mesh!
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Table 1 Number of iterations for residual reduction by a factor 108.
Nonlinear AMLI W-cycle without additional smoothing, Example 1

Type of element �= 3 �= 4 �= 5 �= 6 �= 7

P1 8 8 8 8 8
P2 8 8 8 8 8

Fig. 6 Coarse mesh and direction of dominating anisotropy, Example 2

Example 2. In the second set of experiments the domain is split into three nonover-
lapping parts Ω = Ω1

⋃
Ω2
⋃

Ω3 where Ω1 = [0,5/8]× [0,1], Ω2 = [5/8,11/16]×
[0,1], and Ω3 = [11/16,1]× [0,1] as shown on Fig. 6. We consider the rotated
diffusion problem (7) where the angle θe = 1◦ over the left and right subdomains,
while in the middle one θe =−85◦.

The results in Table 2 show that while the method performs robustly without
additional smoothing in case of P1 elements, the convergence deteriorates without a
complementary subspace correction step in case of P2 elements; however, it can be
improved significantly by introducing a proper block Gauss–Seidel pre-smoothing
step.

Example 3. The third set of experiments presents the performance of the nonlinear
AMLI algorithm for the case of rotated diffusion problem with θ varied smoothly
from the left to the right border of the domain Ω = [0,1]× [0,1] according to the
function θ =−π(1−|2x− 1|)/6 for x ∈ (0,1) (Fig. 7).

The results are very similar to those for the second test problem. Note that all
numerical experiments were designed in such a way that the coarsest mesh does not
resolve the arising jumps of the coefficient (Table 3).
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Table 2 Number of iterations for residual reduction by a factor 108. Nonlinear AMLI W-cycle,
Example 2

ε = 10−6 P1 elements P2 elements
�����

sm.
No PGS LGS TGS No PGS LGS TGS

2 10 10 10 10 12 11 10 11
3 11 10 10 10 34 17 11 11
4 11 10 10 10 73 25 14 14
5 11 10 10 9 ∗ 50 18 15
6 11 10 10 9 ∗ 105 51 22
7 12 10 10 9 ∗ 195 91 31

ε = 10−4 P1 elements P2 elements
�����

sm.
No PGS LGS TGS No PGS LGS TGS

2 10 10 10 10 11 11 10 10
3 11 10 10 10 12 11 10 10
4 11 10 10 10 16 12 10 10
5 11 10 9 9 18 13 12 10
6 11 10 10 9 19 15 14 11
7 11 10 10 9 22 17 16 12

ε = 10−2 P1 elements P2 elements
�����

sm.
No PGS LGS TGS No PGS LGS TGS

2 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10
4 10 10 10 10 10 10 10 10
5 10 10 9 9 10 10 10 10
6 10 10 9 9 10 10 9 9
7 10 9 9 9 10 10 9 9

6 Concluding Remarks

The theory of robust AMLI methods based on HB techniques is well established for
conforming and nonconforming linear finite element discretizations of anisotropic
second-order elliptic problems under the fundamental assumption that variations
of the coefficient tensor can be resolved on the coarsest mesh. However, in many
practical applications, this is a too strong restriction. Hence, alternative methods,
e.g., based on energy-minimizing coarse spaces or robust Schur complement
approximations, have recently been moving into the center of interest.

Here we describe a class of nonlinear AMLI methods that are based on ASCA
and, though not fully analyzed yet, have been shown to be very efficient for
problems with highly heterogeneous and anisotropic media. In case of conforming
FEM and P1 elements, this method performs robustly (even without additional
smoothing). Using P2 elements the numerical results demonstrate that in certain
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Fig. 7 Coarse mesh and direction of dominating anisotropy, Example 3

Table 3 Number of iterations for residual reduction by a factor 108. Nonlinear AMLI W-cycle,
Example 3

ε = 10−5 P1 elements P2 elements
�����

sm.
No PGS TGS No PGS TGS

2 11 11 11 13 12 12
3 11 11 11 13 12 12
4 11 11 11 18 13 13
5 11 11 11 28 16 14
6 12 11 11 46 23 19
7 12 11 11 59 30 25

ε = 10−4 P1 elements P2 elements
�����

sm.
No PGS TGS No PGS TGS

2 11 11 11 13 12 12
3 11 11 11 13 12 12
4 11 11 11 16 13 13
5 11 11 11 22 15 14
6 11 11 11 25 18 16
7 12 11 11 28 20 18

situations (when the convergence deteriorates) an additional smoothing step can
improve the performance of the AMLI algorithm considerably. The construction
of block smoothers based on graph concepts such as spanning trees seems to be
very promising in this context (cf. Examples 2 and 3). The combination of an
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augmented coarse grid with a proper complementary subspace correction step is the
key to obtain extremely efficient (oftentimes optimal or nearly optimal) solvers for
strongly anisotropic problems even in case of varying and nongrid-aligned direction
of dominating anisotropy and also for quadratic FEM.

Current (and future) investigations are devoted to extending the theory of this
new class of methods and to improving the complementary subspace correction
step(s) by refining the ideas of using (nearly maximum) spanning trees and strong
paths in their construction. The latter is crucial also for the successful generalization
of the new methodology to three-dimensional problems and/or discretizations on
unstructured grids, where the suggested ASCA technique can be applied directly.
Other topics of interest include the application to systems of partial differential
equations and mixed methods.
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A Weak Galerkin Mixed Finite Element Method
for Biharmonic Equations

Lin Mu, Junping Wang, Yanqiu Wang, and Xiu Ye

Abstract This article introduces and analyzes a weak Galerkin mixed finite
element method for solving the biharmonic equation. The weak Galerkin method,
first introduced by two of the authors (J. Wang and X. Ye) in (Wang et al., Comput.
Appl. Math. 241:103–115, 2013) for second-order elliptic problems, is based on
the concept of discrete weak gradients. The method uses completely discrete finite
element functions, and, using certain discrete spaces and with stabilization, it
works on partitions of arbitrary polygon or polyhedron. In this article, the weak
Galerkin method is applied to discretize the Ciarlet–Raviart mixed formulation
for the biharmonic equation. In particular, an a priori error estimation is given
for the corresponding finite element approximations. The error analysis essentially
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follows the framework of Babus̆ka, Osborn, and Pitkäranta (Math. Comp. 35:1039–
1062, 1980) and uses specially designed mesh-dependent norms. The proof is
technically tedious due to the discontinuous nature of the weak Galerkin finite
element functions. Some computational results are presented to demonstrate the
efficiency of the method.

Keywords Weak Galerkin finite element methods • Discrete gradient • Bihar-
monic equations • Mixed finite element methods

AMS subject classifications. Primary, 65N15, 65N30

1 Introduction

In this paper, we are concerned with numerical methods for the following bihar-
monic equation with clamped boundary conditions:

Δ2u = f in Ω,

u = 0 on ∂Ω,

∂u
∂n

= 0 on ∂Ω,

(1)

where Ω is a bounded polygonal or polyhedral domain in R
d (d = 2,3). To

solve the problem (1) using a primal-based conforming finite element method,
one would need C1 continuous finite elements, which usually involve large degree
of freedoms and hence can be computationally expensive. There are alternative
numerical methods, for example, by using either nonconforming elements [2,25,28],
the C0 discontinuous Galerkin method [8, 14], or mixed finite element methods
[6, 10, 11, 13, 20–22, 24–27]. One of the earliest mixed formulations proposed for
(1) is the Ciarlet–Raviart mixed finite element formulation [11] which decomposes
(1) into a system of second-order partial differential equations. In this mixed
formulation, one introduces a dual variable w = −Δu and rewrites the fourth-order
biharmonic equation into two coupled second-order equations:

{
w+Δu = 0,

−Δw = f .
(2)

In [11], the above system of second-order equations is discretized by using
the standard H1 conforming elements. However, only suboptimal order of error
estimates is proved in [11] for quadratic or higher order of elements. Improved error
estimates have been established in [5, 15, 19, 32] for quadratic or higher order of
elements. In [5], Babus̆ka, Osborn, and Pitkäranta pointed out that a suitable choice
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of norms are L2 for w and H2 (or H2-equivalence) for u in order to use the standard
LBB stability analysis. In this sense, one has “optimal” order of convergence in
H2 norm for u and in L2 norm for w, for quadratic or higher order of elements.
However, when equal-order approximation is used for both u and w, the “optimal”
order of error estimate is restricted by the interpolation error in H2 norm and thus
may not be really optimal. Moreover, this standard technique does not apply to the
piecewise linear discretization, since in this case the interpolation error cannot even
be measured in H2 norm. A solution to this has been proposed by Scholz [32] by
using an L∞ argument. Scholz was able to improve the convergence rate in L2 norm
for w by h

1
2 , and this theoretical result is known to be sharp. Also, Scholz’s proof

works for all equal-order elements including piecewise linears.
The goal of this paper is to propose and analyze a weak Galerkin discretization

method for the mixed formulation (2) with equal-order elements. The weak Galerkin
method was recently introduced in [29, 35, 36] for second-order elliptic equations.
It is an extension of the standard Galerkin finite element method where classical
derivatives were substituted by weakly defined derivatives on functions with dis-
continuity. Error estimates of optimal order have been established for various weak
Galerkin discretization schemes for second-order elliptic equations [29, 35, 36]. A
numerical implementation of weak Galerkin was presented in [29, 30] for some
model problems.

Some advantages of the weak Galerkin method have been identified in [29, 30,
36]. For example, the weak Galerkin method based on a stabilization works for
finite element partitions of arbitrary polygon or polyhedron [29,36]. Weak Galerkin
methods use completely discrete finite element spaces and the resulting numerical
scheme is symmetric, positive definite, and parameter-free if the original problem
is. Weak Galerkin methods retain the mass conservation property as the original
system. The unknowns in the interior of each element can be eliminated in parallel,
yielding a discrete problem with much fewer number of unknowns that the original
system and other competing algorithms. Nevertheless, the weak Galerkin method is
still a very new method, and there remains a lot to explore for researchers. This paper
shall demonstrate the portability of weak Galerkin to the biharmonic equation. Our
future research will focus on a generalization of weak Galerkin to other numerically
challenging equations.

Applying the weak Galerkin method to both second-order equations in (2) ap-
pears to be trivial and straightforward at first glance. However, the application turns
out to be much more complicated than simply combining one weak Galerkin scheme
with another one. The application is particularly non-trivial in the mathematical
theory on error analysis. In deriving an a priori error estimate, we follow the
framework as developed in [5] by using mesh-dependent norms. Many commonly
used properties and inequalities for standard Galerkin finite element method need to
be re-derived for weak Galerkin methods with respect to the mesh-dependent norms.
Due to the discrete nature of the weak Galerkin functions, technical difficulties
arise in the derivation of inequalities or estimates. The technical estimates and tools
that we have developed in this paper should be essential to the analysis of weak
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Galerkin methods for other type of modeling equations. They should also play
an important role in future developments of preconditioning techniques for weak
Galerkin methods. Therefore, we believe this paper provides useful technical tools
for future research, in addition to introducing an efficient new method for solving
biharmonic equations.

The paper is organized as follows. In Sect. 2, a weak Galerkin discretization
scheme for the Ciarlet–Raviart mixed formulation of the biharmonic equation is
introduced and proved to be well-posed. Section 3 is dedicated to defining and
analyzing several technical tools, including projections, mesh-dependent norms, and
some estimates. With the aid of these tools, an error analysis is presented in Sect. 4.
Finally, in Sect. 5, we report some numerical results that show the efficiency of the
method.

2 A Weak Galerkin Finite Element Scheme

For illustrative purpose, we consider only the two-dimensional case of (1), and the
corresponding weak Galerkin method will be based on a shape-regular triangulation
of the domain Ω. The analysis given in this paper can easily be generalized into
two-dimensional rectangular meshes and with a few adaptations, also into three-
dimensional tetrahedral and cubic meshes. Another issue we would like to clarify
is that, although the weak Galerkin method using certain discrete spaces and with
stabilization is known to work on partitions of arbitrary polygon or polyhedron
[29, 36], here we choose to concentrate on a weak Galerkin discretization without
stabilization. This discretization only works for triangular, rectangular, tetrahedral
and cubic meshes, but the theoretical analysis would be considerably easier since
there is no stabilization involved. We are confident that the technique introduced in
this paper can be generalized to the stabilized weak Galerkin method on arbitrary
meshes [29, 36]. But details need to be worked out in future research.

Let D⊆Ω be a polygon; we use the standard definition of Sobolev spaces Hs(D)
and Hs

0(D) with s ≥ 0 (e.g., see [1, 12] for details). The associated inner product,
norm, and semi-norms in Hs(D) are denoted by (·, ·)s,D, ‖·‖s,D, and | · |r,D,0≤ r≤ s,
respectively. When s = 0, H0(D) coincides with the space of square integrable
functions L2(D). In this case, the subscript s is suppressed from the notation of norm,
semi-norm, and inner products. Furthermore, the subscript D is also suppressed
when D = Ω. For s < 0, the space Hs(D) is defined to be the dual of H−s

0 (D).
Occasionally, we need to use the more general Sobolev space W s,p(Ω), for 1 ≤

p≤∞, and its norm ‖·‖Ws,p(Ω). The definition simply follows the standard one given
in [1, 12]. When s = 0, the space W s,p(Ω) coincides with Lp(Ω).

The above definition/notation can easily be extended to vector-valued and matrix-
valued functions. The norm, semi-norms, and inner-product for such functions
shall follow the same naming convention. In addition, all these definitions can
be transferred from a polygonal domain D to an edge e, a domain with lower
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dimension. Similar notation system will be employed. For example, ‖ ·‖s,e and ‖ ·‖e

would denote the norm in Hs(e) and L2(e) etc. We also define the H(div) space as
follows:

H(div,Ω) = {q : q ∈ [L2(Ω)]2, ∇ ·q ∈ L2(Ω)}.

Using notations defined above, the variational form of the Ciarlet–Raviart mixed
formulation (2) seeks u ∈H1

0 (Ω) and w ∈ H1(Ω) satisfying

{
(w,φ)− (∇u,∇φ) = 0 for all φ ∈ H1(Ω),

(∇w,∇ψ) = ( f ,ψ) for all ψ ∈ H1
0 (Ω).

(3)

For any solution w and u of (3), it is not hard to see that w = −Δu. In addition, by
choosing φ = 1 in the first equation of (3), we obtain

ˆ
Ω

wdx = 0.

Define H̄1(Ω)⊂ H1(Ω) by

H̄1(Ω) = {v : v ∈ H1(Ω),

ˆ
Ω

vdx = 0},

which is a subspace of H1(Ω) with mean-value-free functions. Clearly, the solution
w of (3) is a function in H̄1(Ω).

One important issue in the analysis is the regularity of the solution u and w.
For two-dimensional polygonal domains, this has been thoroughly discussed in
[7]. According to their results, the biharmonic equation with clamped boundary
condition (1) satisfies

‖u‖4−k ≤ c‖ f‖−k, (4)

where c is a constant depending only on the domain Ω. Here, the parameter k is
determined by

k = 1 if all internal angles of Ω are less than 180◦

k = 0 if all internal angles of Ω are less than 126.283696 · · ·◦

The above regularity result indicates that the solution u ∈ H3(Ω) when Ω is a
convex polygon and f ∈ H−1(Ω). It follows that the auxiliary variable w ∈ H1(Ω).
Moreover, if all internal angles of Ω are less than 126.283696 · · ·◦ and f ∈ L2(Ω),
then u ∈ H4(Ω) and w ∈H2(Ω). The drawback of the mixed formulation (3) is that
the auxiliary variable w may not possess the required regularity when the domain is
non-convex. We shall explore other weak Galerkin methods to deal with such cases.

Next, we present the weak Galerkin discretization of the Ciarlet–Raviart mixed
formulation. Let Th be a shape-regular, quasi-uniform triangular mesh on a
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polygonal domain Ω, with characteristic mesh size h. For each triangle K ∈ Th,
denote by K0 and ∂K the interior and the boundary of K, respectively. Also denote
by hK the size of the element K. The boundary ∂K consists of three edges. Denote
by Eh the collection of all edges in Th. For simplicity of notation, throughout
the paper, we use “�” to denote “less than or equal to up to a general constant
independent of the mesh size or functions appearing in the inequality.”

Let j be a nonnegative integer. On each K ∈ Th, denote by Pj(K0) the set of
polynomials with degree less than or equal to j. Likewise, on each e ∈ Eh, Pj(e) is
the set of polynomials of degree no more than j. Following [35], we define a weak
discrete space on mesh Th by

Vh = {v : v|K0 ∈ Pj(K0), K ∈ Th; v|e ∈ Pj(e),e ∈ Eh}.

Observe that the definition of Vh does not require any continuity of v ∈Vh across the
interior edges. A function in Vh is characterized by its value on the interior of each
element plus its value on the edges/faces. Therefore, it is convenient to represent
functions in Vh with two components, v = {v0,vb}, where v0 denotes the value of v
on all K0 and vb denotes the value of v on Eh.

We further define an L2 projection from H1(Ω) onto Vh by setting Qhv ≡
{Q0v, Qbv}, where Q0v|K0 is the local L2 projection of v in Pj(K0), for K ∈ Th, and
Qbv|e is the local L2 projection in Pj(e), for e∈ Eh. To take care of the homogeneous
Dirichlet boundary condition, define

V0,h = {v ∈Vh : v = 0 on Eh∩∂Ω}.

It is not hard to see that the L2 projection Qh maps H1
0 (Ω) onto V0,h.

The weak Galerkin method seeks an approximate solution [uh; wh] ∈ V0,h×Vh

to the mixed form of the biharmonic problem (2). To this end, we first introduce a
discrete L2-equivalent inner-product and a discrete gradient operator on Vh. For any
vh = {v0,vb} and φh = {φ0,φb} in Vh, define an inner-product as follows:

((vh,φh))� ∑
K∈Th

(v0,φ0)K + ∑
K∈Th

hK〈v0− vb,φ0−φb〉∂K .

It is not hard to see that ((vh,vh)) = 0 implies vh ≡ 0. Hence, the inner-product is well
defined. Notice that the inner-product ((·, ·)) is also well defined for any v ∈ H1(Ω)
for which v0 = v and vb|e = v|e is the trace of v on the edge e. In this case, the
inner-product ((·, ·)) is identical to the standard L2 inner-product.

The discrete gradient operator is defined element-wise on each K ∈ Th. To this
end, let RTj(K) be a space of Raviart–Thomas element [31] of order j on triangle K.
That is,

RTj(K) = (Pj(K))2 + xPj(K).
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The degrees of freedom of RTj(K) consist of moments of normal components on
each edge of K up to order j, plus all the moments in the triangle K up to order
( j− 1). Define

Σh = {q ∈ (L2(Ω))2 : q|K ∈ RTj(K), K ∈ Th}.

Note that Σh is not necessarily a subspace of H(div,Ω), since it does not require any
continuity in the normal direction across any edge. A discrete weak gradient [35] of
vh = {v0,vb} ∈Vh is defined to be a function ∇wvh ∈ Σh such that on each K ∈ Th,

(∇wvh,q)K =−(v0,∇ ·q)K + 〈vb,q ·n〉∂K , for all q ∈ RTj(K), (5)

where n is the unit outward normal on ∂K. Clearly, such a discrete weak gradient
is always well defined. Also, the discrete weak gradient is a good approximation to
the classical gradient, as demonstrated in [35]:

Lemma 2.1. For any vh = {v0, vb} ∈ Vh and K ∈ Th, ∇wvh|K = 0 if and only if
v0 = vb = constant on K. Furthermore, for any v ∈Hm+1(Ω), where 0≤m≤ j+1,
we have

‖∇w(Qhv)−∇v‖� hm‖v‖m+1.

We are now in a position to present the weak Galerkin finite element formulation
for the biharmonic problem (2) in the mixed form: Find uh = {u0, ub} ∈ V0,h and
wh = {w0, wb} ∈Vh such that

{
((wh, φh))− (∇wuh, ∇wφh) = 0, for all φh = {φ0, φb} ∈Vh,

(∇wwh, ∇wψh) = ( f , ψ0), for all ψh = {ψ0, ψb} ∈V0,h.
(6)

Theorem 2.2. The weak Galerkin finite element formulation (6) has one and only
one solution [uh;wh] in the corresponding finite element spaces.

Proof. For the discrete problem arising from (6), it suffices to show that the solution
to (6) is trivial if f = 0; the existence of solution stems from its uniqueness.

Assume that f = 0 in (6). By taking φh = wh and ψh = uh in (6) and adding
the two resulting equations together, we immediately have ((wh, wh)) = 0, which
implies wh ≡ 0. Next, by setting φh = uh in the first equation of (6), we arrive at
(∇wuh,∇wuh) = 0. By using Lemma 2.1, we see that uh must be a constant in Ω,
which together with the fact that uh = 0 on ∂Ω implies uh ≡ 0 in Ω. This completes
the proof of the theorem.  !

One important observation of (6) is that the solution wh has mean value zero over
the domain Ω, which is a property that the exact solution w = −Δu must possess.
This can be seen by setting φh = 1 in the first equation of (6), yielding

(wh,1) = ((wh,1)) = (∇wuh,∇w1) = 0,
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where we have used the definition of ((·, ·)) and Lemma 2.1. For convenience, we
introduce a space V̄h ⊂Vh defined as follows:

V̄h = {vh : vh = {v0,vb} ∈Vh,

ˆ
Ω

v0 dx = 0}.

3 Technical Tools: Projections, Mesh-Dependent Norms,
and Some Estimates

The goal of this section is to establish some technical results useful for deriving an
error estimate for the weak Galerkin finite element method (6).

3.1 Some Projection Operators and Their Properties

Let Ph be the L2 projection from (L2(Ω))2 to Σh and ΠΠΠh be the classical interpolation
[10] from (Hγ (Ω))2,γ > 1

2 , to Σh defined by using the degrees of freedom of Σh in
the usual mixed finite element method. It follows from the definition of ΠΠΠh that
ΠΠΠhq ∈ H(div,Ω)∩Σh for all q ∈ (Hγ(Ω))2. In other words, ΠΠΠhq has continuous
normal components across internal edges. It is also well known that ΠΠΠh preserves
the boundary condition q ·n|∂Ω = 0, if it were imposed on q. The properties of ΠΠΠh

have been well developed in the context of mixed finite element methods [10, 18].
For example, for all q ∈ (W m,p(Ω))2 where 1

2 < m≤ j+1 and 2≤ p≤ ∞, we have

Q0(∇ ·q) = ∇ ·ΠΠΠhq, if in addition q ∈ H(div,Ω), (7)

‖q−ΠΠΠhq‖Lp(Ω) � hm‖q‖Wm,p(Ω). (8)

It is also well known that for all 0≤ m≤ j+ 1,

‖q−Phq‖� hm‖q‖m. (9)

Using the above estimates and the triangle inequality, one can easily derive the
following estimate:

‖ΠΠΠh∇v−Ph∇v‖� hm‖v‖m+1 (10)

for all v ∈ Hm+1(Ω) where 1
2 < m ≤ j+ 1.

Next, we shall present some useful relations for the discrete weak gradient ∇w,
the projection operator Ph, and the interpolation ΠΠΠh. The results can be summarized
as follows.
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Lemma 3.1. Let γ > 1
2 be any real number. The following results hold true.

(i) For any v ∈ H1(Ω), we have

∇w(Qhv) = Ph(∇v). (11)

(ii) For any q ∈ (Hγ (Ω))2∩H(div,Ω) and vh = {v0,vb} ∈Vh, we have

(∇ ·q, v0) =−(ΠΠΠhq, ∇wvh)+ ∑
e∈Eh∩∂Ω

〈(ΠΠΠhq) ·n,vb〉e. (12)

In particular, if either vh ∈V0,h or q ·n = 0 on ∂Ω, then

(∇ ·q, v0) =−(ΠΠΠhq, ∇wvh). (13)

Proof. To prove (11), we first recall the following well-known relation [10]:

∇ ·RTj(K) = Pj(K0), RTj(K) ·n|e = Pj(e).

Thus, for any w ∈ Σh and K ∈ Th, by the definition of ∇w and properties of the L2

projection, we have

(∇wQhv,w)K =−(Q0v,∇ ·w)K + 〈Qbv,w ·n〉∂K

=−(v,∇ ·w)K + 〈v,w ·n〉∂K

= (∇v,w)K

= (Ph∇v,w)K ,

which implies (11). As to (12), using the fact that ∇ ·RTj(K) = Pj(K0), the property
(7), and the definition of ∇w, we obtain

(∇ ·q, v0) = (Q0(∇ ·q), v0) = (∇ ·ΠΠΠhq, v0)

= − ∑
K∈Th

(ΠΠΠhq,∇wvh)K + ∑
K∈Th

〈vb,ΠΠΠhq ·n〉∂K

= − ∑
K∈Th

(ΠΠΠhq,∇wvh)K + ∑
e∈Th∩∂Ω

〈(ΠΠΠhq) ·n,vb〉e.

This completes the proof of (12). The equality (13) is a direct consequence of (12)
since the boundary integrals vanish under the given condition.  !

3.2 Discrete Norms and Inequalities

Let vh = {v0,vb} ∈Vh. Define on each K ∈ Th
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‖vh‖2
0,h,K = ‖v0‖2

0,K + h‖v0− vb‖2
∂K ,

‖vh‖2
1,h,K = ‖v0‖2

1,K + h−1‖v0− vb‖2
∂K,

|vh|21,h,K = |v0|21,K + h−1‖v0− vb‖2
∂K .

Using the above quantities, we define the following discrete norms and semi-norms
for the finite element space Vh:

‖vh‖0,h :=

(
∑

K∈Th

‖vh‖2
0,h,K

)1/2

,

‖vh‖1,h :=

(
∑

K∈Th

‖vh‖2
1,h,K

)1/2

,

|vh|1,h :=

(
∑

K∈Th

|vh|21,h,K

)1/2

.

It is clear that ‖vh‖2
0,h = ((vh,vh)). Hence, ‖ ·‖0,h provides a discrete L2 norm for Vh.

It is not hard to see that | · |1,h and ‖ ·‖1,h define a discrete H1 semi-norm and a norm
for Vh, respectively. Observe that |vh|1,h = 0 if and only if vh ≡ constant. Thus, | · |1,h
is a norm in V0,h and V̄h.

For any K ∈ Th and e being an edge of K, the following trace inequality is well
known:

‖g‖2
e � h−1‖g‖2

K + h2s−1|g|2s,K ,
1
2
< s≤ 1, (14)

for all g ∈ H1(K). Here, |g|s,K is the semi-norm in the Sobolev space Hs(K). The
inequality (14) can be verified through a scaling argument for the standard Sobolev
trace inequality in Hs with s ∈ ( 1

2 ,1]. If g is a polynomial in K, then we have from
(14) and the standard inverse inequality that

‖g‖2
e � h−1‖g‖2

K. (15)

From (15) and the triangle inequality, it is not hard to see that for any vh ∈Vh one
has

(
∑

K∈Th

(‖v0‖2
0,K + h‖vb‖2

∂K)

)1/2

� ‖vh‖0,h �
(

∑
K∈Th

(‖v0‖2
0,K + h‖vb‖2

∂K)

)1/2

.

In the rest of this paper, we shall use the above equivalence without particular
mentioning or referencing.

The following Lemma establishes an equivalence between the two semi-norms
| · |1,h and ‖∇w · ‖.
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Lemma 3.2. For any vh = {v0,vb} ∈Vh, we have

|vh|1,h � ‖∇wvh‖� |vh|1,h. (16)

Proof. Using the definition of ∇w, integration by parts, the Schwarz inequality, the
inequality (15), and the Young’s inequality, we have

‖∇wvh‖2
K =−(v0,∇ ·∇wvh)K + 〈vb,∇wvh ·n〉∂K

= 〈vb− v0,∇wvh ·n〉∂K +(∇v0,∇wvh)K

≤ ‖v0− vb‖∂K‖∇wvh ·n‖∂K + ‖∇v0‖K‖∇wvh‖K

� ‖v0− vb‖∂Kh−
1
2 ‖∇wvh‖K + ‖∇v0‖K‖∇wvh‖K

� ‖∇wvh‖K

(
‖∇v0‖K + h−

1
2 ‖v0− vb‖∂K

)
.

This completes the proof of ‖∇wvh‖� |vh|1,h.
To prove |vh|1,h � ‖∇wvh‖, let K ∈ Th be any element and consider the following

subspace of RTj(K):

D( j,K) := {q ∈ RTj(K) : q ·n = 0 on ∂K}.

Note that D( j,K) forms a dual of (Pj−1(K))2. Thus, for any ∇v0 ∈ (Pj−1(K))2,
one has

‖∇v0‖K = sup
q∈D( j,K)

(∇v0,q)K

‖q‖K
. (17)

It follows from the integration by parts and the definition of ∇w that

(∇v0,q)K =−(v0,∇ ·q)K = (∇wvh,q)K ,

which, together with (17) and the Cauchy–Schwarz inequality, gives

‖∇v0‖K ≤ ‖∇wvh‖K . (18)

Note that for j = 0, we have ∇v0 = 0 and the above inequality is satisfied trivially.
Analogously, let e be an edge of K and denote by De( j,K) the collection of all

q ∈ RTj(K) such that all degrees of freedom, except those for q · n|e, vanish. It is
well known that De( j,K) forms a dual of Pj(e). Thus, we have

‖v0− vb‖e = sup
q∈De( j,K)

〈v0− vb,q ·n〉e
‖q ·n‖e

. (19)

It follows from (5) and the integration by parts on (v0,∇ ·q)K that

(∇wvh,q)K = (∇v0,q)K + 〈vb− v0,q ·n〉∂K , ∀ q ∈ RTj(K). (20)
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In particular, for q ∈ De( j,K), we have

(∇v0,q)K = 0, 〈vb− v0,q ·n〉∂K = 〈vb− v0,q ·n〉e.

Substituting the above into (20) yields

(∇wvh,q)K = 〈vb− v0,q ·n〉e, ∀ q ∈De( j,K). (21)

Using the Cauchy–Schwarz inequality we arrive at

|〈vb− v0,q ·n〉e| ≤ ‖∇wvh‖K ‖q‖K ,

for all q∈De( j,K). By the scaling argument, for such q∈De( j,K), we have ‖q‖K �
h

1
2 ‖q ·n‖e. Thus, we obtain

|〈vb− v0,q ·n〉e|� h
1
2 ‖∇wvh‖K ‖q ·n‖e, ∀q ∈ De( j,K),

which, together with (19), implies the following estimate:

‖v0− vb‖e � h
1
2 ‖∇wvh‖K .

Combining the above estimate with (18) gives a proof of |vh|1,h � ‖∇wvh‖. This
completes the proof of (16).  !

The discrete semi-norms satisfy the usual inverse inequality, as stated in the
following lemma.

Lemma 3.3. For any vh = {v0,vb} ∈Vh, we have

|vh|1,h � h−1‖vh‖0,h. (22)

Consequently, by combining (16) and (22), we have

‖∇wvh‖� h−1‖vh‖0,h. (23)

Proof. The proof follows from the standard inverse inequality and the definition of
‖ · ‖0,h and | · |1,h; details are thus omitted.  !

Next, let us show that the discrete semi-norm ‖∇w(·)‖, which is equivalent to
| · |1,h as proved in Lemma 3.2, satisfies a Poincaré-type inequality.

Lemma 3.4. The Poincaré-type inequality holds true for functions in V0,h and V̄h.
In other words, we have the following estimates:

‖vh‖0,h � ‖∇wvh‖ ∀ vh ∈V0,h, (24)
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‖vh‖0,h � ‖∇wvh‖ ∀ vh ∈ V̄h. (25)

Proof. For any vh ∈ V0,h, let q ∈ (H1(Ω))2 be such that ∇ · q = v0 and ‖q‖1 �
‖v0‖. Such a vector-valued function q exists on any polygonal domain [3]. One
way to prove the existence of q is as follows. First, one extends vh by zero to a
convex domain which contains Ω. Secondly, one considers the Poisson equation on
the enlarged domain and set q to be the flux. The required properties of q follow
immediately from the full regularity of the Poisson equation on convex domains.
By (7), we have

‖ΠΠΠhq‖ � ‖q‖1 � ‖v0‖.

Consequently, by (13) and the Schwarz inequality,

‖v0‖2 = (v0,∇ ·q) =−(ΠΠΠhq,∇wvh)� ‖v0‖‖∇wvh‖.

It follows from Lemma 3.2 that

∑
K∈Th

h‖v0− vb‖2
∂K � ∑

K∈Th

h−1‖v0− vb‖2
∂K ≤ |vh|21,h � ‖∇wvh‖2.

Combining the above two estimates gives a proof of the inequality (24).
As to (25), since vh ∈ V̄h has mean value zero, one may find a vector-valued

function q satisfying ∇ ·q = v0 and q ·n = 0 on ∂Ω (see [3] for details). In addition,
we have ‖q‖1 � ‖v0‖. The rest of the proof follows the same avenue as the proof
of (24).  !

Next, we shall introduce a discrete norm in the finite element space V0,h that plays
the role of the standard H2 norm. To this end, for any internal edge e ∈ Eh, denote
by K1 and K2 the two triangles sharing e, and by n1, n2 the outward normals with
respect to K1 and K2. Define the jump on e by

[[∇wψh ·n]] = (∇wψh)|K1 ·n1 +(∇wψh)|K2 ·n2.

If the edge e is on the boundary ∂Ω, then there is only one triangle K which admits
e as an edge. The jump is then modified as

[[∇wψh ·n]] = (∇wψh)|K ·n.

For ψh ∈V0,h, define

|||ψh|||=
(

∑
K∈Th

‖∇ ·∇wψh‖2
K + ∑

e∈Eh

h−1‖[[∇wψh ·n]]‖2
e)

)1/2

. (26)

Lemma 3.5. The map ||| · ||| : V0,h →R, as given in (26), defines a norm in the finite
element space V0,h. Moreover, one has
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(∇wvh,∇wψh)� ‖vh‖0,h|||ψh||| ∀ vh ∈Vh, ψh ∈V0,h, (27)

sup
vh∈Vh

(∇wvh,∇wψh)

‖vh‖0,h
� |||ψh||| ∀ ψh ∈V0,h. (28)

Proof. To verify that ||| · ||| defines a norm, it is sufficient to show that |||ψh||| = 0
implies ψh ≡ 0. To this end, let |||ψh||| = 0. It follows that ∇ ·∇wψh = 0 on each
element and [[∇wψh · n]] = 0 on each edge. The definition of the discrete weak
gradient ∇w then implies the following:

(∇wψh,∇wψh) = ∑
K∈Th

(−(ψ0,∇ ·∇wψh)K + 〈ψb,∇wψh ·n〉∂K) = 0.

Thus, we have ∇wψh = 0. Since ψh ∈ V0,h, then ∇wψh = 0 implies ψh ≡ 0. This
shows that ||| · ||| defines a norm in V0,h. The inequality (27) follows immediately
from the following identity:

(∇wvh,∇wψh) = ∑
K∈Th

(−(v0,∇ ·∇wψh)K + 〈vb,∇wψh ·n〉∂K)

and the Schwarz inequality.
To verify (28), we chose a particular v∗h ∈Vh such that

v∗0 =−∇ ·∇wψh in K0,

v∗b = h−1[[∇wψh ·n]] on edge e.

It is not hard to see that ‖v∗h‖0,h � |||ψh|||. Thus, we have

sup
vh∈Vh

(∇wvh,∇wψh)

‖vh‖0,h
≥ (∇wv∗h,∇wψh)

‖v∗h‖0,h

=
∑K∈Th

(
−(v∗0,∇ ·∇wψh)K + 〈v∗b,∇wψh ·n〉∂K

)
‖v∗h‖0,h

=
|||ψh|||2

‖v∗h‖0,h
� |||ψh|||.

This completes the proof of the lemma.  !

Remark 3.1. Using the boundedness (27) and the discrete Poincare inequality (24),
we have the following estimate for all ψh ∈V0,h:

‖∇wψh‖2 = (∇wψh,∇wψh)� ‖ψh‖0,h|||ψh|||� ‖∇wψh‖|||ψh|||.
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This implies that ‖∇wψh‖ � |||ψh|||. In other words, ||| · ||| is a norm that is stronger
than ‖ · ‖1,h. In fact, the norm ||| · ||| can be viewed as a discrete equivalence of the
standard H2 norm for smooth functions with proper boundary conditions.

Next, we shall establish an estimate for the L2 projection operator Qh in the
discrete norm ‖ · ‖0,h.

Lemma 3.6. Let Qh be the L2 projection operator into the finite element space Vh.
Then, for any v ∈ Hm(Ω) with 1

2 < m≤ j+ 1, we have

‖v−Qhv‖0,h � hm‖v‖m. (29)

Proof. For the L2 projection on each element K, it is known that the following
estimate holds true:

‖v−Q0v‖K � hm‖v‖m,K . (30)

Thus, it suffices to deal with the terms associated with the edges/faces given by

∑
K

h‖(v−Q0v)− (v−Qbv)‖2
∂K = ∑

K
h‖Q0v−Qbv‖2

∂K . (31)

Since Qb is the L2 projection on edges, then we have

‖Q0v−Qbv‖2
∂K ≤ ‖v−Q0v‖2

∂K .

Let s ∈ ( 1
2 ,1] be any real number satisfying s ≤ m. It follows from the above

inequality and the trace inequality (14) that

‖Q0v−Qbv‖2
∂K � h−1‖v−Q0v‖2

K + h2s−1|v−Q0v|2s,K .

Substituting the above into (31) yields

∑
K

h‖(v−Q0v)− (v−Qbv)‖2
∂K � ∑

K

(
‖v−Q0v‖2

K + h2s|v−Q0v|2s,K
)

� h2m‖v‖2
m,

which, together with (30), completes the proof of the lemma.  !

3.3 Ritz and Neumann Projections

To establish an error analysis in the forthcoming section, we shall introduce and
analyze two additional projection operators, the Ritz projection Rh and the Neumann
projection Nh, by applying the weak Galerkin method to the Poisson equation with
various boundary conditions.
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For any v ∈ H1
0 (Ω) ∩H1+γ(Ω) with γ > 1

2 , the Ritz projection Rhv ∈ V0,h is
defined as the unique solution of the following problem:

(∇w(Rhv),∇wψh) = (ΠΠΠh∇v,∇wψh), ∀ ψh ∈V0,h. (32)

Here, γ > 1
2 in the definition of Rh is imposed to ensure that ΠΠΠh∇v is well defined.

From the identity (13), clearly if Δv ∈ L2(Ω), then Rhv is identical to the weak
Galerkin finite element solution [35] to the Poisson equation with homogeneous
Dirichlet boundary condition for which v is the exact solution. Analogously, for any
v ∈ H̄1(Ω)∩H1+γ(Ω) with γ > 1

2 , we define the Neumann projection Nhv ∈ V̄h as
the solution to the following problem:

(∇w(Nhv),∇wψh) = (ΠΠΠh∇v,∇wψh), ∀ ψh ∈ V̄h. (33)

It is useful to note that the above equation holds true for all ψh ∈ Vh as ∇w1 = 0.
Similarly, if Δv ∈ L2(Ω) and in addition ∂v/∂n = 0 on ∂Ω, then Nhv is identical to
the weak Galerkin finite element solution to the Poisson equation with homogeneous
Neumann boundary condition, for which v is the exact solution. The well-posedness
of Rh and Nh follows immediately from the Poincaré-type inequalities (24) and (25).

Using (11), it is easy to see that for all ψh ∈V0,h we have

(∇w(Qhv−Rhv),∇wψh) = ((Ph−ΠΠΠh)∇v,∇wψh). (34)

And similarly, for all ψh ∈ V̄h,

(∇w(Qhv−Nhv),∇wψh) = ((Ph−ΠΠΠh)∇v,∇wψh). (35)

From the definitions of V̄h and Qh, clearly Qh maps H̄1(Ω) into V̄h.
For convenience, let us adopt the following notation:

{R0v,Rbv} := Rhv, {N0v,Nbv} := Nhv,

where again the subscript “0” denotes the function value in the interior of triangles,
while “b” denotes the trace on Eh. For Ritz and Neumann projections, the following
approximation error estimates hold true.

Lemma 3.7. For v ∈ H1
0 (Ω)∩Hm+1(Ω) or H̄1(Ω)∩Hm+1(Ω), where 1

2 < m ≤
j+ 1, we have

‖∇w(Qhv−Rhv)‖ � hm‖v‖m+1, (36)

‖∇w(Qhv−Nhv)‖ � hm‖v‖m+1. (37)

Moreover, assume Δv ∈ L2(Ω) and that the Poisson problem in Ω with either
the homogeneous Dirichlet boundary condition or the homogeneous Neumann
boundary condition has H1+s regularity, where 1

2 < s≤ 1, then
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‖Q0v−R0v‖� hm+s‖v‖m+1 + h1+s‖(I−Q0)Δv‖, (38)

‖Q0v−N0v‖� hm+min(s, j+ 1
2 )‖v‖m+1 + h1+s‖(I−Q0)Δv‖. (39)

Proof. The estimates (36)–(37) follow immediately from (34)–(35), (10), and the
Schwarz inequality. Next, we prove (39) by using the standard duality argument. Let

φ ∈ H̄1(Ω) be the solution of −Δφ = Q0v−N0v with boundary condition ∂φ
∂n

∣∣∣
∂Ω

=

0. Note that φ is well defined since Qhv−Nhv ∈ V̄h. According to the regularity
assumption, we have φ ∈H1+s(Ω) and ‖φ‖1+s � ‖Q0v−N0v‖. Then, by (13), (35),
the Schwarz inequality and (10), we arrive at

‖Q0v−N0v‖2 = (Q0v−N0v,−Δφ) = (ΠΠΠh∇φ ,∇w(Qhv−Nhv))

= (ΠΠΠh∇φ −∇w(Nhφ),∇w(Qhv−Nhv))+ ((Ph−ΠΠΠh)∇v,∇w(Nhφ))

≤
(
‖ΠΠΠh∇φ −Ph∇φ‖+ ‖∇w(Qhφ −Nhφ)‖

)
‖∇w(Qhv−Nhv)‖

+((Ph−ΠΠΠh)∇v,∇w(Nhφ −Qhφ))+ ((Ph−ΠΠΠh)∇v,Ph∇φ)

� hm+s‖φ‖1+s‖v‖m+1 +((I−ΠΠΠh)∇v,Ph∇φ).

Using integration by parts, the triangular inequality and the definition of ΠΠΠh,
we have

((I−ΠΠΠh)∇v,Ph∇φ)

=((I−ΠΠΠh)∇v,(Ph− I)∇φ)+ ((I−ΠΠΠh)∇v,∇φ)

�hm+s‖φ‖1+s‖v‖m+1 +((I−ΠΠΠh)∇v ·n,φ)∂Ω− (∇ · (I−ΠΠΠh)∇v,φ)

=hm+s‖φ‖1+s‖v‖m+1 +((I−ΠΠΠh)∇v ·n,φ −Qbφ)∂Ω− ((I−Q0)Δv,φ)

�hm+s‖φ‖1+s‖v‖m+1 +(hm− 1
2 ‖v‖m+ 1

2 ,∂Ω)(h
min(s+ 1

2 , j+1)‖φ‖s+ 1
2 ,∂Ω)

− ((I−Q0)Δv,(I−Q0)φ)

�hm+min(s, j+ 1
2 )‖φ‖1+s‖v‖m+1 + h1+s‖φ‖1+s‖(I−Q0)Δv‖. (40)

In the proof of (40), we have used the fact that Πh(∇v ·n) is exactly the L2 projection
of ∇v ·n on ∂Ω. Combining the above gives

‖Q0v−N0v‖2 �
(

hm+min(s, j+ 1
2 )‖v‖m+1 + h1+s‖(I−Q0)Δv‖

)
‖φ‖1+s

�
(

hm+min(s, j+ 1
2 )‖v‖m+1 + h1+s‖(I−Q0)Δv‖

)
‖Q0v−N0v‖.
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This completes the proof of the estimate (39). The inequality (38) can be verified in a
similar way by considering a function φ ∈H1

0 (Ω) satisfying a Poisson equation with
homogeneous Dirichlet boundary condition. Observe that in this case, the boundary
integral ((I−ΠΠΠh)∇v · n,φ)∂Ω in inequality (40) shall vanish due to the vanishing
value of φ .  !

Remark 3.2. It is not hard to see from (40) that for the Neumann projection, if
in addition we have ∂v

∂n = 0 on ∂Ω, then the term ((I −ΠΠΠh)∇v · n,φ)∂Ω vanishes

and one obtains the optimal order estimate of hm+s instead of hm+min(s, j+ 1
2 ) for the

Neumann projection operator.

Remark 3.3. If the Poisson equation has the full H2 regularity in Ω, then for v
satisfying the assumptions of Lemma 3.7, we have

‖Q0v−R0v‖� hm+1‖v‖m+1 + h2‖(I−Q0)Δv‖ for
1
2
< m ≤ j+ 1,

‖Q0v−N0v‖�
{

hm+ 1
2 ‖v‖m+1 + h2‖(I−Q0)Δv‖ for j = 0, 1

2 < m ≤ 1,

hm+1‖v‖m+1 + h2‖(I−Q0)Δv‖ for j ≥ 1, 1
2 < m ≤ j+ 1.

Again, if in addition, ∂v
∂n = 0 on ∂Ω, then the Neumann projection has optimal order

of error estimates, even for j = 0.

Remark 3.4. The duality argument used in Lemma 3.7 works only for ‖Q0v−
R0v‖ and ‖Q0v−N0v‖. For ‖Qhv−Rhv‖0,h and ‖Qhv−Nhv‖0,h involving element
boundary information, we currently have only suboptimal estimates. More precisely,
for v satisfying the assumptions in Lemma 3.7, the following estimates hold true:

‖Qhv−Rhv‖0,h � ‖∇w(Qhv−Rhv)‖� hm‖v‖m+1 for
1
2
< m≤ j+ 1,

‖Qhv−Nhv‖0,h � ‖∇w(Qhv−Nhv)‖� hm‖v‖m+1 for
1
2
< m ≤ j+ 1. (41)

Although numerical experiments in [30] suggest an optimal order of convergence in
the ‖ · ‖0,h norm, it remains to see if optimal order error estimates hold true or not
theoretically.

Another important observation is that, for sufficiently smooth v, ∇wRhv is
identical to the mixed finite element approximation of ∇v, discretized by using RTj

and discrete Pj elements. Indeed, we have the following lemma:

Lemma 3.8. For any v ∈ H1
0 ∩H1+γ(Ω) with γ > 1

2 and Δv ∈ L2(Ω), let qh ∈ Σh∩
H(div,Ω) and v0 ∈ L2(Ω) be piecewise Pj polynomials solving
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{
(qh,χχχh)− (∇ · χχχh,v0) = 0 ∀χχχh ∈ Σh∩H(div,Ω),

(∇ ·qh,ψ0) = (Δv,ψ0) ∀ψ0 ∈ L2(Ω) piecewise Pj polynomials.
(42)

In other words, qh and v0 are the mixed finite element solution, discretized using
the RTj element, to the Poisson equation with homogeneous Dirichlet boundary
condition for which v is the exact solution. Then, one has ∇wRhv = qh.

Proof. We first show that ∇wRhv ∈ Σh∩H(div,Ω) by verifying that (∇wRhv) ·n is
continuous across internal edges. Let e ∈ Eh\∂Ω be an internal edge and K1, K2 be
two triangles sharing e. Denote n1 and n2 the outward normal vectors on e, with
respect to K1 and K2, respectively. Let ψh ∈V0,h satisfy ψb|e �= 0 and ψ0, ψb vanish
elsewhere. By the definition of Rh, ∇w and the fact that ΠΠΠh∇v ∈H(div,Ω), we have

0 = (ΠΠΠh∇v−∇wRhv,∇wψh)

= (ΠΠΠh∇v−∇wRhv,∇wψh)K1 +(ΠΠΠh∇v−∇wRhv,∇wψh)K2

= ((ΠΠΠh∇v−∇wRhv)|K1 ·n1 +(ΠΠΠh∇v−∇wRhv)|K2 ·n2,ψb)e

=−(∇wRhv|K1 ·n1 +∇wRhv|K2 ·n2,ψb)e.

The above equation holds true for all ψb|e ∈ Pj(e). Since ∇wRhv|K1 ·n1 +∇wRhv|K2 ·
n2 is also in Pj(e), therefore it must be 0. This completes the proof of ∇wRhv ∈
H(div,Ω).

Next, we prove that ∇wRhv is identical to the solution qh of (42). Since the
solution to (42) is unique, we only need to show that ∇wRhv, together with a certain
v0, satisfies both equations in (42). Consider the test function ψh ∈ V0,h with the
form ψh = {ψ0,0}. By the definition of ∇w, Eqs. (32) and (13), we have

(∇ ·∇wRhv,ψ0) =−(∇wRhv,∇wψh) =−(ΠΠΠh∇v,∇wψh) = (Δv,ψ0).

Hence ∇wRhv satisfies the second equation of (42). Now, note that ∇· is an onto
operator from Σh∩H(div,Ω) to the space of piecewise Pj polynomials, which allows
us to define a v0 that satisfies the first equation in (42) with qh set to be ∇wRhv. This
completes the proof the lemma.  !

Remark 3.5. Using the same argument and noticing that (33) holds for all ψh ∈Vh,
one can analogously prove that for v ∈ H̄1(Ω)∩H1+γ(Ω) with γ > 1

2 and Δv ∈
L2(Ω),

∇wNhv ∈ Σh∩H(div,Ω),

and
∇ ·∇wNhv = Q0Δv.

Because ∇wRhv is identical to the mixed finite element solution to the Poisson
equation, by [18, 34], we have the following quasi-optimal order L∞ estimate:

‖∇v−∇wRhv‖L∞(Ω) � hn+1| lnh|‖Δv‖Wn,∞(Ω), (43)
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for 0 ≤ n ≤ j. Furthermore, for j ≥ 1 and v ∈W j+2,∞(Ω), we have the following
optimal order error estimate:

‖∇v−∇wRhv‖L∞(Ω) � hn+1‖v‖Wn+2,∞(Ω), (44)

for 1≤ n≤ j.

Inspired by [32], using the above L∞ estimates, we obtain the following lemma,
which will play an essential role in the error analysis to be given in the next section.

Lemma 3.9. The following quasi-optimal and optimal order error estimates hold
true:

(i) Let 0≤ n≤ j and v ∈H1
0 (Ω)∩W n+2,∞(Ω). Then for all φh = {v0,vb} ∈Vh, we

have

|(ΠΠΠh∇v−∇wRhv,∇wφh)|� hn+ 1
2 | lnh|‖v‖Wn+2,∞(Ω)‖φh‖0,h. (45)

(ii) Let j≥ 1, 1≤ n≤ j, and v ∈H1
0 (Ω)∩W n+2,∞(Ω). Then, for all φh = {v0,vb} ∈

Vh we have

|(ΠΠΠh∇v−∇wRhv,∇wφh)|� hn+ 1
2 ‖v‖Wn+2,∞(Ω)‖φh‖0,h. (46)

Proof. We first prove part (i). Denote by E∂Ω the set of all edges in Eh∩∂Ω. For any
e ∈ E∂Ω, let Ke be the only triangle in Th that has e as an edge. Denote by T∂Ω the
set of all Ke, for e ∈ E∂Ω. For simplicity of notation, denote qh = ΠΠΠh∇v−∇wRhv.
Since (ΠΠΠh∇v−∇wRhv,∇wψh) = 0 for all ψh ∈ V0,h, without loss of generality, we
only need to consider φh that vanishes on the interior of all triangles and all internal
edges. Then by the definition of φh and ∇w, the scaling argument, and the Schwarz
inequality,

|(ΠΠΠh∇v−∇wRhv,∇wφh)|=
∣∣∣∣∣ ∑
Ke∈T∂ Ω

(qh,∇w(φb|e))Ke

∣∣∣∣∣

=

∣∣∣∣∣ ∑
e∈E∂ Ω

(φb,qh ·n)e

∣∣∣∣∣
� ∑

e∈E∂ Ω

h‖φb‖L∞(e)‖qh‖L∞(e)

� ‖qh‖L∞(Ω) ∑
e∈E∂ Ω

h
(
‖φ0‖L∞(Ke) + ‖φ0−φb‖L∞(e)

)

� ‖qh‖L∞(Ω) ∑
Ke∈T∂ Ω

‖φh‖0,h,Ke

� ‖qh‖L∞(Ω)

(
∑

Ke∈T∂ Ω

‖φh‖2
0,h,Ke

) 1
2
(

∑
Ke∈T∂ Ω

1

) 1
2

� h−
1
2 ‖qh‖L∞(Ω)‖φh‖0,h.
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Now, by inequalities (8) and (43), we have

‖qh‖L∞(Ω) ≤ ‖∇v−ΠΠΠh∇v‖L∞(Ω) + ‖∇v−∇wRhv‖L∞(Ω)

� hn+1‖v‖Wn+2,∞(Ω) + hn+1| lnh|‖Δv‖Wn,∞(Ω),

for 0≤ n≤ j. This completes the proof of part (i).
The proof for part (ii) is similar. One simply needs to replace inequality (43) by

(44) in the estimation of ‖qh‖L∞(Ω).  !

4 Error Analysis

The main purpose of this section is to analyze the approximation error of the
weak Galerkin formulation (6). For simplicity, in this section, we assume that the
solution of (6) satisfies u ∈ H3+γ(Ω) and w ∈ H1+γ(Ω), where γ > 1

2 . This is not
an unreasonable assumption, as we know from (4), the solution u can have up to H4

regularity as long as Ω satisfies certain conditions. However, our assumption does
not include all the possible cases for the biharmonic equation.

Testing w =−Δu with φh = {φ0,φb} ∈Vh, and then by using (13), we have

((w,φh)) = (w,φ0) =−(∇ ·∇u,φ0) = (ΠΠΠh∇u,∇wφh). (47)

Similarly, testing −Δw = f with ψh = {ψ0,ψb} ∈V0,h gives

(ΠΠΠh∇w,∇wψh) = ( f ,ψ0). (48)

Comparing (47)–(48) with the weak Galerkin form (6), one immediately sees
that there is a consistency error between them. Indeed, since Vh and V0,h are
not subspaces of H1(Ω) and H1

0 (Ω), respectively, the weak Galerkin method is
nonconforming. Therefore, we would like to first rewrite (47)–(48) into a form
that is more compatible with (6). By using (32) and (33), Eqs. (47)–(48) can be
rewritten as {

((Nhw,φh))− (∇wRhu,∇hφh) = E(w,u,φh),

(∇wNhw,∇wψh) = ( f ,ψ0),
(49)

where

E(w,u,φh) = ((Nhw−w,φh))+ (ΠΠΠh∇u−∇wRhu,∇wφh).

Define εu = Rhu− uh ∈ V0,h and εw = Nhw−wh ∈ Vh. By subtracting (49) from
(6), we have

{
((εw,φh))− (∇wεu,∇hφh) = E(w,u,φh) for all φh ∈Vh,

(∇wεw,∇wψh) = 0 for all ψh ∈V0,h.
(50)
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Notice here (∇wεw,∇wψh) = 0 does not necessarily imply εw = 0, since the equation
only holds for all ψh ∈V0,h while εw is in Vh.

Lemma 4.1. The consistency error E(w,u,φh) is small in the sense that

|E(w,u,φh)|� hm‖w‖m+1‖φh‖0,h + hn+ 1
2 | lnh|‖u‖Wn+2,∞(Ω)‖φh‖0,h,

where 1
2 < m ≤ j + 1 and 0 ≤ n ≤ j. Moreover, for j ≥ 1, we have the improved

estimate

|E(w,u,φh)|� hm‖w‖m+1‖φh‖0,h + hn+ 1
2 ‖u‖Wn+2,∞(Ω)‖φh‖0,h,

where 1
2 < m ≤ j+ 1 and 1≤ n≤ j.

Proof. The proof is straightforward by using the Schwarz inequality, Lemma 3.6,
Remark 3.4, and Lemma 3.9.  !

To derive an error estimate from (50), let us recall the standard theory for mixed
finite element methods. Given two bounded bilinear forms a(·, ·) defined on X ×X
and b(·, ·) defined on X ×M, where X and M are finite dimensional spaces. Denote
X0 ⊂ X by

X0 = {φ ∈ X : b(φ ,ψ) = 0 for all ψ ∈M}.

Then for all χ ∈ X and ξ ∈M,

sup
φ∈X ,ψ∈M

a(χ ,φ)+ b(φ ,ξ )+ b(χ ,ψ)

‖φ‖X + ‖ψ‖M
� ‖χ‖X + ‖ξ‖M,

if and only if

sup
φ∈X0

a(χ ,φ)
‖φ‖X

� ‖χ‖X , for all χ ∈ X0,

sup
φ∈X

b(φ ,ξ )
‖φ‖X

� ‖ξ‖M, for all ξ ∈M.

(51)

In our formulation, we set X =Vh with norm ‖·‖0,h and M =V0,h with norm ||| · |||.
Define

a(χ ,φ) = ((χ ,φ)), b(φ ,ξ ) =−(∇wφ ,∇wξ ).

It is not hard to check that both of these bilinear forms are bounded under the given
norms. In particular, the boundedness of b(·, ·) has been given in (27). It is also clear
that the first inequality in (51) follows from the definition of a(·, ·) and ‖ · ‖0,h, and
the second inequality follows directly from (28). Combine the above, we have for
all χ ∈Vh and ξ ∈V0,h:

sup
φ∈Vh,ψ∈V0,h

((χ ,φ))− (∇wφ ,∇wξ )− (∇wχ ,∇wψ)

‖φ‖0,h + |||ψ |||
� ‖χ‖0,h + |||ξ |||. (52)
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Theorem 4.2. The weak Galerkin formulation (6) for the biharmonic problem (1)
has the following error estimate:

‖εw‖0,h + |||εu|||� hm‖w‖m+1 + hn+ 1
2 | lnh|‖u‖Wn+2,∞(Ω),

where 1
2 < m ≤ j + 1 and 0 ≤ n ≤ j. Moreover, for j ≥ 1, we have the improved

estimate
‖εw‖0,h + |||εu|||� hm‖w‖m+1 + hn+ 1

2 ‖u‖Wn+2,∞(Ω),

where 1
2 < m ≤ j+ 1 and 1≤ n≤ j.

Proof. By (50) and (52),

‖εw‖0,h + |||εu|||� sup
φh∈Vh,ψh∈V0,h

((εw,φh))− (∇wφh,∇wεu)− (∇wεw,∇wψh)

‖φh‖0,h + |||ψh|||

= sup
φh∈Vh,ψh∈V0,h

E(w,u,φh)

‖φh‖0,h + |||ψh|||
.

Combining this with Lemma 4.1, this completes the proof of the theorem.  !

Remark 4.1. Assume that the exact solution w and u are sufficiently smooth. It
follows from the above theorem that the following convergence holds true:

‖εw‖0,h + |||εu|||�
{

O(h
1
2 | lnh|) for j = 0,

O(h j+ 1
2 ) for j ≥ 1,

where j is the order of the finite element space, i.e., order of polynomials on each
element.

At this stage, it is standard to use the duality argument and derive an error
estimation for the L2 norm of εu. However, estimating ‖εu‖0,h is not an easy task, as
is similar to the case of Poisson equations. For simplicity, we only consider ‖εu,0‖,
where εu is conveniently expressed as εu = {εu,0,εu,b}. Define

{
ξ +Δη = 0,

−Δξ = εu,0,
(53)

where η = 0 and ∂η
∂n = 0 on ∂Ω. We assume that all internal angles of Ω are less

than 126.283696 · · ·◦. Then, according to (4), the solution to (53) has H4 regularity:

‖ξ‖2 + ‖η‖4 � ‖εu,0‖.
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Furthermore, since such a domain Ω is convex, the Poisson equation with either
the homogeneous Dirichlet boundary condition or the homogeneous Neumann
boundary condition has H2 regularity.

Clearly, Eq. (53) can be written into the following form:

{
((Nhξ , φh))− (∇wRhη , ∇wφh) = E(ξ ,η ,φh) for all φh = {φ0, φb} ∈Vh,

(∇wNhξ , ∇wψh) = (εu,0, ψ0) for all ψh = {ψ0, ψb} ∈V0,h.
(54)

For simplicity of the notation, denote

Λ(Nhξ ,Rhηh; φh,ψh) = ((Nhξ , φh))− (∇wRhη , ∇wφh)− (∇wNhξ , ∇wψh).

Note that Λ is a symmetric bilinear form. By setting φh = εw and ψh = εu in (54)
and then subtract these two equations, one get

‖εu,0‖2 = E(ξ ,η ,εw)−Λ(Nhξ ,Rhη ; εw,εu)

= E(ξ ,η ,εw)−Λ(εw,εu; Nhξ ,Rhη)

= E(ξ ,η ,εw)−E(w,u,Nhξ ).

(55)

Here we have used the symmetry of Λ(·, ·) and Eq. (50).
The two terms, E(ξ ,η ,εw) and E(w,u,Nhξ ), in the right-hand side of Eq. (55)

will be estimated one by one. We start from E(ξ ,η ,εw). By using Lemma 4.1, it
follows that

(i) When j = 0,

E(ξ ,η ,εw)�
(

h‖ξ‖2+ h
1
2 | lnh|‖η‖W2,∞(Ω)

)
‖εw‖0,h

� h1/2| lnh|(‖ξ‖2 + ‖η‖4)‖εw‖0,h.

(56)

(ii) When j≥ 1, let δ > 0 be an infinitely small number which ensures the Sobolev
embedding from W 4,2(Ω) to W 3−δ ,∞(Ω). Then

E(ξ ,η ,εw)�
(

h‖ξ‖2 + h
3
2−δ | lnh|‖η‖W3−δ ,∞(Ω)

)
‖εw‖0,h

� h(‖ξ‖2 + ‖η‖4)‖εw‖0,h.
(57)

Next, we give an estimate for E(w,u,Nhξ ).

Lemma 4.3. Assume all internal angles of Ω are less than 126.283696 · · ·◦, which
means the biharmonic problem with clamped boundary condition in Ω has H4

regularity. Then
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(i) For j = 0,

E(w,u,Nhξ )�
(

hm+ 1
2 ‖w‖m+1 + h2‖(I−Q0) f‖+ hn+1‖u‖n+1

)
‖ξ‖2,

where 1
2 < m≤ 1 and 1/2 < n≤ 1.

(ii) For j ≥ 1,

E(w,u,Nhξ )�
(
hm+1‖w‖m+1 + h2‖(I−Q0) f‖+ hn+1‖u‖n+1

)
‖ξ‖2,

where 1
2 < m≤ j+ 1 and 1/2 < n≤ j+ 1.

Proof. By definition,

E(w,u,Nhξ ) = ((Nhw−w,Nhξ ))+ (ΠΠΠh∇u−∇wRhu,∇wNhξ ). (58)

First, by the definition of ((·, ·)), the Schwarz inequality, Remarks 3.3 and 3.4, we
have

((Nhw−w,Nhξ ))

=(N0w−Q0w,N0ξ )+ ∑
K∈Th

h(N0w−Nbw,N0ξ −Nbξ )∂K

�‖N0w−Q0w‖‖N0ξ‖+ ‖Nhw−w‖0,h‖Nhξ − ξ‖0,h

�
{
(hm+ 1

2 ‖w‖m+1 + h2‖(I−Q0)Δw‖)‖ξ‖2 for j = 0, 1
2 < m≤ 1

(hm+1‖w‖m+1 + h2‖(I−Q0)Δw‖)‖ξ‖2 for j ≥ 1, 1
2 < m≤ j+ 1

.

(59)

Next, by using inequalities (11), (33), (13), (10), (37), and (38) one after one, we get

(ΠΠΠh∇u−∇wRhu,∇wNhξ )

=((ΠΠΠh−Ph)∇u,∇wNhξ )+ (∇w(Qhu−Rhu),∇wNhξ )

=((ΠΠΠh−Ph)∇u,∇wNhξ )+ (∇w(Qhu−Rhu),ΠΠΠh∇ξ )

=((ΠΠΠh−Ph)∇u,∇w(Nhξ −Qhξ ))+ ((ΠΠΠh−Ph)∇u,Ph∇ξ )− (Q0u−R0u,Δξ )

�hn+1‖u‖n+1‖ξ‖2 +((ΠΠΠh− I)∇u,Ph∇ξ )+ h2‖(I−Q0)Δu‖‖ξ‖2,

for 1
2 < n ≤ j + 1. The estimation for ((ΠΠΠh − I)∇u,Ph∇ξ ) follows the same

technique used in inequality (40). By the definition of ΠΠΠh and since ∂u
∂n = 0 on

∂Ω, we know that (ΠΠΠh− I)∇u ·n also vanishes on ∂Ω. Therefore, using the same
argument as in (40), one has

((ΠΠΠh− I)∇u,Ph∇ξ )� hn+1‖u‖n+1‖ξ‖2 + h2‖(I−Q0)Δu‖‖ξ‖2

for 1
2 < n≤ j+ 1. Combining the above gives
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(ΠΠΠh∇u−∇wRhu,∇wNhξ )�
(
hn+1‖u‖n+1 + h2‖(I−Q0)Δu‖

)
‖ξ‖2. (60)

for 1
2 < n≤ j+ 1.

Notice that

h2‖(I−Q0)Δu‖= h2‖(I−Q0)w‖ � hm+2‖w‖m for 0≤ m≤ j+ 1,

h2‖(I−Q0)Δw‖= h2‖(I−Q0) f‖.
(61)

The lemma follows immediately from (58)–(61).  !

Finally, combining Theorem 4.2, inequalities (55), (56)–(57), and Lemma 4.3,
we get the following L2 error estimation:

Theorem 4.4. Assume all internal angles of Ω are less than 126.283696 · · ·◦, which
means the biharmonic problem with clamped boundary condition in Ω has H4

regularity. Then

(i) For j = 0,

‖εu,0‖� hm+ 1
2 | lnh|‖w‖m+1 + h| lnh|2‖u‖W2,∞(Ω)

+ h2‖(I−Q0) f‖+ hn+1‖u‖n+1,

where 1
2 < m≤ 1 and 1

2 < n≤ 1.
(ii) For j ≥ 1,

‖εu,0‖� hm+1‖w‖m+1 + hl+ 3
2 ‖u‖Wl+2,∞(Ω) + h2‖(I−Q0) f‖+ hn+1‖u‖n+1,

where 1
2 < m≤ j+ 1, 1

2 < n≤ j+ 1 and 1≤ l ≤ j.

Remark 4.2. If u, w, and f are sufficiently smooth, then we get

‖εu,0‖�
{

O(h| lnh|2) for j = 0,

O(h j+ 3
2 ) for j ≥ 1.

5 Numerical Results

In this section, we would like to report some numerical results for the weak Galerkin
finite element method proposed and analyzed in previous sections. Before doing
that, let us briefly review some existing results for H1-H1 conforming, equal-order
finite element discretization of the Ciarlet–Raviart mixed formulation. As discussed
in [5,32], theoretical error estimates for such schemes are indeed suboptimal due to
an effect of infχh ‖u− χh‖2, where χh is taken from the employed H1 conforming
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finite element space. For example, when H1-H1 conforming quadratic elements
are used to approximate both u and w, the error satisfies ‖u− uh‖2 + ‖w−wh‖ �
infχh ‖u−χh‖2+ infχh ‖w−χh‖�O(h), while intuitively, one may expect ‖w−wh‖
to have an O(h2) convergence. By using the L∞ argument, Scholz [32] was able to

improve the convergence rate of L2 norm for w by h
1
2 , and it is known that this

theoretical result is indeed sharp. For the weak Galerkin approximation, from the
discussing in the previous sections, clearly we are facing the same issue.

However, numerous numerical experiments have illustrated that H1-H1 con-
forming, equal-order Ciarlet–Raviart mixed finite element approximation often
demonstrates convergence rates better than the theoretical prediction. Indeed, this
has been partly explained theoretically in [33], in which the author proved that
optimal order of convergence rates can be recovered in certain fixed subdomains
of Ω, when equal-order H1 conforming elements are used. We point out that similar
phenomena have been observed in the numerical experiments using weak Galerkin
discretization. This means that numerical results are often better than theoretical
predictions.

Another issue in the implementation of the weak Galerkin finite element method
is the treatment of nonhomogeneous boundary data:

u = g1 on ∂Ω,

∂u
∂n

= g2 on ∂Ω.

Clearly, both boundary conditions are imposed on u, and u = g1 is the essential
boundary condition, while ∂u

∂n = g2 is the natural boundary condition. To impose the
natural boundary condition, we shall modify the first equation of (6) into

((wh, φh))− (∇wuh, ∇wφh) =−〈g2,φb〉∂Ω.

The essential boundary condition should be enforced by taking the L2 projection of
the corresponding boundary data.

Consider three test problems defined on Ω = [0,1]× [0,1] with exact solutions

u1 = x2(1− x)2y2(1− y)2,

u2 = sin(2πx)sin(2πy) and u3 = sin(2πx+
π
2
)sin(2πy+

π
2
),

respectively. The reason for choosing these three exact solutions is that they have
the following type of boundary conditions:
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Table 1 Numerical results for the test problem with exact solution u1 and lowest order of WG
elements

h ‖∇weu‖ ‖eu,0‖ ‖eu,b‖ ‖∇wew‖ ‖ew,0‖ ‖ew,b‖
0.1 1.33e−03 2.40e−04 4.59e−04 5.66e−02 2.96e−03 6.91e−03
0.05 4.69e−04 6.18e−05 1.17e−04 2.80e−02 9.14e−04 1.99e−03
0.025 2.00e−04 1.55e−05 2.97e−05 1.60e−02 2.64e−04 5.70e−04
0.0125 9.56e−05 3.90e−06 7.44e−06 1.21e−02 8.33e−05 1.89e−04
0.00625 4.72e−05 9.77e−07 1.86e−06 1.13e−02 3.26e−05 7.91e−05
Asym. order 1.1930 1.9876 1.9877 0.5864 1.6461 1.6298

O(hk), k =

u1|∂Ω = 0
∂u1

∂n

∣∣∣∣
∂Ω

= 0,

u2|∂Ω = 0
∂u2

∂n

∣∣∣∣
∂Ω
�= 0,

u3|∂Ω �= 0
∂u3

∂n

∣∣∣∣
∂Ω

= 0.

This allows us to test the effect of different boundary data on convergence rates.
Although the theoretical error estimates are given for εu = Rhu−uh and εw = Nhw−
wh, by using the triangle inequality and the approximation properties of Rh, Nh and
Qh, it is clear that they have at least the same order as eu = Qhu− uh and ew =
Qhw−wh, provided that the exact solution is smooth enough. Thus for convenience,
we only compute different norms for eu and ew, instead of for εu and εw.

The tests are performed using an unstructured triangular initial mesh, with
characteristic mesh size 0.1. The initial mesh is then refined by dividing every
triangle into four sub-triangles, to generate a sequence of nested meshes with various
mesh size h. All discretization schemes are formulated by using the lowest order
weak Galerkin element, with j = 0. For simplicity of notation, for any v∈Vh, denote

‖vb‖=
(

∑
K∈Th

h‖vb‖2
∂K

)1/2

.

The results for test problems with exact solutions u1, u2, and u3 are reported
in Tables 1, 2, and 3, respectively. The results indicate that u always achieves an
optimal order of convergence, while the convergence for w varies with different
boundary conditions. It should be pointed out that both of them have outperformed
the convergence as predicted by theory.

Our final example is a case where the exact solution has a low regularity in the
domain Ω = [0,1]× [0,1]. More precisely, the exact solution is given by
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Table 2 Numerical results for the test problem with exact solution u2 and lowest order of WG
elements

h ‖∇weu‖ ‖eu,0‖ ‖eu,b‖ ‖∇wew‖ ‖ew,0‖ ‖ew,b‖
0.1 9.58e−01 8.66e−02 1.65e−01 4.39e+01 6.09e−01 2.01e+00
0.05 3.34e−01 2.18e−02 4.14e−02 2.32e+01 2.78e−01 7.19e−01
0.025 1.43e−01 5.47e−03 1.03e−02 1.37e+01 1.15e−01 2.81e−01
0.0125 6.81e−02 1.37e−03 2.59e−03 1.02e+01 5.12e−02 1.26e−01
0.00625 3.36e−02 3.42e−04 6.49e−04 9.33e+00 2.45e−02 6.12e−02
Asym. order 1.1958 1.9958 1.9975 0.5649 1.1709 1.2587

O(hk), k =

Table 3 Numerical results for the test problem with exact solution u3 and lowest order of WG
elements

h ‖∇weu‖ ‖eu,0‖ ‖eu,b‖ ‖∇wew‖ ‖ew,0‖ ‖ew,b‖
0.1 8.23e−01 1.18e−01 2.27e−01 5.61e+01 4.25e+00 9.42e+00
0.05 3.07e−01 3.18e−02 6.09e−02 2.43e+01 1.24e+00 2.58e+00
0.025 1.35e−01 8.13e−03 1.55e−02 1.13e+01 3.28e−01 6.61e−01
0.0125 6.49e−02 2.04e−03 3.90e−03 5.58e+00 8.42e−02 1.67e−01
0.00625 3.21e−02 5.11e−04 9.78e−04 2.77e+00 2.14e−02 4.21e−02
Asym. order 1.1599 1.9679 1.9682 1.0801 1.9157 1.9558

O(hk), k =

Table 4 Numerical results for the test problem with exact solution u4 and lowest order of WG
elements

h ‖∇weu‖ ‖eu,0‖ ‖eu,b‖ ‖∇wew‖ ‖ew,0‖ ‖ew,b‖
0.1 3.73e−02 9.44e−04 2.15e−03 2.88e+01 4.05e−01 1.78e+00
0.05 1.87e−02 2.55e−04 5.73e−04 4.08e+01 2.86e−01 1.26e+00
0.025 9.37e−03 6.60e−05 1.46e−04 5.77e+01 2.02e−01 8.91e−01
0.0125 4.68e−03 1.67e−05 3.69e−05 8.16e+01 1.42e−01 6.30e−01
0.00625 2.34e−03 4.19e−06 9.24e−06 1.15e+02 1.01e−01 4.45e−01
Asym. order 0.9984 1.9567 1.9690 −0.4998 0.5008 0.5000

O(hk), k =

u4 = r3/2
(

sin
3θ
2
− 3sin

θ
2

)
,

where (r,θ ) are the polar coordinates. It is easy to check that u ∈ H2.5. The errors
for weak Galerkin finite element approximations are reported in Table 4. Here, u
still achieves an optimal order of convergence, while the convergence rates for w is
restricted by the fact that w ∈H0.5. All the results are in consistency with the theory
established in this article.
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ally used for solving evolution equations. An alternative approach is based on
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1 Introduction

Domain decomposition methods are often used for the numerical solution of
boundary value problems for partial differential equations on parallel computers.
The theory of the domain decomposition (DD) methods is mostly developed for
stationary problems [11, 12, 24, 25]. Numerous sequential and parallel algorithms
for overlapping and nonoverlapping DD methods are developed and analysed in
conjunction with such problems.

Domain decomposition methods for unsteady problems are based on two ap-
proaches [14]. In the first approach, standard implicit approximation in time is used.
After that, domain decomposition methods developed for steady-state problems can
be applied for solving the discrete problem on the new time level. In the case
of optimal DD iterative methods, the number of iterations does not depend on
space and time discretization steps [3, 4]. In the second approach, non-iterative
domain decomposition algorithms are constructed for unsteady problems. In some
cases, this can be interpreted as performing at each time step only one iteration
of the Schwarz alternating method for the approximate solution of boundary value
problems for second-order parabolic equation [6, 7]. We also construct a special
scheme of splitting into subdomains (regional-additive schemes [26, 27]).

The construction of regional-additive schemes and the investigation of their
convergence are based on the general theory of the splitting schemes [10, 13, 34].
Most interesting for the practice is the situation when the operator is split into
a sum of three or more noncommutative nonselfadjoint operators. In the case of
such a multicomponent splitting, stable additive splitting schemes are constructed
based on the concept of additive approximation. Furthermore, additively averaged
summarized approximation schemes are interesting, when we focus on parallel
computers. In the class of splitting schemes with full approximation [19], we
point to the vector-additive schemes, when the original equation is transformed
into a system of similar equations [1, 2, 31]. The most suitable approach for
constructing additive regularized operator-difference schemes for multicomponent
splitting [18,23] is the one in which the stability is achieved due to perturbations of
the operators of the difference scheme.

A domain decomposition scheme is defined by a decomposition of the com-
putational domain and by defining the splitting of the operator. To construct the
decomposition operators when solving BVP for PDEs, it is convenient to use a
partition of unity for the computational domain [5, 8, 16, 26, 28, 29, 33]. In the
overlapping DD methods, a function is associated with each subdomain, and this
function takes value between zero and one. Domain decomposition methods for
unsteady convection-diffusion problems are studied in the works [17, 20, 30]. In
the extreme case, the width of the overlap of the subdomains is equal to the space
discretization step. In this case the regionally additive schemes can be interpreted
as nonoverlapping domain decomposition schemes, where the exchange is achieved
by setting proper boundary conditions for each of the subdomain. Research results
on domain decomposition method for unsteady boundary value problems are
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summarized in the books [14, 19]. From the more recent studies, we mention
[32], where DD schemes which are more suitable for computer implementation are
presented.

In this paper, we construct a domain decomposition schemes for first-order evo-
lution equations with general nonnegative operator in a finite-dimensional Hilbert
space. Decomposition operators are constructed separately for the selfadjoint and
for the skew-symmetric part of the operator. The splitting is based on partition of
unity in the appropriate spaces. We propose two classes of unconditionally stable
regionally additive regularized schemes, and we consider vector-additive operator-
difference domain decomposition scheme.

2 The Cauchy Problem for First-Order Evolution Equations

Let H be finite-dimensional real Hilbert space of grid functions, in which the scalar
product and the norm are (·, ·) ‖ · ‖, respectively. Consider a time independent and
nonnegative in H grid operator A:

A≥ 0,
d
dt

A = A
d
dt
. (1)

Let us denote by E the identity operator in H. We seek a solution to the Cauchy
problem

du
dt

+Au = f (t), 0 < t ≤ T, (2)

u(0) = u0. (3)

The problem (1)–(3) is obtained after a finite-difference approximation in space
of initial boundary value problems (IBVP) for second-order partial differential
equations (PDEs). Similar systems of ordinary differential equations arise when
finite element method (FEM) or finite volume method (FVM) are used for space
discretization.

Let us give a standard a priori estimate for the problem (1)–(3). We take a scalar
product in H of the Eq. (2) and u. In view of (1) we arrive at

1
2

d
dt
‖u‖2 ≤ ( f ,u). (4)

Taking into account

( f ,u) ≤ ‖ f‖‖u‖,

from (4) we obtain

d
dt
‖u‖ ≤ ‖ f‖.
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Using the Gronwall lemma, we obtain the desired estimate

‖u‖ ≤ ‖u0‖+
ˆ t

0
‖ f (θ )‖dθ , (5)

which expresses the stability of the solution to the initial data and right-hand side.
The scope of this work is to present discretizations in time for the Eq. (2). Our

discretizations belong to the class of the two-layer schemes. Let τ be the time step
and let yn = y(tn), tn = nτ , n = 0,1, . . . ,N, Nτ = T . Equation (2) is approximated
by a two-level weighted scheme as follows:

yn+1− yn

τ
+A(σyn+1 +(1−σ)yn) = ϕn, n = 0,1, . . . ,N− 1, (6)

where, for example, ϕn = f (σ tn+1 +(1−σ)tn). It is supplemented by the initial
condition

y0 = u0. (7)

Difference scheme (6), (7) has approximation errorO(τ2+(σ−0.5)τ). An analogy
of (5) for the discretized in time function reads as follows:

‖yn+1‖ ≤ ‖yn‖+ τ‖ϕn‖, n = 0,1, . . . ,N− 1. (8)

We prove the following theorem.

Theorem 1. The difference scheme (1), (6), (7) is unconditionally stable for σ ≥
0.5, and the estimate (8) holds for the solution of the above difference equation.

Proof. Let us rewrite (6) in the form

yn+1 = Syn + τ(E +στA)−1ϕn, (9)

where
S = (E +στA)−1(E− (1−σ)τA) (10)

is the operator of the transition to a new time level. From (9) we have

‖yn+1‖= ‖S‖‖yn‖+ τ‖(E +στA)−1ϕn‖. (11)

For the last term on the right side of (11), in the class of operators (1), under
natural conditions σ ≥ 0, we have

‖(E +στA)−1ϕn‖ ≤ ‖ϕn‖.

Let us show that if σ ≥ 0.5, for nonnegative operator A, it holds

‖S‖ ≤ 1. (12)
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In real Hilbert space H, the inequality (12) is equivalent to [9] the fulfilment of the
operator inequality

SS∗ ≤ E.

In view of (10), this inequality takes the form

(E +στA)−1(E− (1−σ)τA)(E− (1−σ)τA∗)(E +στA∗)−1 ≤ E.

Multiplying this inequality on the left by (E +στA)−1 and on the right by (E +
στA∗)−1, we obtain

(E− (1−σ)τA)(E− (1−σ)τA∗)≤ (E +στA)(E +στA∗).

It follows from here that

τ(A+A∗)+ (σ2− (1−σ)2)τ2AA∗ ≥ 0.

This inequality holds for nonnegative operators A withσ ≥ 0.5. In view of (12), from
(11), we have obtained the required estimate (8).  !

3 Decomposition Operators

To better understand the formal structure of the operators of the domain de-
composition, we give a typical example. We consider a model nonstationary
convection-diffusion problem with time-independent (but space-dependent) diffu-
sion coefficient and velocity. The convective term below is written in the so-called
(see, e.g., [21]) symmetric form. In a bounded domain Ω , the unknown function
u(xxx, t) satisfies the following equation:

∂u
∂ t

+
1
2

m

∑
α=1

(
vα(xxx)

∂u
∂xα

+
∂

∂xα
(vα(xxx)u)

)

−
m

∑
α=1

∂
∂xα

(
k(xxx)

∂u
∂xα

)
= f (xxx, t), xxx ∈Ω , 0 < t < T,

(13)

in which k(xxx) ≥ κ > 0, xxx ∈ Ω . Equation (13) is supplemented with homogeneous
Dirichlet boundary conditions

u(xxx, t) = 0, xxx ∈ ∂Ω , 0 < t < T. (14)

In addition, we define the initial condition

u(xxx,0) = u0(xxx), xxx ∈Ω . (15)
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We will consider the set of functions u(xxx, t), satisfying the boundary conditions
(14). Let us write the above unsteady convection-diffusion problem in the form of
differential-operator equation

du
dt

+Au = f (t), 0 < t < T. (16)

We consider the Cauchy problem for the evolution equation (16):

u(0) = u0. (17)

Let us explicitly specify the diffusive and convective operators and rewrite (16) in
the following form:

A= C+D. (18)

The diffusion operator stands for

Du =−
m

∑
α=1

∂
∂xα

(
k(xxx)

∂u
∂xα

)
.

On the set of functions (14) in H = L2(Ω), the diffusion operator D is selfadjoint
and positive definite:

D =D∗ ≥ κδE , δ = δ (Ω)> 0, (19)

where E is the identity operator in H.
The convective transport operator C is defined by the expression

Cu =
1
2

m

∑
α=1

(
vα(xxx)

∂u
∂xα

+
∂

∂xα
(vα(xxx)u)

)
.

For any vα(xxx), the operator C is skew-symmetric in H:

C =−C∗. (20)

Taking into account the representation (18), from (19), (20), it follows thatA>0 H.
A domain decomposition scheme for this problem will be associated with the

partition of unity of the computational domain Ω . Let the domain Ω consists of p
(possibly overlapping) separate subdomains

Ω = Ω1∪Ω2∪ . . .∪Ωp.

With each separate subdomain Ωα , α = 1,2, . . . , p, we associate function
ηα(xxx), α = 1,2, . . . , p, such that
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ηα(xxx) =

{
> 0, xxx ∈Ωα ,

0, xxx /∈Ωα ,
α = 1,2, . . . , p, (21)

where
p

∑
α=1

ηα(xxx) = 1, xxx ∈Ω . (22)

In view of (21), (22) from (18), we obtain the representation

A=
p

∑
α=1

Aα , Aα = Cα +Dα , α = 1,2, . . . , p, (23)

in which

Dα u =−
m

∑
α=1

∂
∂xα

(
k(xxx)ηα (xxx)

∂u
∂xα

)
,

Cα u =
1
2

m

∑
α=1

(
vα(xxx)ηα (xxx)

∂u
∂xα

+
∂

∂xα
(vα(xxx)ηα (xxx)u)

)
.

Similarly to (19), (20), it holds for the subdomain operators:

Dα =D∗
α ≥ 0, Cα =−C∗α , α = 1,2, . . . , p. (24)

Due to (24), the operators in the splitting (23) satisfy

Aα ≥ 0, α = 1,2, . . . , p, (25)

and the selfadjoint part of the operator A splits into sum of nonnegative selfadjoint
operators, and the skew-symmetric operator splits into sum of skew-symmetric
operators.

The diffusive transport operatorD is conveniently represented as

D = G∗G, G = k1/2 grad, G∗ =−divk1/2, (26)

with G :H→ H̃, where H̃= (L2(Ω))p is the corresponding Hilbert space of vector
functions. Using these notations, operatorsDα , α = 1,2, . . . , p can be written as

Dα = G∗ηαG, α = 1,2, . . . , p. (27)

Similarly, each of Cα , α = 1,2, . . . , p has the representation

Cα =
1
2
(ηαC+Cηα), α = 1,2, . . . , p. (28)
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The advantage of the notations (27), (28) is that diffusion and convection operators
have clearly visible structure in the subdomains defined by the splitting (21), (22),
and it is easy to verify if (24) is satisfied.

A similar consideration can be given for the operator of the general problem
defined by (2), (3). Let us discuss it with some details. Let us select the selfadjoint
and the skew-symmetric part of the operator A:

A =C+D, C =
1
2
(A−A∗), D =

1
2
(A+A∗). (29)

The nonnegative operator D can be written as

D = G∗G, (30)

in which G : H → H̃. Let E and Ẽ be identity operators in the spaces H and H̃,
respectively, and let the following partitions of unity define the decomposition of
the domain

p

∑
α=1

χα = E, χα ≥ 0, α = 1,2, . . . , p, (31)

p

∑
α=1

χ̃α = Ẽ, χ̃α ≥ 0, α = 1,2, . . . , p. (32)

In analogy with (23)–(25), we use the splitting

A =
p

∑
α=1

Aα , Aα ≥ 0, α = 1,2, . . . , p, (33)

in which

Aα =Cα +Dα , Dα = D∗
α ≥ 0, Cα =−C∗

α , α = 1,2, . . . , p. (34)

Based on (32), we set

Dα = G∗χ̃α G, α = 1,2, . . . , p. (35)

The presentation of the terms in the antisymmetric part is based on (31):

Cα =
1
2
(χαC+Cχα), α = 1,2, . . . , p. (36)

Such an additive representation is a discrete analogue of (27), (28), and it is
interpreted as respective version of the domain decomposition.



Domain Decomposition Scheme with Nonselfadjoint Operators 287

4 Regularized Domain Decomposition Schemes

Various splitting schemes can be used solving the Cauchy problem for Eqs. (2),
(3). The transition to a new time level is based on the solution p separate subtasks,
each of which is based on solving a problem with individual operators Aα , α =
1,2, . . . , p. Taking into account the structure of the operators (see (34)–(36)), the
presented splitting schemes belong to the class of regionally additive schemes and
are based on consistent application of non-iterative domain decomposition schemes.

Currently, the principle of regularization of difference schemes is being consid-
ered as a basic methodological principle for improving the difference schemes [13].
The construction of unconditionally stable additive-difference schemes [19], based
on the principle of regularization, will be implemented here in the following ways:

1. A simple difference scheme (called here generating difference scheme) is
constructed for the original problem. This scheme does usually not possess the
desired properties. For example, in the construction of additive schemes, the
generating scheme can be only conditionally stable or even can be completely
unstable.

2. The difference scheme is rewritten in a form for which the stability conditions
are known.

3. Quality of the scheme (e.g., its stability) is improved due to perturbations of the
operators of the difference scheme, at the same time preserving the possibility
for its computational implementation as an additive scheme.

Let us now illustrate the above methodology by a particular case study. Applied
to the problem (2), (3), we choose as a generating scheme the simple explicit scheme

yn+1− yn

τ
+Ayn = ϕn, n = 0,1, . . . ,N− 1, (37)

which is complemented by the initial conditions (7). This scheme stable (see the
proof of Theorem 1) if the inequality

A+A∗− τAA∗ ≥ 0 (38)

is fulfilled. The inequality (38) with D > 0 imposes restrictions on the time step, i.e.,
the scheme (29), (37) is conditionally stable. Note also that if D = 0, the scheme
(29), (37) is absolutely unstable. Taking into account the splitting (33), we refer to
the scheme under consideration as to a scheme from the class of additive schemes.

In the construction of additive schemes, we can consider also an alternative
variant, using as generating scheme the more general scheme (6), (7), which is not
additive, but which is unconditionally stable for σ ≥ 0.5. In this latter case, the
perturbation is applied just in order to obtain an additive scheme while preserving
the property of unconditional stability.
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Regularization of difference schemes for improving the stability range (in the
construction of splitting schemes) can be achieved via perturbation of the operator
A. Another way is related to perturbation of the finite-difference approximation of
the time derivative term. In the construction of additive schemes, it is convenient to
work with the transition operator S, writing down the generating scheme (37) as

yn+1 = Syn + τϕn, n = 0,1, . . . ,N− 1. (39)

In the case of (37), we have
S = E− τA. (40)

A regularized scheme based on the perturbation of the operator S has the form

yn+1 = S̃yn + τϕn, n = 0,1, . . . ,N− 1. (41)

Let us formulate general conditions on S̃.
The generating scheme (39), (40) has first-order approximation in time, and to

preserve this order of approximation, we impose on S̃ the following condition:

S̃ = E− τA+O(τ2). (42)

The scheme (41) is stable in the sense of the estimate (8) provided that the following
inequality holds:

‖S̃‖ ≤ 1. (43)

Additionally, it should be noted that we seek for additive regularization scheme,
where the transition to a new time level is achieved via solving individual subprob-
lems for the operators Aα , α = 1,2, . . . , p in the decomposition (33).

The first class of regularized splitting schemes considered here is based on
the following additive representation of the transition operator of the generating
scheme:

S =
1
p

p

∑
α=1

Sα , Sα = E− pτAα , α = 1,2, . . . , p.

We use a similar additive representation for the transition operator in the regularized
scheme

S̃ =
1
p

p

∑
α=1

S̃α , α = 1,2, . . . , p. (44)

The individual terms S̃α , α = 1,2, . . . , p are based on perturbations of the operators
Aα , α = 1,2, . . . , p. In analogy with (10), we set

S̃α = (E +σ pτAα)
−1(E− (1−σ)pτAα), α = 1,2, . . . , p. (45)
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If σ ≥ 0.5 (see proof of Theorem 1) we have

‖S̃α‖ ≤ 1, α = 1,2, . . . , p.

In view of (44), this provides fulfilment of the stability conditions (43).
Accounting for

S̃α = E− pτ(E +σ pτAα)
−1Aα , α = 1,2, . . . , p

the regularized additive scheme (41), (44), (45) can be rewritten in the form

yn+1− yn

τ
+

p

∑
α=1

(E +σ pτAα)
−1Aα yn = ϕn, n = 0,1, . . . ,N− 1. (46)

Comparing to the generating scheme (33), (37), we see that the regularization in
this case is achieved by perturbation of A. The outcome of our consideration is the
following theorem.

Theorem 2. The additive-difference scheme (7), (41), (44), (45) is unconditionally
stable for σ ≥ 0.5, and stability estimate (8) holds for its solution.

The computational implementation of the scheme (7), (46) can be carried out as
follows. We set

yn+1 =
1
p

p

∑
α=1

yn+1
α , ϕn =

p

∑
α=1

ϕn
α .

In this case, we obtain

yn+1
α − yn

pτ
+(E +σ pτAα)

−1Aα yn = ϕn
α , α = 1,2, . . . , p (47)

for the individual components of the approximate solution at the new time level
yn+1

α , α = 1,2, . . . , p. The scheme (47) can be rewritten as

yn+1
α − yn

pτ
+Aαyn(σyn+1

α +(1−σ)yn) = (E +σ pτAα)ϕn
α .

In this form we can interpret the scheme (47) as a variant of the additive-averaged
component splitting scheme [19].

Another class of regularized splitting schemes instead of additive (see (44)),
exploits multiplicative representation of the transition operator:

S̃ =
p

∏
α=1

S̃α , α = 1,2, . . . , p. (48)
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Taking into account (42), we have

S =
p

∏
α=1

Sα +O(τ2), Sα = E− τAα , α = 1,2, . . . , p.

Similarly to (45), we set

S̃α = (E +στAα)
−1(E− (1−σ)τAα), α = 1,2, . . . , p. (49)

Under the standard restrictions σ ≥ 0.5, the regularized scheme (41), (48), (49) is
stable.

Theorem 3. The additive-difference scheme (7), (41), (48), (49) is unconditionally
stable for σ ≥ 0.5, and the stability estimate (8) holds for its solution.

Let us discuss a possible computer implementation of the constructed regularized
scheme. We introduce auxiliary quantities yn+α/p, α = 1,2, . . . , p. Taking into
account (41), (48), these are defined from the equations

yn+α/p = S̃αyn+(α−1)/p, α = 1,2, . . . , p− 1,

yn+1 = S̃pyn+(p−1)/p+ τϕn. (50)

Similar to (47), we obtain from (50)

yn+α/p− yn+(α−1)/p

τ
+(E +στAα)

−1Aαyn+(α−1)/p = ϕn
α , (51)

where

ϕn
α =

{
0, α = 1,2, . . . , p− 1,
ϕn, α = p.

We write the scheme (51) as

yn+α/p− yn+(α−1)/p

τ
+Aα(σyn+α/p +(1−σ)yn+(α−1)/p) = ϕ̃n

α , (52)

in which
ϕ̃n

α = (E +στAα)ϕn
α , α = 1,2, . . . , p.

Scheme (52) can be considered as a special version of the standard component-wise
splitting scheme [10, 13, 34]. However, those schemes are additive approximation
schemes, while the constructed here scheme is a full approximation one. Regular-
ized scheme (41), (44), (45), built on the additive representation (44) of the transition
operator, is more suitable for parallel computations, compared to the regularized
schemes (41), (48), (49) which is based on the multiplicative representation (48).
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5 Vector Schemes for Domain Decomposition

Difference schemes for nonstationary problems can often be regarded as appropriate
iterative methods for approximate solution of stationary problems. The introduced
above regularized additive schemes are based on perturbation of the operator A in the
producing scheme (37). Such schemes, as well as the standard additive component-
wise splitting schemes, are not suitable for constructing iterative methods for
solving stationary equations. Better opportunities in this direction are provided by
the vector-additive schemes [1, 31].

Instead of a single unknown u(t), we consider p unknowns uα , α = 1,2, . . . , p,
which are to be determined from the system

duα
dt

+
p

∑
β=1

Aβ uβ = f (t), α = 1,2, . . . , p, 0 < t ≤ T. (53)

The following initial conditions are used for the system of equations (53)

uα(0) = u0, α = 1,2, . . . , p, (54)

which follow from (2). Obviously, each function is a solution of (2), (3), (33).
Approximate solution of (2), (3), (33) will be constructed on the basis of difference
schemes for the vector problem (53), (54).

To solve the problem (53), (54), we use the following two-level scheme:

yn+1
α − yn

α
τ

+
α

∑
β=1

Aβ yn+1
β +

p

∑
β=α+1

Aβ yn
β = ϕn,

α = 1,2, . . . , p, n = 0,1, . . . ,N− 1, (55)

complemented with the initial conditions

yα(0) = u0, α = 1,2, . . . , p. (56)

The computational implementation of this scheme is connected with a consecutive
inversion of operators E + τAα , α = 1,2, . . . , p.

Theorem 4. The vector-additive difference scheme (33), (55), (56) is uncondition-
ally stable, and stability estimate holds for its components

‖yn+1
α ‖ ≤ ‖yn

α‖+ τ‖ϕ0−Au0‖+ τ
n

∑
k=1

τ
∥∥∥∥ϕk−ϕk−1

τ

∥∥∥∥ ,

α = 1,2, . . . , p, n = 0,1, . . . ,N− 1, (57)

is valid.
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Proof. The analysis of the vector scheme (55), (56) will be carried out following
the work [22].  !

We emphasize that the above stability estimates (57) are obtained for each indi-
vidual component yn+1

α , α = 1,2, . . . , p. Each of them or their linear combination

yn+1 =
p

∑
α=1

cα yn+1
α , cα = const≥ 0, α = 1,2, . . . , p

can be regarded as an approximate solution to our problem (2), (3), (33) at time
t = tn+1.

6 Model Problem

The performance of the considered domain decomposition schemes is illustrated
considering a simple example for numerical solution of the boundary value problem
for parabolic equation. Consider a rectangular domain

Ω = { xxx | xxx = (x1,x2), 0 < xα < lα , α = 1,2}.

The following boundary value problem

∂u
∂ t

=
2

∑
α=1

∂ 2u
∂x2

α
, xxx ∈Ω , 0 < t < T, (58)

u(xxx, t) = 0, xxx ∈ ∂Ω , 0 < t < T, (59)

u(xxx,0) = u0(xxx), xxx ∈Ω (60)

is to be solved in Ω .
We introduce a uniform rectangular grid in Ω :

ω̄ = {xxx | xxx = (x1,x2), xα = iα hα , iα = 0,1, . . . ,Nα , Nα hα = lα}

and let ω be the set of internal nodes (ω̄ =ω∪∂ω). For grid functions y(xxx) = 0, xxx∈
∂ω , we define Hilbert space H = L2(ω) with the scalar product and norm

(y,w)≡ ∑
xxx∈ω

y(xxx)w(xxx)h1h2, ‖y‖ ≡ (y,y)1/2.

After spatial approximations of the problem (58), (59), we arrive at the
differential-difference equation:

dy
dt

+Ay = 0, xxx ∈ ω , 0 < t < T, (61)
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in which

Ay =− 1

h2
1

(y(x1 + h1,x2)− 2y(x1,x2)+ y(x1− h1,x2))

− 1

h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2− h2)), xxx ∈ ω .

(62)

In the space H the operator A is selfadjoint and positive definite [13, 15]:

A = A∗ ≥ (δ1 + δ2)E, δα =
4

h2
α

sin2 πhα
2lα

, α = 1,2. (63)

Taking into account (60), Eq. (62) is supplemented with the initial condition

y(xxx,0) = u0(xxx), xxx ∈ ω . (64)

For simplicity, the DD operator in the investigated problem (61)–(64) is con-
structed without the explicit separation of the operator G and G and the space H̃,
focusing on the decomposition (21), (22). We set

Aα y =− 1

h2
1

ηα(x1 + 0.5h1,x2)(y(x1 + h1,x2)− y(x1,x2))

+
1

h2
1

ηα(x1− 0.5h1,x2)(y(x1,x2)− y(x1− h1,x2))

− 1

h2
2

ηα(x1,x2 + 0.5h2)(y(x1,x2 + h2)− y(x1,x2))

+
1

h2
2

ηα(x1,x2− 0.5h2)(y(x1,x2)− y(x1,x2− h2)),

α = 1,2, . . . , p.

(65)

In view of (21), (22) we have

A =
p

∑
α=1

Aα , Aα = A∗α , α = 1,2, . . . , p. (66)

Thus, we are in a class of additive schemes (33), for which we construct different
additive schemes.

Numerical calculations are carried out for the problem (58)–(60) in the unit
square (l1 = l2 = 1) when the solution has the form

u(xxx, t) = sin(n1πx1)sin(n2πx2)exp(−π2(n2
1 + n2

2)t) (67)
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Fig. 1 Domain decomposition

for natural n1 and n2. We use this solution to set the initial conditions (60). The
domain is decomposed into four overlapping subdomains (see Fig. 1). The discon-
nected subdomains can be considered as one subdomain, and the decomposition in
Fig. 1 can be considered as a decomposition into two subdomains and described by
two functions: ηα = ηα(x1), α = 1,2.

Overlapping and nonoverlapping domain decomposition methods can be con-
structed for problems of type (58)–(60). Methods without overlap require for-
mulation of interface conditions at the common boundaries. Here we consider
overlapping DD and therefore do not need to formulate such conditions. However,
the proposed here schemes have straightforward extension for the case of nonover-
lapping DD.

A fundamental question in DD methods, especially in their parallel implemen-
tation, is the exchange of calculated data between different subdomains. The usual
explicit schemes can serve as reference in order to explain the exchange challenges.
In this case, the domain decomposition can be associated with certain subsets of
grid nodes: ωα , α = 1,2, where ω = ω1∪ω2. In the case of (58)–(60) (seven point
stencil in space), the transition to a new level in time for the explicit scheme is
associated with the use of solution values at the boundary nodes (here we mean
the boundary of each subdomain). We need to transfer the calculated data volume
∼ ∂ωα , α = 1,2. In solving numerically the problem (61)–(64), we can consider
two possibilities for minimal overlap of the subdomains. In our case, the first one
corresponds to allocating the inter-subdomain boundary along the grid nodes with
integer numbers; the second one is allocating interface lines along nodes with non-
integer numbering.

The variant with division along integer-numbered nodes is displayed in Fig. 2.
Let the decomposition be carried out in the variable x1, i.e. θ = x1. Decomposition
of the domain held by the node θ = θi. Given this decomposition, the operator (65)
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Fig. 2 Decomposition in integer nodes

is written in the form

A1y =
1

h2
1

(y(x1,x2)− y(x1− h1,x2))

− 1

2h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2− h2)),

A2y =− 1

h2
1

(y(x1 + h1,x2)− y(x1,x2))

− 1

2h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2− h2)), x1 = θi.

This decomposition can be associated with Neumann boundary conditions as
exchange boundary conditions. Relationship between the individual subdomains is
minimal and they can exchange data with θ = θi. This case can be identified by the
decomposition operators (32) as follows:

R(χ̃α) = [0,1], α = 1,2, . . . , p. (68)

The values of ηα (x1 ± 0.5h1,x2), ηα(x1,x2 ± 0.5h1), α = 1,2 for (65), (67) are
equal to 0 or 1.

The second possibility, which is associated with decomposition along the non-
integer nodes, is illustrated in Fig. 3. In this case, instead of (68), we have

R(χ̃α) = [0,1/2,1], α = 1,2, . . . , p. (69)

In the node θ = θi, difference approximation is used with less twice the flux. With
regard to the case in the decomposition of the variable x1, operators decomposition
(65) is
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Fig. 3 Decomposition of a half-integer nodes

Fig. 4 Decomposition in integer nodes with a width of overlap 3h

A1y =
1

2h2
1

(y(x1,x2)− y(x1− h1,x2))

− 1

4h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2− h2)),

A2y =− 1

h2
1

(y(x1 + h1,x2)− y(x1,x2))+
1

2h2
1

(y(x1,x2)− y(x1− h1,x2))

− 3

4h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2− h2)), x1 = θi.

For the calculations in Ω1 (see Fig. 3), we use half of the flux at the node θ = θi.
Thus, when using the domain decomposition method, the exchanges are minimal
and coincide with the exchanges in the implementation of the explicit scheme.

The decomposition variants (68), (69) presented above correspond to the case of
minimum overlapping of the subdomains. At the discrete level, the width of overlap
is determined by the mesh size, h and 2h, respectively. Similar variants are built
for larger overlap of the subdomains. In particular, for the decomposition variant in
Fig. 4, we have

R(χ̃α) = [0,1/3,2/3,1], α = 1,2, . . . , p. (70)
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Fig. 5 Accuracy at N1 = N2 = 32, N = 10

In this case the volume of the data exchange is increased, but on the other hand, the
transition from one subdomain to another is much smoother. The latter allows us
to expect higher accuracy of the approximate solution. Let us present the numerical
results obtained in solving (58)–(60). Recall that the exact solution is given by (67)
for n1 = 2, n2 = 1 at T = 0.01. Square grid N1 = N2 is used. Regularized fully
implicit (σ = 1) scheme based on additive perturbation (scheme (7), (41), (45),
(45)) and based on multiplicative perturbation (scheme (7), (41), (48), (49)) is used,
as well as vector-additive scheme (33), (55), (56). The results are compared with the
finite-difference solution, which we obtain by using the implicit scheme (1), (6), (7)
with σ = 1 (i.e., scheme without splitting). The errors of the approximate solutions
are measured as ε(tn) = ‖yn(xxx)− u(xxx, tn)‖ on a single time step.

In the case of the decomposition (68) (the width of the overlay is h), the grid
space of N1 = N2 = 32 and grid on time N = 10 (τ = 0.001), the error norms of
the difference solution using different decomposition schemes are shown in Fig. 5.
Figures 6–8 show the local error at the final time. The error is localized in areas of
overlap, and for vector decomposition scheme, it is much lower than for the additive
and multiplicative versions of regularized additive schemes.

With an increase in the grid space, the error of approximate solution of domain
decomposition schemes in comparison with the implicit scheme grows (Fig. 9). In
this case, the width of the overlap is reduced by half.

The influence of the width of the overlap is shown in Fig. 10. When using
the decomposition (70), there is a substantial increase in the accuracy of the
approximate solution compared to the decomposition (68) (compare Figs. 5 and 10).
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Fig. 6 Error of scheme (7), (41), (48), (49)

Fig. 7 Error of scheme (7), (41), (45), (45)
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Fig. 8 Error of scheme (33), (55), (56)

Fig. 9 The error at N1 = N2 = 64, N = 10
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Fig. 10 The error at N1 = N2 = 32 and N = 10 and decomposition R = [0,1/3,2/3,1]

7 Conclusions

1. In this paper we have constructed domain decomposition operators for solving
evolution problems. The splitting of the common nonselfadjoint nonnegative
finite-dimensional operator is carried out separately for its selfadjoint and skew-
symmetric parts. This preserves the property of nonnegativity for the operator
terms associated with each of the subdomains.

2. Unconditionally stable regularized additive schemes for the Cauchy problem for
first-order evolution equations are constructed by splitting problem operators into
sum of nonselfadjoint nonnegative operators. This regularization be based on the
principles of regularization of operator-difference schemes with perturbation of
the transition operator of the explicit scheme. Variants with regularization based
on additive and multiplicative splitting are presented, the relationship between
the new schemes and the classical additive schemes with summarized approx-
imation (additively averaged schemes and standard component-wise splitting
schemes) is discussed.

3. Among the splitting schemes for evolution equations, the vector additive schemes
with full approximation are emphasized. They are based on the transition to a
system of similar problems in each component with the special organization for
computing the approximate solution at the new time level.

4. Numerical simulations for IBVP for a parabolic problem in a rectangular domain
are performed. Calculations demonstrate the capabilities of the suggested domain
decomposition schemes. The best results in terms of accuracy are demonstrated
by the vector-additive scheme of domain decomposition.
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Spectral Coarse Spaces in Robust Two-Level
Schwarz Methods

J. Willems

Abstract A survey of recently proposed approaches for the construction of spectral
coarse spaces is provided. These coarse spaces are in particular used in two-level
preconditioners. At the core of their construction are local generalized eigenvalue
problems. It is shown that by means of employing these spectral coarse spaces
in two-level additive Schwarz preconditioners one obtains preconditioned systems
whose condition numbers are independent of the problem sizes and problem
parameters such as (highly) varying coefficients. A unifying analysis of the recently
presented approaches is given, pointing out similarities and differences. Some
numerical experiments confirm the analytically obtained robustness results.

Keywords Spectral coarse space • Robust preconditioner • Two-level domain
decomposition • Additive Schwarz • Multiscale problems
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1 Introduction

The robust preconditioning of linear systems of equations resulting from the dis-
cretization of partial differential equations is an important objective in the numerical
analysis community. The importance arises due to an abundance of applications in
the natural and engineering sciences, including, e.g., porous media flows in natural
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reservoirs or man-made materials and computational solid mechanics. In many
practical situations the obtained discrete systems are too large to be solved by direct
solvers in acceptable computational time. This leaves the class of iterative solvers
as viable alternative. Nevertheless, since the convergence rates of iterative solvers
generally depend on the condition numbers of the systems to be solved, suitable
preconditioners are necessary to speed up convergence.

More precisely, one is typically faced with a situation where the condition
number of the discrete system increases with the size of the problem (or equivalently
with decreasing the mesh parameter) and may additionally deteriorate with specific
problem parameters. Instances of such problem parameters are, e.g., (highly)
varying coefficients or otherwise degenerate parameters. The latter may for instance
be observed in linear elasticity in the almost incompressible case, i.e., when the
Poisson ratio is close to 1/2. In view of these two aspects one is therefore interested
in the design of preconditioners that yield condition numbers of the preconditioned
systems that are independent of mesh and problem parameters. In the following
we refer to these preconditioners as robust with respect to mesh and problem
parameters.

In the absence of degenerate problem parameters obtaining robust precondition-
ers with respect to the problem size has been successfully addressed for a variety
of settings. Here we in particular mention various multilevel and multigrid methods
(see e.g. [3, 18, 24, 26] and references therein) and domain decomposition methods
(see e.g. [21, 23] and references therein). For problems with varying coefficients
these methods remain to work robustly provided the coefficient variations are
resolved by the coarsest grid.

However, even for two-level methods the situation is more complicated if the
coarse mesh does not resolve the coefficient discontinuities. For certain classes of
coefficients robustness of two-level preconditioners could be established by using
a coarse space spanned by specially designed multiscale finite element functions
(see e.g. [10, 17, 19]) or energy minimizing functions (see e.g. [25, 29]). The
dimensions of these “exotic” coarse spaces are essentially given by the dimensions
of corresponding standard coarse spaces. While this is desirable from the point
of view of computational complexity, it can be shown that for general coefficient
configurations the obtained coarse spaces cannot be rich enough to maintain
robustness in all situations.

A two-level preconditioner for the scalar elliptic equation with highly varying
coefficients that is robust for general coefficient configurations was presented in
[15]. Here the authors use local generalized eigenvalue problems in the coarse space
construction. More precisely, they consider a family of overlapping subdomains. On
each of the subdomains a generalized eigenvalue problem is posed. The eigenfunc-
tions corresponding to eigenvalues below a predefined threshold are then used for
constructing the coarse space in the two-level preconditioner. The analysis of this
preconditioner then shows that the condition number of the preconditioned system
only depends on this predefined threshold, and is thus in particular independent of
problem and mesh parameters. The approach of [15] is furthermore refined in [16]
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where multiscale partition of unity functions are used to reduce the dimension of
the coarse space while preserving the robustness of the preconditioner.

Here it should be noted that the idea of using local eigenvalue problems
for the coarse space construction has previously been used in [6–8] leading to
spectral element-based algebraic multigrid (ρAMGe) methods. More recently, in the
framework of ρAMGe and focussing on the robustness with respect to coefficient
variations, local generalized eigenvalue problems have been used to construct a
tentative coarse space (see [5]). The actual coarse space used in [5] is then obtained
from this tentative coarse space after a smoothed aggregation construction (see
also [6]). A two-grid method similar to that of [5] is discussed in [20], where
additionally advanced polynomial smoothers based on the best uniform polynomial
approximation to x−1 are considered.

The concept of using local generalized eigenvalue problems in the coarse space
construction of robust two-level preconditioners for the scalar elliptic equation with
highly varying coefficients is put into a more general framework in [22]. Here the
local generalized eigenfunctions corresponding to eigenvalues below a predefined
threshold are employed to define functionals. These functionals are in turn used to
specify constraints for minimization problems whose solutions are taken as coarse
space basis functions. The framework of [22] is a generalization, since it allows for
functional constraints not only originating from local generalized eigenproblems. In
fact, it is shown that an alternative way for choosing the functional constraints is by
specifying averages over suitably chosen, i.e., coefficient dependent, subdomains.

Another generalization of [15, 16] is the use of local generalized eigenvalue
problems for the construction of robust preconditioners for abstract symmetric
positive definite bilinear forms, which was considered in [12] and later on in [9]. The
idea is to formulate the generalized eigenvalue problems only in terms of the abstract
bilinear form. This generality makes the theory applicable to a variety of problems
such as the scalar elliptic equation with isotropic or anisotropic coefficients, the
stream function formulations of Stokes’ and Brinkman’s problem, the equations of
linear elasticity, as well as equations arising in the solution of Maxwell’s equations.

The main objective of the chapter at hand is to put the derivations of [12] and
[9] in a common perspective, to emphasize their similarities and differences, and
to relate them to the original works in [15, 16]. For this we restrict to analyzing
the scalar elliptic equation with highly varying isotropic coefficients to keep the
argument as simple as possible.

We remark that rather recently the approaches of [15, 16] and [12] have been
generalized to multiple levels in [13] and [27], respectively. We note that due to the
high computational cost involved in solving generalized eigenvalue problems the
generalization to multiple levels provides an important step for keeping the sizes of
these eigenvalue problems manageable for overall problem sizes that could hardly
be coped with in a two-level framework. Nevertheless, for the sake of simplicity
we refrain from including the analysis of these multilevel methods in our present
exposition. Finally, for the sake of completeness, we note that these concepts of
robust preconditioners have been applied to multiscale anisotropic problems (see
[11] for a two-level and [28] for a multilevel method).
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The remainder of this chapter is organized as follows. In Sect. 2 we outline the
problem setting and formulate the abstract overlapping Schwarz preconditioner.
Section 3 is devoted to different related approaches for constructing suitable coarse
spaces resulting in robust preconditioners. In Sect. 4 we analyze the coarse space
dimension and clarify differences and similarities between the various methods.
In Sect. 5 we present some numerical results exemplifying the robustness of the
obtained preconditioners before ending with some conclusions.

2 Problem Setting

In order to make our presentation as accessible as possible, we restrict to the
following model problem posed in a bounded polyhedral domain Ω⊂R

d , d = 2, 3:

−∇ · (κ(xxx)∇u) = f in Ω, u = 0 on ∂Ω, (1)

where 0 < κmin ≤ κ ≤ κmax < ∞ and f ∈ L2(Ω), with L2(Ω) denoting the space of
square integrable functions on Ω. It is well-known that the variational formulation
of (1) is given by

Find u ∈ H1
0 (Ω) such that aΩ(u, v) = ( f , v), ∀v ∈ H1

0 (Ω), (2)

where aω(u, v) :=
ˆ

ω
κ(xxx)∇u ·∇vdxxx for any ω ⊂Ω, ( f , v) :=

ˆ
Ω

f udxxx, and H1
0 (Ω)

denotes the subspace of L2(Ω) of functions with square integrable derivatives and
zero trace on ∂Ω.

Let Th be a quasi-uniform triangulation of Ω with mesh parameter h. Correspond-
ing to Th let V ⊂H1

0 (Ω) be a (possibly higher order) Lagrange finite element space.
The finite dimensional problem corresponding to (2) is then given by

Find u ∈ V such that aΩ(u, v) = ( f , v), ∀v ∈ V . (3a)

An equivalent operator notation reads

Find u ∈ V satisfying Au = F, (3b)

where, with V ′ denoting the dual space of V , A : V → V ′ is given by < Au, v >:=
aΩ(u, v), and F ∈ V ′ is defined by < F, v >:= ( f , v). Here < ·, · > denotes the
duality pairing of V ′ and V .

Our main objective in this chapter is to discuss robust two-level additive Schwarz
preconditioners for solving (3). The term “robust” refers to the condition number of
the preconditioned system being independent of the mesh parameter h and variations
in κ .
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Algorithm 1: Additive Schwarz preconditioner M : V ′ → V corresponding to

{V0(Ω
(1)
j )}n

(1)
Ω

j=1 and VH .

Let F ∈ V ′.
Set v≡ 0 ∈ V .
for j = 1, . . . ,n(1)Ω do

Compute ψ ∈ V0(Ω
(1)
j ) such that

aΩ j(ψ, w) = F(w), ∀w ∈ V0(Ω
(1)
j ).

v← v+ψ
end for
Compute ψ ∈ VH such that

a(ψ, w) = F(w), ∀w ∈ VH .

v← v+ψ
return MF := v

To make this more precise let {Ω(1)
j }n

(1)
Ω

j=1 be a family of overlapping subdomains
of Ω. For any ω ⊂Ω we define

V (ω) := {v|ω |v ∈ V } and V0(ω) := {v ∈ V |supp(v)⊂ ω}.

Also, we identify functions in V0(ω) with their restrictions to ω , and we thus
in particular have that V0(ω) ⊂ V (ω). Let VH ⊂ V be a coarse space whose
construction is discussed in Sect. 3. The action of the two-level additive Schwarz
preconditioner corresponding to V0(Ω

(1)
j ), j = 1, . . . ,n(1)Ω and VH is given by

Algorithm 1.
Applying M to (3b) yields the following preconditioned system

M Au = M F. (4)

For j = 1, . . . ,n(1)Ω let I
(1)
j := {i = 1, . . . ,n(1)Ω |Ω(1)

i ∩Ω(1)
j �= /0}. Also, we set

n(1)I := max
j=1,...,n(1)Ω

#I
(1)
j . Using this notation it follows from [21, Lemma 2.51]

that

λmax(M A)≤ n(1)I + 1, (5)

where λmax(·) denotes the largest eigenvalue. For establishing the robustness of
our preconditioner it, therefore, suffices to derive a lower bound for λmin(M A)
independent of h and variations in κ . Here λmin(·) denotes the smallest eigenvalue.
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Provided that there exists a constant K > 0 such that for any v ∈ V there exist

vH ∈ VH and v j ∈ V0(Ω
(1)
j ), j = 1, . . . ,n(1)Ω satisfying

v = vH +

n
(1)
Ω

∑
j=1

v j and aΩ(vH , vH)+

n
(1)
Ω

∑
j=1

aΩ(v j, v j)≤ K aΩ(v, v) (6)

a standard result for abstract alternating Schwarz methods yields that

λmin(M A)≥ K−1, (7)

which together with (5) in particular implies the following result (see e.g. [21,
Theorem 2.52]).

Theorem 2.1. The condition number of the additive Schwarz preconditioned sys-

tem (4) is bounded by K(n(1)I + 1).

In view of Theorem 2.1 it is, therefore, sufficient to establish a stable decom-
position (6) with a constant K independent of h and variations in κ . The crucial
ingredient for obtaining such a robust bound is the careful design of the coarse
space VH , which is described in the next section.

3 Spectral Coarse Space Construction

First, we need to introduce some further notation. Let {Ω(2)
j }n

(2)
Ω

j=1 be another over-

lapping decomposition of Ω, which may coincide with {Ω(1)
j }n(1)Ω

j=1. Let {ξ (1)
j }n(1)Ω

j=1

and {ξ (2)
j }n(2)Ω

j=1 be partition of unities subordinate to {Ω(1)
j }

n(1)Ω
j=1 and {Ω(2)

j }n(2)Ω
j=1,

respectively, such that supp(ξ (i)
j ) = Ω(i)

j for j = 1, . . . ,n(i)Ω . As a starting point of

our derivations, we observe that for any v(i)H, j ∈ V (Ω(i)
j ), j = 1, . . . ,n(i)Ω we have the

following two variants of a decomposition of v:

v =
n(1)Ω

∑
j=1

ξ (1)
j v(1)H, j

︸ ︷︷ ︸
=:v(1)H

+

n(1)Ω

∑
j=1

ξ (1)
j (v− v(1)H, j)︸ ︷︷ ︸

=:v(1)j

, (8a)

v =
n(2)Ω

∑
j=1

ξ (2)
j v(2)H, j

︸ ︷︷ ︸
=:v(2)H

+

n(1)Ω

∑
j=1

ξ (1)
j (v− v(2)H )︸ ︷︷ ︸

=:v(2)j

. (8b)
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(8b) is the choice considered in [12], whereas (8a) is essentially the variant
considered in [9]. Note that in the first variant there appears only one partition of
unity, whereas in the second variant one has the freedom to choose two distinct

partition of unities (see Remark 3.4). We now aim at choosing v(i)H, j in such a way
that the decompositions (8) are also stable, i.e., have a robust constant K in estimate
(6). This approach eventually leads to the definition of a suitable coarse space VH .

Before proceeding with the actual derivations we note that v(i)H = v−∑
n(1)Ω
j=1 v(i)j .

Thus, by the definition of n(1)I and a strengthened Cauchy–Schwarz inequality we
observe that

aΩ

(
v(i)H , v(i)H

)
≤ 2aΩ(v, v)+ 2aΩ

⎛
⎝n(1)Ω

∑
j=1

v(i)j ,

n(1)Ω

∑
j=1

v(i)j

⎞
⎠

≤ 2aΩ(v, v)+ 2n(1)I

n(1)Ω

∑
j=1

aΩ

(
v(i)j , v(i)j

)
.

(9)

Thus, for establishing the estimate in (6) with a robust constant K, it suffices to
derive the following estimate

n
(1)
Ω

∑
j=1

aΩ

(
v(i)j , v(i)j

)
≤C aΩ(v, v) , (10)

where C is a generic constant independent of h and variations in κ , i.e., we may
disregard the term aΩ(vH , vH) in the estimate of (6).

Considering the definition of v(i)j in (8) we aim at choosing v(i)H, j in such a way
that (10) holds.

Remark 3.1. We would like to point out here that generally, due to the multiplica-

tion by partition of unity functions, we have that v(i)H , v(i)j /∈ V . This problem can be

overcome by considering Ihv(i)H and Ihv(i)j instead, where Ih denotes the usual nodal
interpolation associated with V .

Another possibility which is proposed in [9] is the use of partition of identity
operators in (8) instead of partition of unity functions. At the current place
this modification indeed makes the argument more elegant. Nevertheless, this
modification shifts the difficulty to the analysis relating the dimension of VH to
the geometry underlying the variations of κ . This issue will be further addressed in
Sect. 4.2.

First we consider the case i = 1, i.e., (8a). We observe that

n
(1)
Ω

∑
j=1

aΩ

(
v(1)j , v(1)j

)
=

n
(1)
Ω

∑
j=1

aΩ

(
ξ (1)

j (v− v(1)H, j), ξ (1)
j (v− v(1)H, j)

)
︸ ︷︷ ︸

=:m(1)

Ω(1)
j

(
v−v

(1)
H, j ,v−v

(1)
H, j

)
. (11)
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Similarly, but slightly more complicated, we obtain for the case i = 2, i.e., (8b),

n(1)Ω

∑
k=1

aΩ

(
v(2)k , v(2)k

)
=

n(1)Ω

∑
k=1

aΩ

(
ξ (1)

k (v− v(2)H ), ξ (1)
k (v− v(2)H )

)

=

n(1)Ω

∑
k=1

aΩ

⎛
⎝ξ (1)

k (v−
n(2)Ω

∑
j=1

ξ (2)
j v(2)H, j), ξ (1)

k (v−
n(2)Ω

∑
j=1

ξ (2)
j v(2)H, j)

⎞
⎠

≤ n(2)I

n
(1)
Ω

∑
k=1

n
(2)
Ω

∑
j=1

aΩ

(
ξ (1)

k ξ (2)
j (v− v(2)H, j), ξ (1)

k ξ (2)
j (v− v(2)H, j)

)

= n(2)I

n
(2)
Ω

∑
j=1

∑
k:Ω(1)

k ∩Ω(2)
j �= /0

a
Ω(2)

j

(
ξ (2)

j ξ (1)
k (v−v(2)H, j), ξ (2)

j ξ (1)
k (v−v(2)H, j)

)

︸ ︷︷ ︸
=:m(2)

Ω(2)
j

(
v−v

(2)
H, j ,v−v

(2)
H, j

)

,

(12)
where n(2)I is defined analogously to n(1)I corresponding to the decomposition

{Ω(2)
j }n(2)Ω

j=1.

In view of (11) and (12) it is therefore sufficient for satisfying (10) to choose v(i)H, j
in such a way that

m(i)

Ω(i)
j

(
v− v(i)H, j, v− v(i)H, j

)
≤C a

Ω(i)
j
(v, v) . (13)

The following proposition (see e.g. [15, Sect. 3.3.1] or [12, Sect. 2]) is crucial for
establishing (13) with a robust constant C.

Proposition 3.2. Consider the following local generalized eigenvalue problem:

Find (ϕ(i)
j,λ , λ )∈ V (Ω(i)

j )×R
+
0 s.t. a

Ω(i)
j

(
w, ϕ(i)

j,λ

)
= λ m(i)

Ω(i)
j

(
w, ϕ(i)

j,λ

)
∀w∈V (Ω(i)

j ).

(14)
For v ∈ V let v(i)H, j := Π(i)

j v ∈ V (Ω j) be the a
Ω(i)

j
(·, ·)-orthogonal projection of

v|
Ω(i)

j
onto those eigenfunctions corresponding to eigenvalues below a predefined

“threshold” τ−1
λ > 0, i.e., Π(i)

j v ∈ span{ϕ(i)
j,λ |λ < τ−1

λ } satisfies

a
Ω(i)

j

(
v−Π(i)

j v, ϕ(i)
j,λ

)
= 0 for all λ < τ−1

λ .

Then we have that

m(i)

Ω(i)
j

(
v− v(i)H, j, v− v(i)H, j

)
≤ τλ a

Ω(i)
j

(
v− v(i)H, j, v− v(i)H, j

)
≤ τλ a

Ω(i)
j
(v, v) . (15)
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Proof. The second inequality in (15) is obvious, since Π(i)
j v is the a

Ω(i)
j
(·, ·)-

orthogonal projection of v|
Ω(i)

j
.

Next, we note that v|
Ω(i)

j
−Π(i)

j v = ∑
λ≥τ−1

λ

a
Ω(i)

j

(
v, ϕ(i)

j,λ

)
ϕ(i)

j,λ . Thus,

m(i)

Ω(i)
j

(
v−Π(i)

j v, v−Π(i)
j v
)
= ∑

λ≥τ−1
λ

a
Ω(i)

j

(
v, ϕ(i)

j,λ

)
m(i)

Ω(i)
j

(
v−Π(i)

j v, ϕ(i)
j,λ

)

= ∑
λ≥τ−1

λ

λ−1 a
Ω(i)

j

(
v, ϕ(i)

j,λ

)
a

Ω(i)
j

(
v−Π(i)

j v, ϕ(i)
j,λ

)

≤ τλ a
Ω(i)

j

⎛
⎝v−Π(i)

j v, ∑
λ≥τ−1

λ

a
Ω(i)

j

(
v, ϕ(i)

j,λ

)
ϕ(i)

j,λ

⎞
⎠

= τλ a
Ω(i)

j

(
v−Π(i)

j v, v−Π(i)
j v
)
.  !

Note that by choosing the threshold τλ we can essentially fix the constant C

in estimate (13). Thus, C and therefore also K in (6) only depend on τλ and n(i)I ,
i = 1, 2, but are in particular independent of h and variations in κ .

For the solvability of (14) it is also important to note that m(i)

Ω(i)
j

(·, ·) is positive

definite on V (Ω(i)
j ), since supp(ξ (i)

j ) = Ω(i)
j by assumption.

The considerations above suggest choosing the coarse space V
(i)

H as

span{ξ (i)
j ϕ(i)

j,λ |λ < τ−1
λ , j = 1, . . . ,n(i)Ω }. However, as indicated in Remark 3.1, this

choice in general does not yield a subspace of V . The following proposition resolves
this issue by means of applying a nodal interpolation.

Proposition 3.3. For i = 1, 2 let

V
(i)

H := span{Ih(ξ
(i)
j ϕ(i)

j,λ ) |λ < τ−1
λ , j = 1, . . . ,n(i)Ω }, (16)

where as above Ih denotes the nodal interpolation corresponding to V . With v(i)H, j as
defined in Proposition 3.2 we have that

v =
n(1)Ω

∑
j=1

Ih(ξ
(1)
j v(1)H, j)

︸ ︷︷ ︸
=:v(1)H,I

+

n(1)Ω

∑
j=1

Ih(ξ
(1)
j (v− v(1)H, j))︸ ︷︷ ︸

=:v(1)j,I

(17a)
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and

v =
n
(2)
Ω

∑
j=1

Ih(ξ
(2)
j v(2)H, j)

︸ ︷︷ ︸
=:v(2)H,I

+

n
(1)
Ω

∑
j=1

Ih(ξ
(1)
j (v− v(2)H ))︸ ︷︷ ︸

=:v(2)j,I

. (17b)

Moreover, v(i)H,I ∈ V
(i)

H and the decompositions (17) satisfy a stable decomposition

property (6) with a constant K only depending on n(i)I , τλ , and the shape regularity
of Th.

Proof. The identities (17) follow by the linearity of Ih and the fact that Ihv = v for
all v ∈ V .

v(i)H,I ∈ V
(i)

H follows directly from the definitions of v(i)H, j and V
(i)

H .
For showing stability we need to reduce decompositions (17) to the case (8).

Thus, it suffices to show that for any v ∈ V we have that

aΩ

(
Ih(ξ

(i)
j v), Ih(ξ

(i)
j v)
)
≤C aΩ

(
ξ (i)

j v, ξ (i)
j v
)
, (18)

with a constant C only depending on the mesh regularity of Th. By [15, Proposi-
tion 15] (see also [4, Lemma 4.5.3]) we know that (18) is satisfied.  !

Remark 3.4. Note that for the additive Schwarz preconditioner corresponding to the
second variant of a stable decomposition, i.e., (17b), the local solves are carried out

with respect to V0(Ω
(1)
j ), j = 1, . . . ,n(1)Ω , whereas by the definition of V

(2)
H we see

that the supports of the coarse basis functions are given by Ω(2)
j , j = 1, . . . ,n(2)Ω . That

is, the subdomains of the local solves do not need to coincide with the supports of
the coarse basis functions.

This observation is in contrast to the first variant of a stable decomposition,

i.e., (17a), where the support of the coarse basis functions is given by Ω(1)
j , j =

1, . . . ,n(1)Ω , corresponding to the spaces of the local solves, i.e., V0(Ω
(1)
j ), j, . . . ,n(1)Ω .

Remark 3.5. For actual numerical computations it is important to have a basis of

V
(i)

H available. Definition (16) obviously provides a generating set of our spectral

coarse space. Note, however, that even though the generalized eigenfunctions ϕ(i)
j,λ

are mutually aΩ j(·, ·) orthogonal, it is not clear that the generating set in (16) also
constitutes a basis. In fact, in particular for anisotropic problems (see [28]) it is
discussed that this generating set may not be minimal. Nevertheless, for simplicity
we assume in the following that the set given in (16) constitutes a basis and refer to
[28] for the more general situation.
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4 Analysis of Spectral Coarse Space Dimensions

After establishing the robustness of the additive Schwarz preconditioner given

by Algorithm 1 and utilizing the coarse spaces V
(i)

H it is important to analyze
the dimension of these coarse spaces. This is in particular crucial for the overall
computational complexity of the method, and it is generally desirable to keep the

dimension of V
(i)

H as small as possible.

By construction the dimension of V
(i)

H is determined by the number of general-
ized eigenvalues below the threshold τ−1

λ (see Proposition 3.2). We now investigate
the number of these “small” eigenvalues for binary geometries and for different
choices of subdomains and partition of unities. For this we first recall the well-
known min–max/Courant–Fischer principle (see e.g. [14, Theorem 7.36]), which
states that

λ (i)
j,k = min

Vk(Ω
(i)
j )⊂V (Ω(i)

j )

max
v∈Vk(Ω

(i)
j )

a
Ω(i)

j
(v, v)

m(i)

Ω(i)
j

(v, v)
, (19)

where Vk(Ω
(i)
j ) for k ≥ 1 is a k-dimensional subspace of V (Ω(i)

j ) and λ (i)
j,k denotes

the k-th eigenvalue of (14) sorted in increasing order accounting for multiplicity.
By our assumption of having a binary medium we know that Ω = Ωp∪Ωs such

that

κ(xxx) =
{

κmax, xxx ∈Ωs

κmin, xxx ∈Ωp,

which in particular means that the contrast κmax/κmin is the problem parameter of
interest.

For simplicity of the exposition we restrict to the case when {Ω(2)
j }

n(2)Ω
j=1 =

{Ω(1)
j }n

(1)
Ω

j=1 and {ξ (2)
j }n

(2)
Ω

j=1 = {ξ (1)
j }n

(1)
Ω

j=1. Thus, without any danger of confusion we

may drop the superindices (1) and (2) distinguishing different families of subdomains
and partition of unity functions. Note, however, that even with this simplification the

bilinear forms m(1)
Ω j
(·, ·) and m(2)

Ω j
(·, ·) are not identical.

Furthermore, let Ωp
j := Ωp∩Ω j and similarly Ωs

j := Ωs∩Ω j. Besides, we set

Ωint
j := Ω j\(

⋃
k �= j

Ωk).

Note that we do not exclude the possibility that Ωint
j = /0. Additionally, let Ωs

j,k,
k= 1, . . . ,Lj be the path-connected components of Ωs

j, where we assume an ordering

such that Ωs
j,k\Ωint

j �= /0 for k = 1, . . . , L̃ j, where L̃ j ≤ Lj is suitably chosen. If

Ωs
j,k\Ωint

j = /0 for k = 1, . . . ,Lj we set L̃ j = 1 and Ωs
j,1 = Ω j\Ωint

j . The diameter

of the subdomains {Ω j}nΩ
j=1 is assumed to beO(H), and the width of the overlaps of

intersecting subdomains is assumed to be O(δ ). For a better understanding of these
definitions we refer to Fig. 1.
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Fig. 1 Subdomain Ω j with connected components of Ωs
j and non-overlapping part Ωint

j . In the
present configuration L j = 7 and L̃ j = 4

Let

V c
L̃ j
(Ω j) := {v ∈ V (Ω j) |

ˆ
Ωs

j,k

vdxxx = 0 for k = 1, . . . , L̃ j}.

Obviously, any L̃ j +1-dimensional subspace of V (Ω j) has a nontrivial intersection
with V c

L̃ j
(Ω j). Thus, by (19) we see that there exists a w ∈ V c

L̃ j
(Ω j) such that

λ (i)
j,L̃ j+1

≥
aΩ j(w, w)

m(i)
Ω j
(w, w)

. (20)

We first consider the case (i) = (1) and note that by Schwarz’ inequality

m(1)
Ω j
(w, w) =

ˆ
Ω j

κ(∇(ξ jw))
2 dxxx≤ 2

ˆ
Ω j

κw2(∇ξ j)
2 dxxx+2

ˆ
Ω j

κξ 2
j (∇w)2 dxxx

︸ ︷︷ ︸
≤aΩ j

(w,w)

. (21)

Since ξ j ≡ 1 in Ωint
j we have that

ˆ
Ω j

κw2(∇ξ j)
2 dxxx =

ˆ
Ω j\Ωint

j

κw2(∇ξ j)
2 dxxx

≤Cδ−2
ˆ

Ω j\Ωint
j

κw2 dxxx

≤Cδ−2

⎛
⎝ L̃ j

∑
k=1

ˆ
Ωs

j,k

κmaxw2 dxxx+
ˆ

Ω j\Ωint
j

κminw2 dxxx

⎞
⎠

≤C

(
H
δ

)2
⎛
⎝ L̃ j

∑
k=1

ˆ
Ωs

j,k

κmax(∇w)2 dxxx+
ˆ

Ω j\Ωint
j

κmin(∇w)2 dxxx

⎞
⎠

≤C

(
H
δ

)2

aΩ j(w, w) , (22)



Spectral Coarse Spaces in Robust Two-Level Schwarz Methods 315

where we have used Poincaré’s inequality, which is possible since w ∈ V c
L̃ j
(Ω j), and

where C is independent of H, h, δ , and κmax/κmin.
Similarly, but again slightly more complicated, we obtain for (i) = (2)

m(2)
Ω j
(w, w) = ∑

k:Ωk∩Ω j �= /0

ˆ
Ω j

κ(∇(ξ jξkw))2 dxxx

≤ 2 ∑
k:Ωk∩Ω j �= /0

ˆ
Ω j

κw2(∇(ξ jξk))
2 +κ(∇w)2(ξ jξk)

2 dxxx

≤ 4
ˆ

Ω j

κw2(∇ξ j)
2 dxxx+ 4 ∑

k:Ωk∩Ω j �= /0

ˆ
Ω j∩Ωk

κw2(∇ξk)
2 dxxx+ 2aΩ j(w, w) .

Noting that

ˆ
Ω j∩Ωk

κw2(∇ξk)
2 dxxx ≤ Cδ−2

⎧⎪⎪⎨
⎪⎪⎩

ˆ
Ω j\Ωint

j

κw2 dxxx, if j = k
ˆ

Ω j∩Ωk

κw2 dxxx, if j �= k

≤ Cδ−2
ˆ

Ω j\Ωint
j

κw2 dxxx

we thus obtain by (22) that

m(2)
Ω j
(w, w)≤C

(
H
δ

)2

aΩ j(w, w) . (23)

where C is again independent of H, h, δ , and κmax/κmin.
Combining (20), (21), and (22) on the one hand and (20) and (23) on the other

hand we thus obtain

λ (i)
j,L̃ j+1

≥C

(
δ
H

)2

. (24)

Hence, choosing δ =O(H) yields a lower bound of λ (i)
j,L̃ j+1

, which is independent of

mesh parameters H and h as well as of the contrast κmax/κmin, which is our problem
parameter of interest.

4.1 Choice of the Bilinear Form mΩj(·, ·)

So far, we have carried out our analysis for the bilinear forms m(i)
Ω j
(·, ·), i = 1, 2,

defined by (11) and (12), respectively. Now, we generalize this choice to any bilinear
form mΩ j(·, ·) satisfying

m(i)
Ω j
(v, v)≤CaΩ j(v, v)+mΩ j(v, v) for any v ∈ V (Ω j) (25)
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for i = 1 or i = 2. Now, analogously to (14) consider the corresponding generalized
eigenvalue problem

Find (ϕ j,λ , λ ) such that a
Ω(i)

j

(
w, ϕ j,λ

)
= λ m

Ω(i)
j

(
w, ϕ j,λ

)
for all w ∈ V (Ω(i)

j ).

In exactly the same way as (15) in Proposition 3.2 we then obtain

m
Ω(i)

j
(v− vH, j , v− vH, j)≤ τλ a

Ω(i)
j
(v− vH, j, v− vH, j)≤ τλ a

Ω(i)
j
(v, v) ,

where vH, j ∈ V (Ω j) denotes the aΩ j(·, ·)-orthogonal projection of v|Ω j onto the

span of those eigenfunctions ϕ j,λ for which λ ≤ τ−1
λ . Using (25) together with this

estimate we therefore obtain

m(i)
Ω j
(v− vH, j , v− vH, j) ≤ CaΩ j(v− vH, j , v− vH, j)+mΩ j(v− vH, j , v− vH, j)

≤ (C+ τλ )aΩ j(v− vH, j , v− vH, j)

≤ (C+ τλ )aΩ j(v, v) .

That is, up to a change in the constant we obtain the same estimate as (15), which
implies that in the coarse space construction of our robust preconditioner we may

use ϕ j,λ instead of ϕ(i)
j,λ in the definition of V

(i)
H (see (16)).

Looking at (21) we see that (25) is satisfied for (i) = (1) and

mΩ j(v, w) := 2
ˆ

Ω j

κ(∇ξ j)
2vwdxxx,

which is essentially the choice made in [15, 16].

4.2 Partition of Unity vs. Partition of Identity

As indicated in Remark 3.1 the authors of [9] advocate the use of partition of identity
operators {Ξ j}nΩ

j=1 instead of partition of unity functions {ξ j}nΩ
j=1. We now elaborate

on the changes that this modification necessitates in the analysis of the coarse space
dimension.

In the following we consider the case when

Ξ jv := Ih(ξ jv),

where v is either an element of V or V (Ω j). Instead of m(1)
Ω j
(·, ·) given by (12) we

then consider aΩ j(Ξ jw, Ξ jw) for which we obtain

aΩ j(Ξ jw, Ξ jw) = aΩ j(Ih(ξ jw), Ih(ξ jw))≤CaΩ j(ξ jw, ξ jw) =Cm(1)
Ω j
(w, w) ,
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where we have used estimate (18). The remainder of the analysis proceeds along the
lines of (21) and (22).

We note that when using partition of unity functions estimate (18) is needed for

establishing the stable decomposition property when employing a coarse space V
(i)

H
defined in (16) (see Proposition 3.3). When using partition of identity operators the
same estimate is necessary for analyzing the number of asymptotically small (w.r.t.

the contrast κmax/κmin) generalized eigenvalues and thus the dimension of V
(i)

H .

4.3 Choice of the Subdomains

Concerning the choice of the subdomains estimate (24) admits several observations.

First of all we see that regardless of the choice of δ the lower bound for λ (i)
j,L̃ j+1

is independent of the contrast κmax/κmin. Our computational experience confirms

that this bound on the eigenvalue index is sharp in the sense that λ (i)
j,k → 0

as κmax/κmin→∞ for k = 1, . . . , L̃ j. For (very) high-contrast problems one may
therefore expect a “gap” in the spectrum and to recover L̃ j “small” eigenvalues
below τ−1

λ provided this threshold is chosen to lie within this spectral gap.
These considerations imply the following tradeoff regarding the choice of δ . On

the one hand one would like to choose δ small, e.g., δ = O(h), in order to have
Ωint

j as large and thus L̃ j as small as possible. The latter is desirable, since one is
generally interested in a small dimensional coarse space VH .

On the other hand choosing δ (very) small leads to a (very) small lower bound
in (24). In particular choosing a minimal overlap of one layer of fine cells T ∈ Th—

or more generally δ = O(h)—results in a lower bound for λ (i)
j,L̃ j+1

that depends on

the mesh parameters and degenerates as H/h→∞. The occurrence of a spectral gap
therefore depends on the relation of H/h and κmax/κmin. Hence for a given threshold
τ−1

λ and H/h sufficiently large one may in fact recover more “small” eigenvalues
than L̃ j, which may ultimately result in a larger dimensional coarse space.

4.4 Eigenvalue Problems in Overlaps of Subdomains

For the case of Ωint
j �= /0 a further modification is suggested in [9], which results

in a reduction of the number of degrees of freedom involved in the solution of the
generalized eigenvalue problem (14). To achieve this one may proceed as follows:

Let
Ṽ (Ω j) := {v ∈ V (Ω j) |aΩ j(v, w) = 0 ∀w ∈ V0(Ωint

j )}.

Note that by construction we have that

V (Ω j) = V0(Ωint
j )⊕ Ṽ (Ω j) and V0(Ωint

j )⊥a Ṽ (Ω j) (26)
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and that for small overlaps δ the dimension of Ṽ (Ω j) may be much smaller than
the dimension of V (Ω j).

Now, consider the following modification of the generalized eigenvalue problem
(14) posed with respect to Ṽ (Ω j) instead of V (Ω j), i.e.,

Find (ϕ̃(i)
j,λ , λ )∈ Ṽ (Ω j)×R

+
0 s.t. aΩ j

(
w, ϕ̃(i)

j,λ

)
= λ m(i)

Ω j\Ωint
j

(
w, ϕ̃(i)

j,λ

)
∀w∈ Ṽ (Ω j),

(27)
where

m(1)
Ω j\Ωint

j
(v, w) := aΩ\Ωint

j
(ξ jv, ξ jw)

and
m(2)

Ω j\Ωint
j
(v, w) := ∑

k:Ωk∩Ω j �= /0

aΩ j\Ωint
j
(ξ jξkv, ξ jξkw) ,

respectively. Note that with these definitions we have

m(i)
Ω j
(v, w) = m(i)

Ω j\Ωint
j
(v, w)+ aΩint

j
(v, w) . (28)

Furthermore, for the solvability of (27) it is again important to note that m(i)

Ω j\Ωint
j
(·, ·)

is positive definite on Ṽ (Ω j). This follows from the fact that supp(ξ j) = Ω j by
assumption and v|Ω j\Ωint

j
�≡ 0 for all v ∈ Ṽ (Ω j)\{0} by construction.

According to the analysis in Sect. 3 we need to prove a statement analogous to
that of Proposition 3.2.

Proposition 4.1. For v ∈ V let ṽ(i)H, j := Π̃(i)
j v ∈ Ṽ (Ω j) be the aΩ j(·, ·)-orthogonal

projection of v|Ω j onto those eigenfunctions of (27) corresponding to eigenvalues

below τ−1
λ > 0, i.e., Π̃(i)

j v ∈ span{ϕ̃(i)
j,λ |λ < τ−1

λ } satisfies

aΩ j

(
v− Π̃(i)

j v, ϕ̃(i)
j,λ

)
= 0 for all λ < τ−1

λ .

Then we have that

m(i)
Ω j

(
v− ṽ(i)H, j, v− ṽH, j

)
≤ (1+ τλ )aΩ j

(
v− ṽ(i)H, j, v− ṽ(i)H, j

)
≤ (1+ τλ )aΩ j(v, v) .

(29)

Proof. The second inequality in (29) is obvious for the same reason as the second
inequality in (15).

By (28) we have that

m(i)
Ω j

(
v− Π̃(i)

j v, v− Π̃(i)
j

)
= m(i)

Ω j\Ωint
j

(
v− Π̃(i)

j v, v− Π̃(i)
j

)
+ aΩint

j

(
v− Π̃(i)

j v, v− Π̃(i)
j v
)

︸ ︷︷ ︸
≤aΩ j

(
v−Π̃(i)

j v,v−Π̃(i)
j v
)

.
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Thus, it remains to show that

m(i)

Ω j\Ωint
j

(
v− Π̃(i)

j v, v− Π̃(i)
j v
)
≤ τλ aΩ j

(
v− Π̃(i)

j v, v− Π̃(i)
j v
)
. (30)

By a reasoning identical to that of Proposition 3.2 it follows that (30) holds for all
v ∈ Ṽ (Ω j).

For general v ∈ V (Ω j) consider the unique aΩ j(·, ·)-orthogonal decomposition

v = vint + ṽ with vint ∈ V0(Ωint
j ) and ṽ ∈ Ṽ (Ω j). By the aΩ j(·, ·)-orthogonality of

V0(Ωint
j ) and Ṽ (Ω j) and since Π̃(i)

j is an aΩ j(·, ·)-orthogonal projection onto a

subspace of Ṽ (Ω j) it easily follows that Π̃(i)
j v = Π̃(i)

j ṽ. Thus, and since supp(vint)⊂
Ωint

j we have that

m(i)

Ω j\Ωint
j

(
v− Π̃(i)

j v, v− Π̃(i)
j v
)
= m(i)

Ω j\Ωint
j

(
vint + ṽ− Π̃(i)

j ṽ, vint + ṽ− Π̃(i)
j ṽ
)

= m(i)
Ω j\Ωint

j

(
ṽ− Π̃(i)

j ṽ, ṽ− Π̃(i)
j ṽ
)

≤ τλ aΩ j

(
ṽ− Π̃(i)

j ṽ, ṽ− Π̃(i)
j ṽ
)

≤ τλ aΩ j

(
vint + ṽ− Π̃(i)

j v, vint + ṽ− Π̃(i)
j v
)

= τλ aΩ j

(
v− Π̃(i)

j v, v− Π̃(i)
j v
)
,

where the first inequality holds, since (30) is satisfied for v∈ Ṽ (Ω j), and the second
inequality follows by aΩ j(·, ·)-orthogonality.  !

In view of Proposition 4.1 we may perform the same reasoning as in Sect. 3 with

v(i)H, j replaced by ṽ(i)H, j , and we thus obtain an additive Schwarz preconditioner with a

coarse space given by Ṽ
(i)

H := span{Ih(ξ
(i)
j ϕ̃(i)

j,λ ) |λ < τ−1
λ , j = 1, . . . ,n(i)Ω } yielding

a condition number independent of problem and mesh parameters.

4.5 Choice of the Partition of Unity

So far, in the derivations of this section we have tacitly assumed that the choice
of our partition of unity functions only depends on the subdomains {Ω j}nΩ

j=1.
According to estimate (24) this choice is certainly viable. As a matter of fact, it
is necessary to have ξ j ≡ 1 in Ωint

j .
Nevertheless, in particular for large overlaps δ one may consider to choose

{ξ j}nΩ
j=1 in a problem, i.e., κ , dependent way. The objective of such an approach,

which was first considered in [16], is to reduce the number of asymptotically
small (w.r.t. κmax/κmin) eigenvalues without introducing a degeneracy due to an
increasingly smaller overlap δ .
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Fig. 2 Subdomain Ω j with connected components of Ωs
j . Due to the large overlap Ωint

j = /0. In the
present configuration L j = 7 and L̃ j = 3

Let us consider a coarse grid TH of cells obtained by agglomerating fine cells
in Th (cf. [26, Sect. 1.9] for a description of an agglomeration procedure). The
agglomerate coarse cells are assumed to have diameters O(H). We consider an
overlapping decomposition {Ω j}nΩ

j=1 of Ω, where each subdomain Ω j is associated
with a coarse node xxx j and is given by Ω j := interior(∪{T ∈ TH |xxx j ∈ T}), i.e., the
union of all cells T ∈ TH containing this coarse node. Thus, we obviously have that
δ =O(H) and Ωint

j = /0.
In the following we outline the construction of a multiscale partition of unity—

henceforth denoted by {ξ ms
j }nΩ

j=1. Let ξ ms
j satisfy ∇ · (κ∇ξ ms

j ) = 0 in those

T∈TH for which T ⊂ Ω j. Here we assume that ξ ms
j |T satisfies suitable boundary

conditions on ∂T , which are chosen in such a way that ∑nΩ
j=1 ξ ms

j ≡ 1. One may for
instance think of the boundary conditions as being given by the solutions of lower
dimensional problems along the agglomerate edges constituting the boundary of T .
Here we suppose that ξ ms

j constructed in this way satisfies 0 ≤ ξ ms
j ≤ 1, which is

guaranteed if the validity of a discrete maximum principle is assumed. For a more
general situation we refer to [27, Sect. 5].

As above we denote by Ωs
j,k, k = 1, . . . ,Lj, the path-connected components of

Ωs
j. This time we assume an ordering such that those Ωs

j,k are ordered first for which

it holds that Ωs
j,k ∩ (∂T\∂Ω j) �= /0 for some T ∈ TH with T ⊂ Ω j. The number of

these path-connected components of Ωs
j is denoted by L̃ j ≤ Lj. We refer to Fig. 2

for a better understanding of the current setting. The idea of this construction is that
(κ∇ξ ms

j )|Ωs
j,k

, k = L̃ j + 1, . . . ,Lj is small, which seems desirable when looking at

the definition of mΩ j(·, ·). More precisely, it is shown in [12, Sect. 5] that provided

∥∥∇ξ ms
j

∥∥
L∞(Ω j)

≤CH−1 and
∥∥κmax∇ξ j

∥∥
L∞(Ωs

j,k)
≤CH−1, ∀k = L̃ j + 1, . . . ,Lj

(31)
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we have that
λ (i)

j,L̃ j+1
≥C > 0,

where C is independent of κmax/κmin, δ , H, and h. Although a rigorous analysis
clarifying the question when (31) can be expected to hold is still a largely unsolved
problem for general coefficients κ , the computational practice shows that using
multiscale partition of unity functions as opposed to standard ones may significantly
reduce the coarse space dimension, while maintaining the robustness of the overall
preconditioner.

Remark 4.2. It should be noted here that the analysis above generalizes to different
symmetric positive definite bilinear forms corresponding, e.g., to the equations of
linear elasticity or the curl–curl equation with a positive L2-term arising in the
solution of Maxwell’s equations (see [27]). The major difficulty in a rigorous, fully
discrete analysis is the establishment of an estimate analogous to (18). Also, the
construction of a suitable (multiscale) partition of unity/identity resulting in small
dimensional coarse spaces has not been addressed in the literature, so far.

5 Numerical Experiments

We now turn to some numerical experiments to exemplify the robustness of two-
level additive Schwarz preconditioners using spectral coarse spaces. To demonstrate
the necessity of employing this spectral coarse space we also report numerical
results for two-level additive Schwarz preconditioners using standard coarse spaces
and coarse spaces spanned by multiscale finite element functions. More precisely,
we consider the following four different cases

• V st
H := span{ξ j | j = 1, . . . ,nΩ} (cf. [21, Sect. 2.5.3]).

• V ms,st
H := span{ξ ms

j | j = 1, . . . ,nΩ} (cf. [17]).

• VH := span{Ih(ξ jϕ j,λ ) |λ < τ−1
λ , j = 1, . . . ,nΩ} (see (16)).

• V ms
H := span{Ih(ξ ms

j ϕ j,λ ) |λ < τ−1
λ , j = 1, . . . ,nΩ} (see Sect. 4.5),

with {ξ j}nΩ
j=1 a standard partition of unity and {ξ ms

j }nΩ
j=1 as in Sect. 4.5. The

subdomains are chosen as described in Sect. 4.5, and the bilinear form mΩ j(·, ·) is
chosen as 1/2mΩ j(·, ·) in Sect. 4.1 with the standard partition of unity ξ j and the
multiscale partition of unity ξ ms

j , respectively. The eigenvalue threshold is fixed by
setting τλ = 2.

On our computational domain Ω := (0, 1)2 we use a 256× 256 fine and a
16× 16 coarse tensor grid. The problems under consideration are discretized using
bilinear Lagrange finite elements. We emphasize that there is no essential difficulty
in treating more realistic settings. In particular one can consider the case of an
unstructured two- or three-dimensional fine grid and a corresponding coarse grid
resulting from an agglomeration procedure as, e.g., outlined in [26, Sect. 1.9].
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Fig. 3 κ for two random geometries. (a) κ for a binary random multiscale geometry.
(b) Logarithmic plot of κ for a non-binary random multiscale geometry

We choose two different configurations for κ . The first geometry depicted in
Fig. 3a is a binary one, i.e., κ only takes two values. As opposed to this, Fig. 3b
shows a coefficient κ which assumes a multitude of values between κmin and κmax.
Although both geometries are artificial in the sense that they do not represent any
concrete real life application, we consider them to be “hard” test problems. In
particular the (highly) varying coefficients represent multiscale features, which is
common in, e.g., reservoir simulations.

In our numerical experiments below we consider the cases κmin = 1 and κmax =
1e1, . . . ,1e6 to test our preconditioner for robustness. We would also like to point
out that the coefficient variations are not aligned with the coarse 16× 16 grid.

For completeness we remark that our implementations are carried out in C++
using the deal.II finite element library (cf. [2]), which in turn uses the LAPACK
software package (cf. [1]) for solving all appearing direct and eigenvalue problems.

In Table 1(1) we report the results obtained for the binary geometry shown in
Fig. 3a. The table shows the condition numbers of the additive Schwarz precondi-
tioned systems, where we employ the different choices of coarse spaces listed at the
beginning of this section. The numbers reported in parentheses are the respective
coarse space dimensions. As we can see, the condition numbers corresponding to
the spaces V st

H and V ms,st
H increase quite substantially with increasing the contrast

κmax/κmin. As opposed to this the preconditioners with the spectral coarse spaces
VH and V ms

H yield condition numbers which are robust with respect to the contrast.
This robustness comes at the expense of having to solve local generalized eigenvalue
problems, which of course can be done completely in parallel, and of having a larger
dimensional coarse space, which is in particular pronounced for higher contrasts. We
emphasize, however, that this increase in complexity can be significantly reduced
by multiscale partition of unity functions, i.e., by using V ms

H instead of VH . For
the highest considered contrast the dimension of the former is less than 3 times as
large as the dimension of V st

H and V ms,st
H , whereas for the latter the factor is close

to 10. As indicated above the dimension of the spectral coarse spaces changes with
increasing the contrast. Nevertheless, in coherence with our theory in Sect. 4 this
increase appears to reach some saturation for very high contrasts.
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Table 1 Condition numbers of the additive Schwarz preconditioned systems for
the geometries shown in Fig. 3 with different contrasts κmax/κmin. In parentheses
we report the coarse space dimension.

(1) Results for Fig. 3a
κmax

κmin V st
H V ms,st

H VH V ms
H

1e1 4.7e0(225) 4.7e0(225) 4.7e0(279) 4.7e0(276)
1e2 1.2e1(225) 8.2e0(225) 4.9e0(570) 5.3e0(340)
1e3 7.6e1(225) 3.6e1(225) 4.6e0(1477) 5.2e0(547)
1e4 7.2e2(225) 3.4e2(225) 4.7e0(1995) 5.2e0(669)
1e5 6.1e3(225) 3.1e3(225) 4.8e0(2081) 5.2e0(668)
1e6 4.4e4(225) 2.8e4(225) 4.8e0(2093) 5.2e0(665)
(2) Results for Fig. 3b
κmax

κmin V ms
H

1e1 4.6e0(276)
1e2 4.7e0(273)
1e3 4.9e0(275)
1e4 4.9e0(306)
1e5 5.3e0(380)
1e6 5.4e0(461)

In order to not only test our theory for binary geometries we also consider
the coefficient depicted in Fig. 3b. For this geometry we only report the results
corresponding to the coarse space V ms

H in Table 1(2). As we can see, the condition
numbers also behave robustly in this situation. Also, similarly to the binary
geometry, we can observe the trend that increasing the contrast tends to increase
the dimension of the coarse space. Nevertheless, even for the highest contrast 1e6
the size of the coarse space is still rather manageable and in particular smaller than
the corresponding one for the binary geometry.

We close this section by some comments regarding the computational complexity
of the discussed domain decomposition methods using spectral coarse spaces. These
remarks apply not only to the considered two-dimensional examples but also to the
three-dimensional case.

The bottleneck of the discussed methods is the coarse space construction and
in particular the solution of the local generalized eigenvalue problems. As indi-
cated above these eigenvalue problems are solved using LAPACK. The algorithm
implemented in the subroutine DSYGVX first reduces the generalized eigenvalue
problems to standard ones by performing Cholesky decompositions. The resulting
matrices are then reduced to Hessenberg tridiagonal form, which can be done by
Householder transformations. A QR-algorithm employing Givens rotations can then
be used to compute the actual eigenpairs. The overall complexity of this algorithm
is cubic in the number of unknowns.

Even though the generalized eigenvalue problems can be solved in parallel, it
may be unreasonably costly to construct a spectral coarse space, if one is only
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interested in solving a single problem on a given geometry. However, if one needs to
solve many problems on a single geometry, which, e.g., is the case when computing
an approximate solution of a time-dependent problem by an implicit time-stepping
scheme, constructing a spectral coarse space may be rather reasonable.

If one wants to solve many problems on a single geometry, it makes sense to
distinguish between an offline phase, which in particular includes the construction of
the spectral coarse space, and an online phase, which is the actual application of the
preconditioner. As the computations in the offline phase are only carried out once,
the computational cost of the online phase becomes the major concern. Considering
the discussed methods we see that one iteration of a two-level algorithm with a
coarse space given by VH or V ms

H is about as expensive as one iteration of a two-level
algorithm with a coarse space given by V st

H or V ms,st
H . The only difference making

the former somewhat more expensive than the latter is due to the increased coarse
space dimension. Although this space dimension is inherently problem dependent,
we note that dim(V ms

H ) remains rather manageable for the considered examples.
In view of drastically reduced condition numbers of the preconditioned systems,
this slight increase in computational complexity for one iteration in the online phase
seems justified. After all, the number of preconditioned conjugate gradient iterations
needed to achieve a prescribed accuracy depend on the condition number of the pre-
conditioned system, and one may therefore expect significant overall computational
savings by employing two-level preconditioners using spectral coarse spaces.

6 Conclusions

We have given an overview of several recently proposed approaches for constructing
spectral coarse spaces for robust preconditioners. For this we have developed a
monolithic framework enabling us to detail the similarities and distinctions of the
different methods and to discuss their advantages and shortcomings. In this context
we have in particular related the more recent abstract works for general symmetric
positive definite bilinear forms to the originally introduced concepts and ideas for
the scalar elliptic equation. To show the applicability of the discussed analysis, we
have presented some numerical examples to validate the theoretical results.
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25. Van lent, J., Scheichl, R., Graham, I.G.: Energy-minimizing coarse spaces for two-level
Schwarz methods for multiscale PDEs. Numer. Linear Algebra Appl. 16(10), 775–799 (2009)



326 J. Willems

26. Vassilevski, P.S.: Multilevel Block Factorization Preconditioners: Matrix-based Analysis and
Algorithms for Solving Finite Element Equations. Springer, New York (2008)

27. Willems, J.: Robust multilevel methods for general symmetric positive definite operators.
Technical Report RICAM-Report 2012-06, Radon Institute for Computational and Applied
Mathematics (2012)

28. Willems, J.: Robust multilevel solvers for high-contrast anisotropic multiscale problems.
Technical Report RICAM-Report 2012-17, Radon Institute for Computational and Applied
Mathematics (2012)

29. Xu, J., Zikatanov, L.T.: On an energy minimizing basis for algebraic multigrid methods.
Comput. Vis. Sci. 7(3–4), 121–127 (2004)



About the Editors

Oleg P. Iliev is a senior scientist in Fraunhofer Institute for Industrial Mathematics
in Kaiserslautern, Germany, APL professor in the Faculty of Mathematics in the
Technical University of Kaiserslautern, and visiting professor in KAUST. He is
working in the area of mathematical modeling and computer simulation of industrial
and environmental processes.
Svetozar D. Margenov is a professor of mathematics at the Institute of Information
and Communication Technologies of the Bulgarian Academy of Sciences in Sofia,
Bulgaria. His research is in the area of numerical methods for partial differential
equations and large-scale scientific computing.
Peter D. Minev is a professor of applied mathematics at the University of
Alberta in Edmonton, AB, Canada, working in the area of numerical analysis and
computational mechanics.
Panayot S. Vassilevski is a computational mathematician at the Center for Applied
Scientific Computing of Lawrence Livermore National Laboratory in Livermore,
CA, USA, working in the area of multilevel methods for solving large-scale
problems typically arising from finite element discretization of partial differential
equations.
Ludmil T. Zikatanov is a professor of mathematics at The Pennsylvania State
University in University Park, PA, USA. His research is in numerical analysis and
numerical solution of partial differential equations.

O.P. Iliev et al. (eds.), Numerical Solution of Partial Differential Equations: Theory,
Algorithms, and Their Applications, Springer Proceedings in Mathematics & Statistics 45,
DOI 10.1007/978-1-4614-7172-1, © Springer Science+Business Media New York 2013

327


	Preface
	Contents
	Improving Conservation for First-Order System Least-Squares Finite-Element Methods
	1 Introduction
	2 First-Order System Least-Squares
	2.1 Sample Problem and Loss of Conservation

	3 Constrained FOSLS
	3.1 ``Galerkin Constraint''
	3.2 ``Least-Squares Constraint''
	3.3 Solvers
	3.3.1 Construction of B

	3.4 Numerical Results
	3.5 Discussion

	4 Locally Constrained FOSLS Correction
	4.1 Overlapping Schwarz Corrections
	4.2 Numerical Results

	5 Conclusions
	References

	Multiscale Coarsening for Linear Elasticity by Energy Minimization
	1 Introduction
	2 Governing Equations and Their Discretization
	2.1 The Equations of Linear Elasticity
	2.2 Weak Formulation
	2.3 Finite Element Discretization

	3 The Two-Level Method
	3.1 Two-Level Additive Schwarz
	3.2 Fine and Coarse Triangulation
	3.3 Abstract Multiscale Coarse Space

	4 Energy Minimization for the Elasticity System
	4.1 The Energy-Minimizing Coarse Space
	4.2 Properties of the Energy-Minimizing Coarse Space
	4.3 The Interpolation Operator

	5 Numerical Experiments
	5.1 Coarse Space Robustness
	5.2 Coarse Space Approximation

	6 Discussion
	References

	Preconditioners for Some Matrices of Two-by-Two Block Form, with Applications, I
	1 Introduction
	2 The Preconditioner and Its Implementation
	3 Condition Number Bounds
	3.1 A  Is Symmetric and Positive Semidefinite
	3.2  A  Is Symmetric and Positive Definite

	4 Distributed Optimal Control of Elliptic and Oseen Equations
	4.1 An Elliptic State Equation
	4.2 Distributed Optimal Control of the Oseen Problem

	References

	A Multigrid Algorithm for an Elliptic Problem with a Perturbed Boundary Condition
	1 Introduction
	2 Preliminaries
	3 The Multigrid Algorithm
	4 Multigrid Analysis
	5 Numerical Results
	References

	Parallel Unsmoothed Aggregation Algebraic Multigrid Algorithms on GPUs
	1 Introduction
	2 Unsmoothed Aggregation AMG
	3 The Setup Phase
	3.1 A Maximal Independent Set Algorithm
	3.2 Parallel Graph Aggregation Algorithm
	3.3 Aggregation Quality Improvements

	4 Solve Phase
	4.1 Parallel Smoother
	4.2 Prolongation and Restriction
	4.3 K-Cycle
	4.4 Sparse Matrix-Vector Multiplication on GPUs

	5 Numerical Tests
	5.1 Numerical Tests for PAA
	5.2 Numerical Tests for GPU Implementation

	References

	Aspects of Guaranteed Error Control in CPDEs
	1 Introduction
	2 Review of Guaranteed Energy Norm Error Control
	2.1 Notation
	2.2 Equilibration Error Estimators
	2.3 Poisson Model Problem with Big Oscillations

	3 Guaranteed Error Control for CR-NCFEM
	3.1 Main Result
	3.2 Guaranteed Upper Bounds for ||Res|||*  
	3.3 Guaranteed Upper Bounds for ||||ResNC||||  
	3.4 Numerical Experiment with Big Oscillations

	4 Guaranteed Error Control for Curved Boundaries
	5 Guaranteed Goal-Oriented Error Estimation
	5.1 Reduction to L2 Functionals
	5.2 Guaranteed Bounds for Goal Functionals
	5.3 Benchmark Example

	References

	A Finite Volume Element Method for a Nonlinear Parabolic Problem
	1 Introduction
	2 Preliminaries
	3 Error Estimates for the Backward Euler Method
	4 Existence of the Backward Euler Approximation
	5 A Linearized Fully Discrete Scheme
	6 Numerical Examples
	References

	Multidimensional Sensitivity Analysis of Large-Scale Mathematical Models
	1 Introduction
	2 Problem Setting
	2.1 Modeling and Sensitivity

	3 Complexity in Classes of Algorithms
	4 The Algorithms
	4.1 ΛΠτ Sobol Sequences
	4.2 The Monte Carlo Algorithms Based on Modified Sobol Sequences: MCA-MSS

	5 Case Study: Variance-Based Sensitivity Analysis of the Unified Danish Eulerian Model
	6 Numerical Results and Discussion
	7 Conclusions
	References

	Structures and Waves in a Nonlinear Heat-Conducting Medium
	1 Introduction
	2 The Radially Symmetric Case, the Main Notions
	2.1 The Basic Blow-Up Regimes
	2.1.1 HS-Evolution, Total Blow-Up, 1<β<σ+1
	2.1.2 S-Evolution, Regional Blow-Up, β=σ+1
	2.1.3 LS-Evolution, Single Point Blow-Up, σ+1<β<βf=σ+1+2N

	2.2 Stability of the Self-similar Solutions

	3 Numerical Methods
	3.1 Initial Approximations to the Different s.-s.f. for a Given Set of Parameters
	3.2 Numerical Method for the Self-similar Problems
	3.3 Numerical Method for the Reaction–Diffusion Problems

	4 Results and Achievements
	4.1 The Transition LS- to S-Regime in the Radially Symmetric Case
	4.2 The Asymptotic Behavior of the Blow-Up Solutions of Problem (5), (6) Beyond the Critical Fujita Exponent
	4.3 Asymptotically Self-similar Blow-Up Beyond Some Other Critical Exponents
	4.4 Two-Component Nonlinear Medium
	4.5 Directed Heat Diffusion in a Nonlinear Anisotropic Medium
	4.6 Spiral Waves in HS-Regime
	4.7 Complex-Symmetry Waves in HS-Regime and S-Regime

	5 Open Problems
	References

	Efficient Parallel Algorithms for Unsteady Incompressible Flows
	1 Introduction
	2 Pressure-Velocity Decoupling Schemes
	2.1 Notation and Preliminaries
	2.2 Projection Schemes
	2.2.1 Pressure-Correction Projection Algorithm
	2.2.2 Velocity-Correction Projection Algorithm

	2.3 Direction-Splitting Schemes
	2.4 Non-commutative One-Dimensional Operators

	3 Variable Density or Viscosity Flows
	3.1 The Perturbation Algorithms
	3.2 Direction-Splitting Algorithms
	3.3 Variable Density Navier–Stokes Equations

	4 Schemes for Equations Involving Mixed Derivatives
	5 Conclusions
	References

	Efficient Solvers for Some Classes of Time-Periodic Eddy Current Optimal Control Problems
	1 Introduction
	2 Parameter-Robust and Efficient Solution Procedures
	3 Numerical Validation
	3.1 Test Case I
	3.2 Test Case II
	3.3 Test Case III
	3.4 Test Case VI
	3.5 Test Case V

	4 Summary and Conclusion
	References

	Robust Algebraic Multilevel Preconditioners for AnisotropicProblems
	1 Introduction
	2 Algebraic Multilevel Methods
	2.1 Condition Number Estimates for AMLI Preconditioners
	2.2 Nonlinear AMLI-Cycle Method
	2.3 Optimality Conditions

	3 Linear Elements
	3.1 Conforming Elements
	3.2 Nonconforming Elements

	4 Quadratic Elements
	4.1 Notation
	4.2 Additive Schur Complement Approximation
	4.3 Recursive Approximate Block Factorization on Augmented Grids
	4.4 Remarks on the Analysis

	5 Numerical Tests
	6 Concluding Remarks
	References

	A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations
	1 Introduction
	2 A Weak Galerkin Finite Element Scheme
	3 Technical Tools: Projections, Mesh-Dependent Norms, and Some Estimates
	3.1 Some Projection Operators and Their Properties
	3.2 Discrete Norms and Inequalities
	3.3 Ritz and Neumann Projections

	4 Error Analysis
	5 Numerical Results
	References

	Domain Decomposition Scheme for First-Order Evolution Equations with Nonselfadjoint Operators
	1 Introduction
	2 The Cauchy Problem for First-Order Evolution Equations
	3 Decomposition Operators
	4 Regularized Domain Decomposition Schemes
	5 Vector Schemes for Domain Decomposition
	6 Model Problem
	7 Conclusions
	References

	Spectral Coarse Spaces in Robust Two-Level Schwarz Methods
	1 Introduction
	2 Problem Setting
	3 Spectral Coarse Space Construction
	4 Analysis of Spectral Coarse Space Dimensions
	4.1 Choice of the Bilinear Form mΩj( ·, ·)
	4.2 Partition of Unity vs. Partition of Identity
	4.3 Choice of the Subdomains
	4.4 Eigenvalue Problems in Overlaps of Subdomains
	4.5 Choice of the Partition of Unity

	5 Numerical Experiments
	6 Conclusions
	References

	About the Editors

