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in-depth literature on each subtopic. Comprehensive end-of-chapter exercises encourage 
critical thinking and build your intuition while introducing extensions of the basic material.
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Preface

COMPUTER science is experiencing a fundamental shift in its approach to modeling
and problem solving. Early computer scientists primarily studied discrete mathematics,

focusing on structures like graphs, trees, and arrays composed of a finite number of distinct
pieces. With the introduction of fast floating-point processing alongside “big data,” three-
dimensional scanning, and other sources of noisy input, modern practitioners of computer
science must design robust methods for processing and understanding real-valued data. Now,
alongside discrete mathematics computer scientists must be equally fluent in the languages
of multivariable calculus and linear algebra.

Numerical Algorithms introduces the skills necessary to be both clients and designers
of numerical methods for computer science applications. This text is designed for advanced
undergraduate and early graduate students who are comfortable with mathematical nota-
tion and formality but need to review continuous concepts alongside the algorithms under
consideration. It covers a broad base of topics, from numerical linear algebra to optimization
and differential equations, with the goal of deriving standard approaches while developing
the intuition and comfort needed to understand more extensive literature in each subtopic.
Thus, each chapter gently but rigorously introduces numerical methods alongside mathe-
matical background and motivating examples from modern computer science.

Nearly every section considers real-world use cases for a given class of numerical algo-
rithms. For example, the singular value decomposition is introduced alongside statistical
methods, point cloud alignment, and low-rank approximation, and the discussion of least-
squares includes concepts from machine learning like kernelization and regularization. The
goal of this presentation of theory and application in parallel is to improve intuition for the
design of numerical methods and the application of each method to practical situations.

Special care has been taken to provide unifying threads from chapter to chapter. This
strategy helps relate discussions of seemingly independent problems, reinforcing skills while
presenting increasingly complex algorithms. In particular, starting with a chapter on math-
ematical preliminaries, methods are introduced with variational principles in mind, e.g.,
solving the linear system A~x = ~b by minimizing the energy ‖A~x −~b‖22 or finding eigenvec-
tors as critical points of the Rayleigh quotient.

The book is organized into sections covering a few large-scale topics:

I. Preliminaries covers themes that appear in all branches of numerical algorithms. We
start with a review of relevant notions from continuous mathematics, designed as a
refresher for students who have not made extensive use of calculus or linear algebra
since their introductory math classes. This chapter can be skipped if students are
confident in their mathematical abilities, but even advanced readers may consider
taking a look to understand notation and basic constructions that will be used re-
peatedly later on. Then, we proceed with a chapter on numerics and error analysis,
the basic tools of numerical analysis for representing real numbers and understanding
the quality of numerical algorithms. In many ways, this chapter explicitly covers the
high-level themes that make numerical algorithms different from discrete algorithms:
In this domain, we rarely expect to recover exact solutions to computational problems
but rather approximate them.

xv
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II. Linear Algebra covers the algorithms needed to solve and analyze linear systems of
equations. This section is designed not only to cover the algorithms found in any
treatment of numerical linear algebra—including Gaussian elimination, matrix fac-
torization, and eigenvalue computation—but also to motivate why these tools are
useful for computer scientists. To this end, we will explore wide-ranging applications
in data analysis, image processing, and even face recognition, showing how each can be
reduced to an appropriate matrix problem. This discussion will reveal that numerical
linear algebra is far from an exercise in abstract algorithmics; rather, it is a tool that
can be applied to countless computational models.

III. Nonlinear Techniques explores the structure of problems that do not reduce to
linear systems of equations. Two key tasks arise in this section, root-finding and opti-
mization, which are related by Lagrange multipliers and other optimality conditions.
Nearly any modern algorithm for machine learning involves optimization of some ob-
jective, so we will find no shortage of examples from recent research and engineering.
After developing basic iterative methods for constrained and unconstrained optimiza-
tion, we will return to the linear system A~x = ~b, developing the conjugate gradients
algorithm for approximating ~x using optimization tools. We conclude this section with
a discussion of “specialized” optimization algorithms, which are gaining popularity in
recent research. This chapter, whose content does not appear in classical texts, covers
strategies for developing algorithms specifically to minimize a single energy functional.
This approach contrasts with our earlier treatment of generic approaches for minimiza-
tion that work for broad classes of objectives, presenting computational challenges on
paper with the reward of increased optimization efficiency.

IV. Functions, Derivatives, and Integrals concludes our consideration of numerical
algorithms by examining problems in which an entire function rather than a sin-
gle value or point is the unknown. Example tasks in this class include interpolation,
approximation of derivatives and integrals of a function from samples, and solution of
differential equations. In addition to classical applications in computational physics,
we will show how these tools are relevant to a wide range of problems including ren-
dering of three-dimensional shapes, x-ray scanning, and geometry processing.

Individual chapters are designed to be fairly independent, but of course it is impossible
to orthogonalize the content completely. For example, iterative methods for optimization
and root-finding must solve linear systems of equations in each iteration, and some inter-
polation methods can be posed as optimization problems. In general, Parts III (Nonlinear
Techniques) and IV (Functions, Derivatives, and Integrals) are largely independent of one
another but both depend on matrix algorithms developed in Part II (Linear Algebra). In
each part, the chapters are presented in order of importance. Initial chapters introduce key
themes in the subfield of numerical algorithms under consideration, while later chapters
focus on advanced algorithms adjacent to new research; sections within each chapter are
organized in a similar fashion.

Numerical algorithms are very different from algorithms approached in most other
branches of computer science, and students should expect to be challenged the first time
they study this material. With practice, however, it can be easy to build up intuition for
this unique and widely applicable field. To support this goal, each chapter concludes with
a set of problems designed to encourage critical thinking about the material at hand.

Simple computational problems in large part are omitted from the text, under the expec-
tation that active readers approach the book with pen and paper in hand. Some suggestions
of exercises that can help readers as they peruse the material, but are not explicitly included
in the end-of-chapter problems, include the following:
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1. Try each algorithm by hand. For instance, after reading the discussion of algorithms
for solving the linear system A~x = ~b, write down a small matrix A and corresponding
vector ~b, and make sure you can recover ~x by following the steps the algorithm. After
reading the treatment of optimization, write down a specific function f(~x) and a
few iterates ~x1, ~x2, ~x3, . . . of an optimization method to make sure f(~x1) ≥ f(~x2) ≥
f(~x3) > · · · .

2. Implement the algorithms in software and experiment with their behavior. Many nu-
merical algorithms take on beautifully succinct—and completely abstruse—forms that
must be unraveled when they are implemented in code. Plus, nothing is more reward-
ing than the moment when a piece of numerical code begins functioning properly,
transitioning from an abstract sequence of mathematical statements to a piece of
machinery systematically solving equations or decreasing optimization objectives.

3. Attempt to derive algorithms by hand without referring to the discussion in the book.
The best way to become an expert in numerical analysis is to be able to reconstruct
the basic algorithms by hand, an exercise that supports intuition for the existing
methods and will help suggest extensions to other problems you may encounter.

Any large-scale treatment of a field as diverse and classical as numerical algorithms is
bound to omit certain topics, and inevitably decisions of this nature may be controversial to
readers with different backgrounds. This book is designed for a one- to two-semester course
in numerical algorithms, for computer scientists rather than mathematicians or engineers in
scientific computing. This target audience has led to a focus on modeling and applications
rather than on general proofs of convergence, error bounds, and the like; the discussion
includes references to more specialized or advanced literature when possible. Some topics,
including the fast Fourier transform, algorithms for sparse linear systems, Monte Carlo
methods, adaptivity in solving differential equations, and multigrid methods, are mentioned
only in passing or in exercises in favor of explaining modern developments in optimization
and other algorithms that have gained recent popularity. Future editions of this textbook
may incorporate these or other topics depending on feedback from instructors and readers.

The refinement of course notes and other materials leading to this textbook benefited
from the generous input of my students and colleagues. In the interests of maintaining these
materials and responding to the needs of students and instructors, please do not hesitate
to contact me with questions, comments, concerns, or ideas for potential changes.

Justin Solomon
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IN this chapter, we will outline notions from linear algebra and multivariable calculus that
will be relevant to our discussion of computational techniques. It is intended as a review

of background material with a bias toward ideas and interpretations commonly encountered
in practice; the chapter can be safely skipped or used as reference by students with stronger
background in mathematics.

1.1 PRELIMINARIES: NUMBERS AND SETS
Rather than considering algebraic (and at times philosophical) discussions like “What is a
number?,” we will rely on intuition and mathematical common sense to define a few sets:

• The natural numbers N = {1, 2, 3, . . .}

• The integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}

• The rational numbers Q = {a/b : a, b ∈ Z, b 6= 0}

• The real numbers R encompassing Q as well as irrational numbers like π and
√

2

• The complex numbers C = {a+ bi : a, b ∈ R}, where i ≡
√
−1.

The definition of Q is the first of many times that we will use the notation {A : B}; the
braces denote a set and the colon can be read as “such that.” For instance, the definition
of Q can be read as “the set of fractions a/b such that a and b are integers.” As a second
example, we could write N = {n ∈ Z : n > 0}. It is worth acknowledging that our definition

3
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of R is far from rigorous. The construction of the real numbers can be an important topic
for practitioners of cryptography techniques that make use of alternative number systems,
but these intricacies are irrelevant for the discussion at hand.

N, Z, Q, R, and C can be manipulated using generic operations to generate new sets of
numbers. In particular, we define the “Euclidean product” of two sets A and B as

A×B = {(a, b) : a ∈ A and b ∈ B}.
We can take powers of sets by writing

An = A×A× · · · ×A´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

.

This construction yields what will become our favorite set of numbers in chapters to come:

Rn = {(a1, a2, . . . , an) : ai ∈ R for all i}.

1.2 VECTOR SPACES
Introductory linear algebra courses easily could be titled “Introduction to Finite-
Dimensional Vector Spaces.” Although the definition of a vector space might appear ab-
stract, we will find many concrete applications expressible in vector space language that
can benefit from the machinery we will develop.

1.2.1 Defining Vector Spaces
We begin by defining a vector space and providing a number of examples:

Definition 1.1 (Vector space over R). A vector space over R is a set V closed under
addition and scalar multiplication satisfying the following axioms:

• Additive commutativity and associativity: For all ~u,~v, ~w ∈ V, ~v + ~w = ~w + ~v and
(~u+ ~v) + ~w = ~u+ (~v + ~w).

• Distributivity: For all ~v, ~w ∈ V and a, b ∈ R, a(~v+ ~w) = a~v+a~w and (a+b)~v = a~v+b~v.

• Additive identity: There exists ~0 ∈ V with ~0 + ~v = ~v for all ~v ∈ V.

• Additive inverse: For all ~v ∈ V, there exists ~w ∈ V with ~v + ~w = ~0.

• Multiplicative identity: For all ~v ∈ V, 1 · ~v = ~v.

• Multiplicative compatibility: For all ~v ∈ V and a, b ∈ R, (ab)~v = a(b~v).

A member ~v ∈ V is known as a vector ; arrows will be used to indicate vector variables.

For our purposes, a scalar is a number in R; a complex vector space satisfies the same
definition with R replaced by C. It is usually straightforward to spot vector spaces in the
wild, including the following examples:

Example 1.1 (Rn as a vector space). The most common example of a vector space is Rn.
Here, addition and scalar multiplication happen component-by-component:

(1, 2) + (−3, 4) = (1− 3, 2 + 4) = (−2, 6)

10 · (−1, 1) = (10 · −1, 10 · 1) = (−10, 10).
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�v1

�v2

R2

span {�v1, �v2}

�v3

(a) �v1, �v2 ∈ R2 (b) span {�v1, �v2} (c) span {�v1, �v2, �v3}

Figure 1.1 (a) Vectors ~v1, ~v2 ∈ R2; (b) their span is the plane R2; (c)

span {~v1, ~v2, ~v3} = span {~v1, ~v2} because ~v3 is a linear combination of ~v1 and ~v2.

Example 1.2 (Polynomials). A second example of a vector space is the ring of polynomials
with real-valued coefficients, denoted R[x]. A polynomial p ∈ R[x] is a function p : R→ R
taking the form∗

p(x) =
∑

k

akx
k.

Addition and scalar multiplication are carried out in the usual way, e.g., if p(x) = x2+2x−1
and q(x) = x3, then 3p(x) + 5q(x) = 5x3 + 3x2 + 6x− 3, which is another polynomial. As
an aside, for future examples note that functions like p(x) = (x − 1)(x + 1) + x2(x3 − 5)
are still polynomials even though they are not explicitly written in the form above.

A weighted sum
∑
i ai~vi, where ai ∈ R and ~vi ∈ V, is known as a linear combination of the

~vi’s. In the second example, the “vectors” are polynomials, although we do not normally
use this language to discuss R[x]; unless otherwise noted, we will assume variables notated
with arrows ~v are members of Rn for some n. One way to link these two viewpoints would
be to identify the polynomial

∑
k akx

k with the sequence (a0, a1, a2, . . .); polynomials have
finite numbers of terms, so this sequence eventually will end in a string of zeros.

1.2.2 Span, Linear Independence, and Bases
Suppose we start with vectors ~v1, . . . , ~vk ∈ V in vector space V. By Definition 1.1, we have
two ways to start with these vectors and construct new elements of V: addition and scalar
multiplication. Span describes all of the vectors you can reach via these two operations:

Definition 1.2 (Span). The span of a set S ⊆ V of vectors is the set

spanS ≡ {a1~v1 + · · ·+ ak~vk : ~vi ∈ S and ai ∈ R for all i}.

Figure 1.1(a-b) illustrates the span of two vectors. By definition, spanS is a subspace of V,
that is, a subset of V that is itself a vector space. We provide a few examples:

Example 1.3 (Mixology). The typical well at a cocktail bar contains at least four ingre-
dients at the bartender’s disposal: vodka, tequila, orange juice, and grenadine. Assuming
we have this well, we can represent drinks as points in R4, with one element for each in-
gredient. For instance, a tequila sunrise can be represented using the point (0, 1.5, 6, 0.75),

∗The notation f : A→ B means f is a function that takes as input an element of set A and outputs an
element of set B. For instance, f : R → Z takes as input a real number in R and outputs an integer Z, as
might be the case for f(x) = bxc, the “round down” function.
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representing amounts of vodka, tequila, orange juice, and grenadine (in ounces), respec-
tively.

The set of drinks that can be made with our well is contained in

span {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

that is, all combinations of the four basic ingredients. A bartender looking to save time,
however, might notice that many drinks have the same orange juice-to-grenadine ratio
and mix the bottles. The new simplified well may be easier for pouring but can make
fundamentally fewer drinks:

span {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 6, 0.75)}.

For example, this reduced well cannot fulfill orders for a screwdriver, which contains orange
juice but not grenadine.

Example 1.4 (Cubic polynomials). Define pk(x) ≡ xk. With this notation, the set of
cubic polynomials can be written in two equivalent ways

{ax3 + bx2 + cx+ d ∈ R[x] : a, b, c, d ∈ R} = span {p0, p1, p2, p3}.

Adding another item to a set of vectors does not always increase the size of its span, as
illustrated in Figure 1.1(c). For instance, in R2,

span {(1, 0), (0, 1)} = span {(1, 0), (0, 1), (1, 1)}.

In this case, we say that the set {(1, 0), (0, 1), (1, 1)} is linearly dependent :

Definition 1.3 (Linear dependence). We provide three equivalent definitions. A set S ⊆ V
of vectors is linearly dependent if:

1. One of the elements of S can be written as a linear combination of the other elements,
or S contains zero.

2. There exists a non-empty linear combination of elements ~vk ∈ S yielding∑m
k=1 ck~vk = 0 where ck 6= 0 for all k.

3. There exists ~v ∈ S such that spanS = spanS\{~v}. That is, we can remove a vector
from S without affecting its span.

If S is not linearly dependent, then we say it is linearly independent.

Providing proof or informal evidence that each definition is equivalent to its counterparts
(in an “if and only if” fashion) is a worthwhile exercise for students less comfortable with
notation and abstract mathematics.

The concept of linear dependence provides an idea of “redundancy” in a set of vectors. In
this sense, it is natural to ask how large a set we can construct before adding another vector
cannot possibly increase the span. More specifically, suppose we have a linearly independent
set S ⊆ V, and now we choose an additional vector ~v ∈ V. Adding ~v to S has one of two
possible outcomes:

1. The span of S ∪ {~v} is larger than the span of S.

2. Adding ~v to S has no effect on its span.
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The dimension of V counts the number of times we can get the first outcome while building
up a set of vectors:

Definition 1.4 (Dimension and basis). The dimension of V is the maximal size |S| of a
linearly independent set S ⊂ V such that spanS = V. Any set S satisfying this property
is called a basis for V.

Example 1.5 (Rn). The standard basis for Rn is the set of vectors of the form

~ek ≡ ( 0, . . . , 0,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k−1 elements

1, 0, . . . , 0
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

n−k elements

).

That is, ~ek has all zeros except for a single one in the k-th position. These vectors are
linearly independent and form a basis for Rn; for example in R3 any vector (a, b, c) can be
written as a~e1 + b~e2 + c~e3. Thus, the dimension of Rn is n, as expected.

Example 1.6 (Polynomials). The set of monomials {1, x, x2, x3, . . .} is a linearly inde-
pendent subset of R[x]. It is infinitely large, and thus the dimension of R[x] is ∞.

1.2.3 Our Focus: Rn

Of particular importance for our purposes is the vector space Rn, the so-called n-dimensional
Euclidean space. This is nothing more than the set of coordinate axes encountered in high
school math classes:

• R1 ≡ R is the number line.

• R2 is the two-dimensional plane with coordinates (x, y).

• R3 represents three-dimensional space with coordinates (x, y, z).

Nearly all methods in this book will deal with transformations of and functions on Rn.
For convenience, we usually write vectors in Rn in “column form,” as follows:

(a1, . . . , an) ≡




a1

a2

...
an


 .

This notation will include vectors as special cases of matrices discussed below.
Unlike some vector spaces, Rn has not only a vector space structure, but also one

additional construction that makes all the difference: the dot product.

Definition 1.5 (Dot product). The dot product of two vectors ~a = (a1, . . . , an) and
~b = (b1, . . . , bn) in Rn is given by

~a ·~b ≡
n∑

k=1

akbk.
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Example 1.7 (R2). The dot product of (1, 2) and (−2, 6) is 1 · −2 + 2 · 6 = −2 + 12 = 10.

The dot product is an example of a metric, and its existence gives a notion of geometry
to Rn. For instance, we can use the Pythagorean theorem to define the norm or length of
a vector ~a as the square root

‖~a‖2 ≡
√
a2

1 + · · ·+ a2
n =
√
~a · ~a.

Then, the distance between two points ~a,~b ∈ Rn is ‖~b− ~a‖2.
Dot products provide not only lengths and distances but also angles. The following

trigonometric identity holds for ~a,~b ∈ R3:

~a ·~b = ‖~a‖2‖~b‖2 cos θ,

where θ is the angle between ~a and ~b. When n ≥ 4, however, the notion of “angle” is much
harder to visualize in Rn. We might define the angle θ between ~a and ~b to be

θ ≡ arccos
~a ·~b

‖~a‖2‖~b‖2
.

We must do our homework before making such a definition! In particular, cosine outputs
values in the interval [−1, 1], so we must check that the input to arc cosine (also notated

cos−1) is in this interval; thankfully, the well-known Cauchy-Schwarz inequality |~a · ~b| ≤
‖~a‖2‖~b‖2 guarantees exactly this property.

When ~a = c~b for some c ∈ R, we have θ = arccos 1 = 0, as we would expect: The angle
between parallel vectors is zero. What does it mean for (nonzero) vectors to be perpendic-
ular? Let’s substitute θ = 90◦. Then, we have

0 = cos 90◦ =
~a ·~b

‖~a‖2‖~b‖2
.

Multiplying both sides by ‖~a‖2‖~b‖2 motivates the definition:

Definition 1.6 (Orthogonality). Two vectors ~a,~b ∈ Rn are perpendicular, or orthogonal,

when ~a ·~b = 0.

This definition is somewhat surprising from a geometric standpoint. We have managed to
define what it means to be perpendicular without any explicit use of angles.

Aside 1.1. There are many theoretical questions to ponder here, some of which we will
address in future chapters:

• Do all vector spaces admit dot products or similar structures?

• Do all finite-dimensional vector spaces admit dot products?

• What might be a reasonable dot product between elements of R[x]?

Intrigued students can consult texts on real and functional analysis.
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1.3 LINEARITY
A function from one vector space to another that preserves linear structure is known as a
linear function:

Definition 1.7 (Linearity). Suppose V and V ′ are vector spaces. Then, L : V → V ′ is
linear if it satisfies the following two criteria for all ~v,~v1, ~v2 ∈ V and c ∈ R:

• L preserves sums: L[~v1 + ~v2] = L[~v1] + L[~v2]

• L preserves scalar products: L[c~v] = cL[~v]

It is easy to express linear maps between vector spaces, as we can see in the following
examples:

Example 1.8 (Linearity in Rn). The following map f : R2 → R3 is linear:

f(x, y) = (3x, 2x+ y,−y).

We can check linearity as follows:

• Sum preservation:

f(x1 + x2, y1 + y2) = (3(x1 + x2), 2(x1 + x2) + (y1 + y2),−(y1 + y2))

= (3x1, 2x1 + y1,−y1) + (3x2, 2x2 + y2,−y2)

= f(x1, y1) + f(x2, y2)

• Scalar product preservation:

f(cx, cy) = (3cx, 2cx+ cy,−cy)

= c(3x, 2x+ y,−y)

= cf(x, y)

Contrastingly, g(x, y) ≡ xy2 is not linear. For instance, g(1, 1) = 1, but g(2, 2) = 8 6=
2 · g(1, 1), so g does not preserve scalar products.

Example 1.9 (Integration). The following “functional” L from R[x] to R is linear:

L[p(x)] ≡
∫ 1

0

p(x) dx.

This more abstract example maps polynomials p(x) ∈ R[x] to real numbers L[p(x)] ∈ R.
For example, we can write

L[3x2 + x− 1] =

∫ 1

0

(3x2 + x− 1) dx =
1

2
.

Linearity of L is a result of the following well-known identities from calculus:

∫ 1

0

c · f(x) dx = c

∫ 1

0

f(x) dx

∫ 1

0

[f(x) + g(x)] dx =

∫ 1

0

f(x) dx+

∫ 1

0

g(x) dx.
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We can write a particularly nice form for linear maps on Rn. The vector ~a = (a1, . . . , an)
is equal to the sum

∑
k ak~ek, where ~ek is the k-th standard basis vector from Example 1.5.

Then, if L is linear we can expand:

L[~a] = L
[∑

k

ak~ek

]
for the standard basis ~ek

=
∑

k

L [ak~ek] by sum preservation

=
∑

k

akL [~ek] by scalar product preservation.

This derivation shows:

A linear operator L on Rn is completely determined by its action
on the standard basis vectors ~ek.

That is, for any vector ~a ∈ Rn, we can use the sum above to determine L[~a] by linearly
combining L[~e1], . . . ,L[~en].

Example 1.10 (Expanding a linear map). Recall the map in Example 1.8 given by
f(x, y) = (3x, 2x + y,−y). We have f(~e1) = f(1, 0) = (3, 2, 0) and f(~e2) = f(0, 1) =
(0, 1,−1). Thus, the formula above shows:

f(x, y) = xf(~e1) + yf(~e2) = x




3
2
0


+ y




0
1
−1


 .

1.3.1 Matrices
The expansion of linear maps above suggests a context in which it is useful to store multiple
vectors in the same structure. More generally, say we have n vectors ~v1, . . . , ~vn ∈ Rm. We
can write each as a column vector:

~v1 =




v11

v21

...
vm1


 , ~v2 =




v12

v22

...
vm2


 , · · · , ~vn =




v1n

v2n

...
vmn


 .

Carrying these vectors around separately can be cumbersome notationally, so to simplify
matters we combine them into a single m× n matrix:



| | |
~v1 ~v2 · · · ~vn
| | |


 =




v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

...
...

vm1 vm2 · · · vmn


 .

We will call the space of such matrices Rm×n.
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Example 1.11 (Identity matrix). We can store the standard basis for Rn in the n × n
“identity matrix” In×n given by:

In×n ≡



| | |
~e1 ~e2 · · · ~en
| | |


 =




1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1



.

Since we constructed matrices as convenient ways to store sets of vectors, we can use
multiplication to express how they can be combined linearly. In particular, a matrix in
Rm×n can be multiplied by a column vector in Rn as follows:



| | |
~v1 ~v2 · · · ~vn
| | |







c1
c2
...
cn


 ≡ c1~v1 + c2~v2 + · · ·+ cn~vn.

Expanding this sum yields the following explicit formula for matrix-vector products:



v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

...
...

vm1 vm2 · · · vmn







c1
c2
...
cn


 =




c1v11 + c2v12 + · · ·+ cnv1n

c1v21 + c2v22 + · · ·+ cnv2n

...
c1vm1 + c2vm2 + · · ·+ cnvmn


 .

Example 1.12 (Identity matrix multiplication). For any ~x ∈ Rn, we can write ~x = In×n~x,
where In×n is the identity matrix from Example 1.11.

Example 1.13 (Linear map). We return once again to the function f(x, y) from Exam-
ple 1.8 to show one more alternative form:

f(x, y) =




3 0
2 1
0 −1



(
x
y

)
.

We similarly define a product between a matrix M ∈ Rm×n and another matrix in Rn×p
with columns ~ci by concatenating individual matrix-vector products:

M



| | |
~c1 ~c2 · · · ~cp
| | |


 ≡




| | |
M~c1 M~c2 · · · M~cp
| | |


 .

Example 1.14 (Mixology). Continuing Example 1.3, suppose we make a tequila sunrise
and second concoction with equal parts of the two liquors in our simplified well. To find
out how much of the basic ingredients are contained in each order, we could combine the
recipes for each column-wise and use matrix multiplication:

Well 1 Well 2 Well 3


Vodka 1 0 0
Tequila 0 1 0

OJ 0 0 6
Grenadine 0 0 0.75

Drink 1 Drink 2( )
0 0.75

1.5 0.75
1 2

=

Drink 1 Drink 2


0 0.75 Vodka
1.5 0.75 Tequila
6 12 OJ

0.75 1.5 Grenadine



12 � Numerical Algorithms

We will use capital letters to represent matrices, like A ∈ Rm×n. We will use the notation
Aij ∈ R to denote the element of A at row i and column j.

1.3.2 Scalars, Vectors, and Matrices
If we wish to unify notation completely, we can write a scalar as a 1 × 1 vector c ∈ R1×1.
Similarly, as suggested in §1.2.3, if we write vectors in Rn in column form, they can be
considered n× 1 matrices ~v ∈ Rn×1. Matrix-vector products also can be interpreted in this
context. For example, if A ∈ Rm×n, ~x ∈ Rn, and ~b ∈ Rm, then we can write expressions like

A®
m×n
· ~x®
n×1

= ~b®
m×1

.

We will introduce one additional operator on matrices that is useful in this context:

Definition 1.8 (Transpose). The transpose of a matrix A ∈ Rm×n is a matrix A> ∈ Rn×m
with elements (A>)ij = Aji.

Example 1.15 (Transposition). The transpose of the matrix

A =




1 2
3 4
5 6




is given by

A> =

(
1 3 5
2 4 6

)
.

Geometrically, we can think of transposition as flipping a matrix over its diagonal.

This unified notation combined with operations like transposition and multiplication
yields slick expressions and derivations of well-known identities. For instance, we can com-
pute the dot products of vectors ~a,~b ∈ Rn via the following sequence of equalities:

~a ·~b =

n∑

k=1

akbk =
(
a1 a2 · · · an

)




b1
b2
...
bn


 = ~a>~b.

Identities from linear algebra can be derived by chaining together these operations with a
few rules:

(A>)> = A, (A+B)> = A> +B>, and (AB)> = B>A>.

Example 1.16 (Residual norm). Suppose we have a matrix A and two vectors ~x and ~b.

If we wish to know how well A~x approximates ~b, we might define a residual ~r ≡ ~b − A~x;
this residual is zero exactly when A~x = ~b. Otherwise, we can use the norm ‖~r‖2 as a proxy

for the similarity of A~x and ~b. We can use the identities above to simplify:

‖~r‖22 = ‖~b−A~x‖22
= (~b−A~x) · (~b−A~x) as explained in §1.2.3
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function Multiply(A, �x)

� Returns �b = A�x, where
� A ∈ Rm×n and �x ∈ Rn

�b ← �0
for i ← 1, 2, . . . ,m

for j ← 1, 2, . . . , n
bi ← bi + aijxj

return �b

function Multiply(A, �x)

� Returns �b = A�x, where
� A ∈ Rm×n and �x ∈ Rn

�b ← �0
for j ← 1, 2, . . . , n

for i ← 1, 2, . . . , m
bi ← bi + aijxj

return �b

)b()a(

Figure 1.2 Two implementations of matrix-vector multiplication with different loop

ordering.

= (~b−A~x)>(~b−A~x) by our expression for the dot product above

= (~b> − ~x>A>)(~b−A~x) by properties of transposition

= ~b>~b−~b>A~x− ~x>A>~b+ ~x>A>A~x after multiplication

All four terms on the right-hand side are scalars, or equivalently 1 × 1 matrices. Scalars
thought of as matrices enjoy one additional nice property c> = c, since there is nothing
to transpose! Thus,

~x>A>~b = (~x>A>~b)> = ~b>A~x.

This allows us to simplify even more:

‖~r‖22 = ~b>~b− 2~b>A~x+ ~x>A>A~x

= ‖A~x‖22 − 2~b>A~x+ ‖~b‖22.

We could have derived this expression using dot product identities, but the intermediate
steps above will prove useful in later discussion.

1.3.3 Matrix Storage and Multiplication Methods
In this section, we take a brief detour from mathematical theory to consider practical
aspects of implementing linear algebra operations in computer software. Our discussion
considers not only faithfulness to the theory we have constructed but also the speed with
which we can carry out each operation. This is one of relatively few points at which we
will consider computer architecture and other engineering aspects of how computers are
designed. This consideration is necessary given the sheer number of times typical numerical
algorithms call down to linear algebra routines; a seemingly small improvement in imple-
menting matrix-vector or matrix-matrix multiplication has the potential to increase the
efficiency of numerical routines by a large factor.

Figure 1.2 shows two possible implementations of matrix-vector multiplication. The
difference between these two algorithms is subtle and seemingly unimportant: The order of
the two loops has been switched. Rounding error aside, these two methods generate the same
output and do the same number of arithmetic operations; classical “big-O” analysis from
computer science would find these two methods indistinguishable. Surprisingly, however,
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A =

⎛
⎝

1 2
3 4
5 6

⎞
⎠ 1 2 3 4 5 6 1 3 5 2 4 6

(a) (b) Row-major (c) Column-major

Figure 1.3 Two possible ways to store (a) a matrix in memory: (b) row-major ordering

and (c) column-major ordering.

considerations related to computer architecture can make one of these options much faster
than the other!

A reasonable model for the memory or RAM in a computer is as a long line of data. For
this reason, we must find ways to “unroll” data from matrix form to something that could
be written completely horizontally. Two common patterns are illustrated in Figure 1.3:

• A row-major ordering stores the data row-by-row; that is, the first row appears in a
contiguous block of memory, then the second, and so on.

• A column-major ordering stores the data column-by-column, moving vertically first
rather than horizontally.

Consider the matrix multiplication method in Figure 1.2(a). This algorithm computes
all of b1 before moving to b2, b3, and so on. In doing so, the code moves along the elements
of A row-by-row. If A is stored in row-major order, then the algorithm in Figure 1.2(a)
proceeds linearly across its representation in memory (Figure 1.3(b)), whereas if A is stored
in column-major order (Figure 1.3(c)), the algorithm effectively jumps around between
elements in A. The opposite is true for the algorithm in Figure 1.2(b), which moves linearly
through the column-major ordering.

In many hardware implementations, loading data from memory will retrieve not just
the single requested value but instead a block of data near the request. The philosophy
here is that common algorithms move linearly though data, processing it one element at
a time, and anticipating future requests can reduce the communication load between the
main processor and the RAM. By pairing, e.g., the algorithm in Figure 1.2(a) with the
row-major ordering in Figure 1.3(b), we can take advantage of this optimization by moving
linearly through the storage of the matrix A; the extra loaded data anticipates what will
be needed in the next iteration. If we take a nonlinear traversal through A in memory, this
situation is less likely, leading to a significant loss in speed.

1.3.4 Model Problem: A~x = ~b

In introductory algebra class, students spend considerable time solving linear systems such
as the following for triplets (x, y, z):

3x+ 2y + 5z = 0

−4x+ 9y − 3z = −7

2x− 3y − 3z = 1.

Our constructions in §1.3.1 allows us to encode such systems in a cleaner fashion:



3 2 5
−4 9 −3
2 −3 −3






x
y
z


 =




0
−7
1


 .
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More generally, we can write any linear system of equations in the form A~x = ~b by fol-
lowing the same pattern above; here, the vector ~x is unknown while A and ~b are known.
Such a system of equations is not always guaranteed to have a solution. For instance, if A
contains only zeros, then no ~x will satisfy A~x = ~b whenever ~b 6= ~0. We will defer a general
consideration of when a solution exists to our discussion of linear solvers in future chapters.

A key interpretation of the system A~x = ~b is that it addresses the task:

Write ~b as a linear combination of the columns of A.

Why? Recall from §1.3.1 that the product A~x encodes a linear combination of the columns
of A with weights contained in elements of ~x. So, the equation A~x = ~b sets the linear
combination A~x equal to the given vector ~b. Given this interpretation, we define the column
space of A to be the space of right-hand sides ~b for which the system A~x = ~b has a solution:

Definition 1.9 (Column space and rank). The column space of a matrix A ∈ Rm×n is
the span of the columns of A. It can be written as

col A ≡ {A~x : ~x ∈ Rn}.

The rank of A is the dimension of col A.

A~x = ~b is solvable exactly when ~b ∈ col A.
One case will dominate our discussion in future chapters. Suppose A is square, so we

can write A ∈ Rn×n. Furthermore, suppose that the system A~x = ~b has a solution for all
choices of ~b, so by our interpretation above the columns of A must span Rn. In this case,
we can substitute the standard basis ~e1, . . . , ~en to solve equations of the form A~xi = ~ei,
yielding vectors ~x1, . . . , ~xn. Combining these ~xi’s horizontally into a matrix shows:

A



| | |
~x1 ~x2 · · · ~xn
| | |


 =




| | |
A~x1 A~x2 · · · A~xn
| | |




=



| | |
~e1 ~e2 · · · ~en
| | |


 = In×n,

where In×n is the identity matrix from Example 1.11. We will call the matrix with columns
~xk the inverse A−1, which satisfies

AA−1 = A−1A = In×n.

By construction, (A−1)−1 = A. If we can find such an inverse, solving any linear system

A~x = ~b reduces to matrix multiplication, since:

~x = In×n~x = (A−1A)~x = A−1(A~x) = A−1~b.

1.4 NON-LINEARITY: DIFFERENTIAL CALCULUS
While the beauty and applicability of linear algebra makes it a key target for study, non-
linearities abound in nature, and we must design machinery that can deal with this reality.
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Figure 1.4 The closer we zoom into f(x) = x3 + x2− 8x+ 4, the more it looks like a

line.

1.4.1 Differentiation in One Variable
While many functions are globally nonlinear, locally they exhibit linear behavior. This idea
of “local linearity” is one of the main motivators behind differential calculus. Figure 1.4
shows that if you zoom in close enough to a smooth function, eventually it looks like a line.
The derivative f ′(x) of a function f(x) : R → R is the slope of the approximating line,
computed by finding the slope of lines through closer and closer points to x:

f ′(x) = lim
y→x

f(y)− f(x)

y − x .

In reality, taking limits as y → x may not be possible on a computer, so a reasonable
question to ask is how well a function f(x) is approximated by a line through points that are
a finite distance apart. We can answer these types of questions using infinitesimal analysis.
Take x, y ∈ R. Then, we can expand:

f(y)− f(x) =

∫ y

x

f ′(t) dt by the Fundamental Theorem of Calculus

= yf ′(y)− xf ′(x)−
∫ y

x

tf ′′(t) dt, after integrating by parts

= (y − x)f ′(x) + y(f ′(y)− f ′(x))−
∫ y

x

tf ′′(t) dt

= (y − x)f ′(x) + y

∫ y

x

f ′′(t) dt−
∫ y

x

tf ′′(t) dt

again by the Fundamental Theorem of Calculus

= (y − x)f ′(x) +

∫ y

x

(y − t)f ′′(t) dt.

Rearranging terms and defining ∆x ≡ y − x shows:

|f ′(x)∆x− [f(y)− f(x)]| =
∣∣∣∣
∫ y

x

(y − t)f ′′(t) dt
∣∣∣∣ from the relationship above

≤ |∆x|
∫ y

x

|f ′′(t)| dt, by the Cauchy-Schwarz inequality

≤ D|∆x|2, assuming |f ′′(t)| < D for some D > 0.

We can introduce some notation to help express the relationship we have written:
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Cg(x)

f(x)

x

ε ε

Figure 1.5 Big-O notation; in the ε neighborhood of the origin, f(x) is dominated

by Cg(x); outside this neighborhood, Cg(x) can dip back down.

Definition 1.10 (Infinitesimal big-O). We will say f(x) = O(g(x)) if there exists a
constant C > 0 and some ε > 0 such that |f(x)| ≤ C|g(x)| for all x with |x| < ε.

This definition is illustrated in Figure 1.5. Computer scientists may be surprised to see that
we are defining “big-O notation” by taking limits as x→ 0 rather than x→∞, but since we
are concerned with infinitesimal approximation quality, this definition will be more relevant
to the discussion at hand.

Our derivation above shows the following relationship for smooth functions f : R→ R:

f(x+ ∆x) = f(x) + f ′(x)∆x+O(∆x2).

This is an instance of Taylor’s theorem, which we will apply copiously when developing
strategies for integrating ordinary differential equations. More generally, this theorem shows
how to approximate differentiable functions with polynomials:

f(x+ ∆x) = f(x) + f ′(x)∆x+ f ′′(x)
∆x2

2!
+ · · ·+ f (k)(x)

∆xk

k!
+O(∆xk+1).

1.4.2 Differentiation in Multiple Variables
If a function f takes multiple inputs, then it can be written f(~x) : Rn → R for ~x ∈ Rn.
In other words, to each point ~x = (x1, . . . , xn) in n-dimensional space, f assigns a single
number f(x1, . . . , xn).

The idea of local linearity must be repaired in this case, because lines are one- rather
than n-dimensional objects. Fixing all but one variable, however, brings a return to single-
variable calculus. For instance, we could isolate x1 by studying g(t) ≡ f(t, x2, . . . , xn), where
we think of x2, . . . , xn as constants. Then, g(t) is a differentiable function of a single variable
that we can characterize using the machinery in §1.4.1. We can do the same for any of the
xk’s, so in general we make the following definition of the partial derivative of f :

Definition 1.11 (Partial derivative). The k-th partial derivative of f , notated ∂f
∂xk

, is
given by differentiating f in its k-th input variable:

∂f

∂xk
(x1, . . . , xn) ≡ d

dt
f(x1, . . . , xk−1, t, xk+1, . . . , xn)|t=xk .
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x1

x2

f(x1, x2)

�x

(�x, f(�x))

∇f(�x)

f(�x) = c

∇f(�x)

x1

x2

Graph of f(�x) Steepest ascent Level sets of f(�x)

Figure 1.6 We can visualize a function f(x1, x2) as a three-dimensional graph; then

∇f(~x) is the direction on the (x1, x2) plane corresponding to the steepest ascent

of f . Alternatively, we can think of f(x1, x2) as the brightness at (x1, x2) (dark

indicates a low value of f), in which case ∇f points perpendicular to level sets

f(~x) = c in the direction where f is increasing and the image gets lighter.

The notation used in this definition and elsewhere in our discussion “|t=xk” should be read
as “evaluated at t = xk.”

Example 1.17 (Relativity). The relationship E = mc2 can be thought of as a function
mapping pairs (m, c) to a scalar E. Thus, we could write E(m, c) = mc2, yielding the
partial derivatives

∂E

∂m
= c2

∂E

∂c
= 2mc.

Using single-variable calculus, for a function f : Rn → R,

f(~x+ ∆~x) = f(x1 + ∆x1, x2 + ∆x2, . . . , xn + ∆xn)

= f(x1, x2 + ∆x2, . . . , xn + ∆xn) +
∂f

∂x1
∆x1 +O(∆x2

1)

by single-variable calculus in x1

= f(x1, . . . , xn) +
n∑

k=1

[
∂f

∂xk
∆xk +O(∆x2

k)

]

by repeating this n− 1 times in x2, . . . , xn

= f(~x) +∇f(~x) ·∆~x+O(‖∆~x‖22),

where we define the gradient of f as

∇f(~x) ≡
(
∂f

∂x1
(~x),

∂f

∂x2
(~x), · · · , ∂f

∂xn
(~x)

)
∈ Rn.

Figure 1.6 illustrates interpretations of the gradient of a function, which we will reconsider
in our discussion of optimization in future chapters.

We can differentiate f in any direction ~v via the directional derivative D~vf :

D~vf(~x) ≡ d

dt
f(~x+ t~v)|t=0 = ∇f(~x) · ~v.

We allow ~v to have any length, with the property Dc~vf(~x) = cD~vf(~x).
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Example 1.18 (R2). Take f(x, y) = x2y3. Then,

∂f

∂x
= 2xy3 ∂f

∂y
= 3x2y2.

Equivalently, ∇f(x, y) = (2xy3, 3x2y2). So, the derivative of f at (x, y) = (1, 2) in the
direction (−1, 4) is given by (−1, 4) · ∇f(1, 2) = (−1, 4) · (16, 12) = 32.

There are a few derivatives that we will use many times. These formulae will appear
repeatedly in future chapters and are worth studying independently:

Example 1.19 (Linear functions). It is obvious but worth noting that the gradient of
f(~x) ≡ ~a · ~x+ ~c = (a1x1 + c1, . . . , anxn + cn) is ~a.

Example 1.20 (Quadratic forms). Take any matrix A ∈ Rn×n, and define f(~x) ≡ ~x>A~x.
Writing this function element-by-element shows

f(~x) =
∑

ij

Aijxixj .

Expanding f and checking this relationship explicitly is worthwhile. Take some k ∈
{1, . . . , n}. Then, we can separate out all terms containing xk:

f(~x) = Akkx
2
k + xk


∑

i6=k
Aikxi +

∑

j 6=k
Akjxj


+

∑

i,j 6=k
Aijxixj .

With this factorization,

∂f

∂xk
= 2Akkxk +


∑

i6=k
Aikxi +

∑

j 6=k
Akjxj


 =

n∑

i=1

(Aik +Aki)xi.

This sum looks a lot like the definition of matrix-vector multiplication! Combining these
partial derivatives into a single vector shows ∇f(~x) = (A+A>)~x. In the special case when
A is symmetric, that is, when A> = A, we have the well-known formula ∇f(~x) = 2A~x.

We generalized differentiation from f : R → R to f : Rn → R. To reach full generality,
we should consider f : Rn → Rm. That is, f inputs n numbers and outputs m numbers.
This extension is straightforward, because we can think of f as a collection of single-valued
functions f1, . . . , fm : Rn → R smashed into a single vector. Symbolically,

f(~x) =




f1(~x)
f2(~x)

...
fm(~x)


 .

Each fk can be differentiated as before, so in the end we get a matrix of partial derivatives
called the Jacobian of f :
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Definition 1.12 (Jacobian). The Jacobian of f : Rn → Rm is the matrix Df(~x) ∈ Rm×n
with entries

(Df)ij ≡
∂fi
∂xj

.

Example 1.21 (Jacobian computation). Suppose f(x, y) = (3x,−xy2, x+ y). Then,

Df(x, y) =




3 0
−y2 −2xy

1 1


 .

Example 1.22 (Matrix multiplication). Unsurprisingly, the Jacobian of f(~x) = A~x for
matrix A is given by Df(~x) = A.

Here, we encounter a common point of confusion. Suppose a function has vector input
and scalar output, that is, f : Rn → R. We defined the gradient of f as a column vector, so
to align this definition with that of the Jacobian we must write Df = ∇f>.

1.4.3 Optimization
A key problem in the study of numerical algorithms is optimization, which involves finding
points at which a function f(~x) is maximized or minimized. A wide variety of computational
challenges can be posed as optimization problems, also known as variational problems,
and hence this language will permeate our derivation of numerical algorithms. Generally
speaking, optimization problems involve finding extrema of a function f(~x), possibly subject
to constraints specifying which points ~x ∈ Rn are feasible. Recalling physical systems that
naturally seek low- or high-energy configurations, f(~x) is sometimes referred to as an energy
or objective.

From single-variable calculus, the minima and maxima of f : R → R must occur at
points x satisfying f ′(x) = 0. This condition is necessary rather than sufficient : there may
exist saddle points x with f ′(x) = 0 that are not maxima or minima. That said, finding
such critical points of f can be part of a function minimization algorithm, so long as a
subsequent step ensures that the resulting x is actually a minimum/maximum.

If f : Rn → R is minimized or maximized at ~x, we have to ensure that there does not
exist a single direction ∆x from ~x in which f decreases or increases, respectively. By the
discussion in §1.4.1, this means we must find points for which ∇f = 0.

Example 1.23 (Critical points). Suppose f(x, y) = x2 + 2xy + 4y2. Then, ∂f∂x = 2x+ 2y

and ∂f
∂y = 2x+ 8y. Thus, critical points of f satisfy:

2x+ 2y = 0 and 2x+ 8y = 0.

This system is solved by taking (x, y) = (0, 0). Indeed, this is the minimum of f , as can
be seen by writing f(x, y) = (x+ y)2 + 3y2 ≥ 0 = f(0, 0).

Example 1.24 (Quadratic functions). Suppose f(~x) = ~x>A~x + ~b>~x + c. Then, from

Examples 1.19 and 1.20 we can write ∇f(~x) = (A> + A)~x +~b. Thus, critical points ~x of

f satisfy (A> +A)~x+~b = 0.
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Figure 1.7 Three rectangles with the same perimeter 2w+ 2h but unequal areas wh;

the square on the right with w = h maximizes wh over all possible choices with

prescribed 2w + 2h = 1.

Unlike single-variable calculus, on Rn we can add nontrivial constraints to our optimiza-
tion. For now, we will consider the equality-constrained case, given by

minimize f(~x)

subject to g(~x) = ~0.

When we add the constraint g(~x) = 0, we no longer expect that minimizers ~x satisfy
∇f(~x) = 0, since these points might not satisfy g(~x) = ~0.

Example 1.25 (Rectangle areas). Suppose a rectangle has width w and height h. A classic
geometry problem is to maximize area with a fixed perimeter 1:

maximize wh

subject to 2w + 2h− 1 = 0.

This problem is illustrated in Figure 1.7.

For now, suppose g : Rn → R, so we only have one equality constraint; an example for
n = 2 is shown in Figure 1.8. We define the set of points satisfying the equality constraint
as S0 ≡ {~x : g(~x) = 0}. Any two ~x, ~y ∈ S0 satisfy the relationship g(~y)− g(~x) = 0− 0 = 0.
Applying Taylor’s theorem, if ~y = ~x+ ∆~x for small ∆~x, then

g(~y)− g(~x) = ∇g(~x) ·∆~x+O(‖∆~x‖22).

In other words, if g(~x) = 0 and ∇g(~x) ·∆~x = 0, then g(~x+ ∆~x) ≈ 0.
If ~x is a minimum of the constrained optimization problem above, then any small dis-

placement ~x to ~x + ~v still satisfying the constraints should cause an increase from f(~x) to
f(~x + ~v). On the infinitesimal scale, since we only care about displacements ~v preserving
the g(~x+~v) = c constraint, from our argument above we want ∇f ·~v = 0 for all ~v satisfying
∇g(~x) · ~v = 0. In other words, ∇f and ∇g must be parallel, a condition we can write as
∇f = λ∇g for some λ ∈ R, illustrated in Figure 1.8(c).

Define
Λ(~x, λ) ≡ f(~x)− λg(~x).

Then, critical points of Λ without constraints satisfy:

∂Λ

∂λ
= −g(~x) = 0, by the constraint g(~x) = 0.

∇~xΛ = ∇f(~x)− λ∇g(~x) = 0, as argued above.

In other words, critical points of Λ with respect to both λ and ~x satisfy g(~x) = 0 and
∇f(~x) = λ∇g(~x), exactly the optimality conditions we derived!
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f(�x) = c

g(�x) = 0

�x

Δ�x

�q

∇f

(a) Constrained optimization (b) Suboptimal �x (c) Optimal �q

Figure 1.8 (a) An equality-constrained optimization. Without constraints, f(~x) is

minimized at the star; solid lines show isocontours f(~x) = c for increasing c. Mini-

mizing f(~x) subject to g(~x) = 0 forces ~x to be on the dashed curve. (b) The point

~x is suboptimal since moving in the ∆~x direction decreases f(~x) while maintaining

g(~x) = 0. (c) The point ~q is optimal since decreasing f from f(~q) would require

moving in the −∇f direction, which is perpendicular to the curve g(~x) = 0.

Extending our argument to g : Rn → Rk yields the following theorem:

Theorem 1.1 (Method of Lagrange multipliers). Critical points of the equality-
constrained optimization problem above are (unconstrained) critical points of the Lagrange
multiplier function

Λ(~x,~λ) ≡ f(~x)− ~λ · g(~x),

with respect to both ~x and ~λ.

Some treatments of Lagrange multipliers equivalently use the opposite sign for ~λ; considering
Λ̄(~x,~λ) ≡ f(~x) + ~λ · g(~x) leads to an analogous result above.

This theorem provides an analog of the condition ∇f(~x) = ~0 when equality constraints
g(~x) = ~0 are added to an optimization problem and is a cornerstone of variational algo-
rithms we will consider. We conclude with a number of examples applying this theorem;
understanding these examples is crucial to our development of numerical methods in future
chapters.

Example 1.26 (Maximizing area). Continuing Example 1.25, we define the Lagrange
multiplier function Λ(w, h, λ) = wh− λ(2w+ 2h− 1). Differentiating Λ with respect to w,
h, and λ provides the following optimality conditions:

0 =
∂Λ

∂w
= h− 2λ 0 =

∂Λ

∂h
= w − 2λ 0 =

∂Λ

∂λ
= 1− 2w − 2h.

So, critical points of the area wh under the constraint 2w + 2h = 1 satisfy




0 1 −2
1 0 −2
2 2 0






w
h
λ


 =




0
0
1


 .

Solving the system shows w = h = 1/4 (and λ = 1/8). In other words, for a fixed amount
of perimeter, the rectangle with maximal area is a square.



Mathematics Review � 23

Example 1.27 (Eigenproblems). Suppose that A is a symmetric positive definite matrix,
meaning A> = A (symmetric) and ~x>A~x > 0 for all ~x ∈ Rn\{~0} (positive definite). We
may wish to minimize ~x>A~x subject to ‖~x‖22 = 1 for a given matrix A ∈ Rn×n; without the
constraint the function is minimized at ~x = ~0. We define the Lagrange multiplier function

Λ(~x, λ) = ~x>A~x− λ(‖~x‖22 − 1) = ~x>A~x− λ(~x>~x− 1).

Differentiating with respect to ~x, we find 0 = ∇~xΛ = 2A~x− 2λ~x. In other words, critical
points of ~x are exactly the eigenvectors of the matrix A:

A~x = λ~x, with ‖~x‖22 = 1.

At these critical points, we can evaluate the objective function as ~x>A~x = ~x>λ~x = λ‖~x‖22 =
λ. Hence, the minimizer of ~x>A~x subject to ‖~x‖22 = 1 is the eigenvector ~x with minimum
eigenvalue λ; we will provide practical applications and solution techniques for this opti-
mization problem in detail in Chapter 6.

1.5 EXERCISES
SC1.1 Illustrate the gradients of f(x, y) = x2 +y2 and g(x, y) =

√
x2 + y2 on the plane, and

show that ‖∇g(x, y)‖2 is constant away from the origin.

DH1.2 Compute the dimensions of each of the following sets:

(a) col




1 0 0
0 1 0
0 0 0




(b) span {(1, 1, 1), (1,−1, 1), (−1, 1, 1), (1, 1,−1)}
(c) span {(2, 7, 9), (3, 5, 1), (0, 1, 0)}

(d) col




1 1 0
1 1 0
0 0 1




1.3 Which of the following functions is linear? Why?

(a) f(x, y, z) = 0

(b) f(x, y, z) = 1

(c) f(x, y, z) = (1 + x, 2z)

(d) f(x) = (x, 2x)

(e) f(x, y) = (2x+ 3y, x, 0)

1.4 Suppose that U1 and U2 are subspaces of vector space V. Show that U1 ∩ U2 is a
subspace of V. Is U1 ∪ U2 always a subspace of V?

1.5 Suppose A,B ∈ Rn×n and ~a,~b ∈ Rn. Find a (nontrivial) linear system of equations

satisfied by any ~x minimizing the energy ‖A~x− ~a‖22 + ‖B~x−~b‖22.
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1.6 Take C1(R) to be the set of continuously differentiable functions f : R → R. Why is
C1(R) a vector space? Show that C1(R) has dimension ∞.

1.7 Suppose the rows of A ∈ Rm×n are given by the transposes of ~r1, . . . , ~rm ∈ Rn and
the columns of A ∈ Rm×n are given by ~c1, . . . ,~cn ∈ Rm. That is,

A =




− ~r>1 −
− ~r>2 −

...
− ~r>m −


 =



| | |
~c1 ~c2 · · · ~cn
| | |


 .

Give expressions for the elements of A>A and AA> in terms of these vectors.

1.8 Give a linear system of equations satisfied by minima of the energy f(~x) = ‖A~x−~b‖2
with respect to ~x, for ~x ∈ Rn, A ∈ Rm×n, and ~b ∈ Rm.

1.9 Suppose A,B ∈ Rn×n. Formulate a condition for vectors ~x ∈ Rn to be critical points
of ‖A~x‖2 subject to ‖B~x‖2 = 1. Also, give an alternative expression for the value of
‖A~x‖2 at these critical points, in terms a Lagrange multiplier for this optimization
problem.

1.10 Fix some vector ~a ∈ Rn\{~0} and define f(~x) = ~a · ~x. Give an expression for the
maximum of f(~x) subject to ‖~x‖2 = 1.

1.11 Suppose A ∈ Rn×n is symmetric, and define the Rayleigh quotient function R(~x) as

R(~x) ≡ ~x>A~x
‖~x‖22

.

Show that minimizers of R(~x) subject to ~x 6= ~0 are eigenvectors of A.

1.12 Show that (A>)−1 = (A−1)> when A ∈ Rn×n is invertible. If B ∈ Rn×n is also
invertible, show (AB)−1 = B−1A−1.

1.13 Suppose A(t) is a function taking a parameter t and returning an invertible square
matrix A(t) ∈ Rn×n; we can write A : R → Rn×n. Assuming each element aij(t) of
A(t) is a differentiable function of t, define the derivative matrix dA

dt (t) as the matrix

whose elements are
daij
dt (t). Verify the following identity:

d(A−1)

dt
= −A−1 dA

dt
A−1.

Hint: Start from the identity A−1(t) ·A(t) = In×n.

1.14 Derive the following relationship stated in §1.4.2:

d

dt
f(~x+ t~v)|t=0 = ∇f(~x) · ~v.

1.15 A matrix A ∈ Rn×n is idempotent if it satisfies A2 = A.

(a) Suppose B ∈ Rm×k is constructed so that B>B is invertible. Show that the
matrix B(B>B)−1B> is idempotent.



Mathematics Review � 25

(b) If A is idempotent, show that In×n −A is also idempotent.

(c) If A is idempotent, show that 1
2In×n −A is invertible and give an expression for

its inverse.

(d) Suppose A is idempotent and that we are given ~x 6= ~0 and λ ∈ R satisfying
A~x = λ~x. Show that λ ∈ {0, 1}.

1.16 Show that it takes at least O(n2) time to find the product AB of two matrices
A,B ∈ Rn×n. What is the runtime of the algorithms in Figure 1.2? Is there room
for improvement?

1.17 (“Laplace approximation,” [13]) Suppose p(~x) : Rn → [0, 1] is a probability distribu-
tion, meaning that p(~x) ≥ 0 for all ~x ∈ Rn and

∫

Rn
p(~x) d~x = 1.

In this problem, you can assume p(~x) is infinitely differentiable.

One important type of probability distribution is the Gaussian distribution, also
known as the normal distribution, which takes the form

GΣ,~µ(~x) ∝ e− 1
2 (~x−~µ)>Σ−1(~x−~µ).

Here, f(~x) ∝ g(~x) denotes that there exists some c ∈ R such that f(~x) = cg(~x) for all
~x ∈ Rn. The covariance matrix Σ ∈ Rn×n and mean ~µ ∈ Rn determine the particular
bell shape of the Gaussian distribution.

Suppose ~x∗ ∈ Rn is a mode, or local maximum, of p(~x). Propose a Gaussian approxi-
mation of p(~x) in a neighborhood of ~x∗.

Hint: Consider the negative log likelihood function, given by `(~x) ≡ − ln p(~x).
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N umerical analysis introduces a shift from working with ints and longs to floats and
doubles. This seemingly innocent transition shatters intuition from integer arithmetic,

requiring adjustment of how we must think about basic algorithmic design and implemen-
tation. Unlike discrete algorithms, numerical algorithms cannot always yield exact solutions
even to well-studied and well-posed problems. Operation counting no longer reigns supreme;
instead, even basic techniques require careful analysis of the trade-offs among timing, ap-
proximation error, and other considerations. In this chapter, we will explore the typical
factors affecting the quality of a numerical algorithm. These factors set numerical algo-
rithms apart from their discrete counterparts.

2.1 STORING NUMBERS WITH FRACTIONAL PARTS
Most computers store data in binary format. In binary, integers are decomposed into powers
of two. For instance, we can convert 463 to binary using the following table:

1 1 1 0 0 1 1 1 1
28 27 26 25 24 23 22 21 20

This table illustrates the fact that 463 has a unique decomposition into powers of two as:

463 = 256 + 128 + 64 + 8 + 4 + 2 + 1

= 28 + 27 + 26 + 23 + 22 + 21 + 20.

All positive integers can be written in this form. Negative numbers also can be represented
either by introducing a leading sign bit (e.g., 1 for “positive” and 0 for “negative”) or by
using a “two’s complement” trick.

The binary system admits an extension to numbers with fractional parts by including
negative powers of two. For instance, 463.25 can be decomposed by adding two slots:

27
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1 1 1 0 0 1 1 1 1. 0 1
28 27 26 25 24 23 22 21 20 2−1 2−2

Representing fractional parts of numbers this way, however, is not nearly as well-behaved
as representing integers. For instance, writing the fraction 1/3 in binary requires infinitely
many digits:

1

3
= 0.0101010101 · · ·2 .

There exist numbers at all scales that cannot be represented using a finite binary string.
In fact, all irrational numbers, like π = 11.00100100001 . . .2, have infinitely long expansions
regardless of which (integer) base you use!

Since computers have a finite amount of storage capacity, systems processing values in
R instead of Z are forced to approximate or restrict values that can be processed. This leads
to many points of confusion while coding, as in the following snippet of C++ code:

double x = 1.0;

double y = x / 3.0;

if (x == y*3.0) cout << "They are equal!";

else cout << "They are NOT equal.";

Contrary to intuition, this program prints "They are NOT equal." Why? Since 1/3 cannot
be written as a finite-length binary string, the definition of y makes an approximation,
rounding to the nearest number representable in the double data type. Thus, y*3.0 is
close to but not exactly 1. One way to fix this issue is to allow for some tolerance:

double x = 1.0;

double y = x / 3.0;

if (fabs(x-y*3.0) < numeric_limits <double >:: epsilon)

cout << "They are equal!";

else cout << "They are NOT equal.";

Here, we check that x and y*3.0 are near enough to each other to be reasonably considered
identical rather than whether they are exactly equal. The tolerance epsilon expresses how
far apart values should be before we are confident they are different. It may need to be
adjusted depending on context. This example raises a crucial point:

Rarely if ever should the operator == and its equivalents be used
on fractional values. Instead, some tolerance should be used to

check if they are equal.

There is a trade-off here: the size of the tolerance defines a line between equality and “close-
but-not-the-same,” which must be chosen carefully for a given application.

The error generated by a numerical algorithm depends on the choice of representations
for real numbers. Each representation has its own compromise among speed, accuracy, range
of representable values, and so on. Keeping the example above and its resolution in mind,
we now consider a few options for representing numbers discretely.

2.1.1 Fixed-Point Representations
The most straightforward way to store fractions is to use a fixed decimal point. That is, as
in the example above, we represent values by storing 0-or-1 coefficients in front of powers of
two that range from 2−k to 2` for some k, ` ∈ Z. For instance, representing all nonnegative
values between 0 and 127.75 in increments of 1/4 can be accomplished by taking k = 2 and
` = 7; in this case, we use 10 binary digits total, of which two occur after the decimal point.
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The primary advantage of this representation is that many arithmetic operations can be
carried out using the same machinery already in place for integers. For example, if a and b
are written in fixed-point format, we can write:

a+ b = (a · 2k + b · 2k) · 2−k.

The values a ·2k and b ·2k are integers, so the summation on the right-hand side is an integer
operation. This observation essentially shows that fixed-point addition can be carried out
using integer addition essentially by “ignoring” the decimal point. In this way, rather than
needing specialized hardware, the preexisting integer arithmetic logic unit (ALU) can carry
out fixed-point mathematics quickly.

Fixed-point arithmetic may be fast, but it suffers from serious precision issues. In partic-
ular, it is often the case that the output of a binary operation like multiplication or division
can require more bits than the operands. For instance, suppose we include one decimal point
of precision and wish to carry out the product 1/2 · 1/2 = 1/4. We write 0.12 × 0.12 = 0.012,
which gets truncated to 0. More broadly, it is straightforward to combine fixed-point num-
bers in a reasonable way and get an unreasonable result.

Due to these drawbacks, most major programming languages do not by default include
a fixed-point data type. The speed and regularity of fixed-point arithmetic, however, can
be a considerable advantage for systems that favor timing over accuracy. Some lower-end
graphics processing units (GPU) implement only fixed-point operations since a few decimal
points of precision are sufficient for many graphical applications.

2.1.2 Floating-Point Representations
One of many numerical challenges in scientific computing is the extreme range of scales that
can appear. For example, chemists deal with values anywhere between 9.11 × 10−31 (the
mass of an electron in kilograms) and 6.022× 1023 (the Avogadro constant). An operation
as innocent as a change of units can cause a sudden transition between scales: The same
observation written in kilograms per lightyear will look considerably different in megatons
per mile. As numerical analysts, we are charged with writing software that can transition
gracefully between these scales without imposing unnatural restrictions on the client.

Scientists deal with similar issues when recording experimental measurements, and their
methods can motivate our formats for storing real numbers on a computer. Most promi-
nently, one of the following representations is more compact than the other:

6.022× 1023 = 602, 200, 000, 000, 000, 000, 000, 000.

Not only does the representation on the left avoid writing an unreasonable number of zeros,
but it also reflects the fact that we may not know Avogadro’s constant beyond the second
2.

In the absence of exceptional scientific equipment, the difference between 6.022 × 1023

and 6.022× 1023 + 9.11× 10−31 likely is negligible, in the sense that this tiny perturbation
is dwarfed by the error of truncating 6.022 to three decimal points. More formally, we say
that 6.022 × 1023 has only four digits of precision and probably represents some range of
possible measurements [6.022× 1023 − ε, 6.022× 1023 + ε] for some ε ≈ 0.001× 1023.

Our first observation allowed us to shorten the representation of 6.022× 1023 by writing
it in scientific notation. This number system separates the “interesting” digits of a number
from its order of magnitude by writing it in the form a× 10e for some a ∼ 1 and e ∈ Z. We
call this format the floating-point form of a number, because unlike the fixed-point setup in
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0 0.5 1 1.5 2 2.5 3 3.5

1.751.25
0.625 0.75 0.875

Figure 2.1 The values from Example 2.1 plotted on a number line; typical for floating-

point number systems, they are unevenly spaced between the minimum (0.5) and

the maximum (3.5).

§2.1.1, the decimal point “floats” so that a is on a reasonable scale. Usually a is called the
significand and e is called the exponent.

Floating-point systems are defined using three parameters:

• The base or radix b ∈ N. For scientific notation explained above, the base is b = 10;
for binary systems the base is b = 2.

• The precision p ∈ N representing the number of digits used to store the significand.

• The range of exponents [L,U ] representing the allowable values for e.

The expansion looks like:

±®
sign

(d0 + d1 · b−1 + d2 · b−2 + · · ·+ dp−1 · b1−p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

significand

× be®
exponent

,

where each digit dk is in the range [0, b − 1] and e ∈ [L,U ]. When b = 2, an extra bit
of precision can be gained by normalizing floating-point values and assuming the most
significant digit d0 is one; this change, however, requires special treatment of the value 0.

Floating-point representations have a curious property that can affect software in un-
expected ways: Their spacing is uneven. For example, the number of values representable
between b and b2 is the same as that between b2 and b3 even though usually b3−b2 > b2−b.
To understand the precision possible with a given number system, we will define the ma-
chine precision εm as the smallest εm > 0 such that 1 + εm is representable. Numbers like
b+ εm are not expressible in the number system because εm is too small.

Example 2.1 (Floating-point). Suppose we choose b = 2, L = −1, and U = 1. If we
choose to use three digits of precision, we might choose to write numbers in the form

1.��× 2�.

Notice this number system does not include 0. The possible significands are 1.002 = 110,
1.012 = 1.2510, 1.102 = 1.510, and 1.112 = 1.7510. Since L = −1 and U = 1, these
significands can be scaled by 2−1 = 0.510, 20 = 110, and 21 = 210. With this information
in hand, we can list all the possible values in our number system:

Significand ×2−1 ×20 ×21

1.0010 0.50010 1.00010 2.00010

1.2510 0.62510 1.25010 2.50010

1.5010 0.75010 1.50010 3.00010

1.7510 0.87510 1.75010 3.50010

These values are plotted in Figure 2.1; as expected, they are unevenly spaced and bunch
toward zero. Also, notice the gap between 0 and 0.5 in this sampling of values; some
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number systems introduce evenly spaced subnormal values to fill in this gap, albeit with less
precision. Machine precision for this number system is εm = 0.25, the smallest displacement
possible above 1.

By far the most common format for storing floating-point numbers is provided by the
IEEE 754 standard. This standard specifies several classes of floating-point numbers. For
instance, a double-precision floating-point number is written in base b = 2 (as are all
numbers in this format), with a single ± sign bit, 52 digits for d, and a range of exponents
between −1022 and 1023. The standard also specifies how to store ±∞ and values like NaN,
or “not-a-number,” reserved for the results of computations like 10/0.

IEEE 754 also includes agreed-upon conventions for rounding when an operation results
in a number not represented in the standard. For instance, a common unbiased strategy
for rounding computations is round to nearest, ties to even, which breaks equidistant ties
by rounding to the nearest floating-point value with an even least-significant (rightmost)
bit. There are many equally legitimate strategies for rounding; agreeing upon a single one
guarantees that scientific software will work identically on all client machines regardless of
their particular processor or compiler.

2.1.3 More Exotic Options
For most of this book, we will assume that fractional values are stored in floating-point
format unless otherwise noted. This, however, is not to say that other numerical systems
do not exist, and for specific applications an alternative choice might be necessary. We
acknowledge some of those situations here.

The headache of inexact arithmetic to account for rounding errors might be unacceptable
for some applications. This situation appears in computational geometry, e.g., when the
difference between nearly and completely parallel lines may be a difficult distinction to
make. One solution might be to use arbitrary-precision arithmetic, that is, to implement
fractional arithmetic without rounding or error of any sort.

Arbitrary-precision arithmetic requires a specialized implementation and careful consid-
eration for what types of values you need to represent. For instance, it might be the case
that rational numbers Q, which can be written as ratios a/b for a, b ∈ Z, are sufficient for
a given application. Basic arithmetic can be carried out in Q without any loss in precision,
as follows:

a

b
× c

d
=
ac

bd

a

b
÷ c

d
=
ad

bc
.

Arithmetic in the rationals precludes the existence of a square root operator, since values
like
√

2 are irrational. Also, this representation is nonunique since, e.g., a/b = 5a/5b, and
thus certain operations may require additional routines for simplifying fractions. Even after
simplifying, after a few multiplies and adds, the numerator and denominator may require
many digits of storage, as in the following sum:

1

100
+

1

101
+

1

102
+

1

103
+

1

104
+

1

105
=

188463347

3218688200
.

In other situations, it may be useful to bracket error by representing values alongside
error estimates as a pair a, ε ∈ R; we think of the pair (a, ε) as the range a ± ε. Then,
arithmetic operations also update not only the value but also the error estimate, as in

(x± ε1) + (y ± ε2) = (x+ y)± (ε1 + ε2 + error(x+ y)),
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where the final term represents an estimate of the error induced by adding x and y. Main-
taining error bars in this fashion keeps track of confidence in a given value, which can be
informative for scientific calculations.

2.2 UNDERSTANDING ERROR
With the exception of the arbitrary-precision systems described in §2.1.3, nearly every com-
puterized representation of real numbers with fractional parts is forced to employ rounding
and other approximations. Rounding, however, represents one of many sources of error
typically encountered in numerical systems:

• Rounding or truncation error comes from rounding and other approximations used
to deal with the fact that we can only represent a finite set of values using most
computational number systems. For example, it is impossible to write π exactly as
an IEEE 754 floating-point value, so in practice its value is truncated after a finite
number of digits.

• Discretization error comes from our computerized adaptations of calculus, physics,
and other aspects of continuous mathematics. For instance, a numerical system might
attempt to approximate the derivative of a function f(t) using divided differences:

f ′(t) ≈ f(t+ ε)− f(t)

ε

for some fixed choice of ε > 0. This approximation is a legitimate and useful one that
we will study in Chapter 14, but since we must use a finite ε > 0 rather than taking a
limit as ε→ 0, the resulting value for f ′(t) is only accurate to some number of digits.

• Modeling error comes from having incomplete or inaccurate descriptions of the prob-
lems we wish to solve. For instance, a simulation predicting weather in Germany may
choose to neglect the collective flapping of butterfly wings in Malaysia, although the
displacement of air by these butterflies might perturb the weather patterns elsewhere.
Furthermore, constants such as the speed of light or acceleration due to gravity might
be provided to the system with a limited degree of accuracy.

• Input error can come from user-generated approximations of parameters of a given
system (and from typos!). Simulation and numerical techniques can help answer “what
if” questions, in which exploratory choices of input setups are chosen just to get some
idea of how a system behaves. In this case, a highly accurate simulation might be a
waste of computational time, since the inputs to the simulation were so rough.

Example 2.2 (Computational physics). Suppose we are designing a system for simulating
planets as they revolve around the sun. The system essentially solves Newton’s equation
F = ma by integrating forces forward in time. Examples of error sources in this system
might include:

• Rounding error: Rounding the product ma to IEEE floating-point precision

• Discretization error: Using divided differences as above to approximate the velocity
and acceleration of each planet

• Modeling error: Neglecting to simulate the moon’s effects on the earth’s motion
within the planetary system



Numerics and Error Analysis � 33

• Input error: Evaluating the cost of sending garbage into space rather than risking a
Wall-E style accumulation on Earth, but only guessing the total amount of garbage
to jettison monthly

2.2.1 Classifying Error
Given our previous discussion, the following two numbers might be regarded as having the
same amount of error:

1± 0.01

105 ± 0.01.

Both intervals [1 − 0.01, 1 + 0.01] and [105 − 0.01, 105 + 0.01] have the same width, but
the latter appears to encode a more confident measurement because the error 0.01 is much
smaller relative to 105 than to 1.

The distinction between these two classes of error is described by distinguishing between
absolute error and relative error:

Definition 2.1 (Absolute error). The absolute error of a measurement is the difference
between the approximate value and its underlying true value.

Definition 2.2 (Relative error). The relative error of a measurement is the absolute error
divided by the true value.

Absolute error is measured in input units, while relative error is measured as a percentage.

Example 2.3 (Absolute and relative error). Absolute and relative error can be used to
express uncertainty in a measurement as follows:

Absolute: 2 in± 0.02 in

Relative: 2 in± 1%

Example 2.4 (Catastrophic cancellation). Suppose we wish to compute the difference
d ≡ 1− 0.99 = 0.01. Thanks to an inaccurate representation, we may only know these two
values up to ±0.004. Assuming that we can carry out the subtraction step without error,
we are left with the following expression for absolute error:

d = 0.01± 0.008.

In other words, we know d is somewhere in the range [0.002, 0.018]. From an absolute
perspective, this error may be fairly small. Suppose we attempt to calculate relative error:

|0.002− 0.01|
0.01

=
|0.018− 0.01|

0.01
= 80%.

Thus, although 1 and 0.99 are known with relatively small error, the difference has enor-
mous relative error of 80%. This phenomenon, known as catastrophic cancellation, is a
danger associated with subtracting two nearby values, yielding a result close to zero.
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0.2 × 10−8

10−7

x

Figure 2.2 Values of f(x) from Example 2.5, computed using IEEE floating-point

arithmetic.

Example 2.5 (Loss of precision in practice). Figure 2.2 plots the function

f(x) ≡ ex − 1

x
− 1,

for evenly spaced inputs x ∈ [−10−8, 10−8], computed using IEEE floating-point arith-
metic. The numerator and denominator approach 0 at approximately the same rate, re-
sulting in loss of precision and vertical jumps up and down near x = 0. As x → 0, in
theory f(x)→ 0, and hence the relative error of these approximate values blows up.

In most applications, the true value is unknown; after all, if it were known, there would be
no need for an approximation in the first place. Thus, it is difficult to compute relative error
in closed form. One possible resolution is to be conservative when carrying out computations:
At each step take the largest possible error estimate and propagate these estimates forward
as necessary. Such conservative estimates are powerful in that when they are small we can
be very confident in our output.

An alternative resolution is to acknowledge what you can measure; this resolution re-
quires somewhat more intricate arguments but will appear as a theme in future chapters. For
instance, suppose we wish to solve the equation f(x) = 0 for x given a function f : R→ R.
Our computational system may yield some xest satisfying f(xest) = ε for some ε with
|ε| � 1. If x0 is the true root satisfying f(x0) = 0, we may not be able to evaluate the dif-
ference |x0−xest| since x0 is unknown. On the other hand, by evaluating f we can compute
|f(xest)− f(x0)| ≡ |f(xest)| since f(x0) = 0 by definition. This difference of f values gives
a proxy for error that still is zero exactly when xest = x0.

This example illustrates the distinction between forward and backward error. Forward
error is the most direct definition of error as the difference between the approximated
and actual solution, but as we have discussed it is not always computable. Contrastingly,
backward error is a calculable proxy for error correlated with forward error. We can adjust
the definition and interpretation of backward error as we consider different problems, but
one suitable—if vague—definition is as follows:

Definition 2.3 (Backward error). The backward error of an approximate solution to a
numerical problem is the amount by which the problem statement would have to change
to make the approximate solution exact.
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This definition is somewhat obtuse, so we illustrate its application to a few scenarios.

Example 2.6 (Linear systems). Suppose we wish to solve the n×n linear system A~x = ~b

for ~x ∈ Rn. Label the true solution as ~x0 ≡ A−1~b. In reality, due to rounding error and
other issues, our system yields a near-solution ~xest. The forward error of this approximation
is the difference ~xest − ~x0; in practice, this difference is impossible to compute since we
do not know ~x0. In reality, ~xest is the exact solution to a modified system A~x = ~best for
~best ≡ A~xest; thus, we might measure backward error in terms of the difference ~b −~best.
Unlike the forward error, this error is easily computable without inverting A, and ~xest is
a solution to the problem exactly when backward (or forward) error is zero.

Example 2.7 (Solving equations, from [58], Example 1.5). Suppose we write a function
for finding square roots of positive numbers that outputs

√
2 ≈ 1.4. The forward error is

|1.4−
√

2| ≈ 0.0142. The backward error is |1.42 − 2| = 0.04.

These examples demonstrate that backward error can be much easier to compute than
forward error. For example, evaluating forward error in Example 2.6 required inverting a
matrix A while evaluating backward error required only multiplication by A. Similarly,
in Example 2.7, transitioning from forward error to backward error replaced square root
computation with multiplication.

2.2.2 Conditioning, Stability, and Accuracy
In nearly any numerical problem, zero backward error implies zero forward error and vice
versa. A piece of software designed to solve such a problem surely can terminate if it finds
that a candidate solution has zero backward error. But what if backward error is small but
nonzero? Does this condition necessarily imply small forward error? We must address such
questions to justify replacing forward error with backward error for evaluating the success
of a numerical algorithm.

The relationship between forward and backward error can be different for each problem
we wish to solve, so in the end we make the following rough classification:

• A problem is insensitive or well-conditioned when small amounts of backward error
imply small amounts of forward error. In other words, a small perturbation to the
statement of a well-conditioned problem yields only a small perturbation of the true
solution.

• A problem is sensitive, poorly conditioned, or stiff when this is not the case.

Example 2.8 (ax = b). Suppose as a toy example that we want to find the solution
x0 ≡ b/a to the linear equation ax = b for a, x, b ∈ R. Forward error of a potential solution
x is given by |x−x0| while backward error is given by |b−ax| = |a(x−x0)|. So, when |a| � 1,
the problem is well-conditioned since small values of backward error a(x− x0) imply even
smaller values of x− x0; contrastingly, when |a| � 1 the problem is ill-conditioned, since
even if a(x−x0) is small, the forward error x−x0 ≡ 1/a · a(x−x0) may be large given the
1/a factor.

We define the condition number to be a measure of a problem’s sensitivity:
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Definition 2.4 (Condition number). The condition number of a problem is the ratio of
how much its solution changes to the amount its statement changes under small pertur-
bations. Alternatively, it is the ratio of forward to backward error for small changes in the
problem statement.

Problems with small condition numbers are well-conditioned, and thus backward error can
be used safely to judge success of approximate solution techniques. Contrastingly, much
smaller backward error is needed to justify the quality of a candidate solution to a problem
with a large condition number.

Example 2.9 (ax = b, continued). Continuing Example 2.8, we can compute the condition
number exactly:

c =
forward error

backward error
=
|x− x0|
|a(x− x0)| ≡

1

|a| .

Computing condition numbers usually is nearly as hard as computing forward error,
and thus their exact computation is likely impossible. Even so, many times it is possible
to bound or approximate condition numbers to help evaluate how much a solution can be
trusted.

Example 2.10 (Root-finding). Suppose that we are given a smooth function f : R→ R
and want to find roots x with f(x) = 0. By Taylor’s theorem, f(x + ε) ≈ f(x) + εf ′(x)
when |ε| is small. Thus, an approximation of the condition number for finding the root x
is given by

forward error

backward error
=

|(x+ ε)− x|
|f(x+ ε)− f(x)| ≈

|ε|
|εf ′(x)| =

1

|f ′(x)| .

This approximation generalizes the one in Example 2.9. If we do not know x, we cannot
evaluate f ′(x), but if we can examine the form of f and bound |f ′| near x, we have an idea
of the worst-case situation.

Forward and backward error measure the accuracy of a solution. For the sake of scientific
repeatability, we also wish to derive stable algorithms that produce self-consistent solutions
to a class of problems. For instance, an algorithm that generates accurate solutions only
one fifth of the time might not be worth implementing, even if we can use the techniques
above to check whether a candidate solution is good. Other numerical methods require the
client to tune several unintuitive parameters before they generate usable output and may
be unstable or sensitive to changes to any of these options.

2.3 PRACTICAL ASPECTS
The theory of error analysis introduced in §2.2 will allow us to bound the quality of numerical
techniques we introduce in future chapters. Before we proceed, however, it is worth noting
some more practical oversights and “gotchas” that pervade implementations of numerical
methods.

We purposefully introduced the largest offender early in §2.1, which we repeat in a larger
font for well-deserved emphasis:

Rarely if ever should the operator == and its equivalents
be used on fractional values. Instead, some tolerance

should be used to check if numbers are equal.
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Finding a suitable replacement for == depends on particulars of the situation. Example 2.6
shows that a method for solving A~x = ~b can terminate when the residual ~b − A~x is zero;
since we do not want to check if A*x==b explicitly, in practice implementations will check
norm(A*x-b)<epsilon. This example demonstrates two techniques:

• the use of backward error ~b − A~x rather than forward error to determine when to
terminate, and

• checking whether backward error is less than epsilon to avoid the forbidden ==0

predicate.

The parameter epsilon depends on how accurate the desired solution must be as well as
the quality of the discrete numerical system.

Based on our discussion of relative error, we can isolate another common cause of bugs
in numerical software:

Beware of operations that transition between orders of magnitude,
like division by small values and subtraction of similar quantities.

Catastrophic cancellation as in Example 2.4 can cause relative error to explode even if the
inputs to an operation are known with near-complete certainty.

2.3.1 Computing Vector Norms
A programmer using floating-point data types and operations must be vigilant when it
comes to detecting and preventing poor numerical operations. For example, consider the
following code snippet for computing the norm ‖~x‖2 for a vector ~x ∈ Rn represented as a
1D array x[]:

double normSquared = 0;

for (int i = 0; i < n; i++)

normSquared += x[i]*x[i];

return sqrt(normSquared );

In theory, mini |xi| ≤ ‖~x‖2/√n ≤ maxi |xi|, that is, the norm of ~x is on the order of the values
of elements contained in ~x. Hidden in the computation of ‖~x‖2, however, is the expression
x[i]*x[i]. If there exists i such that x[i] is near DOUBLE_MAX, the product x[i]*x[i]

will overflow even though ‖~x‖2 is still within the range of the doubles. Such overflow is
preventable by dividing ~x by its maximum value, computing the norm, and multiplying
back:

double maxElement = epsilon; // don ’t want to divide by zero!

for (int i = 0; i < n; i++)

maxElement = max(maxElement , fabs(x[i]));

for (int i = 0; i < n; i++) {

double scaled = x[i] / maxElement;

normSquared += scaled*scaled;

}

return sqrt(normSquared) * maxElement;

The scaling factor alleviates the overflow problem by ensuring that elements being summed
are no larger than 1, at the cost of additional computation time.

This small example shows one of many circumstances in which a single character of code
can lead to a non-obvious numerical issue, in this case the product *. While our intuition
from continuous mathematics is sufficient to formulate many numerical methods, we must
always double-check that the operations we employ are valid when transitioning from theory
to finite-precision arithmetic.
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function Simple-Sum(�x)
s ← 0 � Current total
for i ← 1, 2, . . . , n : s ← s + xi

return s

(a)

function Kahan-Sum(�x)
s, c ← 0 � Current total and compensation
for i ← 1, 2, . . . , n

v ← xi + c � Try to add xi and compensation c to the sum
snext ← s + v � Compute the summation result of this iteration

c ← v − (snext − s) � Compute compensation using the Kahan error estimate
s ← snext � Update sum

return s

(b)

Figure 2.3 (a) A simplistic method for summing the elements of a vector ~x; (b) the

Kahan summation algorithm.

2.3.2 Larger-Scale Example: Summation
We now provide an example of a numerical issue caused by finite-precision arithmetic whose
resolution involves a more subtle algorithmic trick. Suppose that we wish to sum a list of
floating-point values stored in a vector ~x ∈ Rn, a task required by systems in accounting,
machine learning, graphics, and nearly any other field. A simple strategy, iterating over the
elements of ~x and incrementally adding each value, is detailed in Figure 2.3(a). For the vast
majority of applications, this method is stable and mathematically valid, but in challenging
cases it can fail.

What can go wrong? Consider the case where n is large and most of the values xi are
small and positive. Then, as i progresses, the current sum s will become large relative to xi.
Eventually, s could be so large that adding xi would change only the lowest-order bits of s,
and in the extreme case s could be large enough that adding xi has no effect whatsoever.
Put more simply, adding a long list of small numbers can result in a large sum, even if any
single term of the sum appears insignificant.

To understand this effect mathematically, suppose that computing a sum a + b can be
off by as much as a factor of ε > 0. Then, the method in Figure 2.3(a) can induce error on
the order of nε, which grows linearly with n. If most elements xi are on the order of ε, then
the sum cannot be trusted whatsoever ! This is a disappointing result: The error can be as
large as the sum itself.

Fortunately, there are many ways to do better. For example, adding the smallest values
first might make sure they are not deemed insignificant. Methods recursively adding pairs
of values from ~x and building up a sum also are more stable, but they can be difficult to
implement as efficiently as the for loop above. Thankfully, an algorithm by Kahan provides
an easily implemented “compensated summation” method that is nearly as fast as iterating
over the array [69].
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The useful observation to make is that we can approximate the inaccuracy of s as it
changes from iteration to iteration. To do so, consider the expression

((a+ b)− a)− b.
Algebraically, this expression equals zero. Numerically, however, this may not be the case.
In particular, the sum (a+b) may be rounded to floating-point precision. Subtracting a and
b one at a time then yields an approximation of the error of approximating a+ b. Removing
a and b from a + b intuitively transitions from large orders of magnitude to smaller ones
rather than vice versa and hence is less likely to induce rounding error than evaluating the
sum a+b; this observation explains why the error estimate is not itself as prone to rounding
issues as the original operation.

With this observation in mind, the Kahan technique proceeds as in Figure 2.3(b). In
addition to maintaining the sum s, now we keep track of a compensation value c approxi-
mating the difference between s and the true sum at each iteration i. During each iteration,
we attempt to add this compensation to s in addition to the current element xi of ~x; then
we recompute c to account for the latest error.

Analyzing the Kahan algorithm requires more careful bookkeeping than analyzing the
incremental technique in Figure 2.3(a). Although constructing a formal mathematical argu-
ment is outside the scope of our discussion, the final mathematical result is that error is on
the order O(ε+ nε2), a considerable improvement over O(nε) when 0 ≤ ε� 1. Intuitively,
it makes sense that the O(nε) term from Figure 2.3(a) is reduced, since the compensation
attempts to represent the small values that were otherwise neglected. Formal arguments for
the ε2 bound are surprisingly involved; one detailed derivation can be found in [49].

Implementing Kahan summation is straightforward but more than doubles the operation
count of the resulting program. In this way, there is an implicit trade-off between speed
and accuracy that software engineers must make when deciding which technique is most
appropriate. More broadly, Kahan’s algorithm is one of several methods that bypass the
accumulation of numerical error during the course of a computation consisting of more
than one operation. Another representative example from the field of computer graphics is
Bresenham’s algorithm for rasterizing lines [18], which uses only integer arithmetic to draw
lines even when they intersect rows and columns of pixels at non-integer locations.

2.4 EXERCISES
2.1 When might it be preferable to use a fixed-point representation of real numbers over

floating-point? When might it be preferable to use a floating-point representation of
real numbers over fixed-point?

DH2.2 (“Extraterrestrial chemistry”) Suppose we are programming a planetary rover to an-
alyze the chemicals in a gas found on a neighboring planet. Our rover is equipped
with a flask of volume 0.5 m3 and also has pressure and temperature sensors. Using
the sensor readouts from a given sample, we would like our rover to determine the
amount of gas our flask contains.

One of the fundamental physical equations describing a gas is the Ideal Gas Law
PV = nRT , which states:

(P )ressure · (V )olume = amou(n)t of gas ·R · (T )emperature,

where R is the ideal gas constant, approximately equal to 8.31 J ·mol−1 ·K−1. Here,
P is in pascals, V is in cubic meters, n is in moles, and T is in Kelvin. We will use
this equation to approximate n given the other variables.
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(a) Describe any forms of rounding, discretization, modeling, and input error that
can occur when solving this problem.

(b) Our rover’s pressure and temperature sensors do not have perfect accuracy. Sup-
pose the pressure and temperature sensor measurements are accurate to within
±εP and ±εT , respectively. Assuming V , R, and fundamental arithmetic opera-
tions like + and× induce no errors, bound the relative forward error in computing
n, when 0 < εP � P and 0 < εT � T.

(c) Continuing the previous part, suppose P = 100 Pa, T = 300 K, εP = 1 Pa, and
εT = 0.5 K. Derive upper bounds for the worst absolute and relative errors that
we could obtain from a computation of n.

(d) Experiment with perturbing the variables P and T . Based on how much your
estimate of n changes between the experiments, suggest when this problem is
well-conditioned or ill-conditioned.

DH2.3 In contrast to the “absolute” condition number introduced in this chapter, we can
define the “relative” condition number of a problem to be

κrel ≡
relative forward error

relative backward error
.

In some cases, the relative condition number of a problem can yield better insights
into its sensitivity.

Suppose we wish to evaluate a function f : R → R at a point x ∈ R, obtaining
y ≡ f(x). Assuming f is smooth, compare the absolute and relative condition numbers
of computing y at x. Additionally, provide examples of functions f with large and small
relative condition numbers for this problem near x = 1.
Hint: Start with the relationship y + ∆y = f(x + ∆x), and use Taylor’s theorem to
write the condition numbers in terms of x, f(x), and f ′(x).

2.4 Suppose f : R → R is infinitely differentiable, and we wish to write algorithms for
finding x∗ minimizing f(x). Our algorithm outputs xest, an approximation of x∗.
Assuming that in our context this problem is equivalent to finding roots of f ′(x),
write expressions for:

(a) Forward error of the approximation

(b) Backward error of the approximation

(c) Conditioning of this minimization problem near x∗

2.5 Suppose we are given a list of floating-point values x1, x2, . . . , xn. The following quan-
tity, known as their “log-sum-exp,” appears in many machine learning algorithms:

`(x1, . . . , xn) ≡ ln

[
n∑

k=1

exk

]
.

(a) The value pk ≡ exk often represents a probability pk ∈ (0, 1]. In this case, what
is the range of possible xk’s?

(b) Suppose many of the xk’s are very negative (xk � 0). Explain why evaluating
the log-sum-exp formula as written above may cause numerical error in this case.
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Figure 2.4 z-fighting, for Exercise 2.6; the overlap region is zoomed on the right.

(c) Show that for any a ∈ R,

`(x1, . . . , xn) = a+ ln

[
n∑

k=1

exk−a
]
.

To avoid the issues you explained in 2.5b, suggest a value of a that may improve
the stability of computing `(x1, . . . , xn).

2.6 (“z-fighting”) A typical pipeline in computer graphics draws three-dimensional sur-
faces on the screen, one at a time. To avoid rendering a far-away surface on top of
a close one, most implementations use a z-buffer, which maintains a double-precision
depth value z(x, y) ≥ 0 representing the depth of the closest object to the camera at
each screen coordinate (x, y). A new object is rendered at (x, y) only when its z value
is smaller than the one currently in the z-buffer.

A common artifact when rendering using z-buffering known as z-fighting is shown in
Figure 2.4. Here, two surfaces overlap at some visible points. Why are there rendering
artifacts in this region? Propose a strategy for avoiding this artifact; there are many
possible resolutions.

2.7 (Adapted from Stanford CS 205A, 2012) Thanks to floating-point arithmetic, in most
implementations of numerical algorithms we cannot expect that computations involv-
ing fractional values can be carried out with 100% precision. Instead, every time we
do a numerical operation we induce the potential for error. Many models exist for
studying how this error affects the quality of a numerical operation; in this problem,
we will explore one common model.

Suppose we care about an operation � between two scalars x and y; here � might stand
for +, −, ×, ÷, and so on. As a model for the error that occurs when computing x�y,
we will say that evaluating x � y on the computer yields a number (1 + ε)(x � y) for
some number ε satisfying 0 ≤ |ε| < εmax � 1; we will assume ε can depend on �, x,
and y.

(a) Why is this a reasonable model for modeling numerical issues in floating-point
arithmetic? For example, why does this make more sense than assuming that the
output of evaluating x � y is (x � y) + ε?
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(b) (Revised by B. Jo) Suppose we are given two vectors ~x, ~y ∈ Rn and compute
their dot product as sn via the recurrence:

s0 ≡ 0

sk ≡ sk−1 + xkyk.

In practice, both the addition and multiplication steps of computing sk from sk−1

induce numerical error. Use ŝk to denote the actual value computed incorporating
numerical error, and denote ek ≡ |ŝk − sk|. Show that

|en| ≤ nεmaxs̄n +O(nε2
maxs̄n),

where s̄n ≡
∑n
k=1 |xk||yk|. You can assume that adding x1y1 to zero incurs no

error, so ŝ1 = (1 + ε×)x1y1, where ε× encodes the error induced by multiplying
x1 and y1. You also can assume that nεmax < 1.

2.8 Argue using the error model from the previous problem that the relative error of com-
puting x−y for x, y > 0 can be unbounded; assume that there is error in representing
x and y in addition to error computing the difference. This phenomenon is known as
“catastrophic cancellation” and can cause serious numerical issues.

2.9 In this problem, we continue to explore the conditioning of root-finding. Suppose f(x)
and p(x) are smooth functions of x ∈ R.

(a) Thanks to inaccuracies in how we evaluate or express f(x), we might accidentally
compute roots of a perturbation f(x) + εp(x). Take x∗ to be a root of f, so
f(x∗) = 0. If f ′(x∗) 6= 0, for small ε we can write a function x(ε) such that
f(x(ε)) + εp(x(ε)) = 0, with x(0) = x∗. Assuming such a function exists and is
differentiable, show:

dx

dε

∣∣∣∣
ε=0

= − p(x∗)
f ′(x∗)

.

(b) Assume f(x) is given by Wilkinson’s polynomial [131]:

f(x) ≡ (x− 1) · (x− 2) · (x− 3) · · · · · (x− 20).

We could have expanded f(x) in the monomial basis as f(x) = a0 +a1x+a2x
2 +

· · · + a20x
20, for appropriate choices of a0, . . . , a20. If we express the coefficient

a19 inaccurately, we could use the model from Exercise 2.9a with p(x) ≡ x19 to
predict how much root-finding will suffer. For these choices of f(x) and p(x),
show:

dx

dε

∣∣∣∣
ε=0,x∗=j

= −
∏

k 6=j

j

j − k .

(c) Compare dx
dε from the previous part for x∗ = 1 and x∗ = 20. Which root is more

stable to this perturbation?

2.10 The roots of the quadratic function ax2 + bx+ c are given by the quadratic equation

x∗ ∈ −b±
√
b2 − 4ac

2a
.
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(a) Prove the alternative formula

x∗ ∈ −2c

b±
√
b2 − 4ac

.

(b) Propose a numerically stable algorithm for solving the quadratic equation.

2.11 One technique for tracking uncertainty in a calculation is the use of interval arithmetic.
In this system, an uncertain value for a variable x is represented as the interval
[x] ≡ [x, x] representing the range of possible values for x, from x to x. Assuming
infinite-precision arithmetic, give update rules for the following in terms of x, x, y,
and y:

• [x] + [y]

• [x]− [y]

• [x]× [y]

• [x]÷ [y]

• [x]1/2

Additionally, propose a conservative modification for finite-precision arithmetic.

2.12 Algorithms for dealing with geometric primitives such as line segments and triangles
are notoriously difficult to implement in a numerically stable fashion. Here, we high-
light a few ideas from “ε-geometry,” a technique built to deal with these issues [55].

(a) Take ~p, ~q, ~r ∈ R2. Why might it be difficult to determine whether ~p, ~q, and ~r are
collinear using finite-precision arithmetic?

(b) We will say ~p, ~q, and ~r are ε-collinear if there exist ~p′ with ‖~p − ~p′‖2 ≤ ε, ~q′

with ‖~q − ~q′‖2 ≤ ε, and ~r′ with ‖~r − ~r′‖2 ≤ ε such that ~p′, ~q′, and ~r′ are exactly
collinear. For fixed ~p and ~q, sketch the region {~r ∈ R2 : ~p, ~q, ~r are ε-collinear}.
This region is known as the ε-butterfly of ~p and ~q.

(c) An ordered triplet (~p, ~q, ~r) ∈ R2 × R2 × R2 is ε-clockwise if the three points
can be perturbed by at most distance ε so that they form a triangle whose
vertices are in clockwise order; we will consider collinear triplets to be both
clockwise and counterclockwise. For fixed ~p and ~q, sketch the region {~r ∈ R2 :
(~p, ~q, ~r) is ε-clockwise}.

(d) Show a triplet is ε-collinear if and only if it is both ε-clockwise and ε-
counterclockwise.

(e) A point ~x ∈ R2 is ε-inside the triangle (~p, ~q, ~r) if and only if ~p, ~q, ~r, and ~x can
be moved by at most distance ε such that the perturbed ~x′ is exactly inside
the perturbed triangle (~p′, ~q′, ~r′). Show that when ~p, ~q, and ~r are in (exactly)
clockwise order, ~x is inside (~p, ~q, ~r) if and only if (~p, ~q, ~x), (~q, ~r, ~x), and (~r, ~p, ~x) are
all clockwise. Is the same statement true if we relax to ε-inside and ε-clockwise?
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WE commence our discussion of numerical algorithms by deriving ways to solve the
linear system of equations A~x = ~b. We will explore applications of these systems

in Chapter 4, showing a variety of computational problems that can be approached by
constructing appropriate A and ~b and solving for ~x. Furthermore, solving a linear system
will serve as a basic step in larger methods for optimization, simulation, and other numerical
tasks considered in almost all future chapters. For these reasons, a thorough treatment and
understanding of linear systems is critical.

3.1 SOLVABILITY OF LINEAR SYSTEMS
As introduced in §1.3.4, systems of linear equations like

3x+ 2y = 6

−4x+ y = 7

can be written in matrix form as in
(

3 2
−4 1

)(
x
y

)
=

(
6
7

)
.
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More generally, we can write linear systems in the form A~x = ~b for A ∈ Rm×n, ~x ∈ Rn, and
~b ∈ Rm.

The solvability of A~x = ~b must fall into one of three cases:

1. The system may not admit any solutions, as in:

(
1 0
1 0

)(
x
y

)
=

(
−1
1

)
.

This system enforces two incompatible conditions simultaneously: x = −1 and x = 1.

2. The system may admit a single solution; for instance, the system at the beginning of
this section is solved by (x, y) = (−8/11, 45/11).

3. The system may admit infinitely many solutions, e.g., 0~x = ~0. If a system A~x = ~b
admits two distinct solutions ~x0 and ~x1, then it automatically has infinitely many
solutions of the form t~x0 + (1− t)~x1 for all t ∈ R, since

A(t~x0 + (1− t)~x1) = tA~x0 + (1− t)A~x1 = t~b+ (1− t)~b = ~b.

Because it has multiple solutions, this linear system is labeled underdetermined.

The solvability of the system A~x = ~b depends both on A and on ~b. For instance, if we
modify the unsolvable system above to

(
1 0
1 0

)(
x
y

)
=

(
1
1

)
,

then the system changes from having no solutions to infinitely many of the form (1, y).

Every matrix A admits a right-hand side ~b such that A~x = ~b is solvable, since A~x = ~0
always can be solved by ~x = ~0 regardless of A.

For alternative intuition about the solvability of linear systems, recall from §1.3.1 that
the matrix-vector product A~x can be viewed as a linear combination of the columns of A
with weights from ~x. Thus, as mentioned in §1.3.4, A~x = ~b is solvable exactly when ~b is in
the column space of A.

In a broad way, the shape of the matrix A ∈ Rm×n has considerable bearing on the
solvability of A~x = ~b. First, consider the case when A is “wide,” that is, when it has more
columns than rows (n > m). Each column is a vector in Rm, so at most the column space
can have dimension m. Since n > m, the n columns of A must be linearly dependent; this
implies that there exists a set of weights ~x0 6= ~0 such that A~x0 = ~0. If we can solve A~x = ~b
for ~x, then A(~x+α~x0) = A~x+αA~x0 = ~b+~0 = ~b, showing that there are actually infinitely

many solutions ~x to A~x = ~b. In other words:

No wide matrix system admits a unique solution.

When A is “tall,” that is, when it has more rows than columns (m > n), then its n
columns cannot possibly span the larger-dimensional Rm. For this reason, there exists some
vector ~b0 ∈ Rm\colA. By definition, this ~b0 cannot satisfy A~x = ~b0 for any ~x. That is:

For every tall matrix A, there exists a ~b0 such that A~x = ~b0 is not
solvable.



Linear Systems and the LU Decomposition � 49

The situations above are far from favorable for designing numerical algorithms. In the
wide case, if a linear system admits many solutions, we must specify which solution is desired
by the user. After all, the solution ~x+ 1031~x0 might not be as meaningful as ~x− 0.1~x0. In
the tall case, even if A~x = ~b is solvable for a particular ~b, a small perturbation A~x = ~b+ ε~b0
may not be solvable. The rounding procedures discussed in the last chapter easily can move
a tall system from solvable to unsolvable.

Given these complications, in this chapter we will make some simplifying assumptions:

• We will consider only square A ∈ Rn×n.

• We will assume that A is nonsingular, that is, that A~x = ~b is solvable for any ~b.

From §1.3.4, the nonsingularity condition ensures that the columns of A span Rn and
implies the existence of a matrix A−1 satisfying A−1A = AA−1 = In×n. We will relax these
conditions in subsequent chapters.

A misleading observation is to think that solving A~x = ~b is equivalent to computing
the matrix A−1 explicitly and then multiplying to find ~x ≡ A−1~b. While this formula is
valid mathematically, it can represent a considerable amount of overkill and potential for
numerical instability for several reasons:

• The matrix A−1 may contain values that are difficult to express in floating-point
precision, in the same way that 1/ε→∞ as ε→ 0.

• It may be possible to tune the solution strategy both to A and to ~b, e.g., by working
with the columns of A that are the closest to ~b first. Strategies like these can provide
higher numerical stability.

• Even if A is sparse, meaning it contains many zero values that do not need to be
stored explicitly, or has other special structure, the same may not be true for A−1.

We highlight this point as a common source of error and inefficiency in numerical software:

Avoid computing A−1 explicitly unless you have a strong
justification for doing so.

3.2 AD-HOC SOLUTION STRATEGIES
In introductory algebra, we often approach the problem of solving a linear system of equa-
tions as a puzzle rather than as a mechanical exercise. The strategy is to “isolate” variables,
iteratively simplifying individual equalities until each is of the form x = const. To formulate
step-by-step algorithms for solving linear systems, it is instructive to carry out an example
of this methodology with an eye for aspects that can be fashioned into a general technique.

We will consider the following system:

y − z = −1

3x− y + z = 4

x+ y − 2z = −3.

Alongside each simplification step, we will maintain a matrix system encoding the current
state. Rather than writing out A~x = ~b explicitly, we save space using the augmented matrix




0 1 −1 −1
3 −1 1 4
1 1 −2 −3


 .
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We can write linear systems this way so long as we agree that variable coefficients remain
on the left of the line and the constants on the right.

Perhaps we wish to deal with the variable x first. For convenience, we can permute the
rows of the system so that the third equation appears first:

x+ y − 2z = −3
y − z = −1

3x− y + z = 4




1 1 −2 −3
0 1 −1 −1
3 −1 1 4




We then substitute the first equation into the third to eliminate the 3x term. This is the
same as scaling the relationship x+ y − 2z = −3 by −3 and adding the result to the third
equation:

x+ y − 2z = −3
y − z = −1

−4y + 7z = 13




1 1 −2 −3
0 1 −1 −1
0 −4 7 13




Similarly, to eliminate y from the third equation, we scale the second equation by 4 and
add the result to the third:

x+ y − 2z = −3
y − z = −1

3z = 9




1 1 −2 −3
0 1 −1 −1
0 0 3 9




We have now isolated z! We scale the third row by 1/3 to yield an expression for z:

x+ y − 2z = −3
y − z = −1

z = 3




1 1 −2 −3
0 1 −1 −1
0 0 1 3




Now, we substitute z = 3 into the other two equations to remove z from all but the final
row:

x+ y = 3
y = 2
z = 3




1 1 0 3
0 1 0 2
0 0 1 3




Finally, we make a similar substitution for y to reveal the solution:

x = 1
y = 2
z = 3




1 0 0 1
0 1 0 2
0 0 1 3




Revisiting the steps above yields a few observations about how to solve linear systems:

• We wrote successive systems Ai~x = ~bi that can be viewed as simplifications of the
original A~x = ~b.

• We solved the system without ever writing down A−1.

• We repeatedly used a few elementary operations: scaling, adding, and permuting rows.

• The same operations were applied to A and ~b. If we scaled the k-th row of A, we also
scaled the k-th row of ~b. If we added rows k and ` of A, we added rows k and ` of ~b.

• The steps did not depend on ~b. That is, all of our decisions were motivated by elimi-
nating nonzero values in A; ~b just came along for the ride.

• We terminated when we reached the simplified system In×n~x = ~b.

We will use all of these general observations about solving linear systems to our advantage.
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3.3 ENCODING ROW OPERATIONS
Looking back at the example in §3.2, we see that solving A~x = ~b only involved three
operations: permutation, row scaling, and adding a multiple of one row to another. We can
solve any linear system this way, so it is worth exploring these operations in more detail.

A pattern we will see for the remainder of this chapter is the use of matrices to express
row operations. For example, the following two descriptions of an operation on a matrix A
are equivalent:

1. Scale the first row of A by 2.

2. Replace A with S2A, where S2 is defined by:

S2 ≡




2 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



.

When presenting the theory of matrix simplification, it is cumbersome to use words to
describe each operation, so when possible we will encode matrix algorithms as a series of
pre- and post-multiplications by specially designed matrices like S2 above.

This description in terms of matrices, however, is a theoretical construction. Implementa-
tions of algorithms for solving linear systems should not construct matrices like S2 explicitly.
For example, if A ∈ Rn×n, it should take n steps to scale the first row of A by 2, but ex-
plicitly constructing S2 ∈ Rn×n and applying it to A takes n3 steps! That is, we will show
for notational convenience that row operations can be encoded using matrix multiplication,
but they do not have to be encoded this way.

3.3.1 Permutation
Our first step in §3.2 was to swap two of the rows. More generally, we might index the rows
of a matrix using the integers 1, . . . ,m. A permutation of those rows can be written as a
function σ : {1, . . . ,m} → {1, . . . ,m} such that {σ(1), . . . , σ(m)} = {1, . . . ,m}, that is, σ
maps every index to a different target.

If ~ek is the k-th standard basis vector, the product ~e>k A is the k-th row of the matrix
A. We can “stack” or concatenate these row vectors vertically to yield a matrix permuting
the rows according to σ:

Pσ ≡




− ~e>σ(1) −
− ~e>σ(2) −

...
− ~e>σ(m) −



.

The product PσA is the matrix A with rows permuted according to σ.

Example 3.1 (Permutation matrices). Suppose we wish to permute rows of a matrix in
R3×3 with σ(1) = 2, σ(2) = 3, and σ(3) = 1. According to our formula we have

Pσ =




0 1 0
0 0 1
1 0 0


 .
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From Example 3.1, Pσ has ones in positions indexed (k, σ(k)) and zeros elsewhere. Reversing
the order of each pair, that is, putting ones in positions indexed (σ(k), k) and zeros elsewhere,
undoes the effect of the permutation. Hence, the inverse of Pσ must be its transpose P>σ .
Symbolically, we write P>σ Pσ = Im×m, or equivalently P−1

σ = P>σ .

3.3.2 Row Scaling
Suppose we write down a list of constants a1, . . . , am and seek to scale the k-th row of A
by ak for each k. This task is accomplished by applying the scaling matrix Sa:

Sa ≡




a1 0 0 · · ·
0 a2 0 · · ·
...

...
. . .

...
0 0 · · · am


 .

Assuming that all the ak’s satisfy ak 6= 0, it is easy to invert Sa by scaling back:

S−1
a = S1/a ≡




1/a1 0 0 · · ·
0 1/a2 0 · · ·
...

...
. . .

...
0 0 · · · 1/am


 .

If any ak equals zero, Sa is not invertible.

3.3.3 Elimination
Finally, suppose we wish to scale row k by a constant c and add the result to row `; we will
assume k 6= `. This operation may seem less natural than the previous two, but actually it is
quite practical. In particular, it is the only one we need to combine equations from different
rows of the linear system! We will realize this operation using an elimination matrix M ,
such that the product MA is the result of applying this operation to matrix A.

The product ~e>k A picks out the k-th row of A. Pre-multiplying the result by ~e` yields a
matrix ~e`~e

>
k A that is zero except on its `-th row, which is equal to the k-th row of A.

Example 3.2 (Elimination matrix construction). Take

A =




1 2 3
4 5 6
7 8 9


 .

Suppose we wish to isolate the third row of A ∈ R3×3 and move it to row two. As discussed
above, this operation is accomplished by writing:

~e2~e
>
3 A =




0
1
0


( 0 0 1

)



1 2 3
4 5 6
7 8 9




=




0
1
0


( 7 8 9

)

=




0 0 0
7 8 9
0 0 0


 .
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We multiplied right to left above but just as easily could have grouped the product as
(~e2~e

>
3 )A. Grouping this way involves application of the matrix

~e2~e
>
3 =




0
1
0


( 0 0 1

)
=




0 0 0
0 0 1
0 0 0


 .

We have succeeded in isolating row k and moving it to row `. Our original elimination
operation was to add c times row k to row `, which we can now carry out using the sum
A+c~e`~e

>
k A = (In×n+c~e`~e

>
k )A. Isolating the coefficient of A, the desired elimination matrix

is M ≡ In×n + c~e`~e
>
k .

The action of M can be reversed: Scale row k by c and subtract the result from row `.
We can check this formally:

(In×n − c~e`~e>k )(In×n + c~e`~e
>
k ) = In×n + (−c~e`~e>k + c~e`~e

>
k )− c2~e`~e>k ~e`~e>k

= In×n − c2~e`(~e>k ~e`)~e>k
= In×n since ~e>k ~e` = ~ek · ~e`, and k 6= `.

That is, M−1 = In×n − c~e`~e>k .
Example 3.3 (Solving a system). We can now encode each of our operations from Sec-
tion 3.2 using the matrices we have constructed above:

1. Permute the rows to move the third equation to the first row:

P =




0 0 1
1 0 0
0 1 0


 .

2. Scale row one by −3 and add the result to row three:

E1 = I3×3 − 3~e3~e
>
1 =




1 0 0
0 1 0
−3 0 1


 .

3. Scale row two by 4 and add the result to row three:

E2 = I3×3 + 4~e3~e
>
2 =




1 0 0
0 1 0
0 4 1


 .

4. Scale row three by 1/3:

S = diag(1, 1, 1/3) =




1 0 0
0 1 0
0 0 1/3


 .

5. Scale row three by 2 and add it to row one:

E3 = I3×3 + 2~e1~e
>
3 =




1 0 2
0 1 0
0 0 1


 .
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6. Add row three to row two:

E4 = I3×3 + ~e2~e
>
3 =




1 0 0
0 1 1
0 0 1


 .

7. Scale row two by −1 and add the result to row one:

E5 = I3×3 − ~e1~e
>
3 =




1 −1 0
0 1 0
0 0 1


 .

Thus, the inverse of A in Section 3.2 satisfies

A−1 = E5E4E3SE2E1P

=




1 −1 0
0 1 0
0 0 1






1 0 0
0 1 1
0 0 1






1 0 2
0 1 0
0 0 1






1 0 0
0 1 0
0 0 1/3







1 0 0
0 1 0
0 4 1






1 0 0
0 1 0
−3 0 1






0 0 1
1 0 0
0 1 0




=




1/3 1/3 0
7/3 1/3 −1
4/3 1/3 −1


 .

Make sure you understand why these matrices appear in reverse order! As a reminder,
we would not normally construct A−1 by multiplying the matrices above, since these
operations can be implemented more efficiently than generic matrix multiplication. Even
so, it is valuable to check that the theoretical operations we have defined are equivalent to
the ones we have written in words.

3.4 GAUSSIAN ELIMINATION
The sequence of steps chosen in Section 3.2 was by no means unique: There are many
different paths that can lead to the solution of A~x = ~b. Our steps, however, used Gaussian
elimination, a famous algorithm for solving linear systems of equations.

To introduce this algorithm, let’s say our system has the following generic “shape”:

(
A ~b

)
=




× × × × ×
× × × × ×
× × × × ×
× × × × ×


 .

Here, an × denotes a potentially nonzero value. Gaussian elimination proceeds in phases
described below.
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3.4.1 Forward-Substitution
Consider the upper-left element of the matrix:

(
A ~b

)
=




× × × × ×
× × × × ×
× × × × ×
× × × × ×


 .

We will call this element the first pivot and will assume it is nonzero; if it is zero we can
permute rows so that this is not the case. We first scale the first row by the reciprocal of
the pivot so that the value in the pivot position is one:




1 × × × ×
× × × × ×
× × × × ×
× × × × ×


 .

Now, we use the row containing the pivot to eliminate all other values underneath in the
same column using the strategy in §3.3.3:




1 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


 .

At this point, the entire first column is zero below the pivot. We change the pivot label to
the element in position (2, 2) and repeat a similar series of operations to rescale the pivot
row and use it to cancel the values underneath:




1 × × × ×
0 1 × × ×
0 0 × × ×
0 0 × × ×


 .

Now, our matrix begins to gain some structure. After the first pivot has been eliminated
from all other rows, the first column is zero except for the leading one. Thus, any row
operation involving rows two to m will not affect the zeros in column one. Similarly, after
the second pivot has been processed, operations on rows three to m will not remove the
zeros in columns one and two.

We repeat this process until the matrix becomes upper triangular :




1 × × × ×
0 1 × × ×
0 0 1 × ×
0 0 0 1 ×


 .

The method above of making a matrix upper triangular is known as forward-substitution
and is detailed in Figure 3.1.
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function Forward-Substitution(A,�b)

� Converts a system A�x = �b to an upper-triangular system U�x = �y.
� Assumes invertible A ∈ Rn×n and �b ∈ Rn.

U, �y ← A,� U�b will be upper triangular at completion
for p ← 1, 2 �n,..., Iterate over current pivot row p

� Optionally insert pivoting code here

s ← 1/upp � Scale row p to make element at (p, p) equal one
yp ← s · yp

for c ← p, . . . , n : upc ← s · upc

for r ← (p + 1) �n,..., Eliminate from future rows
s ← −urp � Scale row p by s and add to row r
yr ← yr + s · yp

for c ← p, . . . , n : urc ← urc + s · upc

return U, �y

Figure 3.1 Forward-substitution without pivoting; see §3.4.3 for pivoting options.

3.4.2 Back-Substitution
Eliminating the remaining ×’s from the remaining upper-triangular system is an equally
straightforward process proceeding in reverse order of rows and eliminating backward. After
the first set of back-substitution steps, we are left with the following shape:




1 × × 0 ×
0 1 × 0 ×
0 0 1 0 ×
0 0 0 1 ×


 .

Similarly, the second iteration yields:



1 × 0 0 ×
0 1 0 0 ×
0 0 1 0 ×
0 0 0 1 ×


 .

After our final elimination step, we are left with our desired form:



1 0 0 0 ×
0 1 0 0 ×
0 0 1 0 ×
0 0 0 1 ×


 .

The right-hand side now is the solution to the linear system A~x = ~b. Figure 3.2 implements
this method of back-substitution in more detail.

3.4.3 Analysis of Gaussian Elimination
Each row operation in Gaussian elimination—scaling, elimination, and swapping two rows—
takes O(n) time to complete, since they iterate over all n elements of a row (or two) of A.
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function Back-Substitution(U, �y)
� Solves upper-triangular systems U�x = �y for �x.

�x ← �y � We will start from U�x = �y and simplify to In×n�x = �x
for p ← n, n − 1, . . . , 1 � Iterate backward over pivots

for r ← 1, 2, . . . , p − 1 � Eliminate values above upp

xr ← xr − urpxp/upp

return �x

Figure 3.2 Back-substitution for solving upper-triangular systems; this implementa-

tion returns the solution ~x to the system without modifying U .

Once we choose a pivot, we have to do n forward- or back-substitutions into the rows below
or above that pivot, respectively; this means the work for a single pivot in total is O(n2).
In total, we choose one pivot per row, adding a final factor of n. Combining these counts,
Gaussian elimination runs in O(n3) time.

One decision that takes place during Gaussian elimination meriting more discussion is
the choice of pivots. We can permute rows of the linear system as we see fit before performing
forward-substitution. This operation, called pivoting, is necessary to be able to deal with all
possible matrices A. For example, consider what would happen if we did not use pivoting
on the following matrix:

A =

(
0 1
1 0

)
.

The circled element is exactly zero, so we cannot scale row one by any value to replace that
0 with a 1. This does not mean the system is not solvable—although singular matrices are
guaranteed to have this issue—but rather it means we must pivot by swapping the first and
second rows.

To highlight a related issue, suppose A looks like:

A =

(
ε 1
1 0

)
,

where 0 < ε� 1. If we do not pivot, then the first iteration of Gaussian elimination yields:

Ã =

(
1 1/ε
0 −1/ε

)
.

We have transformed a matrix A that looks nearly like a permutation matrix (A−1 ≈ A>,
a very easy way to solve the system!) into a system with potentially huge values of the
fraction 1/ε. This example is one of many instances in which we should try to avoid dividing
by vanishingly small numbers. In this way, there are cases when we may wish to pivot even
when Gaussian elimination theoretically could proceed without such a step.

Since Gaussian elimination scales by the reciprocal of the pivot, the most numerically
stable option is to have a large pivot. Small pivots have large reciprocals, which scale matrix
elements to regimes that may lose precision. There are two well-known pivoting strategies:

1. Partial pivoting looks through the current column and permutes rows of the matrix
so that the element in that column with the largest absolute value appears on the
diagonal.
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2. Full pivoting iterates over the entire matrix and permutes rows and columns to place
the largest possible value on the diagonal. Permuting columns of a matrix is a valid
operation after some added bookkeeping: it corresponds to changing the labeling of
the variables in the system, or post-multiplying A by a permutation.

Full pivoting is more expensive computationally than partial pivoting since it requires iter-
ating over the entire matrix (or using a priority queue data structure) to find the largest
absolute value, but it results in enhanced numerical stability. Full pivoting is rarely neces-
sary, and it is not enabled by default in common implementations of Gaussian elimination.

Example 3.4 (Pivoting). Suppose after the first iteration of Gaussian elimination we are
left with the following matrix:




1 10 −10

0 0.1 9

0 4 6.2


 .

If we implement partial pivoting, then we will look only in the second column and will
swap the second and third rows; we leave the 10 in the first row since that row already
has been visited during forward-substitution:




1 10 −10

0 4 6.2
0 0.1 9


 .

If we implement full pivoting, then we will move the 9:




1 −10 10

0 9 0.1
0 6.2 4


 .

3.5 LU FACTORIZATION
There are many times when we wish to solve a sequence of problems A~x1 = ~b1, A~x2 = ~b2, . . . ,
where in each system the matrix A is the same. For example, in image processing we
may apply the same filter encoded in A to a set of images encoded as ~b1,~b2, . . .. As we
already have discussed, the steps of Gaussian elimination for solving A~xk = ~bk depend
mainly on the structure of A rather than the values in a particular ~bk. Since A is kept
constant here, we may wish to cache the steps we took to solve the system so that each
time we are presented with a new ~bk we do not have to start from scratch. Such a caching
strategy compromises between restarting Gaussian elimination for each ~bi and computing
the potentially numerically unstable inverse matrix A−1.

Solidifying this suspicion that we can move some of the O(n3) expense for Gaussian
elimination into precomputation time if we wish to reuse A, recall the upper-triangular
system appearing after forward-substitution:




1 × × × ×
0 1 × × ×
0 0 1 × ×
0 0 0 1 ×


 .
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Unlike forward-substitution, solving this system by back-substitution only takes O(n2) time!
Why? As implemented in Figure 3.2, back-substitution can take advantage of the structure
of the zeros in the system. For example, consider the circled elements of the initial upper-
triangular system: 



1 × × × ×
0 1 × × ×
0 0 1 × ×
0 0 0 1 ×


 .

Since we know that the (circled) values to the left of the pivot are zero by definition of an
upper-triangular matrix, we do not need to scale them or copy them upward explicitly. If
we ignore these zeros completely, this step of backward-substitution only takes n operations
rather than the n2 taken by the corresponding step of forward-substitution.

The next pivot benefits from a similar structure:




1 × × 0 ×
0 1 × 0 ×
0 0 1 0 ×
0 0 0 1 ×


 .

Again, the zeros on both sides of the one do not need to be copied explicitly.
A nearly identical method can be used to solve lower -triangular systems of equations

via forward-substitution. Combining these observations, we have shown:

While Gaussian elimination takes O(n3) time, solving triangular
systems takes O(n2) time.

We will revisit the steps of Gaussian elimination to show that they can be used to factorize
the matrix A as A = LU , where L is lower triangular and U is upper triangular, so long as
pivoting is not needed to solve A~x = ~b. Once the matrices L and U are obtained, solving
A~x = ~b can be carried out by instead solving LU~x = ~b using forward-substitution followed
by backward-substitution; these two steps combined take O(n2) time rather than the O(n3)
time needed for full Gaussian elimination. This factorization also can be extended to a
related and equally useful decomposition when pivoting is desired or necessary.

3.5.1 Constructing the Factorization
Other than full pivoting, from §3.3 we know that all the operations in Gaussian elimination
can be thought of as pre-multiplying A~x = ~b by different matrices M to obtain easier
systems (MA)~x = M~b. As demonstrated in Example 3.3, from this standpoint, each step of

Gaussian elimination brings a new system (Mk · · ·M2M1A)~x = Mk · · ·M2M1
~b . Explicitly

storing these matrices Mk as n × n objects is overkill, but keeping this interpretation in
mind from a theoretical perspective simplifies many of our calculations.

After the forward-substitution phase of Gaussian elimination, we are left with an upper-
triangular matrix, which we call U ∈ Rn×n. From the matrix multiplication perspective,

Mk · · ·M1A = U

=⇒ A = (Mk · · ·M1)−1U

= (M−1
1 M−1

2 · · ·M−1
k )U from the fact (AB)−1 = B−1A−1

≡ LU , if we make the definition L ≡M−1
1 M−1

2 · · ·M−1
k .



60 � Numerical Algorithms

U is upper triangular by design, but we have not characterized the structure of L; our
remaining task is to show that L is lower triangular. To do so, recall that in the absence of
pivoting, each matrix Mi is either a scaling matrix or has the structure Mi = In×n+ c~e`~e

>
k ,

from §3.3.3, where ` > k since we carried out forward-substitution to obtain U . So, L is the
product of scaling matrices and matrices of the form M−1

i = In×n − c~e`~e>k ; these matrices
are lower triangular since ` > k. Since scaling matrices are diagonal, L is lower triangular
by the following proposition:

Proposition 3.1. The product of two or more upper-triangular matrices is upper trian-
gular, and the product of two or more lower-triangular matrices is lower triangular.

Proof. Suppose A and B are upper triangular, and define C ≡ AB. By definition of upper-
triangular matrices, aij = 0 and bij = 0 when i > j. Fix two indices i and j with i > j.
Then,

cij =
∑

k

aikbkj by definition of matrix multiplication

= ai1b1j + ai2b2j + · · ·+ ainbnj .

The first i− 1 terms of the sum are zero because A is upper triangular, and the last n− j
terms are zero because B is upper triangular. Since i > j, (i − 1) + (n − j) > n − 1 and
hence all n terms of the sum over k are zero, as needed.

If A and B are lower triangular, then A> and B> are upper triangular. By our proof
above, B>A> = (AB)> is upper triangular, showing that AB is again lower triangular.

3.5.2 Using the Factorization

Having factored A = LU , we can solve A~x = ~b in two steps, by writing (LU)~x = ~b, or

equivalently ~x = U−1L−1~b:

1. Solve L~y = ~b for ~y, yielding ~y = L−1~b.

2. With ~y now fixed, solve U~x = ~y for ~x.

Checking the validity of ~x as a solution of the system A~x = ~b comes from the following
chain of equalities:

~x = U−1~y from the second step

= U−1(L−1~b) from the first step

= (LU)−1~b since (AB)−1 = B−1A−1

= A−1~b since we factored A = LU.

Forward- and back-substitution to carry out the two steps above each take O(n2) time.

So, given the LU factorization of A, solving A~x = ~b can be carried out faster than full
O(n3) Gaussian elimination. When pivoting is necessary, we will modify our factorization
to include a permutation matrix P to account for the swapped rows and/or columns, e.g.,
A = PLU (see Exercise 3.12). This minor change does not affect the asymptotic timing
benefits of LU factorization, since P−1 = P>.
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3.5.3 Implementing LU
The implementation of Gaussian elimination suggested in Figures 3.1 and 3.2 constructs U
but not L. We can make some adjustments to factor A = LU rather than solving a single
system A~x = ~b.

Let’s examine what happens when we multiply two elimination matrices:

(In×n − c`~e`~e>k )(In×n − cp~ep~e>k ) = In×n − c`~e`~e>k − cp~ep~e>k .
As in the construction of the inverse of an elimination matrix in §3.5.1, the remaining term
vanishes by orthogonality of the standard basis vectors ~ei since k 6= p. This formula shows
that the product of elimination matrices used to forward-substitute a single pivot after it
is scaled to 1 has the form:

M =




1 0 0 0

0 1 0 0
0 × 1 0
0 × 0 1


 ,

where the values × are those used for forward-substitutions of the circled pivot. Products
of matrices of this form performed in forward-substitution order combine the values below
the diagonal, as demonstrated in the following example:




1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1







1 0 0 0
0 1 0 0
0 5 1 0
0 6 0 1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 7 1


 =




1 0 0 0
2 1 0 0
3 5 1 0
4 6 7 1


 .

We constructed U by pre-multiplying A with a sequence of elimination and scaling matrices.
We can construct L simultaneously via a sequence of post-multiplies by their inverses,
starting from the identity matrix. These post-multiplies can be computed efficiently using
the above observations about products of elimination matrices.

For any invertible diagonal matrix D, (LD)(D−1U) provides an alternative factorization
of A = LU into lower- and upper-triangular matrices. Thus, by rescaling we can decide to
keep the elements along the diagonal of L in the LU factorization equal to 1. With this
decision in place, we can compress our storage of both L and U into a single n× n matrix
whose upper triangle is U and which is equal to L beneath the diagonal; the missing diagonal
elements of L are all 1.

We are now ready to write pseudocode for LU factorization without pivoting, illustrated
in Figure 3.3. This method extends the algorithm for forward-substitution by storing the
corresponding elements of L under the diagonal rather than zeros. This method has three
nested loops and runs in O(n3) ≈ 2

3n
3 time. After precomputing this factorization, however,

solving A~x = ~b only takes O(n2) time using forward- and backward-substitution.

3.6 EXERCISES
3.1 Can all matrices A ∈ Rn×n be factored A = LU? Why or why not?

3.2 Solve the following system of equations using Gaussian elimination, writing the cor-
responding elimination matrix of each step:

(
2 4
3 5

)(
x
y

)
=

(
2
4

)
.

Factor the matrix on the left-hand side as a product A = LU.
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function LU-Factorization-Compact(A)
� Factors A ∈ Rn×n to A = LU in compact format.

for p ← 1, 2, . . . , n � Choose pivots like in forward-substitution
for r ← p + 1 �n,..., Forward-substitution row

s ← −arp/app � Amount to scale row p for forward-substitution

arp ← −s � L contains −s because it reverses the forward-substitution

for c ← p + 1 �n,..., Perform forward-substitution
arc ← arc + sapc

return A

Figure 3.3 Pseudocode for computing the LU factorization of A ∈ Rn×n, stored in

the compact n× n format described in §3.5.3. This algorithm will fail if pivoting is

needed.

DH3.3 Factor the following matrix A as a product A = LU :




1 2 7
3 5 −1
6 1 4


 .

3.4 Modify the code in Figure 3.1 to include partial pivoting.

3.5 The discussion in §3.4.3 includes an example of a 2× 2 matrix A for which Gaussian
elimination without pivoting fails. In this case, the issue was resolved by introducing
partial pivoting. If exact arithmetic is implemented to alleviate rounding error, does
there exist a matrix for which Gaussian elimination fails unless full rather than partial
pivoting is implemented? Why or why not?

3.6 Numerical algorithms appear in many components of simulation software for quantum
physics. The Schrödinger equation and others involve complex numbers in C, however,
so we must extend the machinery we have developed for solving linear systems of
equations to this case. Recall that a complex number x ∈ C can be written as x =
a + bi, where a, b ∈ R and i =

√
−1. Suppose we wish to solve A~x = ~b, but now

A ∈ Cn×n and ~x,~b ∈ Cn. Explain how a linear solver that takes only real-valued
systems can be used to solve this equation.
Hint: Write A = A1 + A2i, where A1, A2 ∈ Rn×n. Similarly decompose ~x and ~b. In
the end you will solve a 2n× 2n real-valued system.

3.7 Suppose A ∈ Rn×n is invertible. Show that A−1 can be obtained via Gaussian elimi-
nation on augmented matrix (

A In×n
)
.

3.8 Show that if L is an invertible lower-triangular matrix, none of its diagonal elements
can be zero. How does this lemma affect the construction in §3.5.3?

3.9 Show that the inverse of an (invertible) lower-triangular matrix is lower triangular.

3.10 Show that any invertible matrix A ∈ Rn×n with a11 = 0 cannot have a factorization
A = LU for lower-triangular L and upper-triangular U .
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3.11 Show how the LU factorization of A ∈ Rn×n can be used to compute the determinant
of A.

3.12 For numerical stability and generality, we incorporated pivoting into our methods
for Gaussian elimination. We can modify our construction of the LU factorization
somewhat to incorporate pivoting as well.

(a) Argue that following the steps of Gaussian elimination on a matrix A ∈ Rn×n
with partial pivoting can be used to write U = Ln−1Pn−1 · · ·L2P2L1P1A, where
the Pi’s are permutation matrices, the Li’s are lower triangular, and U is upper
triangular.

(b) Show that Pi is a permutation matrix that swaps rows i and j for some j ≥ i.
Also, argue that Li is the product of matrices of the form In×n + c~ek~e

>
i where

k > i.

(c) Suppose j, k > i. Show Pjk(In×n + c~ek~e
>
i ) = (In×n + c~ej~e

>
i )Pjk, where Pjk is a

permutation matrix swapping rows j and k.

(d) Combine the previous two parts to show that

Ln−1Pn−1 · · ·L2P2L1P1 = Ln−1L
′
n−2L

′
n−3 · · ·L′1Pn−1 · · ·P2P1,

where L′1, . . . , L
′
n−2 are lower triangular.

(e) Conclude that A = PLU , where P is a permutation matrix, L is lower triangular,
and U is upper triangular.

(f) Extend the method from §3.5.2 for solving A~x = ~b when we have factored A =
PLU , without affecting the time complexity compared to factorizations A = LU .

3.13 (“Block LU decomposition”) Suppose a square matrix M ∈ Rn×n is written in block
form as

M =

(
A B
C D

)
,

where A ∈ Rk×k is square and invertible.

(a) Show that we can decompose M as the product

M =

(
I 0

CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)
.

Here, I denotes an identity matrix of appropriate size.

(b) Suppose we decompose A = L1U1 and D − CA−1B = L2U2. Show how to
construct an LU factorization of M given these additional matrices.

(c) Use this structure to define a recursive algorithm for LU factorization; you can
assume n = 2` for some ` > 0. How does the efficiency of your method compare
with that of the LU algorithm introduced in this chapter?

3.14 Suppose A ∈ Rn×n is columnwise diagonally dominant, meaning that for all i,∑
j 6=i |aji| < |aii|. Show that Gaussian elimination on A can be carried out with-

out pivoting. Is this necessarily a good idea from a numerical standpoint?

3.15 Suppose A ∈ Rn×n is invertible and admits a factorization A = LU with ones along
the diagonal of L. Show that such a decomposition of A is unique.
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NOW that we can solve linear systems of equations, we will show how to apply this
machinery to several practical problems. The algorithms introduced in the previous

chapter can be applied directly to produce the desired output in each case.
While LU factorization and Gaussian elimination are guaranteed to solve each of these

problems in polynomial time, a natural question is whether there exist more efficient or
stable algorithms if we know more about the structure of a particular linear system. Thus,
we will examine the matrices constructed in the initial examples to reveal special properties
that some of them have in common. Designing algorithms specifically for these classes of
matrices will provide speed and numerical advantages, at the cost of generality.

Finally, we will return to concepts from Chapter 2 to design heuristics evaluating how
much we can trust the solution ~x to a linear system A~x = ~b, in the presence of rounding
and other sources of error. This aspect of analyzing linear systems must be considered when
designing reliable and consistent implementations of numerical algorithms.

4.1 SOLUTION OF SQUARE SYSTEMS
In the previous chapter, we only considered square, invertible matrices A when solving
A~x = ~b. While this restriction does preclude some important cases, many if not most

65
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x

y
f1

f2

f4

f3

)c()b()a(

Figure 4.1 (a) The input for regression, a set of (x(k), y(k)) pairs; (b) a set of basis

functions {f1, f2, f3, f4}; (c) the output of regression, a set of coefficients c1, . . . , c4
such that the linear combination

∑4
k=1 ckfk(x) goes through the data points.

applications of linear systems can be posed in terms of square, invertible matrices. We
explore a few of these applications below.

4.1.1 Regression
We start with an application from data analysis known as regression. Suppose we carry out
a scientific experiment and wish to understand the structure of the experimental results.
One way to model these results is to write the independent variables of a given trial in a
vector ~x ∈ Rn and to think of the dependent variable as a function f(~x) : Rn → R. Given a
few (~x, f(~x)) pairs, our goal is to predict the output of f(~x) for a new ~x without carrying
out the full experiment.

Example 4.1 (Biological experiment). Suppose we wish to measure the effects of fertilizer,
sunlight, and water on plant growth. We could do a number of experiments applying
different amounts of fertilizer (in cm3), sunlight (in watts), and water (in ml) to a plant
and measuring the height of the plant after a few days. Assuming plant height is a direct
function of these variables, we can model our observations as samples from a function
f : R3 → R that takes the three parameters we wish to test and outputs the height of the
plant at the end of the experimental trial.

In parametric regression, we additionally assume that we know the structure of f ahead
of time. For example, suppose we assume that f is linear:

f(~x) = a1x1 + a2x2 + · · ·+ anxn.

Then, our goal becomes more concrete: to estimate the coefficients a1, . . . , an.
We can carry out n experiments to reveal y(k) ≡ f(~x(k)) for samples ~x(k), where k ∈

{1, . . . , n}. For the linear example, plugging into the formula for f shows a set of statements:

y(1) = f(~x(1)) = a1x
(1)
1 + a2x

(1)
2 + · · ·+ anx

(1)
n

y(2) = f(~x(2)) = a1x
(2)
1 + a2x

(2)
2 + · · ·+ anx

(2)
n

...
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Contrary to our earlier notation A~x = ~b, the unknowns here are the ai’s, not the ~x(k)’s.
With this notational difference in mind, if we make exactly n observations we can write




− ~x(1)> −
− ~x(2)> −

...
− ~x(n)> −







a1

a2

...
an


 =




y(1)

y(2)

...
y(n)


 .

In other words, if we carry out n trials of our experiment and write the independent variables
in the columns of a matrix X ∈ Rn×n and the dependent variables in a vector ~y ∈ Rn, then
the coefficients ~a can be recovered by solving the linear system X>~a = ~y.

We can generalize this method to certain nonlinear forms for the function f using an
approach illustrated in Figure 4.1. The key is to write f as a linear combination of basis
functions. Suppose f(~x) takes the form

f(~x) = a1f1(~x) + a2f2(~x) + · · ·+ amfm(~x),

where fk : Rn → R and we wish to estimate the parameters ak. Then, by a parallel derivation
given m observations of the form ~x(k) 7→ y(k) we can find the parameters by solving:




f1(~x(1)) f2(~x(1)) · · · fm(~x(1))
f1(~x(2)) f2(~x(2)) · · · fm(~x(2))

...
... · · ·

...
f1(~x(m)) f2(~x(m)) · · · fm(~x(m))







a1

a2

...
am


 =




y(1)

y(2)

...
y(m)


 .

That is, even if the f ’s are nonlinear, we can learn weights ak using purely linear techniques.

Example 4.2 (Linear regression). The system X>~a = ~y from our initial example can be
recovered from the general formulation by taking fk(~x) = xk.

Example 4.3 (Polynomial regression). As in Figure 4.1, suppose that we observe a func-
tion of a single variable f(x) and wish to write it as an (n− 1)-st degree polynomial

f(x) ≡ a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1.

Given n pairs x(k) 7→ y(k), we can solve for the parameters ~a via the system




1 x(1) (x(1))2 · · · (x(1))n−1

1 x(2) (x(2))2 · · · (x(2))n−1

...
...

... · · ·
...

1 x(n) (x(n))2 · · · (x(n))n−1







a0

a1

...
an−1


 =




y(1)

y(2)

...
y(n)


 .

In other words, we take fk(x) = xk−1 in the general form above. Incidentally, the matrix
on the left-hand side of this relationship is known as a Vandermonde matrix.

As an example, suppose we wish to find a parabola y = ax2 + bx + c going through
(−1, 1), (0,−1), and (2, 7). We can write the Vandermonde system in two ways:





a(−1)2 + b(−1) + c = 1
a(0)2 + b(0) + c = −1
a(2)2 + b(2) + c = 7



 ⇐⇒




1 −1 (−1)2

1 0 02

1 2 22






c
b
a


 =




1
−1
7


 .

Gaussian elimination on this system shows (a, b, c) = (2, 0,−1), corresponding to the
polynomial y = 2x2 − 1.
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(a) Overfitting (b) Wrong basis

Figure 4.2 Drawbacks of fitting function values exactly: (a) noisy data might be

better represented by a simple function rather than a complex curve that touches

every data point and (b) the basis functions might not be tuned to the function

being sampled. In (b), we fit a polynomial of degree eight to nine samples from

f(x) = |x| but would have been more successful using a basis of line segments.

Example 4.4 (Oscillation). A foundational notion from signal processing for audio and
images is the decomposition of a function into a linear combination of cosine or sine waves
at different frequencies. This decomposition of a function defines its Fourier transform.

As the simplest possible case, we can try to recover the parameters of a single-frequency
wave. Suppose we wish to find parameters a and φ of a function f(x) = a cos(x+φ) given
two (x, y) samples satisfying y(1) = f(x(1)) and y(2) = f(x(2)). Although this setup as
we have written it is nonlinear, we can recover a and φ using a linear system after some
mathematical transformations.

From trigonometry, any function of the form g(x) = a1 cosx+ a2 sinx can be written
g(x) = a cos(x+ φ) after applying the formulae

a =
√
a2

1 + a2
2 φ = − arctan

a2

a1
.

We can find f(x) by applying the linear method to compute the coefficients a1 and a2 in
g(x) and then using these formulas to find a and φ. This construction can be extended
to fitting functions of the form f(x) =

∑
k ak cos(x+ φk), giving one way to motivate the

discrete Fourier transform of f , explored in Exercise 4.15.

4.1.2 Least-Squares
The techniques in §4.1.1 provide valuable methods for finding a continuous f matching a
set of data pairs ~xk 7→ yk exactly. For this reason, they are called interpolation schemes,
which we will explore in detail in Chapter 13. They have two related drawbacks, illustrated
in Figure 4.2:

• There might be some error in measuring the values ~xk and yk. In this case, a simpler
f(~x) satisfying the approximate relationship f(~xk) ≈ yk may be acceptable or even
preferable to an exact f(~xk) = yk that goes through each data point.

• If there are m functions f1, . . . , fm, then we use exactly m observations ~xk 7→ yk.
Additional observations have to be thrown out, or we have to introduce more fk’s,
which can make the resulting function f(~x) increasingly complicated.
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Both of these issues are related to the larger problem of over-fitting : Fitting a function with
n degrees of freedom to n data points leaves no room for measurement error.

More broadly, suppose we wish to solve the linear system A~x = ~b for ~x. If we denote
row k of A as ~r>k , then the system looks like




b1
b2
...
bn


 =




− ~r>1 −
− ~r>2 −
...

...
...

− ~r>n −







x1

x2

...
xn


 by expanding A~x

=




~r1 · ~x
~r2 · ~x

...
~rn · ~x


 by definition of matrix multiplication.

From this perspective, each row of the system corresponds to a separate observation of the
form ~rk · ~x = bk. That is, an alternative way to interpret the linear system A~x = ~b is that
it encodes n statements of the form, “The dot product of ~x with ~rk is bk.”

A tall system A~x = ~b where A ∈ Rm×n and m > n encodes more than n of these
dot product observations. When we make more than n observations, however, they may be
incompatible; as explained §3.1, tall systems do not have to admit a solution.

When we cannot solve A~x = ~b exactly, we can relax the problem and try to find an
approximate solution ~x satisfying A~x ≈ ~b. One of the most common ways to solve this
problem, known as least-squares, is to ask that the residual ~b− A~x be as small as possible
by minimizing the norm ‖~b−A~x‖2. If there is an exact solution ~x satisfying the tall system

A~x = ~b, then the minimum of this energy is zero, since norms are nonnegative and in this
case ‖~b−A~x‖2 = ‖~b−~b‖2 = 0.

Minimizing ‖~b − A~x‖2 is the same as minimizing ‖~b − A~x‖22, which we expanded in
Example 1.16 to:

‖~b−A~x‖22 = ~x>A>A~x− 2~b>A~x+ ‖~b‖22.∗

The gradient of this expression with respect to ~x must be zero at its minimum, yielding the
following system:

~0 = 2A>A~x− 2A>~b,

or equivalently, A>A~x = A>~b.

This famous relationship is worthy of a theorem:

Theorem 4.1 (Normal equations). Minima of the residual norm ‖~b−A~x‖2 for A ∈ Rm×n

(with no restriction on m or n) satisfy A>A~x = A>~b.

The matrix A>A is sometimes called a Gram matrix. If at least n rows of A are linearly
independent, then A>A ∈ Rn×n is invertible. In this case, the minimum residual occurs
uniquely at (A>A)−1A>~b. Put another way:

In the overdetermined case, solving the least-squares problem
A~x ≈ ~b is equivalent to solving the square system A>A~x = A>~b.

Via the normal equations, we can solve tall systems with A ∈ Rm×n, m ≥ n, using algo-
rithms for square matrices.

∗If this result is not familiar, it may be valuable to return to the material in §1.4 at this point for review.
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4.1.3 Tikhonov Regularization
When solving linear systems, the underdetermined case m < n is considerably more difficult
to handle due to increased ambiguity. As discussed in §3.1, in this case we lose the possibility
of a unique solution to A~x = ~b. To choose between the possible solutions, we must make an
additional assumption on ~x to obtain a unique solution, e.g., that it has a small norm or
that it contains many zeros. Each such regularizing assumption leads to a different solution
algorithm. The particular choice of a regularizer may be application-dependent, but here
we outline a general approach commonly applied in statistics and machine learning; we will
introduce an alternative in §7.2.1 after introducing the singular value decomposition (SVD)
of a matrix.

When there are multiple vectors ~x that minimize ‖A~x − ~b‖22, the least-squares energy
function is insufficient to isolate a single output. For this reason, for fixed α > 0, we might
introduce an additional term to the minimization problem:

min
~x
‖A~x−~b‖22 + α‖~x‖22.

This second term is known as a Tikhonov regularizer. When 0 < α � 1, this optimization
effectively asks that among the minimizers of ‖A~x −~b‖2 we would prefer those with small
norm ‖~x‖2; as α increases, we prioritize the norm of ~x more. This energy is the product of
an “Occam’s razor” philosophy: In the absence of more information about ~x, we might as
well choose an ~x with small entries.

To minimize this new objective, we take the derivative with respect to ~x and set it equal
to zero:

~0 = 2A>A~x− 2A>~b+ 2α~x,

or equivalently
(A>A+ αIn×n)~x = A>~b.

So, if we wish to introduce Tikhonov regularization to a linear problem, all we have to do
is add α down the diagonal of the Gram matrix A>A.

When A~x = ~b is underdetermined, the matrix A>A is not invertible. The new Tikhonov
term resolves this issue, since for ~x 6= ~0,

~x>(A>A+ αIn×n)~x = ‖A~x‖22 + α‖~x‖22 > 0.

The strict > holds because ~x 6= ~0; it implies that A>A + αIn×n cannot have a null space
vector ~x. Hence, regardless of A, the Tikhonov-regularized system of equations is invertible.
In the language we will introduce in §4.2.1, it is positive definite.

Tikhonov regularization is effective for dealing with null spaces and numerical issues.
When A is poorly conditioned, adding this type of regularization can improve conditioning
even when the original system was solvable. We acknowledge two drawbacks, however, that
can require more advanced algorithms when they are relevant:

• The solution ~x of the Tikhonov-regularized system no longer satisfies A~x = ~b exactly.

• When α is small, the matrix A>A+αIn×n is invertible but may be poorly conditioned.

Increasing α solves this problem at the cost of less accurate solutions to A~x = ~b.

When the columns of A span Rm, an alternative to Tikhonov regularization is to minimize
‖~x‖2 with the “hard” constraint A~x = ~b. Exercise 4.7 shows that this least-norm solution

is given by ~x = A>(AA>)−1~b, a similar formula to the normal equations for least-squares.
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Example 4.5 (Tikhonov regularization). Suppose we pose the following linear system:

(
1 1
1 1.00001

)
~x =

(
1

0.99

)
.

This system is solved by ~x = (1001,−1000).
The scale of this ~x ∈ R2, however, is much larger than that of any values in the original

problem. We can use Tikhonov regularization to encourage smaller values in ~x that still
solve the linear system approximately. In this case, the Tikhonov system is

[(
1 1
1 1.00001

)>(
1 1
1 1.00001

)
+ αI2×2

]
~x =

(
1 1
1 1.00001

)>(
1

0.99

)
,

or equivalently,

(
2 + α 2.00001

2.00001 2.0000200001 + α

)
~x =

(
1.99

1.9900099

)
.

As α increases, the regularizer becomes stronger. Some example solutions computed nu-
merically are below:

α = 0.00001 −→ ~x ≈ (0.499998, 0.494998)

α = 0.001 −→ ~x ≈ (0.497398, 0.497351)

α = 0.1 −→ ~x ≈ (0.485364, 0.485366).

Even with a tiny amount of regularization, these solutions approximate the symmetric
near-solution ~x ≈ (0.5, 0.5), which has much smaller magnitude. If α becomes too large,
regularization overtakes the system and ~x→ (0, 0).

4.1.4 Image Alignment
Suppose we take two photographs of the same scene from different positions. One common
task in computer vision and graphics is to stitch them together to make a single larger
image. To do so, the user (or an automatic system) marks p pairs of points ~xk, ~yk ∈ R2 such
that for each k the location ~xk in image one corresponds to the location ~yk in image two.
Then, the software automatically warps the second image onto the first or vice versa such
that the pairs of points are aligned.

When the camera makes a small motion, a reasonable assumption is that there exists
some transformation matrix A ∈ R2×2 and a translation vector ~b ∈ R2 such that for all k,

~yk ≈ A~xk +~b.

That is, position ~x on image one should correspond to position A~x + ~b on image two.
Figure 4.3(a) illustrates this notation. With this assumption, given a set of corresponding

pairs (~x1, ~y1), . . . , (~xp, ~yp), our goal is to compute the A and ~b matching these points as
closely as possible.

Beyond numerical issues, mistakes may have been made while locating the corresponding
points, and we must account for approximation error due to the slightly nonlinear camera
projection of real-world lenses. To address this potential for misalignment, rather than
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�x �→ �y = A�x +�b

�x

�y

(a) (b) Input images with keypoints (c) Aligned images

Figure 4.3 (a) The image alignment problem attempts to find the parameters A and
~b of a transformation from one image of a scene to another using labeled keypoints

~x on the first image paired with points ~y on the second. As an example, keypoints

marked in white on the two images in (b) are used to create (c) the aligned image.

requiring that the marked points match exactly, we can ask that they are matched in a
least-squares sense. To do so, we solve the following minimization problem:

min
A,~b

p∑

k=1

‖(A~xk +~b)− ~yk‖22.

This problem has six unknowns total, the four elements of A and the two elements of ~b.
Figure 4.3(b,c) shows typical output for this method; five keypoints rather than the required
three are used to stabilize the output transformation using least-squares.

This objective is a sum of squared linear expressions in the unknowns A and ~b, and we
will show that it can be minimized using a linear system. Define

f(A,~b) ≡
∑

k

‖(A~xk +~b)− ~yk‖22.

We can simplify f as follows:

f(A,~b) =
∑

k

(A~xk +~b− ~yk)>(A~xk +~b− ~yk) since ‖~v‖22 = ~v>~v

=
∑

k

[
~x>k A

>A~xk + 2~x>k A
>~b− 2~x>k A

>~yk +~b>~b− 2~b>~yk + ~y>k ~yk
]

where terms with leading 2 apply the fact ~a>~b = ~b>~a.

To find where f is minimized, we differentiate it with respect to ~b and with respect to the
elements of A, and set these derivatives equal to zero. This leads to the following system:

0 = ∇~bf(A,~b) =
∑

k

[
2A~xk + 2~b− 2~yk

]

0 = ∇Af(A,~b) =
∑

k

[
2A~xk~x

>
k + 2~b~x>k − 2~yk~x

>
k

]
by the identities in Exercise 4.3.

In the second equation, we use the gradient ∇Af to denote the matrix whose entries are
(∇Af)ij ≡ ∂f/∂Aij. Simplifying somewhat, if we define X ≡ ∑

k ~xk~x
>
k , ~xsum ≡

∑
k ~xk,
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(a) Sharp (b) Blurry (c) Deconvolved (d) Difference

Figure 4.4 Suppose rather than taking (a) the sharp image, we accidentally take (b) a

blurry photo; then, deconvolution can be used to recover (c) a sharp approximation

of the original image. The difference between (a) and (c) is shown in (d); only

high-frequency detail is different between the two images.

~ysum ≡
∑
k ~yk, and C ≡ ∑k ~yk~x

>
k , then the optimal A and ~b satisfy the following linear

system of equations:

A~xsum + p~b = ~ysum

AX +~b~x>sum = C.

This system is linear in the unknowns A and ~b; Exercise 4.4 expands it explicitly using a
6× 6 matrix.

This example illustrates a larger pattern in modeling using least-squares. We started
by defining a desirable relationship between the unknowns, namely (A~x + ~b) − ~y ≈ ~0.
Given a number of data points (~xk, ~yk), we designed an objective function f measuring the

quality of potential values for the unknowns A and ~b by summing up the squared norms
of expressions we wished to equal zero:

∑
k ‖(A~xk + ~b) − ~yk‖22. Differentiating this sum

gave a linear system of equations to solve for the best possible choice. This pattern is a
common source of optimization problems that can be solved linearly and essentially is a
subtle application of the normal equations.

4.1.5 Deconvolution
An artist hastily taking pictures of a scene may accidentally take photographs that are
slightly out of focus. While a photo that is completely blurred may be a lost cause, if there
is only localized or small-scale blurring, we may be able to recover a sharper image using
computational techniques. One strategy is deconvolution, explained below; an example test
case of the method outlined below is shown in Figure 4.4.

We can think of a grayscale photograph as a point in Rp, where p is the number of pixels
it contains; each pixel’s intensity is stored in a different dimension. If the photo is in color,
we may need red, green, and blue intensities per pixel, yielding a similar representation in
R3p. Regardless, most image blurs are linear, including Gaussian convolution or operations
averaging a pixel’s intensity with those of its neighbors. In image processing, these operators
can be encoded using a matrix G taking a sharp image ~x to its blurred counterpart G~x.

Suppose we take a blurry photo ~x0 ∈ Rp. Then, we could try to recover the underlying
sharp image ~x ∈ Rp by solving the least-squares problem

min
~x∈Rp

‖~x0 −G~x‖22.
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v

w1

w2

w3

w4

w5

(a) Triangle mesh (b) Parameterization (c) Harmonic condition

Figure 4.5 (a) An example of a triangle mesh, the typical structure used to represent

three-dimensional shapes in computer graphics. (b) In mesh parameterization, we

seek a map from a three-dimensional mesh (left) to the two-dimensional image plane

(right); the right-hand side shown here was computed using the method suggested

in §4.1.6. (c) The harmonic condition is that the position of vertex v is the average

of the positions of its neighbors w1, . . . , w5.

This model assumes that when you blur ~x with G, you get the observed photo ~x0. By the
same construction as previous sections, if we know G, then this problem can be solved using
linear methods.

In practice, this optimization might be unstable since it is solving a difficult inverse
problem. In particular, many pairs of distinct images look very similar after they are blurred,
making the reverse operation challenging. One way to stabilize the output of deconvolution
is to use Tikhonov regularization, from §4.1.3:

min
~x∈Rp

‖~x0 −G~x‖22 + α‖~x‖22.

More complex versions may constrain ~x ≥ 0, since negative intensities are not reasonable,
but adding such a constraint makes the optimization nonlinear and better solved by the
methods we will introduce starting in Chapter 10.

4.1.6 Harmonic Parameterization
Systems for animation often represent geometric objects in a scene using triangle meshes,
sets of points linked together into triangles as in Figure 4.5(a). To give these meshes fine
textures and visual detail, a common practice is to store a detailed color texture as an image
or photograph, and to map this texture onto the geometry. Each vertex of the mesh then
carries not only its geometric location in space but also texture coordinates representing its
position on the texture plane.

Mathematically, a mesh can be represented as a collection of n vertices V ≡ {v1, . . . , vn}
linked in pairs by edges E ⊆ V × V . Geometrically, each vertex v ∈ V is associated with a
location ~x(v) in three-dimensional space R3. Additionally, we will decorate each vertex with
a texture coordinate ~t(v) ∈ R2 describing its location in the image plane. It is desirable for
these positions to be laid out smoothly to avoid squeezing or stretching the texture relative
to the geometry of the surface. With this criterion in mind, the problem of parameterization
is to fill in the positions ~t(v) for all the vertices v ∈ V given a few positions laid out manually;
desirable mesh parameterizations minimize the geometric distortion of the mesh from its
configuration in three-dimensional space to the plane. Surprisingly, many state-of-the-art
parameterization algorithms involve little more than a linear solve; we will outline one
method originally proposed in [123].
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For simplicity, suppose that the mesh has disk topology, meaning that it can be mapped
to the interior of a circle in the plane, and that we have fixed the location of each vertex on
its boundary B ⊆ V . The job of the parameterization algorithm then is to fill in positions
for the interior vertices of the mesh. This setup and the output of the algorithm outlined
below are shown in Figure 4.5(b).

For a vertex v ∈ V , take N(v) to be the set of neighbors of v on the mesh, given by

N(v) ≡ {w ∈ V : (v, w) ∈ E}.

Then, for each vertex v ∈ V \B, a reasonable criterion for parameterization quality is that v
should be located at the center of its neighbors, illustrated in Figure 4.5(c). Mathematically,
this condition is written

~t(v) =
1

|N(v)|
∑

w∈N(v)

~t(w).

Using this expression, we can associate each v ∈ V with a linear condition either fixing
its position on the boundary or asking that its assigned position equals the average of its
neighbors’ positions. This |V |×|V | system of equations defines a harmonic parameterization.

The final output in Figure 4.5(b) is laid out elastically, evenly distributing vertices on the
image plane. Harmonic parameterization has been extended in countless ways to enhance
the quality of this result, most prominently by accounting for the lengths of the edges in E
as they are realized in three-dimensional space.

4.2 SPECIAL PROPERTIES OF LINEAR SYSTEMS
The examples above provide several contexts in which linear systems of equations are used
to model practical computing problems. As derived in the previous chapter, Gaussian elim-
ination solves all of these problems in polynomial time, but it remains to be seen whether
this is the fastest or most stable technique. With this question in mind, here we look more
closely at the matrices from §4.1 to reveal that they have many properties in common. By
deriving solution techniques specific to these classes of matrices, we will design specialized
algorithms with better speed and numerical quality.

4.2.1 Positive Definite Matrices and the Cholesky Factorization

As shown in Theorem 4.1, solving the least-squares problem A~x ≈ ~b yields a solution ~x
satisfying the square linear system (A>A)~x = A>~b. Regardless of A, the matrix A>A has
a few special properties that distinguish it from arbitrary matrices.

First, A>A is symmetric, since by the identities (AB)> = B>A> and (A>)> = A,

(A>A)> = A>(A>)> = A>A.

We can express this symmetry index-wise by writing (A>A)ij = (A>A)ji for all indices i, j.
This property implies that it is sufficient to store only the values of A>A on or above the
diagonal, since the rest of the elements can be obtained by symmetry.

Furthermore, A>A is a positive semidefinite matrix, defined below:

Definition 4.1 (Positive (Semi-)Definite). A matrix B ∈ Rn×n is positive semidefinite if
for all ~x ∈ Rn, ~x>B~x ≥ 0. B is positive definite if ~x>B~x > 0 whenever ~x 6= ~0.

The following proposition relates this definition to the matrix A>A:
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Proposition 4.1. For any A ∈ Rm×n, the matrix A>A is positive semidefinite. Further-
more, A>A is positive definite exactly when the columns of A are linearly independent.

Proof. We first check that A>A is always positive semidefinite. Take any ~x ∈ Rn. Then,

~x>(A>A)~x = (A~x)>(A~x) = (A~x) · (A~x) = ‖A~x‖22 ≥ 0.

To prove the second statement, first suppose the columns of A are linearly independent. If
A were only semidefinite, then there would be an ~x 6= ~0 with ~x>A>A~x = 0, but as shown
above, this would imply ‖A~x‖2 = 0, or equivalently A~x = ~0, contradicting the independence
of the columns of A. Conversely, if A has linearly dependent columns, then there exists a
~y 6= ~0 with A~y = ~0. In this case, ~y>A>A~y = ~0>~0 = 0, and hence A is not positive
definite.

As a corollary, A>A is invertible exactly when A has linearly independent columns, provid-
ing a condition to check whether a least-squares problem admits a unique solution.

Given the prevalence of the least-squares system A>A~x = A>~b, it is worth considering
the possibility of writing faster linear solvers specially designed for this case. In particular,
suppose we wish to solve a symmetric positive definite (SPD) system C~x = ~d. For least-

squares, we could take C = A>A and ~d = A>~b, but there also exist many systems that
naturally are symmetric and positive definite without explicitly coming from a least-squares
model. We could solve the system using Gaussian elimination or LU factorization, but given
the additional structure on C we can do somewhat better.

Aside 4.1 (Block matrix notation). Our construction in this section will rely on block
matrix notation. This notation builds larger matrices out of smaller ones. For example,
suppose A ∈ Rm×n, B ∈ Rm×k, C ∈ Rp×n, and D ∈ Rp×k. Then, we could construct a
larger matrix by writing: (

A B
C D

)
∈ R(m+p)×(n+k).

This “block matrix” is constructed by concatenation. Block matrix notation is convenient,
but we must be careful to concatenate matrices with dimensions that match. The mecha-
nisms of matrix algebra generally extend to this case, e.g.,

(
A B
C D

)(
E F
G H

)
=

(
AE +BG AF +BH
CE +DG CF +DH

)
.

We will proceed without checking these identities explicitly, but as an exercise it is worth
double-checking that they are true.

We can deconstruct the symmetric positive-definite matrix C ∈ Rn×n as a block matrix:

C =

(
c11 ~v>

~v C̃

)

where c11 ∈ R, ~v ∈ Rn−1, and C̃ ∈ R(n−1)×(n−1). The SPD structure of C provides the
following observation:

0 < ~e>1 C~e1 since C is positive definite and ~e1 6= ~0

=
(

1 0 · · · 0
)( c11 ~v>

~v C̃

)



1
0
...
0



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=
(

1 0 · · · 0
)( c11

~v

)

= c11.

By the strict inequality in the first line, we do not have to use pivoting to guarantee that
c11 6= 0 in the first step of Gaussian elimination.

Continuing with Gaussian elimination, we can apply a forward-substitution matrix E of
the form

E =

(
1/√c11 ~0>

~r I(n−1)×(n−1)

)
.

Here, the vector ~r ∈ Rn−1 contains forward-substitution scaling factors satisfying ri−1c11 =
−ci1. Unlike our original construction of Gaussian elimination, we scale row 1 by 1/√c11 for
reasons that will become apparent shortly.

By design, after forward-substitution, the form of the product EC is:

EC =

( √
c11

~v>/√c11
~0 D

)
,

for some D ∈ R(n−1)×(n−1).
Now, we diverge from the derivation of Gaussian elimination. Rather than moving on

to the second row, to maintain symmetry, we post-multiply by E> to obtain ECE>:

ECE> = (EC)E>

=

( √
c11

~v>/√c11
~0 D

)(
1/√c11 ~r>

~0 I(n−1)×(n−1)

)

=

(
1 ~0>

~0 D

)
.

The ~0> in the upper right follows from the construction of E as an elimination matrix.
Alternatively, an easier if less direct argument is that ECE> is symmetric, and the lower-
left element of the block form for ECE> is ~0 by block matrix multiplication. Regardless,
we have eliminated the first row and the first column of C! Furthermore, the remaining
submatrix D is also symmetric and positive definite, as suggested in Exercise 4.2.

Example 4.6 (Cholesky factorization, initial step). As a concrete example, consider the
following symmetric, positive definite matrix

C =




4 −2 4
−2 5 −4
4 −4 14


 .

We can eliminate the first column of C using the elimination matrix E1 defined as:

E1 =




1/2 0 0
1/2 1 0
−1 0 1


 −→ E1C =




2 −1 2
0 4 −2
0 −2 10


 .

We chose the upper left element of E1 to be 1/2 = 1/
√

4 = 1/√c11. Following the construction
above, we can post-multiply by E>1 to obtain:

E1CE
>
1 =




1 0 0
0 4 −2
0 −2 10


 .

The first row and column of this product equal the standard basis vector ~e1 = (1, 0, 0).
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We can repeat this process to eliminate all the rows and columns of C symmetrically.
This method is specific to symmetric positive-definite matrices, since

• symmetry allowed us to apply the same E to both sides, and

• positive definiteness guaranteed that c11 > 0, thus implying that 1/√c11 exists.

Similar to LU factorization, we now obtain a factorization C = LL> for a lower-triangular
matrix L. This factorization is constructed by applying elimination matrices symmetrically
using the process above, until we reach

Ek · · ·E2E1CE
>
1 E
>
2 · · ·E>k = In×n.

Then, like our construction in §3.5.1, we define L as a product of lower-triangular matrices:

L ≡ E−1
1 E−1

2 · · ·E−1
k .

The product C = LL> is known as the Cholesky factorization of C. If taking the square
roots causes numerical issues, a related LDL> factorization, where D is a diagonal matrix,
avoids this issue and can be derived from the discussion above; see Exercise 4.6.

Example 4.7 (Cholesky factorization, remaining steps). Continuing Example 4.6, we can
eliminate the second row and column as follows:

E2 =




1 0 0
0 1/2 0
0 1/2 1


 −→ E2(E1CE

>
1 )E>2 =




1 0 0
0 1 0
0 0 9


 .

Rescaling brings the symmetric product to the identity matrix I3×3:

E3 =




1 0 0
0 1 0
0 0 1/3


 −→ E3(E2E1CE

>
1 E
>
2 )E>3 =




1 0 0
0 1 0
0 0 1


 .

Hence, we have shown E3E2E1CE
>
1 E
>
2 E
>
3 = I3×3. As above, define:

L = E−1
1 E−1

2 E−1
3 =




2 0 0
−1 1 0
2 0 1






1 0 0
0 2 0
0 −1 1






1 0 0
0 1 0
0 0 3


 =




2 0 0
−1 2 0
2 −1 3


 .

This matrix L satisfies LL> = C.

The Cholesky factorization has many practical properties. It takes half the memory to
store L from the Cholesky factorization rather than the LU factorization of C. Specifically, L
has n(n+1)/2 nonzero elements, while the compressed storage of LU factorizations explained

in §3.5.3 requires n2 nonzeros. Furthermore, as with the LU decomposition, solving C~x = ~d
can be accomplished using fast forward- and back-substitution. Finally, the product LL>

is symmetric and positive semidefinite regardless of L; if we factored C = LU but made
rounding and other mistakes, in degenerate cases the computed product C ′ ≈ LU may no
longer satisfy these criteria exactly.

Code for Cholesky factorization can be very succinct. To derive a particularly compact
form, we can work backward from the factorization C = LL> now that we know such an
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object exists. Suppose we choose an arbitrary k ∈ {1, . . . , n} and write L in block form
isolating the k-th row and column:

L =




L11
~0 0

~̀>
k `kk ~0>

L31
~̀′
k L33


 .

Here, since L is lower triangular, L11 and L33 are both lower-triangular square matrices.
Applying block matrix algebra to the product C = LL> shows:

C = LL> =




L11
~0 0

~̀>
k `kk ~0>

L31
~̀′
k L33






L>11
~̀
k L>31

~0> `kk (~̀′k)>

0 ~0 L>33




=




× × ×
~̀>
k L
>
11

~̀>
k
~̀
k + `2kk ×

× × ×


 .

We leave out values of the product that are not necessary for our derivation.
Since C = LL>, from the product above we now have ckk = ~̀>

k
~̀
k + `2kk, or equivalently

`kk =

√
ckk − ‖~̀k‖22,

where ~̀k ∈ Rk−1 contains the elements of the k-th row of L to the left of the diagonal. We can
choose `kk ≥ 0, since scaling columns of L by −1 has no effect on C = LL>. Furthermore,
applying C = LL> to the middle left element of the product shows L11

~̀
k = ~ck, where ~ck

contains the elements of C in the same position as ~̀k. Since L11 is lower triangular, this
system can be solved by forward-substitution for ~̀k!

Synthesizing the formulas above reveals an algorithm for computing the Cholesky factor-
ization by iterating k = 1, 2, . . . , n. L11 will already be computed by the time we reach row
k, so ~̀k can be found using forward-substitution. Then, `kk is computed directly using the
square root formula. We provide pseudocode in Figure 4.6. As with LU factorization, this
algorithm runs in O(n3) time; more specifically, Cholesky factorization takes approximately
1
3n

3 operations, half the work needed for LU.

4.2.2 Sparsity
We set out in this section to identify properties of specific linear systems that can make
them solvable using more efficient techniques than Gaussian elimination. In addition to
positive definiteness, many linear systems of equations naturally enjoy sparsity, meaning
that most of the entries of A in the system A~x = ~b are exactly zero. Sparsity can reflect
particular structure in a given problem, including the following use cases:

• In image processing (e.g., §4.1.5), systems for photo editing express relationships be-
tween the values of pixels and those of their neighbors on the image grid. An image
may be a point in Rp for p pixels, but when solving A~x = ~b for a new size-p image,
A ∈ Rp×p may have only O(p) rather than O(p2) nonzeros since each row only involves
a single pixel and its up/down/left/right neighbors.

• In computational geometry (e.g., §4.1.6), shapes are often expressed using collections
of triangles linked together into a mesh. Equations for surface smoothing, parameter-
ization, and other tasks link values associated with given vertex with only those at
their neighbors in the mesh.
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function Cholesky-Factorization(C)
� Factors C = LLT , assuming C is symmetric and positive definite

L ← �C This algorithm destructively replaces C with L
for k ← 1, 2, . . . , n

� Back-substitute to place ���
k at the beginning of row k

for i ← 1, . . . , k − 1 � Current element i of ��k

s ← 0
� Iterate over L11; j < i, so the iteration maintains Lkj = (��k)j .
for j ← 1, . . . , i − 1 : s ← s + LijLkj

Lki ← (Lki−s)/Lii

� Apply the formula for �kk

v ← 0 � For computing ‖��k‖2
2

for j ← 1, . . . , k − 1 : v ← v + L2
kj

Lkk ← √
Lkk − v

return L

Figure 4.6 Cholesky factorization for writing C = LL>, where the input C is sym-

metric and positive-definite and the output L is lower triangular.

• In machine learning, a graphical model uses a graph G = (V,E) to express probability
distributions over several variables. Each variable corresponds to a node v ∈ V , and
edges e ∈ E represent probabilistic dependences. Linear systems in this context often
have one row per v ∈ V with nonzeros in columns involving v and its neighbors.

If A ∈ Rn×n is sparse to the point that it contains O(n) rather than O(n2) nonzero
values, there is no reason to store A with n2 values. Instead, sparse matrix storage tech-
niques only store the O(n) nonzeros in a more reasonable data structure, e.g., a list of
row/column/value triplets. The choice of a matrix data structure involves considering the
likely operations that will occur on the matrix, possibly including multiplication, iteration
over nonzeros, or iterating over individual rows or columns.

Unfortunately, the LU (and Cholesky) factorizations of a sparse matrix A may not result
in sparse L and U matrices; this loss of structure severely limits the applicability of using
these methods to solve A~x = ~b when A is large but sparse. Thankfully, there are many direct
sparse solvers that produce an LU-like factorization without inducing much fill, or addi-
tional nonzeros; discussion of these techniques can be found in [32]. Alternatively, iterative
techniques can obtain approximate solutions to linear systems using only multiplication by
A and A>. We will derive some of these methods in Chapter 11.

4.2.3 Additional Special Structures
Certain matrices are not only sparse but also structured. For instance, a tridiagonal system
of linear equations has the following pattern of nonzero values:




× ×
× × ×
× × ×
× × ×
× ×



.
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In Exercise 4.8, you will derive a special version of Gaussian elimination for dealing with
this banded structure.

In other cases, matrices may not be sparse but might admit a sparse representation. For
example, consider the circulant matrix:




a b c d
d a b c
c d a b
b c d a


 .

This matrix can be stored using only the values a, b, c, d. Specialized techniques for solving
systems involving this and other classes of matrices are well-studied and often are more
efficient than generic Gaussian elimination.

Broadly speaking, once a problem has been reduced to a linear system A~x = ~b, Gaussian
elimination provides only one option for how to find ~x. It may be possible to show that the
matrix A for the given problem can be solved more easily by identifying special properties
like symmetry, positive-definiteness, and sparsity. Interested readers should refer to the
discussion in [50] for consideration of numerous cases like the ones above.

4.3 SENSITIVITY ANALYSIS
It is important to examine the matrix of a linear system to find out if it has special properties
that can simplify the solution process. Sparsity, positive definiteness, symmetry, and so on
provide clues to the proper algorithm to use for a particular problem. Even if a given solution
strategy might work in theory, however, it is important to understand how well we can trust
the output. For instance, due to rounding and other discrete effects, it might be the case
that an implementation of Gaussian elimination for solving A~x = ~b yields a solution ~x0 such
that 0 < ‖A~x0 −~b‖2 � 1; in other words, ~x0 only solves the system approximately.

One general way to understand the likelihood of error is through sensitivity analysis. To
measure sensitivity, we ask what might happen to ~x if instead of solving A~x = ~b, in reality
we solve a perturbed system of equations (A+ δA)~x = ~b+ δ~b. There are two ways of viewing
conclusions made by this type of analysis:

1. We may represent A and~b inexactly thanks to rounding and other effects. This analysis
then shows the best possible accuracy we can expect for ~x given the mistakes made
representing the problem.

2. Suppose our solver generates an inexact approximation ~x0 to the solution ~x of A~x =
~b. This vector ~x0 itself is the exact solution of a different system A~x0 = ~b0 if we
define ~b0 ≡ A~x0 (be sure you understand why this sentence is not a tautology!).

Understanding how changes in ~x0 affect changes in ~b0 show how sensitive the system
is to slightly incorrect answers.

The discussion here is motivated by the definitions of forward and backward error in §2.2.1.

4.3.1 Matrix and Vector Norms
Before we can discuss the sensitivity of a linear system, we have to be somewhat careful
to define what it means for a change δ~x to be “small.” Generally, we wish to measure the
length, or norm, of a vector ~x. We have already encountered the two-norm of a vector:

‖~x‖2 ≡
√
x2

1 + x2
2 + · · ·+ x2

n
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‖ · ‖1 ‖ · ‖1.5 ‖ · ‖2 ‖ · ‖3 ‖ · ‖∞

Figure 4.7 The set {~x ∈ R2 : ‖~x‖ = 1} for different vector norms ‖ · ‖.

for ~x ∈ Rn. This norm is popular thanks to its connection to Euclidean geometry, but it is
by no means the only norm on Rn. Most generally, we define a norm as follows:

Definition 4.2 (Vector norm). A vector norm is a function ‖ · ‖ : Rn → [0,∞) satisfying
the following conditions:

• ‖~x‖ = 0 if and only if ~x = ~0 (“‖ · ‖ separates points”).

• ‖c~x‖ = |c|‖~x‖ for all scalars c ∈ R and vectors ~x ∈ Rn (“absolute scalability”).

• ‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖ for all ~x, ~y ∈ Rn (“triangle inequality”).

Other than ‖ · ‖2, there are many examples of norms:

• The p-norm ‖~x‖p, for p ≥ 1, is given by

‖~x‖p ≡ (|x1|p + |x2|p + · · ·+ |xn|p)
1/p
.

Of particular importance is the 1-norm, also known as the “Manhattan” or “taxicab”
norm:

‖~x‖1 ≡
n∑

k=1

|xk|.

This norm receives its nickname because it represents the distance a taxicab drives
between two points in a city where the roads only run north/south and east/west.

• The ∞-norm ‖~x‖∞ is given by

‖~x‖∞ ≡ max(|x1|, |x2|, · · · , |xn|).

These norms are illustrated in Figure 4.7 by showing the “unit circle” {~x ∈ R2 : ‖~x‖ = 1}
for different choices of norm ‖ · ‖; this visualization shows that ‖~v‖p ≤ ‖~v‖q when p > q.

Despite these geometric differences, many norms on Rn have similar behavior. In par-
ticular, suppose we say two norms are equivalent when they satisfy the following property:

Definition 4.3 (Equivalent norms). Two norms ‖ · ‖ and ‖ · ‖′ are equivalent if there exist
constants clow and chigh such that clow‖~x‖ ≤ ‖~x‖′ ≤ chigh‖~x‖ for all ~x ∈ Rn.

This condition guarantees that up to some constant factors, all norms agree on which
vectors are “small” and “large.” We will state without proof a famous theorem from analysis:
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Theorem 4.2 (Equivalence of norms on Rn). All norms on Rn are equivalent.

This somewhat surprising result implies that all vector norms have the same rough be-
havior, but the choice of a norm for analyzing or stating a particular problem still can make
a huge difference. For instance, on R3 the∞-norm considers the vector (1000, 1000, 1000) to
have the same norm as (1000, 0, 0), whereas the 2-norm certainly is affected by the additional
nonzero values.

Since we perturb not only vectors but also matrices, we must also be able to take the
norm of a matrix. The definition of a matrix norm is nothing more than Definition 4.2 with
matrices in place of vectors. For this reason, we can “unroll” any matrix in Rm×n to a
vector in Rnm to adapt any vector norm to matrices. One such norm is the Frobenius norm

‖A‖Fro ≡
√∑

i,j

a2
ij .

Such adaptations of vector norms, however, are not always meaningful. In particular,
norms on matrices A constructed this way may not have a clear connection to the action
of A on vectors. Since we usually use matrices to encode linear transformations, we would
prefer a norm that helps us understand what happens when A is multiplied by different
vectors ~x. With this motivation, we can define the matrix norm induced by a vector norm
as follows:

Definition 4.4 (Induced norm). The matrix norm on Rm×n induced by a vector norm
‖ · ‖ is given by

‖A‖ ≡ max{‖A~x‖ : ‖~x‖ = 1}.
That is, the induced norm is the maximum length of the image of a unit vector multiplied
by A.

This definition in the case ‖ ·‖ = ‖ ·‖2 is illustrated in Figure 4.8. Since vector norms satisfy
‖c~x‖ = |c|‖~x‖, this definition is equivalent to requiring

‖A‖ ≡ max
~x∈Rn\{0}

‖A~x‖
‖~x‖ .

From this standpoint, the norm of A induced by ‖ · ‖ is the largest achievable ratio of the
norm of A~x relative to that of the input ~x.

This definition in terms of a maximization problem makes it somewhat complicated to
compute the norm ‖A‖ given a matrix A and a choice of ‖·‖. Fortunately, the matrix norms
induced by many popular vector norms can be simplified. Some well-known formulae for
matrix norms include the following:

• The induced one-norm of A is the maximum absolute column sum of A:

‖A‖1 = max
1≤j≤n

m∑

i=1

|aij |.

• The induced ∞-norm of A is the maximum absolute row sum of A:

‖A‖∞ = max
1≤i≤m

n∑

j=1

|aij |.
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�x A�xA

‖�x‖2 = 1

Figure 4.8 The norm ‖ · ‖2 induces a matrix norm measuring the largest distortion

of any point on the unit circle after applying A.

• The induced two-norm, or spectral norm, of A ∈ Rn×n is the square root of the largest
eigenvalue of A>A. That is,

‖A‖22 = max{λ : there exists ~x ∈ Rn with A>A~x = λ~x}.

The first two norms are computable directly from the elements of A; the third will require
machinery from Chapter 7.

4.3.2 Condition Numbers
Now that we have tools for measuring the action of a matrix, we can define the condition
number of a linear system by adapting our generic definition of condition numbers from
Chapter 2. In this section, we will follow the development presented in [50].

Suppose we are given a perturbation δA of a matrix A and a perturbation δ~b of the
right-hand side of the linear system A~x = ~b. For small values of ε, ignoring invertibility
technicalities we can write a vector-valued function ~x(ε) as the solution to

(A+ ε · δA)~x(ε) = ~b+ ε · δ~b.
Differentiating both sides with respect to ε and applying the product rule shows:

δA · ~x(ε) + (A+ ε · δA)
d~x(ε)

dε
= δ~b.

In particular, when ε = 0 we find

δA · ~x(0) +A
d~x

dε

∣∣∣
ε=0

= δ~b

or, equivalently,
d~x

dε

∣∣∣
ε=0

= A−1(δ~b− δA · ~x(0)).

Using the Taylor expansion, we can write

~x(ε) = ~x(0) + ε~x′(0) +O(ε2),

where we define ~x′(0) = d~x
dε

∣∣
ε=0

. Thus, we can expand the relative error made by solving
the perturbed system:

‖~x(ε)− ~x(0)‖
‖~x(0)‖ =

‖ε~x′(0) +O(ε2)‖
‖~x(0)‖ by the Taylor expansion above
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=
‖εA−1(δ~b− δA · ~x(0)) +O(ε2)‖

‖~x(0)‖ by the derivative we computed

≤ |ε|
‖~x(0)‖ (‖A−1δ~b‖+ ‖A−1δA · ~x(0))‖) +O(ε2)

by the triangle inequality ‖A+B‖ ≤ ‖A‖+ ‖B‖

≤ |ε|‖A−1‖
(
‖δ~b‖
‖~x(0)‖ + ‖δA‖

)
+O(ε2) by the identity ‖AB‖ ≤ ‖A‖‖B‖

= |ε|‖A−1‖‖A‖
(

‖δ~b‖
‖A‖‖~x(0)‖ +

‖δA‖
‖A‖

)
+O(ε2)

≤ |ε|‖A−1‖‖A‖
(
‖δ~b‖
‖A~x(0)‖ +

‖δA‖
‖A‖

)
+O(ε2) since ‖A~x(0)‖ ≤ ‖A‖‖~x(0)‖

= |ε|‖A−1‖‖A‖
(
‖δ~b‖
‖~b‖

+
‖δA‖
‖A‖

)
+O(ε2) since by definition A~x(0) = ~b.

Here we have applied some properties of induced matrix norms which follow from corre-
sponding properties for vectors; you will check them explicitly in Exercise 4.12.

The sum D ≡ ‖δ~b‖/‖~b‖+‖δA‖/‖A‖ appearing in the last equality above encodes the magni-

tudes of the perturbations of δA and δ~b relative to the magnitudes of A and ~b, respectively.
From this standpoint, to first order we have bounded the relative error of perturbing the
system by ε in terms of the factor κ ≡ ‖A‖‖A−1‖:

‖~x(ε)− ~x(0)‖
‖~x(0)‖ ≤ |ε| ·D · κ+O(ε2)

Hence, the quantity κ bounds the conditioning of linear systems involving A, inspiring the
following definition:

Definition 4.5 (Matrix condition number). The condition number of A ∈ Rn×n with
respect to a given matrix norm ‖ · ‖ is

cond A ≡ ‖A‖‖A−1‖.

If A is not invertible, we take cond A ≡ ∞.

For nearly any matrix norm, cond A ≥ 1 for all A. Scaling A has no effect on its condition
number. Large condition numbers indicate that solutions to A~x = ~b are unstable under
perturbations of A or ~b.

If ‖ · ‖ is induced by a vector norm and A is invertible, then we have

‖A−1‖ = max
~x6=~0

‖A−1~x‖
‖~x‖ by definition

= max
~y 6=~0

‖~y‖
‖A~y‖ by substituting ~y = A−1~x

=

(
min
~y 6=~0

‖A~y‖
‖~y‖

)−1

by taking the reciprocal.
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A

Figure 4.9 The condition number of A measures the ratio of the largest to smallest

distortion of any two points on the unit circle mapped under A.

In this case, the condition number of A is given by:

cond A =

(
max
~x6=~0

‖A~x‖
‖~x‖

)(
min
~y 6=~0

‖A~y‖
‖~y‖

)−1

.

In other words, cond A measures the ratio of the maximum to the minimum possible stretch
of a vector ~x under A; this interpretation is illustrated in Figure 4.9.

A desirable stability property of a system A~x = ~b is that if A or ~b is perturbed, the
solution ~x does not change considerably. Our motivation for cond A shows that when the
condition number is small, the change in ~x is small relative to the change in A or ~b. Oth-
erwise, a small change in the parameters of the linear system can cause large deviations in
~x; this instability can cause linear solvers to make large mistakes in ~x due to rounding and
other approximations during the solution process.

In practice, we might wish to evaluate cond A before solving A~x = ~b to see how successful
we can expect to be in this process. Taking the norm ‖A−1‖, however, can be as difficult
as computing the full inverse A−1. A subtle “chicken-and-egg problem” exists here: Do we
need to compute the condition number of computing matrix condition numbers? A common
way out is to bound or approximate cond A using expressions that are easier to evaluate.
Lower bounds on the condition number represent optimistic bounds that can be used to
cull out particularly bad matrices A, while upper bounds guarantee behavior in the worst
case. Condition number estimation is itself an area of active research in numerical analysis.

For example, one way to lower-bound the condition number is to apply the identity
‖A−1~x‖ ≤ ‖A−1‖‖~x‖ as in Exercise 4.12. Then, for any ~x 6= ~0 we can write ‖A−1‖ ≥
‖A−1~x‖/‖~x‖. Thus,

cond A = ‖A‖‖A−1‖ ≥ ‖A‖‖A
−1~x‖

‖~x‖ .

So, we can bound the condition number by solving A−1~x for some vectors ~x. The necessity
of a linear solver to find A−1~x again creates a circular dependence on the condition number
to evaluate the quality of the estimate! After considering eigenvalue problems, in future
chapters we will provide more reliable estimates when ‖ · ‖ is induced by the two-norm.

4.4 EXERCISES
4.1 Give an example of a sparse matrix whose inverse is dense.
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4.2 Show that the matrix D introduced in §4.2.1 is symmetric and positive definite.

4.3 (“Matrix calculus”) The optimization problem we posed for A ∈ R2×2 in §4.1.4 is an
example of a problem where the unknown is a matrix rather than a vector. These prob-
lems appear frequently in machine learning and have inspired an alternative notation
for differential calculus better suited to calculations of this sort.

(a) Suppose f : Rn×m → R is a smooth function. Justify why the gradient of f can
be thought of as an n × m matrix. We will use the notation ∂f

∂A to notate the
gradient of f(A) with respect to A.

(b) Take the gradient ∂/∂A of the following functions, assuming ~x and ~y are constant
vectors:

(i) ~x>A~y

(ii) ~x>A>A~x

(iii) (~x−A~y)>W (~x−A~y) for a constant, symmetric matrix W

(c) Now, suppose X ∈ Rm×n is a smooth function of a scalar variable X(t) : R →
Rm×n. We can notate the differential ∂X ≡ X ′(t). For matrix functions X(t)
and Y (t), justify the following identities:

(i) ∂(X + Y ) = ∂X + ∂Y

(ii) ∂(X>) = (∂X)>

(iii) ∂(XY ) = (∂X)Y +X(∂Y )

(iv) ∂(X−1) = −X−1(∂X)X−1 (see Exercise 1.13)

After establishing a dictionary of identities like the ones above, taking the derivatives
of functions involving matrices becomes a far less cumbersome task. See [99] for a
comprehensive reference of identities and formulas in matrix calculus.

4.4 The system of equations for A and ~b in §4.1.4 must be “unrolled” if we wish to
use standard software for solving linear systems of equations to recover the image
transformation. Define

A ≡
(
a11 a12

a21 a22

)
and ~b ≡

(
b1
b2

)
.

We can combine all our unknowns into a vector ~u as follows:

~u ≡




a11

a12

a21

a22

b1
b2



.

Write a matrix M ∈ R6×6 and vector ~d ∈ R6 so that ~u—and hence A and ~b—can be
recovered by solving the system M~u = ~d for ~u; you can use any computable temporary
variables to simplify your notation, including ~xsum, ~ysum, X, and C.
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4.5 There are many ways to motivate the harmonic parameterization technique from
§4.1.6. One alternative is to consider the Dirichlet energy of a parameterization

ED[~t(·)] ≡
∑

(v,w)∈E
‖~t(v)− ~t(w)‖22.

Then, we can write an optimization problem given boundary vertex positions ~t0(·) :
B → R2:

minimize ED[~t(·)]
subject to ~t(v) = ~t0(v) ∀v ∈ B.

This optimization minimizes the Dirichlet energy ED[·] over all possible parameter-
izations ~t(·) with the constraint that the positions of boundary vertices v ∈ B are
fixed. Show that after minimizing this energy, interior vertices v ∈ V \B satisfy the
barycenter property introduced in §4.1.6:

~t(v) =
1

|N(v)|
∑

w∈N(v)

~t(w).

This variational formulation connects the technique to the differential geometry of
smooth maps into the plane.

4.6 A more general version of the Cholesky decomposition that does not require the
computation of square roots is the LDLT decomposition.

(a) Suppose A ∈ Rn×n is symmetric and admits an LU factorization (without piv-
oting). Show that A can be factored A = LDL>, where D is diagonal and L is
lower triangular.
Hint: Take D ≡ UL−>; you must show that this matrix is diagonal.

(b) Modify the construction of the Cholesky decomposition from §4.2.1 to show how a
symmetric, positive-definite matrix A can be factored A = LDL> without using
any square root operations. Does your algorithm only work when A is positive
definite?

4.7 Suppose A ∈ Rm×n has full rank, where m < n. Show that taking ~x = A>(AA>)−1~b
solves the following optimization problem:

min~x ‖~x‖2
subject to A~x = ~b.

Furthermore, show that taking α→ 0 in the Tikhonov-regularized system from §4.1.3
recovers this choice of ~x.

4.8 Suppose A ∈ Rn×n is tridiagonal, meaning it can be written:

A =




v1 w1

u2 v2 w2

u3 v3 w3

. . .
. . .

. . .

un−1 vn−1 wn−1

un vn



.

Show that in this case the system A~x = ~b can be solved in O(n) time. You can assume
that A is diagonally dominant, meaning |vi| > |ui|+ |wi| for all i.
Hint: Start from Gaussian elimination. This algorithm usually is attributed to [118].
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4.9 Show how linear techniques can be used to solve the following optimization problem
for A ∈ Rm×n, B ∈ Rk×n,~c ∈ Rk:

minimize~x∈Rn‖A~x‖22
subject to B~x = ~c.

4.10 Suppose A ∈ Rn×n admits a Cholesky factorization A = LL>.

(a) Show that A must be positive semidefinite.

(b) Use this observation to suggest an algorithm for checking if a matrix is positive
semidefinite.

4.11 Are all matrix norms on Rm×n equivalent? Why or why not?

4.12 For this problem, assume that the matrix norm ‖A‖ for A ∈ Rn×n is induced by a
vector norm ‖~v‖ for ~v ∈ Rn (but it may be the case that ‖ · ‖ 6= ‖ · ‖2).

(a) For A,B ∈ Rn×n, show ‖A+B‖ ≤ ‖A‖+ ‖B‖.
(b) For A,B ∈ Rn×n and ~v ∈ Rn, show ‖A~v‖ ≤ ‖A‖‖~v‖ and ‖AB‖ ≤ ‖A‖‖B‖.
(c) For k > 0 and A ∈ Rn×n, show ‖Ak‖1/k ≥ |λ| for any real eigenvalue λ of A.

(d) For A ∈ Rn×n and ‖~v‖1 ≡
∑
i |vi|, show ‖A‖1 = maxj

∑
i |aij |.

(e) Prove Gelfand’s formula: ρ(A) = limk→∞ ‖Ak‖1/k, where ρ(A) ≡ max{|λi|} for
eigenvalues λ1, . . . , λm of A. In fact, this formula holds for any matrix norm ‖ · ‖.

4.13 (“Screened Poisson smoothing”) Suppose we sample a function f(x) at n positions
x1, x2, . . . , xn, yielding a point ~y ≡ (f(x1), f(x2), . . . , f(xn)) ∈ Rn. Our measurements
might be noisy, however, so a common task in graphics and statistics is to smooth
these values to obtain a new vector ~z ∈ Rn.

(a) Provide least-squares energy terms measuring the following:

(i) The similarity of ~y and ~z.

(ii) The smoothness of ~z.
Hint: We expect f(xi+1)− f(xi) to be small for smooth f .

(b) Propose an optimization problem for smoothing ~y using the terms above to obtain
~z, and argue that it can be solved using linear techniques.

(c) Suppose n is very large. What properties of the matrix in 4.13b might be relevant
in choosing an effective algorithm to solve the linear system?

4.14 (“Kernel trick”) In this chapter, we covered techniques for linear and nonlinear para-
metric regression. Now, we will develop a least-squares technique for nonparametic
regression that is used commonly in machine learning and vision.

(a) You can think of the least-squares problem as learning the vector ~a in a function
f(~x) = ~a · ~x given a number of examples ~x(1) 7→ y(1), . . . , ~x(k) 7→ y(k) and the
assumption f(~x(i)) ≈ y(i). Suppose the columns of X are the vectors ~x(i) and
that ~y is the vector of values y(i). Provide the normal equations for recovering ~a
with Tikhonov regularization.
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(b) Show that ~a ∈ span {~x(1), . . . , ~x(k)} in the Tikhonov-regularized system.

(c) Thus, we can write ~a = c1~x
(1) + · · · + ck~x

(k). Give a k × k linear system of
equations satisfied by ~c assuming X>X is invertible.

(d) One way to do nonlinear regression might be to write a function φ : Rn → Rm
and learn fφ(~x) = ~a · φ(~x), where φ may be nonlinear. Define K(~x, ~y) = φ(~x) ·
φ(~y). Assuming we continue to use regularized least-squares as in 4.14a, give an
alternative form of fφ that can be computed by evaluating K rather than φ.
Hint: What are the elements of X>X?

(e) Consider the following formula from the Fourier transform of the Gaussian:

e−π(s−t)2 =

∫ ∞

−∞
e−πx

2

(sin(2πsx) sin(2πtx) + cos(2πsx) cos(2πtx)) dx.

Suppose we wrote K(x, y) = e−π(x−y)2 . Explain how this “looks like” φ(x) ·
φ(y) for some φ. How does this suggest that the technique from 4.14d can be
generalized?

4.15 (“Discrete Fourier transform”) This problem deals with complex numbers, so we will
take i ≡

√
−1.

(a) Suppose θ ∈ R and n ∈ N. Derive de Moivre’s formula by induction on n:

(cos θ + i sin θ)n = cosnθ + i sinnθ.

(b) Euler’s formula uses “complex exponentials” to define eiθ ≡ cos θ+ i sin θ. Write
de Moivre’s formula in this notation.

(c) Define the primitive n-th root of unity as ωn ≡ e−2πi/n. The discrete Fourier
transform matrix can be written

Wn ≡
1√
n




1 1 1 1 · · · 1
1 ωn ω2

n ω3
n · · · ωn−1

n

1 ω2
n ω4

n ω6
n · · · ω

2(n−1)
n

1 ω3
n ω6

n ω9
n · · · ω

3(n−1)
n

...
...

...
...

. . .
...

1 ωn−1
n ω

2(n−1)
n ω

3(n−1)
n · · · ω

(n−1)(n−1)
n




.

Show that Wn can be written in terms of a Vandermonde matrix, as defined in
Example 4.3.

(d) The complex conjugate of a + bi ∈ C, where a, b ∈ R, is a+ bi ≡ a − bi. Show

that W−1
n = W ∗n , where W ∗n ≡W

>
n .

(e) Suppose n = 2k. In this case, show how Wn can be applied to a vector ~x ∈ Cn
via two applications of Wn/2 and post-processing that takes O(n) time.
Note: The fast Fourier transform essentially uses this technique recursively to
apply Wn in O(n log n) time.

(f) Suppose thatA is circulant, as described in §4.2.3. Show thatW ∗nAWn is diagonal.
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ONE way to interpret the linear problem A~x = ~b for ~x is that we wish to write ~b as a
linear combination of the columns of A with weights given in ~x. This perspective does

not change when we allow A ∈ Rm×n to be non-square, but the solution may not exist or
be unique depending on the structure of the column space of A. For these reasons, some
techniques for factoring matrices and analyzing linear systems seek simpler representations
of the column space of A to address questions regarding solvability and span more explicitly
than row-based factorizations like LU.

5.1 THE STRUCTURE OF THE NORMAL EQUATIONS
As shown in §4.1.2, a necessary and sufficient condition for ~x to be a solution of the least-
squares problem A~x ≈ ~b is that ~x must satisfy the normal equations (A>A)~x = A>~b. This
equation shows that least-squares problems can be solved using linear techniques on the
matrix A>A. Methods like Cholesky factorization use the special structure of this matrix
to the solver’s advantage.

There is one large problem limiting the use of the normal equations, however. For now,
suppose A is square; then we can write:

cond A>A = ‖A>A‖‖(A>A)−1‖
≈ ‖A>‖‖A‖‖A−1‖‖(A>)−1‖ for many choices of ‖ · ‖
= ‖A‖2‖A−1‖2

= (cond A)2.

That is, the condition number of A>A is approximately the square of the condition number
of A! Thus, while generic linear strategies might work on A>A when the least-squares
problem is “easy,” when the columns of A are nearly linearly dependent these strategies are
likely to exhibit considerable error since they do not deal with A directly.

91
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�a1

�a2

�b

Figure 5.1 The vectors ~a1 and ~a2 nearly coincide; hence, writing ~b in the span of

these vectors is difficult since ~v1 can be replaced with ~v2 or vice versa in a linear

combination without incurring much error.

Intuitively, a primary reason that cond A>A can be large is that columns of A might
look “similar,” as illustrated in Figure 5.1. Think of each column of A as a vector in Rm. If
two columns ~ai and ~aj satisfy ~ai ≈ ~aj , then the least-squares residual length ‖~b−A~x‖2 will
not suffer much if we replace multiples of ~ai with multiples of ~aj or vice versa. This wide
range of nearly—but not completely—equivalent solutions yields poor conditioning. While
the resulting vector ~x is unstable, however, the product A~x remains nearly unchanged. If
our goal is to write ~b in the column space of A, either approximate solution suffices. In other
words, the backward error of multiple near-optimal ~x’s is similar.

To solve such poorly conditioned problems, we will employ an alternative technique
with closer attention to the column space of A rather than employing row operations as
in Gaussian elimination. This strategy identifies and deals with such near-dependencies
explicitly, bringing about greater numerical stability.

5.2 ORTHOGONALITY
We have identified why a least-squares problem might be difficult, but we might also ask
when it is possible to perform least-squares without suffering from conditioning issues. If
we can reduce a system to the straightforward case without inducing conditioning problems
along the way, we will have found a stable way around the drawbacks explained in §5.1.

The easiest linear system to solve is In×n~x = ~b, where In×n is the n×n identity matrix:

The solution is ~x = ~b! We are unlikely to bother using a linear solver to invert this particular
linear system on purpose, but we may do so accidentally while solving least-squares. Even
when A 6= In×n—A may not even be square—we may, in particularly lucky circumstances,
find that the Gram matrix A>A satisfies A>A = In×n, making least-squares trivial. To
avoid confusion with the general case, we will use the variable Q to represent such a matrix
satisfying Q>Q = In×n.

While simply praying that Q>Q = In×n unlikely will yield a useful algorithm, we can
examine this case to see how it becomes so favorable. Write the columns of Q as vectors
~q1, · · · , ~qn ∈ Rm. Then, the product Q>Q has the following structure:

Q>Q =




− ~q>1 −
− ~q>2 −

...
− ~q>n






| | |
~q1 ~q2 · · · ~qn
| | |


 =




~q1 · ~q1 ~q1 · ~q2 · · · ~q1 · ~qn
~q2 · ~q1 ~q2 · ~q2 · · · ~q2 · ~qn

...
... · · ·

...
~qn · ~q1 ~qn · ~q2 · · · ~qn · ~qn


 .

Setting the expression on the right equal to In×n yields the following relationship:

~qi · ~qj =

{
1 when i = j
0 when i 6= j.
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Figure 5.2 Isometries can (a) rotate and flip vectors but cannot (b) stretch or shear

them.

In other words, the columns of Q are unit-length and orthogonal to one another. We say
that they form an orthonormal basis for the column space of Q:

Definition 5.1 (Orthonormal; orthogonal matrix). A set of vectors {~v1, · · · , ~vk} is or-
thonormal if ‖~vi‖2 = 1 for all i and ~vi ·~vj = 0 for all i 6= j. A square matrix whose columns
are orthonormal is called an orthogonal matrix.

The standard basis {~e1, ~e2, . . . , ~en} is an example of an orthonormal basis, and since the
columns of the identity matrix In×n are these vectors, In×n is an orthogonal matrix.

We motivated our discussion by asking when we can expect Q>Q = In×n. Now we know
that this condition occurs exactly when the columns of Q are orthonormal. Furthermore,
if Q is square and invertible with Q>Q = In×n, then by multiplying both sides of the

expression Q>Q = In×n by Q−1 shows Q−1 = Q>. Hence, Q~x = ~b is equivalent to ~x = Q>~b
after multiplying both sides by the transpose Q>.

Orthonormality has a strong geometric interpretation. Recall from Chapter 1 that we
can regard two orthogonal vectors ~a and ~b as being perpendicular. So, an orthonormal
set of vectors is a set of mutually perpendicular unit vectors in Rn. Furthermore, if Q is
orthogonal, then its action does not affect the length of vectors:

‖Q~x‖22 = ~x>Q>Q~x = ~x>In×n~x = ~x · ~x = ‖~x‖22.

Similarly, Q cannot affect the angle between two vectors, since:

(Q~x) · (Q~y) = ~x>Q>Q~y = ~x>In×n~y = ~x · ~y.

From this standpoint, if Q is orthogonal, then the operation ~x 7→ Q~x is an isometry of Rn,
that is, it preserves lengths and angles. As illustrated in Figure 5.2, Q can rotate or reflect
vectors but cannot scale or shear them. From a high level, the linear algebra of orthogonal
matrices is easier because their actions do not affect the geometry of the underlying space.

5.3 STRATEGY FOR NON-ORTHOGONAL MATRICES
Most matrices A encountered when solving A~x = ~b or the least-squares problem A~x ≈ ~b
will not be orthogonal, so the machinery of §5.2 does not apply directly. For this reason, we
must do some additional computations to connect the general case to the orthogonal one.
To this end, we will derive an alternative to LU factorization using orthogonal rather than
substitution matrices.

Take a matrix A ∈ Rm×n, and denote its column space as col A; col A is the span of
the columns of A. Now, suppose a matrix B ∈ Rn×n is invertible. We make the following
observation about the column space of AB relative to that of A:
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Proposition 5.1 (Column space invariance). For anyA ∈ Rm×n and invertibleB ∈ Rn×n,
col A = col AB.

Proof. Suppose ~b ∈ col A. By definition, there exists ~x with A~x = ~b. If we take ~y = B−1~x,
then AB~y = (AB) · (B−1~x) = A~x = ~b, so ~b ∈ col AB. Conversely, take ~c ∈ col AB, so there
exists ~y with (AB)~y = ~c. In this case, A · (B~y) = ~c, showing that ~c ∈ col A.

Recall the “elimination matrix” description of Gaussian elimination: We started with a
matrix A and applied row operation matrices Ei such that the sequence A,E1A,E2E1A, . . .
eventually reduced to more easily solved triangular systems. The proposition above suggests
an alternative strategy for situations like least-squares in which we care about the column
space of A: Apply column operations to A by post-multiplication until the columns are
orthonormal. So long as these operations are invertible, Proposition 5.1 shows that the
column spaces of the modified matrices will be the same as the column space of A.

In the end, we will attempt to find a product Q = AE1E2 · · ·Ek starting from A and
applying invertible operation matrices Ei such that Q is orthonormal. As we have argued
above, the proposition shows that col Q = col A. Inverting these operations yields a fac-
torization A = QR for R = E−1

k E−1
k−1 · · ·E−1

1 . The columns of the matrix Q contain an
orthonormal basis for the column space of A, and with careful design we can once again
make R upper triangular.

When A = QR, by orthogonality of Q we have A>A = R>Q>QR = R>R. Making this
substitution, the normal equations A>A~x = A>~b imply R>R~x = R>Q>~b, or equivalently
R~x = Q>~b. If we design R to be a triangular matrix, then solving the least-squares system
A>A~x = A>~b can be carried out efficiently by back-substitution via R~x = Q>~b.

5.4 GRAM-SCHMIDT ORTHOGONALIZATION
Our first algorithm for QR factorization follows naturally from our discussion above but
may suffer from numerical issues. We use it here as an initial example of orthogonalization
and then will improve upon it with better operations.

5.4.1 Projections

Suppose we have two vectors ~a and~b, with ~a 6= ~0. Then, we could easily ask, “Which multiple
of ~a is closest to ~b?” Mathematically, this task is equivalent to minimizing ‖c~a−~b‖22 over all

possible c ∈ R. If we think of ~a and ~b as n× 1 matrices and c as a 1× 1 matrix, then this is
nothing more than an unconventional least-squares problem ~a · c ≈ ~b. In this formulation,
the normal equations show ~a>~a · c = ~a>~b, or

c =
~a ·~b
~a · ~a =

~a ·~b
‖~a‖22

.

We denote the resulting projection of ~b onto ~a as:

proj~a
~b ≡ c~a =

~a ·~b
~a · ~a~a =

~a ·~b
‖~a‖22

~a.

By design, proj~a
~b is parallel to ~a. What about the remainder ~b − proj~a

~b? We can do the
following computation to find out:

~a · (~b− proj~a
~b) = ~a ·~b− ~a ·

(
~a ·~b
‖~a‖22

~a

)
by definition of proj~a

~b
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�a

�b

proj�a
�b

�b − proj�a
�b

Figure 5.3 The projection proj~a
~b is parallel to ~a, while the remainder ~b − proj~a

~b is

perpendicular to ~a.

= ~a ·~b− ~a ·~b
‖~a‖22

(~a · ~a) by moving the constant outside the dot product

= ~a ·~b− ~a ·~b since ~a · ~a = ‖~a‖22
= 0.

This simplification shows we have decomposed ~b into a component proj~a
~b parallel to ~a and

another component ~b− proj~a
~b orthogonal to ~a, as illustrated in Figure 5.3.

Now, suppose that â1, â2, · · · , âk are orthonormal; for clarity, in this section we will put
hats over vectors with unit length. For any single i, by the projection formula above

projâi
~b = (âi ·~b)âi.

The denominator does not appear because ‖âi‖2 = 1 by definition. More generally, however,

we can project ~b onto span {â1, · · · , âk} by minimizing the following energy function E over
c1, . . . , ck ∈ R:

E(c1, c2, . . . , ck) ≡ ‖c1â1 + c2â2 + · · ·+ ckâk −~b‖22

=




k∑

i=1

k∑

j=1

cicj(âi · âj)


− 2~b ·

(
k∑

i=1

ciâi

)
+~b ·~b

by applying and expanding ‖~v‖22 = ~v · ~v

=

k∑

i=1

(
c2i − 2ci~b · âi

)
+ ‖~b‖22 since the âi’s are orthonormal.

The second step here is only valid because of orthonormality of the âi’s. At a minimum,
the derivative of this energy with respect to ci is zero for every i, yielding the relationship

0 =
∂E

∂ci
= 2ci − 2~b · âi =⇒ ci = âi ·~b.

This argument shows that when â1, · · · , âk are orthonormal,

projspan {â1,··· ,âk}
~b = (â1 ·~b)â1 + · · ·+ (âk ·~b)âk.

This formula extends the formula for proj~a
~b, and by a proof identical to the one above for

single-vector projections, we must have

âi · (~b− projspan {â1,··· ,âk}
~b) = 0.
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function Gram-Schmidt(�v1, �v2, . . . , �vk)
� Computes an orthonormal basis â1, . . . , âk for span {�v1, . . . , �vk}
� Assumes �v1, . . . , �vk are linearly independent.

â1 ← �v1/‖�v1‖2 � Nothing to project out of the first vector
for i ← 2, 3, . . . , k

�p

�p �p

← �0 � Projection of �vi onto span {â1, . . . , âi−1}
for j ← 1, 2, . . . , i − 1

← + (�vi · âj)âj � Projecting onto orthonormal basis

�r ← �vi − �p� Residual is orthogonal to current basis
âi ← �r/‖�r‖2 � Normalize this residual and add it to the basis

return {â1, . . . , âk}

Figure 5.4 The Gram-Schmidt algorithm for orthogonalization. This implementation

assumes that the input vectors are linearly independent; in practice, linear depen-

dence can be detected by checking for division by zero.

�v1

�v2

â1

�r

�p
â2

(a) Input (b) Rescaling (c) Projection (d) Normalization

Figure 5.5 Steps of the Gram-Schmidt algorithm on (a) two vectors ~v1 and ~v2: (b)

â1 is a rescaled version of ~v1; (c) ~v2 is decomposed into a parallel component ~p and

a residual ~r; (d) ~r is normalized to obtain â2.

Once again, we separated ~b into a component parallel to the span of the âi’s and a perpen-
dicular residual.

5.4.2 Gram-Schmidt Algorithm
Our observations above lead to an algorithm for orthogonalization, or building an orthogonal
basis {â1, · · · , âk} whose span is the same as that of a set of linearly independent but not
necessarily orthogonal input vectors {~v1, · · · , ~vk}.

We add one vector at a time to the basis, starting with ~v1, then ~v2, and so on. When
~vi is added to the current basis {â1, . . . , âi−1}, we project out the span of â1, . . . , âi−1. By
the discussion in §5.4.1 the remaining residual must be orthogonal to the current basis,
so we divide this residual by its norm to make it unit-length and add it to the basis.
This technique, known as Gram-Schmidt orthogonalization, is detailed in Figure 5.4 and
illustrated in Figure 5.5.

Example 5.1 (Gram-Schmidt orthogonalization). Suppose we are given ~v1 = (1, 0, 0),
~v2 = (1, 1, 1), and ~v3 = (1, 1, 0). The Gram-Schmidt algorithm proceeds as follows:
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1. The first vector ~v1 is already unit-length, so we take â1 = ~v1 = (1, 0, 0).

2. Now, we remove the span of â1 from the second vector ~v2:

~v2 − projâ1 ~v2 =




1
1
1


−






1
0
0


 ·




1
1
1








1
0
0


 =




0
1
1


 .

Dividing this vector by its norm, we take â2 = (0, 1/
√

2, 1/
√

2).

3. Finally, we remove span {â1, â2} from ~v3:

~v3 − projspan {â1,â2} ~v3

=




1
1
0


−






1
0
0


 ·




1
1
0








1
0
0


−






0
1/
√

2

1/
√

2


 ·




1
1
0








0
1/
√

2

1/
√

2




=




0
1/2
−1/2


 .

Normalizing this vector yields â3 = (0, 1/
√

2,−1/
√

2).

If we start with a matrix A ∈ Rm×n whose columns are ~v1, · · · , ~vk, then we can imple-
ment Gram-Schmidt using a series of column operations on A. Dividing column i of A by its
norm is equivalent to post-multiplying A by a k×k diagonal matrix. The projection step for
column i involves subtracting only multiples of columns j with j < i, and thus this opera-
tion can be implemented with an upper-triangular elimination matrix. Thus, our discussion
in §5.3 applies, and we can use Gram-Schmidt to obtain a factorization A = QR. When the
columns of A are linearly independent, one way to find R is as a product R = Q>A; a more
stable approach is to keep track of operations as we did for Gaussian elimination.

Example 5.2 (QR factorization). Suppose we construct a matrix whose columns are ~v1,
~v2, and ~v3 from Example 5.1:

A ≡




1 1 1
0 1 1
0 1 0


 .

The output of Gram-Schmidt orthogonalization can be encoded in the matrix

Q ≡




1 0 0
0 1/

√
2 1/

√
2

0 1/
√

2 −1/
√

2


 .

We can obtain the upper-triangular matrix R in the QR factorization two different ways.
First, we can compute R after the fact using a product:

R = Q>A =




1 0 0
0 1/

√
2 1/

√
2

0 1/
√

2 −1/
√

2



>


1 1 1
0 1 1
0 1 0


 =




1 1 1

0
√

2 1/
√

2

0 0 1/
√

2


 .

As expected, R is upper triangular.
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function Modified-Gram-Schmidt(�v1, �v2, . . . , �vk)
� Computes an orthonormal basis â1, . . . , âk for span {�v1, . . . , �vk}
� Assumes �v1, . . . , �vk are linearly independent.

for i ← 1, 2, . . . , k
âi ← �vi/‖�vi‖2 � Normalize the current vector and store in the basis
for j ← i + 1, i + 2, . . . , k

�vj ← �vj − (�vj · âi)âi � Project âi out of the remaining vectors

return {â1, . . . , âk}

Figure 5.6 The modified Gram-Schmidt algorithm.

We can also return to the steps of Gram-Schmidt orthogonalization to obtain R from
the sequence of elimination matrices. A compact way to write the steps of Gram-Schmidt
from Example 5.1 is as follows:

Step 1: Q0 =




1 1 1
0 1 1
0 1 0




Step 2: Q1 = Q0E1 =




1 1 1
0 1 1
0 1 0






1 −1/
√

2 0
0 1/

√
2 0

0 0 1


 =




1 0 1
0 1/

√
2 1

0 1/
√

2 0




Step 3: Q2 = Q1E2 =




1 0 1
0 1/

√
2 1

0 1/
√

2 0






1 0 −
√

2
0 1 −1

0 0
√

2


 =




1 0 0
0 1/

√
2 1/

√
2

0 1/
√

2 −1/
√

2


 .

These steps show Q = AE1E2, or equivalently A = QE−1
2 E−1

1 . This gives a second way
to compute R:

R = E−1
2 E−1

1 =




1 0 1
0 1 1/

√
2

0 0 1/
√

2






1 1 0

0
√

2 0
0 0 1


 =




1 1 1

0
√

2 1/
√

2

0 0 1/
√

2


 .

The Gram-Schmidt algorithm is well known to be numerically unstable. There are many
reasons for this instability that may or may not appear depending on the particular appli-
cation. For instance, thanks to rounding and other issues, it might be the case that the âi’s
are not completely orthogonal after the projection step. Our projection formula for finding
~p within the algorithm in Figure 5.4, however, only works when the âi’s are orthogonal. For
this reason, in the presence of rounding, the projection ~p of ~vi becomes less accurate.

One way around this issue is the “modified Gram-Schmidt” (MGS) algorithm in Fig-
ure 5.6, which has similar running time but makes a subtle change in the way projec-
tions are computed. Rather than computing the projection ~p in each iteration i onto
span {â1, . . . , âi−1}, as soon as âi is computed it is projected out of ~vi+1, . . . , ~vk; subse-
quently we never have to consider âi again. This way, even if the basis globally is not
completely orthogonal due to rounding, the projection step is valid since it only projects
onto one âi at a time. In the absence of rounding, modified Gram-Schmidt and classical
Gram-Schmidt generate identical output.
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�v2

â1

‖�r‖2 ≈ 0

Figure 5.7 A failure mode of the basic and modified Gram-Schmidt algorithms; here

â1 is nearly parallel to ~v2 and hence the residual ~r is vanishingly small.

A more subtle instability in the Gram-Schmidt algorithm is not resolved by MGS and
can introduce serious numerical instabilities during the subtraction step. Suppose we provide
the vectors ~v1 = (1, 1) and ~v2 = (1 + ε, 1) as input to Gram-Schmidt for some 0 < ε� 1. A
reasonable basis for span {~v1, ~v2} might be {(1, 0), (0, 1)}. But, if we apply Gram-Schmidt,
we obtain:

â1 =
~v1

‖~v1‖
=

1√
2

(
1
1

)

~p =
2 + ε

2

(
1
1

)

~r = ~v2 − ~p =

(
1 + ε

1

)
− 2 + ε

2

(
1
1

)

=
1

2

(
ε
−ε

)
.

Taking the norm, ‖~v2 − ~p‖2 = (
√

2/2) · ε, so computing â2 = (1/
√

2,−1/
√

2) will require
division by a scalar on the order of ε. Division by small numbers is an unstable numerical
operation that generally should be avoided. A geometric interpretation of this case is shown
in Figure 5.7.

5.5 HOUSEHOLDER TRANSFORMATIONS
In §5.3, we motivated the construction of QR factorization through the use of column
operations. This construction is reasonable in the context of analyzing column spaces, but as
we saw in our derivation of the Gram-Schmidt algorithm, the resulting numerical techniques
can be unstable.

Rather than starting with A and post-multiplying by column operations to obtain Q =
AE1 · · ·Ek, however, we can also start with A and pre-multiply by orthogonal matrices Qi
to obtain Qk · · ·Q1A = R. These Q’s will act like row operations, eliminating elements of
A until the resulting product R is upper triangular. Thanks to orthogonality of the Q’s, we
can write A = (Q>1 · · ·Q>k )R, obtaining the QR factorization since products and transposes
of orthogonal matrices are orthogonal.

The row operation matrices we used in Gaussian elimination and LU will not suffice for
QR factorization since they are not orthogonal. Several alternatives have been suggested;
we will introduce a common orthogonal row operation introduced in 1958 by Alston Scott
Householder [65].

The space of orthogonal n × n matrices is very large, so we seek a smaller set of pos-
sible Qi’s that is easier to work with while still powerful enough to implement elimination
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�v
�b

pro
j�v
�b

(proj�v
�b) −�b

2(proj�v
�b) −�b

(proj�v
�b) −�b

Figure 5.8 Reflecting ~b over ~v.

operations. To develop some intuition, from our geometric discussions in §5.2 we know that
orthogonal matrices must preserve angles and lengths, so intuitively they only can rotate
and reflect vectors. Householder proposed using only reflection operations to reduce A to
upper-triangular form. A well-known alternative by Givens uses only rotations to accomplish
the same task [48] and is explored in Exercise 5.11.

One way to write an orthogonal reflection matrix is in terms of projections, as illustrated
in Figure 5.8. Suppose we have a vector ~b that we wish to reflect over a vector ~v. We have
shown that the residual ~r ≡ ~b− proj~v

~b is perpendicular to ~v. Following the reverse of this

direction twice shows that the difference 2proj~v
~b−~b reflects ~b over ~v.

We can expand our reflection formula as follows:

2proj~v
~b−~b = 2

~v ·~b
~v · ~v~v −

~b by definition of projection

= 2~v · ~v
>~b
~v>~v

−~b using matrix notation

=

(
2~v~v>

~v>~v
− In×n

)
~b

≡ −H~v~b, where we define H~v ≡ In×n −
2~v~v>

~v>~v
.

By this factorization, we can think of reflecting ~b over ~v as applying a matrix −H~v to ~b;
−H~v has no dependence on ~b. H~v without the negative is still orthogonal, and by convention
we will use it from now on. Our derivation will parallel that in [58].

Like in forward-substitution, in our first step we wish to pre-multiply A by a matrix that
takes the first column of A, which we will denote ~a, to some multiple of the first identity
vector ~e1. Using reflections rather than forward-substitutions, however, we now need to find
some ~v, c such that H~v~a = c~e1. Expanding this relationship,

c~e1 = H~v~a, as explained above

=

(
In×n −

2~v~v>

~v>~v

)
~a, by definition of H~v

= ~a− 2~v
~v>~a
~v>~v

.

Moving terms around shows

~v = (~a− c~e1) · ~v
>~v

2~v>~a
.
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In other words, if H~v accomplishes the desired reflection, then ~v must be parallel to the
difference ~a − c~e1. Scaling ~v does not affect the formula for H~v, so for now assuming such
an H~v exists we can attempt to choose ~v = ~a− c~e1.

If this choice is valid, then substituting ~v = ~a− c~e1 into the simplified expression shows

~v = ~v · ~v
>~v

2~v>~a
.

Assuming ~v 6= ~0, the coefficient next to ~v on the right-hand side must be 1, showing:

1 =
~v>~v
2~v>~a

=
‖~a‖22 − 2c~e1 · ~a+ c2

2(~a · ~a− c~e1 · ~a)

or, 0 = ‖~a‖22 − c2 =⇒ c = ±‖~a‖2.

After choosing c = ±‖~a‖2, our steps above are all reversible. We originally set out to find
~v such that H~v~a = c~e1. By taking ~v = ~a− c~e1 with c = ±‖~a‖2, the steps above show:

H~vA =




c × × ×
0 × × ×
...

...
...

...
0 × × ×


 .

We have just accomplished a step similar to forward elimination using orthogonal matrices!

Example 5.3 (Householder transformation). Suppose

A =




2 −1 5
2 1 2
1 0 −2


 .

The first column of A has norm
√

22 + 22 + 12 = 3, so if we take c = 3 we can write:

~v = ~a− c~e1 =




2
2
1


− 3




1
0
0


 =



−1
2
1


 .

This choice of ~v gives elimination matrix

H~v = I3×3 −
2~v~v>

~v>~v
=

1

3




2 2 1
2 −1 −2
1 −2 2


 .

As expected, H>~v H~v = I3×3. Furthermore, H~v eliminates the first column of A:

H~vA =
1

3




2 2 1
2 −1 −2
1 −2 2






2 −1 5
2 1 2
1 0 −2


 =




3 0 4
0 −1 4
0 −1 −1


 .

To fully reduce A to upper-triangular form, we must repeat the steps above to eliminate
all elements of A below the diagonal. During the k-th step of triangularization, we can take
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function Householder-QR(A)
� Factors A ∈ Rm×n as A = QR.
� Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangular

Q ← Im×m

R ← A
for k ← 1, 2, . . . , m

�a ← R�ek � Isolate column k of R and store it in �a
(�a1,�a2) ← Split(�a,k − 1) � Separate off the first k − 1 elements of �a

c ← ‖�a2‖2 � Find reflection vector �v for the Householder matrix H�v

�v ←
(

�0
�a2

)
− c�ek

R ← H�vR � Eliminate elements below the diagonal of the k-th column
Q ← QH�

�v

return Q, R

Figure 5.9 Householder QR factorization; the products with H~v can be carried out in

quadratic time after expanding the formula for H~v in terms of ~v (see Exercise 5.2).

~a to be the k-th column of Qk−1Qk−2 · · ·Q1A, where the Qi’s are reflection matrices like
the one derived above. We can split ~a into two components:

~a =

(
~a1

~a2

)
.

Here, ~a1 ∈ Rk−1 and ~a2 ∈ Rm−k+1. We wish to find ~v such that

H~v~a =




~a1

c
~0


 .

Following a parallel derivation to the one above for the case k = 1 shows that

~v =

(
~0
~a2

)
− c~ek

accomplishes exactly this transformation when c = ±‖~a2‖2.
The algorithm for Householder QR, illustrated in Figure 5.9, applies these formulas

iteratively, reducing to triangular form in a manner similar to Gaussian elimination. For
each column of A, we compute ~v annihilating the bottom elements of the column and apply
H~v to A. The end result is an upper-triangular matrix R = H~vn · · ·H~v1A. Q is given by the
product H>~v1 · · ·H>~vn . When m < n, it may be preferable to store Q implicitly as a list of
vectors ~v, which fits in the lower triangle that otherwise would be empty in R.

Example 5.4 (Householder QR). Continuing Example 5.3, we split the second column
of H~vA as ~a1 = (0) ∈ R1 and ~a2 = (−1,−1) ∈ R2. We now take c′ = −‖~a2‖2 = −

√
2,

yielding

~v′ =

(
~0
~a2

)
− c′~e2 =




0
−1
−1


+

√
2




0
1
0


 =




0

−1 +
√

2
−1



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=⇒ H~v′ =




1 0 0
0 1/

√
2 1/

√
2

0 1/
√

2 −1/
√

2


 .

Applying the two Householder steps reveals an upper-triangular matrix:

R = H~v′H~vA =




3 0 4

0 −
√

2 3/
√

2

0 0 5/
√

2


 .

The corresponding Q is given by Q = H>~v′H
>
~v .

5.6 REDUCED QR FACTORIZATION
We conclude our discussion by returning to the least-squares problem A~x ≈ ~b when A ∈
Rm×n is not square. Both algorithms we have discussed in this chapter can factor non-
square matrices A into products QR, but the sizes of Q and R are different depending on
the approach:

• When applying Gram-Schmidt, we do column operations on A to obtain Q by orthog-
onalization. For this reason, the dimension of A is that of Q, yielding Q ∈ Rm×n and
R ∈ Rn×n as a product of elimination matrices.

• When using Householder reflections, we obtain Q as the product of m×m reflection
matrices, leaving R ∈ Rm×n.

Suppose we are in the typical case for least-squares, for which m� n. We still prefer to use
the Householder method due to its numerical stability, but now the m×m matrix Q might
be too large to store. To save space, we can use the upper-triangular structure of R to our
advantage. For instance, consider the structure of a 5× 3 matrix R:

R =




× × ×
0 × ×
0 0 ×
0 0 0
0 0 0



.

Anything below the upper n× n square of R must be zero, yielding a simplification:

A = QR =
(
Q1 Q2

)( R1

0

)
= Q1R1.

Here, Q1 ∈ Rm×n and R1 ∈ Rn×n still contains the upper triangle of R. This is called the
“reduced” QR factorization of A, since the columns of Q1 contain a basis for the column
space of A rather than for all of Rm; it takes up far less space. The discussion in §5.3 still
applies, so the reduced QR factorization can be used for least-squares in a similar fashion.

5.7 EXERCISES
5.1 Use Householder reflections to obtain a QR factorization of the matrix A from Exam-

ple 5.2. Do you obtain the same QR factorization as the Gram-Schmidt approach?
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5.2 Suppose A ∈ Rn×n and ~v ∈ Rn. Provide pseudocode for computing the product
H~vA in O(n2) time. Explain where this method might be used in implementations of
Householder QR factorization.

5.3 (Adapted from Stanford CS 205A, 2012) Suppose A ∈ Rm×n is factored A = QR.
Show that P0 = Im×m −QQ> is the projection matrix onto the null space of A>.

5.4 (Adapted from Stanford CS 205A, 2012) Suppose we consider ~a ∈ Rn as an n × 1
matrix. Write out its “reduced” QR factorization explicitly.

5.5 Show that the Householder matrix H~v is involutary, meaning H2
~v = In×n. What are

the eigenvalues of H~v?

5.6 Propose a method for finding the least-norm projection of a vector ~v onto the column
space of A ∈ Rm×n with m > n.

5.7 Alternatives to the QR factorization:

(a) Can a matrix A ∈ Rm×n be factored into A = RQ where R is upper triangular
and Q is orthogonal? How?

(b) Can a matrix A ∈ Rm×n be factored into A = QL where L is lower triangular?

5.8 Relating QR and Cholesky factorizations:

(a) Take A ∈ Rm×n and suppose we apply the Cholesky factorization to obtain
A>A = LL>. Define Q ≡ A(L>)−1. Show that the columns of Q are orthogonal.

(b) Based on the previous part, suggest a relationship between the Cholesky factor-
ization of A>A and QR factorization of A.

5.9 Suppose A ∈ Rm×n is rank m with m < n. Suppose we factor

A> = Q

(
R1

0

)
.

Provide a solution ~x to the underdetermined system A~x = ~b in terms of Q and R1.

Hint: Try the square case A ∈ Rn×n first, and use the result to guess a form for
~x. Be careful that you multiply matrices of proper size.

5.10 (“Generalized QR,” [2]) One way to generalize the QR factorization of a matrix is to
consider the possibility of factorizing multiple matrices simultaneously.

(a) Suppose A ∈ Rn×m and B ∈ Rn×p, with m ≤ n ≤ p. Show that there are
orthogonal matrices Q ∈ Rn×n and V ∈ Rp×p as well as a matrix R ∈ Rn×m
such that the following conditions hold:

• Q>A = R.

• Q>BV = S, where S can be written

S =
(

0 S̄
)
,

for upper-triangular S̄ ∈ Rn×n.
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• R can be written

R =

(
R̄
0

)
,

for upper-triangular R̄ ∈ Rm×m.

Hint: Take R̄ to be R1 from the reduced QR factorization of A. Apply RQ
factorization to Q>B; see Exercise 5.7a.

(b) Show how to solve the following optimization problem for ~x and ~u using the
generalized QR factorization:

min~x,~u ‖~u‖2
subject to A~x+B~u = ~c.

You can assume S̄ and R̄ are invertible.

5.11 An alternative algorithm for QR factorization uses Givens rotations rather than
Householder reflections.

(a) The 2× 2 rotation matrix by angle θ ∈ [0, 2π) is given by

Rθ ≡
(

cos θ sin θ
− sin θ cos θ

)
.

Show that for a given ~x ∈ R2, a θ always exists such that Rθ~x = r~e1, where
r ∈ R and ~e1 = (1, 0). Give formulas for cos θ and sin θ that do not require
trigonometric functions.

(b) The Givens rotation matrix of rows i and j about angle θ is given by

G(i, j, θ) ≡




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




,

where c ≡ cos θ and s ≡ sin θ. In this formula, the c’s appear in positions (i, i) and
(j, j) while the s’s appear in positions (i, j) and (j, i). Provide an O(n) method
for finding the product G(i, j, θ)A for A ∈ Rn×n; the matrix A can be modified
in the process.

(c) Give an O(n3) time algorithm for overwriting A ∈ Rn×n with Q>A = R, where
Q ∈ Rn×n is orthogonal and R ∈ Rn×n is upper triangular. You do not need to
store Q.

(d) Suggest how you might storeQ implicitly if you use the QR method you developed
in the previous part.

(e) Suggest an O(n3) method for recovering the matrix Q given A and R.
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5.12 (Adapted from [50], §5.1) If ~x, ~y ∈ Rm with ‖~x‖2 = ‖~y‖2, write an algorithm for
finding an orthogonal matrix Q such that Q~x = ~y.

5.13 (“TSQR,” [28]) The QR factorization algorithms we considered can be challenging to
extend to parallel architectures like MapReduce. Here, we consider QR factorization
of A ∈ Rm×n where m� n.

(a) Suppose A ∈ R8n×n. Show how to factor A = QR̄, where Q ∈ R8n×4n has
orthogonal columns and R̄ ∈ R4n×n contains four n×n upper-triangular blocks.
Hint: Write

A =




A1

A2

A3

A4


 .

(b) Recursively apply your answer from 5.13a to generate a QR factorization of A.

(c) Suppose we make the following factorizations:

A1 = Q1R1(
R1

A2

)
= Q2R2

(
R2

A3

)
= Q3R3

(
R3

A4

)
= Q4R4,

where each of the Ri’s are square. Use these matrices to factor A = QR.

(d) Suppose we read A row-by-row. Why might the simplification in 5.13c be useful
for QR factorization of A in this case? You can assume we only need R from the
QR factorization.
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WE turn our attention now to a nonlinear problem about matrices: Finding their
eigenvalues and eigenvectors. Eigenvectors ~x and corresponding eigenvalues λ of a

square matrix A are determined by the equation A~x = λ~x. There are many ways to see that
the eigenvalue problem is nonlinear. For instance, there is a product of unknowns λ and ~x.
Furthermore, to avoid the trivial solution ~x = ~0, we constrain ‖~x‖2 = 1; this constraint keeps
~x on the unit sphere, which is not a vector space. Thanks to this structure, algorithms for
finding eigenspaces will be considerably different from techniques for solving and analyzing
linear systems of equations.

6.1 MOTIVATION
Despite the arbitrary-looking form of the equation A~x = λ~x, the problem of finding eigenvec-
tors and eigenvalues arises naturally in many circumstances. To illustrate this point, before
presenting algorithms for finding eigenvectors and eigenvalues we motivate our discussion
with a few examples.

It is worth reminding ourselves of one source of eigenvalue problems already considered
in Chapter 1. As explained in Example 1.27, the following fact will guide many of our
examples:

107
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�xi

{cv̂ : c ∈ R}

v̂

�xi − projv̂ �xi

(a) Input data (b) Principal axis (c) Projection error

Figure 6.1 (a) A dataset with correlation between the horizontal and vertical axes;

(b) we seek the unit vector v̂ such that all data points are well-approximated by

some point along span {v̂}; (c) to find v̂, we can minimize the sum of squared

residual norms
∑
i ‖~xi − projv̂ ~xi‖22 with the constraint that ‖v̂‖2 = 1.

When A is symmetric, the eigenvectors of A are the critical points
of ~x>A~x under the constraint ‖~x‖2 = 1.

Many eigenvalue problems are constructed using this fact as a starting point.

6.1.1 Statistics
Suppose we have machinery for collecting statistical observations about a collection of items.
For instance, in a medical study we may collect the age, weight, blood pressure, and heart
rate of every patient in a hospital. Each patient i can be represented by a point ~xi ∈ R4

storing these four values.
These statistics may exhibit strong correlations between the different dimensions, as

in Figure 6.1(a). For instance, patients with higher blood pressures may be likely to have
higher weights or heart rates. For this reason, although we collected our data in R4, in
reality it may—to some approximate degree—live in a lower-dimensional space capturing
the relationships between the different dimensions.

For now, suppose that there exists a one-dimensional space approximating our dataset,
illustrated in Figure 6.1(b). Then, we expect that there exists some vector ~v such that each
data point ~xi can be written as ~xi ≈ ci~v for a different ci ∈ R. From before, we know that
the best approximation of ~xi parallel to ~v is proj~v ~xi. Defining v̂ ≡ ~v/‖~v‖2, we can write

proj~v ~xi =
~xi · ~v
~v · ~v ~v by definition

= (~xi · v̂)v̂ since ~v · ~v = ‖~v‖22.

The magnitude of ~v does not matter for the problem at hand, since the projection of ~xi
onto any nonzero multiple of v̂ is the same, so it is reasonable to restrict our search to the
space of unit vectors v̂.

Following the pattern of least-squares, we have a new optimization problem:

minimizev̂
∑

i

‖~xi − projv̂ ~xi‖22

subject to ‖v̂‖2 = 1.
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This problem minimizes the sum of squared differences between the data points ~xi and their
best approximation as a multiple of v̂, as in Figure 6.1(c). We can simplify our optimization
objective using the observations we already have made and some linear algebra:

∑

i

‖~xi − projv̂ ~xi‖22 =
∑

i

‖~xi − (~xi · v̂)v̂‖22 as explained above

=
∑

i

(
‖~xi‖22 − 2(~xi · v̂)(~xi · v̂) + (~xi · v̂)2‖v̂‖22

)
since ‖~w‖22 = ~w · ~w

=
∑

i

(
‖~xi‖22 − (~xi · v̂)2

)
since ‖v̂‖2 = 1

= const.−
∑

i

(~xi · v̂)2 since the unknown here is v̂

= const.− ‖X>v̂‖22, where the columns of X are the vectors ~xi.

After removing the negative sign, this derivation shows that we can solve an equivalent
maximization problem:

maximize ‖X>v̂‖22
subject to ‖v̂‖22 = 1.

Statisticians may recognize this equivalence as maximizing variance rather than minimizing
approximation error.

We know ‖X>v̂‖22 = v̂>XX>v̂, so by Example 1.27, v̂ is the eigenvector of XX> with
the highest eigenvalue. The vector v̂ is known as the first principal component of the dataset.

6.1.2 Differential Equations
Many physical forces can be written as functions of position. For instance, the force exerted
by a spring connecting two particles at positions ~x, ~y ∈ R3 is k(~x − ~y) by Hooke’s Law;
such spring forces are used to approximate forces holding cloth together in many simula-
tion systems for computer graphics. Even when forces are not linear in position, we often
approximate them in a linear fashion. In particular, in a physical system with n particles,
we can encode the positions of all the particles simultaneously in a vector ~X ∈ R3n. Then,
the forces in the system might be approximated as ~F ≈ A ~X for some matrix A ∈ R3n×3n.

Newton’s second law of motion states F = ma, or force equals mass times acceleration.
In our context, we can write a diagonal mass matrix M ∈ R3n×3n containing the mass of
each particle in the system. Then, the second law can be written as ~F = M ~X ′′, where prime
denotes differentiation in time. By definition, ~X ′′ = ( ~X ′)′, so after defining ~V ≡ ~X ′ we have
a first-order system of equations:

d

dt

(
~X
~V

)
=

(
0 I3n×3n

M−1A 0

)(
~X
~V

)
.

Here, we simultaneously compute both positions in ~X ∈ R3n and velocities ~V ∈ R3n of all
n particles as functions of time; we will explore this reduction in more detail in Chapter 15.

Beyond this reduction, differential equations of the form ~y′ = B~y for an unknown func-
tion ~y(t) and fixed matrix B appear in simulation of cloth, springs, heat, waves, and other
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x1 xn

(a) Database of photos (b) Spectral embedding

Figure 6.2 Suppose we are given (a) an unsorted database of photographs with some

matrix W measuring the similarity between image i and image j. (b) The one-

dimensional spectral embedding assigns each photograph i a value xi so that if

images i and j are similar, then xi will be close to xj (figure generated by D.

Hyde).

phenomena. Suppose we know eigenvectors ~y1, . . . , ~yk of B satisfying B~yi = λi~yi. If we write
the initial condition of the differential equation in terms of the eigenvectors as

~y(0) = c1~y1 + · · ·+ ck~yk,

then the solution of the differential equation can be written in closed form:

~y(t) = c1e
λ1t~y1 + · · ·+ cke

λkt~yk.

That is, if we expand the initial conditions of this differential equation in the eigenvector
basis, then we know the solution for all times t ≥ 0 for free; you will check this formula in
Exercise 6.1. This formula is not the end of the story for simulation: Finding the complete
set of eigenvectors of B is expensive, and B may evolve over time.

6.1.3 Spectral Embedding
Suppose we have a collection of n items in a dataset and a measure wij ≥ 0 of how similar
elements i and j are; we will assume wij = wji. For instance, maybe we are given a collection
of photographs as in Figure 6.2(a) and take wij to be a measure of the amount of overlap
between the distributions of colors in photo i and in photo j.

Given the matrix W of wij values, we might wish to sort the photographs based on their
similarity to simplify viewing and exploring the collection. That is, we could lay them out
on a line so that the pair of photos i and j is close when wij is large, as in Figure 6.2(b).
The measurements in wij may be noisy or inconsistent, however, so it may not be obvious
how to sort the n photos directly using the n2 values in W .

One way to order the collection would be to assign a number xi to each item i such that
similar objects are assigned similar numbers; we can then sort the collection based on the
values in ~x. We can measure how well an assignment of values in ~x groups similar objects
by using the energy function

E(~x) ≡
∑

ij

wij(xi − xj)2.

The difference (xi − xj)2 is small when xi and xj are assigned similar values. Given the
weighting wij next to (xi−xj)2, minimizing E(~x) asks that items i and j with high similarity
scores wij get mapped the closest.
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Minimizing E(~x) with no constraints gives a minimum ~x with E(~x) = 0: xi = const. for
all i. Furthermore, adding a constraint ‖~x‖2 = 1 does not remove this constant solution:
Taking xi = 1/

√
n for all i gives ‖~x‖2 = 1 and E(~x) = 0. To obtain a nontrivial output, we

must remove this case as well:

minimize E(~x)

subject to ‖~x‖22 = 1

~1 · ~x = 0.

Our second constraint requires that the sum of elements in ~x is zero, preventing the choice
x1 = x2 = · · · = xn when combined with the ‖~x‖2 = 1 constraint.

We can simplify the energy in a few steps:

E(~x) =
∑

ij

wij(xi − xj)2 by definition

=
∑

ij

wij(x
2
i − 2xixj + x2

j )

=
∑

i

aix
2
i − 2

∑

ij

wijxixj +
∑

j

ajx
2
j where ~a ≡W~1, since W> = W

= 2~x>(A−W )~x where A ≡ diag(~a).

We can check that ~1 is an eigenvector of A−W with eigenvalue 0:

(A−W )~1 = A~1−W~1 = ~a− ~a = ~0.

More interestingly, the eigenvector corresponding to the second -smallest eigenvalue is the
minimizer for our constrained problem above! One way to see this fact is to write the
Lagrange multiplier function corresponding to this optimization:

Λ ≡ 2~x>(A−W )~x− λ(1− ‖~x‖22)− µ(~1 · ~x).

Applying Theorem 1.1, at the optimal point we must have:

0 = ∇~xΛ = 4(A−W )~x+ 2λ~x− µ~1
1 = ‖~x‖22
0 = ~1 · ~x.

If we take the dot product of both sides of the first expression with ~1 shows

0 = ~1 · [4(A−W )~x+ 2λ~x− µ~1]

= 4~1>(A−W )~x− µn since ~1 · ~x = 0

= −µn since A~1 = W~1 = ~a

=⇒ µ = 0.

Substituting this new observation into the Lagrange multiplier condition, we find:

2(W −A)~x = λ~x.

We explicitly ignore the eigenvalue λ = 0 of W − A corresponding to the eigenvector
~1, so ~x must be the eigenvector with the second -smallest eigenvalue. The resulting ~x is
the “spectral embedding” of W onto one dimension, referring to the fact that we call the
set of eigenvalues of a matrix its spectrum. Taking more eigenvectors of A −W provides
embeddings into higher dimensions.
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6.2 PROPERTIES OF EIGENVECTORS
We have established a variety of applications in need of eigenspace computation. Before we
can explore algorithms for this purpose, however, we will more closely examine the structure
of the eigenvalue problem.

We can begin with a few definitions that likely are evident at this point:

Definition 6.1 (Eigenvalue and eigenvector). An eigenvector ~x 6= ~0 of a matrix A ∈ Rn×n
is any vector satisfying A~x = λ~x for some λ ∈ R; the corresponding λ is known as
an eigenvalue. Complex eigenvalues and eigenvectors satisfy the same relationships with
λ ∈ C and ~x ∈ Cn.

Definition 6.2 (Spectrum and spectral radius). The spectrum of A is the set of eigenvalues
of A. The spectral radius ρ(A) is the maximum value |λ| over all eigenvalues λ of A.

The scale of an eigenvector is not important. In particular, A(c~x) = cA~x = cλ~x = λ(c~x),
so c~x is an eigenvector with the same eigenvalue. For this reason, we can restrict our search
to those eigenvectors ~x with ‖~x‖2 = 1 without losing any nontrivial structure. Adding this
constraint does not completely relieve ambiguity, since ±~x are both eigenvectors with the
same eigenvalue, but this case is easier to detect.

The algebraic properties of eigenvectors and eigenvalues are the subject of many mathe-
matical studies in themselves. Some basic properties will suffice for the discussion at hand,
and hence we will mention just a few theorems affecting the design of numerical algorithms.
The proofs here parallel the development in [4].

First, we should check that every matrix has at least one eigenvector, so that our search
for eigenvectors is not in vain. Our strategy for this and other related problems is to notice
that λ is an eigenvalue such that A~x = λ~x if and only if (A− λIn×n)~x = ~0. That is, λ is an
eigenvalue of A exactly when the matrix A− λIn×n is not full-rank.

Proposition 6.1 ([4], Theorem 2.1). Every matrix A ∈ Rn×n has at least one (potentially
complex) eigenvector.

Proof. Take any vector ~x ∈ Rn\{~0}, and assume A 6= 0 since this matrix trivially has
eigenvalue 0. The set {~x,A~x,A2~x, · · · , An~x} must be linearly dependent because it contains
n+ 1 vectors in n dimensions. So, there exist constants c0, . . . , cn ∈ R not all zero such that
~0 = c0~x+ c1A~x+ · · ·+ cnA

n~x. Define a polynomial

f(z) ≡ c0 + c1z + · · ·+ cnz
n.

By the Fundamental Theorem of Algebra, there exist m ≥ 1 roots zi ∈ C and c 6= 0 such
that

f(z) = c(z − z1)(z − z2) · · · (z − zm).

Applying this factorization,

~0 = c0~x+ c1A~x+ · · ·+ cnA
n~x

= (c0In×n + c1A+ · · ·+ cnA
n)~x

= c(A− z1In×n) · · · (A− zmIn×n)~x.

In this form, at least one A− ziIn×n has a null space, since otherwise each term would be
invertible, forcing ~x = ~0. If we take ~v to be a nonzero vector in the null space of A−ziIn×n,
then by construction A~v = zi~v, as needed.
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There is one additional fact worth checking to motivate our discussion of eigenvector
computation. While it can be the case that a single eigenvalue admits more than one cor-
responding eigenvector, when two eigenvectors have different eigenvalues they cannot be
related in the following sense:

Proposition 6.2 ([4], Proposition 2.2). Eigenvectors corresponding to different eigenval-
ues must be linearly independent.

Proof. Suppose this is not the case. Then there exist eigenvectors ~x1, . . . , ~xk with distinct
eigenvalues λ1, . . . , λk that are linearly dependent. This implies that there are coefficients
c1, . . . , ck not all zero with ~0 = c1~x1 + · · ·+ ck~xk.

For any two indices i and j, since A~xj = λj~xj , we can simplify the product

(A− λiIn×n)~xj = A~xj − λi~xj = λj~xj − λi~xj = (λj − λi)~xj .

Pre-multiplying the relationship ~0 = c1~x1 + · · ·+ ck~xk by the matrix (A− λ2In×n) · · · (A−
λkIn×n) shows:

~0 = (A− λ2In×n) · · · (A− λkIn×n)(c1~x1 + · · ·+ ck~xk)

= c1(λ1 − λ2) · · · (λ1 − λk)~x1.

Since all the λi’s are distinct, this shows c1 = 0. The same argument shows that the rest of
the ci’s have to be zero, contradicting linear dependence.

This proposition shows that an n×n matrix can have at most n distinct eigenvalues, since
a set of n eigenvalues yields n linearly independent vectors. The maximum number of linearly
independent eigenvectors corresponding to an eigenvalue λ is the geometric multiplicity of λ.
It is not true, however, that a matrix has to have exactly n linearly independent eigenvectors.
This is the case for many matrices, which we will call nondefective:

Definition 6.3 (Nondefective). A matrix A ∈ Rn×n is nondefective or diagonalizable if
its eigenvectors span Rn.

Example 6.1 (Defective matrix). The matrix

(
5 2
0 5

)

has only one linearly independent eigenvector (1, 0).

We call nondefective matrices diagonalizable for the following reason: If a matrix is
nondefective, then it has n eigenvectors ~x1, . . . , ~xn ∈ Rn with corresponding (possibly non-
unique) eigenvalues λ1, . . . , λn. Take the columns of X to be the vectors ~xi, and define D to
be the diagonal matrix with λ1, . . . , λn along the diagonal. Then, we have AX = XD; this
relationship is a “stacked” version of A~xi = λi~xi. Applying X−1 to both sides, D = X−1AX,
meaning A is diagonalized by a similarity transformation A 7→ X−1AX:

Definition 6.4 (Similar matrices). Two matrices A and B are similar if there exists T
with B = T−1AT.

Similar matrices have the same eigenvalues, since if B~x = λx, by substituting B = T−1AT
we know T−1AT~x = λ~x. Hence, A(T~x) = λ(T~x), showing T~x is an eigenvector of A with
eigenvalue λ. In other words:
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We can apply all the similarity transformations we want to a
matrix without modifying its set of eigenvalues.

This observation is the foundation of many eigenvector computation methods, which start
with a general matrix A and reduce it to a matrix whose eigenvalues are more obvious by
applying similarity transformations. This procedure is analogous to applying row operations
to reduce a matrix to triangular form for use in solving linear systems of equations.

6.2.1 Symmetric and Positive Definite Matrices
Unsurprisingly given our special consideration of Gram matrices A>A in previous chapters,
symmetric and/or positive definite matrices enjoy special eigenvector structure. If we can
verify a priori that a matrix is symmetric or positive definite, specialized algorithms can
be used to extract its eigenvectors more quickly.

Our original definition of eigenvalues allows them to be complex values in C even if
A is a real matrix. We can prove, however, that in the symmetric case we do not need
complex arithmetic. To do so, we will generalize symmetric matrices to matrices in Cn×n
by introducing the set of Hermitian matrices:

Definition 6.5 (Complex conjugate). The complex conjugate of a number z = a+bi ∈ C,
where a, b ∈ R, is z̄ ≡ a − bi. The complex conjugate Ā of a matrix A ∈ Cm×n is the
matrix with elements āij .

Definition 6.6 (Conjugate transpose). The conjugate transpose of A ∈ Cm×n is AH ≡
Ā>.

Definition 6.7 (Hermitian matrix). A matrix A ∈ Cn×n is Hermitian if A = AH .

A symmetric matrix A ∈ Rn×n is automatically Hermitian because it has no complex part.
We also can generalize the notion of a dot product to complex vectors by defining an

inner product as follows:

〈~x, ~y〉 ≡
∑

i

xiȳi,

where ~x, ~y ∈ Cn. Once again, this definition coincides with ~x · ~y when ~x, ~y ∈ Rn; in the
complex case, however, dot product symmetry is replaced by the condition 〈~v, ~w〉 = 〈~w,~v〉.

We now can prove that it is not necessary to search for complex eigenvalues of symmetric
or Hermitian matrices:

Proposition 6.3. All eigenvalues of Hermitian matrices are real.

Proof. Suppose A ∈ Cn×n is Hermitian with A~x = λ~x. By scaling, we can assume ‖~x‖22 =
〈~x, ~x〉 = 1. Then:

λ = λ〈~x, ~x〉 since ~x has norm 1

= 〈λ~x, ~x〉 by linearity of 〈·, ·〉
= 〈A~x, ~x〉 since A~x = λ~x

= (A~x)>~̄x by definition of 〈·, ·〉
= ~x>(Ā>~x) by expanding the product and applying the identity ab = āb̄

= 〈~x,AH~x〉 by definition of AH and 〈·, ·〉
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= 〈~x,A~x〉 since A = AH

= λ̄〈~x, ~x〉 since A~x = λ~x

= λ̄ since ~x has norm 1.

Thus λ = λ̄, which can happen only if λ ∈ R, as needed.

Not only are the eigenvalues of Hermitian (and symmetric) matrices real, but also their
eigenvectors must be orthogonal:

Proposition 6.4. Eigenvectors corresponding to distinct eigenvalues of Hermitian matri-
ces must be orthogonal.

Proof. Suppose A ∈ Cn×n is Hermitian, and suppose λ 6= µ with A~x = λ~x and A~y = µ~y.
By the previous proposition we know λ, µ ∈ R. Then, 〈A~x, ~y〉 = λ〈~x, ~y〉. But since A is
Hermitian we can also write 〈A~x, ~y〉 = 〈~x,AH~y〉 = 〈~x,A~y〉 = µ〈~x, ~y〉. Thus, λ〈~x, ~y〉 = µ〈~x, ~y〉.
Since λ 6= µ, we must have 〈~x, ~y〉 = 0.

Finally, we state (without proof) a crowning result of linear algebra, the Spectral The-
orem. This theorem states that all symmetric or Hermitian matrices are non-defective and
therefore must have exactly n orthogonal eigenvectors.

Theorem 6.1 (Spectral Theorem). Suppose A ∈ Cn×n is Hermitian (if A ∈ Rn×n,
suppose it is symmetric). Then, A has exactly n orthonormal eigenvectors ~x1, · · · , ~xn
with (possibly repeated) eigenvalues λ1, . . . , λn. In other words, there exists an orthogonal
matrix X of eigenvectors and diagonal matrix D of eigenvalues such that D = X>AX.

This theorem implies that any ~y ∈ Rn can be decomposed into a linear combination of the
eigenvectors of a Hermitian A. Many calculations are easier in this basis, as shown below:

Example 6.2 (Computation using eigenvectors). Take ~x1, . . . , ~xn ∈ Rn to be the unit-
length eigenvectors of a symmetric invertible matrix A ∈ Rn×n with corresponding eigen-
values λ1, . . . , λn ∈ R. Suppose we wish to solve A~y = ~b. By the Spectral Theorem, we can
decompose ~b = c1~x1 + · · ·+ cn~xn, where ci = ~b · ~xi by orthonormality. Then,

~y =
c1
λ1
~x1 + · · ·+ cn

λn
~xn.

The fastest way to check this formula is to multiply ~y by A and make sure we recover ~b:

A~y = A

(
c1
λ1
~x1 + · · ·+ cn

λn
~xn

)

=
c1
λ1
A~x1 + · · ·+ cn

λn
A~xn

= c1~x1 + · · ·+ cn~xn since A~xk = λk~xk for all k

= ~b, as desired.

The calculation above has both positive and negative implications. It shows that given
the eigenvectors and eigenvalues of symmetric matrix A, operations like inversion become
straightforward. On the flip side, this means that finding the full set of eigenvectors of a
symmetric matrix A is “at least” as difficult as solving A~x = ~b.

Returning from our foray into the complex numbers, we revisit the real numbers to prove
one final useful fact about positive definite matrices:
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Proposition 6.5. All eigenvalues of positive definite matrices are positive.

Proof. Take A ∈ Rn×n positive definite, and suppose A~x = λ~x with ‖~x‖2 = 1. By positive
definiteness, we know ~x>A~x > 0. But, ~x>A~x = ~x>(λ~x) = λ‖~x‖22 = λ, as needed.

This property is not nearly as remarkable as those associated with symmetric or Her-
mitian matrices, but it helps order the eigenvalues of A. Positive definite matrices enjoy
the property that the eigenvalue with smallest absolute value is also the eigenvalue closest
to zero, and the eigenvalue with largest absolute value is the one farthest from zero. This
property influences methods that seek only a subset of the eigenvalues of a matrix, usually
at one of the two ends of its spectrum.

6.2.2 Specialized Properties
We mention some specialized properties of eigenvectors and eigenvalues that influence more
advanced methods for their computation. They largely will not figure into our subsequent
discussion, so this section can be skipped if readers lack sufficient background.

6.2.2.1 Characteristic Polynomial

The determinant of a matrix detA satisfies detA 6= 0 if and only if A is invertible. Thus,
one way to find eigenvalues of a matrix is to find roots of the characteristic polynomial

pA(λ) = det(A− λIn×n).

We have chosen to avoid determinants in our discussion of linear algebra, but simplifying
pA reveals that it is an n-th degree polynomial in λ.

From this construction, we can define the algebraic multiplicity of an eigenvalue λ as
its multiplicity as a root of pA. The algebraic multiplicity of any eigenvalue is at least
as large as its geometric multiplicity. If the algebraic multiplicity is 1, the root is called
simple, because it corresponds to a single eigenvector that is linearly independent from
any others. Eigenvalues for which the algebraic and geometric multiplicities are not equal
are called defective, since the corresponding matrix must also be defective in the sense of
Definition 6.3.

In numerical analysis, it is common to avoid using the determinant of a matrix. While it
is a convenient theoretical construction, its practical applicability is limited. Determinants
are difficult to compute. In fact, most eigenvalue algorithms do not attempt to find roots
of pA directly, since doing so would require evaluation of a determinant. Furthermore, the
determinant detA has nothing to do with the conditioning of A, so a near-but-not-exactly
zero determinant of det(A− λIn×n) might not show that λ is nearly an eigenvalue of A.

6.2.2.2 Jordan Normal Form

We can only diagonalize a matrix when it has a full eigenspace. All matrices, however, are
similar to a matrix in Jordan normal form, a general layout satisfying the following criteria:

• Nonzero values are on the diagonal entries aii and on the “superdiagonal” ai(i+1).

• Diagonal values are eigenvalues repeated as many times as their algebraic multiplicity;
the matrix is block diagonal about these clusters.

• Off-diagonal values are 1 or 0.
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Thus, the shape looks something like the following:




λ1 1
λ1 1

λ1

λ2 1
λ2

λ3

. . .




.

Jordan normal form is attractive theoretically because it always exists, but the 1/0 structure
is discrete and unstable under numerical perturbation.

6.3 COMPUTING A SINGLE EIGENVALUE
Computing the eigenvalues of a matrix is a well-studied problem with many potential al-
gorithmic approaches. Each is tuned for a different situation, and achieving near-optimal
conditioning or speed requires experimentation with several techniques. Here, we cover a
few popular algorithms for the eigenvalue problem encountered in practice.

6.3.1 Power Iteration
Assume that A ∈ Rn×n is non-defective and nonzero with all real eigenvalues, e.g., A is
symmetric. By definition, A has a full set of eigenvectors ~x1, . . . , ~xn ∈ Rn; we sort them
such that their corresponding eigenvalues satisfy |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

Take an arbitrary vector ~v ∈ Rn. Since the eigenvectors of A span Rn, we can write ~v
in the ~xi basis as ~v = c1~x1 + · · ·+ cn~xn. Applying A to both sides,

A~v = c1A~x1 + · · ·+ cnA~xn

= c1λ1~x1 + · · ·+ cnλn~xn since A~xi = λi~xi

= λ1

(
c1~x1 +

λ2

λ1
c2~x2 + · · ·+ λn

λ1
cn~xn

)

A2~v = λ2
1

(
c1~x1 +

(
λ2

λ1

)2

c2~x2 + · · ·+
(
λn
λ1

)2

cn~xn

)

...

Ak~v = λk1

(
c1~x1 +

(
λ2

λ1

)k
c2~x2 + · · ·+

(
λn
λ1

)k
cn~xn

)
.

As k → ∞, the ratio (λi/λ1)k → 0 unless λi = ±λ1, since λ1 has the largest magnitude of
any eigenvalue by construction. If ~x is the projection of ~v onto the space of eigenvectors
with eigenvalues λ1, then—at least when the absolute values |λi| are unique—as k → ∞
the following approximation begins to dominate: Ak~v ≈ λk1~x.

This argument leads to an exceedingly simple algorithm for computing a single eigen-
vector ~x1 of A corresponding to its largest-magnitude eigenvalue λ1:

1. Take ~v1 ∈ Rn to be an arbitrary nonzero vector.

2. Iterate until convergence for increasing k: ~vk = A~vk−1
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function Power-Iteration(A)
�v ← Arbitrary(n)
for k ← 1, 2, 3, . . .

�v ← A�v
return �v

function Normalized-Iteration(A)
�v ← Arbitrary(n)
for k ← 1, 2, 3, . . .

�w ← A�v
�v ← �w/‖�w‖

return �v

)b()a(

Figure 6.3 Power iteration (a) without and (b) with normalization for finding the

largest eigenvalue of a matrix.

function Inverse-Iteration(A)
�v ← Arbitrary(n)
for k ← 1, 2, 3, . . .

← A−1�v

return �v

function Inverse-Iteration-LU(A)
�v ← Arbitrary(n)
L, U ← LU-Factorize(A)
for k ← 1, 2, 3, . . .

�y ← Forward-Substitute(L,�v)
← Back-Substitute(U, �y)

return �v

)b()a(

�w
�w�v ← �w/‖�w‖

�v ← �w/‖�w‖

Figure 6.4 Inverse iteration (a) without and (b) with LU factorization.

This algorithm, known as power iteration and detailed in Figure 6.3(a), produces vectors ~vk
more and more parallel to the desired ~x1 as k →∞. Although we have not considered the
defective case here, it is still guaranteed to converge; see [98] for a more advanced discussion.

One time that this technique may fail is if we accidentally choose ~v1 such that c1 = 0, but
the odds of this peculiarity occurring are vanishingly small. Such a failure mode only occurs
when the initial guess has no component parallel to ~x1. Also, while power iteration can
succeed in the presence of repeated eigenvalues, it can fail if λ and −λ are both eigenvalues
of A with the largest magnitude. In the absence of these degeneracies, the rate of convergence
for power iteration depends on the decay rate of terms 2 to n in the sum above for Ak~v
and hence is determined by the ratio of the second-largest-magnitude eigenvalue of A to
the largest.

If |λ1| > 1, however, then ‖~vk‖ → ∞ as k → ∞, an undesirable property for floating-
point arithmetic. We only care about the direction of the eigenvector rather than its mag-
nitude, so scaling has no effect on the quality of our solution. To avoid dealing with large-
magnitude vectors, we can normalize ~vk at each step, producing the normalized power
iteration algorithm in Figure 6.3(b). In the algorithm listing, we purposely do not decorate
the norm ‖ · ‖ with a particular subscript. Mathematically, any norm will suffice for pre-
venting ~vk from going to infinity, since we have shown that all norms on Rn are equivalent.
In practice, we often use the infinity norm ‖ · ‖∞; this choice has the convenient property
that during iteration ‖A~vk‖∞ → |λ1|.

6.3.2 Inverse Iteration
We now have an iterative algorithm for approximating the largest-magnitude eigenvalue λ1

of a matrix A. Suppose A is invertible, so that we can evaluate ~y = A−1~v by solving A~y = ~v
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function Rayleigh-Quotient-Iteration(A, σ)
�v ← Arbitrary(n)
for k ← 1, 2, 3, . . .

← (A − σIn×n)−1�v
�v ←
σ ← �v�A�v

‖�v‖2
2

return �v

�w
�w/‖�w‖

Figure 6.5 Rayleigh quotient iteration for finding an eigenvalue close to an initial

guess σ.

using techniques covered in previous chapters. If A~x = λ~x, then ~x = λA−1~x, or equivalently
A−1~x = 1

λ~x. Thus, 1/λ is an eigenvalue of A−1 with eigenvector ~x.
If |a| ≥ |b| then |b|−1 ≥ |a|−1, so the smallest-magnitude eigenvalue of A is the largest-

magnitude eigenvector of A−1. This construction yields an algorithm for finding λn rather
than λ1 called inverse power iteration, in Figure 6.4(a). This iterative scheme is nothing
more than the power method from §6.3.1 applied to A−1.

We repeatedly are solving systems of equations using the same matrix A but different
right-hand sides, a perfect application of factorization techniques from previous chapters.
For instance, if we write A = LU , then we could formulate an equivalent but considerably
more efficient version of inverse power iteration illustrated in Figure 6.4(b). With this sim-
plification, each solve for A−1~v is carried out in two steps, first by solving L~y = ~v and then
by solving U ~w = ~y as suggested in §3.5.1.

6.3.3 Shifting
Suppose λ2 is the eigenvalue of A with second-largest magnitude. Power iteration converges
fastest when |λ2/λ1| is small, since in this case the power (λ2/λ1)k decays quickly. If this ratio
is nearly 1, it may take many iterations before a single eigenvector is isolated.

If the eigenvalues of A are λ1, . . . , λn with corresponding eigenvectors ~x1, . . . , ~xn, then
the eigenvalues of A− σIn×n are λ1 − σ, . . . , λn − σ, since:

(A− σIn×n)~xi = A~xi − σ~xi = λi~xi − σ~xi = (λi − σ)~xi.

With this idea in mind, one way to make power iteration converge quickly is to choose σ
such that: ∣∣∣∣

λ2 − σ
λ1 − σ

∣∣∣∣ <
∣∣∣∣
λ2

λ1

∣∣∣∣ .

That is, we find eigenvectors of A − σIn×n rather than A itself, choosing σ to widen the
gap between the first and second eigenvalue to improve convergence rates. Guessing a good
σ, however, can be an art, since we do not know the eigenvalues of A a priori.

More generally, if we think that σ is near an eigenvalue of A, then A − σIn×n has an
eigenvalue close to 0 that we can reveal by inverse iteration. In other words, to use power
iteration to target a particular eigenvalue of A rather than its largest or smallest eigenvalue
as in previous sections, we shift A so that the eigenvalue we want is close to zero and then
can apply inverse iteration to the result.

If our initial guess of σ is inaccurate, we could try to update it from iteration to iteration
of the power method. For example, if we have a fixed guess of an eigenvector ~x of A, then
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by the normal equations the least-squares approximation of the corresponding eigenvalue σ
is given by

σ ≈ ~x>A~x
‖~x‖22

.

This fraction is known as a Rayleigh quotient. Thus, we can attempt to increase convergence
by using Rayleigh quotient iteration, in Figure 6.5, which uses this approximation for σ to
update the shift in each step.

Rayleigh quotient iteration usually takes fewer steps to converge than power iteration
given a good starting guess σ, but the matrix A − σkIn×n is different each iteration and
cannot be prefactored as in Figure 6.4(b). In other words, fewer iterations are necessary
but each iteration takes more time. This trade-off makes the Rayleigh method more or less
preferable to power iteration with a fixed shift depending on the particular choice and size
of A. As an additional caveat, if σk is too good an estimate of an eigenvalue, the matrix
A− σkIn×n can become near-singular, causing conditioning issues during inverse iteration;
that said, depending on the linear solver, this ill-conditioning may not be a concern because
it occurs in the direction of the eigenvector being computed. In the opposite case, it can be
difficult to control which eigenvalue is isolated by Rayleigh quotient iteration, especially if
the initial guess is inaccurate.

6.4 FINDING MULTIPLE EIGENVALUES
So far, we have described techniques for finding a single eigenvalue/eigenvector pair: power
iteration to find the largest eigenvalue, inverse iteration to find the smallest, and shifting
to target values in between. For many applications, however, a single eigenvalue will not
suffice. Thankfully, we can modify these techniques to handle this case as well.

6.4.1 Deflation
Recall the high-level structure of power iteration: Choose an arbitrary ~v1, and iteratively
multiply it by A until only the largest eigenvalue λ1 survives. Take ~x1 to be the correspond-
ing eigenvector.

We were quick to dismiss an unlikely failure mode of this algorithm when ~v1 · ~x1 = 0,
that is, when the initial eigenvector guess has no component parallel to ~x1. In this case, no
matter how many times we apply A, the result will never have a component parallel to ~x1.
The probability of choosing such a ~v1 randomly is vanishingly small, so in all but the most
pernicious of cases power iteration is a stable technique.

We can turn this drawback on its head to formulate a method for finding more than
one eigenvalue of a symmetric matrix A. Suppose we find ~x1 and λ1 via power iteration
as before. After convergence, we can restart power iteration after projecting ~x1 out of the
initial guess ~v1. Since the eigenvectors of A are orthogonal, by the argument in §6.3.1, power
iteration after this projection will recover its second -largest eigenvalue!

Due to finite-precision arithmetic, applying A to a vector may inadvertently introduce
a small component parallel to ~x1. We can avoid this effect by projecting in each iteration.
This change yields the algorithm in Figure 6.6 for computing the eigenvalues in order of
descending magnitude.

The inner loop of projected iteration is equivalent to power iteration on the matrix AP ,
where P projects out ~v1, . . . , ~v`−1:

P~x = ~x− projspan {~v1,...,~v`−1} ~x.
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function Projected-Iteration(symmetric A,k)
for � ← 1, 2, . . . , k

�v� ← Arbitrary(n)
for p ← 1, 2, 3, . . .

�u ← �v� − projspan{�v1,...,�v�−1} �v�

�v� ←
return �v1, . . . , �vk

�w ← A�v
�w/‖�w‖

Figure 6.6 Projection for finding k eigenvectors of a symmetric matrix A with the

largest eigenvalues. If ~u = ~0 at any point, the remaining eigenvalues of A are all

zero.

AP has the same eigenvectors as A with eigenvalues 0, . . . , 0, λ`, . . . , λn. More generally,
the method of deflation involves modifying the matrix A so that power iteration reveals an
eigenvector that has not already been computed. For instance, AP is a modification of A
so that the large eigenvalues we already have computed are zeroed out.

Projection can fail if A is asymmetric. Other deflation formulas, however, can work in
its place with similar efficiency. For instance, suppose A~x1 = λ1~x1 with ‖~x1‖2 = 1. Take H
to be the Householder matrix (see §5.5) such that H~x1 = ~e1, the first standard basis vector.
From our discussion in §6.2, similarity transforms do not affect the set of eigenvalues, so
we safely can conjugate A by H without changing A’s eigenvalues. Consider what happens
when we multiply HAH> by ~e1:

HAH>~e1 = HAH~e1 since H is symmetric

= HA~x1 since H~x1 = ~e1 and H2 = In×n
= λ1H~x1 since A~x1 = λ1~x1

= λ1~e1 by definition of H.

From this chain of equalities, the first column of HAH> is λ1~e1, showing that HAH> has
the following structure [58]:

HAH> =

(
λ1

~b>

~0 B

)
.

The matrix B ∈ R(n−1)×(n−1) has eigenvalues λ2, . . . , λn. Recursively applying this observa-
tion, another algorithm for deflation successively generates smaller and smaller B matrices,
with each eigenvalue computed using power iteration.

6.4.2 QR Iteration
Deflation has the drawback that each eigenvector must be computed separately, which can
be slow and can accumulate error if individual eigenvalues are not accurate. Our remaining
algorithms attempt to find more than one eigenvector simultaneously.

Recall that similar matrices A and B = T−1AT have the same eigenvalues for any in-
vertible T . An algorithm seeking the eigenvalues of A can apply similarity transformations
to A with abandon in the same way that Gaussian elimination premultiplies by row oper-
ations. Applying T−1 may be difficult, however, since it would require inverting T , so to
make such a strategy practical we seek T ’s whose inverses are known.
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function QR-Iteration(A ∈ Rn×n)
for k ← 1, 2, 3, . . .

Q, R ← QR-Factorize(A)
A ← RQ

return diag(R)

Figure 6.7 QR iteration for finding all the eigenvalues of A in the non-repeated

eigenvalue case.

One of our motivators for the QR factorization in Chapter 5 was that the matrix Q is
orthogonal, satisfying Q−1 = Q>. Because of this formula, Q and Q−1 are equally straight-
forward to apply, making orthogonal matrices strong choices for similarity transformations.
We already applied this observation in §6.4.1 when we deflated using Householder matrices.
Conjugating by orthogonal matrices also does not affect the conditioning of the eigenvalue
problem.

But if we do not know any eigenvectors of A, which orthogonal matrix Q should we
choose? Ideally, Q should involve the structure of A while being straightforward to compute.
It is less clear how to apply Householder matrices strategically to reveal multiple eigenvalues
in parallel (some advanced techniques do exactly this!), but we do know how to generate
one orthogonal Q from A by factoring A = QR. Then, experimentally we might conjugate
A by Q to find:

Q−1AQ = Q>AQ = Q>(QR)Q = (Q>Q)RQ = RQ.

Amazingly, conjugating A = QR by the orthogonal matrix Q is identical to writing the
product RQ!

This matrix A2 ≡ RQ is not equal to A = QR, but it has the same eigenvalues. Hence,
we can factor A2 = Q2R2 to get a new orthogonal matrix Q2 and once again conjugate
to define A3 ≡ R2Q2. Repeating this process indefinitely generates a sequence of similar
matrices A,A2, A3, . . . with the same eigenvalues. Curiously, for many choices of A, as
k → ∞, one can check numerically that while iterating QR factorization in this manner,
Rk becomes an upper-triangular matrix containing the eigenvalues of A along its diagonal.

Based on this elegant observation, in the 1950s multiple groups of European mathemati-
cians studied the same iterative algorithm for finding the eigenvalues of a matrix A, shown
in Figure 6.7:

Repeatedly factorize A = QR and replace A with RQ.

Take Ak to be A after the k-th iteration of this method; that is A1 = A = Q1R1, A2 =
R1Q1 = Q2R2, A3 = R2Q2 = Q3R3, and so on. Since they are related via conjugation by a
sequence of Q matrices, the matrices Ak all have the same eigenvalues as A. So, our analysis
must show (1) when we expect this technique to converge and (2) if and how the limit point
reveals eigenvalues of A. We will answer these questions in reverse order, for the case when
A is symmetric and invertible with no repeated eigenvalues up to sign; so, if λ 6= 0 is an
eigenvalue of A, then −λ is not an eigenvalue of A. More advanced analysis and application
to asymmetric or defective matrices can be found in [50] and elsewhere.

We begin by proving a proposition that will help characterize limit behavior of the QR
iteration algorithm:∗

∗The conditions of this proposition can be relaxed but are sufficient for the discussion at hand.
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Proposition 6.6. Take A,B ∈ Rn×n. Suppose that the eigenvectors of A span Rn and
have distinct eigenvalues. Then, AB = BA if and only if A and B have the same set of
eigenvectors (with possibly different eigenvalues).

Proof. Suppose A and B have eigenvectors ~x1, . . . , ~xn with eigenvalues λA1 , . . . , λ
A
n for A

and eigenvalues λB1 , . . . , λ
B
n for B. Any ~y ∈ Rn can be decomposed as ~y =

∑
i ai~xi, showing:

BA~y = BA
∑

i

ai~xi = B
∑

i

λAi ~xi =
∑

i

λAi λ
B
i ~xi

AB~y = AB
∑

i

ai~xi = A
∑

i

λBi ~xi =
∑

i

λAi λ
B
i ~xi.

So, AB~y = BA~y for all ~y ∈ Rn, or equivalently AB = BA.
Now, suppose AB = BA, and take ~x to be any eigenvector of A with A~x = λ~x. Then,

A(B~x) = (AB)~x = (BA)~x = B(A~x) = λ(B~x). We have two cases:

• If B~x 6= ~0, then B~x is an eigenvector of A with eigenvalue λ. Since A has no repeated
eigenvalues and ~x is also an eigenvector of A with eigenvalue λ, we must have B~x = c~x
for some c 6= 0. In other words, ~x is also an eigenvector of B with eigenvalue c.

• If B~x = ~0, then ~x is an eigenvector of B with eigenvalue 0.

Hence, all of the eigenvectors of A are eigenvectors of B. Since the eigenvectors of A span
Rn, A and B have exactly the same set of eigenvectors.

Returning to QR iteration, suppose Ak → A∞ as k → ∞. If we factor A∞ = Q∞R∞,
then since QR iteration converged, A∞ = Q∞R∞ = R∞Q∞. By the conjugation property,
Q>∞A∞Q∞ = R∞Q∞ = A∞, or equivalently A∞Q∞ = Q∞A∞. Since A∞ has a full set
of distinct eigenvalues, by Proposition 6.6, Q∞ has the same eigenvectors as A∞. The
eigenvalues of Q∞ are ±1 by orthogonality. Suppose A∞~x = λ~x. In this case,

λ~x = A∞~x = Q∞R∞~x = R∞Q∞~x = ±R∞~x,
so R∞~x = ±λ~x. Since R∞ is upper triangular, we now know (Exercise 6.3):

The eigenvalues of A∞—and hence the eigenvalues of A—equal the
diagonal elements of R∞ up to sign.

We can remove the sign caveat by computing QR using rotations rather than reflections.
The derivation above assumes that there exists A∞ with Ak → A∞ as k →∞. Although

we have not shown it yet, QR iteration is a stable method guaranteed to converge in many
situations, and even when it does not converge, the relevant eigenstructure of A often can
be computed from Rk as k →∞ regardless. We will not derive exact convergence conditions
here but will provide some intuition for why we might expect this method to converge, at
least given our restrictions on A.

To help motivate when we expect QR iteration to converge and yield eigenvalues along
the diagonal of R∞, suppose the columns of A are given by ~a1, . . . ,~an, and consider the
matrix Ak for large k. We can write:

Ak = Ak−1 ·A =




| | |
Ak−1~a1 Ak−1~a2 · · · Ak−1~an
| | |


 .

By our derivation of power iteration, in the absence of degeneracies, the first column of Ak

will become more and more parallel to the eigenvector ~x1 of A with largest magnitude |λ1|
as k →∞, since we took a vector ~a1 and multiplied it by A many times.
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Applying intuition from deflation, suppose we project ~x1, which is approximately par-
allel to the first column of Ak, out of the second column of Ak. By orthogonality of the
eigenvectors of A, we equivalently could have projected ~x1 out of ~a2 initially and then ap-
plied Ak−1. For this reason, as in §6.4.1, thanks to the removal of ~x1 the result of either
process must be nearly parallel to ~x2, the vector with the second -most dominant eigenvalue!
Proceeding inductively, when A is symmetric and thus has a full set of orthogonal eigenvec-
tors, factoring Ak = QR yields a set of near-eigenvectors of A in the columns of Q, in order
of decreasing eigenvalue magnitude, with the corresponding eigenvalues along the diagonal
of R.

Multiplying to find Ak for large k approximately takes the condition number of A to
the k-th power, so computing the QR decomposition of Ak explicitly is likely to lead to
numerical problems. Since decomposing Ak would reveal the eigenvector structure of A,
however, we use this fact to our advantage without paying numerically. To do so, we make
the following observation about QR iteration:

A = Q1R1 by definition of QR iteration

A2 = (Q1R1)(Q1R1)

= Q1(R1Q1)R1 by regrouping

= Q1Q2R2R1 since A2 = R1Q1 = Q2R2

...

Ak = Q1Q2 · · ·QkRkRk−1 · · ·R1 by induction.

Grouping the Qi variables and the Ri variables separately provides a QR factorization of
Ak. In other words, we can use the Qk’s and Rk’s constructed during each step of QR
iteration to construct a factorization of Ak, and thus we expect the columns of the product
Q1 · · ·Qk to converge to the eigenvectors of A.

By a similar argument, we show a related fact about the iterates A1, A2, . . . from QR
iteration. Since Ak = QkRk, we substitute Rk = Q>k Ak inductively to show:

A1 = A

A2 = R1Q1 by our construction of QR iteration

= Q>1 AQ1 since R1 = Q>1 A1

A3 = R2Q2

= Q>2 A2Q2

= Q>2 Q
>
1 AQ1Q2 from the previous step

...

Ak+1 = Q>k · · ·Q>1 AQ1 · · ·Qk inductively

= (Q1 · · ·Qk)>A(Q1 · · ·Qk),

where Ak is the k-th matrix from QR iteration. Thus, Ak+1 is the matrix A conjugated
by the product Q̄k ≡ Q1 · · ·Qk. We argued earlier that the columns of Q̄k converge to the
eigenvectors of A. Since conjugating by the matrix of eigenvectors yields a diagonal matrix
of eigenvalues, we know Ak+1 = Q̄>k AQ̄ will have approximate eigenvalues of A along its
diagonal as k →∞, at least when eigenvalues are not repeated.

In the case of symmetric matrices without repeated eigenvalues, we have shown that both
Ak and Rk will converge unconditionally to diagonal matrices containing the eigenvalues of
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A, while the product of the Qk’s will converge to a matrix of the corresponding eigenvectors.
This case is but one example of the power of QR iteration, which is applied to many problems
in which more than a few eigenvectors are needed of a given matrix A.

In practice, a few simplifying steps are usually applied before commencing QR iteration.
QR factorization of a full matrix is relatively expensive computationally, so each iteration
of the algorithm as we have described it is costly for large matrices. One way to avoid this
cost for symmetric A is first to tridiagonalize A, systematically conjugating it by orthogonal
matrices until entries not on or immediately adjacent to the diagonal are zero; tridiagonal-
ization can be carried out using Householder matrices in O(n3) time for A ∈ Rn×n [22].
QR factorization of symmetric tridiagonal matrices is much more efficient than the general
case [92].

Example 6.3 (QR iteration). To illustrate typical behavior of QR iteration, we apply the
algorithm to the matrix

A =

(
2 3
3 2

)
.

The first few iterations, computed numerically, are shown below:

A1 =

(
2.000 3.000
3.000 2.000

)
=

(
−0.555 0.832
−0.832 −0.555

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q1

(
−3.606 −3.328
0.000 1.387

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R1

=⇒ A2 = R1Q1 =

(
4.769 −1.154
−1.154 −0.769

)
A2 =

(
4.769 −1.154
−1.154 −0.769

)
=

(
−0.972 −0.235
0.235 −0.972

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q2

(
−4.907 0.941
0.000 1.019

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R2

=⇒ A3 = R2Q2 =

(
4.990 0.240
0.240 −0.990

)
A3 =

(
4.990 0.240
0.240 −0.990

)
=

(
−0.999 0.048
−0.048 −0.999

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q3

(
−4.996 −0.192
0.000 1.001

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R3

=⇒ A4 = R3Q3 =

(
5.000 −0.048
−0.048 −1.000

)
A4 =

(
5.000 −0.048
−0.048 −1.000

)
=

(
−1.000 −0.010
0.010 −1.000

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q4

(
−5.000 0.038
0.000 1.000

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R4

=⇒ A5 = R4Q4 =

(
5.000 0.010
0.010 −1.000

)
A5 =

(
5.000 0.010
0.010 −1.000

)
=

(
−1.000 0.002
−0.002 −1.000

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q5

(
−5.000 −0.008
0.000 1.000

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R5

=⇒ A6 = R5Q5 =

(
5.000 −0.002
−0.002 −1.000

)
A6 =

(
5.000 −0.002
−0.002 −1.000

)
=

(
−1.000 −0.000
0.000 −1.000

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q6

(
−5.000 0.002
0.000 1.000

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R6

=⇒ A7 = R6Q6 =

(
5.000 0.000
0.000 −1.000

)
The diagonal elements of Ak converge to the eigenvalues 5 and −1 of A, as expected.
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6.4.3 Krylov Subspace Methods
Our justification for QR iteration involved analyzing the columns of Ak as k →∞, applying
observations we already made about power iteration in §6.3.1. More generally, for a vector
~b ∈ Rn, we can examine the so-called Krylov matrix

Kk ≡



| | | |
~b A~b A2~b · · · Ak−1~b
| | | |


 .

Methods analyzing Kk to find eigenvectors and eigenvalues generally are classified as
Krylov subspace methods. For instance, the Arnoldi iteration algorithm uses Gram-Schmidt
orthogonalization to maintain an orthogonal basis {~q1, . . . , ~qk} for the column space of Kk:

1. Begin by taking ~q1 to be an arbitrary unit-norm vector.

2. For k = 2, 3, . . .

(a) Take ~ak = A~qk−1.

(b) Project out the ~q’s you already have computed:

~bk = ~ak − projspan {~q1,...,~qk−1}~ak.

(c) Renormalize to find the next ~qk = ~bk/‖~bk‖2.

The matrix Qk whose columns are the vectors found above is an orthogonal matrix with
the same column space as Kk, and eigenvalue estimates can be recovered from the structure
of Q>k AQk.

The use of Gram-Schmidt makes this technique unstable, and its timing gets progres-
sively worse as k increases. So, extensions are needed to make it feasible. For instance,
one approach involves running some iterations of the Arnoldi algorithm, using the output
to generate a better guess for the initial ~q1, and restarting [80]. Methods in this class are
suited for problems requiring multiple eigenvectors at the ends of the spectrum of A without
computing the complete set. They also can be applied to designing iterative methods for
solving linear systems of equations, as we will explore in Chapter 11.

6.5 SENSITIVITY AND CONDITIONING
We have only outlined a few eigenvalue techniques out of a rich and long-standing literature.
Almost any algorithmic technique has been experimented with for finding spectra, from
iterative methods to root-finding on the characteristic polynomial to methods that divide
matrices into blocks for parallel processing.

As with linear solvers, we can evaluate the conditioning of an eigenvalue problem inde-
pendently of the solution technique. This analysis can help understand whether a simplistic
iterative algorithm will be successful at finding the eigenvectors of a given matrix or if more
complex stabilized methods are necessary. To do so, we will derive a condition number
for the problem of finding eigenvalues for a given matrix A. Before proceeding, we should
highlight that the conditioning of an eigenvalue problem is not the same as the condition
number of the matrix for solving linear systems.

Suppose a matrix A has an eigenvector ~x with eigenvalue λ. Analyzing the conditioning
of the eigenvalue problem involves analyzing the stability of ~x and λ to perturbations in A.
To this end, we might perturb A by a small matrix δA, thus changing the set of eigenvectors.
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We can write eigenvectors of A + δA as perturbations of eigenvectors of A by solving the
problem

(A+ δA)(~x+ δ~x) = (λ+ δλ)(~x+ δ~x).

Expanding both sides yields:

A~x+Aδ~x+ δA · ~x+ δA · δ~x = λ~x+ λδ~x+ δλ · ~x+ δλ · δ~x.

Since δA is small, we will assume that δ~x and δλ also are small (this assumption should be
checked in a more rigorous treatment!). Products between these variables then are negligible,
yielding the following approximation:

A~x+Aδ~x+ δA · ~x ≈ λ~x+ λδ~x+ δλ · ~x.

Since A~x = λ~x, we can subtract this vector from both sides to find:

Aδ~x+ δA · ~x ≈ λδ~x+ δλ · ~x.

We now apply an analytical trick to complete our derivation. Since A~x = λ~x, we know
(A−λIn×n)~x = ~0, so A−λIn×n is not full rank. The transpose of a matrix is full-rank only
if the matrix is full-rank, so we know (A − λIn×n)> = A> − λIn×n also has a null space
vector ~y, with A>~y = λ~y. We call ~y a left eigenvector corresponding to ~x. Left-multiplying
our perturbation estimate above by ~y> shows

~y>(Aδ~x+ δA · ~x) ≈ ~y>(λδ~x+ δλ · ~x).

Since A>~y = λ~y, we can simplify:

~y>δA · ~x ≈ δλ~y>~x.

Rearranging yields:

δλ ≈ ~y>(δA)~x

~y>~x
.

Finally, assume ‖~x‖2 = 1 and ‖~y‖2 = 1. Then, taking norms on both sides shows:

|δλ| / ‖δA‖2|~y · ~x| .

This expression shows that conditioning of the eigenvalue problem roughly depends directly
on the size of the perturbation δA and inversely on the angle between the left and right
eigenvectors ~x and ~y.

Based on this derivation, we can use 1/|~x·~y| as an approximate condition number for
finding the eigenvalue λ corresponding to eigenvector ~x of A. Symmetric matrices have the
same left and right eigenvectors, so ~x = ~y, yielding a condition number of 1. This strong
conditioning reflects the fact that the eigenvectors of symmetric matrices are orthogonal
and thus maximally separated.

6.6 EXERCISES
6.1 Verify the solution ~y(t) given in §6.1.2 to the ODE ~y′ = B~y.

6.2 Define

A ≡
(

0 1
1 0

)
.

Can power iteration find eigenvalues of this matrix? Why or why not?
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6.3 Show that the eigenvalues of upper-triangular matrices U ∈ Rn×n are exactly their
diagonal elements.

6.4 Extending Exercise 6.3, if we assume that the eigenvectors of U are ~vk satisfying
U~vk = ukk~vk, characterize span {~v1, . . . , ~vk} for 1 ≤ k ≤ n when the diagonal values
ukk of U are distinct.

6.5 We showed that the Rayleigh quotient iteration method can converge more quickly
than power iteration. Why, however, might it still be more efficient to use the power
method in some cases?

6.6 (Suggested by J. Yeo) Suppose ~u and ~v are vectors in Rn such that ~u>~v = 1, and
define A ≡ ~u~v>.

(a) What are the eigenvalues of A?

(b) How many iterations does power iteration take to converge to the dominant
eigenvalue of A?

6.7 (Suggested by J. Yeo) Suppose B ∈ Rn×n is diagonalizable with eigenvalues λi sat-
isfying 0 < λ1 = λ2 < λ3 < · · · < λn. Let ~vi be the eigenvector corresponding to λi.
Show that the inverse power method applied to B converges to a linear combination
of ~v1 and ~v2.

6.8 (“Mini-Riesz Representation Theorem”) We will say 〈·, ·〉 is an inner product on Rn
if it satisfies:

1. 〈~x, ~y〉 = 〈~y, ~x〉 ∀~x, ~y ∈ Rn,

2. 〈α~x, ~y〉 = α〈~x, ~y〉 ∀~x, ~y ∈ Rn, α ∈ R,

3. 〈~x+ ~y, ~z〉 = 〈~x, ~z〉+ 〈~y, ~z〉 ∀~x, ~y, ~z ∈ Rn, and

4. 〈~x, ~x〉 ≥ 0 with equality if and only if ~x = ~0.

(a) Given an inner product 〈·, ·〉, show that there exists a matrix A ∈ Rn×n (depend-
ing on 〈·, ·〉) such that 〈~x, ~y〉 = ~x>A~y for all ~x, ~y ∈ Rn. Also, show that there
exists a matrix M ∈ Rn×n such that 〈~x, ~y〉 = (M~x) · (M~y) for all ~x, ~y ∈ Rn. [This
shows that all inner products are dot products after suitable rotation, stretching,
and shearing of Rn!]

(b) A Mahalanobis metric on Rn is a distance function of the form d(~x, ~y) =√
〈~x− ~y, ~x− ~y〉 for a fixed inner product 〈·, ·〉. Use Exercise 6.8a to write Ma-

halanobis metrics in terms of matrices M , and show that d(~x, ~y)2 is a quadratic
function in ~x and ~y jointly.

(c) Suppose we are given several pairs (~xi, ~yi) ∈ Rn×Rn. A typical “metric learning”
problem involves finding a nontrivial Mahalanobis metric such that each ~xi is
close to each ~yi with respect to that metric. Propose an optimization problem
for this task that can be solved using eigenvector computation.
Note: Make sure that your optimal Mahalanobis distance is not identically zero,
but it is acceptable if your optimization allows pseudometrics; that is, there can
exist some ~x 6= ~y with d(~x, ~y) = 0.
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6.9 (“Shifted QR iteration”) A widely used generalization of the QR iteration algorithm
for finding eigenvectors and eigenvalues of A ∈ Rn×n uses a shift in each iteration:

A0 = A

Ak − σkIn×n = QkRk

Ak+1 = RkQk + σkIn×n.

Uniformly choosing σk ≡ 0 recovers basic QR iteration. Different variants of this
method propose heuristics for choosing σk 6= 0 to encourage convergence or numerical
stability.

(a) Show that Ak is similar to A for all k ≥ 0.

(b) Propose a heuristic for choosing σk based on the construction of Rayleigh quotient
iteration. Explain when you expect your method to converge faster than basic
QR iteration.

6.10 Suppose A,B ∈ Rn×n are symmetric and positive definite.

(a) Define a matrix
√
A ∈ Rn×n and show that (

√
A)2 = A. Generally speaking,

√
A

is not the same as L in the Cholesky factorization A = LL>.

(b) Do most matrices have unique square roots? Why or why not?

(c) We can define the exponential of A as eA ≡∑∞k=0
1
k!A

k; this sum is uncondition-
ally convergent (you do not have to prove this!). Write an alternative expression
for eA in terms of the eigenvectors and eigenvalues of A.

(d) If AB = BA, show eA+B = eAeB .

(e) Show that the ordinary differential equation ~y′(t) = −A~y with ~y(0) = ~y0 for some
~y0 ∈ Rn is solved by ~y(t) = e−At~y0. What happens as t→∞?

6.11 (“Epidemiology”) Suppose ~x0 ∈ Rn contains sizes of different populations carrying a
particular infection in year 0; for example, when tracking malaria we might take x01

to be the number of humans with malaria and x02 to be the number of mosquitoes
carrying the disease. By writing relationships like “The average mosquito infects two
humans,” we can write a matrix M such that ~x1 ≡M~x0 predicts populations in year
1, ~x2 ≡M2~x0 predicts populations in year 2, and so on.

(a) The spectral radius ρ(M) is given by maxi |λi|, where the eigenvalues of M are
λ1, . . . , λk. Epidemiologists call this number the “reproduction number” R0 of
M . Explain the difference between the cases R0 < 1 and R0 > 1 in terms of the
spread of disease. Which case is more dangerous?

(b) Suppose we only care about proportions. For instance, we might use M ∈ R50×50

to model transmission of diseases between residents in each of the 50 states of
the USA, and we only care about the fraction of the total people with a disease
who live in each state. If ~y0 holds these proportions in year 0, give an iterative
scheme to predict proportions in future years. Characterize behavior as time goes
to infinity.
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Note: Those readers concerned about computer graphics applications of this mate-
rial should know that the reproduction number R0 is referenced in the 2011 thriller
Contagion.

6.12 (“Normalized cuts,” [110]) Similar to spectral embedding (§6.1.3), suppose we have
a collection of n objects and a symmetric matrix W ∈ (R+)n×n whose entries wij
measure the similarity between object i and object j. Rather than computing an
embedding, however, now we would like to cluster the objects into two groups. This
machinery is used to mark photos as day or night and to classify pixels in an image
as foreground or background.

(a) Suppose we cluster {1, . . . , n} into two disjoint sets A and B; this clustering
defines a cut of the collection. We define the cut score of (A,B) as follows:

C(A,B) ≡
∑

i∈A
j∈B

wij .

This score is large if objects in A and B are similar. Efficiency aside, why is it
inadvisable to minimize C(A,B) with respect to A and B?

(b) Define the volume of a set A as V (A) ≡ ∑
i∈A

∑n
j=1 wij . To alleviate issues

with minimizing the cut score directly, instead we will attempt minimize the
normalized cut score N(A,B) ≡ C(A,B)(V (A)−1 + V (B)−1). What does this
score measure?

(c) For a fixed choice of A and B, define ~x ∈ Rn as follows:

xi ≡
{

V (A)−1 if i ∈ A
−V (B)−1 if i ∈ B.

Explain how to construct matrices L and D from W such that

~x>L~x =
∑

i∈A
j∈B

wij
(
V (A)−1 + V (B)−1

)2

~x>D~x = V (A)−1 + V (B)−1.

Conclude that N(A,B) = ~x>L~x
~x>D~x .

(d) Show that ~x>D~1 = 0.

(e) The normalized cuts algorithm computes A and B by optimizing for ~x. Argue that
the result of the following optimization lower-bounds the minimum normalized
cut score of any partition (A,B) :

min~x
~x>L~x
~x>D~x

subject to ~x>D~1 = 0.

Assuming D is invertible, show that this relaxed ~x can be computed using an
eigenvalue problem.
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CHAPTER 6 derived a number of algorithms for computing the eigenvalues and eigen-
vectors of matrices A ∈ Rn×n. Using this machinery, we complete our initial discussion

of numerical linear algebra by deriving and making use of one final matrix factorization
that exists for any matrix A ∈ Rm×n, even if it is not symmetric or square: the singular
value decomposition (SVD).

7.1 DERIVING THE SVD
For A ∈ Rm×n, we can think of the function ~v 7→ A~v as a map taking points ~v ∈ Rn to
points A~v ∈ Rm. From this perspective, we might ask what happens to the geometry of Rn
in the process, and in particular the effect A has on lengths of and angles between vectors.

Applying our usual starting point for eigenvalue problems, we examine the effect that
A has on the lengths of vectors by examining critical points of the ratio

R(~v) =
‖A~v‖2
‖~v‖2

over various vectors ~v ∈ Rn\{~0}. This quotient measures relative shrinkage or growth of ~v
under the action of A. Scaling ~v does not matter, since

R(α~v) =
‖A · α~v‖2
‖α~v‖2

=
|α|
|α| ·

‖A~v‖2
‖~v‖2

=
‖A~v‖2
‖~v‖2

= R(~v).

Thus, we can restrict our search to ~v with ‖~v‖2 = 1. Furthermore, since R(~v) ≥ 0, we can
instead find critical points of [R(~v)]2 = ‖A~v‖22 = ~v>A>A~v. As we have shown in previous

131
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chapters, critical points of ~v>A>A~v subject to ‖~v‖2 = 1 are exactly the eigenvectors ~vi
satisfying A>A~vi = λi~vi; we know λi ≥ 0 and ~vi ·~vj = 0 when i 6= j since A>A is symmetric
and positive semidefinite.

Based on our use of the function R, the {~vi} basis is a reasonable one for studying the
effects of A on Rn. Returning to the original goal of characterizing the action of A from a
geometric standpoint, define ~ui ≡ A~vi. We can make an observation about ~ui revealing a
second eigenvalue structure:

λi~ui = λi ·A~vi by definition of ~ui

= A(λi~vi)

= A(A>A~vi) since ~vi is an eigenvector of A>A

= (AA>)(A~vi) by associativity

= (AA>)~ui.

Taking norms shows ‖~ui‖2 = ‖A~vi‖2 =
√
‖A~vi‖22 =

√
~v>i A

>A~vi =
√
λi‖~vi‖2. This formula

leads to one of two conclusions:

1. Suppose ~ui 6= ~0. In this case, ~ui = A~vi is a corresponding eigenvector of AA> with
‖~ui‖2 =

√
λi‖~vi‖2.

2. Otherwise, ~ui = ~0.

An identical proof shows that if ~u is an eigenvector of AA>, then ~v ≡ A>~u is either zero or
an eigenvector of A>A with the same eigenvalue.

Take k to be the number of strictly positive eigenvalues λi > 0 for i ∈ {1, . . . , k}.
By our construction above, we can take ~v1, . . . , ~vk ∈ Rn to be eigenvectors of A>A and
corresponding eigenvectors ~u1, . . . , ~uk ∈ Rm of AA> such that

A>A~vi = λi~vi

AA>~ui = λi~ui

for eigenvalues λi > 0; here, we normalize such that ‖~vi‖2 = ‖~ui‖2 = 1 for all i. Define
matrices V̄ ∈ Rn×k and Ū ∈ Rm×k whose columns are ~vi’s and ~ui’s, respectively. By
construction, Ū contains an orthogonal basis for the column space of A, and V̄ contains an
orthogonal basis for the row space of A.

We can examine the effect of these new basis matrices on A. Take ~ei to be the i-th
standard basis vector. Then,

Ū>AV̄ ~ei = Ū>A~vi by definition of V̄

=
1

λi
Ū>A(λi~vi) since we assumed λi > 0

=
1

λi
Ū>A(A>A~vi) since ~vi is an eigenvector of A>A

=
1

λi
Ū>(AA>)A~vi by associativity

=
1√
λi
Ū>(AA>)~ui since we rescaled so that ‖~ui‖2 = 1

=
√
λiŪ

>~ui since AA>~ui = λi~ui

=
√
λi~ei.

Take Σ̄ = diag(
√
λ1, . . . ,

√
λk). Then, the derivation above shows that Ū>AV̄ = Σ̄.
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�x

V ��x
ΣV ��x

A�x

V � Σ =
σ1 0
0 σ2

U

Figure 7.1 Geometric interpretation for the singular value decomposition A =

UΣV >. The matrices U and V > are orthogonal and hence preserve lengths and

angles. The diagonal matrix Σ scales the horizontal and vertical axes independently.

Complete the columns of Ū and V̄ to U ∈ Rm×m and V ∈ Rn×n by adding orthonormal
null space vectors ~vi and ~ui with A>A~vi = ~0 and AA>~ui = ~0, respectively. After this
extension, U>AV ~ei = ~0 and/or ~e>i U

>AV = ~0> for i > k. If we take

Σij ≡
{ √

λi i = j and i ≤ k
0 otherwise,

then we can extend our previous relationship to show U>AV = Σ, or, by orthogonality of
U and V ,

A = UΣV >.

This factorization is the singular value decomposition (SVD) of A. The columns of U are
called the left singular vectors, and the columns of V are called the right singular vectors.
The diagonal elements σi of Σ are the singular values of A; usually they are sorted such
that σ1 ≥ σ2 ≥ · · · ≥ 0. Both U and V are orthogonal matrices; the columns of U and V
corresponding to σi 6= 0 span the column and row spaces of A, respectively.

The SVD provides a complete geometric characterization of the action of A. Since U
and V are orthogonal, they have no effect on lengths and angles; as a diagonal matrix,
Σ scales individual coordinate axes. Since the SVD always exists, all matrices A ∈ Rm×n
are a composition of an isometry, a scale in each coordinate, and a second isometry. This
sequence of operations is illustrated in Figure 7.1.

7.1.1 Computing the SVD
The columns of V are the eigenvectors of A>A, so they can be computed using algorithms
discussed in the previous chapter. Rewriting A = UΣV > as AV = UΣ, the columns of U
corresponding to nonzero singular values in Σ are normalized columns of AV . The remaining
columns satisfy AA>~ui = ~0 and can be computed using the LU factorization.

This is by no means the most efficient or stable way to compute the SVD, but it works
reasonably well for many applications. We omit more specialized algorithms for finding the
SVD, but many of them are extensions of power iteration and other algorithms we already
have covered that avoid forming A>A or AA> explicitly.
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7.2 APPLICATIONS OF THE SVD
We devote the remainder of this chapter to introducing applications of the SVD. The SVD
appears countless times in both the theory and practice of numerical linear algebra, and its
importance hardly can be exaggerated.

7.2.1 Solving Linear Systems and the Pseudoinverse
In the special case where A ∈ Rn×n is square and invertible, the SVD can be used to solve
the linear problem A~x = ~b. By substituting A = UΣV >, we have UΣV >~x = ~b, or by
orthogonality of U and V ,

~x = V Σ−1U>~b.

Σ is a square diagonal matrix, so Σ−1 is the matrix with diagonal entries 1/σi.
Computing the SVD is far more expensive than most of the linear solution techniques

we introduced in Chapter 3, so this initial observation mostly is of theoretical rather than
practical interest. More generally, however, suppose we wish to find a least-squares solution
to A~x ≈ ~b, where A ∈ Rm×n is not necessarily square. From our discussion of the normal
equations, we know that ~x must satisfy A>A~x = A>~b. But when A is “short” or “underde-
termined,” that is, when A has more columns than rows (m < n) or has linearly dependent
columns, the solution to the normal equations might not be unique.

To cover the under-, completely-, and overdetermined cases simultaneously without re-
sorting to regularization (see §4.1.3), we can solve an optimization problem of the following
form:

minimize ‖~x‖22
subject to A>A~x = A>~b.

This optimization chooses the vector ~x ∈ Rn with least norm that satisfies the normal
equations A>A~x = A>~b. When A>A is invertible, meaning the least-squares problem is
completely- or overdetermined, there is only one ~x satisfying the constraint. Otherwise, of
all the feasible vectors ~x, we choose the one with minimal ‖~x‖2. That is, we seek the smallest

possible least-square solution of A~x ≈ ~b, when multiple ~x’s minimize ‖A~x−~b‖2.
Write A = UΣV >. Then,

A>A = (UΣV >)>(UΣV >)

= V Σ>U>UΣV > since (AB)> = B>A>

= V Σ>ΣV > since U is orthogonal.

Using this expression, the constraint A>A~x = A>~b can be written

V Σ>ΣV >~x = V Σ>U>~b,

or equivalently, Σ>Σ~y = Σ> ~d,

after taking ~d ≡ U>~b and ~y ≡ V >~x.
Since V is orthogonal, ‖~y‖2 = ‖~x‖2 and our optimization becomes:

minimize ‖~y‖22
subject to Σ>Σ~y = Σ>~d.

Since Σ is diagonal, the condition Σ>Σ~y = Σ>~d can be written σ2
i yi = σidi. So, whenever

σi 6= 0 we must have yi = di/σi. When σi = 0, there is no constraint on yi. Since we
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are minimizing ‖~y‖22 we might as well take yi = 0. In other words, the solution to this

optimization is ~y = Σ+~d, where Σ+ ∈ Rn×m has the form:

Σ+
ij ≡

{
1/σi i = j and σi 6= 0
0 otherwise.

Undoing the change of variables, this result in turn yields ~x = V ~y = V Σ+ ~d = V Σ+U>~b.
With this motivation, we make the following definition:

Definition 7.1 (Pseudoinverse). The pseudoinverse of A = UΣV > ∈ Rm×n is A+ ≡
V Σ+U> ∈ Rn×m.

Our derivation above shows that the pseudoinverse of A enjoys the following properties:

• When A is square and invertible, A+ = A−1.

• When A is overdetermined, A+~b gives the least-squares solution to A~x ≈ ~b.
• When A is underdetermined, A+~b gives the least-squares solution to A~x ≈ ~b with

minimal (Euclidean) norm.

This construction from the SVD unifies solutions of the underdetermined, fully determined,
and overdetermined cases of A~x ≈ ~b.

7.2.2 Decomposition into Outer Products and Low-Rank Approximations
If we expand the product A = UΣV > column by column, an equivalent formula is the
following:

A =
∑̀

i=1

σi~ui~v
>
i ,

where ` ≡ min{m,n} and ~ui and ~vi are the i-th columns of U and V , respectively. The sum
only goes to ` since the remaining columns of U or V will be zeroed out by Σ.

This expression shows that any matrix can be decomposed as the sum of outer products
of vectors:

Definition 7.2 (Outer product). The outer product of ~u ∈ Rm and ~v ∈ Rn is the matrix
~u⊗ ~v ≡ ~u~v> ∈ Rm×n.

This alternative formula for the SVD provides a new way to compute the product A~x :

A~x =

(∑̀

i=1

σi~ui~v
>
i

)
~x =

∑̀

i=1

σi~ui(~v
>
i ~x) =

∑̀

i=1

σi(~vi · ~x)~ui, since ~x · ~y = ~x>~y.

In words, applying A to ~x is the same as linearly combining the ~ui vectors with weights
σi(~vi · ~x). This formula provides savings when the number of nonzero σi values is relatively
small. More importantly, we can round small values of σi to zero, truncating this sum to
approximate A~x with fewer terms.

Similarly, from §7.2.1 we can write the pseudoinverse of A as:

A+ =
∑

σi 6=0

~vi~u
>
i

σi
.

With this formula, we can apply the same truncation trick to compute A+~x and can ap-
proximate A+~x by only evaluating those terms in the sum for which σi is relatively small.
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In practice, we compute the singular values σi as square roots of eigenvalues of A>A or
AA>, and methods like power iteration can be used to reveal a partial rather than full set
of eigenvalues. If we are satisfied with approximating A+~x, we can compute a few of the
smallest σi values and truncate the formula above rather than finding A+ completely. This
also avoids ever having to compute or store the full A+ matrix and can be accurate when
A has a wide range of singular values.

Returning to our original notation A = UΣV >, our argument above shows that a useful
approximation of A is Ã ≡ U Σ̃V >, where Σ̃ rounds small values of Σ to zero. The column
space of Ã has dimension equal to the number of nonzero values on the diagonal of Σ̃. This
approximation is not an ad hoc estimate but rather solves a difficult optimization problem
posed by the following famous theorem (stated without proof):

Theorem 7.1 (Eckart-Young, 1936). Suppose Ã is obtained from A = UΣV > by truncat-
ing all but the k largest singular values σi of A to zero. Then, Ã minimizes both ‖A−Ã‖Fro

and ‖A− Ã‖2 subject to the constraint that the column space of Ã has at most dimension
k.

7.2.3 Matrix Norms
Constructing the SVD also enables us to return to our discussion of matrix norms from
§4.3.1. For example, recall that the Frobenius norm of A is

‖A‖2Fro ≡
∑

ij

a2
ij .

If we write A = UΣV >, we can simplify this expression:

‖A‖2Fro =
∑

j

‖A~ej‖22 since the product A~ej is the j-th column of A

=
∑

j

‖UΣV >~ej‖22, substituting the SVD

=
∑

j

~e>j V Σ2V >~ej since ‖~x‖22 = ~x>~x and U is orthogonal

= ‖ΣV >‖2Fro by reversing the steps above

= ‖V Σ‖2Fro since a matrix and its transpose have the same Frobenius norm

=
∑

j

‖V Σ~ej‖22 =
∑

j

σ2
j ‖V ~ej‖22 since Σ is a diagonal matrix

=
∑

j

σ2
j since V is orthogonal.

Thus, the squared Frobenius norm of A ∈ Rm×n is the sum of the squares of its singular
values.

This result is of theoretical interest, but it is easier to evaluate the Frobenius norm of
A by summing the squares of its elements rather than finding its SVD. More interestingly,
recall that the induced two-norm of A is given by

‖A‖22 = max{λ : there exists ~x ∈ Rn with A>A~x = λ~x}.
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Point cloud 1 Point cloud 2 Initial alignment Final alignment

Figure 7.2 If we scan a three-dimensional object from two angles, the end result is

two point clouds that are not aligned. The approach explained in §7.2.4 aligns the

two clouds, serving as the first step in combining the scans. (Figure generated by

S. Chung.)

In the language of the SVD, this value is the square root of the largest eigenvalue of A>A,
or equivalently

‖A‖2 = max{σi}.
In other words, the induced two-norm of A can be read directly from its singular values.

Similarly, recall that the condition number of an invertible matrix A is given by cond A =
‖A‖2‖A−1‖2. By our derivation of A+, the singular values of A−1 must be the reciprocals
of the singular values of A. Combining this with the formula above for ‖A‖2 yields:

cond A =
σmax

σmin
.

This expression provides a new formula for evaluating the conditioning of A.
There is one caveat that prevents this formula for the condition number from being

used universally. In some cases, algorithms for computing σmin may involve solving systems
A~x = ~b, a process which in itself may suffer from poor conditioning of A. Hence, we cannot
always trust values of σmin. If this is an issue, condition numbers can be bounded or ap-
proximated using various inequalities involving the singular values of A. Also, alternative
iterative algorithms similar to QR iteration can be applied to computing σmin.

7.2.4 The Procrustes Problem and Point Cloud Alignment
Many techniques in computer vision involve the alignment of three-dimensional shapes. For
instance, suppose we have a laser scanner that collects two point clouds of the same rigid
object from different views. A typical task is to align these two point clouds into a single
coordinate frame, as illustrated in Figure 7.2.

Since the object is rigid, we expect there to be some orthogonal matrix R and translation
~t ∈ R3 such that rotating the first point cloud by R and then translating by ~t aligns the
two data sets. Our job is to estimate ~t and R.

If the two scans overlap, the user or an automated system may mark n points that
correspond between the two scans; we can store these in two matrices X1, X2 ∈ R3×n.
Then, for each column ~x1i of X1 and ~x2i of X2, we expect R~x1i + ~t = ~x2i. To account for
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error in measuring X1 and X2, rather than expecting exact equality, we will minimize an
objective function that measures how much this relationship holds true:

E(R,~t) ≡
∑

i

‖R~x1i + ~t− ~x2i‖22.

If we fix R and only consider ~t, minimizing E becomes a least-squares problem. On the
other hand, optimizing for R with ~t fixed is the same as minimizing ‖RX1 −Xt

2‖2Fro, where
the columns of Xt

2 are those of X2 translated by ~t. This second optimization is subject to
the constraint that R is a 3 × 3 orthogonal matrix, that is, that R>R = I3×3. It is known
as the orthogonal Procrustes problem.

To solve this problem using the SVD, we will introduce the trace of a square matrix as
follows:

Definition 7.3 (Trace). The trace of A ∈ Rn×n is the sum of its diagonal elements:

tr(A) ≡
∑

i

aii.

In Exercise 7.2, you will check that ‖A‖2Fro = tr(A>A). Starting from this identity, E
can be simplified as follows:

‖RX1 −Xt
2‖2Fro = tr((RX1 −Xt

2)>(RX1 −Xt
2))

= tr(X>1 X1 −X>1 R>Xt
2 −Xt>

2 RX1 +Xt>
2 X2)

= const.− 2tr(Xt>
2 RX1),

since tr(A+B) = trA+ trB and tr(A>) = tr(A).

This argument shows that we wish to maximize tr(Xt>
2 RX1) with R>R = I3×3. From

Exercise 7.2, tr(AB) = tr(BA). Applying this identity, the objective simplifies to tr(RC)
with C ≡ X1X

t>
2 . If we decompose C = UΣV > then:

tr(RC) = tr(RUΣV >) by definition

= tr((V >RU)Σ) since tr(AB) = tr(BA)

= tr(R̃Σ) if we define R̃ = V >RU , which is orthogonal

=
∑

i

σir̃ii since Σ is diagonal.

Since R̃ is orthogonal, its columns all have unit length. This implies that |r̃ii| ≤ 1 for all i,
since otherwise the norm of column i would be too big. Since σi ≥ 0 for all i, this argument
shows that tr(RC) is maximized by taking R̃ = I3×3, which achieves that upper bound.
Undoing our substitutions shows R = V R̃U> = V U>.

Changing notation slightly, we have derived the following fact:

Theorem 7.2 (Orthogonal Procrustes). The orthogonal matrix R minimizing ‖RX −
Y ‖2Fro is given by V U>, where SVD is applied to factor XY > = UΣV >.

Returning to the alignment problem, one typical strategy employs alternation:

1. Fix R and minimize E with respect to ~t.
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2. Fix the resulting ~t and minimize E with respect to R subject to R>R = I3×3.

3. Return to step 1.

The energy E decreases with each step and thus converges to a local minimum. Since we
never optimize ~t and R simultaneously, we cannot guarantee that the result is the smallest
possible value of E, but in practice this method works well. Alternatively, in some cases it
is possible to work out an explicit formula for ~t, circumventing the least-squares step.

7.2.5 Principal Component Analysis (PCA)
Recall the setup from §6.1.1: We wish to find a low-dimensional approximation of a set of
data points stored in the columns of a matrix X ∈ Rn×k, for k observations in n dimensions.
Previously, we showed that if we wish to project onto a single dimension, the best possible
axis is given by the dominant eigenvector of XX>. With the SVD in hand, we can consider
more complicated datasets that need more than one projection axis.

Suppose that we wish to choose d vectors whose span best contains the data points in
X (we considered d = 1 in §6.1.1); we will assume d ≤ min{k, n}. These vectors can be
written in the columns of an n× d matrix C. The column space of C is preserved when we
orthogonalize its columns. Rather than orthogonalizing a posteriori, however, we can safely
restrict our search to matrices C whose columns are orthonormal, satisfying C>C = Id×d.
Then, the projection of X onto the column space of C is given by CC>X.

Paralleling our earlier development, we will minimize ‖X−CC>X‖Fro subject to C>C =
Id×d. The objective can be simplified using trace identities:

‖X − CC>X‖2Fro = tr((X − CC>X)>(X − CC>X)) since ‖A‖2Fro = tr(A>A)

= tr(X>X − 2X>CC>X +X>CC>CC>X)

= const.− tr(X>CC>X) since C>C = Id×d

= −‖C>X‖2Fro + const.

By this chain of equalities, an equivalent problem to the minimization posed above is to
maximize ‖C>X‖2Fro. For statisticians, when the rows of X have mean zero, this shows that
we wish to maximize the variance of the projection C>X.

Now, introduce the SVD to factor X = UΣV >. Taking C̃ ≡ U>C, we are maximizing
‖C>UΣV >‖Fro = ‖Σ>C̃‖Fro by orthogonality of V . If the elements of C̃ are c̃ij , then
expanding the formula for the Frobenius norm shows

‖Σ>C̃‖2Fro =
∑

i

σ2
i

∑

j

c̃2ij .

By orthogonality of the columns of C̃,
∑
i c̃

2
ij = 1 for all j, and, taking into account the

fact that C̃ may have fewer than n columns,
∑
j c̃

2
ij ≤ 1. Hence, the coefficient next to σ2

i is
at most 1 in the sum above, and if we sort such that σ1 ≥ σ2 ≥ · · · , then the maximum is
achieved by taking the columns of C̃ to be ~e1, . . . , ~ed. Undoing our change of coordinates,
we see that our choice of C should be the first d columns of U .

We have shown that the SVD of X can be used to solve such a principal component
analysis (PCA) problem. In practice, the rows of X usually are shifted to have mean zero
before carrying out the SVD.
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(c) Projection

Figure 7.3 The “eigenface” technique [122] performs PCA on (a) a database of face

images to extract (b) their most common modes of variation. For clustering, recog-

nition, and other tasks, face images are written as (c) linear combinations of the

eigenfaces, and the resulting coefficients are compared. (Figure generated by D.

Hyde; images from the AT&T Database of Faces, AT&T Laboratories Cambridge.)

7.2.6 Eigenfaces∗

One application of PCA in computer vision is the eigenfaces technique for face recognition,
originally introduced in [122]. This popular method works by applying PCA to the images
in a database of faces. Projecting new input faces onto the small PCA basis encodes a face
image using just a few basis coefficients without sacrificing too much accuracy, a benefit
that the method inherits from PCA.

For simplicity, suppose we have a set of k photographs of faces with similar lighting and
alignment, as in Figure 7.3(a). After resizing, we can assume the photos are all of size m×n,
so they are representable as vectors in Rmn containing one pixel intensity per dimension.
As in §7.2.5, we will store our entire database of faces in a “training matrix” X ∈ Rmn×k.
By convention, we subtract the average face image from each column, so X~1 = ~0.

Applying PCA to X, as explained in the previous section, yields a set of “eigenface”
images in the basis matrix C representing the common modes of variation between faces.
One set of eigenfaces ordered by decreasing singular value is shown in Figure 7.3(b); the
first few eigenfaces capture common changes in face shape, prominent features, and so on.
Intuitively, PCA in this context searches for the most common distinguishing features that
make a given face different from average.

The eigenface basis C ∈ Rmn×d can be applied to face recognition. Suppose we take
a new photo ~x ∈ Rmn and wish to find the closest match in the database of faces. The

∗Written with assistance by D. Hyde.
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projection of ~x onto the eigenface basis is ~y ≡ C>~x. The best matching face is then the
closest column of C>X to ~y.

There are two primary advantages of eigenfaces for practical face recognition. First,
usually d � mn, reducing the dimensionality of the search problem. More importantly,
PCA helps separate the relevant modes of variation between faces from noise. Differencing
the mn pixels of face images independently does not search for important facial features,
while the PCA axes in C are tuned to the differences observed in the columns of X.

Many modifications, improvements, and extensions have been proposed to augment the
original eigenfaces technique. For example, we can set a minimum threshold so that if the
weights of a new image do not closely match any of the database weights, we report that
no match was found. PCA also can be modified to be more sensitive to differences between
identity rather than between lighting or pose. Even so, a rudimentary implementation is
surprisingly effective. In our example, we train eigenfaces using photos of 40 subjects and
then test using 40 different photos of the same subjects; the basic method described achieves
80% recognition accuracy.

7.3 EXERCISES
7.1 Suppose A ∈ Rn×n. Show that condition number of A>A with respect to ‖ · ‖2 is the

square of the condition number of A

7.2 Suppose A ∈ Rm×n and B ∈ Rn×m. Show ‖A‖2Fro = tr(A>A) and tr(AB) = tr(BA).

7.3 Provide the SVD and condition number with respect to ‖·‖2 of the following matrices.

(a)




0 0 1

0
√

2 0√
3 0 0




(b)

(
−5
3

)

7.4 (Suggested by Y. Zhao.) Show that ‖A‖2 = ‖Σ‖2, where A = UΣV T is the singular
value decomposition of A.

7.5 Show that adding a row to a matrix cannot decrease its largest singular value.

7.6 (Suggested by Y. Zhao.) Show that the null space of a matrix A ∈ Rn×n is spanned by
columns of V corresponding to zero singular values, where A = UΣV > is the singular
value decomposition of A.

7.7 Take σi(A) to be the i-th singular value of the square matrix A ∈ Rn×n. Define the
nuclear norm of A to be

‖A‖∗ ≡
n∑

i=1

σi(A).

Note: What follows is a tricky problem. Apply the mantra from this chapter: “If a
linear algebra problem is hard, substitute the SVD.”

(a) Show ‖A‖∗ = tr(
√
A>A), where trace of a matrix tr(A) is the sum

∑
i aii of its

diagonal elements. For this problem, we will define the square root of a symmet-
ric, positive semidefinite matrix M to be

√
M ≡ XD1/2X>, where D1/2 is the
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diagonal matrix containing (nonnegative) square roots of the eigenvalues of M
and X contains the eigenvectors of M = XDX>.

Hint (to get started): Write A = UΣV > and argue Σ> = Σ in this case.

(b) Show ‖A‖∗ = maxC>C=I tr(AC).
Hint: Substitute the SVD of A and apply Exercise 7.2.

(c) Show that ‖A+B‖∗ ≤ ‖A‖∗ + ‖B‖∗.
Hint: Use Exercise 7.7b.

(d) Minimizing ‖A~x−~b‖22 + ‖~x‖1 provides an alternative to Tikhonov regularization
that can yield sparse vectors ~x under certain conditions. Assuming this is the
case, explain informally why minimizing ‖A − A0‖2Fro + ‖A‖∗ over A for a fixed
A0 ∈ Rn×n might yield a low-rank approximation of A0.

(e) Provide an application of solutions to the “low-rank matrix completion” prob-
lem; 7.7d provides an optimization approach to this problem.

7.8 (“Polar decomposition”) In this problem we will add one more matrix factorization
to our linear algebra toolbox and derive an algorithm by N. Higham for its com-
putation [61]. The decomposition has been used in animation applications interpo-
lating between motions of a rigid object while projecting out undesirable shearing
artifacts [111].

(a) Show that any matrix A ∈ Rn×n can be factored A = WP, where W is orthogonal
and P is symmetric and positive semidefinite. This factorization is known as the
polar decomposition.
Hint: Write A = UΣV > and show V ΣV > is positive semidefinite.

(b) The polar decomposition of an invertible A ∈ Rn×n can be computed using an
iterative scheme:

X0 ≡ A Xk+1 =
1

2
(Xk + (X−1

k )>)

We will prove this in a few steps:

(i) Use the SVD to write A = UΣV >, and define Dk = U>XkV. Show D0 = Σ
and Dk+1 = 1

2 (Dk + (D−1
k )>).

(ii) From (i), each Dk is diagonal. If dki is the i-th diagonal element of Dk,
show

d(k+1)i =
1

2

(
dki +

1

dki

)
.

(iii) Assume dki → ci as k →∞ (this convergence assumption requires proof!).
Show ci = 1.

(iv) Use 7.8(b)iii to show Xk → UV >.

7.9 (“Derivative of SVD,” [95]) In this problem, we will continue to use the notation
of Exercise 4.3. Our goal is to differentiate the SVD of a matrix A with respect to
changes in A. Such derivatives are used to simulate the dynamics of elastic objects;
see [6] for one application.

(a) Suppose Q(t) is an orthogonal matrix for all t ∈ R. If we define ΩQ ≡ Q>∂Q,
show that ΩQ is antisymmetric, that is, Ω>Q = −ΩQ. What are the diagonal
elements of ΩQ?
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(b) Suppose for a matrix-valued function A(t) we use SVD to decompose A(t) =
U(t)Σ(t)V (t)>. Derive the following formula:

U>(∂A)V = ΩUΣ + ∂Σ− ΣΩV .

(c) Show how to compute ∂Σ directly from ∂A and the SVD of A.

(d) Provide a method for finding ΩU and ΩV from ∂A and the SVD of A using a
sequence of 2× 2 solves. Conclude with formulas for ∂U and ∂V in terms of the
Ω’s.
Hint: It is sufficient to compute the elements of ΩU and ΩV above the diagonal.

7.10 (“Latent semantic analysis,” [35]) In this problem, we explore the basics of latent
semantic analysis, used in natural language processing to analyze collections of doc-
uments.

(a) Suppose we have a dictionary of m words and a collection of n documents. We
can write an occurrence matrix X ∈ Rm×n whose entries xij are equal to the
number of times word i appears in document j. Propose interpretations of the
entries of XX> and X>X.

(b) Each document in X is represented using a point in Rm, where m is potentially
large. Suppose for efficiency and robustness to noise, we would prefer to use
representations in Rk, for some k � min{m,n}. Apply Theorem 7.1 to propose
a set of k vectors in Rm that best approximates the full space of documents with
respect to the Frobenius norm.

(c) In cross-language applications, we might have a collection of n documents trans-
lated into two different languages, with m1 and m2 words, respectively. Then,
we can write two occurrence matrices X1 ∈ Rm1×n and X2 ∈ Rm2×n. Since we
do not know which words in the first language correspond to which words in the
second, the columns of these matrices are in correspondence but the rows are
not.
One way to find similar phrases in the two languages is to find vectors ~v1 ∈ Rm1

and ~v2 ∈ Rm2 such that X>1 ~v1 and X>2 ~v2 are similar. To do so, we can solve a
canonical correlation problem:

max
~v1,~v2

(X>1 ~v1) · (X>2 ~v2)

‖~v1‖2‖~v2‖2
.

Show how this maximization can be solved using SVD machinery.

7.11 (“Stable rank,” [121]) The stable rank of A ∈ Rn×n is defined as

stable-rank(A) ≡ ‖A‖
2
Fro

‖A‖22
.

It is used in research on low-rank matrix factorization as a proxy for the rank (di-
mension of the column space) of A.

(a) Show that if all n columns of A are the same vector ~v ∈ Rn\{~0}, then
stable-rank(A) = 1.
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(b) Show that when the columns of A are orthonormal, stable-rank(A) = n.

(c) More generally, show 1 ≤ stable-rank(A) ≤ n.
(d) Show stable-rank(A) ≤ rank(A).
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Nonlinear Techniques

145





C H A P T E R 8

Nonlinear Systems

CONTENTS

8.1 Root-Finding in a Single Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.1.1 Characterizing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.1.2 Continuity and Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.1.3 Fixed Point Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.1.4 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.1.5 Secant Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.1.6 Hybrid Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.1.7 Single-Variable Case: Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.2 Multivariable Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.1 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.2 Making Newton Faster: Quasi-Newton and Broyden . . . . . . . . . . . 156

8.3 Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

TRY as we might, it is not possible to express all systems of equations in the linear
framework we have developed over the last several chapters. Logarithms, exponentials,

trigonometric functions, absolute values, polynomials, and so on are commonplace in prac-
tical problems, but none of these functions is linear. When these functions appear, we must
employ a more general—but often less efficient—toolbox for nonlinear problems.

8.1 ROOT-FINDING IN A SINGLE VARIABLE
We begin by considering methods for root-finding in a single scalar variable. Given a function
f(x) : R→ R, we wish to develop algorithms for finding points x∗ ∈ R subject to f(x∗) = 0;
we call x∗ a root or zero of f . Single-variable problems in linear algebra are not particularly
interesting; after all we can solve the equation ax− b = 0 in closed form as x∗ = b/a. Roots
of a nonlinear equation like y2 + ecos y − 3 = 0, however, are less easily calculated.

8.1.1 Characterizing Problems
We no longer assume f is linear, but without any information about its structure, we are
unlikely to make headway on finding its roots. For instance, root-finding is guaranteed to
fail on

f(x) =

{
−1 x ≤ 0

1 x > 0

or even more deviously (recall Q denotes the set of rational numbers):

f(x) =

{
−1 x ∈ Q

1 otherwise.

147
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These examples are trivial in the sense that any reasonable client of root-finding software
would be unlikely to expect it to succeed in this case, but more subtle examples are not
much more difficult to construct.

For this reason, we must add some “regularizing” assumptions about f to make the
root-finding problem well-posed. Typical assumptions include the following:

• Continuity: A function f is continuous if it can be drawn without lifting up a pen;
more formally, f is continuous if the difference f(x)− f(y) vanishes as x→ y.

• Lipschitz: A function f is Lipschitz continuous if there exists a constant c such that
|f(x)− f(y)| ≤ c|x− y|; Lipschitz functions need not be differentiable but are limited
in their rates of change.

• Differentiability: A function f is differentiable if its derivative f ′ exists for all x.

• Ck: A function is Ck if it is differentiable k times and each of those k derivatives is
continuous; C∞ indicates that all derivatives of f exist and are continuous.

Example 8.1 (Classifying functions). The function f(x) = cosx is C∞ and Lipschitz on
R. The function g(x) = x2 as a function on R is C∞ but not Lipschitz. In particular,
|g(x)− g(0)| = x2, which cannot be bounded by any linear function of x as x→∞. When
restricted to the unit interval [0, 1], however, g(x) = x2 can be considered Lipschitz since
its slope is bounded by 2 in this interval; we say f is “locally Lipschitz” since this property
holds on any interval [a, b]. The function h(x) = |x| is continuous—or C0—and Lipschitz
but not differentiable thanks to its singularity at x = 0.

When our assumptions about f are stronger, we can design more effective algorithms to
solve f(x∗) = 0. We will illustrate the spectrum trading off between generality and efficiency
by considering a few algorithms below.

8.1.2 Continuity and Bisection
Suppose that all we know about f is that it is continuous. This is enough to state an intuitive
theorem from single-variable calculus:

Theorem 8.1 (Intermediate Value Theorem). Suppose that f : [a, b] → R is continuous
and that f(a) < u < f(b) or f(b) < u < f(a). Then, there exists z ∈ (a, b) such that
f(z) = u.

In other words, in the space between a and b, the function f must achieve every value
between f(a) and f(b).

Suppose we are given as input a continuous function f(x) as well as two values ` and r
such that f(`)·f(r) < 0; that is, f(`) and f(r) have opposite sign. Then, by the Intermediate
Value Theorem, somewhere between ` and r there is a root of f . Similar to binary search, this
property suggests a bisection algorithm for finding x∗, shown in Figure 8.1. This algorithm
divides the interval [`, r] in half recursively, each time keeping the side in which a root is
known to exist by the Intermediate Value Theorem. It converges unconditionally, in the
sense that ` and r are guaranteed to become arbitrarily close to one another and converge
to a root x∗ of f(x).

Bisection is the simplest but not necessarily the fastest technique for root-finding. As
with eigenvalue methods, bisection inherently is iterative and may never provide an exact
solution x∗; this property is true for nearly any root-finding algorithm unless we put strong
assumptions on the class of f . We can ask, however, how close the value ck of the center
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function Bisection(f(x), �, r)
for k ← 1, 2, 3, . . .

c ← �+r/2

if |f(c)| < εf or |r − �| < εx then
return x∗ ≈ c

else if f(�) · f(c) < 0 then
r ← c

else
� ← c

�

r

c
x

f(x)

x∗

f(x) > 0

f(x) < 0

)b()a(

Figure 8.1 (a) Pseudocode and (b) an illustration of the bisection algorithm for find-

ing roots of continuous f(x) given endpoints `, r ∈ R with f(`) · f(r) < 0. The

interval [c, r] contains a root x∗ because f(c) and f(r) have opposite sign.

point c between `k and rk in the k-th iteration is to the root x∗ that we hope to compute.
This analysis will provide a baseline for comparison to other methods.

More broadly, suppose we can establish an error bound Ek such that the estimate xk of
the root x∗ during the k-th iteration of root-finding satisfies |xk−x∗| < Ek. Any algorithm
with Ek → 0 is convergent. Assuming a root-finding algorithm is convergent, however, the
primary property of interest is the convergence rate, characterizing the rate at which Ek
shrinks.

For bisection, since during each iteration ck and x∗ are in the interval [`k, rk], an upper
bound of error is given by Ek ≡ |rk− `k|. Since we divide the interval in half each iteration,
we can reduce our error bound by half in each iteration: Ek+1 = 1/2Ek. Since Ek+1 is linear
in Ek, we say that bisection exhibits linear convergence.

In exchange for unconditional linear convergence, bisection requires initial estimates of `
and r bracketing a root. While some heuristic search methods exist for finding a bracketing
interval, unless more is known about the form of f , finding this pair may be nearly as
difficult as computing a root! In this case, bisection might be thought of as a method for
refining a root estimate rather than for global search.

8.1.3 Fixed Point Iteration
Bisection is guaranteed to converge to a root of any continuous function f , but if we know
more about f we can formulate algorithms that converge more quickly.

As an example, suppose we wish to find x∗ satisfying g(x∗) = x∗; this setup is equivalent
to root-finding since solving g(x∗) = x∗ is the same as solving g(x∗)− x∗ = 0. As an addi-
tional piece of information, however, we also might know that g is Lipschitz with constant
0 ≤ c < 1 (see §8.1.1). This condition defines g as a contraction, since |g(x)−g(y)| < |x−y|
for any x, y.

The system g(x) = x suggests a potential solution method:

1. Take x0 to be an initial guess of x∗.

2. Iterate xk = g(xk−1).

If this iteration converges, the result is a fixed point of g satisfying the criteria above.



150 � Numerical Algorithms

x

g(x)
y
=

x

x0 x1x2

x∗
x

g(x)

y
=

x
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ecnegreviD)b(ecnegrevnoC)a(

Figure 8.2 Convergence of fixed point iteration. Fixed point iteration searches for

the intersection of g(x) with the line y = x by iterating xk = g(xk−1). One way

to visualize this method on the graph of g(x) visualized above is that it alternates

between moving horizontally to the line y = x and vertically to the position g(x).

Fixed point iteration (a) converges when the slope of g(x) is small and (b) diverges

otherwise.

When c < 1, the Lipschitz property ensures convergence to a root if one exists. To verify
this statement, if Ek = |xk − x∗|, then we have the following property:

Ek = |xk − x∗|
= |g(xk−1)− g(x∗)| by design of the iterative scheme and definition of x∗

≤ c|xk−1 − x∗| since g is Lipschitz

= cEk−1.

Applying this statement inductively shows Ek ≤ ckE0 → 0 as k →∞.
If g is Lipschitz with constant c < 1 in a neighborhood [x∗ − δ, x∗ + δ], then so long

as x0 is chosen in this interval, fixed point iteration will converge. This is true since our
expression for Ek above shows that it shrinks each iteration. When the Lipschitz constant is
too large—or equivalently, when g has large slope—fixed point iteration diverges. Figure 8.2
visualizes the two possibilities.

One important case occurs when g is C1 and |g′(x∗)| < 1. By continuity of g′ in this
case, there are values ε, δ > 0 such that |g′(x)| < 1 − ε for any x ∈ (x∗ − δ, x∗ + δ). (This
statement is hard to parse: Make sure you understand it!) Take any x, y ∈ (x∗ − δ, x∗ + δ).
Then,

|g(x)− g(y)| = |g′(θ)| · |x− y| by the Mean Value Theorem, for some θ ∈ [x, y]

< (1− ε)|x− y|.

This argument shows that g is Lipschitz with constant 1−ε < 1 in the interval (x∗−δ, x∗+δ).
Applying our earlier discussion, when g is continuously differentiable and g′(x∗) < 1, fixed
point iteration will converge to x∗ when the initial guess x0 is close by.

So far, we have little reason to use fixed point iteration: We have shown it is guaranteed
to converge only when g is Lipschitz, and our argument about the Ek’s shows linear con-
vergence, like bisection. There is one case, however, in which fixed point iteration provides
an advantage.
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Suppose g is differentiable with g′(x∗) = 0. Then, the first-order term vanishes in the
Taylor series for g, leaving behind:

g(xk) = g(x∗) +
1

2
g′′(x∗)(xk − x∗)2 +O

(
(xk − x∗)3

)
.

In this case,

Ek = |xk − x∗|
= |g(xk−1)− g(x∗)| as before

=
1

2
|g′′(x∗)|(xk−1 − x∗)2 +O((xk−1 − x∗)3) from the Taylor argument

≤ 1

2
(|g′′(x∗)|+ ε)(xk−1 − x∗)2 for some ε so long as xk−1 is close to x∗

=
1

2
(|g′′(x∗)|+ ε)E2

k−1.

By this chain of inequalities, in this case Ek is quadratic in Ek−1, so we say fixed point
iteration can have quadratic convergence. This implies that Ek → 0 much faster, needing
fewer iterations to reach a reasonable root approximation.

Example 8.2 (Fixed point iteration). We can apply fixed point iteration to solving x =
cosx by iterating xk+1 = cosxk. A numerical example starting from x0 = 0 proceeds as
follows:

k 0 1 2 3 4 5 6 7 8 9

xk 0 1.000 0.540 0.858 0.654 0.793 0.701 0.764 0.722 0.750

In this case, fixed point iteration converges linearly to the root x∗ ≈ 0.739085.
The root-finding problem x = sinx2 satisfies the condition for quadratic convergence

near x∗ = 0. For this reason, fixed point iteration xk+1 = sinx2
k starting at x0 = 1

converges more quickly to the root:

k 0 1 2 3 4 5 6 7 8 9

xk 1 0.841 0.650 0.410 0.168 0.028 0.001 0.000 0.000 0.000

Finally, the roots of x = ex+ e−x−5 do not satisfy convergence criteria for fixed point
iteration. Iterates of the failed fixed point scheme xk+1 = exk +e−xk −5 starting at x0 = 1
are shown below:

k 0 1 2 3 4 5 6 7

xk 1 −1.914 1.927 2.012 2.609 8.660 5760.375 · · ·

8.1.4 Newton’s Method
We tighten our class of functions once more to derive a root-finding algorithm based more
fundamentally on a differentiability assumption, this time with consistent quadratic con-
vergence. We will attempt to solve f(x∗) = 0 rather than finding fixed points, with the
assumption that f ∈ C1—a slightly tighter condition than Lipschitz.

Since f is differentiable, it can be approximated near xk ∈ R using a tangent line:

f(x) ≈ f(xk) + f ′(xk)(x− xk).
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Figure 8.3 Newton’s method iteratively approximates f(x) with tangent lines to find

roots of a differentiable function f(x).

Setting the expression on the right equal to zero and solving for x provides an approximation
xk+1 of the root:

xk+1 = xk −
f(xk)

f ′(xk)
.

In reality, xk+1 may not satisfy f(xk+1) = 0, but since it is the root of an approximation of
f we might hope that it is closer to x∗ than xk. If this is true, then iterating this formula
should give xk’s that get closer and closer to x∗. This technique is known as Newton’s
method for root-finding, and it amounts to repeatedly solving linear approximations of the
original nonlinear problem. It is illustrated in Figure 8.3.

If we define

g(x) = x− f(x)

f ′(x)
,

then Newton’s method amounts to fixed point iteration on g. Differentiating,

g′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2
by the quotient rule

=
f(x)f ′′(x)

f ′(x)2
after simplification.

Suppose x∗ is a simple root of f(x), meaning f ′(x∗) 6= 0. Using this formula, g′(x∗) = 0, and
by our analysis of fixed point iteration in §8.1.3, Newton’s method must converge quadrat-
ically to x∗ when starting from a sufficiently close x0. When x∗ is not simple, however,
convergence of Newton’s method can be linear or worse.

The derivation of Newton’s method via linear approximation suggests other methods
using more terms in the Taylor series. For instance, “Halley’s method” also makes use of f ′′

via quadratic approximation, and more general “Householder methods” can include an ar-
bitrary number of derivatives. These techniques offer higher-order convergence at the cost
of having to evaluate many derivatives and the possibility of more exotic failure modes.
Other methods replace Taylor series with alternative approximations; for example, “lin-
ear fractional interpolation” uses rational functions to better approximate functions with
asymptotes.
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Example 8.3 (Newton’s method). The last part of Example 8.2 can be expressed as a
root-finding problem on f(x) = ex + e−x − 5 − x. The derivative of f(x) in this case is
f ′(x) = ex − e−x − 1, so Newton’s method can be written

xk+1 = xk −
exk + e−xk − 5− xk
exk − e−xk − 1

.

This iteration quickly converges to a root starting from x0 = 2:

k 0 1 2 3 4

xk 2 1.9161473 1.9115868 1.9115740 1.9115740

Example 8.4 (Newton’s method failure). Suppose f(x) = x5−3x4+25. Newton’s method
applied to this function gives the iteration

xk+1 = xk −
x5
k − 3x4

k + 25

5x4
k − 12x3

.

These iterations converge when x0 is sufficiently close to the root x∗ ≈ −1.5325. For
instance, the iterates starting from x0 = −2 are shown below:

k 0 1 2 3 4

xk −2 −1.687500 −1.555013 −1.533047 −1.532501

Farther away from this root, however, Newton’s method can fail. For instance, starting
from x0 = 0.25 gives a divergent set of iterates:

k 0 1 2 3 4

xk 0.25 149.023256 119.340569 95.594918 76.599025

8.1.5 Secant Method
One concern about Newton’s method is the cost of evaluating f and its derivative f ′.
If f is complicated, we may wish to minimize the number of times we have to evaluate
either of these functions. Higher orders of convergence for root-finding alleviate this problem
by reducing the number of iterations needed to approximate x∗, but we also can design
numerical methods that explicitly avoid evaluating costly derivatives.

Example 8.5 (Rocket design). Suppose we are designing a rocket and wish to know how
much fuel to add to the engine. For a given number of gallons x, we can write a function
f(x) giving the maximum height of the rocket during flight; our engineers have specified
that the rocket should reach a height h, so we need to solve f(x) = h. Evaluating f(x)
involves simulating a rocket as it takes off and monitoring its fuel consumption, which is
an expensive proposition. Even if f is differentiable, we might not be able to evaluate f ′

in a practical amount of time.

One strategy for designing lower-impact methods is to reuse data as much as possible.
For instance, we could approximate the derivative f ′ appearing in Newton’s method as
follows:

f ′(xk) ≈ f(xk)− f(xk−1)

xk − xk−1
.
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Figure 8.4 The secant method is similar to Newton’s method (Figure 8.3) but ap-

proximates tangents to f(x) as the lines through previous iterates. It requires both

x0 and x1 for initialization.

Since we had to compute f(xk−1) in the previous iteration anyway, we reuse this value to
approximate the derivative for the next one. This approximation works well when xk’s are
near convergence and close to one another. Plugging it into Newton’s method results in a
new scheme known as the secant method, illustrated in Figure 8.4:

xk+1 = xk −
f(xk)(xk − xk−1)

f(xk)− f(xk−1)
.

The user must provide two initial guesses x0 and x1 or can run a single iteration of Newton
to get it started.

Analyzing the secant method is more involved than the other methods we have consid-
ered because it uses both f(xk) and f(xk−1); proof of its convergence is outside the scope
of our discussion. Error analysis reveals that the secant method decreases error at a rate of
(1+
√

5)/2 (the “Golden Ratio”), which is between linear and quadratic. Since convergence is
close to that of Newton’s method without the need for evaluating f ′, the secant method is
a strong alternative.

Example 8.6 (Secant method). Suppose f(x) = x4−2x2−4. Iterates of Newton’s method
for this function are given by

xk+1 = xk −
x4
k − 2x2

k − 4

4x3
k − 4xk

.

Contrastingly, iterates of the secant method for the same function are given by

xk+1 = xk −
(x4
k − 2x2

k − 4)(xk − xk−1)

(x4
k − 2x2

k − 4)− (x4
k−1 − 2x2

k−1 − 4)
.

By construction, a less expensive way to compute these iterates is to save and reuse f(xk−1)
from the previous iteration. We can compare the two methods starting from x0 = 3; for
the secant method we also choose x−1 = 2:

k 0 1 2 3 4 5 6

xk (Newton) 3 2.385417 2.005592 1.835058 1.800257 1.798909 1.798907

xk (secant) 3 1.927273 1.882421 1.809063 1.799771 1.798917 1.798907

The two methods exhibit similar convergence on this example.
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8.1.6 Hybrid Techniques
With additional engineering, we can combine the advantages of different root-finding algo-
rithms. For instance, we might make the following observations:

• Bisection is guaranteed to converge, but only at a linear rate.

• The secant method has a faster rate of convergence, but it may not converge at all if
the initial guess x0 is far from the root x∗.

Suppose we have bracketed a root of f(x) in the interval [`k, rk]. Given the iterates xk and
xk−1, we could take the next estimate xk+1 to be either of the following:

• The next secant method iterate, if it is contained in (`k, rk).

• The midpoint `k+rk/2 otherwise.

This combination of the secant method and bisection guarantees that xk+1 ∈ (`k, rk).
Regardless of the choice above, we can update the bracket containing the root to [`k+1, rk+1]
by examining the sign of f(xk+1).

The algorithm above, called “Dekker’s method,” attempts to combine the unconditional
convergence of bisection with the stronger root estimates of the secant method. In many
cases it is successful, but its convergence rate is somewhat difficult to analyze. Specialized
failure modes can reduce this method to linear convergence or worse: In some cases, bisection
can converge more quickly! Other techniques, e.g., “Brent’s method,” make bisection steps
more often to strengthen convergence and can exhibit guaranteed behavior at the cost of a
more complex implementation.

8.1.7 Single-Variable Case: Summary
We only have scratched the surface of the one-dimensional root-finding problem. Many other
iterative schemes for root-finding exist, with different guarantees, convergence rates, and
caveats. Starting from the methods above, we can make a number of broader observations:

• To support arbitrary functions f that may not have closed-form solutions to f(x∗) = 0,
we use iterative algorithms generating approximations that get closer and closer to
the desired root.

• We wish for the sequence xk of root estimates to reach x∗ as quickly as possible. If
Ek is an error bound with Ek → 0 as k → ∞, then we can characterize the order of
convergence using classifications like the following:

1. Linear convergence: Ek+1 ≤ CEk for some C < 1.

2. Superlinear convergence: Ek+1 ≤ CErk for r > 1; we do not require C < 1 since
if Ek is small enough, the r-th power of Ek can cancel the effects of C.

3. Quadratic convergence: Ek+1 ≤ CE2
k.

4. Cubic convergence: Ek+1 ≤ CE3
k (and so on).

• A method might converge quickly, needing fewer iterations to get sufficiently close to
x∗, but each individual iteration may require additional computation time. In this case,
it may be preferable to do more iterations of a simpler method than fewer iterations
of a more complex one. This idea is further explored in Exercise 8.1.
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8.2 MULTIVARIABLE PROBLEMS
Some applications may require solving the multivariable problem f(~x) = ~0 given a function

f : Rn → Rm.We have already seen one instance of this problem when solving A~x = ~b, which
is equivalent to finding roots of f(~x) ≡ A~x −~b, but the general case is considerably more
difficult. Strategies like bisection are challenging to extend since we now must guarantee
that m different functions all equal zero simultaneously.

8.2.1 Newton’s Method
One of our single-variable strategies extends in a straightforward way. Recall from §1.4.2
that for a differentiable function f : Rn → Rm we can define the Jacobian matrix giving
the derivative of each component of f in each of the coordinate directions:

(Df)ij ≡
∂fi
∂xj

.

We can use the Jacobian of f to extend our derivation of Newton’s method to multiple
dimensions. In more than one dimension, a first-order approximation of f is given by

f(~x) ≈ f(~xk) +Df(~xk) · (~x− ~xk).

Substituting the desired condition f(~x) = ~0 yields the following linear system determining
the next iterate ~xk+1:

Df(~xk) · (~xk+1 − ~xk) = −f(~xk).

When Df is square and invertible, requiring n = m, we obtain the iterative formula for a
multidimensional version of Newton’s method:

~xk+1 = ~xk − [Df(~xk)]−1f(~xk),

where as always we do not explicitly compute the matrix [Df(~xk)]−1 but rather solve a
linear system, e.g., using the techniques from Chapter 3. When m < n, this equation can
be solved using the pseudoinverse to find one of potentially many roots of f ; when m > n,
one can attempt least-squares, but the existence of a root and convergence of this technique
are both unlikely.

An analogous multidimensional argument to that in §8.1.3 shows that fixed-point meth-
ods like Newton’s method iterating ~xk+1 = g(~xk) converge when the largest-magnitude
eigenvalue of Dg has absolute value less than 1 (Exercise 8.2). A derivation identical to the
one-dimensional case in §8.1.4 then shows that Newton’s method in multiple variables can
have quadratic convergence near roots ~x∗ for which Df(~x∗) is nonsingular.

8.2.2 Making Newton Faster: Quasi-Newton and Broyden
As m and n increase, Newton’s method becomes very expensive. For each iteration, a
different matrix Df(~xk) must be inverted. Since it changes in each iteration, factoring
Df(~xk) = LkUk does not help.

Quasi-Newton algorithms apply various approximations to reduce the cost of individual
iterations. One approach extends the secant method beyond one dimension. Just as the
secant method contains the same division operation as Newton’s method, such secant-like
approximations will not necessarily alleviate the need to invert a matrix. Instead, they
make it possible to carry out root-finding without explicitly calculating the Jacobian Df .
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An extension of the secant method to multiple dimensions will require careful adjustment,
however, since divided differences yield a single value rather than a full approximate Jaco-
bian matrix.

The directional derivative of f in the direction ~v is given by D~vf = Df · ~v. To imitate
the secant method, we can use this scalar value to our advantage by requiring that the
Jacobian approximation J satisfies

Jk · (~xk − ~xk−1) = f(~xk)− f(~xk−1).

This formula does not determine the action of J on any vector perpendicular to ~xk −
~xk−1, so we need additional approximation assumptions to describe a complete root-finding
algorithm.

One algorithm using the approximation above is Broyden’s method, which maintains
not only an estimate ~xk of ~x∗ but also a full matrix Jk estimating a Jacobian at ~xk that
satisfies the condition above. Initial estimates J0 and ~x0 both must be supplied by the user;
commonly, we approximate J0 = In×n in the absence of more information.

Suppose we have an estimate Jk−1 of the Jacobian at ~xk−1 left over from the previous
iteration. We now have a new data point ~xk at which we have evaluated f(~xk), so we would
like to update Jk−1 to a new matrix Jk taking into account this new piece of information.
Broyden’s method applies the directional derivative approximation above to finding Jk while
keeping it as similar as possible to Jk−1 by solving the following optimization problem:

minimizeJk ‖Jk − Jk−1‖2Fro

subject to Jk · (~xk − ~xk−1) = f(~xk)− f(~xk−1).

To solve this problem, define ∆J ≡ Jk−Jk−1, ∆~x ≡ ~xk−~xk−1, and ~d ≡ f(~xk)− f(~xk−1)−
Jk−1 ·∆~x. Making these substitutions provides an alternative optimization problem:

minimize∆J ‖∆J‖2Fro

subject to ∆J ·∆~x = ~d.

If we take ~λ to be a Lagrange multiplier, this minimization is equivalent to finding critical
points of the Lagrangian Λ:

Λ = ‖∆J‖2Fro + ~λ>(∆J ·∆~x− ~d).

Differentiating with respect to an unknown element (∆J)ij shows:

0 =
∂Λ

∂(∆J)ij
= 2(∆J)ij + λi(∆~x)j =⇒ ∆J = −1

2
~λ(∆~x)>.

Substituting into ∆J ·∆~x = ~d shows ~λ(∆~x)>(∆~x) = −2~d, or equivalently ~λ = −2~d/‖∆~x‖22.
Finally, we substitute into the Lagrange multiplier expression to find:

∆J = −1

2
~λ(∆~x)> =

~d(∆~x)>

‖∆~x‖22
.

Expanding back to the original notation shows:

Jk = Jk−1 + ∆J

= Jk−1 +
~d(∆~x)>

‖∆~x‖22
= Jk−1 +

(f(~xk)− f(~xk−1)− Jk−1 ·∆~x)

‖~xk − ~xk−1‖22
(~xk − ~xk−1)>.
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function Broyden(f(�x), �x0, J0)
J ← J0 � Can default to In×n

�x ← �x0

for k ← 1, 2, 3, . . .
Δ�x ← −J−1f(�x) � Linear
Δf ← f(�x + Δx) − f(�x)
�x ← �x + Δ�x
J ← J + (Δf−JΔ�x)

‖Δ�x‖2
2

(Δx)�

return �x

function Broyden-Inverted(f(�x), �x0, J
−1
0 )

J−1 ← J−1
0 � Can default to In×n

�x ← �x0

for k ← 1, 2, 3, . . .
Δ�x ← −J−1f(�x) � Matrix multiply
Δf ← f(�x + Δx) − f(�x)
�x ← �x + Δ�x
J−1 ← J−1 + Δ�x−J−1Δf

Δ�x�J−1Δf
Δ�x�J−1

return �x

)b()a(

Figure 8.5 (a) Broyden’s method as described in §8.2.2 requires solving a linear sys-

tem of equations, but the formula from Exercise 8.7 yields (b) an equivalent method

using only matrix multiplication by updating the inverse matrix J−1 directly in-

stead of J .

Broyden’s method alternates between this update and the corresponding Newton step
~xk+1 = ~xk − J−1

k f(~xk).
Additional efficiency in some cases can be gained by keeping track of the matrix J−1

k

explicitly rather than the matrix Jk, which can be updated using a similar formula and
avoids the need to solve any linear systems of equations. This possibility is explored via
the Sherman-Morrison update formula in Exercise 8.7. Both versions of the algorithm are
shown in Figure 8.5.

8.3 CONDITIONING
We already showed in Example 2.10 that the condition number of root-finding in a single
variable is:

condx∗f =
1

|f ′(x∗)| .

As shown in Figure 8.6, this condition number shows that the best possible situation for
root-finding occurs when f is changing rapidly near x∗, since in this case perturbing x∗ will
make f take values far from 0.

Applying an identical argument when f is multidimensional gives a condition number of
‖Df(~x∗)‖−1. When Df is not invertible, the condition number is infinite. This degeneracy
occurs because perturbing ~x∗ preserves f(~x) = ~0 to first order, and indeed such a condition
can create challenging root-finding cases similar to that shown in Figure 8.6(b).

8.4 EXERCISES
8.1 Suppose it takes processor time t to evaluate f(x) or f ′(x) given x ∈ R. So, com-

puting the pair (f(x), f ′(x)) takes time 2t. For this problem, assume that individual
arithmetic operations take negligible amounts of processor time compared to t.

(a) Approximately how much time does it take to carry out k iterations of Newton’s
method on f(x)? Approximately how much time does it take to carry out k
iterations of the secant method on f(x)?
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x

f(x)

x∗

δ

f(x∗ − δ)

x

f(x)

x∗

δ
f(x∗ − δ)

(a) Good conditioning (b) Poor conditioning

Figure 8.6 Intuition for the conditioning of finding roots of a function f(x). (a) When

the slope at the root x∗ is large, the problem is well-conditioned because moving

a small distance δ away from x∗ makes the value of f change by a large amount.

(b) When the slope at x∗ is smaller, values of f(x) remain close to zero as we move

away from the root, making it harder to pinpoint the exact location of x∗.

(b) Why might the secant method be preferable in this case?

DH8.2 Recall from §8.1.3 the proof of conditions under which single-variable fixed point
iteration converges. Consider now the multivariable fixed point iteration scheme
~xk+1 ≡ g(~xk) for g : Rn → Rn.

(a) Suppose that g ∈ C1 and that ~xk is within a small neighborhood of a fixed
point ~x∗ of g. Suggest a condition on the Jacobian Dg of g that guarantees g is
Lipschitz in this neighborhood.

(b) Using the previous result, derive a bound for the error of ~xk+1 in terms of the
error of ~xk and the Jacobian of g.

(c) Show a condition on the eigenvalues of Dg that guarantees convergence of mul-
tivariable fixed point iteration.

(d) How does the rate of convergence change if Dg(~x∗) = 0?

DH8.3 Which method would you recommend for finding the root of f : R → R if all you
know about f is that:

(a) f ∈ C1 and f ′ is inexpensive to evaluate;

(b) f is Lipschitz with constant c satisfying 0 ≤ c ≤ 1;

(c) f ∈ C1 and f ′ is costly to evaluate; or

(d) f ∈ C0\C1, the continuous but non-differentiable functions.

DH8.4 Provide an example of root-finding problems that satisfy the following criteria:

(a) Can be solved by bisection but not by fixed point iteration

(b) Can be solved using fixed point iteration, but not using Newton’s method
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8.5 Is Newton’s method guaranteed to have quadratic convergence? Why?

DH8.6 Suppose we wish to compute n
√
y for a given y > 0. Using the techniques from this

chapter, derive a quadratically convergent iterative method that finds this root given
a sufficiently close initial guess.

8.7 In this problem, we show how to carry out Broyden’s method for finding roots without
solving linear systems of equations.

(a) Verify the Sherman-Morrison formula, for invertible A ∈ Rn×n and vectors ~u,~v ∈
Rn:

(A+ ~u~v>)−1 = A−1 − A−1~u~v>A−1

1 + ~v>A−1~u
.

(b) Use this formula to show that the algorithm in Figure 8.5(b) is equivalent to
Broyden’s method as described in §8.2.2.

8.8 In this problem, we will derive a technique known as Newton-Raphson division.
Thanks to its fast convergence, it is often implemented in hardware for IEEE-754
floating-point arithmetic.

(a) Show how the reciprocal 1
a of a ∈ R can be computed iteratively using New-

ton’s method. Write your iterative formula in a way that requires at most two
multiplications, one addition or subtraction, and no divisions.

(b) Take xk to be the estimate of 1
a during the k-th iteration of Newton’s method.

If we define εk ≡ axk − 1, show that εk+1 = −ε2
k.

(c) Approximately how many iterations of Newton’s method are needed to compute
1
a within d binary decimal points? Write your answer in terms of ε0 and d, and
assume |ε0| < 1.

(d) Is this method always convergent regardless of the initial guess of 1
a?

8.9 (LSQI, [50]) In this problem, we will develop a method for solving least-squares with
a quadratic inequality constraint:

min
‖~x‖2≤1

‖A~x−~b‖2.

You can assume the least-squares system A~x ≈ ~b, where A ∈ Rm×n with m > n, is
overdetermined.

(a) The optimal ~x either satisfies ‖~x‖2 < 1 or ‖~x‖2 = 1. Explain how to distinguish
between the two cases, and give a formula for ~x when ‖~x‖2 < 1.

(b) Suppose we are in the ‖~x‖2 = 1 case. Show that there exists λ ∈ R such that

(A>A+ λIn×n)~x = A>~b.

(c) Define f(λ) ≡ ‖~x(λ)‖22 − 1, where ~x(λ) is the solution to the system (A>A +

λIn×n)~x = A>~b for fixed λ ≥ 0. Assuming that the optimal ~x for the original
optimization problem satisfies ‖~x‖2 = 1, show f(0) ≥ 0 and that f(λ) < 0 for
sufficiently large λ > 0.

(d) Propose a strategy for the ‖~x‖2 = 1 case using root-finding.
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8.10 (Proposed by A. Nguyen.) Suppose we have a polynomial p(x) = akx
k+ · · ·+a1x+a0.

You can assume ak 6= 0 and k ≥ 1.

(a) Suppose the derivative p′(x) has no roots in (a, b). How many roots can p(x) have
in this interval?

(b) Using the result of Exercise 8.10a, propose a recursive algorithm for estimating
all the real roots of p(x). Assume we know that the roots of p(x) are at least ε
apart and that they are contained with an interval [a, b].

8.11 Root-finding for complex- or real-valued polynomials is closely linked to the eigenvalue
problem considered in Chapter 6.

(a) Give a matrix A whose eigenvalues are the roots of a given polynomial p(x) =
akx

k + · · ·+ a1x+ a0; you can assume p(x) has no repeated roots.

(b) Show that the eigenvalues of a matrix A ∈ Rn×n are the roots of a polynomial
function. Is it advisable to use root-finding algorithms from this chapter for the
eigenvalue problem?
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PREVIOUS chapters have taken a largely variational approach to deriving numerical
algorithms. That is, we define an objective function or energy E(~x), possibly with

constraints, and pose our algorithms as approaches to a corresponding minimization or
maximization problem. A sampling of problems that we solved this way is listed below:

Problem § Objective Constraints

Least-squares 4.1.2 E(~x) = ‖A~x−~b‖22 None

Project ~b onto ~a 5.4.1 E(c) = ‖c~a−~b‖22 None

Eigenvectors of symmetric A 6.1 E(~x) = ~x>A~x ‖~x‖2 = 1

Pseudoinverse 7.2.1 E(~x) = ‖~x‖22 A>A~x = A>~b
Principal component analysis 7.2.5 E(C) = ‖X − CC>X‖Fro C>C = Id×d

Broyden step 8.2.2 E(Jk) = ‖Jk − Jk−1‖2Fro Jk ·∆~xk = ∆fk

The formulation of numerical problems in variational language is a powerful and general
technique. To make it applicable to a larger class of nonlinear problems, we will design
algorithms that can perform minimization or maximization in the absence of a special form
for the energy E.

9.1 UNCONSTRAINED OPTIMIZATION: MOTIVATION
In this chapter, we will consider unconstrained problems, that is, problems that can be
posed as minimizing or maximizing a function f : Rn → R without any constraints on the
input ~x. It is not difficult to encounter such problems in practice; we explore a few examples
below.

163
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hnh1
μ

σ

h2

Figure 9.1 Illustration for Example 9.2. Given the heights h1, h2, . . . , hn of students

in a class, we may wish to estimate the mean µ and standard deviation σ of the

most likely normal distribution explaining the observed heights.

Example 9.1 (Nonlinear least-squares). Suppose we are given a number of pairs (xi, yi)
such that f(xi) ≈ yi and wish to find the best approximating f within a particular class.
For instance, if we expect that f is exponential, we should be able to write f(x) = ceax

for some c, a ∈ R; our job is to find the parameters a and c that best fit the data. One
strategy we already developed in Chapter 4 is to minimize the following energy function:

E(a, c) =
∑

i

(yi − ceaxi)2.

This form for E is not quadratic in a, so the linear least-squares methods from §4.1.2 do
not apply to this minimization problem. Hence, we must employ alternative methods to
minimize E.

Example 9.2 (Maximum likelihood estimation). In machine learning, the problem of pa-
rameter estimation involves examining the results of a randomized experiment and trying
to summarize them using a probability distribution of a particular form. For example, we
might measure the height of every student in a class to obtain a list of heights hi for each
student i. If we have a lot of students, we can model the distribution of student heights
using a normal distribution:

g(h;µ, σ) =
1

σ
√

2π
e−

(h−µ)2/2σ2 ,

where µ is the mean of the distribution and σ is the standard deviation of the standard
“bell curve” shape. This notation is illustrated in Figure 9.1.

Under this normal distribution, the likelihood that we observe height hi for student i
is given by g(hi;µ, σ), and under the (reasonable) assumption that the height of student i
is probabilistically independent of that of student j, the likelihood of observing the entire
set of heights observed is proportional to the product

P ({h1, . . . , hn};µ, σ) =
∏

i

g(hi;µ, σ).

A common method for estimating the parameters µ and σ of g is to maximize P viewed as a
function of µ and σ with {hi} fixed; this is called the maximum-likelihood estimate of µ and
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Figure 9.2 The geometric median problem seeks a point ~x minimizing the total (non-

squared) distance to a set of data points ~x1, . . . , ~xk.

σ. In practice, we usually optimize the log likelihood `(µ, σ) ≡ logP ({h1, . . . , hn};µ, σ).
This function has the same maxima but enjoys better numerical and mathematical prop-
erties.

Example 9.3 (Geometric problems). Many geometric problems encountered in computer
graphics and vision do not reduce to least-squares energies. For instance, suppose we have
a number of points ~x1, . . . , ~xk ∈ Rn. If we wish to cluster these points, we might wish to
summarize them with a single ~x minimizing

E(~x) ≡
∑

i

‖~x− ~xi‖2.

The ~x minimizing E is known as the geometric median of {~x1, . . . , ~xk}, as illustrated in
Figure 9.2. Since the norm of the difference ~x − ~xi in E is not squared, the energy is no
longer quadratic in the components of ~x.

Example 9.4 (Physical equilibria, adapted from [58]). Suppose we attach an object to a
set of springs; each spring is anchored at point ~xi ∈ R3 with natural length Li and constant
ki. In the absence of gravity, if our object is located at position ~p ∈ R3, the network of
springs has potential energy

E(~p) =
1

2

∑

i

ki (‖~p− ~xi‖2 − Li)2
.

Equilibria of this system are given by local minima of E and represent points ~p at which
the spring forces are all balanced. Extensions of this problem are used to visualize graphs
G = (V,E), by attaching vertices in V with springs for each pair in E.

9.2 OPTIMALITY
Before discussing how to minimize or maximize a function, we should characterize properties
of the maxima and minima we are seeking. With this goal in mind, for a particular f : Rn →
R and ~x∗ ∈ Rn, we will derive optimality conditions that verify whether ~x∗ has the optimal
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x

f(x)

Local minimum

Global minimum

Figure 9.3 A function f(x) with two local minima but only one global minimum.

value f(~x∗). Maximizing f is the same as minimizing −f , so from this section onward the
minimization problem is sufficient for our consideration.

In most situations, we ideally would like to find global minima of f :

Definition 9.1 (Global minimum). The point ~x∗ ∈ Rn is a global minimum of f : Rn → R
if f(~x∗) ≤ f(~x) for all ~x ∈ Rn.

Finding a global minimum of f(~x) without any bounds on ~x or information about the
structure of f effectively requires searching in the dark. For instance, suppose an optimiza-
tion algorithm identifies the left local minimum in the function in Figure 9.3. It is nearly
impossible to realize that there is a second, lower minimum by guessing x values—and for
all we know, there may be a third even lower minimum of f miles to the right!

To relax these difficulties, in many cases we are satisfied if we can find a local minimum:

Definition 9.2 (Local minimum). The point ~x∗ ∈ Rn is a local minimum of f : Rn → R
if there exists some ε > 0 such that f(~x∗) ≤ f(~x) for all ~x ∈ Rn satisfying ‖~x− ~x∗‖2 < ε.

This definition requires that ~x∗ attains the smallest value in some neighborhood defined by
the radius ε. Local optimization algorithms have the severe limitation that they may not
find the lowest possible value of f , as in the left local minimum in Figure 9.3. To mitigate
these issues, many strategies, heuristic and otherwise, are applied to explore the landscape
of possible ~x’s to help gain confidence that a local minimum has the best possible value.

9.2.1 Differential Optimality
A familiar story from single- and multi-variable calculus is that finding potential minima
and maxima of a function f : Rn → R is more straightforward when f is differentiable. In
this case, the gradient vector ∇f = (∂f/∂x1, . . . , ∂f/∂xn) at ~x points in the direction moving
from ~x in which f increases at the fastest rate; the vector −∇f points in the direction of
greatest decrease. One way to see this is to approximate f(~x) linearly near a point ~x0 ∈ Rn:

f(~x) ≈ f(~x0) +∇f(~x0) · (~x− ~x0).
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Figure 9.4 Different types of critical points.
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Figure 9.5 A function with many stationary points.

If we take ~x− ~x0 = α∇f(~x0), then

f(~x0 + α∇f(~x0)) ≈ f(~x0) + α‖∇f(~x0)‖22.

The value ‖∇f(~x0)‖22 is always nonnegative, so when ‖∇f(~x0)‖2 > 0, the sign of α deter-
mines whether f increases or decreases locally.

By the above argument, if ~x0 is a local minimum, then ∇f(~x0) = ~0. This condition is
necessary but not sufficient : Maxima and saddle points also have ∇f(~x0) = ~0 as shown
in Figure 9.4. Even so, this observation about minima of differentiable functions yields a
high-level approach to optimization:

1. Find points ~xi satisfying ∇f(~xi) = ~0.

2. Check which of these points is a local minimum as opposed to a maximum or saddle
point.

Given their role in optimization, we give the points ~xi a special name:

Definition 9.3 (Stationary point). A stationary point of f : Rn → R is a point ~x ∈ Rn
satisfying ∇f(~x) = ~0.

Our methods for minimization mostly will find stationary points of f and subsequently
eliminate those that are not minima.

It is imperative to keep in mind when we can expect minimization algorithms to succeed.
In most cases, such as those in Figure 9.4, the stationary points of f are isolated, meaning
we can write them in a discrete list {~x0, ~x1, . . .}. A degenerate case, however, is shown in
Figure 9.5; here, an entire interval of values x is composed of stationary points, making it
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impossible to consider them individually. For the most part, we will ignore such issues as
unlikely, poorly conditioned degeneracies.

Suppose we identify a point ~x ∈ R as a stationary point of f and wish to check if it is a
local minimum. If f is twice-differentiable, we can use its Hessian matrix

Hf (~x) =




∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂2x2

· · · ∂2f
∂x2∂xn

...
... · · ·

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂2xn



.

Adding a term to the linearization of f reveals the role of Hf :

f(~x) ≈ f(~x0) +∇f(~x0) · (~x− ~x0) +
1

2
(~x− ~x0)>Hf (~x− ~x0).

If we substitute a stationary point ~x∗, then since ∇f(~x∗) = ~0,

f(~x) ≈ f(~x∗) +
1

2
(~x− ~x∗)>Hf (~x− ~x∗).

If Hf is positive definite, then this expression shows f(~x) ≥ f(~x∗) near ~x∗, and thus ~x∗ is
a local minimum. More generally, a few situations can occur:

• If Hf is positive definite, then ~x∗ is a local minimum of f .

• If Hf is negative definite, then ~x∗ is a local maximum of f .

• If Hf is indefinite, then ~x∗ is a saddle point of f .

• If Hf is not invertible, then oddities such as the function in Figure 9.5 can occur; this
includes the case where Hf is semidefinite.

Checking if a Hessian matrix is positive definite can be accomplished by checking if its
Cholesky factorization exists or—more slowly—by verifying that all its eigenvalues are pos-
itive. So, when f is sufficiently smooth and the Hessian of f is known, we can check sta-
tionary points for optimality using the list above. Many optimization algorithms including
the ones we will discuss ignore the non-invertible case and notify the user, since again it is
relatively unlikely.

9.2.2 Alternative Conditions for Optimality
If we know more information about f : Rn → R, we can provide optimality conditions that
are stronger or easier to check than the ones above. These conditions also can help when
f is not differentiable but has other geometric properties that make it possible to find a
minimum.

One property of f that has strong implications for optimization is convexity, illustrated
in Figure 9.6(a):

Definition 9.4 (Convex). A function f : Rn → R is convex when for all ~x, ~y ∈ Rn and
α ∈ (0, 1) the following relationship holds:

f((1− α)~x+ α~y) ≤ (1− α)f(~x) + αf(~y).

When the inequality is strict (replace ≤ with <), the function is strictly convex.
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Figure 9.6 (a) Convex functions must be bowl-shaped, while (b) quasiconvex func-

tions can have more complicated features.

Convexity implies that if you connect two points in Rn with a line, the values of f along
the line are less than or equal to those you would obtain by linear interpolation.

Convex functions enjoy many strong properties, the most basic of which is the following:

Proposition 9.1. A local minimum of a convex function f : Rn → R is necessarily a
global minimum.

Proof. Take ~x to be such a local minimum and suppose there exists ~x∗ with f(~x∗) < f(~x).
Then, for sufficiently small α ∈ (0, 1),

f(~x) ≤ f(~x+ α(~x∗ − ~x)) since ~x is a local minimum

≤ (1− α)f(~x) + αf(~x∗) by convexity.

Moving terms in the inequality f(~x) ≤ (1 − α)f(~x) + αf(~x∗) shows f(~x) ≤ f(~x∗). This
contradicts our assumption that f(~x∗) < f(~x), so ~x must minimize f globally.

This proposition and related observations show that it is possible to check if you have
reached a global minimum of a convex function by applying first-order optimality. Thus, it
is valuable to check by hand if a function being optimized happens to be convex, a situation
occurring surprisingly often in scientific computing; one sufficient condition that can be
easier to check when f is twice-differentiable is that Hf is positive definite everywhere.

Other optimization techniques have guarantees under weaker assumptions about f . For
example, one relaxation of convexity is quasi -convexity, achieved when

f((1− α)~x+ α~y) ≤ max(f(~x), f(~y)).

An example of a quasiconvex function is shown in Figure 9.6(b). Although it does not have
the characteristic “bowl” shape of a convex function, its local minimizers are necessarily
global minimizers.

9.3 ONE-DIMENSIONAL STRATEGIES
As in the last chapter, we will start by studying optimization for functions f : R → R of
one variable and then expand to more general functions f : Rn → R.
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9.3.1 Newton’s Method
Our principal strategy for minimizing differentiable functions f : Rn → R will be to find
stationary points ~x∗ satisfying ∇f(~x∗) = 0. Assuming we can check whether stationary
points are maxima, minima, or saddle points as a post-processing step, we will focus on the
problem of finding the stationary points ~x∗.

To this end, suppose f : R→ R is twice-differentiable. Then, following our derivation of
Newton’s method for root-finding in §8.1.4, we can approximate:

f(x) ≈ f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2.

We need to include second-order terms since linear functions have no nontrivial minima or
maxima. The approximation on the right-hand side is a parabola whose vertex is located
at xk − f ′(xk)/f ′′(xk).

In reality, f may not be a parabola, so its vertex will not necessarily give a critical point
of f directly. So, Newton’s method for minimization iteratively minimizes and adjusts the
parabolic approximation:

xk+1 = xk −
f ′(xk)

f ′′(xk)
.

This technique is easily analyzed given the work we put into understanding Newton’s method
in the previous chapter. Specifically, an alternative way to derive the iterative formula above
comes from applying Newton’s method for root-finding to f ′(x), since stationary points x of
f(x) satisfy f ′(x) = 0. Applying results about convergence to a root, in most cases Newton’s
method for optimization exhibits quadratic convergence, provided the initial guess x0 is
sufficiently close to x∗.

A natural question is whether the secant method can be similarly adapted to minimiza-
tion. Our derivation of Newton’s method above finds roots of f ′, so the secant method
could be used to eliminate f ′′ but not f ′ from the optimization formula. One-dimensional
situations in which f ′ is known but not f ′′ are relatively rare. A more suitable parallel is
to replace line segments through the last two iterates, used to approximate f in the se-
cant method for root-finding, with parabolas through the last three iterates. The resulting
algorithm, known as successive parabolic interpolation, also minimizes a quadratic approxi-
mation of f at each iteration, but rather than using f(xk), f ′(xk), and f ′′(xk) to construct
the approximation, it uses f(xk), f(xk−1), and f(xk−2). This technique can converge su-
perlinearly; in practice, however, it can have drawbacks that make other methods discussed
in this chapter more preferable. We explore its design in Exercise 9.3.

9.3.2 Golden Section Search
Since Newton’s method for optimization is so closely linked to root-finding, we might ask
whether a similar adaptation can be applied to bisection. Unfortunately, this transition is
not obvious. A primary reason for using bisection is that it employs the weakest assumption
on f needed to find roots: continuity. Continuity is enough to prove the Intermediate Value
Theorem, which justifies convergence of bisection. The Intermediate Value Theorem does
not apply to extrema of a function in any intuitive way, so it appears that directly using
bisection to minimize a function is not so straightforward.

It is valuable, however, to have at least one minimization algorithm available that does
not require differentiability of f as an underlying assumption. After all, there are non-
differentiable functions that have clear minima, like f(x) ≡ |x| at x = 0. To this end, one
alternative assumption might be that f is unimodular :
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function Golden-Section-Search(f(x), a, b)
τ ← 1

2 (
√

5 − 1)
x0 ← a + (1 − τ)(b − a) � Initial division of interval a < x0 < x1 < b
x1 ← a + τ(b − a)
f0 ← f(x0) � Function values at x0 and x1

f1 ← f(x1)
for k ← 1, 2, 3, . . .

if |b − a| < ε then � Golden section search converged
return x∗ = 1

2 (a + b)
else if f0 ≥ f1 then � Remove the interval [a, x0]

a ← x0 � Move left side
x0 ← x1 � Reuse previous iteration
f0 ← f1

x1 ← a + τ(b − a) � Generate new sample
f1 ← f(x1)

else if f1 > f0 then � Remove the interval [x1, b]
b ← x1 � Move right side
x1 ← x0 � Reuse previous iteration
f1 ← f0

x0 ← a + (1 − τ)(b − a) � Generate new sample
f0 ← f(x0)

Figure 9.7 The golden section search algorithm finds minima of unimodular functions

f(x) on the interval [a, b] even if they are not differentiable.

Definition 9.5 (Unimodular). A function f : [a, b] → R is unimodular if there exists
x∗ ∈ [a, b] such that f is decreasing (or non-increasing) for x ∈ [a, x∗] and increasing (or
non-decreasing) for x ∈ [x∗, b].

In other words, a unimodular function decreases for some time, and then begins increas-
ing; no localized minima are allowed. Functions like |x| are not differentiable but still are
unimodular.

Suppose we have two values x0 and x1 such that a < x0 < x1 < b. We can make
two observations that will help us formulate an optimization technique for a unimodular
function f(x):

• If f(x0) ≥ f(x1), then f(x) ≥ f(x1) for all x ∈ [a, x0]. Thus, the interval [a, x0] can
be discarded in a search for the minimum of f .

• If f(x1) ≥ f(x0), then f(x) ≥ f(x0) for all x ∈ [x1, b], and we can discard the interval
[x1, b].

This structure suggests a bisection-like minimization algorithm beginning with the interval
[a, b] and iteratively removing pieces according to the rules above. In such an algorithm, we
could remove a third of the interval each iteration. This requires two evaluations of f , at
x0 = 2a/3 + b/3 and x1 = a/3 + 2b/3. If evaluating f is expensive, however, we may attempt
to reduce the number of evaluations per iteration to one.

To design such a method reducing the computational load, we will focus on the case
when a = 0 and b = 1; the strategies we derive below eventually will work more generally by
shifting and scaling. In the absence of more information about f , we will make a symmetric
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Iteration 2

Iteration 3

Iteration 4

Figure 9.8 Iterations of golden section search on unimodular f(x) shrink the interval

[a, b] by eliminating the left segment [a, x0] or the right segment [x1, b]; each iteration

reuses either f(x0) or f(x1) via the construction in §9.3.2. In this illustration, each

horizontal line represents an iteration of golden section search, with the values a,

x0, x1, and b labeled in the circles.

choice x0 = α and x1 = 1 − α for some α ∈ (0, 1/2); taking α = 1/3 recovers the evenly
divided technique suggested above.

Now, suppose that during minimization we can eliminate the rightmost interval [x1, b]
by the rules listed above. In the next iteration, the search interval shrinks to [0, 1−α], with
x0 = α(1− α) and x1 = (1− α)2. To reuse f(α), we could set (1− α)2 = α, yielding:

α =
1

2
(3−

√
5)

1− α =
1

2
(
√

5− 1).

The value 1 − α ≡ τ above is the golden ratio! A symmetric argument shows that the
same choice of α works if we had removed the left interval instead of the right one. In
short, “trisection” algorithms minimizing unimodular functions f(x) dividing intervals into
segments with length determined using this ratio can reuse a function evaluation from one
iteration to the next.

The golden section search algorithm, documented in Figure 9.7 and illustrated in Fig-
ure 9.8, makes use of this construction to minimize a unimodular function f(x) on the
interval [a, b] via subdivision with one evaluation of f(x) per iteration. It converges uncon-
ditionally and linearly, since a fraction α of the interval [a, b] bracketing the minimum is
removed in each step.
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function Gradient-Descent(f(�x), �x0)
�x ← �x0

for k ← 1, 2, 3, . . .
Define-Function(g(t) ≡ f(�x − t∇f(�x)))
t∗ ← Line-Search(g(t), t ≥ 0)
�x ← �x − t∗∇f(�x) � Update estimate of minimum
if ‖∇f(�x)‖2 < ε then

return x∗ = �x

Figure 9.9 The gradient descent algorithm iteratively minimizes f : Rn → R by solv-

ing one-dimensional minimizations through the gradient direction. Line-Search

can be one of the methods from §9.3 for minimization in one dimension. In faster,

more advanced techniques, this method can find suboptimal t∗ > 0 that still de-

creases g(t) sufficiently to make sure the optimization does not get stuck.

When f is not globally unimodular, golden section search does not apply unless we
can find some [a, b] such that f is unimodular on that interval. In some cases, [a, b] can
be guessed by attempting to bracket a local minimum of f . For example, [101] suggests
stepping farther and farther away from some starting point x0 ∈ R, moving downhill from
f(x0) until f increases again, indicating the presence of a local minimum.

9.4 MULTIVARIABLE STRATEGIES
We continue to parallel our discussion of root-finding by expanding from single-variable
to multivariable problems. As with root-finding, multivariable optimization problems are
considerably more difficult than optimization in a single variable, but they appear so many
times in practice that they are worth careful consideration.

Here, we will consider only the case that f : Rn → R is twice-differentiable. Optimization
methods similar to golden section search for non-differentiable functions are less common
and are difficult to formulate. See, e.g., [74, 17] for consideration of non-differentiable opti-
mization, subgradients, and related concepts.

9.4.1 Gradient Descent
From our previous discussion, ∇f(~x) points in the direction of “steepest ascent” of f at ~x
and −∇f(~x) points in the direction of “steepest descent.” If nothing else, these properties
suggest that when ∇f(~x) 6= ~0, for small α > 0, f(~x− α∇f(~x)) ≤ f(~x).

Suppose our current estimate of the minimizer of f is ~xk. A reasonable iterative mini-
mization strategy should seek the next iterate ~xk+1 so that f(~xk+1) < f(~xk). Since we do
not expect to find a global minimum in one shot, we can make restrictions to simplify the
search for ~xk+1. A typical simplification is to use a one-variable algorithm from §9.3 on f
restricted to a line through ~xk; once we solve the one-dimensional problem for ~xk+1, we
choose a new line through ~xk+1 and repeat.

Consider the function gk(t) ≡ f(~xk − t∇f(~xk)), which restricts f to the line through
~xk parallel to −∇f(~xk). We have shown that when ∇f(~xk) 6= ~0, g(t) < g(0) for small
t > 0. Hence, this is a reasonable direction for a restricted search for the new iterate.
The resulting gradient descent algorithm shown in Figure 9.9 and illustrated in Figure 9.10
iteratively solves one-dimensional problems to improve ~xk.
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Figure 9.10 Gradient descent on a function f : R2 → R, whose level sets are shown in

gray. The gradient∇f(~x) points perpendicular to the level sets of f , as in Figure 1.6;

gradient descent iteratively minimizes f along the line through this direction.

Each iteration of gradient descent decreases f(~xk), so these values converge assuming
they are bounded below. The approximations ~xk only stop changing when ∇f(~xk) ≈ ~0,
showing that gradient descent must at least reach a local minimum; convergence can be
slow for some functions f , however.

Rather than solving the one-variable problem exactly in each step, line search can be
replaced by a method that finds points along the line that decrease the objective a non-
negligible if suboptimal amount. It is more difficult to guarantee convergence in this case,
since each step may not reach a local minimum on the line, but the computational savings
can be considerable since full one-dimensional minimization is avoided; see [90] for details.

Taking the more limited line search strategy to an extreme, sometimes a fixed t > 0 is
used for all iterations to avoid line search altogether. This choice of t is known in machine
learning as the learning rate and trades off between taking large minimization steps and
potentially skipping over a minimum. Gradient descent with a constant step is unlikely to
converge to a minimum in this case, but depending on f it may settle in some neighborhood
of the optimal point; see Exercise 9.7 for an error bound of this method in one case.

9.4.2 Newton’s Method in Multiple Variables
Paralleling our derivation of the single-variable case in §9.3.1, we can write a Taylor series
approximation of f : Rn → R using its Hessian matrix Hf :

f(~x) ≈ f(~xk) +∇f(~xk)> · (~x− ~xk) +
1

2
(~x− ~xk)> ·Hf (~xk) · (~x− ~xk).

Differentiating with respect to ~x and setting the result equal to zero yields the following
iterative scheme:

~xk+1 = ~xk − [Hf (~xk)]−1∇f(~xk).

This expression generalizes Newton’s method from §9.3.1, and once again it converges
quadratically when ~x0 is near a minimum.

Newton’s method can be more efficient than gradient descent depending on the objective
f since it makes use of both first- and second-order information. Gradient descent has no
knowledge of Hf ; it proceeds analogously to walking downhill by looking only at your feet.
By using Hf , Newton’s method has a larger picture of the shape of f nearby.

Each iteration of gradient descent potentially requires many evaluations of f during
line search. On the other hand, we must evaluate and invert the Hessian Hf during each
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iteration of Newton’s method. These implementation differences do not affect the number
of iterations to convergence but do affect the computational time taken per iteration of the
two methods.

When Hf is nearly singular, Newton’s method can take very large steps away from
the current estimate of the minimum. These large steps are a good idea if the second-
order approximation of f is accurate, but as the step becomes large the quality of this
approximation can degenerate. One way to take more conservative steps is to “dampen”
the change in ~x using a small multiplier γ > 0:

~xk+1 = ~xk − γ[Hf (~xk)]−1∇f(~xk).

A more expensive but safer strategy is to do line search from ~xk along the direction
−[Hf (~xk)]−1∇f(~xk).

When Hf is not positive definite, the objective locally might look like a saddle or peak
rather than a bowl. In this case, jumping to an approximate stationary point might not
make sense. To address this issue, adaptive techniques check if Hf is positive definite before
applying a Newton step; if it is not positive definite, the methods revert to gradient descent
to find a better approximation of the minimum. Alternatively, they can modify Hf , for
example, by projecting onto the closest positive definite matrix (see Exercise 9.8).

9.4.3 Optimization without Hessians: BFGS
Newton’s method can be difficult to apply to complicated or high-dimensional functions
f : Rn → R. The Hessian of f is often more expensive to evaluate than f or ∇f , and each
Hessian Hf is used to solve only one linear system of equations, eliminating potential savings
from LU or QR factorization. Additionally, Hf has size n×n, requiring O(n2) space, which
might be too large. Since Newton’s method deals with approximations of f in each iteration
anyway, we might attempt to formulate less expensive second-order approximations that
still outperform gradient descent.

As in our discussion of root-finding in §8.2.2, techniques for minimization that imitate
Newton’s method but use approximate derivatives are called quasi-Newton methods. They
can have similarly strong convergence properties without the need for explicit re-evaluation
and even inversion of the Hessian at each iteration. Here, we will follow the development
of [90] to motivate one modern technique for quasi-Newton optimization.

Suppose we wish to minimize f : Rn → R iteratively. Near the current estimate ~xk of
the minimizer, we might estimate f with a quadratic function:

f(~xk + δ~x) ≈ f(~xk) +∇f(~xk) · δ~x+
1

2
(δ~x)>Bk(δ~x).

Here, we require that our approximation agrees with f to first order at ~xk, but we will allow
the estimate of the Hessian Bk to differ from the actual Hessian of f .

Slightly generalizing Newton’s method in §9.4.2, this quadratic approximation is mini-
mized by taking δ~x = −B−1

k ∇f(~xk). In case ‖δ~x‖2 is large and we do not wish to take such
a large step, we will allow ourselves to scale this difference by a step size αk determined,
e.g., using a line search procedure, yielding the iteration

~xk+1 = ~xk − αkB−1
k ∇f(~xk).

Our goal is to estimate Bk+1 by updating Bk, so that we can repeat this process.
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function BFGS(f(x), x0)
H ← In×n

x ← x0

for k ← 1, 2, 3, . . .
if f(x) < ε then

return x∗ = x
p ← −Hk∇f(x) Next search direction
α ← Compute-Alpha( y,x,p,f ) Satisfy positive definite condition
s ← pα Displacement of x
x ← x + s Update estimate
y ← ∇f(x + s) − ∇f(x) Change in gradient

ρ ← 1/y·s Apply BFGS update to inverse Hessian approximation
H ← (In×n − ρsy )H(In×n − ρys ) + ρss

Figure 9.11 The BFGS algorithm for finding a local minimum of differentiable f(~x)

without its Hessian. The function Compute-Alpha finds large α > 0 satisfying

~y · ~s > 0, where ~y = ∇f(~x+ ~s)−∇f(~x) and ~s = α~p.

The Hessian of f is nothing more than the derivative of ∇f , so like Broyden’s method
we can use previous iterates to impose a secant-style condition on Bk+1:

Bk+1(~xk+1 − ~xk) = ∇f(~xk+1)−∇f(~xk).

For convenience of notation, we will define ~sk ≡ ~xk+1 − ~xk and ~yk ≡ ∇f(~xk+1) −∇f(~xk),
simplifying this condition to Bk+1~sk = ~yk.

Given the optimization at hand, we wish for Bk to have two properties:

• Bk should be a symmetric matrix, like the Hessian Hf .

• Bk should be positive (semi-)definite, so that we are seeking minima of f rather than
maxima or saddle points.

These conditions eliminate the possibility of using the Broyden estimate we developed in
the previous chapter.

The positive definite constraint implicitly puts a condition on the relationship between
~sk and ~yk. Pre-multiplying the relationship Bk+1~sk = ~yk by ~s>k shows ~s>k Bk+1~sk = ~s>k ~yk.
For Bk+1 to be positive definite, we must then have ~sk · ~yk > 0. This observation can guide
our choice of αk; it must hold for sufficiently small αk > 0.

Assume that ~sk and ~yk satisfy the positive definite compatibility condition. Then, we
can write down a Broyden-style optimization problem leading to an updated Hessian ap-
proximation Bk+1:

minimizeBk+1
‖Bk+1 −Bk‖

subject to B>k+1 = Bk+1

Bk+1~sk = ~yk.

For appropriate choice of norms ‖·‖, this optimization yields the well-known DFP (Davidon-
Fletcher-Powell) iterative scheme.

Rather than working out the details of the DFP scheme, we derive a more popular
method known as the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm, in Figure 9.11.
The BFGS algorithm is motivated by reconsidering the construction of Bk+1 in DFP. We
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use Bk when minimizing the second-order approximation, taking δ~x = −B−1
k ∇f(~xk). Based

on this formula, the behavior of our iterative minimizer is dictated by the inverse matrix
B−1
k . Asking that ‖Bk+1 − Bk‖ is small can still imply relatively large differences between

B−1
k and B−1

k+1!
With this observation in mind, BFGS makes a small alteration to the optimization for

Bk. Rather than updating Bk in each iteration, we can compute its inverse Hk ≡ B−1
k

directly. We choose to use standard notation for BFGS in this section, but a common point
of confusion is that H now represents an approximate inverse Hessian; this is the not the
same as the Hessian Hf in §9.4.2 and elsewhere.

Now, the condition Bk+1~sk = ~yk gets reversed to ~sk = Hk+1~yk; the condition that Bk
is symmetric is the same as the condition that Hk is symmetric. After these changes, the
BFGS algorithm updates Hk by solving an optimization problem

minimizeHk+1
‖Hk+1 −Hk‖

subject to H>k+1 = Hk+1

~sk = Hk+1~yk.

This construction has the convenient side benefit of not requiring matrix inversion to com-
pute δ~x = −Hk∇f(~xk).

To derive a formula for Hk+1, we must decide on a matrix norm ‖·‖. The Frobenius norm
looks closest to least-squares optimization, making it likely we can generate a closed-form
expression for Hk+1. This norm, however, has one serious drawback for modeling Hessian
matrices and their inverses. The Hessian matrix has entries (Hf )ij = ∂2f/∂xi∂xj. Often, the
quantities xi for different i can have different units. Consider maximizing the profit (in
dollars) made by selling a cheeseburger of radius r (in inches) and price p (in dollars), a
function f : (inches, dollars) → dollars. Squaring quantities in different units and adding
them up does not make sense.

Suppose we find a symmetric positive definite matrix W so that W~sk = ~yk; we will check
in the exercises that such a matrix exists. This matrix takes the units of ~sk = ~xk+1 − ~xk
to those of ~yk = ∇f(~xk+1) − ∇f(~xk). Taking inspiration from the expression ‖A‖2Fro =
Tr(A>A), we can define a weighted Frobenius norm of a matrix A as

‖A‖2W ≡ Tr(A>W>AW ).

Unlike the Frobenius norm of Hk+1, this expression has consistent units when applied to
the optimization for Hk+1.

When both W and A are symmetric with columns ~wi and ~ai, respectively, expanding
the expression above shows:

‖A‖2W =
∑

ij

(~wi · ~aj)(~wj · ~ai).

This choice of norm combined with the choice of W yields a particularly clean formula for
Hk+1 given Hk, ~sk, and ~yk:

Hk+1 = (In×n − ρk~sk~y>k )Hk(In×n − ρk~yk~s>k ) + ρk~sk~s
>
k ,

where ρk ≡ 1/~yk·~sk. We show in the appendix to this chapter how to derive this formula,
which remarkably has no W dependence. The proof requires a number of algebraic steps
but conceptually is no more difficult than direct application of Lagrange multipliers for
constrained optimization (see Theorem 1.1).
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The BFGS algorithm avoids the need to compute and invert a Hessian matrix for f ,
but it still requires O(n2) storage for Hk. The L-BFGS (“Limited-Memory BFGS”) variant
avoids this issue by keeping a limited history of vectors ~yk and ~sk and using these to apply
Hk by expanding its formula recursively. L-BFGS can have better convergence than BFGS
despite its compact use of space, since old vectors ~yk and ~sk may no longer be relevant and
should be ignored. Exercise 9.11 derives this technique.

9.5 EXERCISES
9.1 Suppose A ∈ Rn×n. Show that f(~x) = ‖A~x − ~b‖22 is a convex function. When is

g(~x) = ~x>A~x+~b>~x+ c convex?

9.2 Some observations about convex and quasiconvex functions:

(a) Show that every convex function is quasiconvex, but that some quasiconvex func-
tions are not convex.

(b) Show that any local minimum of a continuous, strictly quasiconvex function
f : Rn → R is also a global minimum of f . Here, strict quasiconvexity replaces
the ≤ in the definition of quasiconvex functions with <.

(c) Show that the sum of two convex functions is convex, but give a counterexample
showing that the sum of two quasiconvex functions may not be quasiconvex.

(d) Suppose f(x) and g(x) are quasiconvex. Show that h(x) = max(f(x), g(x)) is
quasiconvex.

9.3 In §9.3.1, we suggested the possibility of using parabolas rather than secants to min-
imize a function f : R → R without knowing any of its derivatives. Here, we outline
the design of such an algorithm:

(a) Suppose we are given three points (x1, y1), (x2, y2), (x3, y3) with distinct x values.
Show that the vertex of the parabola y = ax2 + bx + c through these points is
given by:

x = x2 −
(x2 − x1)2(y2 − y3)− (x2 − x3)2(y2 − y1)

2(x2 − x1)(y2 − y3)− (x2 − x3)(y2 − y1)
.

(b) Use this formula to propose an iterative technique for minimizing a function of
one variable without using any of its derivatives.

(c) What happens when the three points in Exercise 9.3a are collinear? Does this
suggest a failure mode of successive parabolic interpolation?

(d) Does the formula in Exercise 9.3a distinguish between maxima and minima of
parabolas? Does this suggest a second failure mode?

9.4 Show that a strictly convex function f : [a, b]→ R is unimodular.

9.5 We might ask how well we can expect methods like golden section search can work
after introducing finite precision arithmetic. We step through a few analytical steps
from [101]:
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(a) Suppose we have bracketed a local minimum x∗ of differentiable f(x) in a small
interval. Justify the following approximation in this interval:

f(x) ≈ f(x∗) +
1

2
f ′′(x∗)(x− x∗)2.

(b) Suppose we wish to refine the interval containing the minimum until the second
term in this approximation is negligible. Show that if we wish to upper-bound
the absolute value of the ratio of the two terms in Exercise 9.5a by ε, we should
enforce

|x− x∗| <
√

2ε|f(x∗)|
|f ′′(x∗)| .

(c) By taking ε to be machine precision as in §2.1.2, conclude that the size of the
interval in which f(x) and f(x∗) are indistinguishable numerically grows like

√
ε.

Based on this observation, can golden section search bracket a minimizer within
machine precision?
Hint: For small ε > 0,

√
ε� ε.

DH9.6 For a convex function f : U → Rn, where U ⊆ Rn is convex and open, define a
subgradient of f at ~x0 ∈ U to be any vector ~s ∈ Rn such that

f(~x)− f(~x0) ≥ ~s · (~x− ~x0)

for all ~x ∈ U [112]. The subgradient is a plausible choice for generalizing the notion of
a gradient at a point where f is not differentiable. The subdifferential ∂f(~x0) is the
set of all subgradients of f at ~x0.

For the remainder of this question, assume that f is convex and continuous:

(a) What is ∂f(0) for the function f(x) = |x|?
(b) Suppose we wish to minimize (convex and continuous) f : Rn → R, which may

not be differentiable everywhere. Propose an optimality condition involving sub-
differentials for a point ~x∗ to be a minimizer of f . Show that your condition holds
if and only if ~x∗ globally minimizes f .

DH9.7 Continuing the previous problem, the subgradient method extends gradient descent to
a wider class of functions. Analogously to gradient descent, the subgradient method
performs the iteration

~xk+1 ≡ ~xk − αk~gk,
where αk is a step size and gk is any subgradient of f at ~xk. This method might not
decrease f in each iteration, so instead we keep track of the best iterate we have seen
so far, ~xbest

k . We will use ~x∗ to denote the minimizer of f on U .

In the following parts, assume that we fix α > 0 to be a constant with no dependence
on k, that f is Lipschitz continuous with constant C > 0, and that ‖~x1 − ~x∗‖2 ≤ B
for some B > 0. Under these assumptions, we will show that

lim
k→∞

f(~xbest
k ) ≤ f(~x∗) +

C2

2
α,

a bound characterizing convergence of the subgradient method.
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(a) Derive an upper bound for the error ‖~xk+1−~x∗‖22 of ~xk+1 in terms of ‖~xk−~x∗‖22,
~gk, α, f(~xk), and f(~x∗).

(b) By recursively applying the result from Exercise 9.7a, provide an upper bound
for the squared error of ~xk+1 in terms of B, α, the subgradients, and evaluations
of f .

(c) Incorporate f(~xbest
k ) and the bounds given at the beginning of the problem into

your result, and take a limit as k →∞ to obtain the desired conclusion.

(d) Suppose we are willing to run subgradient descent for exactly k steps. Suggest a
choice of α for this case; your formula for α can and should involve k.

SC9.8 This problem will demonstrate how to project a Hessian onto the nearest positive
definite matrix. Some optimization techniques use this operation to avoid attempting
to minimize in directions where a function is not bowl-shaped.

(a) Suppose M,U ∈ Rn×n, where M is symmetric and U is orthogonal. Show that
‖UMU>‖Fro = ‖M‖Fro.

(b) Decompose M = QΛQ>, where Λ is a diagonal matrix of eigenvalues and Q
is an orthogonal matrix of eigenvectors. Using the result of the previous part,
explain how the positive semidefinite matrix M̄ closest to M with respect to the
Frobenius norm can be constructed by clamping the negative eigenvalues in Λ to
zero.

9.9 Our derivation of the BFGS algorithm in §9.4.3 depended on the existence of a sym-
metric positive definite matrix W satisfying W~sk = ~yk. Show that one such matrix is
W ≡ Ḡk, where Ḡk is the average Hessian [90]:

Ḡk ≡
∫ 1

0

Hf (~xk + τ~sk) dτ.

Do we ever have to compute W in the course of running BFGS?

9.10 Derive an explicit update formula for obtaining Bk+1 from Bk in the Davidon-
Fletcher-Powell scheme mentioned in §9.4.3. Use the ‖ · ‖W norm introduced in the
derivation of BFGS, but with the reversed assumption W~yk = ~sk.

9.11 The matrix H used in the BFGS algorithm generally is dense, requiring O(n2) storage
for f : Rn → R. This scaling may be infeasible for large n.

(a) Provide an alternative approach to storing H requiring O(nk) storage in iteration
k of BFGS.
Hint: Your algorithm may have to “remember” data from previous iterations.

(b) If we need to run for many iterations, the storage from the previous part can
exceed the O(n2) limit we were attempting to avoid. Propose an approximation
to H that uses no more than O(nkmax) storage, for a user-specified constant
kmax.

9.12 The BFGS and DFP algorithms update (inverse) Hessian approximations using matri-
ces of rank two. For simplicity, the symmetric-rank-1 (SR1) update restricts changes
to be rank one instead [90].
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(a) Suppose Bk+1 = Bk + σ~v~v>, where |σ| = 1 and ~yk = Bk+1~sk. Show that under
these conditions we must have

Bk+1 = Bk +
(~yk −Bk~sk)(~yk −Bk~sk)>

(~yk −Bk~sk)>~sk
.

(b) Suppose Hk ≡ B−1
k . Show that Hk can be updated as

Hk+1 = Hk +
(~sk −Hk~yk)(~sk −Hk~yk)>

(~sk −Hk~yk)>~yk
.

Hint: Use the result of Exercise 8.7.

9.13 Here we examine some changes to the gradient descent algorithm for unconstrained
optimization on a function f .

(a) In machine learning, the stochastic gradient descent algorithm can be used to
optimize many common objective functions:

(i) Give an example of a practical optimization problem with an objective

taking the form f(~x) = 1
N

∑N
i=1 g(~xi − ~x) for some function g : Rn → R.

(ii) Propose a randomized approximation of∇f summing no more than k terms
(for some k � N) assuming the ~xi’s are similar to one another. Discuss
advantages and drawbacks of using such an approximation.

(b) The “line search” part of gradient descent must be considered carefully:

(i) Suppose an iterative optimization routine gives a sequence of estimates
~x1, ~x2, . . . of the position ~x∗ of the minimum of f . Is it enough to assume
f(~xk) < f(~xk−1) to guarantee that the ~xk’s converge to a local minimum?
Why?

(ii) Suppose we run gradient descent. If we suppose f(~x) ≥ 0 for all ~x and that
we are able to find t∗ exactly in each iteration, show that f(~xk) converges
as k →∞.

(iii) Explain how the optimization in 9.13(b)ii for t∗ can be overkill. In partic-
ular, explain how the Wolfe conditions (you will have to look these up!)
relax the assumption that we can find t∗.

9.14 Sometimes we are greedy and wish to optimize multiple objectives simultaneously. For
example, we might want to fire a rocket to reach an optimal point in time and space.
It may not be possible to carry out both tasks simultaneously, but some theories
attempt to reconcile multiple optimization objectives.

Suppose we are given functions f1(~x), f2(~x), . . . , fk(~x). A point ~y is said to Pareto
dominate another point ~x if fi(~y) ≤ fi(~x) for all i and fj(~y) < fj(~x) for some j ∈
{1, . . . , k}. A point ~x∗ is Pareto optimal if it is not dominated by any point ~y. Assume
f1, . . . , fk are strictly convex functions on a closed, convex set S ⊂ Rn (in particular,
assume each fi is minimized at a unique point ~x∗i ).

(a) Show that the set of Pareto optimal points is nonempty in this case.

(b) Suppose
∑
i γi = 1 and γi > 0 for all i. Show that the minimizer ~x∗ of g(~x) ≡∑

i γifi(~x) is Pareto optimal.
Note: One strategy for multi-objective optimization is to promote ~γ to a variable
with constraints ~γ ≥ ~0 and

∑
i γi = 1.
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(c) Suppose ~x∗i minimizes fi(~x) over all possible ~x. Write vector ~z ∈ Rk with com-
ponents zi = fi(~x

∗
i ). Show that the minimizer ~x∗ of h(~x) ≡ ∑i(fi(~x) − zi)2 is

Pareto optimal.
Note: This part and the previous part represent two possible scalarizations of
the multi-objective optimization problem that can be used to find Pareto optimal
points.

9.6 APPENDIX: DERIVATION OF BFGS UPDATE
In this optional appendix, we derive in detail the BFGS update from §9.4.3.∗ Our optimiza-
tion for Hk+1 has the following Lagrange multiplier expression (for ease of notation we take
Hk+1 ≡ H and Hk = H∗):

Λ ≡
∑

ij

(~wi · (~hj − ~h∗j ))(~wj · (~hi − ~h∗i ))−
∑

i<j

αij(Hij −Hji)− ~λ>(H~yk − ~sk)

=
∑

ij

(~wi · (~hj − ~h∗j ))(~wj · (~hi − ~h∗i ))−
∑

ij

αijHij − ~λ>(H~yk − ~sk) if we define αij = −αji

Taking derivatives to find critical points shows (for ~y ≡ ~yk, ~s ≡ ~sk):

0 =
∂Λ

∂Hij
=
∑

`

2wi`(~wj · (~h` − ~h∗` ))− αij − λiyj

= 2
∑

`

wi`(W
>(H −H∗))j` − αij − λiyj

= 2
∑

`

(W>(H −H∗))j`w`i − αij − λiyj by symmetry of W

= 2(W>(H −H∗)W )ji − αij − λiyj
= 2(W (H −H∗)W )ij − αij − λiyj by symmetry of W and H.

So, in matrix form we have the following list of facts:

0 = 2W (H −H∗)W −A− ~λ~y>, where Aij = αij

A> = −A
W> = W

H> = H

(H∗)> = H∗

H~y = ~s

W~s = ~y.

We can achieve a pair of relationships using transposition combined with symmetry of H
and W and asymmetry of A:

0 = 2W (H −H∗)W −A− ~λ~y>

0 = 2W (H −H∗)W +A− ~y~λ>

=⇒ 0 = 4W (H −H∗)W − ~λ~y> − ~y~λ>.
∗Special thanks to Tao Du for debugging several parts of this derivation.
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Post-multiplying this relationship by ~s shows:

~0 = 4(~y −WH∗~y)− ~λ(~y · ~s)− ~y(~λ · ~s).

Now, take the dot product with ~s:

0 = 4(~y · ~s)− 4(~y>H∗~y)− 2(~y · ~s)(~λ · ~s).

This shows:
~λ · ~s = 2ρ~y>(~s−H∗~y), for ρ ≡ 1/~y·~s.

Now, we substitute this into our vector equality:

~0 = 4(~y −WH∗~y)− ~λ(~y · ~s)− ~y(~λ · ~s) from before

= 4(~y −WH∗~y)− ~λ(~y · ~s)− ~y[2ρ~y>(~s−H∗~y)] from our simplification

=⇒ ~λ = 4ρ(~y −WH∗~y)− 2ρ2[~y>(~s−H∗~y)]~y.

Post-multiplying by ~y> shows:

~λ~y> = 4ρ(~y −WH∗~y)~y> − 2ρ2[~y>(~s−H∗~y)]~y~y>.

Taking the transpose,

~y~λ> = 4ρ~y(~y> − ~y>H∗W )− 2ρ2[~y>(~s−H∗~y)]~y~y>.

Combining these results and dividing by four shows:

1

4
(~λ~y> + ~y~λ>) = ρ(2~y~y> −WH∗~y~y> − ~y~y>H∗W )− ρ2[~y>(~s−H∗~y)]~y~y>.

Now, we will pre- and post-multiply by W−1. Since W~s = ~y, we can equivalently write
~s = W−1~y. Furthermore, by symmetry of W we then know ~y>W−1 = ~s>. Applying these
identities to the expression above shows:

1

4
W−1(~λ~y> + ~y~λ>)W−1 = 2ρ~s~s> − ρH∗~y~s> − ρ~s~y>H∗ − ρ2(~y>~s)~s~s> + ρ2(~y>H∗~y)~s~s>

= 2ρ~s~s> − ρH∗~y~s> − ρ~s~y>H∗ − ρ~s~s> + ~sρ2(~y>H∗~y)~s>

by definition of ρ

= ρ~s~s> − ρH∗~y~s> − ρ~s~y>H∗ + ~sρ2(~y>H∗~y)~s>.

Finally, we can conclude our derivation of the BFGS step as follows:

0 = 4W (H −H∗)W − ~λ~y> − ~y~λ> from before

=⇒ H =
1

4
W−1(~λ~y> + ~y~λ>)W−1 +H∗

= ρ~s~s> − ρH∗~y~s> − ρ~s~y>H∗ + ~sρ2(~y>H∗~y)~s> +H∗ from the last paragraph

= H∗(I − ρ~y~s>) + ρ~s~s> − ρ~s~y>H∗ + (ρ~s~y>)H∗(ρ~y~s>)

= H∗(I − ρ~y~s>) + ρ~s~s> − ρ~s~y>H∗(I − ρ~y~s>)

= ρ~s~s> + (I − ρ~s~y>)H∗(I − ρ~y~s>).

This final expression is exactly the BFGS step introduced in the chapter.
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WE continue our consideration of optimization problems by studying the constrained
case. These problems take the following general form:

minimize f(~x)

subject to g(~x) = ~0

h(~x) ≥ ~0.

Here, f : Rn → R, g : Rn → Rm, and h : Rn → Rp; we call f the objective function and the
expressions g(~x) = ~0, h(~x) ≥ ~0 the constraints.

This form is extremely generic, so algorithms for solving such problems in the absence
of additional assumptions on f , g, or h are subject to degeneracies such as local minima
and lack of convergence. In fact, this general problem encodes other problems we already
have considered. If we take f(~x) = h(~x) ≡ 0, then this constrained optimization becomes
root-finding on g (Chapter 8), while if we take g(~x) = h(~x) ≡ ~0, it reduces to unconstrained
optimization on f (Chapter 9).

Despite this bleak outlook, optimization methods handling the general constrained prob-
lem can be valuable even when f , g, and h do not have strong structure. In many cases,
especially when f is heuristic anyway, finding a feasible ~x for which f(~x) < f(~x0) starting
from an initial guess ~x0 still represents an improvement from the starting point. One appli-
cation of this philosophy would be an economic system in which f measures costs; since we
wish to minimize costs, any ~x decreasing f is a useful—and profitable—output.

185
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g1(�x) = c1

g2(�x) = c2

g1(�x) + g2(�x) = c3

Figure 10.1 “Blobby” shapes are constructed as level sets of a linear combination of

functions.

10.1 MOTIVATION
Constrained optimization problems appear in nearly any area of applied math, engineering,
and computer science. We already listed many applications of constrained optimization when
we discussed eigenvectors and eigenvalues in Chapter 6, since this problem for symmetric
matrices A ∈ Rn×n can be posed as finding critical points of ~x>A~x subject to ‖~x‖2 = 1. The
particular case of eigenvalue computation admits special algorithms that make it a simpler
problem. Here, however, we list other optimization problems that do not enjoy the unique
structure of eigenvalue problems:

Example 10.1 (Geometric projection). Many shapes S in Rn can be written implicitly
in the form g(~x) = 0 for some g. For example, the unit sphere results from taking g(~x) ≡
‖~x‖22 − 1, while a cube can be constructed by taking g(~x) = ‖~x‖1 − 1. Some 3D modeling
environments allow users to specify “blobby” objects, as in Figure 10.1, as zero-value level
sets of g(~x) given by

g(~x) ≡ c+
∑

i

aie
−bi‖~x−~xi‖22 .

Suppose we are given a point ~y ∈ R3 and wish to find the closest point ~x ∈ S to ~y. This
problem is solved by using the following constrained minimization:

minimize~x ‖~x− ~y‖2
subject to g(~x) = 0.

Example 10.2 (Manufacturing). Suppose you have m different materials; you have si
units of each material i in stock. You can manufacture k different products; product j
gives you profit pj and uses cij of material i to make. To maximize profits, you can solve
the following optimization for the amount xj you should manufacture of each item j:

maximize~x

k∑

j=1

pjxj

subject to xj ≥ 0∀j ∈ {1, . . . , k}
k∑

j=1

cijxj ≤ si ∀i ∈ {1, . . . ,m}.
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Figure 10.2 Notation for bundle adjustment with two images. Given corresponding

points ~xij marked on images, bundle adjustment simultaneously optimizes for cam-

era parameters encoded in Pi and three-dimensional positions ~yj .

The first constraint ensures that you do not make negative amounts of any product, and
the second ensures that you do not use more than your stock of each material. This
optimization is an example of a linear program, because the objective and constraints are
all linear functions. Linear programs allow for inequality constraints, so they cannot always
be solved using Gaussian elimination.

Example 10.3 (Nonnegative least-squares). We already have seen numerous examples
of least-squares problems, but sometimes negative values in the solution vector might not
make sense. For example, in computer graphics, an animated model can be expressed as a
deforming bone structure plus a meshed “skin”; for each point on the skin a list of weights
can be computed to approximate the influence of the positions of the bone joints on the
position of the skin vertices [67]. Such weights should be constrained to be nonnegative
to avoid degenerate behavior while the surface deforms. In such a case, we can solve the
“nonnegative least-squares” problem:

minimize~x ‖A~x−~b‖2
subject to xi ≥ 0 ∀i.

Some machine learning methods leverage the sparsity of nonnegative least-squares solu-
tions, which often lead to optimal vectors ~x with xi = 0 for many indices i [113].

Example 10.4 (Bundle adjustment). In computer vision, suppose we take pictures of an
object from several angles. A natural task is to reconstruct the three-dimensional shape
of the object from these pictures. To do so, we might mark a corresponding set of points
on each image; we can take ~xij ∈ R2 to be the position of feature point j on image i, as in
Figure 10.2. In reality, each feature point has a position ~yj ∈ R3 in space, which we would
like to compute. Additionally, we must find the positions of the cameras themselves, which
we can represent as unknown projection matrices Pi.
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Figure 10.3 As-rigid-as-possible (ARAP) optimization generates the deformed mesh

on the right from the original mesh on the left given target positions for a few

points on the head, feet, and torso.

The problem of estimating the ~yj ’s and Pi’s, known as bundle adjustment, can be posed
as an optimization:

minimize~yj ,Pi
∑

ij

‖Pi~yj − ~xij‖22

such that Pi is orthogonal ∀i.

The orthogonality constraint ensures that the camera transformations could have come
from a typical lens.

Example 10.5 (As-rigid-as-possible deformation). The “as-rigid-as-possible” (ARAP)
modeling technique is used in computer graphics to deform two- and three-dimensional
shapes in real time for modeling and animation software [116]. In the planar setting,
suppose we are given a two-dimensional triangle mesh, as in Figure 10.3(a). This mesh
consists of a collection of vertices V connected into triangles by edges E ⊆ V × V ; we will
assume each vertex v ∈ V is associated with a position ~xv ∈ R2. Furthermore, assume the
user manually moves a subset of vertices V0 ⊂ V to target positions ~yv ∈ R2 for v ∈ V0 to
specify a potential deformation of the shape. The goal of ARAP is to deform the remainder
V \V0 of the mesh vertices elastically, as in Figure 10.3(b), yielding a set of new positions
~yv ∈ R2 for each v ∈ V with ~yv fixed by the user when v ∈ V0.

The least-distorting deformation of the mesh is a rigid motion, meaning it rotates and
translates but does not stretch or shear. In this case, there exists an orthogonal matrix
R ∈ R2×2 so that the deformation satisfies ~yv − ~yw = R(~xv − ~xw) for any edge (v, w) ∈ E.
But, if the user wishes to stretch or bend part of the shape, there might not exist a single
R rotating the entire mesh to satisfy the position constraints in V0.

To loosen the single-rotation assumption, ARAP asks that a deformation is approxi-
mately or locally rigid. Specifically, no single vertex on the mesh should experience more
than a little stretch or shear, so in a neighborhood of each vertex v ∈ V there should exist
an orthogonal matrix Rv satisfying ~yv − ~yw ≈ Rv(~xv −~xw) for any (v, w) ∈ E. Once again
applying least-squares, we define the as-rigid-as-possible deformation of the mesh to be
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the one mapping ~xv 7→ ~yv for all v ∈ V by solving the following optimization problem:

minimizeRv,~yv
∑

v∈V

∑

(v,w)∈E
‖Rv(~xv − ~xw)− (~yv − ~yw)‖22

subject to R>v Rv = I2×2 ∀v ∈ V
~yv fixed ∀v ∈ V0.

We will suggest one way to solve this optimization problem in Example 12.5.

10.2 THEORY OF CONSTRAINED OPTIMIZATION
In our discussion, we will assume that f , g, and h are differentiable. Some methods exist
that only make weak continuity or Lipschitz assumptions, but these techniques are quite
specialized and require advanced analytical consideration.

10.2.1 Optimality
Although we have not yet developed algorithms for general constrained optimization, we
have made use of the theory of these problems. Specifically, recall the method of Lagrange
multipliers, introduced in Theorem 1.1. In this technique, critical points of f(~x) subject to
g(~x) = ~0 are given by critical points of the unconstrained Lagrange multiplier function

Λ(~x,~λ) ≡ f(~x)− ~λ · ~g(~x)

with respect to both ~λ and ~x simultaneously. This theorem allowed us to provide variational
interpretations of eigenvalue problems; more generally, it gives an alternative criterion for
~x to be a critical point of an equality-constrained optimization.

As we saw in Chapter 8, even finding a feasible ~x satisfying the constraint g(~x) = ~0
can be a considerable challenge even before attempting to minimize f(~x). We can separate
these issues by making a few definitions:

Definition 10.1 (Feasible point and feasible set). A feasible point of a constrained opti-
mization problem is any point ~x satisfying g(~x) = ~0 and h(~x) ≥ ~0. The feasible set is the
set of all points ~x satisfying these constraints.

Definition 10.2 (Critical point of constrained optimization). A critical point of a con-
strained optimization satisfies the constraints and is also a local maximum, minimum, or
saddle point of f within the feasible set.

10.2.2 KKT Conditions
Constrained optimizations are difficult because they simultaneously solve root-finding prob-
lems (the g(~x) = ~0 constraint), satisfiability problems (the h(~x) ≥ ~0 constraint), and min-
imization (on the function f). As stated in Theorem 1.1, Lagrange multipliers allow us to
turn equality-constrained minimization problems into root-finding problems on Λ. To push
our differential techniques to complete generality, we must find a way to add inequality
constraints h(~x) ≥ ~0 to the Lagrange multiplier system.

Suppose we have found a local minimum subject to the constraints, denoted ~x∗. For
each inequality constraint hi(~x

∗) ≥ 0, we have two options:
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Figure 10.4 Active and inactive constraints h(~x) ≥ 0 for minimizing a function whose

level sets are shown in black; the region h(~x) ≥ 0 is shown in gray. When the

h(~x) ≥ 0 constraint is active, the optimal point ~x∗ is on the border of the feasible

domain and would move if the constraint were removed. When the constraint is

inactive, ~x∗ is in the interior of the feasible set, so the constraint h(~x) ≥ 0 has no

effect on the position of the ~x∗ locally.

• hi(~x∗) = 0: Such a constraint is active, likely indicating that if the constraint were
removed ~x∗ would no longer be optimal.

• hi(~x∗) > 0: Such a constraint is inactive, meaning in a neighborhood of ~x∗ if we had
removed this constraint we still would have reached the same minimum.

These two cases are illustrated in Figure 10.4. While this classification will prove valuable,
we do not know a priori which constraints will be active or inactive at ~x∗ until we solve
the optimization problem and find ~x∗.

If all of our constraints were active, then we could change the constraint h(~x) ≥ ~0 to an
equality constraint h(~x) = ~0 without affecting the outcome of the optimization. Then, ap-
plying the equality-constrained Lagrange multiplier conditions, we could find critical points
of the following Lagrange multiplier expression:

Λ(~x,~λ, ~µ) ≡ f(~x)− ~λ · g(~x)− ~µ · h(x).

In reality, we no longer can say that ~x∗ is a critical point of Λ, because inactive inequality
constraints would remove terms above. Ignoring this (important!) issue for the time being,
we could proceed blindly and ask for critical points of this new Λ with respect to ~x, which
satisfy the following:

~0 = ∇f(~x)−
∑

i

λi∇gi(~x)−
∑

j

µj∇hj(~x).

Here, we have separated out the individual components of g and h and treated them as
scalar functions to avoid complex notation.
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A clever trick can extend this (currently incorrect) optimality condition to include in-
equality constraints. If we define µj ≡ 0 whenever hj is inactive, then the irrelevant terms
are removed from the optimality conditions. In other words, we can add a constraint on the
Lagrange multiplier above:

µjhj(~x) = 0.

With this constraint in place, we know that at least one of µj and hj(~x) must be zero;
when the constraint hj(~x) ≥ 0 is inactive, then µj must equal zero to compensate. Our
first-order optimality condition still holds at critical points of the inequality-constrained
problem—after adding this extra constraint.

So far, our construction has not distinguished between the constraint hj(~x) ≥ 0 and
the constraint hj(~x) ≤ 0. If the constraint is inactive, it could have been dropped without
affecting the outcome of the optimization locally, so we consider the case when the constraint
is active. Intuitively,∗ in this case we expect there to be a way to decrease f by violating
the constraint. Locally, the direction in which f decreases is −∇f(~x∗) and the direction
in which hj decreases is −∇hj(~x∗). Thus, starting at ~x∗ we can decrease f even more by
violating the constraint hj(~x) ≥ 0 when ∇f(~x∗) · ∇hj(~x∗) > 0.

Products of gradients of f and hj are difficult to manipulate. At ~x∗, however, our first-
order optimality condition tells us:

∇f(~x∗) =
∑

i

λ∗i∇gi(~x∗) +
∑

j active

µ∗j∇hj(~x∗).

The inactive µj values are zero and can be removed. We removed the g(~x) = 0 constraints by

adding inequality constraints g(~x) ≥ ~0 and g(~x) ≤ ~0 to h; this is a mathematical convenience
rather than a numerically wise maneuver.

Taking dot products with ∇hk for any fixed k shows:

∑

j active

µ∗j∇hj(~x∗) · ∇hk(~x∗) = ∇f(~x∗) · ∇hk(~x∗) ≥ 0.

Vectorizing this expression shows Dh(~x∗)Dh(~x∗)>~µ∗ ≥ ~0. Since Dh(~x∗)Dh(x∗)> is positive
semidefinite, this implies ~µ∗ ≥ ~0. Thus, the ∇f(~x∗) · ∇hj(~x∗) ≥ 0 observation is equivalent
to the much easier condition µj ≥ 0.

These observations can be combined and formalized to prove a first-order optimality
condition for inequality-constrained minimization problems:

Theorem 10.1 (Karush-Kuhn-Tucker (KKT) conditions). The vector ~x∗ ∈ Rn is a critical

point for minimizing f subject to g(~x) = ~0 and h(~x) ≥ ~0 when there exists ~λ ∈ Rm and
~µ ∈ Rp such that:

• ~0 = ∇f(~x∗)−∑i λi∇gi(~x∗)−
∑
j µj∇hj(~x∗) (“stationarity”)

• g(~x∗) = ~0 and h(~x∗) ≥ ~0 (“primal feasibility”)

• µjhj(~x∗) = 0 for all j (“complementary slackness”)

• µj ≥ 0 for all j (“dual feasibility”)

When h is removed, this theorem reduces to the Lagrange multiplier criterion.

∗You should not consider this discussion a formal proof, since we do not consider many boundary cases.
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Example 10.6 (KKT conditions). Suppose we wish to solve the following optimization
(proposed by R. Israel, UBC Math 340, Fall 2006):

maximize xy

subject to x+ y2 ≤ 2

x, y ≥ 0.

In this case we will have no λ’s and three µ’s. We take f(x, y) = −xy, h1(x, y) ≡ 2−x−y2,
h2(x, y) = x, and h3(x, y) = y. The KKT conditions are:

Stationarity: 0 = −y + µ1 − µ2

0 = −x+ 2µ1y − µ3

Primal feasibility: x+ y2 ≤ 2

x, y ≥ 0

Complementary slackness: µ1(2− x− y2) = 0

µ2x = 0

µ3y = 0

Dual feasibility: µ1, µ2, µ3 ≥ 0

Example 10.7 (Linear programming). Consider the optimization:

minimize~x ~b · ~x
subject to A~x ≥ ~c.

Example 10.2 can be written this way. The KKT conditions for this problem are:

Stationarity: A>~µ = ~b

Primal feasibility: A~x ≥ ~c
Complementary slackness: µi(~ai · ~x− ci) = 0 ∀i, where ~a>i is row i of A

Dual feasibility: ~µ ≥ ~0

As with Lagrange multipliers, we cannot assume that any ~x∗ satisfying the KKT condi-
tions automatically minimizes f subject to the constraints, even locally. One way to check
for local optimality is to examine the Hessian of f restricted to the subspace of Rn in which
~x can move without violating the constraints. If this “reduced” Hessian is positive definite,
then the optimization has reached a local minimum.

10.3 OPTIMIZATION ALGORITHMS
A careful consideration of algorithms for constrained optimization is out of the scope of our
discussion. Thankfully, many stable implementations of these techniques exist, and much
can be accomplished as a “client” of this software rather than rewriting it from scratch.
Even so, it is useful to sketch common approaches to gain some intuition for how these
libraries work.
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10.3.1 Sequential Quadratic Programming (SQP)
Similar to BFGS and other methods we considered in Chapter 9, one typical strategy for
constrained optimization is to approximate f , g, and h with simpler functions, solve the
approximate optimization, adjust the approximation based on the latest function evaluation,
and repeat.

Suppose we have a guess ~xk of the solution to the constrained optimization problem.
We could apply a second-order Taylor expansion to f and first-order approximation to g
and h to define a next iterate as the following:

~xk+1 ≡ ~xk+ arg min
~d

[
1

2
~d>Hf (~xk)~d+∇f(~xk) · ~d+ f(~xk)

]

subject to gi(~xk) +∇gi(~xk) · ~d = 0

hi(~xk) +∇hi(~xk) · ~d ≥ 0.

The optimization to find ~d has a quadratic objective with linear constraints, which can be
solved using one of many specialized algorithms; it is known as a quadratic program. This
Taylor approximation, however, only works in a neighborhood of the optimal point. When
a good initial guess ~x0 is unavailable, these strategies may fail.

10.3.1.1 Equality Constraints

When the only constraints are equalities and h is removed, the quadratic program for ~d has
Lagrange multiplier optimality conditions derived as follows:

Λ(~d,~λ) ≡ 1

2
~d>Hf (~xk)~d+∇f(~xk) · ~d+ f(~xk) + ~λ>(g(~xk) +Dg(~xk)~d)

=⇒ ~0 = ∇~dΛ = Hf (~xk)~d+∇f(~xk) + [Dg(~xk)]>~λ.

Combining this expression with the linearized equality constraint yields a symmetric linear
system for ~d and ~λ:

(
Hf (~xk) [Dg(~xk)]>

Dg(~xk) 0

)(
~d
~λ

)
=

(
−∇f(~xk)
−g(~xk)

)
.

Each iteration of sequential quadratic programming in the presence of only equality con-
straints can be implemented by solving this linear system to get ~xk+1 ≡ ~xk + ~d. This linear
system is not positive definite, so on a large scale it can be difficult to solve. Extensions op-
erate like BFGS for unconstrained optimization by approximating the Hessian Hf . Stability
also can be improved by limiting the distance that ~x can move during any single iteration.

10.3.1.2 Inequality Constraints

Specialized algorithms exist for solving quadratic programs rather than general nonlinear
programs that can be used for steps of SQP. One notable strategy is to keep an “active set”
of constraints that are active at the minimum with respect to ~d. The equality-constrained
methods above can be applied by ignoring inactive constraints. Iterations of active-set opti-
mization update the active set by adding violated constraints and removing those inequality
constraints hj for which ∇f · ∇hj ≤ 0 as in §10.2.2.
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Figure 10.5 Convex and nonconvex shapes on the plane.

10.3.2 Barrier Methods
Another option for constrained minimization is to change the constraints to energy terms.
For example, in the equality constrained case we could minimize an “augmented” objective
as follows:

fρ(~x) = f(~x) + ρ‖g(~x)‖22.
Taking ρ→∞ will force ‖g(~x)‖2 to be as small as possible, eventually reaching g(~x) ≈ ~0.

Barrier methods for constrained optimization apply iterative unconstrained optimization
to fρ and check how well the constraints are satisfied; if they are not within a given tolerance,
ρ is increased and the optimization continues using the previous iterate as a starting point.
Barrier methods are simple to implement and use, but they can exhibit some pernicious
failure modes. In particular, as ρ increases, the influence of f on the objective function
diminishes and the Hessian of fρ becomes more and more poorly conditioned.

Barrier methods be constructed for inequality constraints as well as equality constraints.
In this case, we must ensure that hi(~x) ≥ 0 for all i. Typical choices of barrier functions for
inequality constraints include 1/hi(~x) (the “inverse barrier”) and− log hi(~x) (the “logarithmic
barrier”).

10.4 CONVEX PROGRAMMING
The methods we have described for constrained optimization come with few guarantees on
the quality of the output. Certainly they are unable to obtain global minima without a good
initial guess ~x0, and in some cases, e.g., when Hessians near ~x∗ are not positive definite,
they may not converge at all.

There is a notable exception to this rule, which appears in many well-known optimization
problems: convex programming. The idea here is that when f is a convex function and the
feasible set itself is convex, then the optimization problem possesses a unique minimum. We
considered convex functions in Definition 9.4 and now expand the class of convex problems
to those containing convex constraint sets:

Definition 10.3 (Convex set). A set S ⊆ Rn is convex if for any ~x, ~y ∈ S, the point
t~x+ (1− t)~y is also in S for any t ∈ [0, 1].

Intuitively, a set is convex if its boundary does not bend inward, as shown in Figure 10.5.
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Example 10.8 (Circles). The disc {~x ∈ Rn : ‖~x‖2 ≤ 1} is convex, while the unit circle
{~x ∈ Rn : ‖~x‖2 = 1} is not.

A nearly identical proof to that of Proposition 9.1 shows:

A convex function cannot have suboptimal local minima even
when it is restricted to a convex domain.

If a convex objective function has two local minima, then the line of points between those
minima must yield objective values less than or equal to those on the endpoints; by Defini-
tion 10.3 this entire line is feasible, completing the proof.

Strong convergence guarantees are available for convex optimization methods that guar-
antee finding a global minimum so long as f is convex and the constraints on g and h make
a convex feasible set. A valuable exercise for any optimization problem is to check if it is
convex, since this property can increase confidence in the output quality and the chances
of success by a large factor.

A new field called disciplined convex programming attempts to chain together rules about
convexity to generate convex optimization problems. The end user is allowed to combine
convex energy terms and constraints so long as they do not violate the convexity of the
final problem; the resulting objective and constraints are then provided automatically to an
appropriate solver. Useful statements about convexity that can be used to construct convex
programs from smaller convex building blocks include the following:

• The intersection of convex sets is convex; thus, enforcing more than one convex con-
straint is allowable.

• The sum of convex functions is convex.

• If f and g are convex, so is h(~x) ≡ max{f(~x), g(~x)}.

• If f is a convex function, the set {~x : f(~x) ≤ c} is convex for fixed c ∈ R.

Tools such as the CVX library help separate implementation of convex programs from the
mechanics of minimization algorithms [51, 52].

Example 10.9 (Convex programming).

• The nonnegative least-squares problem in Example 10.3 is convex because ‖A~x−~b‖2
is a convex function of ~x and the set {~x ∈ Rn : ~x ≥ ~0} is convex.

• Linear programs, introduced in Example 10.7, are convex because they have linear
objectives and linear constraints.

• We can include ‖~x‖1 in a convex optimization objective, if ~x is an optimization
variable. To do so, introduce a variable ~y and add constraints yi ≥ xi and yi ≥ −xi for
each i. Then, ‖~x‖1 can be written as

∑
i yi. At the minimum, we must have yi = |xi|

since we have constrained yi ≥ |xi| and might as well minimize the elements of ~y.
“Disciplined” convex libraries do such operations behind the scenes without exposing
substitutions and helper variables to the end user.

Convex programming has much in common with areas of computer science theory
involving reductions of algorithmic problems to one another. Rather than verifying NP-
completeness, however, in this context we wish to use a generic solver to optimize a given
objective, just like we reduced assorted problems to a linear solve in Chapter 4. There is a
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Figure 10.6 On the (x, y) plane, the optimization minimizing ‖(x, y)‖p subject to

ax+ by = c has considerably different output depending on whether we choose (a)

p = 2 or (b) p = 1. Level sets {(x, y) : ‖(x, y)‖p = c} are shown in gray.

formidable pantheon of industrial-scale convex programming tools that can handle different
classes of problems with varying efficiency and generality; below, we discuss some common
classes. See [15, 84] for larger discussions of related topics.

10.4.1 Linear Programming
A well-studied example of convex optimization is linear programing, introduced in Exam-
ple 10.7. Exercise 10.4 will walk through the derivation of some properties making linear
programs attractive both theoretically and from an algorithmic design standpoint.

The famous simplex algorithm, which can be considered an active set method as in
§10.3.1.2, updates the estimate of ~x∗ using a linear solve, and checks if the active set must
be updated. No Taylor approximations are needed because the objective and constraints are
linear. Interior point linear programming algorithms such as the barrier method in §10.3.2
also are successful for these problems. Linear programs can be solved on a huge scale—up
to millions or billions of variables!—and often appear in problems like scheduling or pricing.

One popular application of linear programming inspired by Example 10.9 provides an
alternative to using pseudoinverse for underdetermined linear systems (§7.2.1). When a

matrix A is underdetermined, there are many vectors ~x that satisfy A~x = ~b for a given
vector ~b. In this case, the pseudoinverse A+ applied to ~b solves the following problem:

Pseudoinverse

{
minimize~x ‖~x‖2
subject to A~x = ~b.

Using linear programs, we can solve a slightly different system:

L1 minimization

{
minimize~x ‖~x‖1
subject to A~x = ~b.

All we have done here is replace the norm ‖ · ‖2 with a different norm ‖ · ‖1.
Why does this one-character change make a significant difference in the output ~x? Con-

sider the two-dimensional instance of this problem shown in Figure 10.6, which minimizes
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‖(x, y)‖p for p = 2 (pseudoinverse) and p = 1 (linear program). In the p = 2 case (a), we
are minimizing x2 + y2, which has circular level sets; the optimal (x∗, y∗) subject to the
constraints is in the interior of the first quadrant. In the p = 1 case (b), we are minimizing
|x|+ |y|, which has diamond-shaped level sets; this makes x∗ = 0 since the outer points of
the diamond align with the x and y axes, a more sparse solution.

More generally, the use of the norm ‖~x‖2 indicates that no single element xi of ~x should
have a large value; this regularization tends to favor vectors ~x with lots of small nonzero
values. On the other hand, ‖~x‖1 does not care if a single element of ~x has a large value
so long as the sum of all the elements’ absolute values is small. As we have illustrated in
the two-dimensional case, this type of regularization can produce sparse vectors ~x, with
elements that are exactly zero.

This type of regularization using ‖ · ‖1 is fundamental in the field of compressed sensing,
which solves underdetermined signal processing problems with the additional assumption
that the output should be sparse. This assumption makes sense in many contexts where
sparse solutions of A~x = ~b imply that many columns of A are irrelevant [37].

A minor extension of linear programming is to keep using linear inequality constraints
but introduce convex quadratic terms to the objective, changing the optimization in Exam-
ple 10.7 to:

minimize~x ~b · ~x+ ~x>M~x

subject to A~x ≥ ~c.

Here, M is an n× n positive semidefinite matrix. With this machinery, we can provide an
alternative to Tikhonov regularization from §4.1.3:

min
~x
‖A~x−~b‖22 + α‖~x‖1.

This “lasso” regularizer also promotes sparsity in ~x while solving A~x ≈ ~b, but it does not
enforce A~x = ~b exactly. It is useful when A or ~b is noisy and we prefer sparsity of ~x over
solving the system exactly [119].

10.4.2 Second-Order Cone Programming
A second-order cone program (SOCP) is a convex optimization problem taking the following
form [15]:

minimize~x ~b · ~x
subject to ‖Ai~x−~bi‖2 ≤ di + ~ci · ~x for all i = 1, . . . , k.

Here, we use matrices A1, . . . , Ak, vectors~b1, . . . ,~bk, vectors ~c1, . . . ,~ck, and scalars d1, . . . , dk
to specify the k constraints. These “cone constraints” will allow us to pose a broader set of
convex optimization problems.

One non-obvious application of second-order cone programming explained in [83] appears

when we wish to solve the least-squares problem A~x ≈ ~b, but we do not know the elements
of A exactly. For instance, A might have been constructed from data we have measured
experimentally (see §4.1.2 for an example in least-squares regression).

Take ~a>i to be the i-th row of A. Then, the least-squares problem A~x ≈ ~b can be
understood as minimizing

∑
i(~ai ·~x− bi)2 over ~x. If we do not know A exactly, however, we

might allow each ~ai to vary somewhat before solving least-squares. In particular, maybe we
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think that ~ai is an approximation of some unknown ~a0
i satisfying ‖~a0

i − ~ai‖2 ≤ ε for some
fixed ε > 0.

To make least-squares robust to this model of error, we can choose ~x to thwart an ad-
versary picking the worst possible ~a0

i . Formally, we solve the following “minimax” problem:

minimize~x

[
max{~a0i }

∑
i(~a

0
i · ~x− bi)2

subject to ‖~a0
i − ~ai‖2 ≤ ε for all i

]
.

That is, we want to choose ~x so that the least-squares energy with the worst possible un-
knowns ~a0

i satisfying ‖~a0
i −~ai‖2 ≤ ε still is small. It is far from evident that this complicated

optimization problem is solvable using SOCP machinery, but after some simplification we
will manage to write it in the standard SOCP form above.

If we define δ~ai ≡ ~ai − ~a0
i , then our optimization becomes:

minimize~x

[
max{δ~ai}

∑
i(~ai · ~x+ δ~ai · ~x− bi)2

subject to ‖δ~ai‖2 ≤ ε for all i

]
.

When maximizing over δ~ai, each term of the sum over i is independent. Hence, we can solve
the inner maximization for one δ~ai at a time. Peculiarly, if we maximize an absolute value
rather than a sum (usually we go in the other direction!), we can find a closed-form solution
to the optimization for δ~ai for a single fixed i:

max
‖δ~ai‖2≤ε

|~ai · ~x+ δ~ai · ~x− bi| = max
‖δ~ai‖2≤ε

max{~ai · ~x+ δ~ai · ~x− bi,−~ai · ~x− δ~ai · ~x+ bi}

since |x| = max{x,−x}

= max

{
max
‖δ~ai‖2≤ε

[~ai · ~x+ δ~ai · ~x− bi] ,

max
‖δ~ai‖2≤ε

[−~ai · ~x− δ~ai · ~x+ bi]

}

after changing the order of the maxima

= max{~ai · ~x+ ε‖~x‖2 − bi,−~ai · ~x+ ε‖~x‖2 + bi}
= |~ai · ~x− bi|+ ε‖~x‖2.

After this simplification, our optimization for ~x becomes:

minimize~x
∑

i

(|~ai · ~x− bi|+ ε‖~x‖2)2.

This minimization can be written as a second-order cone problem:

minimizes,~t,~x s

subject to ‖~t‖2 ≤ s
(~ai · ~x− bi) + ε‖~x‖2 ≤ ti ∀i
−(~ai · ~x− bi) + ε‖~x‖2 ≤ ti ∀i.

In this optimization, we have introduced two extra variables s and ~t. Since we wish to
minimize s with the constraint ‖~t‖2 ≤ s, we are effectively minimizing the norm of ~t. The
last two constraints ensure that each element of ~t satisfies ti = |~ai · ~x− bi|+ ε‖~x‖2.

This type of regularization provides yet another variant of least-squares. In this case,
rather than being robust to near-singularity of A, we have incorporated an error model
directly into our formulation allowing for mistakes in measuring rows of A. The parameter
ε controls sensitivity to the elements of A in a similar fashion to the weight α of Tikhonov
or L1 regularization.
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Figure 10.7 Examples of graphs laid out via semidefinite embedding.

10.4.3 Semidefinite Programming
Suppose A and B are n× n positive semidefinite matrices; we will notate this as A,B � 0.
Take t ∈ [0, 1]. Then, for any ~x ∈ Rn we have:

~x>(tA+ (1− t)B)~x = t~x>A~x+ (1− t)~x>B~x ≥ 0,

where the inequality holds by semidefiniteness of A and B. This proof verifies a surprisingly
useful fact:

The set of positive semidefinite matrices is convex.

Hence, if we are solving optimization problems for a matrix A, we safely can add constraints
A � 0 without affecting convexity.

Algorithms for semidefinite programming optimize convex objectives with the ability to
add constraints that matrix-valued variables must be positive (or negative) semidefinite.
More generally, semidefinite programming machinery can include linear matrix inequality
(LMI) constraints of the form:

x1A1 + x2A2 + · · ·+ xkAk � 0,

where ~x ∈ Rk is an optimization variable and the matrices Ai are fixed.
As an example of semidefinite programming, we will sketch a technique known as

semidefinite embedding from graph layout and manifold learning [130]. Suppose we are given
a graph (V,E) consisting of a set of vertices V = {v1, . . . , vk} and a set of edges E ⊆ V ×V.
For some fixed n, the semidefinite embedding method computes positions ~x1, . . . , ~xk ∈ Rn
for the vertices, so that vertices connected by edges are nearby in the embedding with
respect to Euclidean distance ‖ · ‖2; some examples are shown in Figure 10.7.

If we already have computed ~x1, . . . , ~xk, we can construct a Gram matrix G ∈ Rk×k
satisfying Gij = ~xi ·~xj . G is a matrix of inner products and hence is symmetric and positive
semidefinite. We can measure the squared distance from ~xi to ~xj using G:

‖~xi − ~xj‖22 = (~xi − ~xj) · (~xi − ~xj)
= ‖~xi‖22 − 2~xi · ~xj + ‖~xj‖22
= Gii − 2Gij +Gjj .

Similarly, suppose we wish the center of mass 1
k

∑
i ~xi to be ~0, since shifting the embedding

of the graph does not have a significant effect on its layout. We alternatively can write
‖∑i ~xi‖

2
2 = 0 and can express this condition in terms of G:

0 =

∥∥∥∥∥
∑

i

~xi

∥∥∥∥∥

2

2

=

(∑

i

~xi

)
·
(∑

i

~xi

)
=
∑

ij

~xi · ~xj =
∑

ij

Gij .
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Finally, we might wish that our embedding of the graph is relatively compact or small. One
way to do this would be to minimize

∑
i ‖~xi‖22 =

∑
iGii = Tr(G).

The semidefinite embedding technique turns these observations on their head, optimizing
for the Gram matrix G directly rather than the positions ~xi of the vertices. Making use of
the observations above, semidefinite embedding solves the following optimization problem:

minimizeG∈Rk×k Tr(G)
subject to G = G>

G � 0
Gii − 2Gij +Gjj = 1 ∀(vi, vj) ∈ E∑
ij Gij = 0.

This optimization for G is motivated as follows:

• The objective asks that the embedding of the graph is compact by minimizing the
sum of squared norms

∑
i ‖~xi‖22.

• The first two constraints require that the Gram matrix is symmetric and positive
definite.

• The third constraint requires that the embeddings of any two adjacent vertices in the
graph have distance one.

• The final constraint centers the full embedding about the origin.

We can use semidefinite programming to solve this optimization problem for G. Then, since
G is symmetric and positive semidefinite, we can use the Cholesky factorization (§4.2.1) or
the eigenvector decomposition (§6.2) of G to write G = X>X for some matrix X ∈ Rk×k.
Based on the discussion above, the columns of X are an embedding of the vertices of the
graph into Rk where all the edges in the graph have length one, the center of mass is the
origin, and the total square norm of the positions is minimized.

We set out to embed the graph into Rn rather than Rk, and generally n ≤ k. To
compute a lower-dimensional embedding that approximately satisfies the constraints, we
can decompose G = X>X using its eigenvectors; then, we remove k − n eigenvectors with
eigenvalues closest to zero. This operation is exactly the low-rank approximation of G via
SVD given in §7.2.2. This final step provides an embedding of the graph into Rn.

A legitimate question about the semidefinite embedding is how the optimization for G
interacts with the low-rank eigenvector approximation applied in post-processing. In many
well-known cases, the solution of semidefinite optimizations like the one above yield low-
rank or nearly low-rank matrices whose lower-dimensional approximations are close to the
original; a formalized version of this observation justifies the approximation. We already
explored such a justification in Exercise 7.7, since the nuclear norm of a symmetric positive
semidefinite matrix is its trace.

10.4.4 Integer Programs and Relaxations
Our final application of convex optimization is—surprisingly—to a class of highly non-
convex problems: Ones with integer variables. In particular, an integer program is an opti-
mization in which one or more variables is constrained to be an integer rather than a real
number. Within this class, two well-known subproblems are mixed-integer programming, in
which some variables are continuous while others are integers, and zero-one programming,
where the variables take Boolean values in {0, 1}.
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Example 10.10 (3-SAT). We can define the following operations from Boolean algebra
for binary variables U, V ∈ {0, 1}:

U V ¬U (“not U”) ¬V (“not V ”) U ∧ V (“U and V ”) U ∨ V (“U or V ”)
0 0 1 1 0 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 1 1

We can convert Boolean satisfiability problems into integer programs using a few steps.
For example, we can express the “not” operation algebraically using ¬U = 1−U. Similarly,
suppose we wish to find U, V satisfying (U ∨ ¬V ) ∧ (¬U ∨ V ). Then, U and V as integers
satisfy the following constraints:

U + (1− V ) ≥ 1 (U ∨ ¬V )

(1− U) + V ≥ 1 (¬U ∨ V )

U, V ∈ Z (integer constraint)

0 ≤ U, V ≤ 1 (Boolean variables)

As demonstrated in Example 10.10, integer programs encode a wide class of discrete
problems, including many that are known to be NP-hard. For this reason, we cannot expect
to solve them exactly with convex optimization; doing so would settle a long-standing
question of theoretical computer science by showing “P = NP.” We can, however, use
convex optimization to find approximate solutions to integer programs.

If we write a discrete problem like Example 10.10 as an optimization, we can relax the
constraint keeping variables in Z and allow them to be in R instead. Such a relaxation can
yield invalid solutions, e.g., Boolean variables that take on values like 0.75. So, after solving
the relaxed problem, one of many strategies can be used to generate an integer approxi-
mation of the solution. For example, non-integral variables can be rounded to the closest
integer, at the risk of generating outputs that are suboptimal or violate the constraints. Al-
ternatively, a slower but potentially more effective method iteratively rounds one variable
at a time, adds a constraint fixing the value of that variable, and re-optimizes the objective
subject to the new constraint.

Many difficult discrete problems can be reduced to integer programs, from satisfiability
problems like the one in Example 10.10 to the traveling salesman problem. These reductions
should indicate that the design of effective integer programming algorithms is challenging
even in the approximate case. State-of-the-art convex relaxation methods for integer pro-
gramming, however, are fairly effective for a large class of problems, providing a remarkably
general piece of machinery for approximating solutions to problems for which it may be
difficult or impossible to design a discrete algorithm. Many open research problems involve
designing effective integer programming methods and understanding potential relaxations;
this work provides a valuable and attractive link between continuous and discrete mathe-
matics.

10.5 EXERCISES
10.1 Prove the following statement from §10.4: If f is a convex function, the set {~x : f(~x) ≤

c} is convex.
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10.2 The standard deviation of k values x1, . . . , xk is

σ(x1, . . . , xk) ≡

√√√√1

k

k∑

i=1

(xi − µ)2,

where µ ≡ 1
k

∑
i xi. Show that σ is a convex function of x1, . . . , xk.

10.3 Some properties of second-order cone programming:

(a) Show that the Lorentz cone {~x ∈ Rn, c ∈ R : ‖~x‖2 ≤ c} is convex.

(b) Use this fact to show that the second-order cone program in §10.4.2 is convex.

(c) Show that second-order cone programming can be used to solve linear programs.

10.4 In this problem we will study linear programming in more detail.

(a) A linear program in “standard form” is given by:

minimize~x ~c>~x
subject to A~x = ~b

~x ≥ ~0.

Here, the optimization is over ~x ∈ Rn; the remaining variables are constants
A ∈ Rm×n, ~b ∈ Rm, and ~c ∈ Rn. Find the KKT conditions of this system.

(b) Suppose we add a constraint of the form ~v>~x ≤ d for some fixed ~v ∈ Rn and
d ∈ R. Explain how such a constraint can be added while keeping a linear program
in standard form.

(c) The “dual” of this linear program is another optimization:

maximize~y ~b>~y
subject to A>~y ≤ ~c.

Assuming that the primal and dual have exactly one stationary point, show that
the optimal value of the primal and dual objectives coincide.
Hint: Show that the KKT multipliers of one problem can be used to solve the
other.
Note: This property is called “strict duality.” The famous simplex algorithm
for solving linear programs maintains estimates of ~x and ~y, terminating when
~c>~x∗ −~b>~y∗ = 0.

10.5 Suppose we take a grayscale photograph of size n × m and represent it as a vector
~v ∈ Rnm of values in [0, 1]. We used the wrong lens, however, and our photo is blurry!
We wish to use deconvolution machinery to undo this effect.

(a) Find the KKT conditions for the following optimization problem:

minimize~x∈Rnm ‖A~x−~b‖22
subject to 0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , nm}.
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(b) Suppose we are given a matrix G ∈ Rnm×nm taking sharp images to blurry ones.
Propose an optimization in the form of (a) for recovering a sharp image from our
blurry ~v.

(c) We do not know the operator G, making the model in (b) difficult to use. Suppose,
however, that for each r ≥ 0 we can write a matrix Gr ∈ Rnm×nm approximating
a blur with radius r. Using the same camera, we now take k pairs of photos
(~v1, ~w1), . . . , (~vk, ~wk), where ~vi and ~wi are of the same scene but ~vi is blurry
(taken using the same lens as our original bad photo) and ~wi is sharp. Propose
a nonlinear optimization for approximating r using this data.

DH10.6 (“Fenchel duality,” adapted from [10]) Let f(~x) be a convex function on Rn that
is proper. This means that f accepts vectors from Rn or whose coordinates may
(individually) be ±∞ and returns a real scalar in R ∪ {∞} with at least one f(~x0)
taking a non-infinite value. Under these assumptions, the Fenchel dual of f at ~y ∈ Rn
is defined to be the function

f∗(~y) ≡ sup
~x∈Rn

(~x · ~y − f(~x)).

Fenchel duals are used to study properties of convex optimization problems in theory
and practice.

(a) Show that f∗ is convex.

(b) Derive the Fenchel-Young inequality :

f(~x) + f∗(~y) ≥ ~x · ~y.

(c) The indicator function of a subset A ∈ Rn is given by

χA(~x) ≡
{

0 if ~x ∈ A
∞ otherwise.

With this definition in mind, determine the Fenchel dual of f(~x) = ~c · ~x, where
~c ∈ Rn.

(d) What is the Fenchel dual of the linear function f(x) = ax+ b?

(e) Show that f(~x) = 1
2‖~x‖22 is self-dual, meaning f = f∗.

(f) Suppose p, q ∈ (1,∞) satisfy 1
p + 1

q = 1. Show that the Fenchel dual of f(x) =
1
p |x|p is f∗(y) = 1

q |y|q. Use this result along with previous parts of this problem
to derive Hölder’s inequality

∑

k

|ukvk| ≤
(∑

k

|uk|p
)1/p(∑

k

|vk|q
)1/q

,

for all ~u,~v ∈ Rn.
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Figure 10.8 Notation for Exercise 10.7.

SC10.7 A monomial is a function of the form f(~x) = cxa11 xa22 · · ·xann , where each ai ∈ R and
c > 0. We define a posynomial as a sum of one or more monomials:

f(~x) =
K∑

k=1

ckx
ak1
1 x

ak2
2 · · ·xaknn .

Geometric programs are optimization problems taking the following form:

minimize~x f0(~x)
subject to fi(~x) ≤ 1∀i ∈ {1, . . . ,m}

gi(~x) = 1∀i ∈ {1, . . . , p},

where the functions fi are posynomials and the functions gi are monomials.

(a) Suppose you are designing a slow-dissolving medicinal capsule. The capsule looks
like a cylinder with hemispherical ends, illustrated in Figure 10.8. To ensure that
the capsule dissolves slowly, you need to minimize its surface area.
The cylindrical portion of the capsule must have volume larger than or equal
to V to ensure that it can hold the proper amount of medicine. Also, because
the capsule is manufactured as two halves that slide together, to ensure that the
capsule will not break, the length ` of its cylindrical portion must be at least
`min. Finally, due to packaging limitations, the total length of the capsule must
be no larger than C.
Write the corresponding minimization problem and argue that it is a geometric
program.

(b) Transform the problem from Exercise 10.7a into a convex programming problem.
Hint: Consider the substitution yi = log xi.

10.8 The cardinality function ‖ · ‖0 computes the number of nonzero elements of ~x ∈ Rn:

‖~x‖0 =
n∑

i=1

{
1 xi 6= 0
0 otherwise.

(a) Show that ‖ · ‖0 is not a norm on Rn, but that it is connected to Lp norms by
the relationship

‖~x‖0 = lim
p→0+

n∑

i=1

|xi|p.
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(b) Suppose we wish to solve an underdetermined system of equations A~x = ~b. One
alternative to SVD-based approaches or Tikhonov regularizations is cardinality
minimization:

min~x∈Rn ‖~x‖0
subject to A~x = ~b

‖~x‖∞ ≤ R.
Rewrite this optimization in the form

min~x,~z ‖~z‖1
subject to ~z ∈ {0, 1}n

~x, ~z ∈ C,

where C is some convex set [15].

(c) Show that relaxing the constraint ~z ∈ {0, 1}n to ~z ∈ [0, 1]n lower-bounds the
original problem. Propose a heuristic for the {0, 1} problem based on this relax-
ation.

10.9 (“Grasping force optimization;” adapted from [83]) Suppose we are writing code to
control a robot hand with n fingers grasping a rigid object. Each finger i is controlled
by a motor that outputs nonnegative torque ti.

The force ~Fi imparted by each finger onto the object can be decomposed into two
orthogonal parts as ~Fi = ~Fni + ~Fsi, a normal force ~Fni and a tangential friction force
~Fsi:

Normal force: ~Fni = citi~vi = (~v>i ~Fi)~vi

Friction force: ~Fsi = (I3×3 − ~vi~v>i )~Fi, where ‖~Fsi‖2 ≤ µ‖Fni‖2

Here, ~vi is a (fixed) unit vector normal to the surface at the point of contact of finger i.
The value ci is a constant associated with finger i. Additionally, the object experiences
a gravitational force in the downward direction given by ~Fg = m~g.

For the object to be grasped firmly in place, the sum of the forces exerted by all
fingers must be ~0. Show how to minimize the total torque outputted by the motors
while firmly grasping the object using a second-order cone program.

10.10 Show that when ~ci = ~0 for all i in the second-order cone program of §10.4.2, the
optimization problem can be solved as a convex quadratic program with quadratic
constraints.

10.11 (Suggested by Q. Huang) Suppose we know




1 1 1
1 1 x
1 x 1


 � 0.

What can we say about x?

SC10.12 We can modify the gradient descent algorithm for minimizing f(~x) to account for

linear equality constraints A~x = ~b.
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(a) Assuming we choose ~x0 satisfying the equality constraint, propose a modification

to gradient descent so that each iterate ~xk satisfies A~xk = ~b.
Hint: The gradient ∇f(~x) may point in a direction that could violate the con-
straint.

(b) Briefly justify why the modified gradient descent algorithm should reach a local
minimum of the constrained optimization problem.

(c) Suppose rather than A~x = ~b we have a nonlinear constraint g(~x) = ~0. Propose
a modification of your strategy from Exercise 10.12a maintaining this new con-
straint approximately. How is the modification affected by the choice of step
sizes?

10.13 Show that linear programming and second-order cone programming are special cases
of semidefinite programming.
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IN the previous two chapters, we developed general algorithms for minimizing a function
f(~x) with or without constraints on ~x. In doing so, we relaxed our viewpoint from nu-

merical linear algebra that we must find an exact solution to a system of equations and
instead designed iterative methods that successively produce better approximations of the
minimizer. Even if we never find the position ~x∗ of a local minimum exactly, such methods
generate ~xk with smaller and smaller f(~xk), in many cases getting arbitrarily close to the
desired optimum.

We now revisit our favorite problem from numerical linear algebra, solving A~x = ~b
for ~x, but apply an iterative approach rather than seeking a solution in closed form. This
adjustment reveals a new class of linear solvers that can find reliable approximations of ~x in
remarkably few iterations. To formulate these methods, we will view solving A~x = ~b not as
a system of equations but rather as a minimization problem, e.g., on energies like ‖A~x−~b‖22.

Why bother deriving yet another class of linear solvers? So far, most of our direct
solvers require us to represent A as a full n × n matrix, and algorithms such as LU, QR,
and Cholesky factorization all take around O(n3) time. Two cases motivate the need for
iterative methods:

• When A is sparse, Gaussian elimination tends to induce fill, meaning that even if
A contains O(n) nonzero values, intermediate steps of elimination may fill in the
remaining O(n2) empty positions. Storing a matrix in sparse format dramatically
reduces the space it takes in memory, but fill during elimination can rapidly undo
these savings. Contrastingly, the algorithms in this chapter require only application A
to vectors (that is, computation of the product A~v for any ~v), which does not induce
fill and can be carried out in time proportional to the number of nonzeros.

207
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• We may wish to defeat the O(n3) runtime of standard matrix factorization techniques.
If an iterative scheme can uncover a fairly, if not completely, accurate solution to
A~x = ~b in a few steps, we may halt the method early in favor of speed over accuracy
of the output.

Newton’s method and other nonlinear optimization algorithms solve a linear system in each
iteration. Formulating the fastest possible solver can make a huge difference in efficiency
when implementing these methods for large-scale problems. An inaccurate but fast linear
solve may be sufficient, since it feeds into a larger iterative technique anyway.

Although our discussion in this chapter benefits from intuition and formalism developed
in previous chapters, our approach to deriving iterative linear methods owes much to the
classic extended treatment in [109].

11.1 GRADIENT DESCENT
We will focus our discussion on solving A~x = ~b where A has three properties:

1. A ∈ Rn×n is square.

2. A is symmetric, that is, A> = A.

3. A is positive definite, that is, for all ~x 6= ~0, ~x>A~x > 0.

Toward the end of this chapter we will relax these assumptions. Of course, we always can
replace A~x = ~b—at least when A is invertible or overdetermined—with the normal equations
A>A~x = A>~b to satisfy these criteria, although as discussed in §5.1, this substitution can
create conditioning issues.

11.1.1 Gradient Descent for Linear Systems

Under the restrictions above, solutions of A~x = ~b are minima of the function f(~x) given by
the quadratic form

f(~x) ≡ 1

2
~x>A~x−~b>~x+ c

for any c ∈ R. To see this connection, when A is symmetric, taking the derivative of f shows

∇f(~x) = A~x−~b,

and setting ∇f(~x) = ~0 yields the desired result.
Solving ∇f(~x) = ~0 directly amounts to performing Gaussian elimination on A. Instead,

suppose we apply gradient descent to this minimization problem. Recall the basic gradient
descent algorithm:

1. Compute the search direction ~dk ≡ −∇f(~xk−1) = ~b−A~xk−1.

2. Define ~xk ≡ ~xk−1 + αk ~dk, where αk is chosen such that f(~xk) < f(~xk−1).

3. Repeat.

For a generic function f , deciding on the value of αk can be a difficult one-dimensional
“line search” problem, boiling down to minimizing f(~xk−1 +αk ~dk) as a function of a single
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function Linear-Gradient-Descent(A,�b)
�x ← �0
for k ← 1, 2, 3, . . .

�d ← �b − A�x � Search direction is residual

α ← ‖�d‖2
2

�d�A�d
� Line search formula

�x ← �x + α�d � Update solution vector �x

Figure 11.1 Gradient descent algorithm for solving A~x = ~b for symmetric and positive

definite A, by iteratively decreasing the energy f(~x) = 1
2~x
>A~x−~b>~x+ c.

variable αk ≥ 0. For the quadratic form f(~x) = 1
2~x
>A~x−~b>~x+ c, however, we can choose

αk optimally using a closed-form formula. To do so, define

g(α) ≡ f(~x+ α~d)

=
1

2
(~x+ α~d)>A(~x+ α~d)−~b>(~x+ α~d) + c by definition of f

=
1

2
(~x>A~x+ 2α~x>A~d+ α2~d>A~d)−~b>~x− α~b>~d+ c

after expanding the product

=
1

2
α2~d>A~d+ α(~x>A~d−~b>~d) + const.

=⇒ dg

dα
(α) = α~d>A~d+ ~d>(A~x−~b) by symmetry of A.

With this simplification, to minimize g with respect to α, we solve dg/dα = 0 to find

α =
~d>(~b−A~x)

~d>A~d
.

For gradient descent, we chose ~dk = ~b−A~xk, so αk takes the form

αk =
‖~dk‖22
~d>k A

~dk
.

Since A is positive definite, αk > 0 by definition. This formula leads to the iterative gradient
descent algorithm for solving A~x = ~b shown in Figure 11.1. Unlike generic line search, for
this problem the choice of α in each iteration is optimal.

11.1.2 Convergence
By construction, gradient descent decreases f(~xk) in each step. Even so, we have not shown
that the algorithm approaches the minimum possible f(~xk), nor we have been able to
characterize how many iterations we should run to reach a reasonable level of confidence
that A~xk ≈ ~b. One way to understand the convergence of the gradient descent algorithm
for our choice of f is to examine the change in backward error from iteration to iteration;
we will follow the argument in [38] and elsewhere.
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Suppose ~x∗ satisfies A~x∗ = ~b exactly. Then, the change in backward error in iteration k
is given by

Rk ≡
f(~xk)− f(~x∗)
f(~xk−1)− f(~x∗)

.

Bounding Rk < β < 1 for some fixed β (possibly depending on A) would imply f(~xk) −
f(~x∗)→ 0 as k →∞, showing that the gradient descent algorithm converges.

For convenience, we can expand f(~xk):

f(~xk) = f(~xk−1 + αk ~dk) by our iterative scheme

=
1

2
(~xk−1 + αk ~dk)>A(~xk−1 + αk ~dk)−~b>(~xk−1 + αk ~dk) + c

= f(~xk−1) + αk ~d
>
k A~xk−1 +

1

2
α2
k
~d>k A~dk − αk~b> ~dk by definition of f

= f(~xk−1) + αk ~d
>
k (~b− ~dk) +

1

2
α2
k
~d>k A~dk − αk~b>~dk since ~dk = ~b−A~xk−1

= f(~xk−1)− αk ~d>k ~dk +
1

2
α2
k
~d>k A~dk since the remaining terms cancel

= f(~xk−1)−
~d>k ~dk
~d>k A

~dk
(~d>k ~dk) +

1

2

(
~d>k ~dk
~d>k A

~dk

)2

~d>k A~dk by definition of αk

= f(~xk−1)− (~d>k ~dk)2

2~d>k A
~dk
.

We can use this formula to find an alternative expression for the backward error Rk:

Rk =
f(~xk−1)− (~d>k ~dk)2

2~d>k A
~dk
− f(~x∗)

f(~xk−1)− f(~x∗)
by the expansion of f(~xk)

= 1− (~d>k ~dk)2

2~d>k A
~dk(f(~xk−1)− f(~x∗))

.

To simplify the difference in the denominator, we can use ~x∗ = A−1~b to write:

f(~xk−1)− f(~x∗) =

[
1

2
~x>k−1A~xk−1 −~b>~xk−1 + c

]
−
[

1

2
(~x∗)>~b−~b>~x∗ + c

]

=
1

2
~x>k−1A~xk−1 −~b>~xk−1 +

1

2
~b>A−1~b again since ~x∗ = A−1~b

=
1

2
(A~xk−1 −~b)>A−1(A~xk−1 −~b) by symmetry of A

=
1

2
~d>k A

−1~dk by definition of ~dk.

Plugging this expression into our simplified formula for Rk shows:

Rk = 1− (~d>k ~dk)2

~d>k A
~dk · ~d>k A−1~dk

= 1−
~d>k ~dk
~d>k A

~dk
·

~d>k ~dk
~d>k A

−1~dk
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Well conditioned A Poorly conditioned A

Figure 11.2 Gradient descent starting from the origin ~0 (at the center) on f(~x) =
1
2~x
>A~x−~b>~x+ c for two choices of A. Each figure shows level sets of f(~x) as well

as iterates of gradient descent connected by line segments.

≤ 1−
(

min
‖~d‖=1

1

~d>A~d

)(
min
‖~d‖=1

1

~d>A−1~d

)
since this makes the second term smaller

= 1−
(

max
‖~d‖=1

~d>A~d

)−1(
max
‖~d‖=1

~d>A−1~d

)−1

= 1− σmin

σmax
where σmin, σmax are the minimum/maximum singular values of A

= 1− 1

condA
.

Here, we assume the condition number condA is computed with respect to the two-norm
of A. It took a considerable amount of algebra, but we proved an important fact:

Convergence of gradient descent on f depends on the
conditioning of A.

That is, the better conditioned A is, the faster gradient descent will converge. Additionally,
since condA ≥ 1, we know that gradient descent converges unconditionally to ~x∗, although
convergence can be slow when A is poorly conditioned.

Figure 11.2 illustrates the behavior of gradient descent for well and poorly conditioned
matrices A. When the eigenvalues of A have a wide spread, A is poorly conditioned and
gradient descent struggles to find the minimum of our quadratic function f , zig-zagging
along the energy landscape.

11.2 CONJUGATE GRADIENTS
Solving A~x = ~b for dense A ∈ Rn×n takes O(n3) time using Gaussian elimination. Reexam-
ining gradient descent from §11.1.1 above, we see that in the dense case each iteration takes
O(n2) time, since we must compute matrix-vector products between A and ~xk−1, ~dk. So, if
gradient descent takes more than n iterations, from a timing standpoint we might as well
have used Gaussian elimination, which would have recovered the exact solution in the same
amount of time. Unfortunately, gradient descent may never reach the exact solution ~x∗ in
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a finite number of iterations, and in poorly conditioned cases it can take a huge number of
iterations to approximate ~x∗ well.

For this reason, we will design the conjugate gradients (CG) algorithm, which is guar-
anteed to converge in at most n steps, preserving O(n3) worst-case timing for solving linear
systems. We also will find that this algorithm exhibits better convergence properties overall,
often making it preferable to gradient descent even if we do not run it to completion.

11.2.1 Motivation
Our derivation of the conjugate gradients algorithm is motivated by writing the energy
functional f(~x) in an alternative form. Suppose we knew the solution ~x∗ to A~x∗ = ~b. Then,
we could write:

f(~x) =
1

2
~x>A~x−~b>~x+ c by definition

=
1

2
(~x− ~x∗)>A(~x− ~x∗) + ~x>A~x∗ − 1

2
(~x∗)>A~x∗ −~b>~x+ c

by adding and subtracting the same terms

=
1

2
(~x− ~x∗)>A(~x− ~x∗) + ~x>~b− 1

2
(~x∗)>~b−~b>~x+ c since A~x∗ = ~b

=
1

2
(~x− ~x∗)>A(~x− ~x∗) + const. since the ~x>~b terms cancel.

Thus, up to a constant shift, f is the same as the product 1
2 (~x−~x∗)>A(~x−~x∗). In practice,

we do not know ~x∗, but this observation shows us the nature of f : It measures the distance
from ~x to ~x∗ with respect to the “A-norm” ‖~v‖2A ≡ ~v>A~v.

Since A is symmetric and positive definite, even if it might be slow to compute algorith-
mically, we know from §4.2.1 that A admits a Cholesky factorization A = LL>. With this
factorization, f takes a nicer form:

f(~x) =
1

2
‖L>(~x− ~x∗)‖22 + const.

From this form of f(~x), we now know that the A-norm truly measures a distance between
~x and ~x∗.

Define ~y ≡ L>~x and ~y∗ ≡ L>~x∗. After this change of variables, we are minimizing
f̄(~y) ≡ ‖~y − ~y∗‖22. Optimizing f̄ would be easy if we knew L and ~y∗ (take ~y = ~y∗), but to
eventually remove the need for L we consider the possibility of minimizing f̄ using only line
searches derived in §11.1.1; from this point on, we will assume that we use the optimal step
α for this search rather than any other procedure.

We make an observation about minimizing our simplified function f̄ using line searches,
illustrated in Figure 11.3:

Proposition 11.1. Suppose {~w1, . . . , ~wn} are orthogonal in Rn. Then, f̄ is minimized in
at most n steps by line searching in direction ~w1, then direction ~w2, and so on.

Proof. Take the columns of Q ∈ Rn×n to be the vectors ~wi; Q is an orthogonal matrix.
Since Q is orthogonal, we can write f̄(~y) = ‖~y − ~y∗‖22 = ‖Q>~y − Q>~y∗‖22; in other words,
we rotate so that ~w1 is the first standard basis vector, ~w2 is the second, and so on. If we
write ~z ≡ Q>~y and ~z∗ ≡ Q>~y∗, then after the first iteration we must have z1 = z∗1 , after
the second iteration z2 = z∗2 , and so on. After n steps we reach zn = z∗n, yielding the desired
result.
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Figure 11.3 Searching along any two orthogonal directions minimizes f̄(~y) = ‖~y −
~y∗‖22 over ~y ∈ R2. Each example in this figure has the same starting point but

searches along a different pair of orthogonal directions; in the end they all reach

the same optimal point.

So, optimizing f̄ can be accomplished via n line searches so long as those searches are in
orthogonal directions.

All we did to pass from f to f̄ is change coordinates using L>. Linear transformations
take straight lines to straight lines, so line search on f̄ along some vector ~w is equivalent to
line search along (L>)−1 ~w on the original quadratic function f . Conversely, if we do n line
searches on f in directions ~vi such that L>~vi ≡ ~wi are orthogonal, then by Proposition 11.1
we must have found ~x∗. The condition ~wi · ~wj = 0 can be simplified:

0 = ~wi · ~wj = (L>~vi)
>(L>~vj) = ~v>i (LL>)~vj = ~v>i A~vj .

We have just argued a corollary to Proposition 11.1. Define conjugate vectors as follows:

Definition 11.1 (A-conjugate vectors). Two vectors ~v, ~w are A-conjugate if ~v>A~w = 0.

Then, we have shown how to use Proposition 11.1 to optimize f rather than f̄ :

Proposition 11.2. Suppose {~v1, . . . , ~vn} are A-conjugate. Then, f is minimized in at
most n steps by line search in direction ~v1, then direction ~v2, and so on.

Inspired by this proposition, the conjugate gradients algorithm generates and searches
along A-conjugate directions rather than moving along −∇f . This change might appear
somewhat counterintuitive: Conjugate gradients does not necessarily move along the steep-
est descent direction in each iteration, but rather constructs a set of search directions
satisfying a global criterion to avoid repeating work. This setup guarantees convergence in
a finite number of iterations and acknowledges the structure of f in terms of f̄ discussed
above.

We motivated the use of A-conjugate directions by their orthogonality after applying
L> from the factorization A = LL>. From this standpoint, we are dealing with two dot
products: ~xi ·~xj and ~yi ·~yj ≡ (L>~xi)·(L>~xj) = x>i LL

>~xj = ~x>i A~xj . These two products will
figure into our subsequent discussion, so for clarity we will denote the “A-inner product” as

〈~u,~v〉A ≡ (L>~u) · (L>~v) = ~u>A~v.
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11.2.2 Suboptimality of Gradient Descent

If we can find n A-conjugate search directions, then we can solve A~x = ~b in n steps via
line searches along these directions. What remains is to uncover a formula for finding these
directions efficiently. To do so, we will examine one more property of gradient descent that
will inspire a more refined algorithm.

Suppose we are at ~xk during an iterative line search method on f(~x); we will call the

direction of steepest descent of f at ~xk the residual ~rk ≡ ~b − A~xk. We may not decide
to do a line search along ~rk as in gradient descent, since the gradient directions are not
necessarily A-conjugate. So, generalizing slightly, we will find ~xk+1 via line search along a
yet-undetermined direction ~vk+1.

From our derivation of gradient descent in §11.1.1, even if ~vk+1 6= ~rk, we should choose
~xk+1 = ~xk + αk+1~vk+1, where

αk+1 =
~v>k+1~rk

~v>k+1A~vk+1
.

Applying this expansion of ~xk+1, we can write an update formula for the residual:

~rk+1 = ~b−A~xk+1

= ~b−A(~xk + αk+1~vk+1) by definition of ~xk+1

= (~b−A~xk)− αk+1A~vk+1

= ~rk − αk+1A~vk+1 by definition of ~rk.

This formula holds regardless of our choice of ~vk+1 and can be applied to any iterative line
search method on f .

In the case of gradient descent, we chose ~vk+1 ≡ ~rk, giving a recurrence relation ~rk+1 =
~rk − αk+1A~rk. This formula inspires an instructive proposition:

Proposition 11.3. When performing gradient descent on f , span {~r0, . . . , ~rk} =
span {~r0, A~r0, . . . , A

k~r0}.

Proof. This statement follows inductively from our formula for ~rk+1 above.

The structure we are uncovering is beginning to look a lot like the Krylov subspace methods
mentioned in Chapter 6: This is not a coincidence!

Gradient descent gets to ~xk by moving along ~r0, then ~r1, and so on through ~rk. In
the end we know that the iterate ~xk of gradient descent on f lies somewhere in the plane
~x0 + span {~r0, ~r1, . . . , ~rk−1} = ~x0 + span {~r0, A~r0, . . . , A

k−1~r0}, by Proposition 11.3. Unfor-
tunately, it is not true that if we run gradient descent, the iterate ~xk is optimal in this
subspace. In other words, it can be the case that

~xk − ~x0 6= arg min
~v∈span {~r0,A~r0,...,Ak−1~r0}

f(~x0 + ~v).

Ideally, switching this inequality to an equality would make sure that generating ~xk+1 from
~xk does not “cancel out” any work done during iterations 1 to k − 1.

If we reexamine our proof of Proposition 11.1 from this perspective, we can make an
observation suggesting how we might use conjugacy to improve gradient descent. Once zi
switches to z∗i , it never changes in a future iteration. After rotating back from ~z to ~x the
following proposition holds:
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Proposition 11.4. Take ~xk to be the k-th iterate of the process from Proposition 11.1
after searching along ~vk. Then,

~xk − ~x0 = arg min
~v∈span {~v1,...,~vk}

f(~x0 + ~v).

In the best of all possible worlds and in an attempt to outdo gradient descent, we
might hope to find A-conjugate directions {~v1, . . . , ~vn} such that span {~v1, . . . , ~vk} =
span {~r0, A~r0, . . . , A

k−1~r0} for each k. By the previous two propositions, the resulting iter-
ative scheme would be guaranteed to do no worse than gradient descent even if it is halted
early. But, we wish to do so without incurring significant memory demand or computation
time. Amazingly, the conjugate gradient algorithm satisfies all these criteria.

11.2.3 Generating A-Conjugate Directions
Given any set of directions spanning Rn, we can make them A-orthogonal using Gram-
Schmidt orthogonalization. Explicitly orthogonalizing {~r0, A~r0, A

2~r0, . . .} to find the set
of search directions, however, is expensive and would require us to maintain a complete
list of directions in memory; this construction likely would exceed the time and memory
requirements even of Gaussian elimination. Alternatively, we will reveal one final observation
about Gram-Schmidt that makes conjugate gradients tractable by generating conjugate
directions without an expensive orthogonalization process.

To start, we might write a “method of conjugate directions” using the following itera-
tions:

~vk ← Ak−1~r0 −
∑
i<k

〈Ak−1~r0,~vi〉A
〈~vi,~vi〉A ~vi . Explicit Gram-Schmidt

αk ← ~v>k ~rk−1

~v>k A~vk
. Line search

~xk ← ~xk−1 + αk~vk . Update estimate
~rk ← ~rk−1 − αkA~vk . Update residual

Here, we compute the k-th search direction ~vk by projecting ~v1, . . . , ~vk−1 out of
the vector Ak−1~r0 using the Gram-Schmidt algorithm. This algorithm has the property
span {~v1, . . . , ~vk} = span {~r0, A~r0, . . . , A

k−1~r0} suggested in §11.2.2, but it has two issues:

1. Similar to power iteration for eigenvectors, the power Ak−1~r0 is likely to look mostly
like the first eigenvector of A, making projection poorly conditioned when k is large.

2. We have to store ~v1, . . . , ~vk−1 to compute ~vk, so each iteration needs more memory
and time than the last.

We can fix the first issue in a relatively straightforward manner. Right now, we project
the previous search directions out of Ak−1~r0, but in reality we can project out previous
directions from any vector ~w so long as

~w ∈ span {~r0, A~r0, . . . , A
k−1~r0}\span {~r0, A~r0, . . . , A

k−2~r0},

that is, as long as ~w has some component in the new part of the space.
An alternative choice of ~w in this span is the residual ~rk−1. We can check this using the

residual update ~rk = ~rk−1 − αkA~vk; in this expression, we multiply ~vk by A, introducing
the new power of A that we need. This choice also more closely mimics the gradient descent
algorithm, which took ~vk = ~rk−1. We can update our algorithm to use this improved choice:
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~vk ← ~rk−1 −
∑
i<k

〈~rk−1,~vi〉A
〈~vi,~vi〉A ~vi . Gram-Schmidt on residual

αk ← ~v>k ~rk−1

~v>k A~vk
. Line search

~xk ← ~xk−1 + αk~vk . Update estimate
~rk ← ~rk−1 − αkA~vk . Update residual

Now we do not do arithmetic with the poorly conditioned vector Ak−1~r0 but still have the
“memory” problem above since the sum in the first step is over k − 1 vectors.

A surprising observation about the residual Gram-Schmidt projection above is that
most terms in the sum are exactly zero! This observation allows each iteration of conjugate
gradients to be carried out without increasing memory requirements. We memorialize this
result in a proposition:

Proposition 11.5. In the second “conjugate direction” method above, 〈~rk, ~v`〉A = 0 for
all ` < k.

Proof. We proceed inductively. There is nothing to prove for the base case k = 1, so assume
k > 1 and that the result holds for all k′ < k. By the residual update formula,

〈~rk, ~v`〉A = 〈~rk−1, ~v`〉A − αk〈A~vk, ~v`〉A = 〈~rk−1, ~v`〉A − αk〈~vk, A~v`〉A,

where the second equality follows from symmetry of A.
First, suppose ` < k−1. Then the first term of the difference above is zero by induction.

Furthermore, by construction A~v` ∈ span {~v1, . . . , ~v`+1}, so since we have constructed our
search directions to be A-conjugate, the second term must be zero as well.

To conclude the proof, we consider the case ` = k − 1. By the residual update formula,

A~vk−1 =
1

αk−1
(~rk−2 − ~rk−1).

Pre-multiplying by ~r>k shows

〈~rk, ~vk−1〉A =
1

αk−1
~r>k (~rk−2 − ~rk−1).

The difference ~rk−2 − ~rk−1 is in the subspace span {~r0, A~r0, . . . , A
k−1~r0}, by the residual

update formula. Proposition 11.4 shows that ~xk is optimal in this subspace. Since ~rk =
−∇f(~xk), this implies that we must have ~rk ⊥ span {~r0, A~r0, . . . , A

k−1~r0}, since otherwise
there would exist a direction in the subspace to move from ~xk to decrease f . In particular,
this shows the inner product above 〈~rk, ~vk−1〉A = 0, as desired.

Our proof above shows that we can find a new direction ~vk as follows:

~vk = ~rk−1 −
∑

i<k

〈~rk−1, ~vi〉A
〈~vi, ~vi〉A

~vi by the Gram-Schmidt formula

= ~rk−1 −
〈~rk−1, ~vk−1〉A
〈~vk−1, ~vk−1〉A

~vk−1 because the remaining terms vanish.

Since the summation over i disappears, the cost of computing ~vk has no dependence on k.
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11.2.4 Formulating the Conjugate Gradients Algorithm
Now that we can obtain A-conjugate search directions with relatively little computational
effort, we apply this strategy to formulate the conjugate gradients algorithm, with full
pseudocode in Figure 11.4(a):

~vk ← ~rk−1 − 〈~rk−1,~vk−1〉A
〈~vk−1,~vk−1〉A~vk−1 . Update search direction

αk ← ~v>k ~rk−1

~v>k A~vk
. Line search

~xk ← ~xk−1 + αk~vk . Update estimate
~rk ← ~rk−1 − αkA~vk . Update residual

This iterative scheme is only a minor adjustment to the gradient descent algorithm but has
many desirable properties by construction:

• f(~xk) is upper-bounded by that of the k-th iterate of gradient descent.

• The algorithm converges to ~x∗ in at most n steps, as illustrated in Figure 11.5.

• At each step, the iterate ~xk is optimal in the subspace spanned by the first k search
directions.

In the interests of squeezing maximal numerical quality out of conjugate gradients, we can
simplify the numerics of the formulation in Figure 11.4(a). For instance, if we plug the
search direction update into the formula for αk, by orthogonality we know

αk =
~r>k−1~rk−1

~v>k A~vk
.

The numerator of this fraction now is guaranteed to be nonnegative even when using finite-
precision arithmetic.

Similarly, we can define a constant βk to split the search direction update into two steps:

βk ≡ −
〈~rk−1, ~vk−1〉A
〈~vk−1, ~vk−1〉A

~vk = ~rk−1 + βk~vk−1.

We can simplify the formula for βk:

βk = −~rk−1A~vk−1

~v>k−1A~vk−1
by definition of 〈·, ·〉A

= −~r
>
k−1(~rk−2 − ~rk−1)

αk−1~v>k−1A~vk−1
since ~rk = ~rk−1 − αkA~vk

=
~r>k−1~rk−1

αk−1~v>k−1A~vk−1
by a calculation below

=
~r>k−1~rk−1

~r>k−2~rk−2
by our last formula for αk.

This expression guarantees that βk ≥ 0, a property that might not have held after rounding
using the original formula. We have one remaining calculation below:

~r>k−2~rk−1 = ~r>k−2(~rk−2 − αk−1A~vk−1) by the residual update formula
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function Conjugate-Grad-1(A,�b, �x0)
�x ← �x0

�r ← �b − A�x
�v ← �r
for k ← 1, 2, 3, . . .

α ← �v��r
�v�A�v

� Line search
�x ← �x + α�v � Update estimate
�r ← �r − αA�v � Update residual
if ‖�r‖2

2 < ε‖�r0‖2
2 then

return x∗ = �x
�v ← �r − 〈�r,�v〉A

〈�v,�v〉A�v � Search direction

function Conjugate-Grad-2(A,�b, �x0)
�x ← �x0

�r ← �b − A�x
�v ← �r
β ← 0
for k ← 1, 2, 3, . . .

�v ← �r + β�v � Search direction

α ← ‖�r‖2
2

�v�A�v
� Line search

�x ← �x + α�v � Update estimate
�rold ← �r � Save old residual
�r ← �r − αA�v � Update residual
if ‖�r‖2

2 < ε‖�r0‖2
2 then

return x∗ = �x
β ← ‖�r‖2

2/‖�rold‖2
2 � Direction step

Figure 11.4 Two equivalent formulations of the conjugate gradients algorithm for

solving A~x = ~b when A is symmetric and positive definite. The initial guess ~x0 can

be ~0 in the absence of a better estimate.

Well conditioned A Poorly conditioned A

Figure 11.5 The conjugate gradients algorithm solves both linear systems in Fig-

ure 11.2 in two steps.
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= ~r>k−2~rk−2 −
~r>k−2~rk−2

~v>k−1A~vk−1
~r>k−2A~vk−1 by our formula for αk

= ~r>k−2~rk−2 −
~r>k−2~rk−2

~v>k−1A~vk−1
~v>k−1A~vk−1

by the update for ~vk and A-conjugacy of the ~vk’s

= 0, as needed.

Our new observations about the iterates of CG provide an alternative but equivalent for-
mulation that can have better numerical properties; it is shown in Figure 11.4(b). Also for
numerical reasons, occasionally rather than using the update formula for ~rk it is advisable
to use the residual formula ~rk = ~b − A~xk. This requires an extra matrix-vector multiply
but repairs numerical “drift” caused by finite-precision rounding. There is no need to store
a long list of previous residuals or search directions; conjugate gradients takes a constant
amount of space from iteration to iteration.

11.2.5 Convergence and Stopping Conditions
By construction, the conjugate gradients (CG) algorithm is guaranteed to converge as fast
as gradient descent on f , while being no harder to implement and having a number of other
favorable properties. A detailed discussion of CG convergence is out of the scope of our
treatment, but in general the algorithm behaves best on matrices with eigenvalues evenly
distributed over a small range.

One rough bound paralleling the estimate in §11.1.2 shows that the CG algorithm sat-
isfies:

f(~xk)− f(~x∗)
f(~x0)− f(~x∗)

≤ 2

(√
κ− 1√
κ+ 1

)k

where κ ≡ condA. Broadly speaking, the number of iterations needed for conjugate gradient
to reach a given error level usually can be bounded by a function of

√
κ, whereas bounds

for convergence of gradient descent are proportional to κ.
Conjugate gradients is guaranteed to converge to ~x∗ exactly in n steps—m steps if A

has m < n unique eigenvalues—but when n is large it may be preferable to stop earlier.
The formula for βk will divide by zero when the residual gets very short, which can cause
numerical precision issues near the minimum of f . Thus, in practice CG usually is halted
when the ratio ‖~rk‖/‖~r0‖ is sufficiently small.

11.3 PRECONDITIONING
We now have two powerful iterative algorithms for solving A~x = ~b when A is symmetric
and positive definite: gradient descent and conjugate gradients. Both converge uncondition-
ally, meaning that regardless of the initial guess ~x0, with enough iterations they will get
arbitrarily close to the true solution ~x∗; conjugate gradients reaches ~x∗ exactly in a finite
number of iterations. The “clock time” taken to solve A~x = ~b for both of these methods is
proportional to the number of iterations needed to reach ~x∗ within an acceptable tolerance,
so it makes sense to minimize the number of iterations until convergence.

We characterized the convergence rates of both algorithms in terms of the condition
number condA. The smaller the value of condA, the less time it should take to solve
A~x = ~b. This situation contrasts with Gaussian elimination, which takes the same number
of steps regardless of A; what is new here is that the conditioning of A affects not only the
quality of the output of iterative methods but also the speed at which ~x∗ is approached.
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For any invertible matrix P , solving PA~x = P~b is equivalent to solving A~x = ~b. The
condition number of PA, however, does not need to be the same as that of A. In the
extreme, if we took P = A−1, then conditioning issues would be removed altogether! More
generally, suppose P ≈ A−1. Then, we expect condPA � condA, making it advisable to
apply P before solving the linear system using iterative methods. In this case, we will call
P a preconditioner.

While the idea of preconditioning appears attractive, two issues remain:

1. While A may be symmetric and positive definite, the product PA in general will not
enjoy these properties.

2. We need to find P ≈ A−1 that is easier to compute than A−1 itself.

We address these issues in the sections below.

11.3.1 CG with Preconditioning
We will focus our discussion of preconditioning on conjugate gradients since it has better
convergence properties than gradient descent, although most of our constructions can be
paralleled to precondition other iterative linear methods.

Starting from the steps in §11.2.1, the construction of CG fundamentally depended on
both the symmetry and positive definiteness of A. Hence, running CG on PA usually will not
converge, since it may violate these assumptions. Suppose, however, that the preconditioner
P is itself symmetric and positive definite. This is a reasonable assumption since the inverse
A−1 of a symmetric, positive definite matrix A is itself symmetric and positive definite.
Under this assumption, we can write a Cholesky factorization of the inverse P−1 = EE>.
Then, E−1AE−> ≈ E−1P−1E−> = E−1EE>E−> = In×n. In words, we expect E−1AE−>

to be well-conditioned when PA is well-conditioned. This intuition is partially confirmed
by the following observation:

Proposition 11.6. PA and E−1AE−> have the same eigenvalues.

Proof. Suppose E−1AE−>~x = λ~x; notice the vectors ~x span Rn because E−1AE−> is
symmetric. By construction, P−1 = EE>, so P = E−>E−1. If we pre-multiply both sides of
the eigenvector expression by E−>, we find PAE−>~x = λE−>~x. Defining ~y ≡ E−>~x shows
PA~y = λ~y. Hence, each eigenvector ~x of E−1AE−> provides a corresponding eigenvector ~y
of PA, showing that PA and E−1AE−> both have full eigenspaces and identical eigenvalues.

This proposition implies that if we do CG on the symmetric positive definite matrix
E−1AE−>, we will receive similar conditioning benefits enjoyed by PA. Imitating the con-
struction in Proposition 11.6 above, we can carry out our new solve for ~y = E>~x in two
steps:

1. Solve E−1AE−>~y = E−1~b for ~y using the CG algorithm.

2. Multiply to find ~x = E−>~y.

Evaluating E and its inverse would be integral to this strategy, but doing so can induce fill
and take too much time. By modifying the steps of CG for the first step above, however,
we can make this factorization unnecessary.

If we had computed E, we could perform step 1 using CG as follows:
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βk ← ~r>k−1~rk−1

~r>k−2~rk−2
. Update search direction

~vk ← ~rk−1 + βk~vk−1

αk ← ~r>k−1~rk−1

~v>k E
−1AE−>~vk

. Line search

~yk ← ~yk−1 + αk~vk . Update estimate
~rk ← ~rk−1 − αkE−1AE−>~vk . Update residual

This iteration will converge according to the conditioning of E−1AE−>.
Define r̃k ≡ E~rk, ṽk ≡ E−>~vk, and ~xk ≡ E−>~yk. By the relationship P = E−>E−1, we

can rewrite our preconditioned conjugate gradients iteration completely in terms of these
new variables:

βk ← r̃>k−1P r̃k−1

r̃>k−2P r̃k−2
. Update search direction

ṽk ← P r̃k−1 + βkṽk−1

αk ← r̃>k−1P r̃k−1

ṽ>k Aṽk
. Line search

~xk ← ~xk−1 + αkṽk . Update estimate
r̃k ← r̃k−1 − αkAṽk . Update residual

This iteration does not depend on the Cholesky factorization of P−1, but instead can be
carried out using only P and A. By the substitutions above, ~xk → ~x∗, and this scheme enjoys
the benefits of preconditioning without needing to compute the Cholesky factorization of
P .

As a side note, more general preconditioning can be carried out by replacing A with PAQ
for a second matrix Q, although this second matrix will require additional computations
to apply. This extension presents a common trade-off: If a preconditioner takes too long to
apply in each iteration of CG, it may not be worth the reduced number of iterations.

11.3.2 Common Preconditioners
Finding good preconditioners in practice is as much an art as it is a science. Finding an
effective approximation P of A−1 depends on the structure of A, the particular application
at hand, and so on. Even rough approximations, however, can help convergence, so rarely
do applications of CG appear that do not use a preconditioner.

The best strategy for finding P often is application-specific, and generally it is necessary
to test a few possibilities for P before settling on the most effective option. A few common
generic preconditioners include the following:

• A diagonal (or “Jacobi”) preconditioner takes P to be the matrix obtained by inverting
diagonal elements of A; that is, P is the diagonal matrix with entries 1/aii. This
preconditioner can alleviate nonuniform scaling from row to row, which is a common
cause of poor conditioning.

• The sparse approximate inverse preconditioner is formulated by solving a subproblem
minP∈S ‖AP − I‖Fro, where P is restricted to be in a set S of matrices over which it
is less difficult to optimize such an objective. For instance, a common constraint is to
prescribe a sparsity pattern for P , e.g., that it only has nonzeros on its diagonal or
where A has nonzeros.
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• The incomplete Cholesky preconditioner factors A ≈ L∗L>∗ and then approximates
A−1 by carrying out forward- and back-substitution. For instance, a popular heuristic
involves going through the steps of Cholesky factorization but only saving the parts
of L in positions (i, j) where aij 6= 0.

• The nonzero values in A can be used to construct a graph with edge (i, j) whenever
aij 6= 0. Removing edges in the graph or grouping nodes may disconnect assorted
components; the resulting system is block-diagonal after permuting rows and columns
and thus can be solved using a sequence of smaller solves. Such a domain decompo-
sition can be effective for linear systems arising from differential equations like those
considered in Chapter 16.

Some preconditioners come with bounds describing changes to the conditioning of A after
replacing it with PA, but for the most part these are heuristic strategies that should be
tested and refined.

11.4 OTHER ITERATIVE ALGORITHMS
The algorithms we have developed in this chapter apply to solving A~x = ~b when A is square,
symmetric, and positive definite. We have focused on this case because it appears so often
in practice, but there are cases when A is asymmetric, indefinite, or even rectangular. It is
out of the scope of our discussion to derive iterative algorithms in each case, since many
require some specialized analysis or advanced development (see, e.g., [7, 50, 56, 105]), but
we summarize some techniques here:

• Splitting methods decompose A = M −N and use the fact that A~x = ~b is equivalent
to M~x = N~x + ~b. If M is easy to invert, then a fixed-point scheme can be derived
by writing M~xk = N~xk−1 + ~b; these techniques are easy to implement but have
convergence depending on the spectrum of the matrix G = M−1N and in particular
can diverge when the spectral radius of G is greater than one. One popular choice
of M is the diagonal of A. Methods such as successive over-relaxation (SOR) weight
these two terms for better convergence.

• The conjugate gradient normal equation residual (CGNR) method applies the CG al-

gorithm to the normal equations A>A~x = A>~b. This method is guaranteed to converge
so long as A is full-rank, but convergence can be slow thanks to poor conditioning of
A>A as in §5.1.

• The conjugate gradient normal equation error (CGNE) method similarly solves

AA>~y = ~b; then, the solution of A~x = ~b is A>~y.

• Methods such as MINRES and SYMMLQ apply to all symmetric matrices A by
replacing the quadratic form f(~x) with g(~x) ≡ ‖~b − A~x‖22 [93]; this function g is

minimized at solutions to A~x = ~b regardless of the definiteness of A.

• Given the poor conditioning of CGNR and CGNE, the LSQR and LSMR algorithms
also minimize g(~x) with fewer assumptions on A, in particular allowing for solution
of least-squares systems [94, 42].

• Generalized methods including GMRES, QMR, BiCG, CGS, and BiCGStab solve
A~x = ~b with the only caveat that A is square and invertible [106, 44, 40, 115, 126]. They
optimize similar energies but often have to store more information about previous
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iterations and may have to factor intermediate matrices to guarantee convergence
with such generality.

• Finally, methods like the Fletcher-Reeves, Hestenes-Stiefel, Polak-Ribière, and Dai-
Yuan algorithms return to the more general problem of minimizing a non-quadratic
function f , applying conjugate gradient steps to finding new line search directions [30,
41, 59, 100]. Functions f that are well-approximated by quadratics can be minimized
very effectively using these strategies, even though they do not necessarily make use
of the Hessian. For instance, the Fletcher-Reeves method replaces the residual in CG
iterations with the negative gradient −∇f .

Most of these algorithms are nearly as easy to implement as CG or gradient descent. Pre-
packaged implementations are readily available that only require A and ~b as input; they
typically require the end user to implement subroutines for multiplying vectors by A and
by A>, which can be a technical challenge in some cases when A is only known implicitly.

As a rule of thumb, the more general a method is—that is, the fewer the assumptions
a method makes on the structure of the matrix A—the more iterations it is likely to need
to compensate for this lack of assumptions. This said, there are no hard-and-fast rules that
can be applied by examining the elements of A for guessing the most successful iterative
scheme.

11.5 EXERCISES
11.1 If we use infinite-precision arithmetic (so rounding is not an issue), can the conjugate

gradients algorithm be used to recover exact solutions to A~x = ~b for symmetric
positive definite matrices A? Why or why not?

11.2 Suppose A ∈ Rn×n is invertible but not symmetric or positive definite.

(a) Show that A>A is symmetric and positive definite.

(b) Propose a strategy for solving A~x = ~b using the conjugate gradients algorithm
based on your observation in (a).

(c) How quickly do you expect conjugate gradients to converge in this case? Why?

11.3 Propose a method for preconditioning the gradient descent algorithm from §11.1.1,
paralleling the derivation in §11.3.

11.4 In this problem we will derive an iterative method of solving A~x = ~b via splitting [50].

(a) Suppose we decompose A = M − N , where M is invertible. Show that the

iterative scheme ~xk = M−1(N~xk−1 + ~b) converges to A−1~b when max {|λ| :
λ is an eigenvalue of M−1N} < 1.

Hint: Define ~x∗ = A−1~b and take ~ek = ~xk − ~x∗. Show that ~ek = Gk~e0, where
G = M−1N. For this problem, you can assume that the eigenvectors of G span
Rn (it is possible to prove this statement without the assumption but doing so
requires more analysis than we have covered).
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(b) Suppose A is strictly diagonally dominant, that is, for each i it satisfies
∑

j 6=i
|aij | < |aii|.

Suppose we define M to be the diagonal part of A and N = M − A. Show that
the iterative scheme from Exercise 11.4a converges in this case. You can assume
the statement from Exercise 11.4a holds regardless of the eigenspace of G.

11.5 As introduced in §10.4.3, a graph is a data structure G = (V,E) consisting of n
vertices in a set V = {1, . . . , n} and a set of edges E ⊆ V × V. A common problem is
graph layout, where we choose positions of the vertices in V on the plane R2 respecting
the connectivity of G. For this problem we will assume (i, i) 6∈ E for all i ∈ V .

(a) Take ~v1, . . . , ~vn ∈ R2 to be the positions of the vertices in V ; these are the
unknowns in graph layout. The Dirichlet energy of a layout is

E(~v1, . . . , ~vn) =
∑

(i,j)∈E
‖~vi − ~vj‖22.

Suppose an artist specifies positions of vertices in a nonempty subset V0 ⊆ V .
We will label these positions as ~v0

k for k ∈ V0. Derive two (n− |V0|)× (n− |V0|)
linear systems of equations satisfied by the x and y components of the unknown
~vi’s solving the following minimization problem:

minimize E(~v1, . . . , ~vn)

subject to ~vk = ~v0
k ∀k ∈ V0.

Hint: Your answer can be written as two independent linear systems A~x = ~bx
and A~y = ~by.

(b) Show that your systems from the previous part are symmetric and positive defi-
nite.

(c) Implement both gradient descent and conjugate gradients for solving this system,
updating a display of the graph layout after each iteration. Compare the number
of iterations needed to reach a reasonable solution using both strategies.

(d) Implement preconditioned conjugate gradients using a preconditioner of your
choice. How much does convergence improve?

DH11.6 The successive over-relaxation (SOR) method is an example of an iterative splitting

method for solving A~x = ~b, for A ∈ Rn×n. Suppose we decompose A = D + L + U ,
where D, L, and U are the diagonal, strictly lower-triangular, and strictly upper-
triangular parts of A, respectively. Then, the SOR iteration is given by:

(ω−1D + L)~xk+1 = ((ω−1 − 1)D − U)~xk +~b,

for some constant ω ∈ R. We will show that if A is symmetric and positive definite
and ω ∈ (0, 2), then the SOR method converges.

(a) Show how SOR is an instance of the splitting method in Exercise 11.4 by defining
matrices M and N appropriately. Hence, using this problem we now only need
to show that ρ(G) < 1 for G = M−1N to establish convergence of SOR.
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(b) Define Q ≡ (ω−1D + L) and let ~y = (In×n − G)~x for an arbitrary eigenvector
~x ∈ Cn of G with corresponding eigenvalue λ ∈ C. Derive expressions for Q~y and
(Q−A)~y in terms of A, ~x, and λ.

(c) Show that dii > 0 for all i. This expression shows that all the possibly nonzero
elements of the diagonal matrix D are positive.

(d) Substitute the definition of Q into your relationships from Exercise 11.6b and
simplify to show that:

ω−1〈~y, ~y〉D + 〈~y, ~y〉L = (1− λ̄)〈~x, ~x〉A
(ω−1 − 1)〈~y, ~y〉D − 〈~y, ~y〉U> = (1− λ)λ̄〈~x, ~x〉A.

Note: We are dealing with complex values here, so inner products in this problem
are given by 〈~x, ~y〉A ≡ (A~x)>conjugate(~y).

(e) Recalling our assumptions on A, write a relationship between L and U . Use this
and the previous part to conclude that

(2ω−1 − 1)〈~y, ~y〉D = (1− |λ|2)〈~x, ~x〉A.

(f) Justify why, under the given assumptions and results of the previous parts, each
of (2ω−1− 1), 〈~y, ~y〉D, and 〈~x, ~x〉A must be positive. What does this imply about
|λ|? Conclude that the SOR method converges under our assumptions.

DH11.7 (“Gradient domain painting,” [86]) Let I : S → R be a monochromatic image, where
S ⊂ R2 is a rectangle. We know I on a collection of square pixels tiling S.

Suppose an artist is editing I in the gradient domain. This means the artist edits the
x and y derivatives gx and gy of I rather than values in I. After editing gx and gy, we

need to recover a new image Ĩ that has the edited gradients, at least approximately.

(a) For the artist to paint in the gradient domain, we first have to calculate discrete
approximations of gx and gy using the values of I on different pixels. How might
you estimate the derivatives of I in the x and y directions from a pixel using the
values of I at one or both of the two horizontally adjacent pixels?

(b) Describe matrices Ax and Ay such that AxI = gx and AyI = gy, where in this

case we have written I as a vector I = [I1,1, I1,2, ..., I1,n, I2,1, ..., Im,n]
T

and Ii,j
is the value of I at pixel (i, j). Assume the image I is m pixels tall and n pixels
wide.

(c) Give an example of a function g : R2 → R2 that is not a gradient, that is, g
admits no f such that ∇f = g. Justify your answer.

(d) In light of the fact that ∇Ĩ = g may not be solvable exactly, propose an opti-
mization problem whose solution is the “best” approximate solution (in the L2

norm) to this equation. Describe the advantage of using conjugate gradients to
solve such a system.

11.8 The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm
applies conjugate gradients to finding generalized eigenvectors ~x of matrices A and
B satisfying A~x = λB~x [75, 76]. Assume A,B ∈ Rn×n are symmetric and positive
definite.
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(a) Define the generalized Rayleigh quotient ρ(~x) as the function

ρ(~x) ≡ ~x>A~x
~x>B~x

.

Show that ∇ρ is parallel to A~x− ρ(~x)B~x.

(b) Show that critical points of ρ(~x) with ~x 6= ~0 are the generalized eigenvectors of
(A,B). Argue that the largest and smallest generalized eigenvalues come from
maximizing and minimizing ρ(~x), respectively.

(c) Suppose we wish to find the generalized eigenvector with the largest eigenvalue.
If we search in the gradient direction from the current iterate ~x, we must solve
the following line search problem:

max
α∈R

ρ(~x+ α~r(~x)),

where r(~x) ≡ A~x− ρ(~x)B~x. Show that α can be found by computing roots of a
low-degree polynomial.

(d) Based on our construction above, propose an iteration for finding ~x. When B =
In×n, is this method the same as the power method?
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OPTIMIZATION algorithms like Newton’s method are completely generic approaches
to minimizing a function f(~x), with or without constraints on ~x. These algorithms

make few assumptions about the form of f or the constraints. Contrastingly, by designing the
conjugate gradient algorithm specifically for minimizing the objective f(~x) ≡ 1

2~x
>A~x−~b>~x+

c, we were able to guarantee more reliable and efficient behavior than general algorithms.
In this chapter, we continue to exploit special structure to solve optimization problems,

this time for more complex nonlinear objectives. Replacing monolithic generic algorithms
with ones tailored to a given problem can make optimization faster and easier to trou-
bleshoot, although doing so requires more implementation effort than calling a pre-packaged
solver.

12.1 NONLINEAR LEAST-SQUARES
Recall the nonlinear regression problem posed in Example 9.1. If we wish to fit a function
y = ceax to a set of data points (x1, y1), . . . , (xk, yk), an optimization mimicking linear
least-squares is to minimize the function

E(a, c) ≡
∑

i

(yi − ceaxi)2.

This energy reflects the fact that we wish yi − ceaxi ≈ 0 for all i.

227
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More generally, suppose we are given a set of functions f1(~x), . . . , fk(~x) for ~x ∈ Rn. If
we want fi(~x) ≈ 0 for all i, then a reasonable objective trading off between these terms is

ENLS(~x) ≡ 1

2

∑

i

[fi(~x)]2.

Objective functions of this form are known as nonlinear least-squares problems. For the
exponential regression problem above, we would take fi(a, c) ≡ yi − ceaxi .

12.1.1 Gauss-Newton
When we run Newton’s method to minimize a function f(~x), we must know the gradient and
Hessian of f . Knowing only the gradient of f is not enough, since approximating functions
with planes provides no information about their extrema. The BFGS algorithm carries out
optimization without Hessians, but its approximate Hessians depend on the sequence of
iterations and hence are not local to the current iterate.

Contrastingly, the Gauss-Newton algorithm for nonlinear least-squares makes the obser-
vation that approximating each fi with a linear function yields a nontrivial curved approx-
imation of ENLS since each term in the sum is squared. The main feature of this approach
is that it requires only first-order approximation of the fi’s rather than Hessians.

Suppose we write
fi(~x) ≈ fi(~x0) + [∇fi(~x0)] · (~x− ~x0).

Then, we can approximate ENLS with E0
NLS given by

E0
NLS(~x) =

1

2

∑

i

(fi(~x0) + [∇fi(~x0)] · (~x− ~x0))
2
.

Define F (~x) ≡ (f1(~x), f2(~x), . . . , fk(~x)) by stacking the fi’s into a column vector. Then,

E0
NLS(~x) =

1

2
‖F (~x0) +DF (~x0)(~x− ~x0)‖22,

where DF is the Jacobian of F . Minimizing E0
NLS(~x) is a linear least-squares problem

−F (~x0) ≈ DF (~x0)(~x− ~x0) that can be solved via the normal equations:

~x = ~x0 − (DF (~x0)>DF (~x0))−1DF (~x0)>F (~x0).

More practically, as we have discussed, the system can be solved using the QR factorization
of DF (~x0) or—in higher dimensions—using conjugate gradients and related methods.

We can view ~x from minimizing E0
NLS(~x) as an improved approximation of the minimum

of ENLS(~x) starting from ~x0. The Gauss-Newton algorithm iterates this formula to solve
nonlinear least-squares:

~xk+1 = ~xk − (DF (~xk)>DF (~xk))−1DF (~xk)>F (~xk).

This iteration is not guaranteed to converge in all situations. Given an initial guess suf-
ficiently close to the minimum of the nonlinear least-squares problem, however, the ap-
proximation above behaves similarly to Newton’s method and even can have quadratic
convergence. Given the nature of the Gauss-Newton approximation, the algorithm works
best when the optimal objective value ENLS(~x∗) is small; convergence can suffer when the
optimal value is relatively large.
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12.1.2 Levenberg-Marquardt
The Gauss-Newton algorithm uses an approximation E0

NLS(~x) of the nonlinear least-squares
energy as a proxy for ENLS(~x) that is easier to minimize. In practice, this approximation
is likely to fail as ~x moves farther from ~x0, so we might modify the Gauss-Newton step to
include a step size limitation:

min~x E0
NLS(~x)

subject to ‖~x− ~x0‖22 ≤ ∆.

That is, we now restrict our change in ~x to have norm less than some user-provided value
∆; the ∆ neighborhood about ~x0 is called a trust region. Denote H ≡ DF (~x0)>DF (~x0) and
δ~x ≡ ~x− ~x0. Then, we can solve:

minδ~x
1
2δ~x
>Hδ~x+ F (~x0)>DF (~x0)δ~x

subject to ‖δ~x‖22 ≤ ∆.

That is, we displace ~x by minimizing the Gauss-Newton approximation after imposing the
step size restriction. This problem has the following KKT conditions (see §10.2.2):

Stationarity: ~0 = Hδ~x+DF (~x0)>F (~x0) + 2µδ~x

Primal feasibility: ‖δ~x‖22 ≤ ∆

Complementary slackness: µ(∆− ‖δ~x‖22) = 0

Dual feasibility: µ ≥ 0.

Define λ ≡ 2µ. Then, the stationarity condition can be written as follows:

(H + λIn×n)δ~x = −DF (~x0)>F (~x0).

Assume the constraint ‖δ~x‖22 ≤ ∆ is active, that is, ‖δ~x‖22 = ∆. Then, except in degenerate
cases λ > 0; combining this inequality with the fact that H is positive semidefinite, H +
λIn×n must be positive definite.

The Levenberg-Marquardt algorithm starts from this stationarity formula, taking the
following step derived from a user-supplied parameter λ > 0 [82, 85]:

~x = ~x0 − (DF (~x0)>DF (~x0) + λIn×n)−1DF (~x0)>F (~x0).

This linear system also can be derived by applying Tikhonov regularization to the Gauss-
Newton linear system. When λ is small, it behaves similarly to the Gauss-Newton algorithm,
while large λ results in a gradient descent step for ENLS.

Rather than specifying ∆ as introduced above, Levenberg-Marquardt steps fix λ > 0
directly. By the KKT conditions, a posteriori we know this choice corresponds to having
taken ∆ = ‖~x−~x0‖22. As λ→∞, the step from Levenberg-Marquardt satisfies ‖~x−~x0‖2 → 0;
so, we can regard ∆ and λ as approximately inversely proportional.

Typical approaches adaptively adjust the damping parameter λ during each iteration:

~xk+1 = ~xk − (DF (~xk)>DF (~xk) + λkIn×n)−1DF (~x0)>F (~xk).

For instance, we can scale up λk when the step in ENLS(~x) agrees well with the approximate
value predicted by E0

NLS(~x), since this corresponds to increasing the size of the neighborhood
in which the Gauss-Newton approximation is effective.
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12.2 ITERATIVELY REWEIGHTED LEAST-SQUARES
Continuing in our consideration of least-squares problems, suppose we wish to minimize a
function of the form:

EIRLS(~x) ≡
∑

i

fi(~x)[gi(~x)]2.

We can think of fi(~x) as a weight on the least-squares term gi(~x).

Example 12.1 (Lp optimization). Similar to the compressed sensing problems in §10.4.1,

given A ∈ Rm×n and ~b ∈ Rm we can generalize least-squares by minimizing

Ep(~x) ≡ ‖A~x−~b‖pp.

Choosing p = 1 can promote sparsity in the residual ~b − A~x. We can write this function
in an alternative form:

Ep(~x) =
∑

i

(~ai · ~x− bi)p−2(~ai · ~x− bi)2.

Here, we denote the rows of A as ~a>i . Then, Ep = EIRLS after defining:

fi(~x) = (~ai · ~x− bi)p−2

gi(~x) = ~ai · ~x− bi.

The iteratively reweighted least-squares (IRLS) algorithm makes use of the following
fixed point iteration:

~xk+1 = min
~xk+1

∑

i

fi(~xk)[gi(~xk+1)]2.

In the minimization, ~xk is fixed, so the optimization is a least-squares problem over the gi’s.
When gi is linear, the minimization can be carried out via linear least-squares; otherwise
we can use the nonlinear least-squares techniques in §12.1.

Example 12.2 (L1 optimization). Continuing Example 12.1, suppose we take p = 1.
Then,

E1(~x) =
∑

i

|~ai · ~x− bi| =
∑

i

1

|~ai · ~x− bi|
(~ai · ~x− bi)2.

This functional leads to the following IRLS iteration, after adjustment for numerical issues:

wi ← [max(|~ai · ~x− bi|, δ)]−1 . Recompute weights
~x ← min~x

∑
i wi(~ai · ~x− bi)2 . Linear least-squares

The parameter δ > 0 avoids division by zero; large values of δ make better-conditioned
linear systems but worse approximations of the original ‖ · ‖1 problem.

Example 12.3 (Weiszfeld algorithm). Recall the geometric median problem from Exam-
ple 9.3. In this problem, given ~x1, . . . , ~xk ∈ Rn, we wish to minimize

E(~x) ≡
∑

i

‖~x− ~xi‖2.
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Similar to the L1 problem in Example 12.2, we can write this function like a weighted
least-squares problem:

E(~x) ≡
∑

i

1

‖~x− ~xi‖2
‖~x− ~xi‖22.

Then, IRLS provides the Weiszfeld algorithm for geometric median problems:

wi ← [max(‖~x− ~xi‖2, δ)]−1 . Recompute weights
~x ← min~x

∑
i wi(~x− ~xi)2 . Linear least-squares

We can solve for the second step of the Weiszfeld algorithm in closed form. Differentiating
the objective with respect to ~x shows

~0 =
∑

i

2wi(~x− ~xi) =⇒ ~x =

∑
i wi~xi∑
i wi

.

Thus, the two alternating steps of Weiszfeld’s algorithm can be carried out efficiently as:

wi ← [max(‖~x− ~xi‖2, δ)]−1 . Recompute weights

~x ←
∑
i wi~xi∑
i wi

. Weighted centroid

IRLS algorithms are straightforward to formulate, so they are worth trying if an opti-
mization can be written in the form of EIRLS. When gi is linear for all i as in Example 12.2,
each iteration of IRLS can be carried out quickly using Cholesky factorization, QR, conju-
gate gradients, and so on, avoiding line search and other more generic strategies.

It is difficult to formulate general conditions under which IRLS will reach the minimum
of EIRLS. Often, iterates must be approximated somewhat as in the introduction of δ to Ex-
ample 12.2 to avoid division by zero and other degeneracies. In the case of L1 optimization,
however, IRLS can be shown with small modification to converge to the optimal point [31].

12.3 COORDINATE DESCENT AND ALTERNATION
Suppose we wish to minimize a function f : Rn+m → R. Rather than viewing the input as
a single variable ~x ∈ Rn+m, we might write f in an alternative form as f(~x, ~y), for ~x ∈ Rn
and ~y ∈ Rm. One strategy for optimization is to fix ~y and minimize f with respect to ~x, fix
~x and minimize f with respect to ~y, and repeat:

for i← 1, 2, . . .
~xi+1 ← min~x f(~x, ~yi) . Optimize ~x with ~y fixed
~yi+1 ← min~y f(~xi+1, ~y) . Optimize ~y with ~x fixed

In this alternating approach, the value of f(~xi, ~yi) decreases monotonically as i increases
since a minimization is carried out at each step. We cannot prove that alternation always
reaches a global or even local minimum, but in many cases it can be an efficient option for
otherwise challenging problems.

12.3.1 Identifying Candidates for Alternation
There are a few reasons why we might wish to perform alternating optimization:
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• The individual problems over ~x and ~y are optimizations in a lower dimension and may
converge more quickly.

• We may be able to split the variables in such a way that the individual ~x and ~y steps
are far more efficient than optimizing both variables jointly.

Below we provide a few examples of alternating optimization in practice.

Example 12.4 (Generalized PCA). In the PCA problem from §7.2.5, we are given a
data matrix X ∈ Rn×k whose columns are k data points in Rn. We seek a basis in Rn
of size d such that the projection of the data points onto the basis introduces minimal
approximation error; we will store this basis in the columns of C ∈ Rn×d. Classical PCA
minimizes ‖X − CY ‖2Fro over both C and Y , where the columns of Y ∈ Rd×k are the
coefficients of the data points in the C basis. If C is constrained to be orthogonal, then
Y = C>X, recovering the formula in our previous discussion.

The Frobenius norm in PCA is somewhat arbitrary: The relevant relationship is X −
CY ≈ 0. Alternative PCA models minimize µ(X − CY ) over C and Y , for some other
energy function µ : Rn×k → R favoring matrices with entries near zero; µ can provide
enhanced robustness to noise or encode application-specific assumptions. Taking µ(M) ≡
‖M‖2Fro recovers classical PCA; another popular choice is robust PCA [71], which takes
µ(M) ≡∑ij |Mij |.

The product CY in µ(X −CY ) makes the energy nonlinear and nonconvex. A typical
minimization routine for this problem uses alternation: First optimize C with Y fixed,
then optimize Y with C fixed, and repeat. Whereas optimizing the energy with respect to
C and Y jointly might require a generic large-scale method, the individual alternating C
and Y steps can be easier:

• When µ(M) = ‖M‖2Fro, both the Y and C alternations are least-squares problems,
leading to the alternating least-squares (ALS) algorithm for classical PCA.

• When µ(M) ≡∑ij |Mij |, the Y and C alternations are linear programs, which can
be optimized using the techniques mentioned in §10.4.1.

Example 12.5 (ARAP). Recall the planar “as-rigid-as-possible” (ARAP) problem intro-
duced in Example 10.5:

minimizeRv,~yv
∑

v∈V

∑

(v,w)∈E
‖Rv(~xv − ~xw)− (~yv − ~yw)‖22

subject to R>v Rv = I2×2 ∀v ∈ V
~yv fixed ∀v ∈ V0.

Solving for the matrices Rv ∈ R2×2 and vertex positions ~yv ∈ R2 simultaneously is a highly
nonlinear and nonconvex task, especially given the orthogonality constraint R>v Rv = I2×2.
There is one ~yv and one Rv for each vertex v of a triangle mesh with potentially thousands
or even millions of vertices, so such a direct optimization using quasi-Newton methods
requires a large-scale linear solve per iteration and still is prone to finding local minima.

Instead, [116] suggests alternating between the following two steps:

1. Fixing the Rv matrices and optimizing only for the positions ~yv:

minimize~yv
∑

v∈V

∑

(v,w)∈E
‖Rv(~xv − ~xw)− (~yv − ~yw)‖22

subject to ~yv fixed ∀v ∈ V0.
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Figure 12.1 Coordinate descent in two dimensions alternates between minimizing in

the horizontal and vertical axis directions.

This least-squares problem can be solved using a sparse, positive-definite linear sys-
tem of equations.

2. Fixing the ~yv’s and optimizing for the Rv’s. No energy terms or constraints couple
any pair Rv, Rw for v, w ∈ V , so we can solve for each matrix Rv independently.
That is, rather than solving for 4|V | unknowns simultaneously, we loop over v ∈ V ,
solving the following optimization for each Rv ∈ R2×2:

minimizeRv
∑

(v,w)∈E
‖Rv(~xv − ~xw)− (~yv − ~yw)‖22

subject to R>v Rv = I2×2.

This optimization problem is an instance of the Procrustes problem from §7.2.4 and
can be solved in closed-form using a 2 × 2 SVD. We have replaced a large-scale
minimization with the application of a formula that can be evaluated in parallel for
each vertex, a massive computational savings.

Alternating between optimizing for the ~yv’s with the Rv’s fixed and vice versa decreases
the energy using two efficient pieces of machinery, sparse linear solvers and 2 × 2 SVD
factorization. This can be far more efficient than considering the ~yv’s and Rv’s simulta-
neously, and in practice a few iterations can be sufficient to generate elastic deformations
like the one shown in Figure 10.3. Extensions of ARAP even run in real time, optimizing
fast enough to provide interactive feedback to artists editing two- and three-dimensional
shapes.

Example 12.6 (Coordinate descent). Taking the philosophy of alternating optimization
to an extreme, rather than splitting the inputs of f : Rn → R into two variables, we could
view f as a function of several variables f(x1, x2, . . . , xn). Then, we could cycle through
each input xi, performing a one-dimensional optimization in each step. This lightweight
algorithm, illustrated in Figure 12.1, is known as coordinate descent.

For instance, suppose we wish to solve the least-squares problem A~x ≈ ~b by minimizing
‖A~x−~b‖22. As in Chapter 11, line search over any single xi can be solved in closed form.

If the columns of A are vectors ~a1, . . . ,~an, then as shown in §1.3.1 we can write A~x−~b =



234 � Numerical Algorithms

�y1 �y2

�y3

Figure 12.2 The k-means algorithm seeks cluster centers ~yi that partition a set of

data points ~x1, . . . , ~xm based on their closest center.

x1~a1 + · · ·+ xn~an −~b. By this expansion,

0 =
∂

∂xi
‖x1~a1 + · · ·+ xn~an −~b‖22 = 2(A~x−~b) · ~ai =

∑

j

[(∑

k

ajiajkxk

)
− ajibj

]
.

Solving this equation for xi yields the following coordinate descent update for xi:

xi ←
~ai ·~b−

∑
k 6=i xk(~ai · ~ak)

‖~ai‖22
.

Coordinate descent for least-squares iterates this formula over i = 1, 2, . . . , n repeatedly
until convergence. This approach has efficient localized updates and appears in machine
learning methods where A has many more rows than columns, sampled from a data dis-
tribution. We have traded a global method for one that locally updates the solution ~x by
solving extremely simple subproblems.

Example 12.7 (k-means clustering). Suppose we are given a set of data points
~x1, . . . , ~xm ∈ Rn and wish to group these points into k clusters based on distance, as
in Figure 12.2. Take ~y1, . . . , ~yk ∈ Rn to be the centers of clusters 1, . . . , k, respectively. To
cluster the data by assigning each point ~xi to a single cluster centered at ~yc, the k-means
technique optimizes the following energy:

E(~y1, . . . , ~yk) ≡
m∑

i=1

min
c∈{1,...,k}

‖~xi − ~yc‖22.

In words, E measures the total squared distance of the data points ~xi to their closest
cluster center ~yc.

Define ci ≡ arg minc∈{1,...,k} ‖~xi − ~yc‖22; that is, ci is the index of the cluster center
~yci closest to ~xi. Using this substitution, we can write an expanded formulation of the
k-means objective as follows:

E(~y1, . . . , ~yk; c1, . . . , cm) ≡
m∑

i=1

‖~xi − ~yci‖22.

The variables ci are integers, but we can optimize them jointly with the ~y’s using alterna-
tion:
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• When the ci’s are fixed, the optimization for the ~yj ’s is a least-squares problem whose
solution can be written in closed form as

~yj =

∑
ci=j

~xi

|{ci = j}| .

That is, ~yj is the average of the points ~xi assigned to cluster j.

• The optimization for ci also can be carried out in closed form using the expression
ci ≡ arg minc∈{1,...,k} ‖~xi − ~yc‖22 by iterating from 1 to k for each i. This iteration
just assigns each ~xi to its closest cluster center.

This alternation is known as the k-means algorithm and is a popular method for clustering.
One drawback of this method is that it is sensitive to the initial guesses of ~y1, . . . , ~yk. In
practice, k-means is often run several times with different initial guesses, and only the best
output is preserved. Alternatively, methods like “k-means++” specifically design initial
guesses of the ~yi’s to encourage convergence to a better local minimum [3].

12.3.2 Augmented Lagrangians and ADMM
Nonlinear constrained problems are often the most challenging optimization tasks. While
the general algorithms in §10.3 are applicable, they can be sensitive to the initial guess
of the minimizer, slow to iterate due to large linear solves, and slow to converge in the
absence of more information about the problems at hand. Using these methods is easy from
an engineering perspective since they require providing only a function and its derivatives,
but with some additional work on paper, certain objective functions can be tackled us-
ing faster techniques, many of which can be parallelized on multiprocessor machines. It is
worth checking if a problem can be solved via one of these strategies, especially when the
dimensionality is high or the objective has a number of similar or repeated terms.

In this section, we consider an alternating approach to equality-constrained optimization
that has gained considerable attention in recent literature. While it can be used out-of-the-
box as yet another generic optimization algorithm, its primary value appears to be in the
decomposition of complex minimization problems into simpler steps that can be iterated,
often in parallel. In large part we will follow the development of [14], which contains many
examples of applications of this class of techniques.

As considered in Chapter 10, the equality-constrained optimization problem can be
stated as follows:

minimize f(~x)

subject to g(~x) = ~0.

One incarnation of the barrier method suggested in §10.3.2 optimizes an unconstrained
objective with a quadratic penalty:

fρ(~x) = f(~x) +
1

2
ρ‖g(~x)‖22.

As ρ→∞, critical points of fρ satisfy the g(~x) = ~0 constraint more and more closely. The
trade-off for this method, however, is that the optimization becomes poorly conditioned as
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ρ = 0 ρ = 0.01 ρ = 0.1 ρ = 1 ρ = 10

Figure 12.3 We can optimize f(x, y) ≡ xy subject to x + y = 1 approximately by

minimizing the penalized version fρ(x, y) = xy + ρ(x + y − 1)2. As ρ increases,

however, level sets of xy get obscured in favor of enforcing the constraint.

ρ becomes large. This effect is illustrated in Figure 12.3; when ρ is large, the level sets of
fρ mostly are dedicated to enforcing the constraint rather than minimizing the objective
f(~x), making it difficult to distinguish between ~x’s that all satisfy the constraint.

Alternatively, by the method of Lagrange multipliers (Theorem 1.1), we can seek first-

order optima of this problem as the critical points of Λ(~x,~λ) given by

Λ(~x,~λ) ≡ f(~x)− ~λ>g(~x).

This Lagrangian does not suffer from conditioning issues that affect the quadratic penalty
method. On the other hand, it replaces a minimization problem—which can be solved by
moving “downhill”—with a more challenging saddle point problem in which critical points
should be minima of Λ with respect to ~x and maxima of Λ with respect to ~λ. Optimizing
by alternatively minimizing with respect to ~x and maximizing with respect to ~λ can be
unstable; intuitively this makes some sense since it is unclear whether Λ should be small or
large.

The augmented Lagrangian method for equality-constrained optimization combines the
quadratic penalty and Lagrangian strategies, using the penalty to “soften” individual iter-
ations of the alternation for optimizing Λ described above. It replaces the original equality-
constrained optimization problem with the following equivalent augmented problem:

minimize f(~x) +
1

2
ρ‖g(~x)‖22

subject to g(~x) = ~0.

Any ~x satisfying the g(~x) = ~0 constraint makes the second objective term vanish. But, when
the constraint is not exactly satisfied, the second energy term biases the objective toward
points ~x that approximately satisfy the equality constraint. In other words, during iterations
of augmented Lagrangian optimization, the ρ‖g(~x)‖22 acts like a rubber band pulling ~x closer
to the constraint set even during the minimization step.

This modified problem has a new Lagrangian given by

Λρ(~x,~λ) ≡ f(~x) +
1

2
ρ‖g(~x)‖22 − ~λ>g(~x).

Hence, the augmented Lagrangian method optimizes this objective by alternating as follows:

for i← 1, 2, . . .
~λi+1 ← ~λi − ρg(~xi) . Dual update

~xi ← min~x Λρ(~x,~λi+1) . Primal update
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The dual update step can be thought of as a gradient ascent step for ~λ. The parameter ρ
here no longer has to approach infinity for exact constraint satisfaction, since the Lagrange
multiplier enforces the constraint regardless. Instead, the quadratic penalty serves to make
sure the output of the ~x iteration does not violate the constraints too strongly.

Augmented Lagrangian optimization has the advantage that it alternates between ap-
plying a formula to update ~λ and solving an unconstrained minimization problem for ~x.
For many optimization problems, however, the unconstrained objective still may be non-
differentiable or difficult to optimize. A few special cases, e.g., Uzawa iteration for dual
decomposition [124], can be effective for optimization but in many circumstances quasi-
Newton algorithms outperform this approach with respect to speed and convergence.

A small alteration to general augmented Lagrangian minimization, however, yields the
alternating direction method of multipliers (ADMM) for optimizing slightly more specific
objectives of the form

minimize f(~x) + h(~z)

subject to A~x+B~z = ~c.

Here, the optimization variables are both ~x and ~z, where f, h : Rn → R are given functions
and the equality constraint is linear. As we will show, this form encapsulates many important
optimization problems. We will design an algorithm that carries out alternation between
the two primal variables ~x and ~z, as well as between primal and dual optimization.

The augmented Lagrangian in this case is

Λρ(~x, ~z, ~λ) ≡ f(~x) + h(~z) +
1

2
ρ‖A~x+B~z − ~c‖22 + ~λ>(A~x+B~z − ~c).

Alternating in three steps between optimizing ~x, ~z, and ~λ suggests a modification of the
augmented Lagrangian method:

for i← 1, 2, . . .
~xi+1 ← arg min~x Λρ(~x, ~zi, ~λi) . ~x update

~zi+1 ← arg min~z Λρ(~xi+1, ~z, ~λi) . ~z update
~λi+1 ← ~λi + ρ(A~xi+1 +B~zi+1 − ~c) . Dual update

In this algorithm, ~x and ~z are optimized one at a time; the augmented Lagrangian method
would optimize them jointly. Although this splitting can require more iterations for con-
vergence, clever choices of ~x and ~z lead to powerful division-of-labor strategies for breaking
down difficult problems. Each individual iteration will take far less time, even though more
iterations may be needed for convergence. In a sense, ADMM is a “meta-algorithm” used
to design optimization techniques. Rather than calling a generic package to minimize Λρ
with respect to ~x and ~z, we will find choices of ~x and ~z that make individual steps fast.

Before working out examples of ADMM in action, it is worth noting that it is guaranteed
to converge to a critical point of the objective under fairly weak conditions. For instance,
ADMM reaches a global minimum when f and h are convex and Λρ has a saddle point.
ADMM has also been observed to converge even for nonconvex problems, although current
theoretical understanding in this case is limited. In practice, ADMM tends to be quick to
generate approximate minima of the objective but can require a long tail of iterations to
squeeze out the last decimal points of accuracy; for this reason, some systems use ADMM
to do initial large-scale steps and transition to other algorithms for localized optimization.

We dedicate the remainder of this section to working out examples of ADMM in practice.
The general pattern is to split the optimization variables into ~x and ~z in such a way that
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the two primal update steps each can be carried out efficiently, preferably in closed form
or decoupling so that parallelized computations can be used to solve many subproblems at
once. This makes individual iterations of ADMM inexpensive.

Example 12.8 (Nonnegative least-squares). Suppose we wish to minimize ‖A~x−~b‖22 with
respect to ~x subject to the constraint ~x ≥ ~0. The ~x ≥ 0 constraint rules out using Gaussian
elimination, but ADMM provides one way to bypass this issue.

Consider solving the following equivalent problem:

minimize ‖A~x−~b‖22 + h(~z)

subject to ~x = ~z.

Here, we define the new function h(~z) as follows:

h(~z) =

{
0 ~z ≥ ~0
∞ otherwise.

The function h(~z) is discontinuous, but it is convex. This equivalent form of nonnegative
least-squares may be harder to read, but it provides an effective ADMM splitting.

For this optimization, the augmented Lagrangian is

Λρ(~x, ~z, ~λ) = ‖A~x−~b‖22 + h(~z) +
1

2
ρ‖~x− ~z‖22 + ~λ>(~x− ~z).

For fixed ~z with zi 6= ∞ for all i, then Λρ is differentiable with respect to ~x. Hence, we

can carry out the ~x step of ADMM by setting the gradient with respect to ~x equal to ~0:

~0 = ∇~xΛρ(~x, ~z, ~λ)

= 2A>A~x− 2A>~b+ ρ(~x− ~z) + ~λ

= (2A>A+ ρIn×n)~x+ (~λ− 2A>~b− ρ~z)
=⇒ ~x = (2A>A+ ρIn×n)−1(2A>~b+ ρ~z − ~λ).

This linear solve is a Tikhonov-regularized least-squares problem. For extra speed, the
Cholesky factorization of 2A>A + ρIn×n can be computed before commencing ADMM
and used to find ~x in each iteration.

Minimizing Λρ with respect to ~z can be carried out in closed form. Any objective
function involving h effectively constrains each component of ~z to be nonnegative, so we
can find ~z using the following optimization:

minimize~z
1

2
ρ‖~x− ~z‖22 + ~λ>(~x− ~z)

subject to ~z ≥ ~0.

The ‖A~x−~b‖22 term in the full objective is removed because it has no ~z dependence. This
problem decouples over the components of ~z since no energy terms involve more than one
dimension of ~z at a time. So, we can solve many instances of the following one-dimensional
problem:

minimizezi
1

2
ρ(xi − zi)2 + λi(xi − zi)

subject to zi ≥ 0.

In the absence of the zi ≥ 0 constraint, the objective is minimized when 0 = ρ(zi − xi)−
λi =⇒ zi = xi + λi/ρ; when this value is negative, we fix zi = 0.

Hence, the ADMM algorithm for nonnegative least-squares is:
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for i← 1, 2, . . .
~xi+1 ← (2A>A+ ρIn×n)−1(2A>~b+ ρ~zi − ~λi) . ~x update; least-squares
~z0 ← ~λi/ρ + ~xi+1 . Unconstrained ~z formula
~zi+1 ← Elementwise-Max(~z0,~0) . Enforce ~z ≥ ~0
~λi+1 ← ~λi + ρ(~xi+1 − ~zi+1) . Dual update

This algorithm for nonnegative least-squares took our original problem—a quadratic pro-
gram that could require difficult constrained optimization techniques—and replaced it with
an alternation between a linear solve for ~x, a formula for ~z, and a formula for ~λ. These
individual steps are straightforward to implement and efficient computationally.

Example 12.9 (ADMM for geometric median). Returning to Example 12.3, we can recon-
sider the energy E(~x) for the geometric median problem using the machinery of ADMM:

E(~x) ≡
N∑

i=1

‖~x− ~xi‖2.

This time, we will split the problem into two unknowns ~zi, ~x:

minimize
∑

i

‖~zi‖2

subject to ~zi + ~x = ~xi ∀i.

The augmented Lagrangian for this problem is:

Λρ =
∑

i

[
‖~zi‖2 +

1

2
ρ‖~zi + ~x− ~xi‖22 + ~λ>i (~zi + ~x− ~xi)

]
.

As a function of ~x, the augmented Lagrangian is differentiable and hence to find the ~x
iteration we write:

~0 = ∇~xΛρ =
∑

i

[
ρ(~x− ~xi + ~zi) + ~λi

]

=⇒ ~x =
1

N

∑

i

[
~xi − ~zi −

1

ρ
~λi

]
.

The optimization for the ~zi’s decouples over i when ~x is fixed, so after removing constant
terms we minimize ‖~zi‖2 + 1

2ρ‖~zi +~x−~xi‖22 +~λ>i ~zi for each ~zi separately. We can combine
the second and third terms by “completing the square” as follows:

1

2
ρ‖~zi + ~x− ~xi‖22 + ~λ>i ~zi =

1

2
ρ‖~zi‖22 + ρ~z>i

(
1

ρ
~λi + ~x− ~xi

)
+ const.

=
1

2
ρ

∥∥∥∥~zi +
1

ρ
~λi + ~x− ~xi

∥∥∥∥
2

2

+ const.

The constant terms can have ~x dependence since it is fixed in the ~zi iteration. Defining
~z0 ≡ − 1

ρ
~λi − ~x+ ~xi, in the ~zi iteration we have shown that we can solve:

min
~zi

[
‖~zi‖2 +

1

2
ρ‖~zi − ~z0‖22

]
.



240 � Numerical Algorithms

Written in this form, it is clear that the optimal ~zi satisfies ~zi = t~z0 for some t ∈ [0, 1],
since the two terms of the objective balance the distance of ~zi to ~0 and to ~z0. After dividing
by ‖~z0‖2, we can solve:

min
t≥0

[
t+

1

2
ρ‖~z0‖2(t− 1)2

]
.

Using elementary calculus techniques we find:

t =

{
1− 1/ρ‖~z0‖2 when ρ‖~z0‖2 ≥ 1

0 otherwise.

Taking ~zi = t~z0 finishes the ~z iteration of ADMM.
In summary, the ADMM algorithm for geometric medians is as follows:

for i← 1, 2, . . .

~x ← 1
N

∑
i

[
~xi − ~zi − 1

ρ
~λi

]
. ~x update

for j ← 1, 2, . . . , N . Can parallelize
~z0 ← − 1

ρ
~λi − ~x+ ~xi

t ←
{

1− 1/ρ‖~z0‖2 when ρ‖~z0‖2 ≥ 1
0 otherwise

~zj ← t~z0 . ~z update
~λj ← ~λj + ρ(~zi + ~x− ~xi) . Dual update

The examples above show the typical ADMM strategy, in which a difficult nonlinear problem
is split into two subproblems that can be carried out in closed form or via more efficient
operations. The art of posing a problem in terms of ~x and ~z to get these savings requires
practice and careful study of individual problems.

The parameter ρ > 0 often does not affect whether or not ADMM will eventually
converge, but an intelligent choice of ρ can help this technique reach the optimal point faster.
Some experimentation can be required, or ρ can be adjusted from iteration to iteration
depending on whether the primal or dual variables are converging more quickly [127]. In
some cases, ADMM provably converges faster when ρ→∞ as the iterations proceed [104].

12.4 GLOBAL OPTIMIZATION
Nonlinear least-squares, IRLS, and alternation are lightweight approaches for nonlinear ob-
jectives that can be optimized quickly after simplification. On the other side of the spectrum,
some minimization problems not only do not readily admit fast specialized algorithms but
also are failure modes for Newton’s method and other generic solvers. Convergence guaran-
tees for Newton’s method and other algorithms based on the Taylor approximation assume
that we have a strong initial guess of the minimum that we wish to refine. When we lack
such an initial guess or a simplifying assumption like convexity, we must solve a global
optimization problem searching over the entire space of feasible output.

As discussed briefly in §9.2, global optimization is a challenging, nearly ill-posed problem.
For example, in the unconstrained case it is difficult to know whether ~x∗ yields the minimum
possible f(~x) anywhere, since this is a statement over an infinitude of points ~x. Hence, global
optimization methods use one or more strategies to improve the odds of finding a minimum:

• Initially approximate the objective f(~x) with an easier function to minimize to get a
better starting point for the original problem.
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Figure 12.4 Newton’s method can get caught in any number of local minima in the

function on the left; smoothing this function, however, can generate a stronger

initial guess of the global optimum.

• Sample the space of possible inputs ~x to get a better idea of the behavior of f over a
large domain.

These and other strategies are heuristic, meaning that they usually cannot be used to
guarantee that the output of such a minimization is globally optimal. In this section, we
mention a few common techniques for global optimization as pointers to more specialized
literature.

12.4.1 Graduated Optimization
Consider the optimization objective illustrated in Figure 12.4. Locally, this objective wiggles
up and down, but at a larger scale, a more global pattern emerges. Newton’s method seeks
any critical point of f(x) and easily can get caught in one of its local minima. To avoid this
suboptimal output, we might attempt to minimize a smoothed version of f(x) to generate
an initial guess for the minimum of the more involved optimization problem.

Graduated optimization techniques solve progressively harder optimization problems
with the hope that the coarse initial iterations will generate better initial guesses for the
more accurate but sensitive later steps. In particular, suppose we wish to minimize some
function f(~x) over ~x ∈ Rn with many local optima as in Figure 12.4. Graduated methods
generate a sequence of functions f1(~x), f2(~x), . . . , fk(~x) with fk(~x) = f(~x), using critical
points of fi as initial guesses for minima of fi+1.

Example 12.10 (Image alignment). A common task making use of graduated opti-
mization is photograph alignment as introduced in §4.1.4. Consider the images in Fig-
ure 12.5. Aligning the original two images can be challenging because they have lots of
high-frequency detail; for instance, the stones on the wall all look similar and easily could
be misidentified. By blurring the input images, a better initial guess of the alignment can
be obtained, because high-frequency details are suppressed.

The art of graduated optimization lies in finding an appropriate sequence of fi’s to help
reach a global optimum. In signal and image processing, like in Example 12.10, a typical
approach is to use the same optimization objective in each iteration but blur the underlying
data to reveal larger-scale patterns. Scale space methods like [81] blur the objective itself,
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Figure 12.5 The photos on the left can be hard to align using automatic methods

because they have lots of high-frequency detail that can obscure larger alignment

patterns; by blurring the photos we can align larger features before refining the

alignment using texture and other detail.

for instance by defining fi to be f(~x) ∗ gσi(~x), the result of blurring f(~x) using a Gaussian
of width σi, with σi → 0 as i→∞.

A related set of algorithms known as homotopy continuation methods continuously
changes the optimization objective by leveraging intuition from topology. These algorithms
make use of the following notion from classical mathematics:

Definition 12.1 (Homotopic functions). Two continuous functions f(~x) and g(~x) are
homotopic if there exists continuous function H(~x, s) with

H(~x, 0) = f(~x) and H(~x, 1) = g(~x)

for all ~x.

The idea of homotopy is illustrated in Figure 12.6.
Similar to graduated methods, homotopy optimizations minimize f(~x) by defining a new

function H(~x, s) where H(~x, 0) is easy to optimize and H(~x, 1) = f(~x). Taking ~x∗0 to be the
minimum of H(~x, 0) with respect to ~x, basic homotopy methods incrementally increase s,
each time updating to a new ~x∗s. Assuming H is continuous, we expect the minimum ~x∗s to
trace a continuous path in Rn as s increases; hence, the solve for each ~x∗s after increasing s
differentially has a strong initial guess from the previous iteration.

Example 12.11 (Homotopy methods, [45]). Homotopy methods also apply to root-
finding. As a small example, suppose we wish to find points x satisfying arctan(x) = 0.
Applying the formula from §8.1.4, Newton’s method for finding such a root iterates

xk+1 = xk − (1 + x2
k) arctan(x).

If we provide an initial guess x0 = 4, however, this iteration diverges. Instead, we can
define a homotopy function as

H(x, s) ≡ arctan(x) + (s− 1) arctan(4).

We know H(x, 0) = arctan(x)− arctan(4) has a root at the initial guess x0 = 4. Stepping
s by increments of 1/10 from 0 to 1, each time minimizing H(x, si) with initial guess x∗i−1

via Newton’s method yields a sequence of convergent problems reaching x∗ = 0.
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+s

γ1(t)

γ0(t)
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t = 0

t = 1

s = 0

s = 1

Figure 12.6 The curves γ0(t) and γ1(t) are homotopic because there exists a contin-

uously varying set of curves γs(t) for s ∈ [0, 1] coinciding with γ0 at s = 0 and γ1

at s = 1.

More generally, we can think of a solution path as a curve of points (~x(t), s(t)) such
that s(0) = 0, s(1) = 1, and at each time t, ~x(t) is a local minimizer of H(~x, s(t)) over
~x. Our initial description of homotopy optimization would take s(t) = t, but now we can
allow s(t) to be non-monotonic as a function of t as long as it eventually reaches s = 1.
Advanced homotopy continuation methods view (~x(t), s(t)) as a curve satisfying certain
ordinary differential equations, which you will derive in Exercise 12.6; these equations can
be solved using the techniques we will define in Chapter 15.

12.4.2 Randomized Global Optimization
When smoothing the objective function is impractical or fails to remove local minima from
f(~x), it makes sense to sample the space of possible inputs ~x to get some idea of the energy
landscape. Newton’s method, gradient descent, and others all have strong dependence on
the initial guess of the location of the minimum, so trying more than one starting point
increases the chances of success.

If the objective f is sufficiently noisy, we may wish to remove dependence on differential
estimates altogether. Without gradients, we do not know which directions locally point
downhill, but via sampling we can find such patterns on a larger scale. Heuristics for global
optimization at this scale commonly draw inspiration from the natural world and the idea of
swarm intelligence, that complex natural processes can arise from individual actors following
simple rules, often in the presence of stochasticity, or randomness. For instance, optimization
routines have been designed to mimic ant colonies transporting food [26], thermodynamic
energy in “annealing” processes [73], and evolution of DNA and genetic material [87]. These
methods usually are considered heuristics without convergence guarantees but can help
guide a large-scale search for optima.

As one example of a method well-tuned to continuous problems, we consider the particle
swarm method introduced in [72] as an optimization technique inspired by social behavior
in bird flocks and fish schools. Many variations of this technique have been proposed, but
we explore one of the original versions introduced in [36].



244 � Numerical Algorithms

Suppose we have a set of candidate minima ~x1, . . . , ~xk. We will think of these points as
particles moving around the possible space of ~x values, and hence they will also be assigned
velocities ~v1, . . . , ~vk. The particle swarm method maintains a few additional variables:

• ~p1, . . . , ~pk, the position over all iterations so far of the lowest value f(~pi) observed by
each particle i.

• The position ~g ∈ {~p1, . . . , ~pk} with the smallest objective value; this position is the
globally best solution observed so far.

This notation is illustrated in Figure 12.7.
In each iteration of particle swarm optimization, the velocities of the particles are up-

dated to guide them toward likely minima. Each particle is attracted to its own best observed
minimum as well as to the global best position so far:

~vi ← ~vi + α(~pi − ~xi) + β(~g − ~xi).
The parameters α, β ≥ 0 determine the amount of force felt from ~xi to move toward these
two positions; larger α, β values will push particles toward minima faster at the cost of more
limited exploration of the space of possible minima. Once velocities have been updated, the
particles move along their velocity vectors:

~xi ← ~xi + ~vi.

Then, the process repeats. This algorithm is not guaranteed to converge, but it can be termi-
nated at any point, with ~g as the best observed minimum. The final method is documented
in Figure 12.8.

12.5 ONLINE OPTIMIZATION
We briefly consider a class of optimization problems from machine learning, game theory,
and related fields in which the objective itself is allowed to change from iteration to iteration.
These problems, known as online optimization problems, reflect a world in which evolving
input parameters, priorities, and desired outcomes can make the output of an optimization
irrelevant soon after it is generated. Hence, techniques in this domain must adaptively react
to the changing objective in the presence of noise. Our discussion will introduce a few basic
ideas from [107]; we refer the reader to that survey article for a more detailed treatment.

Example 12.12 (Stock market). Suppose we run a financial institution and wish to main-
tain an optimal portfolio of investments. On the morning of day t, in a highly simplified
model we might choose how much of each stock 1, . . . , n to buy, represented by a vector
~xt ∈ (R+)n. At the end of the day, based on fluctuations of the market, we will know a
function ft so that ft(~x) gives us our total profit or loss based on the decision ~x made in
the morning. The function ft can be different every day, so we must attempt to design a
policy that predicts the objective function and/or its optimal point every day.

Problems in this class often can be formalized as online convex optimization problems. In
the unconstrained case, online convex optimization algorithms are designed for the following
feedback loop:

for t = 1, 2, . . . . At each time t
. Predict ~xt ∈ U
. Receive loss function ft : U → R
. Suffer loss ft(~xt)
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�xi

�vi

�pi

�g

Figure 12.7 The particle swarm navigates the landscape of f(~x) by maintaining po-

sitions and velocities for a set of potential minima ~xi; each ~xi is attracted to the

position ~pi at which it has observed the smallest value of f(~xi) as well as to the

minimum ~g observed thus far by any particle.

function Particle-Swarm(f(�x), k, α, β, �xmin, �xmax, �vmin, �vmax)
fmin ← ∞
for i ← 1, 2, . . . , k

�xi ← Random-Position(�xmin, �xmax) � Initialize positions randomly
�vi ← Random-Velocity(�vmin, �vmax) � Initialize velocities randomly
fi ← f(�xi) � Evaluate f

i ← �xi � Current particle optimum
if fi < fmin then � Check if it is global optimum

fmin ← fi � Update optimal value
�g ← �xi � Set global optimum

for j ← 1, 2 �..., Stop when satisfied with �g
for i ← 1, 2, . . . , k

�vi ← �vi + α(�pi − �xi) + β(�g − �xi) � Update velocity
�xi ← �xi + �vi � Update position

for i ← 1, 2, . . . , k
if f(�xi) < fi then � Better minimum for particle i

�p

�p

i ← �xi � Update particle optimum
fi ← f(�xi) � Store objective value
if fi < fmin then � Check if it is a global optimum

fmin ← fi � Update optimal value
�g ← �xi � Global optimum

Figure 12.8 Particle swarm optimization attempts to minimize f(~x) by simulating a

collection of particles ~x1, . . . , ~xk moving in the space of potential inputs ~x.
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We will assume the ft’s are convex and that U ⊆ Rn is a convex set. There are a few
features of this setup worth highlighting:

• To stay consistent with our discussion of optimization in previous chapters, we phrase
the problem as minimizing loss rather than, e.g., maximizing profit.

• The optimization objective can change at each time t, and we do not get to know the
objective ft before choosing ~xt. In the stock market example, this feature reflects the
fact that we do not know the price of a stock on day t until the day is over, and we
must decide how much to buy before getting to that point.

• The online convex optimization algorithm can choose to store f1, . . . , ft−1 to inform
its choice of ~xt. For stock investment, we can use the stock prices on previous days to
predict them for the future.

Since online convex optimization algorithms do not know ft before predicting ~xt, we
cannot expect them to perform perfectly. An “adversarial” client might wait for ~xt and
purposefully choose a loss function ft to make ~xt look bad! For this reason, metrics like
cumulative loss

∑T
t=1 ft(~xt) are unfair measures for the quality of an online optimization

method at time T . In some sense, we must lower our standards for success.
One model for online convex optimization is minimization of regret, which compares

performance to that of a fixed expert benefiting from hindsight:

Definition 12.2 (Regret). The regret of an online optimization algorithm at time T over
a set U is given by

RT ≡ max
~u∈U

[
T∑

t=1

(ft(~xt)− ft(~u))

]
.

The regret RT measures the difference between how well our algorithm has performed over
time—as measured by summing ft(~xt) over t—and the performance of any constant point
~u that must remain the same over all t. For the stock example, regret compares the profits
lost by using our algorithm and the loss of using any single stock portfolio over all time.
Ideally, the ratio RT/T measuring average regret over time should decrease as T →∞.

The most obvious approach to online optimization is the “follow the leader” (FTL)
strategy, which chooses ~xt based on how it would have performed at times 1, . . . , t− 1 :

Follow the leader: ~xt ≡ arg min
~x∈U

t−1∑

s=1

fs(~x).

FTL is a reasonable heuristic if we assume past performance has some bearing on future
results. After all, if we do not know ft we might as well hope that it is similar to the
objectives f1, . . . , ft−1 we have observed in the past.

For many classes of functions ft, FTL is an effective approach that makes increasingly
well-informed choices of ~xt as t progresses. It can experience some serious drawbacks, how-
ever, as illustrated in the following example:

Example 12.13 (Failure of FTL, [107] §2.2). Suppose U = [0, 1] and we generate a
sequence of functions as follows:

ft(x) =




−x/2 if t = 1

x if t is even
−x otherwise.
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FTL minimizes the sum over all previous objective functions, giving the following series
of outputs:

t = 1 : x arbitrary ∈ [0, 1]
t = 2 : x2 = arg minx∈[0,1]−x/2 = 1

t = 3 : x3 = arg minx∈[0,1]
x/2 = 0

t = 4 : x4 = arg minx∈[0,1]−x/2 = 1

t = 5 : x5 = arg minx∈[0,1]
x/2 = 0

...
...

From the above calculation, we find that in every iteration except t = 1, FTL incurs loss
1, while fixing x = 0 for all time would incur zero loss. For this example, FTL has regret
growing proportionally to t.

This example illustrates the type of analysis and reasoning typically needed to design online
learning methods. To bound regret, we must consider the worst possible adversary, who
generates functions ft specifically designed to take advantage of the weaknesses of a given
technique.

FTL failed because it was too strongly sensitive to the fluctuations of ft from iteration
to iteration. To resolve this issue, we can take inspiration from Tikhonov regularization
(§4.1.3), L1 regularization (§10.4.1), and other methods that dampen the output of numer-
ical methods by adding an energy term punishing irregular or large output vectors. To do
so, we define the “follow the regularized leader” (FTRL) strategy:

Follow the regularized leader: ~xt ≡ arg min
~x∈U

[
r(~x) +

t−1∑

s=1

fs(~x)

]
.

Here, r(~x) is a convex regularization function, such as ‖~x‖22 (Tikhonov regularization), ‖~x‖1
(L1 regularization), or

∑
i xi log xi when U includes only ~x ≥ ~0 (entropic regularization).

Just as regularization improves the conditioning of a linear problem when it is close to
singular, in this case the change from FTL to FTRL avoids fluctuation issues illustrated in
Example 12.13. For instance, suppose r(~x) is strongly convex as defined below for differen-
tiable r:

Definition 12.3 (Strongly convex). A differentiable regularizer r(~x) is σ-strongly convex
with respect to a norm ‖ · ‖ if for any ~x, ~y the following relationship holds:

(∇r(~x)−∇r(~y)) · (~x− ~y) ≥ σ‖~x− ~y‖22.

Intuitively, a strongly convex regularizer not only is bowl-shaped but has a lower bound for
the curvature of that bowl. Then, we can prove the following statement:

Proposition 12.1 ([107], Theorem 2.11). Assume r(~x) is σ-strongly convex and that each
ft is convex and L-Lipschitz (see §8.1.1). Then, the regret is bounded as follows:

RT ≤
[
max
~u∈U

r(~u)

]
−
[
min
~v∈U

r(~v)

]
+
TL2

σ
.

The proof of this proposition uses techniques well within the scope of this book but due to
its length is omitted from our discussion.

Proposition 12.1 can be somewhat hard to interpret, but it is a strong result about the
effectiveness of the FTRL technique given an appropriate choice of r. In particular, the max
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and min terms as well as σ are properties of r(~x) that should guide which regularizer to use
for a particular problem. The value σ contributes to both terms in competing ways:

• The difference between the maximum and minimum values of r is its range of possible
outputs. Increasing σ has the potential to increase this difference, since it is bounded
below by a “steeper” bowl. So, minimizing this term in our regret bound prefers small
σ.

• Minimizing TL2
/σ prefers large σ.

Practically speaking, we can decide what range of T we care about and choose a regularizer
accordingly:

Example 12.14 (FTRL choice of regularizers). Consider the regularizer rσ(~x) ≡ 1
2σ‖~x‖22.

It has gradient ∇rσ(~x) = σ~x, so by direct application of Definition 12.3, it is σ-strongly
convex. Suppose U = {~x ∈ Rn : ‖~x‖2 ≤ 1} and that we expect to run our optimization for
T time steps. If we take σ =

√
T , then the regret bound from Proposition 12.1 shows:

RT ≤ (1 + L2)
√
T .

For large T , this value is small relative to T , compared to the linear growth for FTL in
Example 12.13.

Online optimization is a rich area of research that continues to be explored. Beyond
FTRL, we can define algorithms with better or more usable regret bounds, especially if
we know more about the class of functions ft we expect to observe. FTRL also has the
drawback that it has to solve a potentially complex optimization problem at each iteration,
which may not be practical for systems that have to make decisions quickly. Surprisingly,
even easy-to-solve linearizations can behave fairly well for convex objectives, as illustrated
in Exercise 12.14. Popular online optimization techniques like [34] have been applied to a
variety of learning problems in the presence of huge amounts of noisy data.

12.6 EXERCISES
12.1 An alternative derivation of the Gauss-Newton algorithm shows that it can be thought

of as an approximation of Newton’s method for unconstrained optimization.

(a) Write an expression for the Hessian of ENLS(~x) (defined in §12.1) in terms of the
derivatives of the fi’s.

(b) Show that the Gauss-Newton algorithm on ENLS is equivalent to Newton’s
method (§9.4.2) after removing second derivative terms from the Hessian.

(c) When is such an approximation of the Hessian reasonable?

12.2 Motivate the Levenberg-Marquardt algorithm by applying Tikhonov regularization to
the Gauss-Newton algorithm.

12.3 Derive steps of an alternating least-squares (ALS) iterative algorithm for minimizing
‖X−CY ‖Fro with respect to C ∈ Rn×d and Y ∈ Rd×k, given a fixed matrix X ∈ Rn×k.
Explain how the output of your algorithm depends on the initial guesses of C and Y .
Provide an extension of your algorithm that orthogonalizes the columns of C in each
iteration using its reduced QR factorization, and argue why the energy still decreases
in each iteration.
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12.4 Incorporate matrix factorization into the nonnegative least-squares algorithm in Ex-
ample 12.8 to make the ~x step more efficient. When do you expect this modification
to improve the speed of the algorithm?

12.5 For a fixed parameter δ > 0, the Huber loss function Lδ(x) is defined as:

Lδ(x) ≡
{

x2
/2, when |x| ≤ δ

δ(|x| − δ/2), otherwise.

This function “softens” the non-differentiable singularity of |x| at x = 0.

(a) Illustrate the effect of choosing different values of δ on the shape of Lδ(x).

(b) Recall that we can find an ~x nearly satisfying the overdetermined system A~x ≈ ~b
by minimizing ‖A~x − ~b‖2 (least-squares) or ‖A~x − ~b‖1 (compressive sensing).
Propose a similar optimization compromising between these two methods using
Lδ.

(c) Propose an IRLS algorithm for optimizing your objective from Exercise 12.5b.
You can assume A>A is invertible.

(d) Propose an ADMM algorithm for optimizing your objective from Exercise 12.5b.
Again, assume A>A is invertible.
Hint: Introduce a variable ~z = A~x−~b.

DH12.6 (From notes by P. Blomgren) In §12.4.1, we introduced homotopy continuation
methods for optimization. These methods begin by minimizing a simple objective
H(~x, 0) = f0(~x) and then smoothly modify the objective and minimizer simultane-
ously until a minimum of H(~x, 1) = f(~x)—the original objective—is found.

Suppose that s(t) is a function of t ≥ 0 such that s(0) = 0; we will assume that
s(t) ≥ 0 for all t ≥ 0 and that s(t) eventually reaches s(t) = 1. Our goal is to produce
a path ~x(t) such that each ~x(t) minimizes H(~x, s(t)) with respect to ~x.

(a) To maintain optimality of ~x(t), what relationship does ∇~xH(~x, s) satisfy for all
t ≥ 0 at points (~x(t), s(t)) on the solution path?

(b) Differentiate this equation with respect to t. Write one side as a matrix-vector
product.

(c) Provide a geometric interpretation of the vector ~g(t) ≡ (~x′(t), s′(t)) in terms of
the solution path (~x(t), s(t)).

(d) We will impose the restriction that ||~g(t)||2 = 1 ∀t ≥ 0, i.e., that ~g(t) has unit
length. In this case, what is the geometric interpretation of t in terms of the
solution path?

(e) Combine Exercises 12.6b and 12.6d to propose an ordinary differential equation
(ODE) for computing (~x′(t), s′(t)) from (~x(t), s(t)), so that the resulting solution
path maintains our design constraints.
Note: Using this formula, numerical ODE solvers like the ones we will propose
in Chapter 15 can calculate a solution path for homotopy continuation optimiza-
tion. This derivation provides a connection between topology, optimization, and
differential equations.
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12.7 (“Least absolute deviations”) Instead of solving least-squares, to take advantage of

methods from compressive sensing we might wish to minimize ‖A~x − ~b‖1 with ~x
unconstrained. Propose an ADMM-style splitting of this optimization and give the
alternating steps of the optimization technique in this case.

DH12.8 Suppose we have two convex sets S, T ⊆ Rn. The alternating projection method
discussed in [9] and elsewhere is used to find a point ~x ∈ S ∩ T . For any initial guess
~x0, alternating projection performs the iteration

~xk+1 = PS (PT (~xk)) ,

where PS and PT are operators that project onto the nearest point in S or T with
respect to ‖·‖2, respectively. As long as S∩T 6= ∅, this iterative procedure is guaranteed
to converge to an ~x ∈ S ∩ T , though this convergence may be impractically slow [23].
Instead of this algorithm, we will consider finding a point in the intersection of convex
sets using ADMM.

(a) Propose an unconstrained optimization problem whose solution is a point ~x ∈
S ∩ T , assuming S ∩ T 6= ∅.
Hint: Use indicator functions.

(b) Write this problem in a form that is amenable to ADMM, using ~x and ~z as your
variables.

(c) Explicitly write the ADMM iterations for updating ~x, ~z, and any dual variables.
Your expressions can use PS and PT .

DH12.9 A popular technique for global optimization is simulated annealing [73], a method
motivated by ideas from statistical physics. The term annealing refers to the process
in metallurgy whereby a metal is heated and then cooled so its constituent particles
arrange in a minimum energy state. In this thermodynamic process, atoms may move
considerably at higher temperatures but become restricted in motion as the temper-
ature decreases. Borrowing from this analogy in the context of global optimization,
we could let a potential optimal point take large, random steps early on in a search
to explore the space of outputs, eventually taking smaller steps as the number of
iterations gets large, to obtain a more refined output. Pseudocode for the resulting
simulated annealing algorithm is provided in the following box.

function Simulated-Annealing(f(~x), ~x0)
T0 ← High temperature
Ti ← Cooling schedule, e.g., Ti = αTi−1 for some α < 1
~x ← ~x0 . Current model initialized to the input ~x0

for i← 1, 2, 3, . . .
~y ← Random-Model . Random guess of output
∆f ← f(~y)− f(~x) . Compute change in objective
if ∆f < 0 then . Objective improved at ~y
~x ← ~y

else if Uniform(0,1)< e−∆f/Ti then . True with probability e−∆f/Ti

~x ← ~y . Randomly keep suboptimal output

Simulated annealing randomly guesses a solution to the optimization problem in each
iteration. If the new solution achieves a lower objective value than the current solution,
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the algorithm keeps the new solution. If the new solution is less optimal, however, it is
not necessarily rejected. Instead, the suboptimal point is accepted with exponentially
small probability as temperature decreases. The hope of this construction is that
local minima will be avoided early on in favor of global minima due to the significant
amount of exploration during the first few iterations, while some form of convergence
is still obtained as the iterates stabilize at lower temperatures.

Consider the Euclidean traveling salesman problem (TSP): Given a set of points
~x1, . . . , ~xn ∈ R2 representing the positions of cities on a map, we wish to visit each
city exactly once while minimizing the total distance traveled. While Euclidean TSP
is NP-hard, simulated annealing provides a practical way to approximate its solution.

(a) Phrase Euclidean TSP as a global optimization problem. It is acceptable to have
variables that are discrete rather than continuous.

(b) Propose a method for generating random tours that reach each city exactly once.
What f should you use to evaluate the quality of a tour?

(c) Implement your simulated annealing solution to Euclidean TSP and explore the
trade-off between solution quality and runtime when the initial temperature T0

is changed. Also, experiment with different cooling schedules, either by varying
α in the example Ti or by proposing your own cooling schedule.

(d) Choose another global optimization algorithm and explain how to use it to solve
Euclidean TSP. Analyze how its efficiency compares to that of simulated anneal-
ing.

(e) Rather than generating a completely new tour in each iteration of simulated
annealing, propose a method that perturbs tours slightly to generate new ones.
What would be the advantages and/or disadvantages of using this technique in
place of totally random models?

SC12.10 Recall the setup from Exercise 10.7 for designing a slow-dissolving medicinal capsule
shaped as a cylinder with hemispherical ends.

(a) Suppose we are unhappy with the results of the optimization proposed in Exer-
cise 10.7 and want to ensure that the volume of the entire capsule (including the
ends) is at least V . Explain why the resulting problem cannot be solved using
geometric programming methods.

(b) Propose an alternating optimization method for this problem. Is it necessary to
solve a geometric program in either alternation?

12.11 The mean shift algorithm, originally proposed in [27], is an iterative clustering tech-
nique appearing in literature on nonparametric machine learning and image process-
ing. Given n data points ~xi ∈ Rd, the algorithm groups points together based on their
closest maxima in a smoothed density function approximating the distribution of data
points.

(a) Take k(x) : R→ R+ to be a nonnegative function. For a fixed bandwidth param-

eter h > 0, define the kernel density estimator f̂(~x) to be

f̂k(~x) ≡ ck,d
nhd

n∑

i=1

k

(∥∥∥∥
~x− ~xi
h

∥∥∥∥
2

2

)
.
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If k(x) is peaked at x = 0, explain how f̂k(~x) encodes the density of data points
~xi. What is the effect of increasing the parameter h?
Note: The constant ck,d is chosen so that

∫
Rd f̂(~x) d~x = 1. Choosing k(x) ≡ e−x/2

makes f̂ a sum of Gaussians.

(b) Define g(x) ≡ −k′(x) and take m(~x) to be the mean shift vector given by

m(~x) ≡
∑
i ~xig

(∥∥~x−~xi
h

∥∥2

2

)

∑
i g
(∥∥~x−~xi

h

∥∥2

2

) − ~x.

Show that ∇f̂k(~x) can be factored as follows:

∇f̂k(~x) =
α

h2
· f̂g(~x) ·m(~x),

for some constant α.

(c) Suppose ~y0 is a guess of the location of a peak of f̂k. Using your answer from

Exercise 12.11b, motivate the mean shift algorithm for finding a peak of f̂k(~x),
which iterates the formula

~yk+1 ≡

∑
i ~xig

(∥∥∥~yk−~xih

∥∥∥
2

2

)

∑
i g

(∥∥∥~yk−~xih

∥∥∥
2

2

) .

Note: This algorithm is guaranteed to converge under mild conditions on k. Mean
shift clustering runs this method to convergence starting from ~y0 = ~xi for each
i in parallel; ~xi and ~xj are assigned to the same cluster if mean shift iteration
yields the same output (within some tolerance) for starting points ~y0 = ~xi and
~y0 = ~xj .

(d) Suppose we represent a grayscale image as a set of pairs (~pi, qi), where ~pi is the
center of pixel i (typically laid out on a grid), and qi ∈ [0, 1] is the intensity of
pixel i. The bilateral filter [120] for blurring images while preserving their sharp
edges is given by:

q̂i ≡
∑
j qjk1(‖~pj − ~pi‖2)k2(|qj − qi|)∑
j k1(‖~pj − ~pi‖2)k2(|qj − qi|)

,

where k1, k2 are Gaussian kernels given by ki(x) ≡ e−aix2

. Fast algorithms have
been developed in the computer graphics community for evaluating the bilateral
filter and its variants [97].
Propose an algorithm for clustering the pixels in an image using iterated calls to
a modified version of the bilateral filter; the resulting method is called the “local
mode filter” [125, 96].

12.12 The iterative shrinkage-thresholding algorithm (ISTA) is another technique relevant
to large-scale optimization applicable to common objectives from machine learning.
Extensions such as [11] have led to renewed interest in this technique. We follow the
development of [20].
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(a) Show that the iteration from gradient descent

~xk+1 = ~xk − α∇f(~xk)

can be rewritten in proximal form as

~xk+1 = arg min
~x

[
f(~xk) +∇f(~xk)>(~x− ~xk) +

1

2α
‖~x− ~xk‖22

]
.

(b) Suppose we wish to minimize a sum f(~x) + g(~x). Based on the previous part,
ISTA attempts to combine exact optimization for g with gradient descent on f :

~xk+1 ≡ arg min
~x

[
f(~xk) +∇f(~xk)>(~x− ~xk) +

1

2α
‖~x− ~xk‖22 + g(~x)

]
.

Derive the alternative form

~xk+1 = arg min
~x

[
g(~x) +

1

2α
‖~x− (~xk − α∇f(~xk))‖22

]
.

(c) Derive a formula for ISTA iterations when g(~x) = λ‖~x‖1, where λ > 0.
Hint: This case reduces to solving a set of single-variable problems.

12.13 Suppose D is a bounded, convex, and closed domain in Rn and f(~x) is a convex, differ-
entiable objective function. The Frank-Wolfe algorithm for minimizing f(~x) subject
to ~x ∈ D is as follows [43]:

~sk ← arg min
~s∈D

[~s · ∇f(~xk−1)]

γk ←
2

k + 2

~xk ← (1− γk)~xk−1 + γk~sk.

A starting point ~x0 ∈ D must be provided. This algorithm has gained renewed atten-
tion for large-scale optimization in machine learning in the presence of sparsity and
other specialized structure [66].

(a) Argue that ~sk minimizes a linearized version of f subject to the constraints.

Also, show that if D = {~x : A~x ≤ ~b} for fixed A ∈ Rm×n and ~b ∈ Rm, then each
iteration of the Frank-Wolfe algorithm solves a linear program.

(b) Show that ~xk ∈ D for all k > 0.

(c) Assume ∇f(~x) is L-Lipschitz on D, meaning ‖∇f(~x) − ∇f(~y)‖2 ≤ L‖~x − ~y‖2,
for all ~x, ~y ∈ D. Derive the bound (proposed in [88]):

|f(~y)− f(~x)− (~y − ~x) · ∇f(~x)| ≤ L

2
‖~y − ~x‖22.

Hint: By the Fundamental Theorem of Calculus, f(~y) = f(~x)+
∫ 1

0
(~y−~x) ·∇f(~x+

τ(~y − ~x)) dτ.
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(d) Define the diameter of D to be d ≡ max~x,~y∈D ‖~x − ~y‖2. Furthermore, assume
∇f(~x) is L-Lipschitz on D. Show that

2

γ2
(f(~y)− f(~x)− (~y − ~x) · ∇f(~x)) ≤ d2L,

for all ~x, ~y,~s ∈ D with ~y = ~x+ γ(~s− ~x) and γ ∈ [0, 1]. Conclude that

f(~y) ≤ f(~x) + γ(~s− ~x) · ∇f(~x) +
γ2d2L

2
.

(e) Define the duality gap g(~x) ≡ max~s∈D(~x− ~s) · ∇f(~x). For the Frank-Wolfe algo-
rithm, show that

f(~xk) ≤ f(~xk−1)− γg(~xk−1) +
γ2
kd

2L

2
.

(f) Take ~x∗ to be the location of the minimum for the optimization problem, and
define h(~x) ≡ f(~x) − f(~x∗). Show g(~x) ≥ h(~x), and using the previous part
conclude

h(~xk) ≤ (1− γk)h(~xk−1) +
γ2
kd

2L

2
.

(g) Conclude h(~xk) → 0 as k → ∞. What does this imply about the Frank-Wolfe
algorithm?

12.14 The FTRL algorithm from §12.5 can be expensive when the ft’s are difficult to min-
imize. In this problem, we derive a linearized alternative with similar performance
guarantees.

(a) Suppose we make the following assumptions about an instance of FTRL:

• U = {~x ∈ Rn : ‖~x‖2 ≤ 1}.
• All of the objectives ft provided to FTRL are of the form ft(~x) = ~zt · ~x for
‖~zt‖2 ≤ 1.

• r(~x) ≡ 1
2σ‖~x‖22.

Provide an explicit formula for the iterates ~xt in this case, and specialize the
bound from Proposition 12.1.

(b) We wish to apply the bound from 12.14a to more general ft’s. To do so, suppose
we replace FTRL with a linearized objective for ~xt:

~xt ≡ arg min
~x∈U

[
r(~x) +

t−1∑

s=1

(fs(~xs) +∇fs(~xs) · (~x− ~xs))
]
.

Provide an explicit formula for ~xt in this case, assuming the same choice of U
and r.

(c) Propose a regret bound for the linearized method in 12.14b.
Hint: Apply convexity of the ft’s and the result of 12.14a.
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SO far we have derived methods for analyzing functions f , e.g., finding their minima and
roots. Evaluating f(~x) at a particular ~x ∈ Rn might be expensive, but a fundamental

assumption of the methods we developed in previous chapters is that we can obtain f(~x)
when we want it, regardless of ~x.

There are many contexts in which this assumption is unrealistic. For instance, if we take
a photograph with a digital camera, we receive an n×m grid of pixel color values sampling
the continuum of light coming into the camera lens. We might think of a photograph as
a continuous function from image position (x, y) to color (r, g, b), but in reality we only
know the image value at nm separated locations on the image plane. Similarly, in machine
learning and statistics, often we only are given samples of a function at points where we
collected data, and we must interpolate to have values elsewhere; in a medical setting we
may monitor a patient’s response to different dosages of a drug but must predict what will
happen at a dosage we have not tried explicitly.

In these cases, before we can minimize a function, find its roots, or even compute val-
ues f(~x) at arbitrary locations ~x, we need a model for interpolating f(~x) to all of Rn (or
some subset thereof) given a collection of samples f(~xi). Techniques for this interpolation
problem are inherently approximate, since we do not know the true values of f , so instead
we seek for the interpolated function to be smooth and serve as a reasonable prediction
of function values. Mathematically, the definition of “reasonable” will depend on the par-
ticular application. If we want to evaluate f(~x) directly, we may choose an interpolant
and sample positions ~xi so that the distance of the interpolated f(~x) from the true values
can be bounded above given smoothness assumptions on f ; future chapters will estimate
derivatives, integrals, and other properties of f from samples and may choose an interpolant
designed to make these approximations accurate or stable.

257
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In this chapter, we will assume that the values f(~xi) are known with complete certainty;
in this case, we can think of the problem as extending f to the remainder of the domain
without perturbing the value at any of the input locations. To contrast, the regression
problem considered in §4.1.1 and elsewhere may forgo matching f(~xi) exactly in favor of
making f more smooth.

13.1 INTERPOLATION IN A SINGLE VARIABLE
Before considering the general case, we will design methods for interpolating functions of a
single variable f : R→ R. As input, we will take a set of k pairs (xi, yi) with the assumption
f(xi) = yi; our job is to predict f(x) for x 6∈ {x1, . . . , xk}. Desirable interpolants f(x) should
be smooth and should interpolate the data points faithfully without adding extra features
like spurious local minima and maxima.

We will take inspiration from linear algebra by writing f(x) in a basis. The set of all
possible functions f : R→ R is far too large to work with and includes many functions that
are not practical in a computational setting. Thus, we simplify the search space by forcing
f to be written as a linear combination of building block basis functions. This formulation
is familiar from calculus: The Taylor expansion writes functions in the basis of polynomials,
while Fourier series use sine and cosine.

The construction and analysis of interpolation bases is a classical topic that has been
studied for centuries. We will focus on practical aspects of choosing and using interpolation
bases, with a brief consideration of theoretical aspects in §13.3. Detailed aspects of error
analysis can be found in [117] and other advanced texts.

13.1.1 Polynomial Interpolation
Perhaps the most straightforward class of interpolation formulas assumes that f(x) is in
R[x], the set of polynomials. Polynomials are smooth, and we already have explored linear
methods for finding a degree k − 1 polynomial through k sample points in Chapter 4.

Example 4.3 worked out the details of such an interpolation technique. As a reminder,
suppose we wish to find f(x) ≡ a0 + a1x + a2x

2 + · · · + ak−1x
k−1 through the points

(x1, y1), . . . , (xk, yk); here our unknowns are the values a0, . . . , ak−1. Plugging in the ex-
pression yi = f(xi) for each i shows that the vector ~a satisfies the k × k Vandermonde
system: 



1 x1 x2
1 · · · xk−1

1

1 x2 x2
2 · · · xk−1

2
...

...
... · · ·

...

1 xk x2
k · · · xk−1

k







a0

a1

...
ak−1


 =




y0

y1

...
yk


 .

By this construction, degree k − 1 polynomial interpolation can be accomplished using a
k × k linear solve for ~a using the linear algorithms in Chapter 3. This method, however, is
far from optimal for many applications.

As mentioned above, one way to think about the space of polynomials is that it can be
spanned by a basis of functions. Just like writing vectors in Rn as linear combinations of
linearly independent vectors ~v1, . . . , ~vn ∈ Rn, in our derivation of the Vandermonde matrix,
we wrote polynomials in the monomial basis {1, x, x2, . . . , xk−1} for polynomials of degree
k − 1. Although monomials may be an obvious basis for R[x], they have limited properties
useful for simplifying the polynomial interpolation problem. One way to visualize this issue
is to plot the sequence of functions 1, x, x2, x3, . . . for x ∈ [0, 1]; in this interval, as shown in
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Figure 13.1 As k increases, the monomials xk on [0, 1] begin to look more and more

similar. This similarity creates poor conditioning for monomial basis problems like

solving the Vandermonde system.

Figure 13.1, the functions xk all start looking similar as k increases. As we know from our
consideration of projection problems in Chapter 5, projection onto a set of similar-looking
basis vectors can be unstable.

We may choose to write polynomials in a basis that is better suited to the problem at
hand. Recall that we are given k pairs (x1, y1), . . . , (xk, yk). We can use these (fixed) points
to define the Lagrange interpolation basis φ1, . . . , φk by writing:

φi(x) ≡
∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

.

Example 13.1 (Lagrange basis). Suppose x1 = 0, x2 = 2, x3 = 3, and x4 = 4. The
Lagrange basis for this set of xi’s is:

φ1(x) =
(x− 2)(x− 3)(x− 4)

−2 · −3 · −4
=

1

24
(−x3 + 9x2 − 26x+ 24)

φ2(x) =
x(x− 3)(x− 4)

2 · (2− 3)(2− 4)
=

1

4
(x3 − 7x2 + 12x)

φ3(x) =
x(x− 2)(x− 4)

3 · (3− 2) · (3− 4)
=

1

3
(−x3 + 6x2 − 8x)

φ4(x) =
x(x− 2)(x− 3)

4 · (4− 2) · (4− 3)
=

1

8
(x3 − 5x2 + 6x).

This basis is shown in Figure 13.2.

As shown in this example, although we did not define it explicitly in the monomial basis
{1, x, x2, . . . , xk−1}, each φi is still a polynomial of degree k−1. Furthermore, the Lagrange
basis has the following desirable property:

φi(x`) =

{
1 when ` = i
0 otherwise.
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1
φ1 φ2 φ3 φ4

2 3 40

Figure 13.2 The Lagrange basis for x1 = 0, x2 = 2, x3 = 3, x4 = 4. Each φi satisfies

φi(xi) = 1 and φi(xj) = 0 for all i 6= j.

Using this formula, finding the unique degree k − 1 polynomial fitting our (xi, yi) pairs is
formulaic in the Lagrange basis:

f(x) ≡
∑

i

yiφi(x).

To check, if we substitute x = xj we find:

f(xj) =
∑

i

yiφi(xj)

= yj since φi(xj) = 0 when i 6= j.

We have shown that in the Lagrange basis we can write a closed formula for f(x) that
does not require solving the Vandermonde system; in other words, we have replaced the
Vandermonde matrix with the identity matrix. The drawback, however, is that each φi(x)
takes O(k) time to evaluate using the formula above, so computing f(x) takes O(k2) time
total; contrastingly, if we find the coefficients ai from the Vandermonde system explicitly,
the evaluation time for interpolation subsequently becomes O(k).

Computation time aside, the Lagrange basis has an additional numerical drawback, in
that the denominator is the product of a potentially large number of terms. If the xi’s are
close together, then this product may include many terms close to zero; the end result is
division by a small number when evaluating φi(x). As we have seen, this operation can
create numerical instabilities that we wish to avoid.

A third basis for polynomials of degree k− 1 that attempts to compromise between the
numerical quality of the monomials and the efficiency of the Lagrange basis is the Newton
basis, defined as

ψi(x) =
i−1∏

j=1

(x− xj).

This product has no terms when i = 1, so we define ψ1(x) ≡ 1. Then, for all indices i, the
function ψi(x) is a degree i− 1 polynomial.
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10

2 3 40

ψ1

ψ2

ψ3

ψ4

Figure 13.3 The Newton basis for x1 = 0, x2 = 2, x3 = 3, x4 = 4. Each ψi satisfies

ψi(xj) = 0 when j < i.

Example 13.2 (Newton basis). Continuing from Example 13.1, again suppose x1 = 0,
x2 = 2, x3 = 3, and x4 = 4. The corresponding Newton basis is:

ψ1(x) = 1

ψ2(x) = x

ψ3(x) = x(x− 2) = x2 − 2x

ψ4(x) = x(x− 2)(x− 3) = x3 − 5x2 + 6x.

This basis is illustrated in Figure 13.3.

By definition of ψi, ψi(x`) = 0 for all ` < i. If we wish to write f(x) =
∑
i ciψi(x) and

write out this observation more explicitly, we find:

f(x1) = c1ψ1(x1)

f(x2) = c1ψ1(x2) + c2ψ2(x2)

f(x3) = c1ψ1(x3) + c2ψ2(x3) + c3ψ3(x3)

...
...

These expressions provide the following lower-triangular system for ~c:



ψ1(x1) 0 0 · · · 0
ψ1(x2) ψ2(x2) 0 · · · 0
ψ1(x3) ψ2(x3) ψ3(x3) · · · 0

...
...

... · · ·
...

ψ1(xk) ψ2(xk) ψ3(xk) · · · ψk(xk)







c1
c2
...
ck


 =




y1

y2

...
yk


 .

This system can be solved in O(k2) time using forward-substitution, rather than the O(k3)
time needed to solve the Vandermonde system using Gaussian elimination.∗ Evaluation time

∗For completeness, we should mention that O(k2) Vandermonde solvers can be formulated; see [62] for
discussion of these specialized techniques.
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is similar to that of the Lagrange basis, but since there is no denominator, numerical issues
are less likely to appear.

We now have three strategies of interpolating k data points using a degree k − 1 poly-
nomial by writing it in the monomial, Lagrange, and Newton bases. All three represent
different compromises between numerical quality and speed, but the resulting interpolated
function f(x) is the same in each case. More explicitly, there is exactly one polynomial of
degree k − 1 going through a set of k points, so since all our interpolants are degree k − 1
they must have the same output.

13.1.2 Alternative Bases
Although polynomial functions are particularly amenable to mathematical analysis, there
is no fundamental reason why an interpolation basis cannot consist of different types of
functions. For example, a crowning result of Fourier analysis implies that many functions
are well-approximated by linear combinations of trigonometric functions cos(kx) and sin(kx)
for k ∈ N. A construction like the Vandermonde matrix still applies in this case, and the fast
Fourier transform algorithm (which merits a larger discussion) solves the resulting linear
system with remarkable efficiency.

A smaller extension of the development in §13.1.1 is to rational functions of the form:

f(x) ≡ p0 + p1x+ p2x
2 + · · ·+ pmx

m

q0 + q1x+ q2x2 + · · ·+ qnxn
.

If we are given k pairs (xi, yi), then we will need m + n + 1 = k for this function to be
well-defined. One degree of freedom must be fixed to account for the fact that the same
rational function can be expressed multiple ways by simultaneously scaling the numerator
and the denominator.

Rational functions can have asymptotes and other features not achievable using only
polynomials, so they can be desirable interpolants for functions that change quickly or have
poles. Once m and n are fixed, the coefficients pi and qi still can be found using linear
techniques by multiplying both sides by the denominator:

yi(q0 + q1xi + q2x
2
i + · · ·+ qnx

n
i ) = p0 + p1xi + p2x

2
i + · · ·+ pmx

m
i .

For interpolation, the unknowns in this expression are the p’s and q’s.
The flexibility of rational functions, however, can cause some issues. For instance, con-

sider the following example:

Example 13.3 (Failure of rational interpolation, [117] §2.2). Suppose we wish to find a
rational function f(x) interpolating the following data points: (0, 1), (1, 2), (2, 2). If we
choose m = n = 1, then the linear system for finding the unknown coefficients is:

q0 = p0

2(q0 + q1) = p0 + p1

2(q0 + 2q1) = p0 + 2p1.

One nontrivial solution to this system is:

p0 = 0 q0 = 0
p1 = 2 q1 = 1.
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1
2

1

Figure 13.4 Interpolating eight samples of the function f(x) ≡ 1/2 using a seventh-

degree polynomial yields a straight line, but perturbing a single data point at

x = 3 creates an interpolant that oscillates far away from the infinitesimal vertical

displacement.

This implies the following form for f(x):

f(x) =
2x

x
.

This function has a degeneracy at x = 0, and canceling the x in the numerator and
denominator does not yield f(0) = 1 as we might desire.

This example illustrates a larger phenomenon. The linear system for finding the p’s and
q’s can run into issues when the resulting denominator

∑
` p`x

` has a root at any of the
fixed xi’s. It can be shown that when this is the case, no rational function exists with
the fixed choice of m and n interpolating the given values. A typical partial resolution in
this case is presented in [117], which suggests incrementing m and n alternatively until a
nontrivial solution exists. From a practical standpoint, however, the specialized nature of
these methods indicates that alternative interpolation strategies may be preferable when
the basic rational methods fail.

13.1.3 Piecewise Interpolation
So far, we have constructed interpolation bases out of elementary functions defined on all of
R. When the number k of data points becomes high, however, many degeneracies become
apparent. For example, Figure 13.4 illustrates how polynomial interpolation is nonlocal,
meaning that changing any single value yi in the input data can change the behavior of f for
all x, even those that are far away from xi. This property is undesirable for most applications:
We usually expect only the input data near a given x to affect the value of the interpolated
function f(x), especially when there is a large cloud of input points. While the Weierstrass
Approximation Theorem from real analysis guarantees that any smooth function f(x) on
an interval x ∈ [a, b] can be approximated arbitrarily well using polynomials, achieving a
quality interpolation in practice requires choosing many carefully placed sample points.

As an alternative to global interpolation bases, when we design a set of basis functions
φ1, . . . , φk, a desirable property we have not yet considered is compact support :

Definition 13.1 (Compact support). A function g(~x) has compact support if there exists
C ∈ R such that g(~x) = 0 for any ~x with ‖~x‖2 > C.
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Figure 13.5 Two piecewise interpolation strategies.

That is, compactly supported functions only have a finite range of points in which they can
take nonzero values.

Piecewise formulas provide one technique for constructing interpolatory bases with com-
pact support. Most prominently, methods in computer graphics and many other fields make
use of piecewise polynomials, which are defined by breaking R into a set of intervals and
writing a different polynomial in each interval. To do so, we will order the data points so
that x1 < x2 < · · · < xk. Then, two examples of piecewise interpolants are the following,
illustrated in Figure 13.5:

• Piecewise constant interpolation: For a given x ∈ R, find the data point xi minimizing
|x− xi| and define f(x) = yi.

• Piecewise linear interpolation: If x < x1 take f(x) = y1, and if x > xk take f(x) = yk.
Otherwise, find the interval with x ∈ [xi, xi+1] and define

f(x) = yi+1 ·
x− xi

xi+1 − xi
+ yi ·

(
1− x− xi

xi+1 − xi

)
.

Notice our pattern so far: Piecewise constant polynomials are discontinuous, while piecewise
linear functions are continuous. Piecewise quadratics can be C1, piecewise cubics can be
C2, and so on. This increased continuity and differentiability occurs even though each yi
has local support; this theory is worked out in detail in constructing “splines,” or curves
interpolating between points given function values and tangents.

Increased continuity, however, has its drawbacks. With each additional degree of differ-
entiability, we put a stronger smoothness assumption on f . This assumption can be unreal-
istic: Many physical phenomena truly are noisy or discontinuous, and increased smoothness
can negatively affect interpolatory results. One domain in which this effect is particularly
clear is when interpolation is used in conjunction with physical simulation algorithms. Sim-
ulating turbulent fluid flows with excessively smooth functions inadvertently can remove
discontinuous phenomena like shock waves.

These issues aside, piecewise polynomials still can be written as linear combinations
of basis functions. For instance, the following functions serve as a basis for the piecewise
constant functions:

φi(x) =

{
1 when xi−1+xi

2 ≤ x < xi+xi+1

2
0 otherwise.

This basis puts the constant 1 near xi and 0 elsewhere; the piecewise constant interpolation
of a set of points (xi, yi) is written as f(x) =

∑
i yiφi(x). Similarly, the so-called “hat” basis
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1

xi

φi(x)
1

ψi(x)

xi

Piecewise constant basis Piecewise linear basis (hat function)

Figure 13.6 Basis functions corresponding to the piecewise interpolation strategies in

Figure 13.5.

spans the set of piecewise linear functions with sharp edges at the data points xi:

ψi(x) =





x−xi−1

xi−xi−1
when xi−1 < x ≤ xi

xi+1−x
xi+1−xi when xi < x ≤ xi+1

0 otherwise.

Once again, by construction, the piecewise linear interpolation of the given data points is
f(x) =

∑
i yiψi(x). Examples of both bases are shown in Figure 13.6.

13.2 MULTIVARIABLE INTERPOLATION
It is possible to extend the strategies above to the case of interpolating a function given
data points (~xi, yi) where ~xi ∈ Rn now can be multidimensional. Interpolation algorithms
in this general case are challenging to formulate, however, because it is less obvious how to
partition Rn into a small number of regions around the source points ~xi.

13.2.1 Nearest-Neighbor Interpolation
Given the complication of interpolation on Rn, a common pattern is to interpolate using
many low-order functions rather than fewer smooth functions, that is, to favor simplistic
and efficient interpolants over ones that output C∞ functions. For example, if all we are
given is a set of pairs (~xi, yi), then one piecewise constant strategy for interpolation is to
use nearest-neighbor interpolation. In this case, f(~x) takes the value yi corresponding to ~xi
minimizing ‖~x− ~xi‖2. Simple implementations iterate over all i to find the closest ~xi to ~x,
and data structures like k-d trees can find nearest neighbors more quickly.

Just as piecewise constant interpolants on R take constant values on intervals about the
data points xi, nearest-neighbor interpolation yields a function that is piecewise-constant
on Voronoi cells:

Definition 13.2 (Voronoi cell). Given a set of points S = {~x1, ~x2, . . . , ~xk} ⊆ Rn, the
Voronoi cell corresponding to a specific ~xi ∈ S is the set Vi ≡ {~x : ‖~x − ~xi‖2 < ‖~x −
~xj‖2 for all j 6= i}. That is, Vi is the set of points closer to ~xi than to any other ~xj in S.

Figure 13.7 shows an example of the Voronoi cells about a set of points in R2. These cells
have many favorable properties; for example, they are convex polygons and are localized
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Figure 13.7 Voronoi cells associated with ten points in a rectangle.

about each ~xi. The adjacency of Voronoi cells is a well-studied problem in computational
geometry leading to the construction of the celebrated Delaunay triangulation [33].

In many cases, however, it is desirable for the interpolant f(~x) to be continuous or
differentiable. There are many options for continuous interpolation in Rn, each with its
own advantages and disadvantages. If we wish to extend the nearest-neighbor formula, we
could compute multiple nearest neighbors ~x1, . . . , ~xk of ~x and interpolate f(~x) by averaging
the corresponding y1, . . . , yk with distance-based weights; Exercise 13.4 explores one such
weighting. Certain “k-nearest neighbor” data structures also can accelerate queries searching
for multiple points in a dataset closest to a given ~x.

13.2.2 Barycentric Interpolation
Another continuous multi-dimensional interpolant appearing frequently in the computer
graphics literature is barycentric interpolation. Suppose we have exactly n+1 sample points
(~x1, y1), . . . , (~xn+1, yn+1), where ~xi ∈ Rn, and we wish to interpolate the yi’s to all of Rn; on
the plane R2, we would be given three values associated with the vertices of a triangle. In the
absence of degeneracies (e.g., three of the ~xi’s coinciding on the same line), any ~x ∈ Rn can

be written uniquely as a linear combination ~x =
∑n+1
i=1 ai~xi where

∑
i ai = 1. This formula

expresses ~x as a weighted average of the ~xi’s with weights ai. For fixed ~x1, . . . , ~xn+1, the
weights ai can be thought of as components of a function ~a(~x) taking points ~x to their
corresponding coefficients. Barycentric interpolation then defines f(~x) ≡∑i ai(~x)yi.

On the plane, barycentric interpolation has a straightforward geometric interpretation
involving triangle areas, illustrated in Figure 13.8(a). Regardless of dimension, however, the

barycentric interpolant f(~x) is affine, meaning it can be written f(~x) = c + ~d · x for some

c ∈ R and ~d ∈ Rn. Counting degrees of freedom, the n+ 1 sample points are accounted for
via n unknowns in ~d and one unknown in c.

The system of equations to find ~a(~x) corresponding to some ~x ∈ Rn is:
∑

i

ai~xi = ~x
∑

i

ai = 1

This system usually is invertible when there are n+1 points ~xi. In the presence of additional
~xi’s, however, it becomes underdetermined. This implies that there are multiple ways of
writing ~x as a weighted average of the ~xi’s, making room for additional design decisions
during barycentric interpolation, encoded in the particular choice of ~a(~x).

One resolution of this non-uniqueness is to add more linear or nonlinear constraints on
the weights ~a. These yield different generalized barycentric coordinates. Typical constraints
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Figure 13.8 (a) The barycentric coordinates of ~p ∈ R2 relative to the points ~p1, ~p2,

and ~p3, respectively, are (A1/A,A2/A,A3/A), where A ≡ A1 +A2 +A3 and Ai is the

area of triangle i; (b) the barycentric deformation method [129] uses a generalized

version of barycentric coordinates to deform planar shapes according to motions of

a polygon with more than three vertices.

(a) Triangle mesh (b) Barycentric interpolation (c) Hat function

Figure 13.9 (a) A collection of points on R2 can be triangulated into a triangle mesh;

(b) using this mesh, a per-point function can be interpolated to the interior using

per-triangle barycentric interpolation; (c) a single “hat” basis function takes value

one on a single vertex and is interpolated using barycentric coordinates to the

remainder of the domain.

on ~a ask that it is smooth as a function of ~x on Rn and nonnegative on the interior of
the polygon or polyhedron bordered by the ~xi’s. Figure 13.8(b) shows an example of image
deformation using a recent generalized barycentric coordinates algorithm; the particular
method shown makes use of complex-valued coordinates to take advantage of geometric
properties of the complex plane [129].

Another way to carry out barycentric interpolation with more than n + 1 data points
employs piecewise affine functions for interpolation; we will restrict our discussion to ~xi ∈ R2

for simplicity, although extensions to higher dimensions are possible. Suppose we are given
not only a set of points ~xi ∈ R2 but also a triangulation linking those points together,
as in Figure 13.9(a). If the triangulation is not known a priori, it can be computed using
well-known geometric techniques [33]. Then, we can interpolate values from the vertices of
each triangle to its interior using barycentric interpolation.

Example 13.4 (Shading). A typical representation of three-dimensional shapes in com-
puter graphics is a set of triangles linked into a mesh. In the per-vertex shading model,
one color is computed for each vertex on the mesh using lighting of the scene, mate-
rial properties, and so on. Then, to render the shape on-screen, those per-vertex colors
are interpolated using barycentric interpolation to the interiors of the triangles. Similar
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strategies are used for texturing and other common tasks. Figure 13.9(b) shows an example
of this technique.

As an aside, one pertinent issue specific to computer graphics is the interplay between
perspective transformations and interpolation. Barycentric interpolation of color along a
triangulated 3D surface and then projection of that color onto the image plane is not the
same as projecting triangles to the image plane and subsequently interpolating color along
the projected two-dimensional triangles. Algorithms in this domain must use perspective-
corrected interpolation strategies to account for this discrepancy during the rendering
process.

Interpolation using a triangulation parallels the use of a piecewise-linear hat basis for
one-dimensional functions, introduced in §13.1.3. Now, we can think of f(~x) as a linear com-
bination

∑
i yiφi(~x), where each φi(~x) is the piecewise affine function obtained by putting

a 1 on ~xi and 0 everywhere else, as in Figure 13.9(c).
Given a set of points in R2, the problem of triangulation is far from trivial, and analogous

constructions in higher dimensions can scale poorly. When n > 3, methods that do not
require explicitly partitioning the domain usually are preferable.

13.2.3 Grid-Based Interpolation
Rather than using triangles, an alternative decomposition of the domain of f occurs when
the points ~xi occur on a regular grid. The following examples illustrate situations when this
is the case:

Example 13.5 (Image processing). A typical digital photograph is represented as an
m× n grid of red, green, and blue color intensities. We can think of these values as living
on the lattice Z×Z ⊂ R×R. Suppose we wish to rotate the image by an angle that is not
a multiple of 90◦. Then, we must look up color values at potentially non-integer positions,
requiring the interpolation of the image to R× R.

Example 13.6 (Medical imaging). The output of a magnetic resonance imaging (MRI)
device is an m× n× p grid of values representing the density of tissue at different points;
a theoretical model for this data is as a function f : R3 → R. We can extract the outer
surface of a particular organ by finding the level set {~x : f(~x) = c} for some c. Finding this
level set requires us to extend f to the entire voxel grid to find exactly where it crosses c.

Grid-based interpolation applies the one-dimensional formulae from §13.1.3 one dimen-
sion at a time. For example, bilinear interpolation in R2 applies linear interpolation in x1

and then x2 (or vice versa):

Example 13.7 (Bilinear interpolation). Suppose f takes on the following values:

f(0, 0) = 1 f(0, 1) = −3 f(1, 0) = 5 f(1, 1) = −11

and that in between f is obtained by bilinear interpolation. To find f( 1
4 ,

1
2 ), we first

interpolate in x1 to find:

f

(
1

4
, 0

)
=

3

4
f (0, 0) +

1

4
f (1, 0) = 2

f

(
1

4
, 1

)
=

3

4
f (0, 1) +

1

4
f (1, 1) = −5.
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Next, we interpolate in x2:

f

(
1

4
,

1

2

)
=

1

2
f

(
1

4
, 0

)
+

1

2
f

(
1

4
, 1

)
= −3

2
.

We receive the same output interpolating first in x2 and second in x1.

Higher-order methods like bicubic and Lanczos interpolation use more polynomial terms
but are slower to evaluate. For example, bicubic interpolation requires values from more
grid points than just the four closest to ~x needed for bilinear interpolation. This additional
expense can slow down image processing tools for which every lookup in memory incurs
significant computation time.

13.3 THEORY OF INTERPOLATION
Our treatment of interpolation has been fairly heuristic. While relying on our intuition for
what a “reasonable” interpolation for a set of function values for the most part is acceptable,
subtle issues can arise with different interpolation methods that should be acknowledged.

13.3.1 Linear Algebra of Functions
We began our discussion by posing interpolation strategies using different bases for the set
of functions f : R→ R. This analogy to vector spaces extends to a complete linear-algebraic
theory of functions, and in many ways the field of functional analysis essentially extends
the geometry of Rn to sets of functions. Here, we will discuss functions of one variable,
although many aspects of the extension to more general functions are easy to carry out.

Just as we can define notions of span and linear combination for functions, for fixed
a, b ∈ R we can define an inner product of functions f(x) and g(x) as follows:

〈f, g〉 ≡
∫ b

a

f(x)g(x) dx.

We then can define the norm of a function f(x) to be ‖f‖2 ≡
√
〈f, f〉. These constructions

parallel the corresponding constructions on Rn; both the dot product ~x · ~y and the inner
product 〈f, g〉 are obtained by multiplying the “elements” of the two multiplicands and
summing—or integrating.

Example 13.8 (Functional inner product). Take pn(x) = xn to be the n-th monomial.
Then, for a = 0 and b = 1,

〈pn, pm〉 =

∫ 1

0

xn · xm dx =

∫ 1

0

xn+m dx =
1

n+m+ 1
.

This shows:
〈

pn
‖pn‖

,
pm
‖pm‖

〉
=
〈pn, pm〉
‖pn‖‖pm‖

=

√
(2n+ 1)(2m+ 1)

n+m+ 1
.

This value is approximately 1 when n ≈ m but n 6= m, substantiating our earlier claim
illustrated in Figure 13.1 that the monomials “overlap” considerably on [0, 1].
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Figure 13.10 The first five Legendre polynomials, notated P0(x), . . . , P4(x).

Given this inner product, we can apply the Gram-Schmidt algorithm to find an orthogo-
nal basis for the set of polynomials, as we did in §5.4 to orthogonalize a set of vectors. If we
take a = −1 and b = 1, applying Gram-Schmidt to the monomial basis yields the Legendre
polynomials, plotted in Figure 13.10:

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)

...
...

These polynomials have many useful properties thanks to their orthogonality. For example,
suppose we wish to approximate f(x) with a sum

∑
i aiPi(x). If we wish to minimize

‖f −∑i aiPi‖2 in the functional norm, this is a least-squares problem! By orthogonality of
the Legendre basis for R[x], our formula from Chapter 5 for projection onto an orthogonal
basis shows:

ai =
〈f, Pi〉
〈Pi, Pi〉

.

Thus, approximating f using polynomials can be accomplished by integrating f against the
members of the Legendre basis. In the next chapter, we will learn how this integral can be
carried out numerically.

Given a positive function w(x), we can define a more general inner product 〈·, ·〉w as

〈f, g〉w ≡
∫ b

a

w(x)f(x)g(x) dx.
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Figure 13.11 The first five Chebyshev polynomials, notated T0(x), . . . , T4(x).

If we take w(x) = 1√
1−x2

with a = −1 and b = 1, then Gram-Schmidt on the monomials

yields the Chebyshev polynomials, shown in Figure 13.11:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

...
...

A surprising identity holds for these polynomials:

Tk(x) = cos(k arccos(x)).

This formula can be checked by explicitly verifying it for T0 and T1, and then inductively
applying the observation:

Tk+1(x) = cos((k + 1) arccos(x))

= 2x cos(k arccos(x))− cos((k − 1) arccos(x)) by the identity

cos((k + 1)θ) = 2 cos(kθ) cos(θ)− cos((k − 1)θ)

= 2xTk(x)− Tk−1(x).

This three-term recurrence formula also gives a way to generate explicit expressions for the
Chebyshev polynomials in the monomial basis.

Thanks to this trigonometric characterization of the Chebyshev polynomials, the minima
and maxima of Tk oscillate between +1 and −1. Furthermore, these extrema are located at
x = cos(iπ/k) (the Chebyshev points) for i from 0 to k. This even distribution of extrema
avoids oscillatory phenomena like that shown in Figure 13.4 when using a finite number
of polynomial terms to approximate a function. More technical treatments of polynomial
interpolation recommend placing samples xi for interpolation near Chebyshev points to
obtain smooth output.
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13.3.2 Approximation via Piecewise Polynomials
Suppose we wish to approximate a function f(x) with a polynomial of degree n on an interval
[a, b]. Define ∆x to be the spacing b−a. One measure of the error of an approximation is as a
function of ∆x. If we approximate f with piecewise polynomials, this type of analysis tells us
how far apart we should space the sample points to achieve a desired level of approximation.

Suppose we approximate f(x) with a constant c = f(a+b
2 ), as in piecewise constant

interpolation. If we assume |f ′(x)| < M for all x ∈ [a, b], we have:

max
x∈[a,b]

|f(x)− c| ≤ ∆x max
x∈[a,b]

M by the mean value theorem

≤M∆x.

Thus, we expect O(∆x) error when using piecewise constant interpolation.
Suppose instead we approximate f using piecewise linear interpolation, that is, by taking

f̃(x) =
b− x
b− af(a) +

x− a
b− a f(b).

We can use the Taylor expansion about x to write expressions for f(a) and f(b):

f(a) = f(x) + (a− x)f ′(x) +
1

2
(a− x)2f ′′(x) +O(∆x3)

f(b) = f(x) + (b− x)f ′(x) +
1

2
(b− x)2f ′′(x) +O(∆x3).

Substituting these expansions into the formula for f̃(x) shows

f̃(x) = f(x) +
1

2∆x
((x− a)(b− x)2 + (b− x)(x− a)2)f ′′(x) +O(∆x3)

= f(x) +
1

2
(x− a)(x− b)f ′′(x) +O(∆x3) after simplification.

This expression shows that linear interpolation holds up toO(∆x2), assuming f ′′ is bounded.
Furthermore, for all x ∈ [a, b] we have the bound |x − a||x − b| ≤ ∆x2

/4, implying an error
bound proportional to ∆x2

/8 for the second term.
Generalizing this argument shows that approximation with a degree-n polynomial gener-

ates O(∆xn+1) error. In particular, if f(x) is sampled at x0, x1, . . . , xn to generate a degree-n
polynomial pn, then assuming x0 < x1 < · · · < xn, the error of such an approximation can
be bounded as

|f(x)− pn(x)| ≤ 1

(n+ 1)!

[
max

x∈[x0,xn]

∏

k

|x− xk|
]
·
[

max
x∈[x0,xn]

|f (n+1)(x)|
]
,

for any x ∈ [x0, xn].

13.4 EXERCISES
13.1 Write the degree-three polynomial interpolating between the data points (−2, 15),

(0,−1), (1, 0), and (3,−2).
Hint: Your answer does not have to be written in the monomial basis.

13.2 Show that the interpolation from Example 13.7 yields the same result regardless of
whether x1 or x2 is interpolated first.
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13.3 (“Runge function”) Consider the function

f(x) ≡ 1

1 + 25x2
.

Suppose we approximate f(x) using a degree-k polynomial pk(x) through k+1 points
x0, . . . , xk with xi = 2i/k − 1.

(a) Plot pk(x) for a few samples of k. Does increasing k improve the quality of the
approximation?

(b) Specialize the bound at the end of §13.3.2 to show

max
x∈[−1,1]

|f(x)− pk(x)| ≤ 1

(k + 1)!

[
max

x∈[−1,1]

∏

i

|x− xi|
]
·
[

max
x∈[−1,1]

|f (k+1)(x)|
]
.

Does this bound get tighter as k increases?

(c) Suggest a way to fix this problem assuming we cannot move the xi’s.

(d) Suggest an alternative way to fix this problem by moving the xi’s.

13.4 (“Inverse distance weighting”) Suppose we are given a set of distinct points
~x1, . . . , ~xk ∈ Rn with labels y1, . . . , yk ∈ R. Then, one interpolation strategy defines
an interpolant f(~x) as follows [108]:

f(~x) ≡
{

yi if ~x = ~xi for some i∑
i wi(~x)yi∑
i wi(~x) otherwise,

where wi(~x) ≡ ‖~x− ~xi‖−p2 for some fixed p ≥ 1.

(a) Argue that as p → ∞, the interpolant f(~x) becomes piecewise constant on the
Voronoi cells of the ~xi’s.

(b) Define the function

φ(~x, y) ≡
(∑

i

(y − yi)2

‖~x− ~xi‖p2

)1/p

.

Show that for fixed ~x ∈ Rn\{~x1, . . . , ~xk}, the value f(~x) is the minimum of φ(~x, y)
over all y.

(c) Evaluating the sum in this formula can be expensive when k is large. Propose a
modification to the wi’s that avoids this issue; there are many possible techniques
here.

13.5 (“Barycentric Lagrange interpolation,” [12]) Suppose we are given k pairs
(x1, y1), . . . , (xk, yk).

(a) Define `(x) ≡∏k
j=1(x− xj). Show that the Lagrange basis satisfies

φi(x) =
wi`(x)

x− xi
,

for some weight wi depending on x1, . . . , xn. The value wi is known as the barycen-
tric weight of xi.
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(b) Suppose f(x) is the degree k − 1 polynomial through the given (xi, yi) pairs.
Assuming you have precomputed the wi’s, use the result of the previous part to
give a formula for Lagrange interpolation that takes O(k) time to evaluate.

(c) Use the result of 13.5b to write a formula for the constant function g(x) ≡ 1.

(d) Combine the results of the previous two parts to provide a third formula for f(x)
that does not involve `(x).
Hint: f(x)/1 = f(x).

13.6 (“Cubic Hermite interpolation”) In computer graphics, a common approach to draw-
ing curves is to use cubic interpolation. Typically, artists design curves by specifying
their endpoints as well as the tangents to the curves at the endpoints.

(a) Suppose P (t) is the cubic polynomial:

P (t) = at3 + bt2 + ct+ d.

Write a set of linear conditions on a, b, c, and d such that P (t) satisfies the
following conditions for fixed values of h0, h1, h2, and h3:

P (0) = h0 P ′(0) = h2

P (1) = h1 P ′(1) = h3.

(b) Write the cubic Hermite basis for cubic polynomials {φ0(t), φ1(t), φ2(t), φ3(t)}
such that P (t) satisfying the conditions from 13.6a can be written

P (t) = h0φ0(t) + h1φ1(t) + h2φ2(t) + h3φ3(t).

13.7 (“Cubic blossom”) We continue to explore interpolation techniques suggested in the
previous problem.

(a) Given P (t) = at3 + bt2 + ct + d, define a cubic blossom function F (t1, t2, t3) in
terms of {a, b, c, d} satisfying the following properties [102]:
Symmetric: F (t1, t2, t3) = F (ti, tj , tk)

for any permutation (i, j, k) of {1, 2, 3}
Affine: F (αu+ (1− α)v, t2, t3) = αF (u, t2, t3) + (1− α)F (v, t2, t3)

Diagonal: f(t) = F (t, t, t)

(b) Now, define
p = F (0, 0, 0) q = F (0, 0, 1)
r = F (0, 1, 1) s = F (1, 1, 1).

Write expressions for f(0), f(1), f ′(0), and f ′(1) in terms of p, q, r, and s.

(c) Write a basis {B0(t), B1(t), B2(t), B3(t)} for cubic polynomials such that given
a cubic blossom F (t1, t2, t3) of f(t) we can write

f(t) = F (0, 0, 0)B0(t) + F (0, 0, 1)B1(t) + F (0, 1, 1)B2(t) + F (1, 1, 1)B3(t).

The functions Bi(t) are known as the cubic Bernstein basis.

(d) Suppose F1(t1, t2, t3) and F2(t1, t2, t3) are the cubic blossoms of functions f1(t)

and f2(t), respectively, and define ~F (t1, t2, t3) ≡ (F1(t1, t2, t3), F2(t1, t2, t3)).
Consider the four points shown in Figure 13.12. By bisecting line segments and
drawing new ones, show how to construct ~F (1/2, 1/2, 1/2).
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�F (0, 0, 0)

�F (1, 1, 1)

�F (0, 1, 1)
�F (0, 0, 1)

Figure 13.12 Diagram for Exercise 13.7d.

DH13.8 Consider the polynomial p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1. Alternatively, we
can write p(x) in the Newton basis relative to x1, . . . , xn as

p(x) = c1 + c2 (x− x1) + c3 (x− x1) (x− x2) + · · ·+ cn

n−1∏

i=1

(x− xi) ,

where x1, . . . , xn are fixed constants.

(a) Argue why we can write any (n− 1)-st degree p(x) in this form.

(b) Find explicit expressions for c1, c2, and c3 in terms of x1, x2, and evaluations of
p(·). Based on these expressions (and computing more terms if needed), propose
a pattern for finding ck.

(c) Use function evaluation to define the zeroth divided difference of p as p [x1] =
p (x1). Furthermore, define the first divided difference of p as

p [x1, x2] =
p [x1]− p [x2]

x1 − x2
.

Finally, define the second divided difference as

p [x1, x2, x3] =
p [x1, x2]− p [x2, x3]

x1 − x3
.

Based on this pattern and the pattern you observed in the previous part, define
p[xi, xi+1, . . . , xj ] and use it to provide a formula for the coefficients ck.

(d) Suppose we add another point (xn+1, yn+1) and wish to recompute the Newton
interpolant. How many Newton coefficients need to be recomputed? Why?

13.9 (“Horner’s rule”) Consider the polynomial p(x) ≡ a0 + a1x + a2x
2 + · · · + akx

k. For
fixed x0 ∈ R, define c0, . . . , ck ∈ R recursively as follows:

ck ≡ ak
ci ≡ ai + ci+1x0 ∀i < k.

Show c0 = p(x0), and compare the number of multiplication and addition operations
needed to compute p(x0) using this method versus the formula in terms of the ai’s.
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DH13.10 Consider the L2 distance between polynomials f, g on [−1, 1], given by

||f − g||2 ≡
[∫ 1

−1

(f(x)− g(x))2 dx

]1/2

,

which arises from the inner product 〈f, g〉 =
∫ 1

−1
f(x)g(x) dx. Let Pn be the vector

space of polynomials of degree no more than n, endowed with this inner product.
As we have discussed, polynomials {pi}mi=1 are orthogonal with respect to this inner
product if for all i 6= j, 〈pi, pj〉 = 0; we can systematically obtain a set of orthonormal
polynomials using the Gram-Schmidt process.

(a) Derive constant multiples of the first three Legendre polynomials via Gram-
Schmidt orthogonalization on the monomials 1, x, and x2.

(b) Suppose we wish to approximate a function f with a degree-n polynomial g. To
do so, we can find the g ∈ Pn that is the best least-squares fit for f in the norm
above. Write an optimization problem for finding g.

(c) Suppose we construct the Gram matrix G with entries gij ≡ 〈pi, pj〉 for a basis
of polynomials p1, . . . , pn ∈ Pn. How is G involved in solving Exercise 13.10b?
What is the structure of G when p1, . . . , pn are the first n Legendre polynomials?

DH13.11 For a given n, the Chebyshev points are given by xk = cos
(
kπ
n

)
, where k ∈ {0, . . . , n}.

(a) Show that the Chebyshev points are the projections onto the x axis of n evenly
spaced points on the upper half of the unit circle.

(b) Suppose that we define the Chebyshev polynomials using the expression Tk(x) ≡
cos(k arccos(x)). Starting from this expression, compute the first four Chebyshev
polynomials in the monomial basis.

(c) Show that the Chebyshev polynomials you computed in the previous part are

orthogonal with respect to the inner product 〈f, g〉 ≡
∫ 1

−1
f(x)g(x)√

1−x2
dx.

(d) Show that the extrema of Tn are located at Chebyshev points xk.

13.12 We can use interpolation strategies to formulate methods for root-finding in one or
more variables.

(a) Show how to recover the parameters a, b, c of the linear fractional transformation

f(x) ≡ x+ a

bx+ c

going through the points (x0, y0), (x1, y1), and (x2, y2), either in closed form or
by posing a 3× 3 linear system of equations.

(b) Find x4 such that f(x4) = 0.

(c) Suppose we are given a function f(x) and wish to find a root x∗ with f(x∗) = 0.
Suggest an algorithm for root-finding using the construction in Exercise 13.12b.
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THE previous chapter developed tools for predicting values of a function f(~x) given a
sampling of points (~xi, f(~xi)) in the domain of f . Such methods are useful in themselves

for completing functions that are known to be continuous or differentiable but whose values
only are sampled at a set of isolated points, but in some cases we instead wish to compute
“derived quantities” from the sampled function. Most commonly, many applications must
approximate the integral or derivatives of f rather than its values.

There are many applications in which numerical integration and differentiation play key
roles for computation. In the most straightforward instance, some well-known functions are
defined as integrals. For instance, the “error function” given by the cumulative distribution
of a bell curve is defined as:

erf(x) ≡ 2√
π

∫ x

0

e−t
2

dt.

Approximations of erf(x) are needed in statistical methods, and one reasonable approach
to finding these values is to compute the integral above numerically.

Other times, numerical approximations of derivatives and integrals are part of a larger
system. For example, methods we will develop in future chapters for approximating so-
lutions to differential equations will depend strongly on discretizations of derivatives. In
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computational electrodynamics, integral equations for an unknown function φ(~y) given a
kernel K(~x, ~y) and function f(~x) are expressed as the relationship

f(~x) =

∫

Rn
K(~x, ~y)φ(~y) d~y.

Equations in this form are solved for φ to estimate electric and magnetic fields, but unless
the φ and K are very special we cannot hope to work with such an integral in closed form.
Hence, these methods typically discretize φ and the integral using a set of samples and then
solve the resulting discrete system of equations.

In this chapter, we will develop methods for numerical integration and differentiation
given a sampling of function values. We also will suggest strategies to evaluate how well
we can expect approximations of derivatives and integrals to perform, helping formalize
intuition for their relative quality and efficiency in different circumstances or applications.

14.1 MOTIVATION
It is not hard to encounter applications of numerical integration and differentiation, given
how often the tools of calculus appear in physics, statistics, and other fields. Well-known
formulas aside, here we suggest a few less obvious places requiring algorithms for integration
and differentiation.

Example 14.1 (Sampling from a distribution). Suppose we are given a probability dis-
tribution p(t) on the interval [0, 1]; that is, if we randomly sample values according to this
distribution, we expect p(t) to be proportional to the number of times we draw a value
near t. A common task is to generate random numbers distributed like p(t).

Rather than develop a specialized sampling method every time we receive a new p(t), it
is possible to leverage a single uniform sampling tool to sample from nearly any distribution
on [0, 1]. We define the cumulative distribution function (CDF) of p to be

F (t) =

∫ t

0

p(x) dx.

If X is a random number distributed evenly in [0, 1], one can show that F−1(X) is dis-
tributed like p, where F−1 is the inverse of F . That is, if we can approximate F or F−1,
we can generate random numbers according to an arbitrary distribution p.

Example 14.2 (Optimization). Most of our methods for minimizing and finding roots
of a function f(~x) require computing not only values f(~x) but also gradients ∇f(~x) and
even Hessians Hf (~x). BFGS and Broyden’s method build up rough approximations of
derivatives of f during optimization. When f changes rapidly in small neighborhoods,
however, it may be better to approximate ∇f directly near the current iterate ~xk rather
than using values from potentially far-away iterates ~x` for ` < k, which can happen as
BFGS or Broyden slowly build up derivative matrices.

Example 14.3 (Rendering). The rendering equation from computer graphics and ray
tracing is an integral equation expressing conservation of light energy [70]. As it was
originally presented, the rendering equation states:

I(~x, ~y) = g(~x, ~y)

[
ε(~x, ~y) +

∫

S

ρ(~x, ~y, ~z)I(~y, ~z) d~z

]
.
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Here I(~x, ~y) is proportional to the intensity of light going from point ~y to point ~x in a
scene. The functions on the right-hand side are:

g(~x, ~y) A geometry term accounting, e.g., for objects occluding the
path from ~x to ~y

ε(~x, ~y) The light emitted directly from ~x to ~y
ρ(~x, ~y, ~z) A scattering term giving the amount of light scattered to

point ~x by a patch of surface at location ~z from light lo-
cated at ~z

S = ∪iSi The set of surfaces Si in the scene

Many rendering algorithms can be described as approximate strategies for solving this
integral equation.

Example 14.4 (Image processing). Suppose we think of an image or photograph as a
function of two variables I(x, y) giving the brightness of the image at each position (x, y).
Many classical image processing filters can be thought of as convolutions, given by

(I ∗ g)(x, y) =

∫∫

R2

I(u, v)g(x− u, y − v) du dv.

For example, to blur an image we can take g to be a Gaussian or bell curve; in this case
(I ∗g)(x, y) is a weighted average of the colors of I near the point (x, y). In practice, images
are sampled on discrete grids of pixels, so this integral must be approximated.

Example 14.5 (Bayes’ Rule). Suppose X and Y are continuously valued random vari-
ables; we can use P (X) and P (Y ) to express the probabilities that X and Y take particular
values. Sometimes, knowing X may affect our knowledge of Y . For instance, if X is a pa-
tient’s blood pressure and Y is a patient’s weight, then knowing a patient has high weight
may suggest that he or she also has high blood pressure. In this situation, we can write
conditional probability distributions P (X|Y ) (read “the probability of X given Y ”) ex-
pressing such relationships.

A foundation of modern probability theory states that P (X|Y ) and P (Y |X) are related
by Bayes’ rule

P (X|Y ) =
P (Y |X)P (X)∫
P (Y |X)P (X) dX

.

Estimating the integral in the denominator can be a serious problem in machine learning
algorithms where the probability distributions take complex forms. Approximate and often
randomized integration schemes are needed for algorithms in parameter selection that use
this value as part of a larger optimization technique [63].

14.2 QUADRATURE
We will begin by considering the problem of numerical integration, or quadrature. This
problem—in a single variable—can be expressed as: “Given a sampling of n points from some

function f(x), find an approximation of
∫ b
a
f(x) dx.” In the previous section, we presented

some applications that reduce to exactly this problem.
There are a few variations of this setup that require slightly different treatment or

adaptation:
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• The endpoints a and b may be fixed, or we may wish to find a quadrature scheme
that efficiently can approximate integrals for many (a, b) pairs.

• We may be able to query f(x) at any x but wish to approximate the integral using
relatively few samples, or we may be given a list of precomputed pairs (xi, f(xi)) and
are constrained to using these data points in our approximation.

These considerations should be kept in mind as we design assorted quadrature techniques.

14.2.1 Interpolatory Quadrature
Many of the interpolation strategies developed in the previous chapter can be extended
to methods for quadrature. Suppose we write a function f(x) in terms of a set of basis
functions φi(x):

f(x) =
∑

i

aiφi(x).

Then, we can find the integral of f as follows:
∫ b

a

f(x) dx =

∫ b

a

[∑

i

aiφi(x)

]
dx by definition of f

=
∑

i

ai

[∫ b

a

φi(x) dx

]
by swapping the sum and the integral

=
∑

i

ciai if we make the definition ci ≡
∫ b

a

φi(x) dx.

In other words, the integral of f(x) written in a basis is a weighted sum of the integrals of
the basis functions making up f .

Example 14.6 (Monomials). Suppose we write f(x) =
∑
k akx

k. We know

∫ 1

0

xk dx =
1

k + 1
.

Applying the formula above, we can write

∫ 1

0

f(x) dx =
∑

k

ak
k + 1

.

In the more general notation above, we have taken ck = 1
k+1 . This formula shows that the

integral of f(x) in the monomial basis can be computed directly via a weighted sum of the
coefficients ak.

Integration schemes derived using interpolatory basis functions are known as interpola-
tory quadrature rules; nearly all the methods we will present below can be written this way.
We can encounter a chicken-and-egg problem if the integral

∫
φi(x) dx itself is not known

in closed form. Certain methods in higher-order finite elements deal with this problem by
putting extra computational time into making a high-quality numerical approximation of
the integral of a single φi. Then, since all the φ’s have similar form, these methods ap-
ply change-of-coordinates formulas to compute integrals of the remaining basis functions.
The canonical integral can be approximated offline using a high-accuracy scheme and then
reused during computations where timing matters.



Integration and Differentiation � 281

14.2.2 Quadrature Rules
Our discussion above suggests the following form for a quadrature rule approximating the
integral of f on some interval given a set of sample locations xi:

Q[f ] ≡
∑

i

wif(xi).

Different weights wi yield different approximations of the integral, which we hope become
increasingly similar as the xi’s are sampled more densely. From this perspective, the choices
of {xi} and {wi} determine a quadrature rule.

The classical theory of integration suggests that this formula is a reasonable starting
point. For example, the Riemann integral presented in introductory calculus takes the form

∫ b

a

f(x) dx ≡ lim
∆xk→0

∑

k

f(x̃k)(xk+1 − xk).

Here, the interval [a, b] is partitioned into pieces a = x1 < x2 < · · · < xn = b, where
∆xk = xk+1−xk, and x̃k is any point in [xk, xk+1]. For a fixed set of xk’s before taking the
limit, this integral is in the Q[f ] form above.

There are many ways to choose the form of Q[·], as we will see in the coming section
and as we already have seen for interpolatory quadrature. If we can query f for its values
anywhere, then the xi’s and wi’s can be chosen strategically to sample f in a near-optimal
way, but even if the xi’s are fixed, there exist many ways to choose the weights wi with
different advantages and disadvantages.

Example 14.7 (Method of undetermined coefficients). Suppose we fix x1, . . . , xn and wish
to find a reasonable set of weights wi so that

∑
i wif(xi) approximates the integral of f for

reasonably smooth f : [a, b]→ R. An alternative to interpolatory quadrature is the method
of undetermined coefficients. In this strategy, we choose n functions f1(x), . . . , fn(x) whose
integrals are known, and require that the quadrature rule recovers the integrals of these
functions exactly:

∫ b

a

f1(x) dx = w1f1(x1) + w2f1(x2) + · · ·+ wnf1(xn)

∫ b

a

f2(x) dx = w1f2(x1) + w2f2(x2) + · · ·+ wnf2(xn)

...
...

∫ b

a

fn(x) dx = w1fn(x1) + w2fn(x2) + · · ·+ wnfn(xn).

The n expressions above create an n× n linear system of equations for the unknown wi’s.
One common choice is to take fk(x) ≡ xk−1, that is, to make sure that the quadrature

scheme recovers the integrals of low-order polynomials. As in Example 14.6,

∫ b

a

xk dx =
bk+1 − ak+1

k + 1
.
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x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8

Closed

Open

Figure 14.1 Closed and open Newton-Cotes quadrature schemes differ by where they

place the samples xi on the interval [a, b]; here we show the two samplings for n = 8.

Thus, we solve the following linear system of equations for the wi’s:

w1 + w2 + · · ·+ wn = b− a

x1w1 + x2w2 + · · ·+ xnwn =
b2 − a2

2

x2
1w1 + x2

2w2 + · · ·+ x2
nwn =

b3 − a3

3
...

...

xn−1
1 w1 + xn−1

2 w2 + · · ·+ xn−1
n wn =

bn − an
n

.

In matrix form, this system is




1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n
...

...
. . .

...
xn−1

1 xn−1
2 · · · xn−1

n







w1

w2

...
wn


 =




b− a
1
2 (b2 − a2)
1
3 (b3 − a3)

...
1
n (bn − an)



.

This is the transpose of the Vandermonde system discussed in §13.1.1.

14.2.3 Newton-Cotes Quadrature
Quadrature rules that integrate the result of polynomial interpolation when the x′is are
evenly spaced in [a, b] are known as Newton-Cotes quadrature rules. As illustrated in Fig-
ure 14.1, there are two reasonable choices of evenly spaced samples:

• Closed Newton-Cotes quadrature places xi’s at a and b. In particular, for k ∈
{1, . . . , n} we take

xk ≡ a+
(k − 1)(b− a)

n− 1
.

• Open Newton-Cotes quadrature does not place an xi at a or b:

xk ≡ a+
k(b− a)

n+ 1
.

The Newton-Cotes formulae compute the integral of the polynomial interpolant approxi-
mating the function on a to b through these points; the degree of the polynomial must be
n − 1 to keep the quadrature rule well-defined. There is no inherent advantage to using
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x1 x2

f(x2)

f(x1)

x1 x3

f(x3)

f(x1)

x2

f(x2)

x1

f(x1)

Trapezoidal rule Simpson’s rule Midpoint rule

Figure 14.2 Newton-Cotes quadrature schemes; the approximated integral based on

the (xi, f(xi)) pairs shown is given by the area of the gray region.

closed versus open Newton-Cotes rules; the choice between these options generally depends
on which set of samples is available.

We illustrate the integration rules below in Figure 14.2. We will keep n relatively small
to avoid oscillation and noise sensitivity that occur when fitting high-degree polynomials
to a set of data points. Then, as in piecewise polynomial interpolation, we will then chain
together small pieces into composite rules when integrating over a large interval [a, b].

Closed rules. Closed Newton-Cotes quadrature strategies require n ≥ 2 to avoid dividing
by zero. The two lowest-order closed integrators are the most common:

• The trapezoidal rule for n = 2 (so x1 = a and x2 = b) is constructed by linearly
interpolating from f(a) to f(b). It effectively computes the area of a trapezoid via the
formula ∫ b

a

f(x) dx ≈ (b− a)
f(a) + f(b)

2
.

• Simpson’s rule is used for n = 3, with sample points

x1 = a

x2 =
a+ b

2
x3 = b.

Integrating the parabola that goes through these three points yields

∫ b

a

f(x) dx ≈ b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
.

Open rules. By far the most common rule for open quadrature is the midpoint rule, which
takes n = 1 and approximates an integral with the signed area of a rectangle through the
midpoint of the integration interval [a, b]:

∫ b

a

f(x) dx ≈ (b− a)f

(
a+ b

2

)
.

Larger values of n yield formulas similar to Simpson’s rule and the trapezoidal rule.
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Composite integration. We usually wish to integrate f(x) with more than one, two, or
three sample points xi. To do so, we can construct a composite rule out of the midpoint
or trapezoidal rules, as illustrated in Figure 14.3, by summing up smaller pieces along each
interval. For example, if we subdivide [a, b] into k intervals, then we can take ∆x ≡ b−a

k
and xi ≡ a+ (i− 1)∆x. Then, the composite midpoint rule is

∫ b

a

f(x) dx ≈
k∑

i=1

f

(
xi+1 + xi

2

)
∆x.

Similarly, the composite trapezoidal rule is

∫ b

a

f(x) dx ≈
k∑

i=1

(
f(xi) + f(xi+1)

2

)
∆x

= ∆x

(
1

2
f(a) + f(x2) + f(x3) + · · ·+ f(xk) +

1

2
f(b)

)

after reorganizing the sum.

An alternative derivation of the composite midpoint rule applies the interpolatory quadra-
ture formula from §14.2.1 to piecewise constant interpolation; the composite version of the
trapezoidal rule comes from piecewise linear interpolation.

The composite version of Simpson’s rule, also illustrated in Figure 14.3, chains together
three points at a time to make parabolic approximations. Adjacent parabolas meet at every
other xi and may not share tangents. After combining terms, this quadrature rule becomes:

∫ b

a

f(x) dx ≈ ∆x

6
[f(a) + 4f(x2) + 2f(x3) + 4f(x4) + 2f(x5) + · · ·+ 4f(xk) + f(b)] .

Accuracy. We have developed a number of quadrature rules that combine the same set of
f(xi)’s with different weights to obtain potentially unequal approximations of the integral
of f . Each approximation is based on a different interpolatory construction, so it is unclear
that any of these rules is better than any other. Thus, we need to compute error estimates
characterizing their respective behavior. We will study the basic Newton-Cotes integrators
above to show how such comparisons might be carried out.

First, consider the midpoint quadrature rule on a single interval [a, b]. Define c ≡ 1
2 (a+b).

The Taylor series of f about c is:

f(x) = f(c) + f ′(c)(x− c) +
1

2
f ′′(c)(x− c)2 +

1

6
f ′′′(c)(x− c)3 +

1

24
f ′′′′(c)(x− c)4 + · · ·

After integration, by symmetry about c, the odd-numbered derivatives drop out:

∫ b

a

f(x) dx = (b− a)f(c) +
1

24
f ′′(c)(b− a)3 +

1

1920
f ′′′′(c)(b− a)5 + · · ·

The first term of this sum is exactly the estimate of
∫ b
a
f(x) dx provided by the midpoint

rule, so based on this formula we can conclude that this rule is accurate up to O(∆x3).
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x
a b

f(x)

Actual integral

x
a b

f(x)

Composite midpoint rule (6 samples)

x
a b

f(x)

Composite trapezoidal rule (7 samples)

x
a b

f(x)

Composite Simpson’s rule (7 samples)

Figure 14.3 Composite Newton-Cotes quadrature rules; each rule is marked with the

number of samples (xi, f(xi)) used to approximate the integral over six subintervals.
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Continuing, plugging a and b into the Taylor series for f(x) about c shows:

f(a) = f(c) + f ′(c)(a− c) +
1

2
f ′′(c)(a− c)2 +

1

6
f ′′′(c)(a− c)3 + · · ·

f(b) = f(c) + f ′(c)(b− c) +
1

2
f ′′(c)(b− c)2 +

1

6
f ′′′(c)(b− c)3 + · · ·

Adding these together and multiplying both sides by 1
2 (b− a) shows:

(b− a)
f(a) + f(b)

2
= f(c)(b− a) +

1

4
f ′′(c)(b− a)((a− c)2 + (b− c)2) + · · ·

= f(c)(b− a) +
1

8
f ′′(c)(b− a)3 + · · · by definition of c.

The f ′(c) term vanishes for the first line by substituting c = 1
2 (a + b). Now, the left-

hand side is the trapezoidal rule integral estimate, and the right-hand side agrees with the

Taylor series for
∫ b
a
f(x) dx up to the cubic term. Hence, the trapezoidal rule is also O(∆x3)

accurate in a single interval. A similar argument provides error estimate for Simpson’s rule;
after somewhat more involved algebra, one can show Simpson’s rule has error scaling like
O(∆x5).

We pause here to highlight a surprising result: The trapezoidal and midpoint rules have
the same order of accuracy! Examining the third-order term shows that the midpoint rule
is approximately two times more accurate than the trapezoidal rule, making it marginally
preferable for many calculations. This observation seems counterintuitive, since the trape-
zoidal rule uses a linear approximation while the midpoint rule uses a constant approxima-
tion. As you will see in Exercise 14.1, however, the midpoint rule recovers the integrals of
linear functions, explaining its extra degree of accuracy.

A notable caveat applies to this sort of analysis. Taylor’s theorem only applies when ∆x
is small ; otherwise, the analysis above is meaningless. When a and b are far apart, to return
to the case of small ∆x, we can divide [a, b] into many intervals of width ∆x and apply the
composite quadrature rules. The total number of intervals is b−a/∆x, so we must multiply
error estimates by 1/∆x in this case. Hence, the following orders of accuracy hold:

• Composite midpoint: O(∆x2)

• Composite trapezoid: O(∆x2)

• Composite Simpson: O(∆x4)

14.2.4 Gaussian Quadrature
In some applications, we can choose the locations xi where f is sampled. In this case, we can
optimize not only the weights for the quadrature rule but also the locations xi to get the
highest quality. This observation leads to challenging but theoretically appealing quadrature
rules, such as the Gaussian quadrature technique explored below.

The details of this technique are outside the scope of our discussion, but we provide
one path to its derivation. Generalizing Example 14.7, suppose that we wish to optimize
x1, . . . , xn and w1, . . . , wn simultaneously to increase the order of an integration scheme.
Now we have 2n instead of n unknowns, so we can enforce equality for 2n examples:

∫ b

a

f1(x) dx = w1f1(x1) + w2f1(x2) + · · ·+ wnf1(xn)
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∫ b

a

f2(x) dx = w1f2(x1) + w2f2(x2) + · · ·+ wnf2(xn)

...
...

∫ b

a

f2n(x) dx = w1f2n(x1) + w2f2n(x2) + · · ·+ wnf2n(xn).

Since both the xi’s and the wi’s are unknown, this system of equations is not linear and
must be solved using more involved methods.

Example 14.8 (Gaussian quadrature). If we wish to optimize weights and sample loca-
tions for polynomials on the interval [−1, 1], we would have to solve the following system
of polynomials [58]:

w1 + w2 =

∫ 1

−1

1 dx = 2

w1x1 + w2x2 =

∫ 1

−1

x dx = 0

w1x
2
1 + w2x

2
2 =

∫ 1

−1

x2 dx =
2

3

w1x
3
1 + w2x

3
2 =

∫ 1

−1

x3 dx = 0.

Systems like this can have multiple roots and other degeneracies that depend not only
on the fi’s (typically polynomials) but also on the interval over which the integral is ap-
proximated. These rules are not progressive, in that the xi’s chosen to integrate using n
data points have little in common with those used to integrate using k data points when
k 6= n. So, it is difficult to reuse data to achieve a better estimate with this quadrature
rule. On the other hand, Gaussian quadrature has the highest possible degree of accuracy
for fixed n. Kronrod quadrature rules adapt Gaussian points to the progressive case but no
longer have the highest possible order of accuracy.

14.2.5 Adaptive Quadrature
Our discussion of Gaussian quadrature suggests that the placement of the xi’s can affect
the quality of a quadrature scheme. There still is one piece of information we have not
used, however: the function values f(xi). That is, different classes or shapes of functions
may require different integration methods, but so far our algorithms have not attempted to
detect this structure into account in any serious way.

With this situation in mind, adaptive quadrature strategies examine the current esti-
mate of an integral and generate new xi’s where the integrand appears to be undersampled.
Strategies for adaptive integration often compare the output of multiple quadrature tech-
niques, e.g., trapezoid and midpoint, with the assumption that they agree where sampling of
f is sufficient, as illustrated in Figure 14.4. If they do not agree to some tolerance on a given
interval, an additional sample point is generated and the integral estimates are updated.

Figure 14.5 outlines a bisection technique for adaptive quadrature. The idea is to sub-
divide intervals in which the integral estimate appears to be inaccurate recursively. This
method must be accompanied with special consideration when the level of recursion is too
deep, accounting for the case of a function f(x) that is noisy even at tiny scale.
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Figure 14.4 The trapezoidal and midpoint rules disagree considerably on the left

subinterval (top), so adaptive quadrature methods subdivide in that region to get

better accuracy (bottom).

function Recursive-Quadrature(f(x), a, b, ε0)
I ← Quadrature-Rule(f(x), a, b)
E ← Error-Estimate(f(x), I, a, b)
if E < ε0 then

return I
else

c ← 1
2 (a + b)

I1 ← Recursive-Quadrature(f(x), a, c, ε0)
I2 ← Recursive-Quadrature(f(x), c, b, ε0)
return I1 + I2

Figure 14.5 An outline for recursive quadrature via bisection. This method can use

any of the quadrature rules discussed in this chapter; error estimates can be con-

structed, e.g., by evaluating the difference between using different quadrature rules

for the same interval. The parameter ε0 is a tolerance for the quality of the quadra-

ture rule.
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function Monte-Carlo-Integral(f(�x),Ω ⊆ [a, b]n, p)
c, d ← 0 � Number of points inside Ω and average value
for k ← 1, 2 �p,..., Sample p points

�x ← Uniform-Random([a, b]n)
if Inside(�x,Ω) then � Otherwise reject

c ← c + 1
d ← d + f(�x)

v ← c
p (b − a)n � Estimate of |Ω|

y ← d
c � Average observed f(�x)

return vy

Figure 14.6 Pseudocode for Monte Carlo integration of a function f(~x) : Ω→ R.

14.2.6 Multiple Variables
Many times we wish to integrate functions f(~x) where ~x ∈ Rn. For example, when n = 2
we might integrate over a rectangle by computing

∫ b

a

∫ d

c

f(x, y) dx dy.

More generally, we might wish to find an integral
∫

Ω
f(~x) d~x, where Ω is some subset of Rn.

A “curse of dimensionality” makes integration more difficult as the dimension increases.
The number of sample locations ~xi of f(~x) needed to achieve comparable quadrature accu-
racy for an integral in Rn increases exponentially in n. This observation may be disheart-
ening but is somewhat reasonable: The more input dimensions for f , the more samples are
needed to understand its behavior in all dimensions.

This issue aside, one way to extend single-variable integration to Rk is via the iterated
integral. For example, if f(x, y) is a function of two variables, suppose we wish to find∫ b
a

∫ d
c
f(x, y) dx dy. For fixed y, we can approximate the inner integral over x using a one-

dimensional quadrature rule; then, we integrate these values over y using another quadrature
rule. The inner and outer integrals both induce some error, so we may need to sample the
~xi’s more densely than in one dimension to achieve desired output quality.

Alternatively, just as we subdivided [a, b] into intervals, we can subdivide Ω into triangles
and rectangles in 2D, polyhedra or boxes in 3D, and so on and use interpolatory quadrature
rules in each piece. For instance, one popular option is to integrate barycentric interpolants
(§13.2.2), since this integral is known in closed form.

When n is high, however, it is not practical to divide the domain as suggested. In
this case, we can use the randomized Monte Carlo method. In the most basic version of this
method, we generate k random points ~xi ∈ Ω with uniform probability. Averaging the values
f(~xi) and scaling the result by the volume |Ω| of Ω yields an approximation of

∫
Ω
f(~x) d~x:

∫

Ω

f(~x) d~x ≈ |Ω|
k

k∑

i=1

f(~xi).

This approximation converges like 1/
√
k as more sample points are added—independent of

the dimension of Ω! So, in large dimensions the Monte Carlo estimate is preferable to the
deterministic quadrature methods above. A proof of convergence requires some notions from
probability theory, so we refer the reader to [103] or a similar reference for discussion.

One advantage of Monte Carlo techniques is that they are easily implemented and ex-
tended. Figure 14.6 provides a pseudocode implementation of Monte Carlo integration over
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a region Ω ⊆ [a, b]n. Even if we do not have a method for producing uniform samples in
Ω directly, the more general integral can be carried out by sampling in the box [a, b]n and
rejecting those samples outside Ω. This sampling is inappropriate when Ω is small relative
to the bounding box [a, b]n, since the odds of randomly drawing a point in Ω decrease in this
case. To improve conditioning of this case, more advanced techniques bias their samples of
[a, b]n based on evidence of where Ω takes the most space and where f(~x) is nontrivial.

Iterated integration can be effective for low-dimensional problems, and Monte Carlo
methods show the greatest advantage in high dimensions. In between these two regimes,
the choice of integrators is less clear. One compromise that samples less densely than iterated
integration without resorting to randomization is the sparse grid or Smolyak grid method,
designed to reduce the effect of the curse of dimensionality on numerical quadrature. We
refer the reader to [114, 47] for discussion of this advanced technique.

14.2.7 Conditioning
We have evaluated the quality of a quadrature method by bounding its accuracy like O(∆xk)
for small ∆x. By this metric, a set of quadrature weights with large k is preferable. Another
measure discussed in [58] and elsewhere, however, balances out the accuracy measurements
obtained using Taylor arguments by considering the stability of a quadrature method under
perturbations of the function being integrated.

Consider the quadrature rule Q[f ] ≡∑i wif(xi). Suppose we perturb f to some other

f̂ . Define ‖f − f̂‖∞ ≡ maxx∈[a,b] |f(x)− f̂(x)|. Then,

|Q[f ]−Q[f̂ ]|
‖f − f̂‖∞

=
|∑i wi(f(xi)− f̂(xi))|

‖f − f̂‖∞

≤
∑
i |wi||f(xi)− f̂(xi)|
‖f − f̂‖∞

by the triangle inequality

≤ ‖~w‖∞ since |f(xi)− f̂(xi)| ≤ ‖f − f̂‖∞ by definition.

According to this bound, the most stable quadrature rules are those with small weights ~w.
If we increase the order of quadrature accuracy by augmenting the degree of the poly-

nomial used in Newton-Cotes quadrature, the conditioning bound ‖~w‖∞ generally becomes
less favorable. In degenerate circumstances, the wi’s even can take negative values, echo-
ing the degeneracies of high-order polynomial interpolation. Thus, in practice we usually
prefer composite quadrature rules summing simple estimates from many small subinter-
vals to quadrature from higher-order interpolants, which can be unstable under numerical
perturbation.

14.3 DIFFERENTIATION
Numerical integration is a relatively stable problem, in that the influence of any single value

f(x) on
∫ b
a
f(x) dx shrinks to zero as a and b become far apart. Approximating the derivative

of a function f ′(x), on the other hand, has no such property. From the Fourier analysis
perspective, one can show that the integral

∫
f(x) dx generally has lower frequencies than

f , while differentiating to produce f ′ amplifies the frequency content of f , making sampling
constraints, conditioning, and stability particularly challenging for approximating f ′.

Despite the challenging circumstances, approximations of derivatives usually are rela-
tively easy to implement and can be stable under sufficient smoothness assumptions. For
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ψi(x)

xi

ψ′
i(x)

xi

Figure 14.7 If a function is written in the basis of piecewise-linear “hat” functions

ψi(x), then its derivative can be written in the basis of piecewise constant functions

ψ′i(x).

example, while developing the secant rule, Broyden’s method, and so on we used approxi-
mations of derivatives and gradients to help guide optimization routines with success on a
variety of objectives.

Here, we will focus on approximating f ′ for f : R→ R. Finding gradients and Jacobians
usually is carried out by differentiating in one dimension at a time, effectively reducing to
the one-dimensional problem.

14.3.1 Differentiating Basis Functions
From a mathematical perspective, perhaps the simplest use case for numerical differentiation
involves functions that are constructed using interpolation formulas. As in §14.2.1, if f(x) =∑
i aiφi(x), then by linearity

f ′(x) =
∑

i

aiφ
′
i(x).

In other words, the functions φ′i form a basis for derivatives of functions written in the φi
basis!

This phenomenon often connects different interpolatory schemes, as in Figure 14.7. For
example, piecewise linear functions have piecewise constant derivatives, polynomial func-
tions have polynomial derivatives of lower degree, and so on. In future chapters, we will see
that this structure strongly influences discretizations of differential equations.

14.3.2 Finite Differences
A more common situation is that we have a function f(x) that we can query but whose
derivatives are unknown. This often happens when f takes on a complex form or when a
user provides f(x) as a subroutine without analytical information about its structure.

The definition of the derivative suggests a reasonable approximation

f ′(x) ≡ lim
h→0

f(x+ h)− f(x)

h
.

As we might expect, for a finite h > 0 with small |h| the expression in the limit provides an
approximation of f ′(x).

To substantiate this intuition, use Taylor series to write

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 + · · · .
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Rearranging this expression shows

f ′(x) =
f(x+ h)− f(x)

h
+O(h).

Thus, the following forward difference approximation of f ′ has linear convergence:

f ′(x) ≈ f(x+ h)− f(x)

h
.

Similarly, flipping the sign of h shows that backward differences also have linear convergence:

f ′(x) ≈ f(x)− f(x− h)

h
.

We can improve this approximation by combining the forward and backward estimates.
By Taylor’s theorem,

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

6
f ′′′(x)h3 + · · ·

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 + · · ·

=⇒ f(x+ h)− f(x− h) = 2f ′(x)h+
1

3
f ′′′(x)h3 + · · ·

=⇒ f(x+ h)− f(x− h)

2h
= f ′(x) +O(h2).

Hence, centered differences approximate f ′(x) with quadratic convergence; this is the highest
order of convergence we can expect to achieve with a single divided difference. We can,
however, achieve more accuracy by evaluating f at other points, e.g., x+ 2h, at the cost of
additional computation time, as explored in §14.3.3.

Approximations of higher-order derivatives can be derived via similar constructions. If
we add together the Taylor expansions of f(x+ h) and f(x− h), then

f(x+ h) + f(x− h) = 2f(x) + f ′′(x)h2 +O(h3)

=⇒ f(x+ h)− 2f(x) + f(x− h)

h2
= f ′′(x) +O(h).

To construct similar combinations for higher derivatives, one trick is to notice that our
second derivative formula can be factored differently:

f(x+ h)− 2f(x) + f(x− h)

h2
=

f(x+h)−f(x)
h − f(x)−f(x−h)

h

h
.

That is, the second derivative approximation is a “finite difference of finite differences.”
One way to interpret this formula is shown in Figure 14.8. When we compute the forward
difference approximation of f ′ between x and x+ h, we can think of this slope as living at
x + h/2; we similarly can use backward differences to place a slope at x − h/2. Finding the
slope between these values puts the approximation back on x.
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f(x − h) f(x + h)f(x)

f ′′(x)

f ′(x + h/2)f ′(x − h/2)

Figure 14.8 Computing the second derivative f ′′(x) by divided differences can be

thought of as applying the same divided difference rule once to approximate f ′ and

a second time to approximate f ′′.

14.3.3 Richardson Extrapolation
One way to improve convergence of the approximations above is Richardson extrapolation.
As an example of a more general pattern, suppose we wish to use forward differences to
approximate f ′(x). For fixed x ∈ R, define

D(h) ≡ f(x+ h)− f(x)

h
.

We have argued that D(h) approaches f ′(x) as h→ 0. Furthermore, the difference between
D(h) and f ′(x) scales like O(h).

More specifically, from our discussion in §14.3.2, D(h) takes the form

D(h) = f ′(x) +
1

2
f ′′(x)h+O(h2).

Suppose we know D(h) and D(αh) for some 0 < α < 1. Then,

D(αh) = f ′(x) +
1

2
f ′′(x)αh+O(h2).

We can combine these two relationships in matrix form as
(

1 1
2h

1 1
2αh

)(
f ′(x)
f ′′(x)

)
=

(
D(h)
D(αh)

)
+O(h2).

Applying the inverse of the 2× 2 matrix on the left,
(

f ′(x)
f ′′(x)

)
=

(
1 1

2h
1 1

2αh

)−1 [(
D(h)
D(αh)

)
+O(h2)

]

=
1

1− α

(
−α 1

2
h − 2

h

)[(
D(h)
D(αh)

)
+O(h2)

]

=
1

1− α

(
−α 1

2
h − 2

h

)(
D(h)
D(αh)

)
+

(
O(h2)
O(h)

)
.

Focusing on the first row, we took two O(h) approximations of f ′(x) using D(h) and com-
bined them to make an O(h2) approximation! This clever technique is a method for se-
quence acceleration, improving the order of convergence of the approximation D(h). The
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same method is applicable to many other problems including numerical integration, as ex-
plored in Exercise 14.9. Richardson extrapolation even can be applied recursively to make
higher and higher order approximations of the same quantity.

Example 14.9 (Richardson extrapolation). Suppose we wish to approximate f ′(1) for
f(x) = sinx2. To carry out Richardson extrapolation, we will use the function

D(h) =
sin(1 + h)2 − sin 12

h
.

If we take h = 0.1 and α = 0.5, then

D(0.1) = 0.941450167 . . .

D(0.1 · 0.5) = 1.017351587 . . .

These approximations both hold up to O(h). The O(h2) Richardson approximation is

1

1− 0.5
(−0.5D(0.5) +D(0.1 · 0.5)) = 1.0932530067 . . .

This approximation is a closer match to the ground truth value f ′(1) ≈ 1.0806046117 . . . .

14.3.4 Choosing the Step Size
We showed that the error of Richardson extrapolation shrinks more quickly as h→ 0 than
the error of divided differences. We have not justified, however, why this scaling matters.
The Richardson extrapolation derivative formula requires more arithmetic than divided
differences, so at first glance it may seem to be of limited interest. That is, in theory we can
avoid depleting a fixed error budget in computing numerical derivatives equally well with
both formulas, even though divided differences will need a far smaller h.

More broadly, unlike quadrature, numerical differentiation has a curious property. It
appears that any formula above can be arbitrarily accurate without extra computational
cost by choosing a sufficiently small h. This observation is appealing from the perspective
that we can achieve higher-quality approximations without additional computation time.

The catch, however, is that implementations of arithmetic operations usually are inexact.
The smaller the value of h, the more similar the values f(x) and f(x + h) become, to the
point that they are indistinguishable in finite-precision arithmetic. Dividing by very small
h > 0 induces additional numerical instability. Thus, there is a range of h values that are
not large enough to induce significant discretization error and not small enough to generate
numerical problems. Figure 14.9 shows an example for differentiating a simple function in
IEEE floating-point arithmetic.

Similarly, suppose as in §14.2.7 that due to noise, rather than evaluating f(x), we receive

perturbed values from a function f̂(x) satisfying ‖f − f̂‖∞ ≤ ε. Then, we can bound the
error of computing a difference quotient:

∣∣∣∣∣
f̂(x+ h)− f̂(x)

h
− f ′(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
f̂(x+ h)− f̂(x)

h
− f(x+ h)− f(x)

h

∣∣∣∣∣+O(h)

by our previous bound

≤
∣∣∣∣∣
(f̂(x+ h)− f(x+ h))− (f̂(x)− f(x))

h

∣∣∣∣∣+O(h)
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Figure 14.9 The finite difference 1/h(f(x+h)−f(x)) as a function of h for f(x) = x2
/2,

computed using IEEE floating-point arithmetic; when h is too small, the approxi-

mation suffers from numerical issues, while large h yields discretization error. The

horizontal axis is on a logarithmic scale, and the vertical axis scales linearly.

≤ 2ε

h
+O(h) since ‖f − f̂‖∞ ≤ ε.

For fixed ε > 0, this bound degrades if we take h → 0. Instead, we should choose h to
balance the 2ε/h and O(h) terms to get minimal error. That is, if we cannot compute values
of f(x) exactly, taking larger h > 0 can actually improve the quality of the estimate of
f ′(x). Exercise 14.6f has a similar conclusion about a method for numerical integration.

14.3.5 Automatic Differentiation
As we have seen, typical algorithms for numerical differentiation are relatively fast since they
involve little more than computing a difference quotient. Their main drawback is numerical,
in that finite-precision arithmetic and/or inexact evaluation of functions fundamentally limit
the quality of the output. Noisy or rapidly varying functions are thus difficult to differentiate
numerically with any confidence.

On the other end of the spectrum between computational efficiency and numerical qual-
ity lies the technique of automatic differentiation (“autodiff”), which is not subject to any
discretization error [8]. Instead, this technique takes advantage of the chain rule and other
properties of derivatives to compute them exactly.

“Forward” automatic differentiation is particularly straightforward to implement. Sup-
pose we have two variables u and v, stored using floating-point values. We store alongside
these variables additional values u′ ≡ du/dt and v′ ≡ dv/dt for some independent variable t;
in some programming languages, we alternatively can define a new data type holding pairs
of values [u, u′] and [v, v′]. We can define an algebra on these pairs that encodes typical
operations:

[u, u′] + [v, v′] ≡ [u+ v, u′ + v′]

c[u, u′] ≡ [cu, cu′]

[u, u′] · [v, v′] ≡ [uv, uv′ + u′v]

[u, u′]÷ [v, v′] ≡
[
u

v
,
vu′ − uv′

v2

]

exp([u, u′]) ≡ [eu, u′eu]
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ln([u, u′]) ≡
[
lnu,

u′

u

]

cos([u, u′]) ≡ [cosu,−u′ sinu]

...
...

Starting with the pair t ≡ [t0, 1]—since dt/dt = 1—we can evaluate a function f(t) and its
derivative f ′(t) simultaneously using these rules. If they are implemented in a programming
language supporting operator overloading, the additional derivative computations can be
completely transparent to the implementer.

The method we just described builds up the derivative f ′(t) in parallel with building
y = f(t). “Backward” automatic differentiation is an alternative algorithm that can require
fewer function evaluations in exchange for more memory usage and a more complex im-
plementation. This technique constructs a graph representing the steps of computing f(t)
as a sequence of elementary operations. Then, rather than starting from the fact dt/dt = 1
and working forward to dy/dt, backward automatic differentiation starts with dy/dy = 1 and
works backward from the same rules to replace the denominator with dt. Backward auto-
matic differentiation can avoid unnecessary computations, particularly when y is a function
of multiple variables. For instance, suppose we can write f(t1, t2) = f1(t1) + f2(t2); in this
case, backward automatic differentiation does not need to differentiate f1 with respect to
t2 or f2 with respect to t1. The backpropagation method for neural networks in machine
learning is a special case of backward automatic differentiation.

Automatic differentiation is widely regarded as an under-appreciated numerical tech-
nique, yielding exact derivatives of functions with minimal implementation effort. It is par-
ticularly valuable when prototyping software making use of optimization methods requiring
derivatives or Hessians, avoiding having to recompute derivatives by hand every time an
objective function is adjusted. The cost of this convenience, however, is computational ef-
ficiency, since in effect automatic differentiation methods do not simplify expressions for
derivatives but rather apply the most obvious rules.

14.3.6 Integrated Quantities and Structure Preservation
Continuing in our consideration of alternatives to numerical differentiation, we outline an
approach that has gained popularity in the geometry and computer graphics communities
for dealing with curvature and other differential measures of shape.

As we have seen, a typical pattern from numerical analysis is to prove that properties
of approximated derivatives hold as ∆x → 0 for some measure of spacing ∆x. While this
type of analysis provides intuition relating discrete computations to continuous notions from
calculus, it neglects a key fact: In reality, we must fix ∆x > 0. Understanding what happens
in the ∆x > 0 regime can be equally important to the ∆x→ 0 limit, especially when taking
coarse approximations. For example, in computational geometry, it may be desirable to link
measures like curvature of smooth shape directly to discrete values like lengths and angles
that can be computed on complexes of polygons.

With this new view, some techniques involving derivatives, integrals, and other quan-
tities are designed with structure preservation in mind, yielding “discrete” rather than
“discretized” analogs of continuous quantities [53]. That is, rather than asking that struc-
ture from continuous calculus emerges as ∆x→ 0, we design differentiators and integrators
for which certain theorems from continuous mathematics hold exactly.

One central technique in this domain is the use of integrated quantities to encode
derivatives. As a basic example, suppose we are sampling f(t) and have computed
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Figure 14.10 Notation for Example 14.10; each curve segment Γi is the union of the

two half-segments adjacent to ~vi, bounded by the marked midpoints.

f(t1), f(t2), . . . , f(tk) for some discrete set of times t1 < t2 < · · · < tk. Rather than using
divided differences to approximate the derivative f ′, we can use the Fundamental Theorem
of Calculus to show ∫ ti+1

ti

f ′(t) dt = f(ti+1)− f(ti).

This formula may not appear remarkable beyond first-year calculus, but it encodes a deep
idea. The difference f(ti+1)−f(ti) on the right side is computable exactly from the samples
f(t1), f(t2), . . . , f(tk), while the quantity on the left is an averaged version of the derivative
f ′. By substituting integrated versions of f ′ into computations whenever possible, we can
carry out discrete analogs of continuous calculus for which certain theorems and properties
hold exactly rather than in the limit.

Example 14.10 (Curvature of a 2D curve, [53]). In the continuous theory of differential
geometry, a smooth curve Γ on the two-dimensional plane can be parameterized as a
function γ(s) : R → R2 satisfying γ′(s) 6= ~0 for all s. Assume that ‖γ′(s)‖2 = 1 for
all s; such an arc length parameterization is always possible by moving along the curve
with constant speed. Then, Γ has unit tangent vector ~T (s) ≡ γ′(s). If we write ~T (s) ≡
(cos θ(s), sin θ(s)) for angle θ(s), then the curvature of γ(s) is given by the derivative κ(s) ≡
θ′(s). This notation is illustrated in Figure 14.10 alongside notation for the discretization
below.

Suppose Γ is closed, that is, γ(s0) = γ(s1) for some s0, s1 ∈ R. In this case, the turning
number theorem from topology states

∫ s1

s0

κ(s) ds = 2πk,

for some integer k. Intuitively, this theorem represents the fact that ~T (s0) = ~T (s1), and
hence θ took some number of loops around the full circle.

A typical discretization of a two-dimensional curve is as a sequence of line segments
~vi ↔ ~vi+1. Approximating κ(s) on such a curve can be challenging, since κ is related to the
second derivative γ′′. Instead, suppose at each joint ~vi we define the integrated curvature
over the two half-segments around ~vi to be the turning angle θi given by the π minus the
angle between the two segments adjacent to ~vi.
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Partition the discretization of Γ into pairs of half-segments Γi. Then, if Γ is closed,

∫

Γ

κ ds =
∑

i

∫

Γi

κ ds by breaking into individual terms

=
∑

i

θi by definition of integrated curvature

= 2πk,

where the final equality comes from the fact that the discrete Γ is a polygon, and we
are summing its exterior angles. That is, for this choice of discrete curvature, the turning
number theorem holds exactly even for coarse approximations of Γ, rather than becoming
closer and closer to true as the lengths |Γi| → 0. In this sense, the integrated turning-angle
curvature has more properties in common with the continuous curvature of a curve γ(s)
than an inexact but convergent discretization coming from divided differences.

The example above shows a typical structure-preserving treatment of a derivative quan-
tity, in this case the curvature of a two-dimensional curve, accompanied by a discrete
structure—the turning number theorem—holding without taking any limit as ∆x → 0.
We have not shown, however, that the value θi—or more precisely some non-integrated
pointwise approximation like θi/|Γi|—actually converges to the curvature of Γ. This type of
convergence does not always hold, and in some cases it is impossible to preserve structure
exactly and converge as ∆x → 0 simultaneously [128]. Such issues are the topic of active
research at the intersection of numerical methods and geometry processing.

14.4 EXERCISES
14.1 Show that the midpoint rule is exact for the function f(x) = mx+c along any interval

x ∈ [a, b].

14.2 (Suggested by Y. Zhao) Derive α, β, and x1 such that the following quadrature rule
holds exactly for polynomials of degree ≤ 2 :

∫ 2

0

f(x) dx ≈ αf(0) + βf(x1).

14.3 Suppose we are given a quadrature rule of the form
∫ 1

0
f(x) dx ≈ af(0) + bf(1) for

some a, b ∈ R. Propose a corresponding composite rule for approximating
∫ 1

0
f(x) dx

given n+ 1 closed sample points y0 ≡ f(0), y1 ≡ f(1/n), y2 ≡ f(2/n), . . . , yn ≡ f(1).

14.4 Some quadrature problems can be solved by applying a suitable change of variables:

(a) Our strategies for quadrature break down when the interval of integration is not
of finite length. Derive the following relationships for f : R→ R:

∫ ∞

−∞
f(x) dx =

∫ 1

−1

f

(
t

1− t2
)

1 + t2

(1− t2)2
dt

∫ ∞

0

f(x) dx =

∫ 1

0

f(− ln t)

t
dt

∫ ∞

c

f(x) dx =

∫ 1

0

f

(
c+

t

1− t

)
· 1

(1− t)2
dt.
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How can these formulas be used to integrate over intervals of infinite length?
What might be a drawback of evenly spacing t samples?

(b) Suppose f : [−1, 1]→ R can be written:

f(cos θ) =
a0

2
+
∞∑

k=1

ak cos(kθ).

Then, show: ∫ 1

−1

f(x) dx = a0 +
∞∑

k=1

2a2k

1− (2k)2
.

This formula provides a way to integrate a function given its Fourier series [25].

14.5 The methods in this chapter for differentiation were limited to single-valued functions
f : R → R. Suppose g : Rn → Rm. How would you use these techniques to approx-
imate the Jacobian Dg? How does the timing of your approach scale with m and
n?

14.6 (“Lanczos differentiator,” [77]) Suppose f(t) is a smooth function.

(a) Suppose we sample f(t) at t = kh for k ∈ {−n,−n + 1, . . . , 0, . . . , n}, yielding
samples y−n = f(−nh), y−n+1 = f((−n + 1)h), . . . , yn = f(nh). Show that the
parabola p(t) = at2 + bt+ c optimally fitting these data points via least-squares
satisfies

p′(0) =

∑
k kyk

h
∑
k k

2
.

(b) Use this formula to propose approximations of f ′(0) when n = 1, 2, 3.

(c) Motivate the following formula for “differentiation by integration”:

f ′(0) = lim
h→0

3

2h3

∫ h

−h
tf(t) dt.

This formula provides one connection between numerical methods for integration
and differentiation.

(d) Show that when h > 0,

3

2h3

∫ h

−h
tf(t) dt = f ′(0) +O(h2).

(e) Denote Dhf ≡ 3
2h3

∫ h
−h tf(t) dt. Suppose thanks to noise we actually observe fε(t)

satisfying |f(t)− fε(t)| ≤ ε for all t. Show the following relationship:

|Dhf
ε − f ′(0)| ≤ 3ε

2h
+O(h2).

(f) Suppose the second term in Exercise 14.6e is bounded above by Mh2
/10; this is

the case when |f ′′′(t)| ≤ M everywhere [54]. Show that with the right choice of
h, the integral approximation from Exercise 14.6e is within O(ε2/3) of f ′(0).
Note: Your choice of h effectively trades off between numerical approximation
error from using the “differentiation by integration” formula and noise approxi-
mating f with fε. This property makes the Lanczos approximation effective for
certain noisy functions.
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14.7 Propose an extension of forward automatic differentiation to maintaining first and
second derivatives in triplets [u, u′, u′′]. Provide analogous formulas for the operations
listed in §14.3.5 given [u, u′, u′′] and [v, v′, v′′].

14.8 The problem of numerical differentiation is challenging for noisy functions. One way
to stabilize such a calculation is to consider multiple samples simultaneously [1]. For
this problem, assume f : [0, 1]→ R is differentiable.

(a) By the Fundamental Theorem of Calculus, there exists c ∈ R such that

f(x) = c+

∫ x

0

f ′(x̄) dx̄.

Suppose we sample f(x) at evenly spaced points x0 = 0, x1 = h, x2 =
2h, . . . , xn = 1 and wish to approximate the first derivative f ′(x) at x1−h/2, x2−
h/2, . . . , xn − h/2. If we label our samples of f ′(x) as a1, . . . , an, write a least-
squares problem in the ai’s and an additional unknown c approximating this
integral relationship.

(b) Propose a Tikhonov regularizer for this problem.

(c) We also could have written

f(x) = c̃−
∫ 1

x

f ′(x̄) dx̄.

Does your approximation of f ′(x̄) change if you use this formula?

14.9 The Romberg quadrature rules are derived by applying Richardson extrapolation
(§14.3.3) to numerical integration. Here, we will derive Romberg integration for
f : [a, b]→ R.

(a) Suppose we divide [a, b] into 2k subintervals for k ≥ 0. Denote by Tk,0 the result
of applying the composite trapezoidal rule to f(x) to this subdivision. Show that
there exists a constant C dependent on f but not k such that:

∫ b

a

f(x) dx = Tk,0 + Ch2 +O(h4),

where h(k) = (b−a)/2k. For this problem, you may assume that f is infinitely
differentiable and that the Taylor series for f centered at any c ∈ [a, b] is conver-
gent.

(b) Use Richardson extrapolation to derive an estimate Tk,1 of the integral that is
accurate up to O(h4).
Hint: Combine Tk,0 and Tk−1,0.

(c) Assume that the error expansion for the trapezoidal rule continues in a similar
fashion: ∫ b

a

f(x) dx = Tk,0 + C2h
2 + C4h

4 + C6h
6 + · · · .

By iteratively applying Richardson extrapolation, propose values Tk,j for j ≤ k
that can be used to achieve arbitrarily high-order estimates of the desired integral.
Hint: You should be able to define Tk,j as a linear combination of Tk,j−1 and
Tk−1,j−1.
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14.10 Give examples of closed and open Newton-Cotes quadrature rules with negative coef-
ficients for integrating f(x) on [0, 1]. What unnatural properties can be exhibited by
these approximations?

14.11 Provide a sequence of differentiable functions fk : [0, 1]→ R and a function f : [0, 1]→
R such that maxx∈[0,1] |fk(x)−f(x)| → 0 as k →∞ but maxx∈[0,1] |f ′k(x)−f ′(x)| → ∞.
What does this example imply about numerical differentiation when function values
are noisy? Is a similar counterexample possible for integration when f and the fk’s
are differentiable?
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CHAPTER 13 motivated the problem of interpolation by transitioning from analyzing
functions to finding functions. In problems like interpolation and regression, the un-

known is a entire function f(~x), and the job of the algorithm is to fill in f(~x) at positions
~x where it is unknown.

In this chapter and the next, our unknown will continue to be a function f , but rather
than filling in missing values we will solve more complex design problems like the following:

• Find f approximating some other function f0 but satisfying additional criteria
(smoothness, continuity, boundedness, etc.).

• Simulate some dynamical or physical relationship as f(t) where t is time.

• Find f with similar values to f0 but certain properties in common with a different
function g0.

In each of these cases, our unknown is a function f , but our criterion for success is more
involved than “matches a given set of data points.”

The theories of ordinary differential equations (ODEs) and partial differential equations
(PDEs) involve the case where we wish to find a function f(~x) based on information about

303
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or relationships between its derivatives. We inadvertently solved one problem in this class
while studying quadrature: Given f ′(t), quadrature approximates f(t) using integration.

In this chapter, we will consider ordinary differential equations and in particular initial
value problems. In these problems, the unknown is a function f(t) : R→ Rn, given f(0) and
an equation satisfied by f and its derivatives. Our goal is to predict f(t) for t > 0. We will
provide examples of ODEs appearing in practice and then will describe common solution
techniques.

15.1 MOTIVATION
ODEs appear in nearly every branch of science, and hence it is not difficult to identify target
applications of solution techniques. We choose a few representative examples both from the
computational and scientific literatures:

Example 15.1 (Newton’s Second Law). Continuing from §6.1.2, recall that Newton’s

Second Law of Motion states ~F = m~a, that is, the total force on an object is equal to
its mass times its acceleration. If we simulate n particles simultaneously as they move in
three-dimensional space, we can combine all their positions into a single vector ~x(t) ∈ R3n.

Similarly, we can write a function ~F (t, ~x, ~x′) ∈ R3n taking the current time, the positions
of the particles, and their velocities and returning the total force on each particle divided
by its mass. This function can take into account interrelationships between particles (e.g.,
gravitational forces, springs, or intermolecular bonds), external effects like wind resistance
(which depends on ~x′), external forces varying with time t, and so on. To find the positions
of all the particles as functions of time, we can integrate Newton’s second law forward in
time by solving the equation ~x′′ = ~F (t, ~x, ~x′). We usually are given the positions and
velocities of all the particles at time t = 0 as a starting condition.

Example 15.2 (Protein folding). On a small scale, the equations governing motions of
molecules stem from Newton’s laws or—at even smaller scales—the Schrödinger equation of
quantum mechanics. One challenging case is that of protein folding, in which the geometric
structure of a protein is predicted by simulating intermolecular forces over time. These
forces take many nonlinear forms that continue to challenge researchers in computational
biology due in large part to a variety of time scales: The same forces that cause protein
folding and related phenomena also can make molecules vibrate rapidly, and the disparate
time scales of these two different behaviors makes them difficult to capture simultaneously.

Example 15.3 (Gradient descent). Suppose we wish to minimize an objective function
E(~x) over all ~x. Especially if E is a convex function, the most straightforward option for
minimization from Chapter 9 is gradient descent with a constant step size or “learning
rate.” Since −∇E(~x) points in the direction along which E decreases the most from a
given ~x, we can iterate:

~xi+i ≡ ~xi − h∇E(~xi),

for fixed h > 0. We can rewrite this relationship as

~xi+1 − ~xi
h

= −∇E(~xi).

In the style of §14.3, we might think of ~xk as a sample of a function ~x(t) at t = hk.
Heuristically, taking h→ 0 motivates an ordinary differential equation

~x′(t) = −∇E(~x).
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If we take ~x(0) to be an initial guess of the location where E(~x) is minimized, then this
ODE is a continuous model of gradient descent. It can be thought of as the equation of a
path smoothly walking “downhill” along a landscape provided by E.

For example, suppose we wish to solve A~x = ~b for symmetric positive definite A. From
§11.1.1, this is equivalent to minimizing E(~x) ≡ 1

2~x
>A~x −~b>~x + c. Using the continuous

model of gradient descent, we can instead solve the ODE ~x′ = −∇E(~x) = ~b − A~x. As
t→∞, we expect ~x(t) to better and better satisfy the linear system.

Example 15.4 (Crowd simulation). Suppose we are writing video game software requiring
realistic simulation of virtual crowds of humans, animals, spaceships, and the like. One way
to generate plausible motion is to use differential equations. In this technique, the velocity
of a member of the crowd is determined as a function of its environment; for example, in
human crowds, the proximity of other humans, distance to obstacles, and so on can affect
the direction a given agent is moving. These rules can be simple, but in the aggregate their
interaction becomes complex. Stable integrators for differential equations underlie crowd
simulation to avoid noticeably unrealistic or unphysical behavior.

15.2 THEORY OF ODES
A full treatment of the theory of ordinary differential equations is outside the scope of our
discussion, and we refer the reader to [64] or any other basic text for details from this
classical theory. We highlight relevant results here for development in future sections.

15.2.1 Basic Notions
The most general initial value problem takes the following form:

Find f(t) : R+ → Rn
satisfying F [t, f(t), f ′(t), f ′′(t), . . . , f (k)(t)] = ~0

given f(0), f ′(0), f ′′(0), . . . , f (k−1)(0).

Here, F is some relationship between f and all its derivatives; we use f (`) to denote the
`-th derivative of f . The functions f and F can be multidimensional, taking on values in Rn
rather than R, but by convention and for convenience of notation we will omit the vector
sign. We also will use the notation ~y ≡ f(t) as an alternative to writing f(t) when the t
dependence is implicit; in this case, derivatives will be notated ~y′ ≡ f ′(t), ~y′′ ≡ f ′′(t), and
so on.

Example 15.5 (Canonical ODE form). Suppose we wish to solve the ODE y′′ = ty′ cos y.
In the general form above, the ODE can be written F [t, y, y′, y′′] = 0, where F [t, a, b, c] ≡
tb cos a− c.

ODEs determine the evolution of f over time t; we know f and its derivatives at time
t = 0 and wish to predict these quantities moving forward. They can take many forms even
in a single variable. For instance, denote y = f(t) for y ∈ R1. Then, examples of ODEs
include the following:
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Example ODE Distinguishing properties
y′ = 1 + cos t Can be solved by integrating both sides with respect

to t; can be solved discretely using quadrature
y′ = ay Linear in y, no dependence on time t
y′ = ay + et Time- and value-dependent
y′′ + 3y′ − y = t Involves multiple derivatives of y

y′′ sin y = ety
′

Nonlinear in y and t

We will restrict most of our discussion to the case of explicit ODEs, in which the highest-
order derivative can be isolated:

Definition 15.1 (Explicit ODE). An ODE is explicit if can be written in the form

f (k)(t) = F [t, f(t), f ′(t), f ′′(t), . . . , f (k−1)(t)].

Certain implicit ODEs can be converted to explicit form by solving a root-finding problem,
for example, using the machinery introduced in Chapter 8, but this approach can fail in the
presence of multiple roots.

Generalizing a trick first introduced in §6.1.2, any explicit ODE can be converted to a
first-order equation f ′(t) = F [t, f(t)] by adding to the dimensionality of f . This construction
implies that it will be enough for us to consider algorithms for solving (multivariable) ODEs
containing only a single time derivative. As a reminder of this construction for the second-
order ODE y′′ = F [t, y, y′], recall that

d2y

dt2
=

d

dt

(
dy

dt

)
.

Defining an intermediate variable z ≡ dy/dt, we can expand to the following first-order
system:

d

dt

(
y
z

)
=

(
z

F [t, y, z]

)
.

More generally, if we wish to solve the explicit problem

f (k)(t) = F [t, f(t), f ′(t), f ′′(t), . . . , f (k−1)(t)]

for f : R+ → Rn, then instead we can solve the first-order ODE in dimension n(k + 1):

d

dt




f0(t)
f1(t)
f2(t)

...
fk−1(t)




=




f1(t)
f2(t)
f3(t)

...
F [t, f0(t), f1(t), . . . , fk−1(t)]



.

Here, we denote fi(t) : R → Rn as the i-th derivative of f0(t), which satisfies the original
ODE. To check, our expanded system above implies f1(t) = f ′0(t), f2(t) = f ′1(t) = f ′′0 (t),
and so on; the final row encodes the original ODE.

This trick simplifies notation and allows us to emphasize first-order ODEs, but some
care should be taken to understand that it does come with a cost. The expansion above
replaces ODEs with potentially many derivatives with ODEs containing just one derivative
but with much higher dimensionality. We will return to this trade-off between dimensionality
and number of derivatives when designing methods specifically for second-order ODEs in
§15.4.2.
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Figure 15.1 First-order ODEs in one variable y′ = F [t, y] can be visualized using

slope fields on the (t, y) plane. Here, short line segments show the slope F [t, y] at

each sampled point; solution curves y(t) shown as dotted lines start at (0, y(0)) and

follow the slope field as their tangents. We show an example of a time-independent

(“autonomous”) ODE y′ = F [y] and an example of a time-dependent ODE y′ =

F [t, y].

Example 15.6 (ODE expansion). Suppose we wish to solve y′′′ = 3y′′ − 2y′ + y where
y(t) : R+ → R. This equation is equivalent to:

d

dt




y
z
w


 =




0 1 0
0 0 1
1 −2 3






y
z
w


 .

In the interests of making our canonical ODE problem as simple as possible, we can
further restrict our consideration to autonomous ODEs. These equations are of the form
f ′(t) = F [f(t)], that is, F has no dependence on t (or on higher-order derivatives of f ,
removed above). To reduce an ODE to this form, we use the fact d/dt(t) = 1. After defining
a trivial function g(t) = t, the ODE f ′(t) = F [t, f(t)] can be rewritten as the autonomous
equation

d

dt

(
g(t)
f(t)

)
=

(
1

F [g(t), f(t)]

)
,

with an additional initial condition g(0) = 0.
It is possible to visualize the behavior and classification of low-dimensional ODEs in

many ways. If the unknown f(t) is a function of a single variable, then F [f(t)] provides
the slope of f(t), as shown in Figure 15.1. For higher-order ODEs, it can be useful to plot
f(t) and its derivatives, shown for the equation of motion for a pendulum in Figure 15.2. In
higher dimensions, it may be possible only to show example solution paths, as in Figure 15.3.

15.2.2 Existence and Uniqueness
Before we discretize the initial value ODE problem, we should acknowledge that not all
differential equations are solvable, while others admit infinitely many solutions. Existence
and uniqueness of ODE solutions can be challenging to prove, but without these properties
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θ(t)

θ′(t)

Figure 15.2 The phase space diagram of a pendulum, which satisfies the ODE θ′′ =

− sin θ. Here, the horizontal axis shows position θ of the pendulum as it swings (as

an angle from vertical), and the vertical axis shows the angular velocity θ′. Each

path represents the motion of a pendulum with different starting conditions; the

time t is not depicted. Rings indicate a swinging pendulum, while waves indicate

that the pendulum is doing complete revolutions.

x

y

z

Figure 15.3 The trace of an ODE solution (x(t), y(t), z(t)) shows typical behavior

without showing the velocity of the path or dependence on time t; here we show a

solution to the Lorenz equations (known as a “Lorenz attractor”) x′ = σ(y−x), y′ =

x(ρ− z)− y, z′ = xy − βz integrated numerically (ρ = 28, σ = 10, β = 8/3).
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we cannot hold numerical methods responsible for failure to recover a reasonable solution.
Numerical ODE solvers can be thought of as filling the gap between knowing that a solution
to a differential equation exists and being able to write this solution in closed form; checking
existence and uniqueness is largely a function of how an ODE is written before discretization
and usually is checked theoretically rather than algorithmically.

Example 15.7 (Unsolvable ODE). Consider the equation y′ = 2y/t, with y(0) 6= 0 given;
the 1/t factor does not divide by zero because the ODE only has to hold for t > 0. Rewriting
as

1

y

dy

dt
=

2

t

and integrating with respect to t on both sides shows

ln |y| = 2 ln t+ c.

Exponentiating both sides shows y = Ct2 for some C ∈ R. In this expression, y(0) = 0,
contradicting the initial conditions. Thus, this ODE has no solution with the given initial
conditions.

Example 15.8 (Nonunique solutions). Now, consider the same ODE with y(0) = 0.
Consider y(t) given by y(t) = Ct2 for any C ∈ R. Then, y′(t) = 2Ct and

2y

t
=

2Ct2

t
= 2Ct = y′(t),

showing that the ODE is solved by this function regardless of C. Thus, solutions of this
equation with the new initial conditions are nonunique.

There is a rich theory characterizing behavior and stability of solutions to ordinary
differential equations. Under weak conditions on F , it is possible to show that an ODE
f ′(t) = F [f(t)] has a solution; in the next chapter, we will see that showing existence
and/or uniqueness for PDEs rather than ODEs does not benefit from this structure. One
such theorem guarantees existence of a solution when F is not sharply sloped:

Theorem 15.1 (ODE existence and uniqueness). Suppose F is continuous and Lipschitz,
that is, ‖F [~y]− F [~x]‖2 ≤ L‖~y − ~x‖2 for some fixed L ≥ 0. Then, the ODE f ′(t) = F [f(t)]
admits exactly one solution for all t ≥ 0 regardless of initial conditions.

In our subsequent development, we will assume that the ODE we are attempting to solve
satisfies the conditions of such a theorem. This assumption is realistic since the conditions
guaranteeing existence and uniqueness are relatively weak.

15.2.3 Model Equations
One way to understand computational methods for integrating ODEs is to examine their
behavior on well-understood model equations. Many ODEs locally can be approximated by
these model equations, motivating our detailed examination of these simplistic test cases.

We start by introducing a model equation for ODEs with a single dependent variable.
Given our simplifications in §15.2.1, we consider equations of the form y′ = F [y], where
y(t) : [0,∞) → R. Taking a linear approximation of F , we might define y′ = ay + b to be
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Figure 15.4 Three cases of the linear model equation y′ = ay.

the model ODE, but we actually can fix b = 0. To justify using just one degree of freedom,
define ȳ ≡ y + b/a. Then,

ȳ′ =

(
y +

b

a

)′
by definition of ȳ

= y′ since the second term is constant with respect to t

= ay + b from the linearization

= a(ȳ − b/a) + b by inverting the definition of ȳ

= aȳ.

This substitution satisfies ȳ′ = aȳ, showing that the constant b does not affect the qualitative
behavior of the ODE. Hence, in the phenomenological study of model equations we safely
take b = 0.

By the argument above, we locally can understand behavior of y′ = F [y] by studying
the linear equation y′ = ay. While the original ODE may not be solvable in closed form,
applying standard arguments from calculus shows that the model equation is solved by the
formula

y(t) = Ceat.

Qualitatively, this formula splits into three cases, illustrated in Figure 15.4:

1. a > 0: Solutions get larger and larger; if y(t) and ŷ(t) both satisfy the ODE with
slightly different starting conditions, as t→∞ they diverge.

2. a = 0: This system is solved by constant functions; solutions with different starting
points stay the same distance apart.

3. a < 0: All solutions approach 0 as t→∞.

We say cases 2 and 3 are stable, in the sense that perturbing y(0) yields solutions that do
not diverge from each other over time; case 1 is unstable, since a small mistake in specifying
the initial condition y(0) will be amplified as time t advances.

Unstable ODEs generate ill-posed computational problems. Without careful considera-
tion, we cannot expect numerical methods to generate usable solutions in this case, since
theoretical solutions are already sensitive to perturbations of the input. On the other hand,
stable problems are well-posed since small mistakes in y(0) get diminished over time. Both
cases are shown in Figure 15.5.

Extending to multiple dimensions, we study the linearized equation ~y′ = A~y; for simplic-
ity, we will assume A is symmetric. As explained in §6.1.2, if ~y1, · · · , ~yk are eigenvectors of A
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Figure 15.5 A stable ODE diminishes the difference between solutions over time t if

y(0) is perturbed, while an unstable ODE amplifies this difference.

with eigenvalues λ1, . . . , λk and ~y(0) = c1~y1+· · ·+ck~yk, then ~y(t) = c1e
λ1t~y1+· · ·+ckeλkt~yk.

Based on this formula, the eigenvalues of A take the place of a in the one-dimensional model
equation. From this result, it is not hard to intuit that a multivariable solution to ~y′ = A~y
is stable exactly when the eigenvalues of A are bounded above by zero.

As in the single-variable case, in reality we need to solve ~y′ = F [~y] for general functions
F . Assuming F is differentiable, we can approximate F [~y] ≈ F [~y0]+JF (~y0)(~y−~y0), yielding
the model equation above after a shift. This argument shows that for short periods of time
we expect behavior similar to the model equation with A = JF (~y0), the Jacobian at ~y0.

15.3 TIME-STEPPING SCHEMES
We now describe several methods for solving the nonlinear ODE ~y′ = F [~y] given potentially
nonlinear functions F . Given a “time step” h, our methods will generate estimates of ~y(t+h)
given ~y(t) and F . Applying these methods iteratively generates estimates ~y0 ≡ ~y(t), ~y1 ≈
~y(t + h), ~y2 ≈ ~y(t + 2h), ~y3 ≈ ~y(t + 3h), and so on. We call algorithms for generating
approximations of ~y(t) time-stepping schemes or integrators, reflecting the fact that they
are integrating out the derivatives in the input equation.

Of key importance to our consideration is the idea of stability. Even if an ODE theoreti-
cally is stable using the definition from §15.2.3, the integrator may produce approximations
that diverge at an exponential rate. Stability usually depends on the time step h; when
h is too large, differential estimates of the quality of an integrator fail to hold, yielding
unpredictable output. Stability, however, can compete with accuracy. Stable schemes may
generate bad approximations of ~y(t), even if they are guaranteed not to have wild behavior.
ODE integrators that are both stable and accurate tend to require excessive computation
time, indicating that we must compromise between these two properties.

15.3.1 Forward Euler
Our first ODE integrator comes from our construction of the forward differencing scheme
in §14.3.2:

F [~yk] = ~y′(t) =
~yk+1 − ~yk

h
+O(h).
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Stable (a = −0.4) Unstable (a = −2.3)

Figure 15.6 Unstable and stable cases of forward Euler integration for the model

equation y′ = ay with h = 1.

Solving this relationship for ~yk+1 shows

~yk+1 = ~yk + hF [~yk] +O(h2) ≈ ~yk + hF [~yk].

This forward Euler scheme applies the approximation on the right to estimate ~yk+1 from ~yk.
It is one of the most computationally efficient strategies for time-stepping. Forward Euler
is an explicit integrator, since there is an explicit formula for ~yk+1 in terms of ~yk and F .

The forward Euler approximation of ~yk+1 holds to O(h2), so each step induces quadratic
error. We call this the localized truncation error because it is the error induced by a single
time step. The word “truncation” refers to the fact that we truncated a Taylor series to
obtain the integrator. The iterate ~yk, however, already may be inaccurate thanks to accumu-
lated truncation errors from previous iterations. If we integrate from t0 to t with k = O(1/h)
steps, then the total error looks like O(h). This estimate quantifies global truncation error,
and thus we usually say that the forward Euler scheme is “first-order accurate.”

The stability of forward Euler can be motivated by studying the model equation. We will
work out the stability of methods in the one-variable case y′ = ay, with the intuition that
similar statements carry over to multidimensional equations by replacing a with a spectral
radius. Substituting the one-variable model equation into the forward Euler scheme gives

yk+1 = yk + ahyk = (1 + ah)yk.

Expanding recursively shows yk = (1+ah)ky0. By this explicit formula for yk in terms of y0,
the integrator is stable when |1+ah| ≤ 1, since otherwise |yk| → ∞ exponentially. Assuming
a < 0 (otherwise the theoretical problem is ill-posed), this condition takes a simpler form:

|1 + ah| ≤ 1 ⇐⇒ −1 ≤ 1 + ah ≤ 1 by expanding the absolute value

⇐⇒ 0 ≤ h ≤ 2

|a| , since a < 0.

This derivation shows that forward Euler admits a time step restriction. That is, the output
of forward Euler integration can explode even if y′ = ay is stable, when h is too large.

Figure 15.6 illustrates what happens when the stability condition is obeyed or violated.
When time steps are too large—or equivalently when |a| is too large—the forward Euler
method is not only inaccurate but also has very different qualitative behavior. For nonlinear
ODEs this formula gives a guide for stability at least locally in time; globally h may have
to be adjusted if the Jacobian of F becomes worse conditioned.
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Certain well-posed ODEs require tiny time steps h for forward Euler to be stable. In
this case, even though the forward Euler formula is computationally inexpensive for a single
step, integrating to some fixed time t may be infeasible because so many steps are needed.
Such ODEs are called stiff, inspired by stiff springs requiring tiny time steps to capture
their rapid oscillations. One text defines stiff problems slightly differently (via [60]): “Stiff
equations are problems for which explicit methods don’t work” [57]. With this definition
in mind, in the next section we consider an implicit method with no stability time step
restriction, making it more suitable for stiff problems.

15.3.2 Backward Euler
We could have applied backward differencing at ~yk+1 to design an ODE integrator:

F [~yk+1] = ~y′(t+ h) =
~yk+1 − ~yk

h
+O(h).

Isolating ~yk shows that this integrator requires solving the following potentially nonlinear
system of equations for ~yk+1:

~yk+1 = ~yk + hF [~yk+1].

This equation differs from forward Euler integration by the evaluation of F at ~yk+1 rather
than at ~yk. Because we have to solve this equation for ~yk+1, this technique, known as
backward Euler integration, is an implicit integrator.

Example 15.9 (Backward Euler). Suppose we wish to generate time steps for the ODE
~y′ = A~y, with fixed A ∈ Rn×n. To find ~yk+1 we solve the following system:

~yk = ~yk+1 − hA~yk+1 =⇒ ~yk+1 = (In×n − hA)−1~yk.

Backward Euler is first-order accurate like forward Euler by an identical argument. Its
stability, however, contrasts considerably with that of forward Euler. Once again considering
the model equation y′ = ay, we write:

yk = yk+1 − hayk+1 =⇒ yk+1 =
yk

1− ha.

To prevent exponential blowup, we enforce the following condition:

1

|1− ha| ≤ 1 ⇐⇒ h ≤ 2

a
or h ≥ 0, for a < 0.

We always choose h ≥ 0, so backward Euler is unconditionally stable, as in Figure 15.7.
Even if backward Euler is stable, however, it may not be accurate. If h is too large, ~yk will

approach zero at the wrong rate. When simulating cloth and other physical materials that
require lots of high-frequency detail to be realistic, backward Euler may exhibit undesirable
dampening. Furthermore, we have to invert F [·] to solve for ~yk+1.
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Figure 15.7 Backward Euler integration is unconditionally stable, so no matter how

large a time step h with the same initial condition, the resulting approximate so-

lution of y′ = ay does not diverge. While the output is stable, when h is large the

result does not approximate the continuous solution y = Ceat effectively.

15.3.3 Trapezoidal Method
Suppose that in addition to having ~yk at time t and ~yk+1 at time t+h, we also know ~yk+1/2

at the halfway point in time t+ h/2. Then, by our derivation of centered differencing

~yk+1 = ~yk + hF [~yk+1/2] +O(h3).

In our derivation of error bounds for the trapezoidal rule in §14.2.3, we derived the following
relationship via Taylor’s theorem:

F [~yk+1] + F [~yk]

2
= F [~yk+1/2] +O(h2).

Substituting this equality into the expression for ~yk+1 yields a second-order ODE integrator,
the trapezoid method :

~yk+1 = ~yk + h
F [~yk+1] + F [~yk]

2

Like backward Euler, this method is implicit since we must solve this equation for ~yk+1.

Example 15.10 (Trapezoidal integrator). Returning to the ODE ~y′ = A~y from Exam-
ple 15.9, trapezoidal integration solves the system

~yk+1 = ~yk + h
A~yk+1 +A~yk

2
=⇒ ~yk+1 =

(
In×n −

hA

2

)−1(
In×n +

hA

2

)
~yk.

To carry out stability analysis on y′ = ay, the example above shows time steps of the
trapezoidal method satisfy

yk =

(
1 + 1

2ha

1− 1
2ha

)k
y0.

Consequently, the method is stable when

∣∣∣∣
1 + 1

2ha

1− 1
2ha

∣∣∣∣ < 1.

This inequality holds whenever a < 0 and h > 0, showing that the trapezoid method is
unconditionally stable.
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Figure 15.8 The trapezoidal method is unconditionally stable, so regardless of the

step size h the solution curves always approach y = 0; when h is large, however,

the output oscillates about zero as it decays.

Despite its higher order of accuracy with maintained stability, the trapezoid method
has some drawbacks that make it less popular than backward Euler for large time steps. In
particular, consider the ratio

R ≡ yk+1

yk
=

1 + 1
2ha

1− 1
2ha

.

When a < 0, for large enough h this ratio eventually becomes negative; as h → ∞, we
have R→ −1. As illustrated in Figure 15.8, this observation shows that if time steps h are
too large, the trapezoidal method of integration tends to introduce undesirable oscillatory
behavior not present in theoretical solutions Ceat of y′ = ay.

15.3.4 Runge-Kutta Methods
A class of integrators can be derived by making the following observation:

~yk+1 = ~yk +

∫ tk+h

tk

~y′(t) dt by the Fundamental Theorem of Calculus

= ~yk +

∫ tk+h

tk

F [~y(t)] dt since ~y satisfies ~y′(t) = F [~y(t)].

Using this formula outright does not help design a method for time-stepping, since we do
not know ~y(t) a priori. Approximating the integral using quadrature rules from the previous
chapter, however, produces a class of well-known strategies for ODE integration.

Suppose we apply the trapezoidal quadrature rule to the integral for ~yk+1. Then,

~yk+1 = ~yk +
h

2
(F [~yk] + F [~yk+1]) +O(h3).

This is the formula we wrote for the trapezoidal method in §15.3.3. If we wish to find an
explicit rather than implicit method with the accuracy of the trapezoidal time-stepping,
however, we must replace F [~yk+1] with a high-accuracy approximation that is easier to
evaluate:

F [~yk+1] = F [~yk + hF [~yk] +O(h2)] by the forward Euler order of accuracy

= F [~yk + hF [~yk]] +O(h2) by Taylor’s theorem.
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Since it gets scaled by h, making this substitution for ~yk+1 does not affect the order of
approximation of the trapezoidal time step. This change results in a new approximation:

~yk+1 = ~yk +
h

2
(F [~yk] + F [~yk + hF [~yk]]) +O(h3).

Ignoring the O(h3) terms yields a new integrator known as Heun’s method, which is second-
order accurate and explicit.

To evaluate the stability of Heun’s method for y′ = ay with a < 0, we expand

yk+1 = yk +
h

2
(ayk + a(yk + hayk)) =

(
1

2
h2a2 + ha+ 1

)
yk.

From this substitution, the method is stable when

−1 ≤ 1 + ha+
1

2
h2a2 ≤ 1 ⇐⇒ −4 ≤ 2ha+ h2a2 ≤ 0.

The inequality on the right is equivalent to writing h ≤ 2
|a| , and the inequality on the left

is always true for h > 0 and a < 0. Hence, the stability condition for Heun’s method can
be written h ≤ 2

|a| , the same as the stability condition for forward Euler.

Heun’s method is an example of a Runge-Kutta integrator derived by starting from a
quadrature rule and substituting Euler steps to approximate F [~yk+`], for ` > 0. Forward
Euler is a first-order accurate Runge-Kutta method, and Heun’s method is second-order. A
popular fourth-order Runge-Kutta method (abbreviated “RK4”) is given by:

~yk+1 = ~yk +
h

6
(~k1 + 2~k2 + 2~k3 + ~k4)

where ~k1 = F [~yk]

~k2 = F

[
~yk +

1

2
h~k1

]

~k3 = F

[
~yk +

1

2
h~k2

]

~k4 = F
[
~yk + h~k3

]

This formula is constructed from Simpson’s quadrature rule.
Runge-Kutta methods are popular because they are explicit but provide high degrees of

accuracy. The cost of this accuracy, however, is that F [·] must be evaluated more times to
carry out a single time step. Implicit Runge-Kutta integrators also have been constructed,
for poorly conditioned ODEs.

15.3.5 Exponential Integrators
We have focused our stability and accuracy analyses on the model equation y′ = ay. If this
ODE is truly an influential test case, however, we have neglected a key piece of information:
We know the solution of y′ = ay in closed form as y = Ceat! We might as well incorporate
this formula into an integration scheme to achieve 100% accuracy on the model equation.
That is, we can design a class of integrators that achieves strong accuracy when F [·] is
nearly linear, potentially at the cost of computational efficiency.
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Assuming A is symmetric, using the eigenvector method from §15.2.3 we can write
the solution of the ODE ~y′ = A~y as ~y(t) = eAt~y(0), where eAt is a matrix encoding the
transformation from ~y(0) to ~y(t) (see Exercise 6.10). Starting from this formula, integrating
in time by writing ~yk+1 = eAh~yk achieves perfect accuracy on the linear model equation;
our strategy is to use this formula to construct integrators for the nonlinear case.

When F is smooth, we can attempt to factor the ODE ~y′ = F [~y] as

~y′ = A~y +G[~y],

where G is a nonlinear but small function and A ∈ Rn×n. Taking A to be the Jacobian of F
makes this factorization agree with its first-order Taylor expansion. Exponential integrators
integrate the A~y part using the exponential formula and approximate the effect of the
nonlinear G part separately.

We start by deriving a “variation of parameters” formula from the classical theory of
ODEs. Rewriting the original ODE as ~y′ − A~y = G[~y], suppose we multiply both sides by
e−At to obtain e−At(~y′ −A~y) = e−AtG[~y]. The left-hand side satisfies

e−At(~y′ −A~y) =
d

dt

(
e−At~y(t)

)
,

after applying the identity AeAt = eAtA (see Exercise 15.2), implying d/dt(e−At~y(t)) =
e−AtG[~y]. Integrating this expression from 0 to t shows

e−At~y(t)− ~y(0) =

∫ t

0

e−AτG[~y(τ)] dτ,

or equivalently,

~y(t) = eAt~y(0) + eAt
∫ t

0

e−AτG[~y(τ)] dτ

= eAt~y(0) +

∫ t

0

eA(t−τ)G[~y(τ)] dτ.

Slightly generalizing this formula shows

~yk+1 = eAh~yk +

∫ tk+h

tk

eA(tk+h−t)G[~y(t)] dt.

Similar to the Runge-Kutta methods, exponential integrators apply quadrature to the in-
tegral on the right-hand side to approximate the time step to ~yk+1.

For example, the first-order exponential integrator applies forward Euler to the nonlinear
G term by making a constant approximation G[~y(t)] ≈ G[~yk], yielding

~yk+1 ≈ eAh~yk +

[∫ h

0

eA(h−t) dt

]
G[~yk].

As shown in Exercise 15.5, the integral can be taken in closed form, leading to the expression

~yk+1 = eAh~yk +A−1(eAh − In×n)G[~yk].

Analyzing exponential integrators like this one requires techniques beyond using the linear
model equation, since they are designed to integrate linear ODEs exactly. Intuitively, expo-
nential integrators behave best when G ≈ 0, but the cost of this high numerical performance
is the use of a matrix exponential, which is difficult to compute or apply efficiently.
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15.4 MULTIVALUE METHODS
The transformations in §15.2.1 reduced all explicit ODEs to the form ~y′ = F [~y], which can
be integrated using the methods introduced in the previous section. While all explicit ODEs
can be written this way, however, it is not clear that they always should be when designing
a high-accuracy integrator.

When we reduced k-th order ODEs to first order, we introduced new variables repre-
senting the first through (k − 1)-st derivatives of the desired output function ~y(t). The
integrators in the previous section then approximate ~y(t) and these k − 1 derivatives with
equal accuracy, since in some sense they are treated “democratically” in first-order form. A
natural question is whether we can relax the accuracy of the approximated derivatives of
~y(t) without affecting the quality of the ~y(t) estimate itself.

To support this perspective, consider the Taylor series

~y(tk + h) = ~y(tk) + h~y′(tk) +
h2

2
~y′′(tk) +O(h3).

If we perturb ~y′(tk) by some value on the order O(h2), the quality of this Taylor series
approximation does not change, since

h · [~y′(tk) +O(h2)] = h~y′(tk) +O(h3).

Perturbing ~y′′(tk) by a value on the order O(h) has a similar effect, since

h2

2
· [~y′′(tk) +O(h)] =

h2

2
~y′′(tk) +O(h3).

Based on this argument, multivalue methods integrate ~y(k)(t) = F [t, ~y′(t), ~y′′(t), . . . , ~y(k−1)(t)]
using less accurate estimates of the higher-order derivatives of ~y(t).

We will restrict our discussion to the second-order case ~y′′(t) = F [t, ~y, ~y′], the most
common case for ODE integration thanks to Newton’s second law F = ma. Extending the
methods we consider to higher order, however, follows similar if notationally more complex
arguments. For the remainder of this section, we will define a “velocity” vector ~v(t) ≡ ~y′(t)
and an “acceleration” vector ~a ≡ ~y′′(t). By the reduction to first order, we wish to solve the
following order system:

~y′(t) = ~v(t)

~v′(t) = ~a(t)

~a(t) = F [t, ~y(t), ~v(t)].

Our goal is to derive integrators tailored to this system, evaluated based on the accuracy
of estimating ~y(t) rather than ~v(t) or ~a(t).

15.4.1 Newmark Integrators
We begin by deriving the class of Newmark integrators following the development in [46].
Denote ~yk, ~vk, and ~ak as position, velocity, and acceleration vectors at time tk; our goal is
to advance to time tk+1 ≡ tk + h.

By the Fundamental Theorem of Calculus,

~vk+1 = ~vk +

∫ tk+1

tk

~a(t) dt.
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We also can write ~yk+1 as an integral involving ~a(t) by deriving an error estimate developed
in some proofs of Taylor’s theorem:

~yk+1 = ~yk +

∫ tk+1

tk

~v(t) dt by the Fundamental Theorem of Calculus

= ~yk + [t~v(t)]
tk+1

tk
−
∫ tk+1

tk

t~a(t) dt after integration by parts

= ~yk + tk+1~vk+1 − tk~vk −
∫ tk+1

tk

t~a(t) dt by expanding the difference term

= ~yk + h~vk + tk+1~vk+1 − tk+1~vk −
∫ tk+1

tk

t~a(t) dt by adding and subtracting h~vk

= ~yk + h~vk + tk+1(~vk+1 − ~vk)−
∫ tk+1

tk

t~a(t) dt after factoring out tk+1

= ~yk + h~vk + tk+1

∫ tk+1

tk

~a(t) dt−
∫ tk+1

tk

t~a(t) dt since ~v′(t) = ~a(t)

= ~yk + h~vk +

∫ tk+1

tk

(tk+1 − t)~a(t) dt.

Fix a constant τ ∈ [tk, tk+1]. Then, we can write expressions for ~ak and ~ak+1 using the
Taylor series about τ :

~ak = ~a(τ) + ~a′(τ)(tk − τ) +O(h2)

~ak+1 = ~a(τ) + ~a′(τ)(tk+1 − τ) +O(h2).

For any constant γ ∈ R, scaling the expression for ~ak by 1 − γ, scaling the expression for
~ak+1 by γ, and summing shows

~a(τ) = (1− γ)~ak + γ~ak+1 + ~a′(τ)((γ − 1)(tk − τ)− γ(tk+1 − τ)) +O(h2)

= (1− γ)~ak + γ~ak+1 + ~a′(τ)(τ − hγ − tk) +O(h2) after substituting tk+1 = tk + h.

Integrating ~a(t) from tk to tk+1 yields the change in velocity. Substituting the approximation
above shows:

~vk+1 − ~vk =

∫ tk+1

tk

~a(τ) dτ = (1− γ)h~ak + γh~ak+1 +

∫ tk+1

tk

~a′(τ)(τ − hγ − tk) dτ +O(h3)

= (1− γ)h~ak + γh~ak+1 +O(h2),

where the second step holds because (τ − tk)−hγ = O(h) for τ ∈ [tk, tk+1] and the interval
of integration is of width h. Rearranging shows

~vk+1 = ~vk + (1− γ)h~ak + γh~ak+1 +O(h2).

Starting again from the approximation we wrote for ~a(τ)—this time using a new constant
β rather than γ—we can also develop an approximation for ~yk+1. To do so, we will work
with the integrand in the Taylor estimate for ~yk+1:
∫ tk+1

tk

(tk+1 − t)~a(t) dt =

∫ tk+1

tk

(tk+1 − τ)((1− β)~ak + β~ak+1 + ~a′(τ)(τ − hβ − tk)) dτ

+O(h3)

=
1

2
(1− β)h2~ak +

1

2
βh2~ak+1 +O(h2) by a similar simplification.
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We can use this observation to write the Taylor series error estimate for ~yk+1 in a different
form:

~yk+1 = ~yk + h~vk +

∫ tk+1

tk

(tk+1 − t)~a(t) dt from before

= ~yk + h~vk +

(
1

2
− β

)
h2~ak + βh2~ak+1 +O(h2).

Summarizing this technical argument, we have derived the class of Newmark schemes,
each characterized by the two fixed parameters γ and β:

~yk+1 = ~yk + h~vk +

(
1

2
− β

)
h2~ak + βh2~ak+1

~vk+1 = ~vk + (1− γ)h~ak + γh~ak+1

~ak = F [tk, ~yk, ~vk]

This integrator is accurate up to O(h2) in each time step, making it globally first-order
accurate. Depending on γ and β, the integrator can be implicit, since ~ak+1 appears in the
expressions for ~yk+1 and ~vk+1.

Specific choices of β and γ yield integrators with additional properties:

• β = γ = 0 gives the constant acceleration integrator:

~yk+1 = ~yk + h~vk +
1

2
h2~ak

~vk+1 = ~vk + h~ak.

This integrator is explicit and holds exactly when the acceleration is a constant func-
tion of time.

• β = 1/2, γ = 1 gives the constant implicit acceleration integrator:

~yk+1 = ~yk + h~vk +
1

2
h2~ak+1

~vk+1 = ~vk + h~ak+1.

The velocity is stepped implicitly using backward Euler, giving first-order accuracy.
The ~y update, however, can be written

~yk+1 = ~yk +
1

2
h(~vk + ~vk+1),

which coincides with the trapezoidal rule. Hence, this is our first example of a scheme
where the velocity and position updates have different orders of accuracy. This tech-
nique, however, is still only globally first-order accurate in ~y.

• β = 1/4, γ = 1/2 gives the following second-order trapezoidal scheme after some algebra:

~yk+1 = ~yk +
1

2
h(~vk + ~vk+1)

~vk+1 = ~vk +
1

2
h(~ak + ~ak+1).
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• β = 0, γ = 1/2 gives a second-order accurate central differencing scheme. In the canon-
ical form, it is written

~yk+1 = ~yk + h~vk +
1

2
h2~ak

~vk+1 = ~vk +
1

2
h(~ak + ~ak+1).

The method earns its name because simplifying the equations above leads to the
alternative form:

~vk+1 =
~yk+2 − ~yk

2h

~ak+1 =
~yk+2 − 2~yk+1 + ~yk

h2
.

Newmark integrators are unconditionally stable when 4β > 2γ > 1, with second-order
accuracy exactly when γ = 1/2.

15.4.2 Staggered Grid and Leapfrog
A different way to achieve second-order accuracy in stepping ~y is to use centered differences
about tk+1/2 ≡ tk + h/2:

~yk+1 = ~yk + h~vk+1/2.

Rather than attempting to approximate ~vk+1/2 from ~vk and/or ~vk+1, we can process veloc-
ities ~v directly at half points on the grid of time steps.

A similar update steps forward the velocities with the same accuracy:

~vk+3/2 = ~vk+1/2 + h~ak+1.

A lower-order approximation suffices for the acceleration term since it is a higher-order
derivative:

~ak+1 = F

[
tk+1, ~xk+1,

1

2
(~vk+1/2 + ~vk+3/2)

]
.

This expression can be substituted into the equation for ~vk+3/2.
When F [·] has no dependence on ~v, e.g., when simulating particles without wind resis-

tance, the method is fully explicit:

~yk+1 = ~yk + h~vk+1/2

~ak+1 = F [tk+1, ~yk+1]

~vk+3/2 = ~vk+1/2 + h~ak+1

This is known as the leapfrog integrator, thanks to the staggered grid of times and the fact
that each midpoint is used to update the next velocity or position.

A distinguishing property of the leapfrog scheme is its time reversibility.∗ Assume we
have used the leapfrog integrator to generate (~yk+1, ~vk+3/2,~ak+1). Starting at tk+1, we might
reverse the direction of time to step backward. The leapfrog equations give

~vk+1/2 = ~vk+3/2 + (−h)~ak+1

~yk = ~yk+1 − h~vk+1/2.

These formulas invert the forward time step exactly. That is, if we run the leapfrog in
reverse, we trace the solution back to where it started exactly, up to rounding error.

∗Discussion of time reversibility contributed by Julian Kates-Harbeck.
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+t

�y0 �y1 �y2 �y3 �y4

�a0 �a1 �a2 �a3 �a4

�v1/2 �v3/2 �v5/2 �v7/2�v0

Figure 15.9 Leapfrog integration computes velocities at half time steps; here arrows

denote dependencies between computed values. If the initial conditions specify ~v at

t = 0, an initial half time step must be carried out to approximate ~v1/2.

A consequence of reversibility is that errors in position, energy, and angular momen-
tum tend to cancel out over time as opposed to accumulating. For instance, for problems
where the acceleration only depends on position, angular momentum is conserved exactly
by leapfrog integration, and energy remains stable over time, whereas other even higher-
order schemes can induce significant “drift” of these quantities. Symmetry, second-order
accuracy for “first-order work” (i.e., the same amount of computation as forward Euler
integration), and conservation properties make leapfrog integration a popular method for
physical simulation. These properties classify the leapfrog method as a symplectic integra-
tor, constructed to conserve the continuous structure of ODEs coming from Hamiltonian
dynamics and related physical systems.

If F [·] has dependence on ~v, then this “staggered grid” method becomes implicit. Such
dependence on velocity often is symmetric. For instance, wind resistance changes sign if you
reverse the direction in which you are moving. This property makes the matrices symmetric
in the implicit step for updating velocities, enabling the application of conjugate gradients
and related iterative methods.

15.5 COMPARISON OF INTEGRATORS
This chapter has introduced a sampling from the remarkably large pantheon of ODE in-
tegrators. Choosing the right ODE integrator for a given problem is a challenging task
representing a careful balancing act between accuracy, stability, computational efficiency,
and assorted special properties like reversibility. The table in Figure 15.10 compares the
basic properties of the methods we considered.

In practice, it may require some experimentation to determine the proper integrator
given an ODE problem; thankfully, most of the integrators we have introduced are relatively
easy to implement. In addition to the generic considerations we have discussed in this
chapter, additional “domain-specific” concerns also influence the choice of ODE integrators,
including the following:

• In computer graphics and other fields prioritizing visual effect over reproducibility in
the real world, it may be more important that a time-stepping method looks right
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Integrator Section Accuracy Implicit or
explicit?

Stability Notes

Forward Euler §15.3.1 First Explicit Conditional
Backward Euler §15.3.2 First Implicit Unconditional
Trapezoidal §15.3.3 Second Implicit Unconditional Large steps oscillate
Heun §15.3.4 Second Explicit Conditional
RK4 §15.3.4 Fourth Explicit Conditional
1st-order expo-
nential

§15.3.5 First Explicit Conditional Needs matrix expo-
nential

Newmark §15.4.1 First Implicit Conditional For 2nd-order ODE;
2nd-order accurate
when γ = 1/2; explicit
when β = γ = 0

Staggered §15.4.2 Second Implicit Conditional For 2nd-order ODE

Leapfrog §15.4.2 Second Explicit Conditional For 2nd-order ODE;
reversible; F [·] must
not depend on �v

Figure 15.10 Comparison of ODE integrators.

than whether the numerical output is perfect. For instance, simulation tools for visual
effects need to produce fluids, gases, and cloth that exhibit high-frequency swirls,
vortices, and folds. These features may be dampened by a backward Euler integrator,
even if it is more likely to be stable than other alternatives.

• Most of our analysis used Taylor series and other localized arguments, but long-term
behavior of certain integrators can be favorable even if individual time steps are sub-
optimal. For instance, forward Euler integration tends to add energy to oscillatory
ODEs, while backward Euler removes it. If we wish to simulate a pendulum swinging
in perpetuity, neither of these techniques will suffice.

• Some ODEs operate in the presence of constraints. For instance, if we simulate a ball
attached to a string, we may not wish for the string to stretch beyond its natural
length. Methods like forward Euler and leapfrog integration can overshoot such con-
straints, so an additional projection step may be needed to enforce the constraints
more exactly.

• A degree of adaptivity is needed for applications in which discrete events can happen
during the course of solving an ODE. For instance, when simulating the dynamics of
a piece of cloth, typically parts of the cloth can run into each other or into objects in
their surroundings. These collision events can occur at fractional time steps and must
be handled separately to avoid interpenetration of objects in a scene [5].

• For higher-quality animation and physical predictions, some ODE integrators can
output not only the configuration at discrete time steps but also some indicator (e.g.,
an interpolatory formula) approximating continuous behavior between the time steps.

• If the function F in ~y′ = F [~y] is smooth and differentiable, the derivatives of F can
be used to improve the quality of time-stepping methods.

Many of these problems are difficult to handle efficiently in large-scale simulations and in
cases where computational power is relatively limited.
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15.6 EXERCISES
15.1 Some practice discretizing an ODE:

(a) Suppose we wish to solve the ODE dy/dt = − sin y numerically. For time step
h > 0, write the implicit backward Euler equation for approximating yk+1 at
t = (k + 1)h given yk at t = kh.

(b) Write the Newton iteration for solving the equation from Exercise 15.1a for yk+1.

15.2 We continue our discussion of the matrix exponential introduced in Exercise 6.10 and
used in our discussion of exponential integrators. For this problem, assume A ∈ Rn×n
is a symmetric matrix.

(a) Show that A commutes with eAt for any t ≥ 0. That is, justify the formula
AeAt = eAtA.

(b) Recall that we can write

eAt = In×n +At+
(At)2

2!
+

(At)3

3!
+ · · · .

For sufficiently small h ≥ 0, prove a similar formula for matrix inverses:

(In×n − hA)−1 = In×n + hA+ (hA)2 + (hA)3 + · · ·

(c) Which of the two series from Exercise 15.2b should converge faster? Based on this
observation, compare the computational cost of a single backward Euler iteration
(see Example 15.9) versus that of an iteration of the exponential integrator from
§15.3.5 using these formulas.

15.3 Suppose we are solving a second-order ODE using the leapfrog integrator. We are
given initial conditions ~y(0) and ~v(0), the position and velocity vectors at time t = 0.
But, the leapfrog scheme maintains velocities at the half time steps. Propose a way
to initialize ~v1/2 at time t = h/2, and argue that your initialization does not affect the
order of accuracy of the leapfrog integrator if it is run for sufficiently many time steps.

15.4 Suppose we wish to approximate solutions to ~y′′ = F [~y]. Add together Taylor expan-
sions for ~y(t+ h) and ~y(t− h) to derive the Verlet algorithm for predicting ~yk+1 from
~yk and ~yk−1, which induces O(h4) integration error in a single time step.

15.5 Verify the following formula used in §15.3.5 for symmetric A ∈ Rn×n:

∫ h

0

eA(h−t) dt = A−1(eAh − In×n).

Also, derive a global order of accuracy in the form O(hk) for some k ∈ N for the
first-order exponential integrator.

15.6 In this problem, we will motivate an ODE used in computer graphics applications that
does not come from Newton’s laws. Throughout this problem, assume f, g : [0, 1]→ R
are differentiable functions with g(0) = g(1) = 0. We will derive continuous and
discrete versions of the screened Poisson equation, used for smoothing (see, e.g., [24]).
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(a) So far our optimization problems have been to find points ~x∗ ∈ Rn minimizing
some function h(~x), but sometimes our unknown is an entire function. Thankfully,
the “variational” approach still is valid in this case. Explain in words what the
following energies, which take a function f as input, measure about f :

(i) E1[f ] ≡
∫ 1

0
(f(t)− f0(t))2 dt for some fixed function f0 : [0, 1]→ R.

(ii) E2[f ] ≡
∫ 1

0
(f ′(t))2 dt.

(b) For an energy functional E[·] like the two above, explain how the following ex-
pression for dE(f ; g) (the Gâteaux derivative of E) can be thought of as the
“directional derivative of E at f in the g direction”:

dE(f ; g) =
d

dε
E[f + εg]

∣∣
ε=0

.

(c) Again assuming g(0) = g(1) = 0, derive the following formulae:

(i) dE1(f, g) =
∫ 1

0
2(f(t)− f0(t))g(t) dt.

(ii) dE2(f, g) =
∫ 1

0
−2f ′′(t)g(t) dt.

Hint: Apply integration by parts to get rid of g′(t); recall our assumption
g(0) = g(1) = 0.

(d) Suppose we wish to approximate f0 with a smoother function f . One reasonable
model for doing so is to minimize E[f ] ≡ E1[f ]+αE2[f ] for some α > 0 controlling
the trade-off between similarity to f0 and smoothness. Using the result of 15.6c,
argue informally that an f minimizing this energy should satisfy the differential
equation f(t)− f0(t) = αf ′′(t) for t ∈ (0, 1).

(e) Now, suppose we discretize f on [0, 1] using n evenly spaced samples
f1, f2, . . . , fn ∈ R and f0 using samples f1

0 , f
2
0 , . . . , f

n
0 . Devise a discrete ana-

log of E[f ] as a quadratic energy in the fk’s. For k 6∈ {1, n}, does differentiating
E with respect to fk yield a result analogous to Exercise 15.6d?

15.7 (Adapted from [21]) The swing angle θ of a pendulum under gravity satisfies the
following ODE:

θ′′ = − sin θ,

where |θ(0)| < π and θ′(0) = 0.

(a) Suppose θ(t) solves the ODE. Show that the following value (representing the
energy of the system) is constant as a function of t:

E(t) ≡ 1

2
(θ′)2 − cos θ.

(b) Many ODE integrators drift away from the desired output as time progresses
over larger periods. For instance, forward Euler can add energy to a system by
overshooting, while backward Euler tends to damp out motion and remove en-
ergy. In many computer graphics applications, quality long-term behavior can be
prioritized, since large-scale issues cause visual artifacts. The class of symplectic
integrators is designed to avoid this issue.
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t

x

Figure 15.11 Three simulations of an undamped oscillator.

Denote ω ≡ θ′. The symplectic Euler scheme makes a series of estimates
θ0, θ1, θ2, θ3, . . . and ω0, ω1, ω2, ω3, . . . at time t = 0, h, 2h, 3h, . . . using the fol-
lowing iteration:

θk+1 = θk + hωk

ωk+1 = ωk − h sin θk+1.

Define

Ek ≡
1

2
ω2
k − cos θk.

Show that Ek+1 = Ek +O(h2).

(c) Suppose we make the small-angle approximation sin θ ≈ θ and decide to solve the
linear ODE θ′′ = −θ instead. Now, symplectic Euler takes the following form:

θk+1 = θk + hωk

ωk+1 = ωk − hθk+1.

Write a 2× 2 matrix A such that
(

θk+1

ωk+1

)
= A

(
θk
ωk

)
.

(d) If we define Ek ≡ ω2
k + hωkθk + θ2

k, show that Ek+1 = Ek in the iteration
from 15.7c. In other words, Ek is constant from time step to time step.

15.8 Suppose we simulate a spring by solving the ODE y′′ = −y with y(0) = 0 and
y′(0) = 1. We obtain the three plots of y(t) in Figure 15.11 by using forward Euler,
backward Euler, and symplectic Euler time integration. Determine which plot is which,
and justify your answers using properties of the three integrators.

15.9 Suppose we discretize Schrödinger’s equation for a particular quantum simulation
yielding an ODE ~x′ = A~x, for ~x(t) ∈ Cn and A ∈ Cn×n. Furthermore, suppose that
A is self-adjoint and negative definite, that is, A satisfies the following properties:

• Self-adjoint: aij = āji, where a+ bi = a− bi.
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• Negative definite: ~̄x
>
A~x ≤ 0 (and is real) for all ~x ∈ Cn\{~0}. Here we define

(~̄x)i ≡ x̄i.

Derive a backward Euler formula for solving this ODE and show that each step can
be carried out using conjugate gradients.
Hint: Before discretizing, convert the ODE to a real-valued system by separating
imaginary and real parts of the variables and constants.

15.10 (“Phi functions,” [89]) Exponential integrators made use of ODEs with known solu-
tions to boost numerical quality of time integration. This strategy can be extended
using additional closed-form solutions.

(a) Define ϕk(x) recursively by defining ϕ0(x) ≡ ex and recursively writing

ϕk+1(x) ≡ 1

x

(
ϕk(x)− 1

k!

)
.

Write the Taylor expansions of ϕ0(x), ϕ1(x), ϕ2(x), and ϕ3(x) about x = 0.

(b) Show that for k ≥ 1,

ϕk(x) =
1

(k − 1)!

∫ 1

0

e(1−θ)xθk−1 dθ.

Hint: Use integration by parts to show that the recursive relationship from Ex-
ercise 15.10a holds.

(c) Check the following formula for ϕ′k(x) when k ≥ 1:

ϕ′k(x) =
1

x

[
ϕk(x)(x− k) +

1

(k − 1)!

]
.

(d) Show that the ODE

~u′(t) = L~u(t) + ~v0 +
1

1!
t~v1 +

1

2!
t2~v2 +

1

3!
t3~v3 + · · ·

subject to ~u(0) = ~u0 is solved by

~u(t) = ϕ0(tL)~u0 + tϕ1(tL)~v0 + t2ϕ2(tL)~v1 + t3ϕ3(tL)~v2 + · · · .

When L is a matrix, assume ϕk(tL) is evaluated using the formula from Exer-
cise 15.10b.

(e) Use the closed-form solution from Exercise 15.10d to propose an integrator for the

ODE ~y′ = A~y +
∑`
k=1

tk

k!~vk +G[~y] that provides exact solutions when G[~y] ≡ ~0.

15.11 (“Fehlberg’s method,” [39] via notes by J. Feldman) We can approximate the error
of an ODE integrator to help choose appropriate step sizes given a desired level of
accuracy.
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(a) Suppose we carry out a single time step of ~y′ = F [~y] with size h starting from
~y(0) = ~y0. Make the following definitions:

~v1 ≡ F [~y0]

~v2 ≡ F [~y0 + h~v1]

~v3 ≡ F
[
~y0 +

h

4
(~v1 + ~v2)

]
.

We can write two estimates of ~y(h):

~y(1) ≡ ~y0 +
h

2
(~v1 + ~v2)

~y(2) ≡ ~y0 +
h

6
(~v1 + ~v2 + 4~v3).

Show that there is some K ∈ R such that ~y(1) = ~y(h) + Kh3 + O(h4) and
~y(2) = ~y(h) +O(h4).

(b) Use this relationship to derive an approximation of the amount of error intro-
duced per unit increase of time t if we use ~y(1) as an integrator. If this value is
too large, adaptive integrators reject the step and try again with a smaller h.
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INTUITION for ordinary differential equations largely stems from the time evolution of
physical systems. Equations like Newton’s second law, determining the motion of physical

objects over time, dominate the literature on ODE problems; additional examples come from
chemical concentrations reacting over time, populations of predators and prey interacting
from season to season, and so on. In each case, the initial configuration—e.g., the positions
and velocities of particles in a system at time zero—is known, and the task is to predict
behavior as time progresses. Derivatives only appear in a single time variable.

In this chapter, we entertain the possibility of coupling relationships between different
derivatives of a function. It is not difficult to find examples where this coupling is necessary.
When simulating gases or fluids, quantities like “pressure gradients,” which encode the
derivatives of pressure in space, figure into how material moves over time. These gradients
appear since gases and fluids naturally move from high-pressure regions to low-pressure
regions. In image processing, coupling the horizontal and vertical partial derivatives of an
image can be used to describe its edges, characterize its texture, and so on.

Equations coupling together derivatives of functions in more than one variable are known
as partial differential equations. They are the subject of a rich, nuanced theory worthy of

329
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f(�x) ∇f(�x) ∆f(�x)
∇ · �v large

∇ × �v small
∇ · �v small
∇ × �v large

Figure 16.1 Vector calculus notation. On the left, we show a function f(~x) for ~x ∈ R2

colored from black to white, its gradient ∇f , and its Laplacian ∇2f ; on the right

are vector fields ~v(~x) with different balances between divergence and curl.

larger-scale treatment, so we simply will summarize key ideas and provide sufficient material
to approach problems commonly appearing in practice.

16.1 MOTIVATION
Partial differential equations (PDEs) provide one or more relationships between the partial
derivatives of a function f : Rn → Rm; the goal is to find an f satisfying the criteria. PDEs
appear in nearly any branch of applied mathematics, and we list just a few below. Unlike
in previous chapters, the algorithms in this chapter will be far from optimal with respect
to accuracy or speed when applied to many of the examples. Our goals are to explore the
vast space of problems that can be expressed as PDEs, to introduce the language needed to
determine necessary numerical machinery, and to highlight key challenges and techniques
for different classes of PDEs.

There are a few combinations of partial derivatives that appear often in the world of
PDEs. If f : R3 → R is a function and ~v : R3 → R3 is a vector field, then the following
operators from vector calculus, illustrated in Figure 16.1, are worth remembering:

Name Notation Definition

Gradient ∇f
(
∂f
∂x1

, ∂f∂x2
, ∂f∂x3

)

Divergence ∇ · ~v ∂v1
∂x1

+ ∂v2
∂x2

+ ∂v3
∂x3

Curl ∇× ~v
(
∂v3
∂x2
− ∂v2

∂x3
, ∂v1∂x3

− ∂v3
∂x1

, ∂v2∂x1
− ∂v1

∂x2

)

Laplacian ∇2f ∂2f
∂x2

1
+ ∂2f

∂x2
2

+ ∂2f
∂x2

3

For PDEs involving fluids, electrodynamics, and other physical quantities, by convention
we think of the derivatives above as acting on the spatial variables (x, y, z) rather than the
time variable t. For instance, the gradient of a function f : (x, y, z; t) → R will be written
∇f ≡ (∂f/∂x, ∂f/∂y, ∂f/∂z); the partial derivative in time ∂f/∂t is treated separately.

Example 16.1 (Fluid simulation). The flow of fluids and smoke is governed by the Navier-
Stokes equations, a system of PDEs in many variables. Suppose a fluid is moving in a region
Ω ⊆ R3. We define the following quantities:

t ∈ [0,∞) Time
~v(t) : Ω→ R3 Velocity
p(t) : Ω→ R Pressure
~f(t) : Ω→ R3 External forces (e.g., gravity)
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Boundary conditions (on ∂Ω) Laplace solution (on Ω)

Figure 16.2 Laplace’s equation takes a function on the boundary ∂Ω of a domain

Ω ⊆ R2 (left) and interpolates it to the interior of Ω as smoothly as possible

(right).

If the fluid has fixed viscosity µ and density ρ, then the (incompressible) Navier-Stokes
equations state

ρ ·
(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+ µ∇2~v + ~f with ∇ · ~v = 0.

This system of equations determines the time dynamics of fluid motion and can be con-
structed by applying Newton’s second law to tracking “particles” of fluid. Its statement
involves derivatives in time ∂/∂t and derivatives in space ∇, making it a PDE.

Example 16.2 (Maxwell’s equations). Maxwell’s equations determine the interaction

between electric fields ~E and magnetic fields ~B over time. As with the Navier-Stokes equa-
tions, we think of the gradient, divergence, and curl operators as taking partial derivatives
in space (x, y, z) and not time t. In a vacuum, Maxwell’s system (in “strong” form) can
be written:

Gauss’s law for electric fields: ∇ · ~E =
ρ

ε0

Gauss’s law for magnetism: ∇ · ~B = 0

Faraday’s law: ∇× ~E = −∂
~B

∂t

Ampère’s law: ∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)

Here, ε0 and µ0 are physical constants and ~J encodes the density of electrical current.
Just like the Navier-Stokes equations, Maxwell’s equations relate derivatives of physical
quantities in time t to their derivatives in space (given by curl and divergence terms).

Example 16.3 (Laplace’s equation). Suppose Ω is a domain in R2 with boundary ∂Ω
and that we are given a function g : ∂Ω → R, illustrated in Figure 16.2. We may wish to
interpolate g to the interior of Ω as smoothly as possible. When Ω is an irregular shape,
however, our strategies for interpolation from Chapter 13 can break down.
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Take f(~x) : Ω → R to be an interpolating function satisfying f(~x) = g(~x) for all
~x ∈ ∂Ω. One metric for evaluating the quality of f as a smooth interpolant is to define an
energy functional:

E[f ] =

∫

Ω

‖∇f(~x)‖22 d~x.

Here, the notation E[·] does not stand for “expectation” as it might in probability theory,
but rather is an “energy” functional; it is standard notation in variational analysis. E[f ]
measures the “total derivative” of f measured by taking the norm of its gradient and
integrating this quantity over all of Ω. Wildly fluctuating functions f will have high values
of E[f ] since the slope ∇f will be large in many places; smooth functions f , on the other
hand, will have small E[f ] since their slope will be small everywhere.

We could ask that f interpolates g while being as smooth as possible in the interior of
Ω using the following optimization:

minimizef E[f ]

subject to f(~x) = g(~x) ∀x ∈ ∂Ω.

This setup looks like optimizations we have solved elsewhere, but now our unknown is a
function f rather than a point in Rn.

If f minimizes E subject to the boundary conditions, then E[f + h] ≥ E[f ] for all
functions h(~x) with h(~x) = 0 for all ~x ∈ ∂Ω. This statement is true even for small per-
turbations E[f + εh] as ε → 0. Subtracting E[f ], dividing by ε, and taking the limit as
ε → 0, we must have d

dεE[f + εh]|ε=0 = 0; this expression is akin to setting directional
derivatives of a function equal to zero to find its minima. We can simplify:

E[f + εh] =

∫

Ω

‖∇f(~x) + ε∇h(~x)‖22 d~x

=

∫

Ω

(‖∇f(~x)‖22 + 2ε∇f(~x) · ∇h(~x) + ε2‖∇h(~x)‖22) d~x.

Differentiating with respect to ε shows

d

dε
E[f + εh] =

∫

Ω

(2∇f(~x) · ∇h(~x) + 2ε‖∇h(~x)‖22) d~x

=⇒ d

dε
E[f + εh]|ε=0 = 2

∫

Ω

[∇f(~x) · ∇h(~x)] d~x.

Applying integration by parts and recalling that h is zero on ∂Ω,

d

dε
E[f + εh]|ε=0 = −2

∫

Ω

h(~x)∇2f(~x) d~x.

This expression must equal zero for all perturbations h that are zero on ∂Ω. Hence,
∇2f(~x) = 0 for all ~x ∈ Ω\∂Ω (a formal proof is outside of the scope of our discussion).

We have shown that the boundary interpolation problem above amounts to solving the
following PDE:

∇2f(~x) = 0 ∀~x ∈ Ω\∂Ω

f(~x) = g(~x) ∀~x ∈ ∂Ω.

This PDE is known as Laplace’s equation.
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Figure 16.3 A CT scanner passes x-rays through an object; sensors on the other side

collect the energy that made it through, giving the integrated density of the object

along the x-ray path. Placing the source and sensor in different rotated poses allows

for reconstruction of the pointwise density function.

Example 16.4 (X-ray computerized tomography). Computerized tomography (CT) tech-
nology uses x-rays to see inside an object without cutting through it. The basic model is
shown in Figure 16.3. Essentially, by passing x-rays through an object, the density of the
object integrated along the x-ray path can be sensed by collecting the proportion that
makes it through to the other side.

Suppose the density of an object is given by a function ρ : R3 → R+. For any two
points ~x, ~y ∈ R3, we can think of a CT scanner abstractly as a device that can sense the
integral u of ρ along the line connecting ~x and ~y:

u(~x, ~y) ≡
∫ ∞

−∞
ρ(t~x+ (1− t)~y) dt.

The function u : R3 × R3 → R+ is known as the Radon transform of ρ.
Suppose we take a second derivative of u in an ~x and then a ~y coordinate:

∂

∂xi
u(~x, ~y) =

∫ ∞

−∞

∂

∂xi
ρ(t~x+ (1− t)~y) dt by definition of u

=

∫ ∞

−∞
t~ei · ∇ρ(t~x+ (1− t)~y) dt

=⇒ ∂2

∂yj∂xi
u(~x, ~y) =

∫ ∞

−∞

∂

∂yj
t~ei · ∇ρ(t~x+ (1− t)~y) dt

=

∫ ∞

−∞
t(1− t)~e>i Hρ(t~x+ (1− t)~y)~ej dt for Hessian Hρ of ρ.

An identical set of steps shows that the derivative ∂2u
∂xj∂yi

equals the same expression after

applying symmetry of Hρ. That is, u satisfies the following relationship:

∂2u

∂yj∂xi
=

∂2u

∂xj∂yi
.

This equality, known as the Fritz John equation [68], gives information about u without
involving the unknown density function ρ. In a computational context, it can be used to
fill in data missing from incomplete x-ray scans or to smooth data from a potentially noisy
x-ray sensor before reconstructing ρ.
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Figure 16.4 Shortest-path distances constrained to move within the interior of a non-

convex shape have to wrap around corners; level sets of the distance function (shown

as black lines) are no longer circles beyond these corner points.

Example 16.5 (Eikonal equation). Suppose Ω is a closed region in Rn. For a fixed point
~x0 ∈ Ω, we might wish to find a function d(~x) : Ω → R+ measuring the length of the
shortest path from ~x0 to ~x restricted to move only within Ω. When Ω is convex, we can
write d in closed form as

d(~x) = ‖~x− ~x0‖2.
As illustrated in Figure 16.4, however, if Ω is non-convex or is a complicated domain
like a surface, these distance functions become more challenging to compute. Solving for
d, however, is a critical step for tasks like planning paths of robots by minimizing the
distance they travel while avoiding obstacles marked on a map.

If Ω is non-convex, away from singularities, the function d(~x) still satisfies a derivative
condition known as the eikonal equation:

‖∇d‖2 = 1.

Intuitively, this PDE states that a distance function should have unit rate of change every-
where. As a sanity check, this relationship is certainly true for the absolute value function
|x−x0| in one dimension, which measures the distance along the real line between x0 and
x. This equation is nonlinear in the derivative ∇d, making it a particularly challenging
problem to solve for d(~x).

Specialized algorithms known as fast marching methods and fast sweeping methods
estimate d(~x) over all of Ω by integrating the eikonal equation. Many algorithms for ap-
proximating solutions to the eikonal equation have structure similar to Dijkstra’s algorithm
for computing shortest paths along graphs; see Exercise 16.8 for one example.

Example 16.6 (Harmonic analysis). Different objects respond differently to vibrations,
and in large part these responses are functions of the geometry of the objects. For example,
cellos and pianos can play the same note, but even an inexperienced listener can distinguish
between the sounds they make.

From a mathematical standpoint, we can take Ω ⊆ R3 to be a shape represented either
as a surface or a volume. If we clamp the edges of the shape, then its frequency spectrum
is given by eigenvalues coming from the following problem:

∇2φ = λφ

φ(~x) = 0 ∀~x ∈ ∂Ω,
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φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Figure 16.5 The first eight eigenfunctions φi of the Laplacian operator of the domain

Ω from Figure 16.2, which satisfy ∇2φi = λiφi in order of increasing frequency; we

omit φ1, which is the constant function with λ = 0.

where ∇2 is the Laplacian of Ω and ∂Ω is the boundary of Ω. Figure 16.5 shows examples
of these functions on a two-dimensional domain Ω.

Relating to the one-dimensional theory of waves, sin kx solves this problem when Ω is
the interval [0, 2π] and k ∈ Z. To check, the Laplacian in one dimension is ∂

2
/∂x2, and thus

∂2

∂x2
sin kx =

∂

∂x
k cos kx

= −k2 sin kx

sin(k · 0) = 0

sin(k · 2π) = 0.

That is, the eigenfunctions are sin kx with eigenvalues −k2.

16.2 STATEMENT AND STRUCTURE OF PDES
Vocabulary used to describe PDEs is extensive, and each class of PDEs has substantially
different properties from the others in terms of solvability, theoretical understanding of
solutions, and discretization challenges. Our main focus eventually will be on developing
algorithms for a few common tasks rather than introducing the general theory of continu-
ous or discretized PDE, but it is worth acknowledging the rich expressive possibilities—and
accompanying theoretical challenges—that come with using PDE language to describe nu-
merical problems.

Following standard notation, in our subsequent development we will assume that our
unknown is some function u(~x). For ease of notation, we will use subscript notation to
denote partial derivatives:

ux ≡
∂u

∂x
, uy ≡

∂u

∂y
, uxy ≡

∂2u

∂x∂y
,

and so on.

16.2.1 Properties of PDEs
Just as ODEs couple the time derivatives of a function, PDEs typically are stated as rela-
tionships between two or more partial derivatives of u. By examining the algebraic form of
a PDE, we can check if it has any of a number of properties, including the following:

• Homogeneous (e.g., x2uxx + uxy − uy + u = 0): The PDE can be written using linear
combinations of u and its derivatives; the coefficients can be scalar values or func-
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Figure 16.6 Dirichlet boundary conditions prescribe the values of the unknown func-

tion u on the boundary ∂Ω of the domain Ω, while Neumann conditions prescribe

the derivative of u orthogonal to ∂Ω.

tions of the independent variables. The equation can be nonlinear in the independent
variables (x and y in our example).

• Linear (e.g., uxx − yuyy + u = xy2): Similar to homogeneous PDE, but potentially
with a nonzero (inhomogeneous) right-hand side built from scalars or the dependent
variables. PDEs like the eikonal equation (or u2

xx = uxy) are considered nonlinear
because they are nonlinear in u.

• Quasi-linear (e.g., uxy + 2uxx + u2
y + u2

x = y): The statement is linear in the highest-
order derivatives of u.

• Constant-coefficient (e.g., uxx + 3uy = uz): The coefficients of u and its derivatives
are not functions of the independent variables.

One potentially surprising observation about the properties above is that they are more
concerned with the role of u than those of the independent variables like x, y, and z. For
instance, the definition of a “linear” PDE allows u to have coefficients that are nonlinear
functions of these variables. While this may make the PDE appear nonlinear, it is still linear
in the unknowns, which is the distinguishing factor.

The order of a PDE is the order of its highest derivative. Most of the PDEs we consider
in this chapter are second-order and already present considerable numerical challenges.
Methods analogous to reduction of ODEs to first order (§15.2.1) can be carried out but do
not provide as much benefit for solving PDEs.

16.2.2 Boundary Conditions
ODEs typically are considered initial-value problems, because given a configuration that
is known at the initial time t = 0, they evolve the state forward indefinitely. With few
exceptions, the user does not have to provide information about the state for t > 0.

PDE problems also can be boundary-value problems rather than or in addition to being
initial value problems. Most PDEs require information about behavior at the boundary
of the domain of all the variables. For instance, Laplace’s equation, introduced in Exam-
ple 16.3, requires fixed values on the boundary ∂Ω of Ω. Similarly, the heat equation used to
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Figure 16.7 Boundary conditions for the PDE utt = 0 from Example 16.7.

simulate conductive material like metals admits a number of possible boundary conditions,
corresponding to whether the material is attached to a heat source or dispersing heat energy
into the surrounding space.

If the unknown of a PDE is a function u : Ω → R for some domain Ω ⊆ Rn, typical
boundary conditions include the following:

• Dirichlet conditions directly specify the values of u(~x) for all ~x ∈ ∂Ω.

• Neumann conditions specify the derivative of u(~x) in the direction orthogonal to ∂Ω.

• Mixed or Robin conditions specify a relationship between the value and normal deriva-
tives of u(~x) on ∂Ω.

The first two choices are illustrated in Figure 16.6.
Improperly encoding boundary conditions is a subtle oversight that creeps into count-

less discretizations of PDEs. There are many sources of confusion that explain this common
issue. Different discretizations of the same boundary conditions can yield qualitatively dif-
ferent outputs from a PDE solver if they are expressed improperly. Indeed, some boundary
conditions are not realizable even in theory, as illustrated in the example below.

Example 16.7 (Boundary conditions in one dimension). Suppose we are solving the
following PDE (more precisely an ODE, although the distinction here is not relevant) in
one variable t over the interval Ω = [a, b]:

utt = 0.

From one-variable calculus, that solutions must take the form u(t) = αt+ β.
Consider the effects of assorted choices of boundary conditions on ∂Ω = {a, b}, illus-

trated in Figure 16.7:

• Dirichlet conditions specify the values u(a) and u(b) directly. There is a unique line
that goes through any pair of points (a, u(a)) and (b, u(b)), so a solution to the PDE
always exists and is unique in this case.

• Neumann conditions specify u′(a) and u′(b). From the general form of u(t), u′(t) = α,
reflecting the fact that lines have constant slope. Neumann conditions specifying
different values for u′(a) and u′(b) are incompatible with the PDE itself. Compatible
Neumann conditions, on the other hand, specify u′(a) = u′(b) = α but are satisfied
for any choice of β.
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16.3 MODEL EQUATIONS
In §15.2.3, we studied properties of ODEs and their integrators by examining the model
equation y′ = ay. We can pursue a similar analytical technique for PDEs, although we will
have to separate into multiple special cases to cover the qualitative phenomena of interest.

We will focus on the linear, constant-coefficient, homogeneous case. As mentioned in
§16.2.1, the non-constant coefficient and inhomogeneous cases often have similar qualitative
behavior, and nonlinear PDEs require special consideration beyond the scope of our discus-
sion. We furthermore will study second-order systems, that is, systems containing at most
the second derivative of u. While the model ODE y′ = ay is first-order, a reasonable model
PDE needs at least two derivatives to show how derivatives in different directions interact.

Linear, constant-coefficient, homogeneous second-order PDEs have the following general
form, for unknown function u : Rn → R:

∑

ij

aij
∂u

∂xi∂xj
+
∑

i

bi
∂u

∂xi
+ cu = 0.

To simplify notation, we can define a formal “gradient operator” as the vector of derivatives

∇ ≡
(

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)
.

Expressions like ∇f , ∇ · ~v, and ∇ × ~v agree with the definitions of gradients, divergence,
and curl on R3 using this formal definition of ∇. In this notation, the model PDE takes a
matrix-like form:

(∇>A∇+∇ ·~b+ c)u = 0.

The operator ∇>A∇+∇ ·~b+ c acting on u abstractly looks like a quadratic form in ∇ as
a vector; since partial derivatives commute, we can assume A is symmetric.

The definiteness of A determines the class of the model PDE, just as the definiteness of
a matrix determines the convexity of its associated quadratic form. Four cases bring about
qualitatively different behavior for u:

• If A is positive or negative definite, the system is elliptic.

• If A is positive or negative semidefinite, the system is parabolic.

• If A has only one eigenvalue of different sign from the rest, the system is hyperbolic.

• If A satisfies none of these criteria, the system is ultrahyperbolic.

These criteria are listed approximately in order of the difficulty level of solving each type
of equation. We consider the first three cases below and provide examples of corresponding
behavior by specifying different matrices A; ultrahyperbolic equations do not appear as
often in practice and require highly specialized solution techniques.

16.3.1 Elliptic PDEs
Positive definite linear systems can be solved using efficient algorithms like Cholesky de-
composition and conjugate gradients that do not necessarily work for indefinite matrices.
Similarly, elliptic PDEs, for which A is positive definite, have strong structure that makes
them the most straightforward equations to characterize and solve, both theoretically and
computationally.
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Figure 16.8 The heat equation in one variable ut = αuxx decreases u over time where

it is curved down and increases u over time where u is curved up, as measured using

the second derivative in space uxx. Here, we show a solution of the heat equation

u(x, t) at a fixed time t0; the arrows indicate how values of u will change as t

advances.

The model elliptic PDE is the Laplace equation, given by ∇2u = 0, as in Example 16.3.
In two variables, the Laplace equation is written

uxx + uyy = 0.

Figure 16.2 illustrated a solution of the Laplace equation, which essentially interpolates
information from the boundary of the domain of u to its interior.

Elliptic equations are well-understood theoretically and come with strong properties
characterizing their behavior. Of particular importance is elliptic regularity, which states
that solutions of elliptic PDEs automatically are differentiable to higher order than their
building blocks. Physically, elliptic equations characterize stable equilbria like the rest pose
of a stretched rubber sheet, which naturally resists kinks and other irregularities.

16.3.2 Parabolic PDEs
Positive semidefinite linear systems are only marginally more difficult to deal with than
positive definite ones, at least if their null spaces are known and relatively small. Positive
semidefinite matrices have null spaces that prevent them from being invertible, but orthog-
onally to the null space they behave identically to definite matrices. In PDE, these systems
correspond to parabolic equations, for which A is positive semidefinite.

The heat equation is the model parabolic PDE. Suppose u0(x, y) is a fixed distribution
of temperature in some region Ω ⊆ R2 at time t = 0. Then, the heat equation determines
how heat diffuses over time t > 0 as a function u(t;x, y):

ut = α(uxx + uyy),

where α > 0. If ∇ = (∂/∂x, ∂/∂y), the heat equation can be written ut = α∇2u. There is no
second derivative in time t, making the equation parabolic rather than elliptic.

Figure 16.8 provides a phenomenological interpretation of the heat equation in one vari-
able ut = αuxx. The second derivative ∇2u measures the convexity of u. The heat equation
increases u with time when its value is “cupped” upward, and decreases u otherwise. This
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t = 0 t = 2.5 · 10−4 t = 5 · 10−4 t = 0.001 t = 0.002 t = 0.004 t = 0.008 t = 0.016

Figure 16.9 Solution to the heat equation ut = uxx + uyy on the unit circle with

Dirichlet (top) and Neumann (bottom) boundary conditions. Solutions are colored

from −1 (black) to 1 (white).

negative feedback is stable and leads to equilibrium as t → ∞. Example solutions to the
heat equation with different boundary conditions are shown in Figure 16.9.

The corresponding second-order term matrix A for the heat equation is:

A =




t x y

t 0 0 0
x 0 1 0
y 0 0 1


.

The heat equation is parabolic since this matrix has eigenvalues 0, 1, and 1.
There are two boundary conditions needed for the heat equation, both of which have

physical interpretations:

• The distribution of heat u(0;x, y) ≡ u0(x, y) at time t = 0 at all points (x, y) ∈ Ω.

• Behavior of u when t > 0 at boundary points (x, y) ∈ ∂Ω. Dirichlet conditions fix
u(t;x, y) for all t ≥ 0 and (x, y) ∈ ∂Ω, e.g., if Ω is a piece of foil sitting next to a heat
source like an oven whose temperature is controlled externally. Neumann conditions
specify the derivative of f in the direction normal to the boundary ∂Ω; they correspond
to fixing the flux of heat out of Ω caused by different types of insulation.

16.3.3 Hyperbolic PDEs
The final model equation is the wave equation, corresponding to the indefinite matrix case:

utt = c2(uxx + uyy).

The wave equation is hyperbolic because the second derivative in time t has opposite sign
from the two spatial derivatives when all terms involving u are isolated on the same side.
This equation determines the motion of waves across an elastic medium like a rubber sheet.
It can be derived by applying Newton’s second law to points on a piece of elastic, where x
and y are positions on the sheet and u(t;x, y) is the height of the piece of elastic at time t.

Figure 16.10 illustrates a solution of the wave equation with Dirichlet boundary con-
ditions; these boundary conditions correspond to the vibrations of a drum whose outer
boundary is fixed. As illustrated in the example, wave behavior contrasts considerably with
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Figure 16.10 The wave equation on a square with Dirichlet boundary conditions; time

is sampled evenly and progresses left to right. Color is proportional to the height

of the wave, from −1 (black) to 1 (white).

heat diffusion in that as t → ∞ the energy of the system does not disperse; waves can
bounce back and forth across a domain indefinitely. For this reason, implicit integration
strategies may not be appropriate for integrating hyperbolic PDEs because they tend to
damp out motion.

Boundary conditions for the wave equation are similar to those of the heat equation,
but now we must specify both u(0;x, y) and ut(0;x, y) at time zero:

• The conditions at t = 0 specify the position and velocity of the wave at the start time.

• Boundary conditions on ∂Ω determine what happens at the ends of the material.
Dirichlet conditions correspond to fixing the sides of the wave, e.g., plucking a cello
string that is held flat at its two ends on the instrument. Neumann conditions corre-
spond to leaving the ends of the wave untouched, like the end of a whip.

16.4 REPRESENTING DERIVATIVE OPERATORS
A key intuition that underlies many numerical techniques for PDEs is the following:

Derivatives act on functions in the same way that sparse matrices
act on vectors.

Our choice of notation reflects this parallel: The derivative d/dx[f(x)] looks like the product
of an operator d/dx and a function f .

Formally, differentiation is a linear operator like matrix multiplication, since for all
smooth functions f, g : R→ R and scalars a, b ∈ R,

d

dx
(af(x) + bg(x)) = a

d

dx
f(x) + b

d

dx
g(x).

The derivatives act on functions, which can be thought of as points in an infinite-dimensional
vector space. Many arguments from Chapter 1 and elsewhere regarding the linear algebra
of matrices extend to this case, providing conditions for invertibility, symmetry, and so on
of these abstract operators.

Nearly all techniques for solving linear PDEs make this analogy concrete. For example,
recall the model equation (∇>A∇+∇·~b+c)u = 0 subject to Dirichlet boundary conditions
u|∂Ω = u0 for some fixed function u0. We can define an operator R∂Ω : C∞(Ω)→ C∞(∂Ω),
that is, an operator taking functions on Ω and returning functions on its boundary ∂Ω,
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Figure 16.11 The one-dimensional finite difference Laplacian operator L takes sam-

ples ui of a function u(x) and returns an approximation of u′′ at the same grid

points by combining neighboring values using weights (1)—(−2)—(1); here u(x)

is approximated using nine samples u0, . . . , u8. Boundary conditions are needed to

deal with the unrepresented quantities at the white endpoints.

by restriction: [R∂Ωu](~x) ≡ u(~x) for all ~x ∈ ∂Ω. Then, the model PDE and its boundary
conditions can be combined in matrix-like notation:

(
(∇>A∇+∇ ·~b+ c)

R∂Ω

)
u =

(
0
u0

)
.

In this sense, we wish to solve Mu = w where M is a linear operator. If we discretize M as
a matrix, then recovering the solution u of the original equation is as easy as writing

“u = M−1w.”

Many discretizations exist for M and u, often derived from the discretizations of deriva-
tives introduced in §14.3. While each has subtle advantages, disadvantages, and conditions
for effectiveness or convergence, in this section we provide constructions and high-level
themes from a few popular techniques. Realistically, a legitimate and often-applied tech-
nique for finding the best discretization for a given application is to try a few and check
empirically which is the most effective.

16.4.1 Finite Differences
Consider a function u(x) on [0, 1]. Using the methods from Chapter 14, we can approximate
the second derivative u′′(x) as

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2).

In the course of solving a PDE in u, assume u(x) is discretized using n+1 evenly spaced
samples u0, u1, . . . , un, as in Figure 16.11, and take h to be the spacing between samples,
satisfying h = 1/n. Applying the formula above provides an approximation of u′′ at each
grid point:

u′′k ≈
uk+1 − 2uk + uk−1

h2
.

That is, the second derivative of a function on a grid of points can be estimated using the
(1)—(−2)—(1) stencil illustrated in Figure 16.12.

Boundary conditions are needed to compute u′′0 and u′′n since we have not included u−1

or un+1 in our discretization. Keeping in mind that u0 = u(0) and un = u(1), we can
incorporate them as follows:
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Figure 16.12 The one-dimensional finite difference Laplacian can be thought of as

dragging a (1)—(−2)—(1) stencil across the domain.

• Dirichlet: u−1 ≡ un+1 = 0, that is, fix the value of u beyond the endpoints to be zero.

• Neumann: u−1 = u0 and un+1 = un, encoding the condition u′(0) = u′(1) = 0.

• Periodic: u−1 = un and un+1 = u0, making the identification u(0) = u(1).

Suppose we stack the samples uk into a vector ~u ∈ Rn+1 and the samples u′′k into a
second vector ~w ∈ Rn+1. The construction above shows that h2 ~w = L~u, where L is one of
the choices below:

Dirichlet Neumann Periodic
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2




−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1




−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2


The matrix L can be thought of as a discretized version of the operator d2

dx2 acting on
~u ∈ Rn+1 rather than functions u : [0, 1]→ R.

In two dimensions, we can use a similar approximation of the Laplacian ∇2u of u :
[0, 1] × [0, 1] → R. Now, we sample using a grid of values shown in Figure 16.13. In this
case, ∇2u = uxx + uyy, so we sum up x and y second derivatives constructed in the one-
dimensional example above. If we number our samples as uk,` ≡ u(kh, `h), then the formula
for the Laplacian of u becomes

(∇2u)k,` ≈
u(k−1),` + uk,(`−1) + u(k+1),` + uk,(`+1) − 4uk,`

h2
.

This approximation implies a (1)—(−4)—(1) stencil over a 3 × 3 box. If we once again
combine our samples of u and ∇u into ~u and ~w, respectively, then h2 ~w = L2~y where L2

comes from the stencil we derived. This two-dimensional grid Laplacian L2 appears in many
image processing applications, where (k, `) is used to index pixels on an image.

Regardless of dimension, given a discretization of the domain and a Laplacian matrix L,
we can approximate solutions of elliptic PDEs using linear systems of equations. Consider
the Poisson equation ∇2u = w. After discretization, given a sampling ~w of w(~x), we can
obtain an approximation ~u of the solution by solving L~u = h2 ~w.
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Figure 16.13 For functions u(x, y) discretized on a two-dimensional grid (left), the

Laplacian L2 has a (1)—(−4)—(1) stencil.

This approach can be extended to inhomogeneous boundary conditions. For example,
if we wish to solve ∇2u = w on a two-dimensional grid subject to Dirichlet conditions
prescribed by a function u0, we can solve the following linear system of equations for ~u:

uk,` = u0(kh, lh) when k ∈ {0, n} or ` ∈ {0, n}
u(k−1),` + uk,(`−1) + u(k+1),` + uk,(`+1) − 4uk,` = 0 otherwise.

This system of equations uses the 3×3 Laplacian stencil for vertices in the interior of [0, 1]2

while explicitly fixing the values of u on the boundary.
These discretizations exemplify the finite differences method of discretizing PDEs, usu-

ally applied when the domain can be approximated using a grid. The finite difference method
essentially treats the divided difference approximations from Chapter 14 as linear operators
on grids of function values and then solves the resulting discrete system of equations.

Quoting results from Chapter 14 directly, however, comprises a serious breach of nota-
tion. When we write that an approximation of u′(x) or u′′(x) holds to O(hk), we implicitly
assume that u(x) is sufficiently differentiable. Hence, what we need to show is that the
result of solving systems like L~u = h2 ~w produces a ~u that actually approximates samples
from a smooth function u(x) rather than oscillating crazily. The following example shows
that this issue is practical rather than theoretical, and that reasonable but non-convergent
discretizations can fail catastrophically.

Example 16.8 (Lack of convergence). Suppose we again sample a function u(x) of one
variable and wish to solve an equation that involves a first-order u′ term. Interestingly,
this task can be more challenging than solving second-order equations.

First, if we define u′k as the forward difference 1
h (uk+1 − uk), then we will be in the

unnaturally asymmetric position of needing a boundary condition at un but not at u0 as
shown in Figure 16.14. Backward differences suffer from the reverse problem.

We might attempt to solve this problem and simultaneously gain an order of accuracy
by using the symmetric difference u′k ≈ 1

2h (uk+1 − uk−1), but this discretization suffers
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Figure 16.14 Forward differencing to approximate u′(x) asymmetrically requires

boundary conditions on the right but not the left.

Figure 16.15 Centered differencing yields a symmetric approximation of u′(x), but

u′k is not affected by the value of uk using this formula.

1

1

u(x)

w(x)

x

Figure 16.16 Solving u′(x) = w(x) for u(x) using a centered difference discretization

suffers from the fencepost problem; odd- and even-indexed values of u have com-

pletely separate behavior. As more gridpoints are added in x, the resulting u(x)

does not converge to a smooth function, so O(hk) estimates of derivative quality

do not apply.
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from a more subtle fencepost problem illustrated in Figure 16.15. In particular, this version
of u′k ignores the value of uk itself and only looks at its neighbors uk−1 and uk+1. This
oversight means that uk and u` are treated differently depending on whether k and ` are
even or odd. Figure 16.16 shows the result of attempting to solve a numerical problem
with this discretization; the result is not differentiable.

As with the leapfrog integration algorithm in §15.4.2, one way to avoid these issues
is to think of the derivatives as living on half gridpoints. In the one-dimensional case,
this change corresponds to labeling the difference 1

h (yk+1 − yk) as y′k+1/2. This technique
of placing different derivatives on vertices, edges, and centers of grid cells is particularly
common in fluid simulation, which often maintains pressures, fluid velocities, and other
physical quantities at locations suggested by the discretization.

16.4.2 Collocation
A challenge when working with finite differences is that we must justify that the end result
“looks like” the theoretical solution we are seeking to approximate. That is, we have replaced
a continuous unknown u(~x) with a sampled proxy on a grid but may inadvertently lose the
connection to continuous mathematics in the process; Example 16.8 showed one example
where a discretization is not convergent and hence yields unusable output. To avoid these
issues, many numerical PDE methods attempt to make the connection between continuous
and discrete less subtle.

One way to link continuous and discrete models is to write u(~x) in a basis φ1, . . . , φk:

u(~x) ≈
k∑

i=1

aiφi(~x).

This strategy should be familiar, as it underlies machinery for interpolation, quadrature,
and differentiation. The philosophy here is to find coefficients a1, . . . , ak providing the best
possible approximation of the solution to the continuous problem in the φi basis. As we
add more functions φi to the basis, in many cases the approximation will converge to the
theoretical solution, so long as the φi’s eventually cover the relevant part of function space.

Perhaps the simplest method making use of this new construction is the collocation
method. In the presence of k basis functions, this method samples k points ~x1, . . . , ~xk ∈ Ω
and requires that the PDE holds exactly at these locations. For example, if we wish to solve
the Poisson equation ∇2u = w, then for each i ∈ {1, . . . , k} we write

w(~xi) = ∇2u(~xi) =
k∑

j=1

aj∇2φj(~xi).

The only unknown quantities in this expression are the aj ’s, so it can be used to write
a square linear system for the vector ~a ∈ Rk of coefficients. It can be replaced with a
least-squares problem if more than k points are sampled in Ω.

Collocation requires a choice of basis functions φ1, . . . , φk and a choice of collocation
points ~x1, . . . , ~xk. Typical basis functions include full or piecewise polynomial functions and
trigonometric functions. When the φi’s are compactly supported, that is, when φi(~x) = 0
for most ~x ∈ Ω, the resulting system of equations is sparse. Collocation outputs a set
of coefficients rather than a set of function values as in finite differences. Since the basis
functions do not have to have any sort of grid structure, it is well-suited to non-rectangular
domains, which can provide some challenge for finite differencing.
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A drawback of collocation is that it does not regularize the behavior of the approximation
u(~x) between the collocation points. Just as interpolating a polynomial through a set of
sample points can lead to degenerate and in some cases highly oscillatory behavior between
the samples, the collocation method must be used with caution to avoid degeneracies, for
instance by optimizing the choice of basis functions and collocation points. Another option
is to use a method like finite elements, considered below, which integrates behavior of an
approximation over more than one sample point at a time.

16.4.3 Finite Elements
Finite element discretizations also make use of basis functions but do so by examining
integrated quantities rather than pointwise values of the unknown function u(~x). This type
of discretization is relevant to simulating a wide variety of phenomena and remains a popular
choice in a diverse set of fields including mechanical engineering, digital geometry processing,
and cloth simulation.

As an example, suppose that Ω ⊆ R2 is a region on the plane and that we wish to
solve the Dirichlet equation ∇2u = 0 in its interior. Take any other function v(~x) satisfying
v(~y) = 0 for all ~y ∈ ∂Ω. If we solve the PDE for u successfully, then the function u(~x) will
satisfy the relationship

∫

Ω

v(~x)∇2u(~x) d~x =

∫

Ω

v(~x) · 0 d~x = 0,

regardless of the choice of v(~x).
We can define a bilinear operator 〈u, v〉∇2 as the integral

〈u, v〉∇2 ≡
∫

Ω

v(~x)∇2u(~x) d~x.

Any function u(~x) for which 〈u, v〉∇2 = 0 for all reasonable v : Ω→ R defined above is called
a weak solution to the Dirichlet equation. The functions v are known as test functions.

A remarkable observation suggests that weak solutions to PDEs may exist even when
a strong solution does not. When v(~x) vanishes on ∂Ω, the divergence theorem from multi-
variable calculus implies the following alternative form for 〈u, v〉∇2 :

〈u, v〉∇2 = −
∫

Ω

∇u(~x) · ∇v(~x) d~x.

We used a similar step in Example 16.3 to derive Laplace’s equation. Whereas the Laplacian
∇2 in the Dirichlet equation requires the second derivative of u, this expression only requires
u to be once differentiable. In other words, we have expressed a second-order PDE in first-
order language. Furthermore, this form of 〈·, ·〉∇2 is symmetric and negative semidefinite,
in the sense that

〈u, u〉∇2 = −
∫

Ω

‖∇u(~x)‖22 d~x ≤ 0.

Our definition of weak PDE solutions above is far from formal, since we were somewhat
cavalier about the space of functions we should consider for u and v. Asking that 〈u, v〉∇2 = 0
for all possible functions v(~x) is an unreasonable condition, since the space of all functions
includes many degenerate functions that may not even be integrable. For the theoretical
study of PDEs, it is usually sufficient to assume v is sufficiently smooth and has small
support. Even with this restriction, however, the space of functions is far too large to be
discretized in any reasonable way.
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The finite elements method (FEM), however, makes the construction above tractable by
restricting functions to a finite basis. Suppose we approximate u in a basis φ1(~x), . . . , φk(~x)

by writing u(~x) ≈∑k
i=1 aiφi(~x) for unknown coefficients a1, . . . , ak. Since the actual solution

u(~x) of the PDE is unlikely to be expressible in this form, we cannot expect 〈∑i aiφi, v〉∇2 =
0 for all test functions v(~x). Hence, we not only approximate u(~x) but also restrict the class
of test functions v(~x) to one in which we are more likely to be successful.

The best-known finite element approximation is the Galerkin method. In this method,
we require that 〈u, v〉∇2 = 0 for all test functions v that also can be written in the φi
basis. By linearity of 〈·, ·〉∇2 , this method amounts to requiring that 〈u, φi〉∇2 = 0 for all
i ∈ {1, . . . , k}. Expanding this relationship shows

〈u, φi〉∇2 =

〈∑

j

ajφj , φi

〉

∇2

by our approximation of u

=
∑

j

aj〈φi, φj〉∇2 by linearity and symmetry of 〈·, ·〉∇2 .

Using this final expression, we can recover the vector ~a ∈ Rk of coefficients by solving the
following linear system of equations:




〈φ1, φ1〉∇2 〈φ1, φ2〉∇2 · · · 〈φ1, φk〉∇2

〈φ2, φ1〉∇2 〈φ2, φ2〉∇2 · · · 〈φ2, φk〉∇2

...
...

. . .
...

〈φk, φ1〉∇2 〈φk, φ2〉∇2 · · · 〈φk, φk〉∇2


~a = ~0,

subject to the proper boundary conditions. For example, to impose nonzero Dirichlet bound-
ary conditions, we can fix those values ai corresponding to elements on the boundary ∂Ω.

Approximating solutions to the Poisson equation ∇2u = w can be carried out in a
similar fashion. If we write w =

∑
i biφi, then Galerkin’s method amounts to writing a

slightly modified linear system of equations. The weak form of the Poisson equation has the
same left-hand side but now has a nonzero right-hand side:

∫

Ω

v(~x)∇2u(~x) d~x =

∫

Ω

v(~x)w(~x) d~x,

for all test functions v(~x). To apply Galerkin’s method in this case, we not only ap-
proximate u(~x) =

∑
i aiφi(~x) but also assume the right-hand side w(~x) can be written

w(~x) =
∑
i biφi(~x). Then, solving the weak Poisson equation in the φi basis amounts to

solving:




〈φ1, φ1〉∇2 〈φ1, φ2〉∇2 · · · 〈φ1, φk〉∇2

〈φ2, φ1〉∇2 〈φ2, φ2〉∇2 · · · 〈φ2, φk〉∇2

...
...

. . .
...

〈φk, φ1〉∇2 〈φk, φ2〉∇2 · · · 〈φk, φk〉∇2


~a =




〈φ1, φ1〉 〈φ1, φ2〉 · · · 〈φ1, φk〉
〈φ2, φ1〉 〈φ2, φ2〉 · · · 〈φ2, φk〉

...
...

. . .
...

〈φk, φ1〉 〈φk, φ2〉 · · · 〈φk, φk〉



~b,

where 〈f, g〉 ≡
∫

Ω
f(~x)g(~x) d~x, the usual inner product of functions. The matrix next to ~a is

known as the stiffness matrix, and the matrix next to ~b is known as the mass matrix. This
is still a linear system of equations, since ~b is a fixed input to the Poisson equation.

Finite element discretizations like Galerkin’s method boil down to choosing appropriate
spaces for approximation solutions u and test functions v. Once these spaces are chosen,
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the mass and stiffness matrices can be worked out offline, either in closed form or by using
a quadrature method as explained in Chapter 14. These matrices are computable from the
choice of basis functions. A few common choices are documented below:

• In two dimensions, the most typical use case for FEM makes use of a triangulation
of the domain Ω ⊂ R2 and takes the φi basis to be localized small neighborhoods
of triangles. For example, for the Poisson equation it is sufficient to use piecewise-
linear “hat” basis functions as discussed in §13.2.2 and illustrated in Figure 13.9. In
this case, the mass and stiffness matrices are very sparse, because most of the basis
functions φi have no overlap. Exercise 16.2 works out the details of one such approach
on the plane. Volumes in R3 admit similar formulations with triangles replaced by
tetrahedra.

• Spectral methods use bases constructed out of cosine and sine, which have the advan-
tage of being orthogonal with respect to 〈·, ·〉; in particularly favorable situations, this
orthogonality can make the mass or stiffness matrices diagonal. Furthermore, the fast
Fourier transform and related algorithms accelerate computations in this case.

• Adaptive finite element methods analyze the output of a FEM solver to identify regions
of Ω in which the solution has poor quality. Additional basis functions φi are added
to refine the output in those regions.

Example 16.9 (Piecewise-linear FEM). Suppose we wish to solve the Poisson equation
u′′(x) = w(x) for u(x) on the unit interval x ∈ [0, 1] subject to Dirichlet boundary condi-
tions u(0) = c and u(1) = d. We will use the piecewise linear basis functions introduced
in §13.1.3. Define

φ(x) ≡





1 + x when x ∈ [−1, 0]
1− x when x ∈ [0, 1]
0 otherwise.

We define k + 1 basis elements using the formula φi(x) ≡ φ(kx− i) for i ∈ {0, . . . , k}.
For convenience, we begin by computing the following integrals:

∫ 1

−1

φ(x)2 dx =

∫ 0

−1

(1 + x)2 dx+

∫ 1

0

(1− x)2 dx =
2

3
∫ 1

−1

φ(x)φ(x− 1) dx =

∫ 1

0

x(1− x) dx =
1

6
.

After applying change of coordinates, these integrals show

〈φi, φj〉 =
1

6k
·





4 when i = j
1 when |i− j| = 1
0 otherwise.

Furthermore, the derivative φ′(x) satisfies

φ′(x) ≡





1 when x ∈ [−1, 0]
−1 when x ∈ [0, 1]
0 otherwise.

Hence, after change-of-variables we have

〈φi, φj〉d2/dx2 = −〈φ′i, φ′j〉2 = k ·




−2 when i = j
1 when |i− j| = 1
0 otherwise.



350 � Numerical Algorithms

100

1

1

1

w(x) u(x) (approx.)

Figure 16.17 Approximated piecewise linear solutions of u′′(x) = w(x) computed

using finite elements as derived in Example 16.9; in these examples, we take c = −1,

d = 1, and k ∈ {5, 15, 100}.

Up to the constant k, these values coincide with the divided difference second-derivative
from §16.4.1.

We will apply the Galerkin method to discretize u(x) ≈∑i aiφi(x). Assume we sample
bi = w(i/k). Then, based on the integrals above, we should solve:

k




1/k
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1/k



~a =

1

6k




6k
1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
6k







c
b1
...

bk−1

d



.

The first and last rows of this equation encode the boundary conditions, and the remaining
rows come from the finite elements discretization. Figure 16.17 shows an example of this
discretization in practice.

16.4.4 Finite Volumes
The finite volume method might be considered somewhere on the spectrum between finite
elements and collocation. Like collocation, this method starts from the pointwise formulation
of a PDE. Rather than asking that the PDE holds at a particular set of points in the domain
Ω, however, finite volumes requires that the PDE is satisfied on average by integrating within
the cells of a partition of Ω.

Suppose Γ ⊆ Ω is a region contained within the domain Ω and that we once again wish
to solve the Laplace equation ∇2u = 0. A key tool for the finite volume method is the
divergence theorem, which states that the divergence of a smooth vector field ~v(x) can be
integrated over Γ two different ways:

∫

Γ

∇ · ~v(~x) d~x =

∫

∂Γ

~v(~x) · ~n(~x) d~x.

Here, ~n is the normal to the boundary ∂Γ. In words, the divergence theorem states that
the total divergence of a vector field ~v(x) in the interior of Γ is the same as summing the
amount of ~v “leaving” the boundary ∂Γ.
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Suppose we solve the Poisson equation ∇2u = w in Ω. Integrating over Γ shows

∫

Γ

w(~x) d~x =

∫

Γ

∇2u(~x) d~x since we solved the Poisson equation

=

∫

Γ

∇ · (∇u(~x)) d~x since the Laplacian is the divergence of the gradient

=

∫

∂Γ

∇u(~x) · ~n(~x) d~x by the divergence theorem.

This final expression characterizes solutions to the Poisson equation when they are averaged
over Γ.

To derive a finite-volume approximation, again write u(~x) ≈ ∑k
i=1 aiφi(~x) and now

divide Ω into k regions Ω = ∪ki=1Ωi. For each Ωi,

∫

Ωi

w(~x) d~x =

∫

∂Ωi

∇




k∑

j=1

ajφj(~x)


 · ~n(~x) d~x =

k∑

j=1

aj

[∫

∂Ωi

∇φj(~x) · ~n(~x) d~x

]
.

This is a linear system of equations for the ai’s. A typical discretization in this case might
take the φi’s to be piecewise-linear hat functions and the Ωi’s to be the Voronoi cells
associated with the triangle centers (see §13.2.1).

16.4.5 Other Methods
Countless techniques exist for discretizing PDEs, and we have only scraped the surface of
a few common methods in our discussion. Texts such as [78] are dedicated to developing
the theoretical and practical aspects of these tools. Briefly, a few other notable methods for
discretization include the following:

• Domain decomposition methods solve small versions of a PDE in different subregions
of the domain Ω, iterating from one to the next until a solution to the global problem
is reached. The subproblems can be made independent, in which case they are solvable
via parallel processors. A single iteration of these methods can be used to approximate
the global solution of a PDE to precondition iterative solvers like conjugate gradients.

• The boundary element and analytic element methods solve certain PDEs using ba-
sis functions associated with points on the boundary ∂Ω, reducing dependence on a
triangulation or other discretization of the interior of Ω.

• Mesh-free methods simulate dynamical phenomena by tracking particles rather than
meshing the domain. For example, the smoothed-particle hydrodynamics (SPH) tech-
nique in fluid simulation approximates a fluid as a collection of particles moving in
space; particles can be added where additional detail is needed, and relatively few
particles can be used to get realistic effects with limited computational capacity.

• Level set methods, used in image processing and fluid simulation, discretize PDEs
governing the evolution and construction of curves and surfaces by representing those
objects as level sets {~x ∈ Rn : ψ(~x) = 0}. Geometric changes are represented by
evolution of the level set function ψ.
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16.5 SOLVING PARABOLIC AND HYPERBOLIC EQUATIONS
In the previous section, we mostly dealt with the Poisson equation, which is an elliptic PDE.
Parabolic and hyperbolic equations generally introduce a time variable into the formulation,
which also is differentiated but potentially to lower order or with a different sign. Discretizing
time in the same fashion as space may not make sense for a given problem, since the two
play fundamentally different roles in most physical phenomena. In this section, we consider
options for discretizing this variable independently of the others.

16.5.1 Semidiscrete Methods
Semidiscrete methods apply the discretizations from §16.4 to the spatial domain but not
to time, leading to an ODE with a continuous time variable that can be solved using the
methods of Chapter 15. This strategy is also known as the method of lines.

Example 16.10 (Semidiscrete heat equation). Consider the heat equation in one variable,
given by ut = uxx, where u(t;x) represents the heat of a wire at position x ∈ [0, 1] and
time t. As boundary data, the user provides a function u0(x) such that u(0;x) ≡ u0(x);
we also attach the boundary x ∈ {0, 1} to a refrigerator and enforce Dirichlet conditions
u(t; 0) = u(t; 1) = 0.

Suppose we discretize x using evenly spaced samples but leave t as a continuous vari-
able. If we use the finite differences technique from §16.4.1, this discretization results in
functions u0(t), u1(t), . . . , un(t), where ui(t) represents the heat at position i as a function
of time. Take L to be the corresponding second derivative matrix in the x samples with
Dirichlet conditions. Then, the semidiscrete heat equation can be written h2~u′(t) = L~u(t),
where h = 1/n is the spacing between samples. This is an ODE for ~u(t) that could be
time-stepped using backward Euler integration:

~u(tk+1) ≈
(
I(n+1)×(n+1) −

1

h
L

)−1

~u(tk).

The previous example is an instance of a general pattern for parabolic equations. PDEs
for diffusive phenomena like heat moving across a domain or chemicals moving through
a membrane usually have one lower-order time variable and several spatial variables that
are differentiated in an elliptic way. When we discretize the spatial variables using finite
differences, finite elements, or another technique, the resulting semidiscrete formulation
~u′ = A~u usually contains a negative definite matrix A. This makes the resulting ODE
unconditionally stable.

As outlined in the previous chapter, there are many choices for solving the ODE after
spatial discretization. If time steps are small, explicit methods may be acceptable. Implicit
solvers, however, often are applied to solving parabolic PDEs; diffusive behavior of implicit
Euler agrees behaviorally with diffusion from the heat equation and may be acceptable even
with fairly large time steps. Hyperbolic PDEs, on the other hand, may require implicit steps
for stability, but advanced integrators can combine implicit and explicit terms to prevent
oversmoothing of non-diffusive phenomena.

When A does not change with time, one contrasting approach is to write solutions
of semidiscrete systems ~u′ = A~u in terms of eigenvectors of A. Suppose ~v1, . . . , ~vn are
eigenvectors of A with eigenvalues λ1, . . . , λn and that ~u(0) = c1~v1 + · · · + cn~vn. As we
showed in §6.1.2, the solution of ~u′ = A~u is

~u(t) =
∑

i

cie
λit~vi.
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The eigenvectors and eigenvalues of A may have physical interpretations in the case of a
semidiscrete PDE. Most commonly, the eigenvalues of the Laplacian ∇2 on a domain Ω
correspond to resonant frequencies of a domain, that is, the frequencies that sound when
hitting the domain with a hammer. The eigenvectors provide closed-form “low-frequency
approximations” of solutions to common PDEs after truncating the sum above.

16.5.2 Fully Discrete Methods
Rather than discretizing time and then space, we might treat the space and time variables
more democratically and discretize them both simultaneously. This one-shot discretization
is in some sense a more direct application of the methods we considered in §16.4, just by
including t as a dimension in the domain Ω under consideration. Because we now multiply
the number of variables needed to represent Ω by the number of time steps, the resulting
linear systems of equations can be large if dependence between time steps has global reach.

Example 16.11 (Fully discrete heat diffusion, [58]). Consider the heat equation ut = uxx.
Discretizing x and t simultaneously via finite differences yields a matrix of u values, which
we can index as uji , representing the heat at position i and time j. Take ∆x and ∆t to be
the spacing of x and t in the grid, respectively. Choosing where to evaluate the different
derivatives leads to different discretization schemes stepping from time j to time j + 1.

For example, evaluating the x derivative at time j produces an explicit formula:

uj+1
i − uji

∆t
=
uji+1 − 2uji + uji−1

(∆x)2
.

Isolating uj+1
i gives a formula for obtaining u at time j + 1 without a linear solve.

Alternatively, we can evaluate the x derivative at time j + 1 for an implicit integrator:

uj+1
i − uji

∆t
=
uj+1
i+1 − 2uj+1

i + uj+1
i−1

(∆x)2
.

This integrator is unconditionally stable but requires a linear solve to obtain the u values
at time j + 1 from those at time j.

These implicit and explicit integrators inherit their accuracy from the quality of the
finite difference formulas, and hence—stability aside—both are first-order accurate in time
and second-order accurate in space. To improve the accuracy of the time discretization,
we can use the Crank-Nicolson method, which applies a trapezoidal time integrator:

uj+1
i − uji

∆t
=

1

2

[
uji+1 − 2uji + uji−1

(∆x)2
+
uj+1
i+1 − 2uj+1

i + uj+1
i−1

(∆x)2

]
.

This method inherits the unconditional stability of trapezoidal integration and is second-
order accurate in time and space. Despite this stability, however, as explained in §15.3.3,
taking time steps that are too large can produce unrealistic oscillatory behavior.

In the end, even semidiscrete methods can be considered fully discrete in that the time-
stepping ODE method still discretizes the t variable; the difference between semidiscrete
and fully discrete is mostly for classification of how methods were derived. One advantage
of semidiscrete techniques, however, is that they can adjust the time step for t depending
on the current iterate, e.g., if objects are moving quickly in a physical simulation, it might
make sense to take more dense time steps and resolve this motion. Some methods also
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adjust the discretization of the domain of x values in case more resolution is needed near
local discontinuities such as shock waves.

16.6 NUMERICAL CONSIDERATIONS
We have considered several options for discretizing PDEs. As with choosing time integra-
tors for ODEs, the trade-offs between these options are intricate, representing different
compromises between computational efficiency, numerical quality, stability, and so on. We
conclude our treatment of numerical methods for PDE by outlining a few considerations
when choosing a PDE discretization.

16.6.1 Consistency, Convergence, and Stability
A key consideration when choosing ODE integrators was stability, which guaranteed that
errors in specifying initial conditions would not be amplified over time. Stability remains a
consideration in PDE integration, but it also can interact with other key properties:

• A method is convergent if solutions to the discretized problem converge to the theo-
retical solution of the PDE as spacing between discrete samples approaches zero.

• A method is consistent if the accompanying discretization of the differential operators
better approximates the derivatives taken in the PDE as spacing approaches zero.

For finite differencing schemes, the Lax-Richtmyer Equivalence Theorem states that if a
linear problem is well-posed, consistency and stability together are necessary and sufficient
for convergence [79]. Consistency and stability tend to be easier to check than convergence.
Consistency arguments usually come from Taylor series. A number of well-established meth-
ods establish stability or lack thereof; for example, the well-known CFL condition states
that the ratio of time spacing to spatial spacing of samples should exceed the speed at which
waves propagate in the case of hyperbolic PDE [29]. Even more caution must be taken when
simulating advective phenomena and PDEs that can develop fronts and shocks; specialized
upwinding schemes attempt to detect the formation of these features to ensure that they
move in the right direction and at the proper speed.

Even when a time variable is not involved, some care must be taken to ensure that a
PDE approximation scheme reduces error as sampling becomes more dense. For example,
in elliptic PDE, convergence of finite elements methods depends on the choice of basis
functions, which must be sufficiently smooth to represent the theoretical solution and must
span the function space in the limit [16].

The subtleties of consistency, convergence, and stability underlie the theory of numeri-
cal PDE, and the importance of these concepts cannot be overstated. Without convergence
guarantees, the output of a numerical PDE solver cannot be trusted. Standard PDE in-
tegration packages often incorporate checks for assorted stability conditions or degenerate
behavior to guide clients whose expertise is in modeling rather than numerics.

16.6.2 Linear Solvers for PDE
The matrices resulting from PDE discretizations have many favorable properties that make
them ideal inputs for the methods we have considered in previous chapters. For instance, as
motivated in §16.3.1, elliptic PDEs are closely related to positive definite matrices, and typ-
ical discretizations require solution of a positive definite linear system. The same derivative
operators appear in parabolic PDEs, which hence have well-posed semidiscretizations. For
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this reason, methods like Cholesky decomposition and conjugate gradients can be applied
to these problems. Furthermore, derivative matrices tend to be sparse, inducing additional
memory and time savings. Any reasonable implementation of a PDE solver should include
these sorts of optimizations, which make them scalable to large problems.

Example 16.12 (Elliptic operators as matrices). Consider the one-dimensional second
derivative matrix L with Dirichlet boundary conditions from §16.4.1. L is sparse and
negative definite. To show the latter property, we can write L = −D>D for the matrix
D ∈ R(n+1)×n given by

D =




1
−1 1

−1 1
. . .

. . .

−1 1
−1



.

This matrix is a finite-differenced first derivative, so this observation parallels the fact that
d2y/dx2 = d/dx(dy/dx). For any ~x ∈ Rn, ~x>L~x = −~x>D>D~x = −‖D~x‖22 ≤ 0, showing L is
negative semidefinite. Furthermore, D~x = 0 only when ~x = 0, completing the proof that
L is negative definite.

Example 16.13 (Stiffness matrix is positive semidefinite). Regardless of the basis
φ1, . . . , φk, the stiffness matrix from discretizing the Poisson equation via finite elements
(see §16.4.3) is negative semidefinite. Taking M∇2 to be the stiffness matrix and ~a ∈ Rk,

~a>M∇2~a =
∑

ij

aiaj〈φi, φj〉∇2 by definition of M∇2

=

〈∑

i

aiφi,
∑

j

ajφj

〉

∇2

by bilinearity of 〈·, ·〉∇2

= 〈ψ,ψ〉∇2 if we define ψ ≡
∑

i

aiφi

= −
∫

Ω

‖∇ψ(~x)‖22 d~x by definition of 〈·, ·〉∇2

≤ 0 since the integrand is nonnegative.

16.7 EXERCISES
16.1 (“Shooting method,” [58]) The two-point boundary value problem inherits some struc-

ture from ODE and PDE problems alike. In this problem, we wish to solve the ODE
~y′ = F [~y] for a function ~y(t) : [0, 1] → Rn. Rather than specifying initial conditions,
however, we specify some relationship g(~y(0), ~y(1)) = ~0.

(a) Give an example of a two-point boundary value problem that does not admit a
solution.

(b) Assume we have checked the conditions of an existence/uniqueness theorem, so
given ~y0 = ~y(0) we can generate ~y(t) for all t > 0 satisfying ~y′(t) = F [~y(t)].
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Figure 16.18 Notation for Exercise 16.2.

Denote ~y(t; ~y0) : R+ × Rn → R as the function returning ~y at time t given
~y(0) = ~y0. In this notation, pose the two-point boundary value problem as a
root-finding problem.

(c) Use the ODE integration methods from Chapter 15 to propose a computationally
feasible root-finding problem for approximating a solution ~y(t) of the two-point
boundary value problem.

(d) As discussed in Chapter 8, most root-finding algorithms require the Jacobian
of the objective function. Suggest a technique for finding the Jacobian of your
objective from Exercise 16.1c.

16.2 In this problem, we use first-order finite elements to derive the famous cotangent
Laplacian formula used in geometry processing. Refer to Figure 16.18 for notation.

(a) Suppose we construct a planar triangle T with vertices ~v1, ~v2, ~v3 ∈ R2 in coun-

terclockwise order. Take f1(~x) to be the affine hat function f1(~x) ≡ c + ~d · ~x
satisfying f1(~v1) = 1, f1(~v2) = 0, and f1(~v3) = 0. Show that ∇f1 is a constant
vector satisfying:

∇f1 · (~v1 − ~v2) = 1

∇f1 · (~v1 − ~v3) = 1

∇f1 · (~v2 − ~v3) = 0.

The third relationship shows that ∇f1 is perpendicular to the edge from ~v2 to
~v3.

(b) Show that ‖∇f1‖2 = 1
h , where h is the height of the triangle as marked in

Figure 16.18 (left).
Hint: Start by showing ∇f1 · (~v1 − ~v3) = ‖∇f1‖2`3 cos

(
π
2 − β

)
.

(c) Integrate over the triangle T to show
∫

T

‖∇f1‖22 dA =
1

2
(cotα+ cotβ).

Hint: Since ∇f1 is a constant vector, the integral equals ‖∇f1‖22A, where A is
the area of T . From basic geometry, A = 1

2`1h.
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(d) Define θ ≡ π−α−β, and take f2 and f3 to be the hat functions associated with
~v2 and ~v3, respectively. Show that

∫

T

∇f2 · ∇f3 dA = −1

2
cot θ.

(e) Now, consider a vertex p of a triangle mesh (Figure 16.18, middle), and define
fp : R2 → [0, 1] to be the piecewise linear hat function associated with p (see
§13.2.2 and Figure 13.9). That is, restricted to any triangle adjacent to p, the
function fp behaves as constructed in Exercise 16.2a; fp ≡ 0 outside the triangles
adjacent to p. Based on the results you already have constructed, show:

∫

R2

‖∇fp‖22 dA =
1

2

∑

i

(cotαi + cotβi),

where {αi} and {βi} are the angles opposite p in its neighboring triangles.

(f) Suppose p and q are adjacent vertices on the same mesh, and define θ1 and θ2 as
shown in Figure 16.18 (right). Show

∫

R2

∇fp · ∇fq dA = −1

2
(cot θ1 + cot θ2).

(g) Conclude that in the basis of hat functions on a triangle mesh, the stiffness matrix
for the Poisson equation has the following form:

Lij ≡ −
1

2





∑
i∼j(cotαj + cotβj) if i = j

−(cotαj + cotβj) if i ∼ j
0 otherwise.

Here, i ∼ j denotes that vertices i and j are adjacent.

(h) Write a formula for the entries of the corresponding mass matrix, whose entries
are ∫

R2

fpfq dA.

Hint: This matrix can be written completely in terms of triangle areas. Divide
into cases: (1) p = q, (2) p and q are adjacent vertices, and (3) p and q are not
adjacent.

16.3 Suppose we wish to approximate Laplacian eigenfunctions f(~x), satisfying ∇2f = λf.
Show that discretizing such a problem using FEM results in a generalized eigenvalue
problem A~x = λB~x.

16.4 Propose a semidiscrete form for the one-dimensional wave equation utt = uxx, similar
to the construction in Example 16.10. Is the resulting ODE well-posed (§15.2.3)?

16.5 Graph-based semi-supervised learning algorithms attempt to predict a quantity or la-
bel associated with the nodes of a graph given labels on a few of its vertices. For
instance, under the (dubious) assumption that friends are likely to have similar in-
comes, it could be used to predict the annual incomes of all members of a social
network given the incomes of a few of its members. We will focus on a variation of
the method proposed in [132].
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(a) Take G = (V,E) to be a connected graph, and define f0 : V0 → R to be a set of
scalar-valued labels associated with the nodes of a subset V0 ⊆ V . The Dirichlet
energy of a full assignment of labels f : V → R is given by

E[f ] ≡
∑

(v1,v2)∈E
(f(v2)− f(v1))2.

Explain why E[f ] can be minimized over f satisfying f(v0) = f0(v0) for all
v0 ∈ V0 using a linear solve.

(b) Explain the connection between the linear system from Exercise 16.5a and the
3× 3 Laplacian stencil from §16.4.1.

(c) Suppose f is the result of the optimization from Exercise 16.5a. Prove the discrete
maximum principle:

max
v∈V

f(v) = max
v0∈V0

f0(v0).

Relate this result to a physical interpretation of Laplace’s equation.

16.6 Give an example where discretization of the Poisson equation via finite differences
and via collocation lead to the same system of equations.

16.7 (“Von Neumann stability analysis,” based on notes by D. Levy) Suppose we wish to
approximate solutions to the PDE ut = aux for some fixed a ∈ R. We will use initial
conditions u(x, 0) = f(x) for some f ∈ C∞([0, 2π]) and periodic boundary conditions
u(0, t) = u(2π, t).

(a) What is the order of this PDE? Give conditions on a for it to be elliptic, hyper-
bolic, or parabolic.

(b) Show that the PDE is solved by u(x, t) = f(x+ at).

(c) The Fourier transform of u(x, t) in x is

[Fxu](ω, t) ≡ 1√
2π

∫ 2π

0

u(x, t)e−iωx dx,

where i =
√
−1 (see Exercise 4.15). It measures the frequency content of u(·, t).

Define v(x, t) ≡ u(x+ ∆x, t). If u satisfies the stated boundary conditions, show
that [Fxv](ω, t) = eiω∆x[Fxu](ω, t).

(d) Suppose we use a forward Euler discretization:

u(x, t+ ∆t)− u(x, t)

∆t
= a

u(x+ ∆x, t)− u(x−∆x, t)

2∆x
.

Show that this discretization satisfies

[Fxu](ω, t+ ∆t) =

(
1 +

ai∆t

∆x
sin(ω∆x)

)
[Fxu](ω, t).

(e) Define the amplification factor

Q̂ ≡ 1 +
ai∆t

∆x
sin(ω∆x).

Show that |Q̂| > 1 for almost any choice of ω. This shows that the discretization
amplifies frequency content over time and is unconditionally unstable.
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(f) Carry out a similar analysis for the alternative discretization

u(x, t+∆t) =
1

2
(u(x−∆x, t) + u(x+ ∆x, t))+

a∆t

2∆x
[u(x+ ∆x, t)− u(x−∆x, t)] .

Derive an upper bound on the ratio ∆t/∆x for this discretization to be stable.

16.8 (“Fast marching,” [19]) Nonlinear PDEs require specialized treatment. One nonlin-
ear PDE relevant to computer graphics and medical imaging is the eikonal equation
‖∇d‖2 = 1 considered in §16.5. Here, we outline some aspects of the fast marching
method for solving this equation on a triangulated domain Ω ⊂ R2 (see Figure 13.9).

(a) We might approximate solutions of the eikonal equation as shortest-path dis-
tances along the edges of the triangulation. Provide a way to triangulate the
unit square [0, 1]× [0, 1] with arbitrarily small triangle edge lengths and areas for
which this approximation gives distance 2 rather than

√
2 from (0, 0) to (1, 1).

Hence, can the edge-based approximation be considered convergent?

(b) Suppose we approximate d(~x) with a linear function d(~x) ≈ ~n>~x + p, where
‖~n‖2 = 1 by the eikonal equation. Given d1 = d(~x1) and d2 = d(~x2), show
that p can be recovered by solving a quadratic equation and provide a geometric
interpretation of the two roots. You can assume that ~x1 and ~x2 are linearly
independent.

(c) What geometric assumption does the approximation in Exercise 16.8b make
about the shape of the level sets {~x ∈ R2 : d(~x) = c}? Does this approxima-
tion make sense when d is large or small? See [91] for a contrasting circular
approximation.

(d) Extend Dijkstra’s algorithm for graph-based shortest paths to triangulated
shapes using the approximation in Exercise 16.8b. What can go wrong with this
approach?
Hint: Dijkstra’s algorithm starts at the center vertex and builds the shortest path
in breadth-first fashion. Change the update to use Exercise 16.8b, and consider
when the approximation will make distances decrease unnaturally.

16.9 Constructing higher-order elements can be necessary for solving certain differential
equations.

(a) Show that the parameters a0, . . . , a5 of a function f(x, y) = a0 + a1x + a2y +
a3x

2 + a4y
2 + a5xy are uniquely determined by its values on the three vertices

and three edge midpoints of a triangle.

(b) Show that if (x, y) is on an edge of the triangle, then f(x, y) can be computed
knowing only the values of f at the endpoints and midpoint of that edge.

(c) Use these facts to construct a basis of continuous, piecewise-quadratic functions
on a triangle mesh, and explain why it may be useful for solving higher-order
PDEs.

16.10 For matrices A,B ∈ Rn×n, the Lie-Trotter-Kato formula states

eA+B = lim
n→∞

(e
A/ne

B/n)n,

where eM denotes the matrix exponential of M ∈ Rn×n (see §15.3.5).
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Suppose we wish to solve a PDE ut = Lu, where L is some differential operator that
admits a splitting L = L1 + L2. How can the Lie-Trotter-Kato formula be applied to
designing PDE time-stepping machinery in this case?

Note: Such splittings are useful for breaking up integrators for complex PDEs like the
Navier-Stokes equations into simpler steps.
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[6] J. Barbič and Y. Zhao. Real-time large-deformation substructuring. ACM Transac-
tions on Graphics, 30(4):91:1–91:8, July 2011.

[7] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied
Mathematics, 1994.

[8] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon. Automatic dif-
ferentiation of algorithms. Journal of Computational and Applied Mathematics,
124(12):171–190, 2000.

[9] H. Bauschke and J. Borwein. On projection algorithms for solving convex feasibility
problems. SIAM Review, 38(3):367–426, 1996.

[10] H. H. Bauschke and Y. Lucet. What is a Fenchel conjugate? Notices of the American
Mathematical Society, 59(1), 2012.

[11] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, Mar. 2009.

[12] J.-P. Berrut and L. Trefethen. Barycentric Lagrange interpolation. SIAM Review,
46(3):501–517, 2004.

[13] C. Bishop. Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, 2006.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, Jan. 2011.

361



362 � Bibliography

[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[16] S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods. Texts
in Applied Mathematics. Springer, 2008.

[17] R. Brent. Algorithms for Minimization without Derivatives. Dover Books on Mathe-
matics. Dover, 2013.

[18] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4(1):25–30, 1965.

[19] A. Bronstein, M. Bronstein, and R. Kimmel. Numerical Geometry of Non-Rigid
Shapes. Monographs in Computer Science. Springer, 2008.

[20] S. Bubeck. Theory of convex optimization for machine learning. arXiv preprint
arXiv:1405.4980, 2014.

[21] C. Budd. Advanced numerical methods (MA50174): Assignment 3, initial value ordi-
nary differential equations. University Lecture, 2006.

[22] R. Burden and J. Faires. Numerical Analysis. Cengage Learning, 2010.

[23] W. Cheney and A. A. Goldstein. Proximity maps for convex sets. Proceedings of the
American Mathematical Society, 10(3):448–450, 1959.

[24] M. Chuang and M. Kazhdan. Interactive and anisotropic geometry processing using
the screened Poisson equation. ACM Transactions on Graphics, 30(4):57:1–57:10,
July 2011.

[25] C. Clenshaw and A. Curtis. A method for numerical integration on an automatic
computer. Numerische Mathematik, 2(1):197–205, 1960.

[26] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies.
In Proceedings of the European Conference on Artificial Life, pages 134–142, 1991.

[27] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space
analysis. Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619,
May 2002.

[28] P. G. Constantine and D. F. Gleich. Tall and skinny QR factorizations in MapReduce
architectures. In Proceedings of the Second International Workshop on MapReduce
and Its Applications, pages 43–50. ACM, 2011.

[29] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichungen
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