
Novel Algorithms for Fast Statistical
Analysis of Scaled Circuits



Lecture Notes in Electrical Engineering

Volume 46

For other titles published in this series, go to

www.springer.com/series/7818



Amith Singhee � Rob A. Rutenbar

Novel Algorithms for Fast
Statistical Analysis
of Scaled Circuits



Dr. Amith Singhee
IBM Corporation
T. J. Watson Research Center
1101 Kitchawan Road
Route 134
PO Box 218
Yorktown Heights, NY 10598
USA
asinghee@us.ibm.com

Rob A. Rutenbar
Carnegie Mellon University
Dept. Electrical & Computer Engineering
5000 Forbes Ave.
Pittsburg, PA 15213-3890
USA
rutenbar@ece.cmu.edu

ISSN 1876-1100 Lecture Notes in Electrical Engineering
ISBN 978-90-481-3099-3 e-ISBN 978-90-481-3100-6
DOI 10.1007/978-90-481-3100-6
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009931791

c© Springer Science + Business Media B.V. 2009
No part of this work may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, microfilming, recording or
otherwise, without written permission from the Publisher, with the exception of any material
supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my parents
– Amith



Introduction

I.1 Background and Motivation

Very Large Scale Integration (VLSI) technology is moving deep into
the nanometer regime, with transistor feature sizes of 45 nm already in
widespread production. Computer-aided design (CAD) tools have tra-
ditionally kept up with the difficult requirements for handling complex
physical effects and multi-million-transistor designs, under the assump-
tion of fixed or deterministic circuit parameters. However, at such small
feature sizes, even small variations due to inaccuracies in the manu-
facturing process can cause large relative variations in the behavior of
the circuit. Such variations may be classified into two broad categories,
based on the source of variation: (1) systematic variation, and (2) ran-
dom variation. Systematic variation constitutes the deterministic part
of these variations; e.g., proximity-based lithography effects, nonlinear
etching effects, etc. [GH04]. These are typically pattern dependent and
can potentially be completely explained by using more accurate models
of the process. Random variations constitute the unexplained part of the
manufacturing variations, and show stochastic behavior; e.g., gate oxide
thickness (tox)variations, poly-Si random crystal orientation (RCO) and
random dopant fluctuation (RDF) [HIE03]. These random variations
cannot simply be accounted for by more accurate models of the physics
of the process because of their inherent random nature (until we un-
derstand and model the physics well enough to accurately predict the
behavior of each ion implanted into the wafer).

As a result, integrated circuit (IC) designers and manufacturers are
facing difficult challenges in producing reliable high-performance cir-
cuits. Apart from the sheer size and complexity of the design problems,
a relatively new and particularly difficult problem is that of these para-



viii FAST STATISTICAL ANALYSIS

metric variations (threshold voltage (Vt), gate oxide thickness, etc.) in
circuits, due to nonsystematic variations in the manufacturing process.
For older technologies, designers could afford to either ignore the prob-
lem, or simplify it and do a worst-case corner based conservative design.
At worst, they might have to do a re-spin to bring up the circuit yield.
With large variations, this strategy is no longer efficient since the num-
ber of re-spins required for convergence can be prohibitively large. Per-
transistor effects like RDF and line edge roughness (LER) [HIE03] are
becoming dominant as the transistor size is shrinking. As a result, the
relevant statistical process parameters are no longer a few inter-wafer or
even inter-die parameters, but a huge number of inter-device (intra-die)
parameters. Hence, the dimensionality with which we must contend is
also very large, easily 100s for custom circuits and millions for chip-level
designs. Furthermore, all of these inter-die and intra-die parameters can
have complex correlation amongst each other. Doing a simplistic conser-
vative design will, in the best case, be extremely expensive, and in the
worst case, impossible. These variations must be modeled accurately and
their impact on the circuit must be predicted reliably in most, if not all,
stages of the design cycle. These problems and needs have been widely
acknowledged even amongst the non-research community, as evidenced
by this extensive article [Ren03].

Many of the electronic design automation (EDA) tools for model-
ing and simulating circuit behavior are unable to accurately model and
predict the large impact of process-induced variations on circuit behav-
ior. Most attempts at addressing this issue are either too simplistic,
fraught with no-longer-realistic assumptions (like linear [CYMSC85] or
quadratic behavior [YKHT87][LLPS05], or small variations), or focus
on just one specific problem (e.g., Statistical Static Timing Analysis or
SSTA [CS05][VRK+04a]). This philosophy of doing “as little as needed”,
which used to work for old technology nodes, will start to fail for tomor-
row’s scaled circuits. There is a dire need for tools that efficiently model
and predict circuit behavior in the presence of large process variations, to
enable reliable and efficient design exploration. In the cases where there
are robust tools available (e.g., Monte Carlo simulation [Gla04]), they
have not kept up with the speed and accuracy requirements of today’s,
and tomorrow’s, IC variation related problems.

In this thesis we propose a set of novel algorithms that discard sim-
plifications and assumptions as much as possible and yet achieve the
necessary accuracy at very reasonable computational costs. We recog-
nize that these variations follow complex statistics and use statistical
approaches based on accurate statistical models. Apart from being flex-
ible and scalable enough to work for the expected large variations in



Introduction ix

future VLSI technologies, these techniques also have the virtue of being
independent of the problem domain: they can be applied to any en-
gineering or scientific problem of a similar nature. In the next section
we briefly review the specific problems targeted in this thesis and the
solutions proposed.

I.2 Major Contributions
In this thesis, we have taken a wide-angle view of the issues men-

tioned in the previous section, addressing a variety of problems that are
related, yet complementary. Three such problems have been identified,
given their high relevance in the nanometer regime; these are as follows.

I.2.0.1 SiLVR: Nonlinear Response Surface Modeling
and Dimensionality Reduction

In certain situations, SPICE-level circuit simulation may not be desired
or required, for example while computing approximate yield estimates
inside a circuit optimization loop [YKHT87][LGXP04]: circuit simula-
tion is too slow in this case and we might be willing to sacrifice some
accuracy to gain speed. In such cases, a common approach is to build a
model of the relationship between the statistical circuit parameters and
the circuit performances. This model is, by requirement, much faster
to evaluate than running a SPICE-level simulation. The common term
employed for such models is response surface models (RSMs). In certain
other cases, we may be interested in building an RSM to extract spe-
cific information regarding the circuit behavior, for example, sensitivities
of the circuit performance to the different circuit parameters. Typical
RSM methods have often made simplifying assumptions regarding the
characteristics of the relationship being modeled (e.g., linear behavior
[CYMSC85]), and have been sufficiently accurate in the past. However,
in scaled technologies, the large extent and number of variations make
these assumptions invalid.

In this thesis, we propose a new RSM method called SiLVR that dis-
cards many of these assumptions and is able to handle the problems
posed by highly scaled circuits. SiLVR employs the basic philosophy of
latent variable regression, that has been widely used for building linear
models in chemometrics [BVM96], but extends it to flexible nonlinear
models. This model construction philosophy is also known as projec-
tion pursuit, primarily in the statistics community [Hub85]. We show
how SiLVR can be used not only for performance modeling, but also for
extracting sensitivities in a nonlinear sense and for output-driven dimen-
sionality reduction from 10–100 dimensions to 1–2. The ability to extract
insight regarding the circuit behavior in terms of numerical quantities,



x FAST STATISTICAL ANALYSIS

even in the presence of strong nonlinearity and large dimensionality, is
the real strength of SiLVR. We test SiLVR on different analog and digi-
tal circuits and show how it is much more flexible than state-of-the-art
quadratic models, and succeeds even in cases where the latter completely
breaks down. These initial results have been published in [SR07a].

I.2.0.2 Fast Monte Carlo Simulation Using
Quasi-Monte Carlo

Monte Carlo simulation has been widely used for simulating the sta-
tistical behavior of circuit performances and verifying circuit yield and
failure probability [HLT83], in particular for custom-designed circuits
like analog circuits and memory cells. In the nanometer regime, it will
remain a vital tool in the hands of designers for accurately predicting
the statistics of manufactured ICs: it is extremely flexible, robust and
scalable to a large number of statistical parameters, and it allows ar-
bitrary accuracy, of course at the cost of simulation time. In spite of
the technique having found widespread use in the design community, it
has not received the amount of research effort from the EDA commu-
nity that it deserves. Recent developments in number theory and alge-
braic geometry [Nie88][Nie98] have brought forth new techniques in the
form of quasi-Monte Carlo, which have found wide application in com-
putational finance [Gla04][ABG98][NT96a]. In this thesis, we show how
we can significantly speed up Monte Carlo simulation-based statistical
analysis of circuits using quasi-Monte Carlo. We see speedups of 2× to
50× over standard Monte Carlo simulation across a variety of transistor-
level circuits. We also see that quasi-Monte Carlo scales better in terms
of accuracy: the speedups are bigger for higher accuracy requirements.
These initial results were published in [SR07b].

I.2.0.3 Statistical Blockade: Estimating Rare Event Statis-
tics, with Application to High Replication Circuits

Certain small circuits have millions of identical instances on the same
chip, for example, the SRAM (Static Random Access Memory) cell. We
term this class of circuits as high-replication circuits. For these circuits,
typical acceptable failure probabilities are extremely small: orders of
magnitude less than even 1 part-per-million. Here we are restricting our-
selves to failures due to parametric manufacturing variations. Estimating
the statistics of failures for such a design can be prohibitively slow, since
only one out of a million Monte Carlo points might fail: we might need to
run millions to billions of simulations to be able to estimate the statistics
of these very rare failure events. Memory designers have often avoided
this problem by using analytical models, where available, or by making



Introduction xi

“educated guesses” for the yield, using large safety margins, worst-case
corner analysis, or small Monte Carlo runs. Inaccurate estimation of the
circuit yield can result in significant numbers of re-spins if the margins
are not sufficient, or unnecessary and expensive (in terms of power or
chip area) over-design if the margins are too conservative. In this the-
sis, we propose a new framework that allows fast sampling of these rare
failure events and generates analytical probability distribution models
for the statistics of these rare events. This framework is termed sta-
tistical blockade, inspired by its mechanics. Statistical blockade brings
down the number of required Monte Carlo simulations from millions to
very manageable thousands. It combines concepts from machine learn-
ing [HTF01] and extreme value theory [EKM97] to provide a novel and
useful solution for this under-addressed, but important problem. These
initial results have been published in [SR07c][WSRC07][SWCR08].

I.3 Preliminaries
A few conventions that will be followed throughout the thesis are

worth mentioning at this stage. Each statistical parameter will be mod-
eled as having a probability distribution that has been extracted and is
ready for use by the algorithms proposed in this thesis. The parameters
considered are SPICE model parameters, including threshold voltage
(Vt) variation, gate oxide thickness (tox) variation, resistor value varia-
tion, capacitor value variation, etc. It will be assumed for experimental
setup, that the statistics of any variation at a more physical level, e.g.,
random dopant fluctuation, can be modeled by these probability distri-
butions of the SPICE-level device parameters.

Some other conventions that will be followed are as follows.

All vector-valued variables will be denoted by bold small letters, for
example x = {x1, . . . , xs} is a vector in s-dimensional space with s
coordinate values, also called an s-vector. Rare deviations from this
rule will be specifically noted. Scalar-valued variables will be denoted
with regular (not bold) letters, and matrices with bold capital letters;
for example, X is a matrix, where the i-th row of the matrix is a
vector xi. All vectors will be assumed to be column vectors, unless
transposed. Is will be the s × s identity matrix.

We will use s to denote the dimensionality of the statistical parameter
space that any proposed algorithm will work in.

Following standard notation, R denotes the set of all real numbers,
Z denotes the set of all integers, Z+ denotes the set of all nonneg-



xii FAST STATISTICAL ANALYSIS

ative integers, and Rs is the s-dimensional space of all real-valued
s-vectors.

I.4 Organization
The ideas proposed in this thesis are born out of a large body of

knowledge from several different fields. Hence, there is no practical limit
to the amount of background material that could be considered rele-
vant. It is out of the practical scope of any single volume to cover all
such “relevant” material in detail. However, to make these ideas accessi-
ble to the general reader, a reasonably comprehensive discussion of the
background is needed. In its attempt to achieve a balance between con-
ciseness and completeness, this thesis reviews relevant background mate-
rial that is required for a clear understanding of the proposed ideas, and
avoids lengthy expositions of background material on related or com-
peting ideas. The latter can easily be found in referenced literature in,
or related to, electronic design automation, and is not immediately re-
quired for a clear understanding of the proposed ideas. In certain cases,
small diversions are made to review interesting concepts from some field
outside of electrical and computer engineering, to enable a more expan-
sive understanding of the underlying concepts. An example is the brief
review of Asian option pricing in Sect. 2.2.1.1.

This thesis is organized into three nearly independent chapters, each
presenting one of the three contributions of this work. Chapter 1 intro-
duces SiLVR, the proposed nonlinear RSM method. For this purpose, it
first reviews typical RSM techniques and relevant background relating
to latent variable regression, projection pursuit, and the specific tech-
niques employed by SiLVR. The chapter ends with a section compar-
ing the modeling results of SiLVR against simulation and an optimal
quadratic RSM (PROBE from [LLPS05]). Chapter 2 provides the neces-
sary application and theoretical background for Monte Carlo simulation
and the proposed quasi-Monte Carlo (QMC) simulation technique. It
then details the proposed QMC flow and present experimental results
validating its gains over standard Monte Carlo. Chapter 3 introduces
the problem of yield estimation for high-replication circuits and reviews
relevant background from machine learning and extreme value theory. It
then explains the proposed statistical blockade flow in detail and present
validation using different relevant circuit examples. Chapter 4 provides
concluding remarks. Suggestions for future research directions are pro-
vided at the end of each of Chaps. 1, 2 and 3.



Contents

1. SiLVR: Projection Pursuit for Response Surface Modeling 1

1.1 Motivation 1

1.2 Prevailing Response Surface Models 4

1.2.1 Linear Model 4

1.2.2 Quadratic Model 5

1.2.3 PROjection Based Extraction (PROBE): A Reduced-
Rank Quadratic Model 6

1.3 Latent Variables and Ridge Functions 8

1.3.1 Latent Variable Regression 8

1.3.2 Ridge Functions and Projection Pursuit Regression 10

1.4 Approximation Using Ridge Functions: Density and De-
gree of Approximation 13

1.4.1 Density: What Can Ridge Functions Approximate? 14

1.4.2 Degree of Approximation: How Good Are Ridge
Functions? 16

1.5 Projection Pursuit Regression 18

1.5.1 Smoothing and the Bias–Variance Tradeoff 19

1.5.2 Convergence of Projection Pursuit Regression 21

1.6 SiLVR 27

1.6.1 The Model 27

1.6.2 On the Convergence of SiLVR 31

1.6.3 Interpreting the SiLVR Model 33

1.6.4 Training SiLVR 36



xiv FAST STATISTICAL ANALYSIS

1.7 Experimental Results 44

1.7.1 Master–Slave Flip-Flop with Scan Chain 45

1.7.2 Two-Stage RC-Compensated Opamp 47

1.7.3 Sub-1 V CMOS Bandgap Voltage Reference 52

1.8 Future Work 55

2. Quasi-Monte Carlo for Fast Statistical Simulation of Circuits 59

2.1 Motivation 59

2.2 Standard Monte Carlo 61

2.2.1 The Problem: Bridging Computational Finance
and Circuit Design 61

2.2.2 Monte Carlo for Numerical Integration: Some
Convergence Results 64

2.2.3 Discrepancy: Uniformity and Integration Error 67

2.3 Low-Discrepancy Sequences 72

2.3.1 (t,m, s)-Nets and (t, s)-Sequences in Base b 72

2.3.2 Constructing Low-Discrepancy Sequences:
The Digital Method 76

2.3.3 The Sobol’ Sequence 82

2.3.4 Latin Hypercube Sampling 88

2.4 Quasi-Monte Carlo in High Dimensions 92

2.4.1 Effective Dimension of the Integrand 94

2.4.2 Why Is Quasi-Monte Carlo (Sobol’ Points) Better
Than Latin Hypercube Sampling? 98

2.5 Quasi-Monte Carlo for Circuits 101

2.5.1 The Proposed Flow 101

2.5.2 Estimating Integration Error 103

2.5.3 Scrambled Digital (t,m, s)-Nets and
(t, s)-Sequences 106

2.6 Experimental Results 108

2.6.1 Comparing LHS and QMC (Sobol’ Points) 109

2.6.2 Experiments on Circuit Benchmarks 113

2.7 Future Work 121

3. Statistical Blockade: Estimating Rare Event Statistics 123

3.1 Motivation 123

3.2 Modeling Rare Event Statistics 126



Contents xv

3.2.1 The Problem 126

3.2.2 Extreme Value Theory: Tail Distributions 128

3.2.3 Tail Regularity Conditions Required
for F ∈ MDA(Hξ) 131

3.2.4 Estimating the Tail: Fitting the GPD to Data 133

3.3 Statistical Blockade 137

3.3.1 Classification 137

3.3.2 Support Vector Classifier 138

3.3.3 The Statistical Blockade Algorithm 142

3.3.4 Experimental Results 145

3.4 Making Statistical Blockade Practical 155

3.4.1 Conditionals and Disjoint Tail Regions 155

3.4.2 Extremely Rare Events and Statistics 159

3.4.3 A Recursive Formulation of Statistical Blockade 163

3.4.4 Experimental Results 166

3.5 Future Work 169

4. Concluding Observations 171

Appendices 175

Appendix A Derivations of Variance Values for Test Func-
tions in Sect. 2.6.1 175

A.1 Variance of fc 175

A.2 One Dimensional Variance of fs 178

References 181

Index 193



Chapter 1

SiLVR: Projection Pursuit for Response

Surface Modeling

1.1 Motivation
In many situations it is desirable to have available an inexpensive

model for predicting circuit performance, given the values of various
statistical parameters in the circuit (e.g., Vt for the different devices in
the circuit). Examples of such situations are 1) in a circuit optimization
loop where quick estimates of yield might be necessary to drive the so-
lution towards a high-yield design in reasonable run time, and 2) during
manual design, a simple analytical model can provide insight into circuit
operation using metrics such as sensitivities or using quick visualization,
thus helping the designer to understand and tune the circuit. [DFK93]
provides a good overview of general statistical design approaches. Even
though the paper is not very recent, much of the literature on statistical
design (yield optimization) over the last couple of decades proposes tech-
niques that fall under the general types discussed therein. Such perfor-
mance models in the statistical parameter space are commonly referred
to as response surface models : we abbreviate this as RSM in this thesis.
Initial approaches employed linear regression to model circuit perfor-
mance metrics, as in [CYMSC85]. Soon, the linear models were found
to be inadequate for modeling nonlinear behavior and quadratic models
were proposed in [YKHT87][FD93] to reduce the modeling error.

These low-order models worked sufficiently well for the technologies of
yesteryears, but face fundamental difficulties going forward. Any solution
now must address three large challenges:

Dimensionality: The number of sources of variations in the cir-
cuit can be large. Even for a simple flip-flop, there can be over 50
sources, e.g., random dopant fluctuation (RDF), line edge roughness

A. Singhee, R.A. Rutenbar, Novel Algorithms for Fast Statistical Analysis
of Scaled Circuits, Lecture Notes in Electrical Engineering 46,
c© Springer Science + Business Media B.V. 2009



2 FAST STATISTICAL ANALYSIS

(LER), random poly crystal orientation (RCO) [HIE03], and gate
oxide thickness variation. Although many such sources can be ab-
sorbed into a few device-level parameters, for larger analog cells the
dimensionality can still easily be in the hundreds. The number of
variables, s, in a model determines the number of unknown model
parameters that need to be estimated during model fitting. The num-
ber of SPICE-simulated points needed then is at least the number of
unknown parameters.

Large variations: The relative effect of every variation source is
becoming very large. Just considering RDF, predictions indicate that
the standard deviation of Vt can be 10% of the nominal Vt at the
70 nm node [EIH02], growing to 21% for a 25 nm device [FTIW99],
with 0.3 V Vt. If other variations (LER, RCO) are considered, the
deviation is even higher [HIE03].

Nonlinearity: Not all performance/variable relationships are sim-
ple. A good example is the relationship between device Vt in a flip-
flop, and the flip-flop delay. Such nonlinearity is even more pro-
nounced in the case of analog circuits.

Linear models are able to handle the dimensionality well, since the
number of unknown model parameters is a slowly increasing s+1, where
s is the number of input variables. These models, however, fail to capture
nonlinear behaviors, for which higher-order models are needed. Higher-
order models can, however, have a very large number of parameters:
a polynomial of degree d in s dimensions has s+dCd terms. Hence, even
a quadratic model in 100 dimensions can have 5,151 parameters, re-
quiring 5,151 initial SPICE simulations to generate training points for
the model! Recent attempts at reducing the number of unknowns in
the quadratic model have resulted in very efficient techniques, namely
PROBE [LLPS05] and kernel reduced rank regression (RRR) [FL06].
Both these methods essentially reduce the rank of the quadratic model,
the former doing it in a more natural near-optimal manner. We will look
at PROBE in more detail in Sect. 1.2.3. However, these methods still
suffer from the severe restriction of quadratic (which includes linear)
behavior. In the presence of large variations, the nonlinearity in the cir-
cuit behavior is significant enough to make these models unusable, as we
shall see in later sections.

In this chapter, we review the latent variable regression (LVR)
[BVM96] and projection pursuit regression (PPR) [Hub85] strategies and
show why they can be attractive in these scenarios. Roughly speaking,
these techniques iteratively extract the next statistically most important



SiLVR 3

variable (latent variable or LV), and minimize the error in fitting the re-
mainder of the unexplained performance variation. Hence, they directly
reduce the problem dimensionality. Further, these techniques can be ac-
companied with flexible, but compact, functional forms for the model,
thus reducing a priori assumptions about the magnitude of variations
and the behavior modeled. Using these ideas this chapter will develop
an RSM strategy for silicon design problems – SiLVR – and show its su-
perior performance in comparison to PROBE, in the context of the three
challenges mentioned above. We will also see how the “designer’s insight”
can be obtained naturally from the structure of the SiLVR model, in the
form of some quantitative measures and insightful visualization. Such
insights into the circuit behavior can help the designer to better under-
stand the behavior of the circuit during manual design, and guide the
optimizer better during automatic sizing. SiLVR was first introduced by
us in [SR07a].

LVR methods have a long and interesting track record and encom-
pass a variety of different techniques that follow the same philosophy
to meet slightly different objectives; for example, partial least squares
(PLS) [WRWI84], canonical correlation regression (CCR) [BVM96], and
reduced rank regression [RV98]. A good survey and comparison is pro-
vided in [BVM96]. These LVR techniques have found wide application,
much of it outside the realm of silicon application, in areas ranging from
chemometrics [WSE01] to statistics [DT82], to bioinformatics [BS06].
Many LVR methods still assume a linear relationship, or use a low-
order nonlinear kernel to explain the assumed nonlinear relationships.
Thus, our own interest is in LVR methods that support a more flexible
nonlinear framework. Here, Baffi et al. [BMM99] and Malthouse et al.
[MTM97] are noteworthy. In addition to the single variable iterative ex-
traction philosophy, these show how to use a neural network [Rip96] to
capture significant nonlinear behaviors. However, [BMM99] suffers from
unreliable and slow convergence during training and [MTM97] uses an
excessively complex model that can be prone to computational burdens
and overfitting. SiLVR, although similar in flavor to these methods, uses
a more compact model in a new unified training framework to remove
these issues.

Although SiLVR derives its name from LVR, its philosophy finds a
closer fit with projection pursuit [FS81][Hub85]. Both LVR and PP are
very similar in the way they operate, but their theory and applications
seem to have developed more or less independently: LVR in the world of
chemometrics (PLS) and statistics (CCR, RRR), while PP in the world
of statistics, approximation theory and machine learning. Theoretical
foundations for PP appear to be better developed, more so for nonlinear



4 FAST STATISTICAL ANALYSIS

regression and the particular case of the SiLVR model (PP using sig-
moidal functions). We will review relevant results from these as we move
toward developing the SiLVR model architecture.

In the rest of this chapter, we briefly review linear and quadratic
models, including PROBE, a low-rank quadratic model, after which we
review the LVR and PP techniques, along with relevant theoretical re-
sults from approximation theory. Finally, we develop the SiLVR model,
covering relevant details regarding model training, and show experimen-
tal results.

1.2 Prevailing Response Surface Models
Before we review linear and quadratic models, let us first concretely

define the RSM problem. Let X = Rs be the statistical parameter space
and Y = RsY be the circuit performance-metric or output space: sY is the
number of outputs. For a given x ∈ X , y = fsim(x) ∈ Y is evaluated using
a SPICE-level circuit simulation. We want to find an approximation

ŷ = fm(x) ∈ Y : min
fm

E(‖y − ŷ‖2), (1.1)

such that the function fm is much cheaper to evaluate than fsim in terms
of computational cost. In this chapter, unless specifically mentioned, we
will now consider only any one output yi at a time, from the vector y.
This is for the sake of clarity of explanation, and we will drop the sub-
script i and use only y. Then, for the output y, we can write (1.1) as

ŷ = fm(x) ∈ R : min
fm

E(‖y − ŷ‖2). (1.2)

If we use the L2 norm in (1.2), we achieve the least squared error fit. To
obtain this model in practice, some n sample points {xi, yi = fsim(x)}n

i=1
are generated using SPICE simulations and the following optimization
problem is solved.

min
fm

n
∑

i=1

|yi − ŷi|2 where ŷi = fm(x). (1.3)

1.2.1 Linear Model
Linear models, such as the one used in [CYMSC85], model the response
y as a linear function of the parameters x. Hence, a linear model can be
written as

ŷ = aTx + c, (1.4)



SiLVR 5

Figure 1.1. A linear RSM cannot capture the quadratic behavior, while the quadratic
RSM succeeds

where a is a vector of s unknown model parameters, a ∈ Rs and c is
an unknown real scalar. The total number of distinct, unknown model
parameters is np = s + 1 = O(s). Given n ≥ np training sample points,
we can estimate a and c, using the least squares form of (1.3), as

[aT c]T = [X 1]+Y, where A+ = (ATA)−1AT , (1.5)

where X is an n × s matrix with the i-th row being the i-th input
sample point xT

i and Y is an n-vector with the i-th element being the
i-th output sample point. [X 1] means X is augmented by a column of
ones. Figure 1.1(a) shows an example of a linear model with s = 2: we
can immediately see that the linear model cannot capture the nonlinear
relationship in the data and the errors are very large.

1.2.2 Quadratic Model
Quadratic RSMs were proposed in [YKHT87][FD93] to model nonlin-
earities when the linear model fails. The quadratic model can be written
as

ŷ = xTAx + bTx + c, (1.6)

where A is a symmetric s × s matrix of unknowns, b is a vector of s
unknowns and c is an unknown scalar. The total number of distinct,
unknown model parameters is np = s+2C2 = (s + 1)(s + 2)/2 = O(s2).
Hence, the number of parameters grows quadratically with the number
of dimensions. If we let Ai be the i-th row vector of A (written as a
column vector), and the Kronecker product

x ⊗ x = [x2
1 x1x2 . . . x1xs x2x1 . . . x2

s]
T ,



6 FAST STATISTICAL ANALYSIS

we can write (1.6) as

ŷ = aT
e xe, where ae = [AT

1 . . . AT
s bT c]T , xe = [(x ⊗ x)T xT 1]T ,

(1.7)
which is similar in form to the linear model (1.4). Then, given n ≥ np

training points, the least squared error estimate for the unknowns in
(1.6) can be computed as

ae = X+
e Y, (1.8)

where the i-th row of the matrix Xe is the vector xe computed for
the i-th input training point, and X+

e is its pseudoinverse as in (1.5).
In practice, the common (repeated) terms in x ⊗ x are combined, for
example, x1x3 and x3x1. From Fig. 1.1(b) we can see that a quadratic
model fits the data much better than a linear model. In this case the data
was generated from a quadratic function of the two variables, and so we
get a near-exact fit with a quadratic model. This full quadratic model can
have a large number of unknowns and, hence, require a large number of
training points n for proper fitting. Also, the computations in (1.8) can
be very expensive for large s. This high fitting cost can be alleviated by
using a reduced-rank quadratic model, like PROBE [LLPS05] reviewed
next.

1.2.3 PROjection Based Extraction (PROBE):
A Reduced-Rank Quadratic Model

A reduced-rank quadratic RSM was proposed by Li et al. in [LLPS05] to
overcome the dimensionality problems of the full quadratic model. The
matrix A in (1.6) is replaced by a low-rank approximation AL, given by

AL =
r

∑

i=1

λipip
T
i , r < s, (1.9)

where λi is the i-th dominant (largest) eigenvalue of A and pi is the
corresponding normalized eigenvector. It is known that this approxima-
tion minimizes the Frobenius-norm error for a given r: it is the optimal
rank-r approximation [GL96]. Then the reduced quadratic model can be
written as

ŷ =

r
∑

i=1

xT λipip
T
i x + bix + ci. (1.10)

Thus, the model is a combination of r simpler quadratic models, where
the i-th quadratic part varies along the projection along the i-th eigen-
vector pi. This is similar in flavor to the concept of projection pursuit
that is used in a more powerful and flexible form for the SiLVR model
proposed in this thesis.



SiLVR 7

Algorithm 1.1 The PROBE algorithm

Require: training sample points {xj , yj }n
j=1

1: for i = 1 to r do
2: gi(x) ← getRankOneQuadratic({xj , yj }n

j=1)
3: for all sample points {xj , yj } do
4: yj ← yj − gi(xj)
5: end for
6: end for
7: The rank-r model is ŷ =

∑r
i=1 gi(x)

Algorithm 1.2 PROBE: getRankOneQuadratic({xj , yj }n
j=1) function

to extract the rank-1 estimate
Require: ǫ, a predefined tolerance

1: Randomly select q0 ∈ Rs

2: k = 0, ψ0 = ∞
3: repeat
4: k = k + 1
5: qk−1 = qk−1/‖qk−1‖2

6: Solve (least squares error) minqk,bk,c ψk, where ψk =
∑n

j=1[yj −
(xT

j qkq
T
k−1xj + bkxj + ck)]

2

7: until |ψk − ψk−1| < ǫ
8: Return rank-1 estimate g(x) = xTqkq

T
k−1x + bkx + ck

Since the matrix A is not already known, an implicit method that
does not need it is used in [LLPS05] to estimate its eigenvectors. The
overall algorithm is shown as Algorithm 1.1. Once the i-th component in
(1.10) is extracted, the predicted gi(x) values for all the sample points are
subtracted out, so that the (i+1)-th component fits the residual y = y −
gi(x). Algorithm 1.2 extracts the i-th component using an implicit power
iteration method, and constitutes the function getRankOneQuadratic()

in Algorithm 1.1. The vector qk →
√

λipi with k → ∞ in Algorithm 1.2,
for the i-th call to getRankOneQuadratic() in Algorithm 1.1. For a
detailed explanation of the technique please refer to [LLPS05].

A rank-r quadratic model is effective in reducing the number of un-
known model parameters and scales well with the number of dimen-
sions s, if r ≪ s: the number of model parameters is np = 2r(s + 1) =
O(rs), which increases linearly with s. The authors of [LLPS05] show
that r is very small for the performance metrics of some commonly seen
circuits: even a rank-1 model can suffice. However, the model still suf-
fers from a quadratic behavior assumption. We will now review some



8 FAST STATISTICAL ANALYSIS

techniques that, in the general case, make no assumption regarding the
modeled behavior, and then show how we can maintain much of this
generality using the proposed SiLVR model.

1.3 Latent Variables and Ridge Functions
For the rest of this chapter let us assume that all the training sam-

ple points have been normalized – scaled and translated to mean 0 and
variance 1 – in both the input and output spaces. This is for the sake of
clear development of the following concepts, without any loss of gener-
ality.

1.3.1 Latent Variable Regression
With the assumption of normalized training points, the standard linear
model for the sY -vector of outputs y can be written as

ŷ = Ax, (1.11)

where A is an sY × s matrix of regression coefficients. Classically, latent
variable regression (LVR) has been used to modify this linear model into
a reduced linear model as

ŷ = ZWrx. (1.12)

Here Wr is an r × s matrix that projects the s-dimensional vector x to an
r-dimensional space, where r < s, and Z is an sY × r-vector of regression
coefficients over this reduced r-dimensional space. If we denote the i-th
row of Wr by wi, then we can interpret wT

i x as the i-th coordinate in the
reduced r-dimensional space. We will refer to wi as the i-th projection
vector, and the new variable wT

i x as the i-th latent variable ti. Each
coordinate wij of wi will be referred to as the j-th projection weight of
the i-th projection vector.

ti = wT
i x. (1.13)

Wr is, then, the projection matrix .
The unknown parameters (the projection vectors wi and the regres-

sion coefficients in Z) can be chosen to satisfy a variety of criteria, each
yielding a different LVR method (e.g., RRR, PLS, CCR) as shown in
[BVM96]. The relevant method here is reduced rank regression (RRR),
which solves the least squared error problem

min
Wr,Z

‖Y − XWT
r ZT ‖2, (1.14)

where X,Y are matrices of n sample points: each row is one sample
point. From the discussion until now, the important idea to remem-



SiLVR 9

ber is that we are extracting the r statistically most important LVs
({t1, . . . , tr }), such that the expected squared error is minimized, as
in (1.14).

The problem of modeling nonlinear behavior, however, remains un-
solved by these classical LVR techniques. Kernel-based methods try to
address this issue by using the well-known “kernel trick”: map the in-
puts (x), using fixed nonlinear kernels (fK(x), e.g., a quadratic as in
[FL06]), to a higher dimensional space, and then create a reduced linear
model from this higher dimensional space to the output y [HTF01]. This
has severe limitations: it increases the problem dimensionality before re-
ducing it, and, more importantly, assumes a known nonlinear relation-
ship between x and y. Baffi [BMM99] proposes adapting LVR to use a
more flexible neural network [Rip96] formulation, but the model fitting
is very slow (a two-step process that iterates between model fitting and
LV estimation) and unreliable (due to weak convergence of this two-step
iteration). Malthouse [MTM97] takes this further, but produces a very
complex neural network model that can cause undesirable overfitting, es-
pecially for small training datasets, and has a large number of unknowns
to fit. Also, both these methods solve a problem different from minimiz-
ing the least squared error as in (1.3). As we saw in Sect. 1.2.3, the
PROBE method also uses a projection-based approach, but is restricted
to a quadratic form.

The advantages of a flexible nonlinear LVR method are multiple and
significant:

It inherently reduces the dimensionality of the problem by extracting
the LVs.

The LVs are the “hidden variables” in the input space that impact the
output in decreasing order of importance. Having this information
can be of much use to the designer, as we shall see in the next few
sections.

The model would not be restricted to a small class of nonlinear be-
haviors.

All these features are very useful for addressing the problems mentioned
in Sect. 1.1, and we will construct the SiLVR model to exploit all of them.
First, though, we review the idea of projection pursuit, which bears close
resemblance to LVR, and provides some theoretical foundation for the
SiLVR model.



10 FAST STATISTICAL ANALYSIS

Figure 1.2. Example of a ridge function. The arrow indicates the projection vector

1.3.2 Ridge Functions and Projection Pursuit Re-
gression

Projection pursuit regression (PPR) is a class of curve fitting algorithms,
formally introduced first by Friedman and Stuetzle in [FS81] that ap-
proximate the output y as

ŷ =

r
∑

i=1

gi(w
T
i x), (1.15)

where, wi is the i-th projection vector, similar to LVR, and gi : R → R

are unknown functions that might be parameterized functional forms
(e.g., quadratic) or some nonparametric function, as in [FS81]. Hence,
y is represented as the sum of nonlinear, univariate functions gi, each
varying along a different direction wi in the input space. Each gi func-
tion is called a ridge function [LS75] because for s = 2 it defines a 2-
dimensional surface that is constant along one direction in the input
space R2 (orthogonal to wi), leading to “ridges” in the topology. An
example is shown in Fig. 1.2. In higher dimensions, a ridge function gi is
constant along the hyperplanes wT

i x = c. Ridge functions have also been
referred to as plane waves [VK61] historically, particularly in the field
of partial differential equations [Joh55]. The representation in (1.15) is
computed so as to minimize the modeling error as in (1.3). Given n
training sample points, we can write this criterion as

min
r,{gi,wi}r

1

n
∑

j=1

∥

∥

∥

∥

∥

yj −
r

∑

i=1

gi(w
T
i xj)

∥

∥

∥

∥

∥

2

. (1.16)

From (1.15), we can see the similarity to LVR, where we are also trying
to extract r best directions to predict the output. In fact, a nonlinear
version of LVR optimizing (1.3) will accomplish precisely the same thing
as PPR.



SiLVR 11

Figure 1.3. A feedforward neural network with one hidden layer: a 3-layer perceptron

The representation of (1.15) is also a general form of a feedforward
neural network with one hidden layer. Artificial neural networks were in-
troduced first by McCullough and Pitts in [MP43] to model the behavior
of neurons in the nervous system. We will refer to them as simply neural
networks. Since then, neural networks have been the focus of much theo-
retical and applied research [IM88][Fun89][Bar93][CS96][HSW89][Mha96]
[HM94][FH97][NW90], and have been proposed in a large variety of forms
[Rip96]. Here we refer to the simple feedforward form with one hidden
layer of r nodes, which can be written mathematically as

r
∑

i=1

αiσ(wT
i x + βi), αi, βi ∈ R, (1.17)

where σ : R → R is a fixed univariate function called the activation func-
tion. One such network is shown in Fig. 1.3. We will refer to such net-
works as 3-layer perceptrons (3LP) as per [IM88]: the first layer is just
the layer of input nodes, layer two consists of the activation function
nodes and layer three consists of the output node. From (1.17), we can
immediately see the similarity with the PPR model of (1.15). Hence,
a 3LP is a special case of a PPR model. We will revisit the 3LP when
we develop the SiLVR model, where we use it in a somewhat different
manner.

Before we proceed further, let us look at a couple of simple examples
to clarify the concept of PPR. Consider the functions

y1 = (x1 + 2x2)
3, y2 = x1x2, (1.18)

of which the second appears also in [DS84] and [Hub85]. We can represent
the first function as

y1 = t31, where t1 = (1 2)

(

x1

x2

)

. (1.19)

In this case projection along only one direction w1 = (1,2) is enough
to model the entire function exactly. This is because the function varies



12 FAST STATISTICAL ANALYSIS

Figure 1.4. The function of (1.20) and its component ridge functions

only along that one direction. Hence, we have reduced the dimensionality
of the input space to one. t1 is the first LV, following the nomenclature
from latent variable regression. On first glance, the second function could
seem unfriendly to such linear projection-based decomposition. However,
we can write y2 as

y2 = x1x2 = 0.25(x1 + x2)
2 − 0.25(x1 − x2)

2, (1.20)

which is the sum of two univariate ridge functions (quadratics) along
the directions w1 = (1,1) and w2 = (1, −1), in the form of (1.15). The
functions are shown in Fig. 1.4.

It is interesting to note that the Fourier series representation of a
function,

f(x) =

r
∑

k=1

ake
iω̄T

k x, (1.21)

is also a ridge function representation, where the projection vectors ω̄T
k

are points in the s-dimensional Fourier domain. Note that the i in this
equation is the imaginary unit, and not an index. Section 1.4 discusses
a theorem from [DS84] that deals with representations similar to this.

Of course, for some unknown function f we would need to automat-
ically extract the optimal projection directions and the corresponding
ridge function. This “pursuit” of the optimal projections leads to the
name projection pursuit. Before we discuss the algorithmic details of
PPR, let us review some relevant results from approximation theory
that establish a theoretical foundation for approximation using ridge
functions. The reader who is more interested in the algorithmic consid-
erations may skip forward to Sect. 1.5.



SiLVR 13

1.4 Approximation Using Ridge Functions:
Density and Degree of Approximation

Before we can begin to develop algorithms for PPR, some more funda-
mental questions regarding ridge functions deserve attention. What can
we approximate using ridge functions? How well can we approximate?
To address these questions, let us first review some basic terminology
from topology.

C(X)C(X)C(X) – For some space or set X , C(X) is the set of all continuous
functions defined on X , f(x|x ∈ X).

ppp-norm – Given some function f over some space X , we define the
p-norm as

‖f ‖p =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(
∫

X
|f(x)|dx

)1/p

, 0 < p < ∞

sup
x∈X

|f(x)|, p = ∞
. (1.22)

A norm taken over a set D ⊂ X will involve integrating or taking the
supremum, as relevant, over only D. The norm is then denoted by
‖f ‖p,D, unless obvious.

Lp(X)Lp(X)Lp(X) – For some space or set X , Lp(X) is the set of continuous
functions defined over X that have a finite p-norm over X , equiva-
lently

Lp(X) = {f : ‖f ‖p,X < ∞}. (1.23)

Compact set – A compact set in Euclidean space Rs is any subset
of Rs that is closed and bounded. A more general definition for any
space is as follows. A set D is compact if for every collection of
open sets U = {Ui} such that D ⊂ ⋃

i Ui, there is a finite subset
{Uij : j = 1, . . . ,m} ⊂ U such that D ⊂ ⋃

j=1,...,m Uij . For example,

the closed unit ball {x : ‖x‖2 ≤ 1,x ∈ Rs} is compact, while the open
unit ball {x : ‖x‖2 < 1,x ∈ Rs} is not compact.

Dense set – Let V1 ⊂ V2 be two subsets of some space V . Then, V1

is dense in V2 if for any v ∈ V2 and any ǫ > 0, there is a u ∈ V1 such
that ‖v − u‖ < ǫ under the p-norm specified or assumed without
confusion. For example, if V2 is C[0,1] and V1 is the space of all
polynomials over [a, b] then V1 is dense in V2 over [a, b] under the
∞-norm, because every continuous function can be arbitrarily well
approximated by polynomials, over some intervals [a, b]. This is the
well-known Weierstrass approximation theorem [BBT97].



14 FAST STATISTICAL ANALYSIS

We now provide some answers to the questions posed at the beginning of
this section, by reviewing relevant results from the approximation theory
of ridge functions.

1.4.1 Density: What Can Ridge Functions Approx-
imate?

Theorem 1.1 (Diaconis and Shahshahani [DS84]). Functions of the

form
∑

αie
wT

i x with αi ∈ R, wi ∈ Z+ are dense in C[0,1]s under the
∞-norm.

This theorem says that any continuous function over the unit cube in
s dimensions can be arbitrarily well approximated by ridge functions of
the exponential form. Even though this theorem restricts itself to expo-
nential ridge functions, it does prove that there exists a ridge function
representation (linear combination of exponentials) for any continuous
function over the unit cube. Note that the unit cube domain can be
relaxed to any compact set D in s dimensions by including all required
(continuous) transformations in the function to be approximated.

We will present a proof here, since it is simple enough for the non-
mathematician to follow, while at the same time it provides some good
insight and is an interesting read. The proof will require the follow-
ing, very well-known, Stone–Weierstrass theorem, a generalization of
the Weierstrass theorem. For a proof of the Stone–Weierstrass theorem
please refer to standard textbooks on analysis, e.g., [BBT97]. Here we
state a less general version of the theorem that suffices for our purposes.

Theorem 1.2 (Stone–Weierstrass). Let D ⊂ Rs be a compact set, and
let V be a subspace of C(D), the space of continuous functions on D,
such that

a) V contains all constant functions,

b) u, v ∈ V ⇒ uv ∈ V , and

c) For every pair x,y ∈ D, x �= y, ∃v ∈ V such that v(x) �= v(y).

Then, V is dense in C(D); i.e., ∀v ∈ C(D), ǫ > 0, ∃u ∈ V such that
‖u − v‖∞.

The Stone–Weierstrass theorem gives conditions such that V , the linear
span of a given set of functions, is able to approximate any continuous
function arbitrarily well. Using this, we can now prove Theorem 1.1.



SiLVR 15

Proof of Theorem 1.1. Here V is the space of functions of the form
∑

αie
wT

i x with αi ∈ R, wi ∈ Z+, and it satisfies the three conditions in
the Stone–Weierstrass theorem, for the compact set D = [0,1]s:

a) αie
0T x are all the constant functions, where 0 is the vector of zeros.

b)
∑

i αie
wT

i x · ∑

j βje
vT

j x =
∑

i

∑

j αiβje
(wi+vj)

T x, which lies in V .

c) For any pair x,y ∈ [0,1]p such that x �= y, we must have xi �= yi for
at least one i ∈ 1, . . . , s. Then choose w = ei, where the vector ei is

the unit vector along coordinate i. Then ewT x = exi �= ewT y = eyi .

Hence, the Stone–Weierstrass theorem applies and V is dense in C[0,1]s.

More general results regarding the density of ridge functions have been
developed by several authors, notably Vostrecov and Kreines [VK61],
Sun and Cheney [SC92], and Lin and Pinkus [LP93]. Let W ⊆ Rs be the
set of possible projection vectors, and define

R W = span{g(wTx) : w ∈ W , g ∈ C(R), x ∈ Rs} (1.24)

as the linear span of all possible ridge functions using univariate con-
tinuous functions along directions defined by the vectors in W . Now we
state two results that specify conditions on W such that R W is dense in
C(Rs).

Theorem 1.3 (Vostrecov and Kreines [VK61]). R W is dense on C(Rs)
under the ∞-norm over compact subsets of Rs if and only if the only
homogeneous polynomial of s variables that vanishes on W is the zero
polynomial.

A homogeneous polynomial is a polynomial whose terms all have the
same degree. For example, x5

1 + x2
1x

3
2 is a homogeneous polynomial of

degree 5, while x5
1 + x2

1 is not. This theorem states that elements from
R W can approximate any continuous function over any compact subset
of Rs if and only if there is no nonzero homogeneous polynomial of s
variables that has zeros at every point in W . If we are allowed to choose
any projection vector from Rs; i.e., W = Rs, this is certainly true – the
only homogeneous polynomial that is zero everywhere on Rs is the zero
polynomial. Sun and Cheney state a similar, possibly simpler to visualize
result:

Theorem 1.4 (Sun and Cheney [SC92]). Let s ≥ 2 and let A1,A2,
. . . ,As be subsets of R. Put W = A1 × A2 × · · · × As. R W is dense on



16 FAST STATISTICAL ANALYSIS

C(Rs) under the ∞-norm over compact subsets of Rs if and only if at
most one of the sets Ai is finite, and this finite set, if any, contains a
nonzero element.

Once again, if W = Rs, this condition is obviously met. These two
theorems state necessary and sufficient conditions for the same outcome.
Hence, the conditions must be equivalent. In fact, it is easy to see that the
condition in Theorem 1.4 is sufficient for the condition in Theorem 1.3.
If all sets Ai are infinite, then no nonzero homogeneous polynomial of s
variables can vanish everywhere on W =

∏

i Ai, since it would need to
have an infinite number of roots. Now, consider the case that one set Ai

is finite, with at least one nonzero element. Any nonzero homogeneous
polynomial hs of s variables with no xi term would be a homogeneous
polynomial hs−1 of s − 1 variables. This hs−1 would then not vanish over
∏

j �=i Aj , by the same argument, and, so neither would hs vanish over
W . The only case that remains is when hs does contain a term with xi.
If hs now vanished everywhere on W , it would vanish also at all points
with xi equal to a nonzero value from Ai. Replacing this value for xi

in hs again gives us a homogeneous polynomial hs−1 in s − 1 variables.
Hence, by the same argument as before any nonzero hs cannot vanish
over W .

These theorems answer the first question we asked at the beginning
of this section: what can we approximate using ridge functions? The
answer is essentially, any nonlinear function we are likely to encounter
in practice. Now, we look at some results that try to answer the second
question: how well can we approximate?

1.4.2 Degree of Approximation: How Good Are
Ridge Functions?

One way to address the question, “how well can ridge functions ap-
proximate?”, is to study the convergence of approximation using ridge
functions – how does the error decrease as we increase the number of
ridge functions in the model, or in other words, the model complex-
ity? This is a difficult question for general ridge functions and there are
some partial results here, notably [Pet98][Mai99][BN01][Mha92][Bar93].
Many of these results exploit constraints on the ridge functions to show
the convergence behavior of the approximation.

From these, we state a general result, by Maiorov. Let Bs = {x ∈ Rs :

‖x‖2 ≤ 1} be the closed unit ball. Let W k,s
2 be a Sobolev class [Ada75]

of functions from L2(B
s). This is the class of functions f ∈ L2(B

s),
for which all partial derivatives ∇v

xf of order smaller than or equal to
k (

∑s
i=1 vi ≤ k, where v = {v1, . . . , vs}), satisfy ‖∇v

xf ‖2,Bs ≤ 1. These



SiLVR 17

partial derivatives are taken in the weak sense [Ada75]. Define

Rr =

{

j
∑

i=1

gi(w
T
i x) : j ≤ r, wi ∈ R, g ∈ L(R)

}

, (1.25)

where by L(R), we mean the space of all functions integrable on any
compact subset of R, or equivalently, there is some compact set D ∈ R

such that g ∈ L1(D). For any two sets of functions, U,V , define the
distance of U from V as

dist(U,V ) = sup
u∈U

inf
v∈V

‖u − v‖2. (1.26)

In words, for any given u ∈ U find the distance to the closest approx-
imation v from V using the 2-norm. Then find the maximum of this
distance over all possible u ∈ U . Hence, if U is the target set of functions
to be approximated and V is the set of possible approximations, this
metric computes the maximum error, using the best possible approx-

imations from V . It then follows that dist(W k,s
2 , Rr) is the maximum

error while approximating functions in W k,s
2 using best fitting approxi-

mations from Rr. Now, we are equipped to state the following.

Theorem 1.5 (Maiorov [Mai99]). For k > 0, s ≥ 2, the following as-
ymptotic relation holds.

dist(W k,s
2 , Rr) = Θ(r−k/(s−1)). (1.27)

Here, Θ is the tight bound notation [CLR01]. Hence, the maximum ap-
proximation error using r ridge functions decreases as r−1/(s−1), for a

class of functions that satisfy a given smoothness criterion (f ∈ W k,s
2 ).

All the results stated in this section provide us with some confi-
dence that a ridge function-based approximation is theoretically fea-
sible. [Lig92] surveys some methods of constructing the approximation
ŷ if the original function y is known. However, all these results deal with
functions and not with finite sample sets. In a practical response sur-
face model generation scenario we would not know anything about the
behavior of the function we are trying to approximate, but we would
have a finite set of points from which we have to estimate the “best”
projection vectors and functions in the RSM in (1.16). The projection
pursuit regression technique strives to accomplish precisely this with a
statistical perspective. The next section reviews the original projection
pursuit algorithm and some relevant convergence results.



18 FAST STATISTICAL ANALYSIS

Algorithm 1.3 The projection pursuit regression algorithm of Friedman
and Stuetzle [FS81]

Require: normalized training samples {xj , yj }n
j=1

1: ej ← yj , j = 1, . . . , n and r = 0
2: find wr+1 to maximize the fraction of variance explained by gr+1:

I ← max
wr+1∈ S s−1

1 −
∑n

j=1(ej − gr+1(w
T
r+1xj))

2

∑n
j=1 e2

j

. (1.29)

gr+1 is the smooth along the direction wr+1. Rosenbrock’s method
[Ros60] was used for the search

3: if I < ǫ then
4: return {gi,wi}r

i=1
5: else
6: ej ← ej − gr+1(w

T
r+1xj), j = 1, . . . , n

7: r ← r + 1
8: go to step 3
9: end if

1.5 Projection Pursuit Regression
The PPR algorithm, as proposed by Friedman and Stuetzle [FS81],

takes a nonparametric approach to solve for the functions gi and pro-
jection vectors wi in (1.16). Each gi is approximated using a smoothing
over the training data. Let {tj , yj }n

j=1 be our training data projected
along some projection vector w. In general, a smoothing-based estimate
uses some sort of local averaging:

g(t) = AVEtj ∈[t−h,t+h](yj). (1.28)

Here AVE can denote the mean, median, any weighted mean, or any
other ways of averaging (e.g., nonparametric estimators in [Pra83]). The
parameter h defines the bandwidth or the smoothing window. We call
the function g a smooth. Specific details of the smoothing method used
by Friedman and Stuetzle can be found in [FS81][Fri84]. Their overall
PPR algorithm is shown as Algorithm 1.3. We remind the reader that
all training data has been normalized to mean 0 and variance 1, and
denote the surface of the unit sphere in Rs as S s−1. Hence, S s−1 is the
set of all s-vectors of magnitude 1.

We can see that the algorithm is iterative. At each iteration, it tries
to extract the best direction wr+1 and the corresponding ridge function
gr+1 so as to best approximate the residue values {ej } at that iteration.
We can clearly see the similarity with latent variable regression. The i-th



SiLVR 19

latent variable in this case is the displacement along the i-th projection
vector ti = wT

i x. This iterative approach simplifies the problem of ex-
tracting all the required projections and ridge functions, by handling
only one component at a time. This has the advantage of scoping down
the problem to a one-dimensional curve fitting problem, from a very dif-
ficult high-dimensional curve fitting problem. Furthermore, since each
component is extracted to maximally model the residue at that itera-
tion, the latent variable associated with the i-th projection vector can be
interpreted as the i-th most important variable for explaining the output
behavior. This can be very useful for extracting some deep insight into
the behavior of a circuit, when PPR is used for RSM building. We will
revisit this observation and elaborate further on it when we explain the
SiLVR model.

1.5.1 Smoothing and the Bias–Variance Tradeoff
There is a subtle, but critical, observation we will make here regard-
ing the ridge function that is extracted in any one iteration. This is
best introduced using an illustration: we refer back to our example from
(1.20), and reproduce it here in a slightly different form for the reader’s
convenience:

y2 = x1x2 = 0.25({1,1} · x)2 − 0.25({1, −1} · x)2. (1.30)

Suppose the ridge function g1 was unconstrained with regard to any
smoothness requirement and was free to take up any shape. Then, given
n training points, a perfect, zero-error interpolation could be performed
along any direction w1. Figure 1.5 illustrates this. From (1.30) we know
that w1 = {1,1} or {1, −1} are two good candidates for the first pro-
jection vector. In fact, any {a, b} such that ab �= 0 is a good candidate
because we can write

x1x2 = (4ab)−1[(ax1 + bx2)
2 − (ax1 − bx2)

2]. (1.31)

Therefore, {1,0} is a bad projection vector. Figure 1.5 shows 100 train-
ing points as (blue) dots, projected along the projection vectors {1,0}
(Fig. 1.5(a)) and {1,1} (Fig. 1.5(b)). With unrestricted g1 we can find
perfect interpolations along both directions, shown as solid lines joining
the projected training points. In both cases, the metric I in step 3 of
Algorithm 1.3 is maximized to 1 and the algorithm has no way of deter-
mining which is the better direction. In fact, with such a flexible class of
functions for g1, all directions will have I = 1. Also, once the first ridge
function is extracted, the algorithm will stop because all the variance
in the training data will have been explained and I would be 0 for the



20 FAST STATISTICAL ANALYSIS

Figure 1.5. Overfitting of training data along two different projection vectors (w1)
for y = x1x2

second iteration, resulting in a final model with only one component
ridge function model. The solid lines shown in Figs. 1.5(a) and 1.5(b)
are, in fact, the final models. However, choosing the wrong projection
vector w1 = {1,0} in Fig. 1.5(a) results in large errors on unseen test
data, shown as black circles. This is, of course, as expected because the
direction of projection is incorrect in the first place. However, even with
the correct projection in Fig. 1.5(b), we get large errors on unseen test
data.

The problem here is the unrestricted flexibility in the function g1.
A more desired g1 along w1 = {1,1} is actually a very smooth function
in this case, shown as a (red) dash-dot line in Fig. 1.5(b). This is the
first term in expansion in (1.30). Note that this ridge function has large
errors on the training data and does not try to exactly fit the training
points along the projection. However, it lets the algorithm perform a
second iteration, in which the second projection vector {1, −1} is cho-
sen and the second ridge function in (1.30) is extracted, giving us a
near-exact two-component ridge function model. Such a class of smooth
univariate functions will have a larger error along the incorrect direc-
tion of Fig. 1.5(a) and the algorithm will easily reject it. This illustrates
the classic bias-variance tradeoff in statistical learning [HTF01]. If we
minimize the bias in our estimated model by exactly fitting the training
data, we will get a completely different approximation for a different
set of training points, resulting in high variance. This choice also re-
sults in large errors on unseen points. If we minimize the variance, by
estimating nearly the same model for different sets of training data, we
need to reconcile with a larger training error. In the extreme version of
this choice, any training sample will result in the same estimate of the



SiLVR 21

model, meaning that we are not even using any information from the
training data. Such extremes will also result in large errors on unseen
data. Hence, we must find a balance such that we keep the error low
on both the training data and on unseen test data. This is the classic
problem of generalization.

This issue is particularly critical for the case of PPR. When we project
the training data onto a single direction wi, there can be a lot of noise or
variation in the output values because of smooth dependence on other
directions orthogonal to wi, as in Fig. 1.5(b) for w1. If the function
gi is allowed too much flexibility, it will undesirably overfit the train-
ing data by fitting this orthogonal contribution to the behavior of the
function. Hence, it is critical that any PPR algorithm employ some tech-
nique to avoid overfitting and improve the generalizability of the model.
Friedman and Stuetzle used variable bandwidth smoothing to achieve
this: the parameter h in (1.28) is adaptively changed to be larger in
those parts of the projected input space where the function variation is
estimated to be high, since this high variation is probably because of
higher dependence on orthogonal directions in that region. Minimizing
overfitting will a prime objective when we develop the proposed SiLVR
model.

1.5.2 Convergence of Projection Pursuit Regression

PPR was proposed in [FS81] relying on intuitive arguments regarding
why it should work and its advantages, as mentioned in the beginning of
this section (Sect. 1.5). Unfortunately, the theoretical results developed
for approximation using ridge functions (Sect. 1.4) do not directly apply
to PPR because of at least two reasons. First, PPR uses a finite set of
training points and does not have knowledge of the original function to
be modeled. Second, PPR extracts each projection iteratively. Hence, it
cannot rely on exact interpolation techniques, and must use statistical
estimation. This was discussed in the context of the bias-variance trade-
off and smoothing in Sect. 1.5.1. Also, this iterative scheme is a “greedy”
approach, where at every step only the next best decision is taken – to
select the next best projection and ridge function. The best decision at
any given iteration might not be the best decision in the global sense. It
might be better sometimes to not choose the ridge function that seems
to be the best for the current iteration. In fact, later in this section, we
will show an example where the choice made by PPR does not match
the best choice suggested by analysis. Given this greedy nature, does
the algorithm still converge to a good solution (to an accurate RSM)?
Researchers in statistics have recognized these issues and questions, and
there are some theoretical results showing convergence of PPR under



22 FAST STATISTICAL ANALYSIS

different conditions [Hub85][DJRS85][Jon87][Hal89]. In this section we
review some of these results.

Any set of training points will be drawn from some underlying prob-
ability distribution defined over the sampling space X . We denote this
distribution by P , and the probability density is denoted by p. This sce-
nario is reasonable for our applications, since any statistical parameter
(e.g., Vt) or design variable will follow some probability distribution (e.g.,
normal distribution) or lie uniformly in some bounded range. A bounded
domain D ∈ Rs can be represented as a uniform distribution P that is
nonzero for subsets in D and zero for subsets outside D. Any expecta-
tion computation will then be performed over the relevant probability
distribution, unless differently specified. For example, the expectation
(mean) of a circuit performance y = f(x) will be computed as

E(y) =

∫

P
f(x)dP =

∫

X
f(x)p(x)dx. (1.32)

In general terms, P is the probability measure over the sample space X
[Lo77]. For our circuit applications X is typically Rs.

In practice, the PPR algorithm has to deal with at least three non-
idealities:

1) No exact knowledge of the original function y = f(x) – we have only
a finite number of training points n.

2) Imperfect approximation technique for estimating the best univariate
function g along any direction w.

3) Imperfect search algorithm to search for the best w in any iteration.

To the best of our knowledge, there is no theoretical result establishing
the convergence properties of PPR in the most general case allowing
for all these nonidealities. However, there are results that make ideality
assumptions for one or more of the three points mentioned above, but
still provide insight into the general working of PPR.

Let us assume that we have a perfect version of PPR, free of the three
nonidealities mentioned above. Then we ask the question,

What are the best projection vector w
and the best univariate function g?

By best we mean the pair (w, g) that gives the best approximation; that
is, minimizes the mean squared error. If we are in the i-th iteration, then
we can define the residue ei−1 as

ei−1(x) = f(x) −
i−1
∑

j=1

gj(w
Tx). (1.33)



SiLVR 23

Following (1.2), the best (wi, gi) will satisfy

(wi, gi) = argmin
w,g

E[(ei−1(x) − g(wTx))2]. (1.34)

Let us first assume some candidate w, and ask,

For any given projection vector w,

what is the best univariate function g?

From (1.34), we know that the best gi will minimize the error in approx-
imating the residue

gi = argmin
g

E[(ei−1(x) − g(wTx))2]. (1.35)

For every g, since g(wTx) is constant (= g(t)) for all wTx = t, we can
write this criterion as follows. The best gi will minimize the error in
approximating the residue projected along w:

gi(t) = argmin
gt

E[(ei−1(x) − gt)
2|wTx = t], ∀t, (1.36)

where gt is some scalar value. For any displacement t along the direc-
tion w, we expect to see a distribution of values for the residue ei−1, since
multiple x will map to the same t. The best value of the new ridge func-
tion at t, gi(t), minimizes the mean squared error between the residue
and gi at t. The expectation here is taken over the marginal distribution
of x in the hyperplane wTx = t, which is a hyperplane normal to w.
This same criterion is applied for all t to obtain the complete function
gi(t) for all values of t. Then, for any t, we can write

E[(ei−1(x) − gt)
2|wTx = t] = E[e2

i−1(x) − 2ei−1(x)gt + g2
t |wTx = t]

= E[e2
i−1(x)|wTx = t]

− 2gtE[ei−1(x)|wTx = t] + g2
t (1.37)

since gt is a constant for a given t. Then the optimal gi(t) for a given t
is

gi(t) = gt :
d

dg
E[(ei−1(x) − gt)

2|wTx = t] = 0

⇒ −2E(ei−1(x)|wTx = t) + 2gi(t) = 0

⇒ gi(t) = E(ei−1(x)|wTx = t). (1.38)

Thus, the best value of gi(t) is the expectation of the residual ei−1(x).
We have, thus, proved the following theorem that appears in [Hub85]:



24 FAST STATISTICAL ANALYSIS

Figure 1.6. Optimal ridge functions from analysis (red dash-dot) and PPR (black
solid) can differ. This example is for y = x1x2, along the projection vector {1,1}

Theorem 1.6. For any given projection vector w, the best function gi(t)
defined by (1.35), is given by

gi(t) = E(ei−1(x)|wTx = t). (1.39)

This is an interesting result. The solution from this result can be
quite different from what standard approximation theory would suggest.
This is easily illustrated with our friendly example from (1.20) that is
reproduced here for convenience:

y = x1x2 = 0.25({1,1} · x)2 − 0.25({1, −1} · x)2. (1.40)

Say we are considering one of the optimal directions w1 = {1,1}. To
achieve an exact approximation, as per (1.40), the best g1(t) is

g1(t) = 0.25t2, (1.41)

which is just the first term on the right hand side of (1.40) mapped on
to the latent variable t. This function is shown as the (red) dash-dot line
in Fig. 1.6, and also previously in Fig. 1.5(b). It is indicated by “Best”.
However, the best g1(t) for PPR, as per Theorem 1.6, is the expectation
of y taken over the hyperplane wT

1 x = t. Assuming that x ∈ [−1,1]2, we
can analytically compute this best g1 function. This best g1 is shown
as the (black) solid line in Fig. 1.5(b) and is indicated by “PPR”. We
can clearly see that the two ridge functions are different. This difference
is a result of PPR performing a greedy search by looking at only one
projection at a time unlike the analysis in (1.40) which looks at the
function as a whole over all the dimensions.



SiLVR 25

Given this optimal choice of gi, we now ask,

What then is the best projection vector wi

that will satisfy (1.34)?

From (1.34) and (1.39), we know that such a wi must satisfy

wi = argmin
w

E[(ei−1(x) − gi(w
T
i x))2],

where gi(t) = E(ei−1(x)|wTx = t). (1.42)

Expanding the first expectation we get

E[(ei−1(x) − gi(w
T
i x))2] = E[e2

i−1(x)] − 2E[ei−1(x)gi(w
T
i x)]

+ E[g2
i (w

Tx)]. (1.43)

Since gi(w
T
i x) is a constant for all wT

i x equal to some constant t (it is
a ridge function along wi), we have

E[g2
i (w

Tx)] = E[g2
i (t)]. (1.44)

Let us now expand out the second expectation term on the right hand
side of (1.42) as

E[ei−1(x)gi(w
T
i x)] =

∫

X
ei−1(x)gi(w

T
i x)p(x)dx. (1.45)

Let us denote the marginal probability density of any t along wi as
pwi

(t). Also let Xwi
denote the range of t = wT

i x for x ∈ X . For our
circuit applications, typically X = Rs so that Xwi

= R. Given these def-
initions, we can rewrite (1.45) as

E[ei−1(x)gi(w
T
i x)]

=

∫

t∈ Xwi

[
∫

x:wT
i x=t

ei−1(x)gi(w
T
i x)p(x|wT

i x = t)dx

]

pwi
(t)dt. (1.46)

Since gi(w
T
i x = t) is a constant for a given t, we can take it out of the

inner integral, giving

E[ei−1(x)gi(w
T
i x)]

=

∫

t∈ Xwi

gi(t)

[
∫

x:wT
i x=t

ei−1(x)p(x|wT
i x = t)dx

]

pwi
(t)dt. (1.47)

Now, the inner integral is nothing but E(ei−1(x)|wTx = t), which is the
same as gi(t) according to Theorem 1.6. Hence, we get

E[ei−1(x)gi(w
T
i x)] =

∫

t∈ Xwi

g2
i (t)pwi

(t)dt = E[g2
i (t)]. (1.48)



26 FAST STATISTICAL ANALYSIS

Substituting this and (1.44) in (1.42), we get

E[(ei−1(x) − gi(w
T
i x))2] = E[e2

i−1(x)] − E[g2
i (t)],

where t = wT
i x. (1.49)

Hence, we have proved the following, which appears in [Hub85] without
a proof:

Theorem 1.7. The optimal wi of (1.34) is the one that maximizes the
variance of the function gi, where gi is chosen as in Theorem 1.6.

One would expect any approximation of a function f to maximally ex-
plain the variance of f , and this result shows that PPR tries to achieve
precisely this.

In Sect. 1.4.1 we saw that the a ridge function approximation, like in
(1.86), converges to the approximated function, but does the “greedy”
and statistical PPR method converge? Jones addresses this question in
[Jon87] and proves strong convergence of PPR, as stated by the fol-
lowing theorem. Here, we assume ideality for conditions 1) and 2) –
we have infinite number of points to exactly compute expectations, and
we can compute the exact best functions gi along any given direction,
respectively. However, we do allow for error in estimating the optimal
projection vector.

Theorem 1.8 (Jones [Jon87]). Let f(x) ∈ L2(P ), where P is the prob-
ability measure (distribution) for x ∈ Rs. Let PPR choose any possibly
sub-optimal wr such that E[gr(w

T
r x)2] > ρ · sup‖b‖2=1,b∈Rs E(gr(b

Tx)2]
for some fixed ρ, 0 < ρ < 1. Then, er(x) → 0, as r → ∞.

Hall, in [Hal89], proves a convergence result for a scenario closer to
practical PPR, accounting for many nonidealities. The only ideality as-
sumption about the algorithm is that the search for the optimal projec-
tion vector is perfect, within the constraint of a finite number of training
points n. This means that the a sub-optimal projection may seem opti-
mal because of the incomplete information from finite number of points,
but the search algorithm will find this seemingly optimal projection.
Also, the results in the paper are for the classical PPR technique [FS81]
that employs some sort of smoothing (1.28) using a kernel function with
window or bandwidth h, to estimate the function g along some direc-
tion w. If K is the kernel function used and the training data set is



SiLVR 27

{xj , yj }n
j=1, then the estimate is given as

ĝ(t) =

∑n
j=1 yjK[(t − wTxj)/h]

∑N
j=1 K[(t − wTxj)/h]

. (1.50)

Hence, there is one kernel instance centered at the projection of every
training point onto the vector w and the function value at any location
along w is the weighted sum of contributions by each of these n ker-
nels, the weights being the yj output values associated with each kernel
center. The bandwidth h determines the range of influence of each ker-
nel center. Higher values of h lead to smoother estimates resulting in
low variance error, but increase the bias error if h is too large. The de-
nominator performs the appropriate normalization. This is the estimate
used for prediction. A slightly different form of (1.50) is used for driving
the search for the optimal projection vector. Please refer to [Hal89] for
details. The kernel is taken to satisfy the condition

∫ ∞

− ∞
tiK(t)dt =

{

1, i = 0
0, 1 ≤ i ≤ k − 1

, (1.51)

and the first k + 1 directional derivatives of p(x) and f(x) exist and are
continuous in R. Under some more loose conditions on p(x) and K, the
following holds.

Theorem 1.9 (Hall [Hal89]). Let w and g be the optimal projection
vector and ridge function for any PPR iteration, and ŵ and ĝ be the
sub-optimal estimates resulting from n training points and the imperfect
kernel-based approximation of (1.50). Then, the error between ĝ(ŵTx)
and g(wTx) decreases as O(n−k/(2k+1)) for appropriately chosen h.

Implications of this result are discussed in [Hal89] and are not immedi-
ately relevant here. However, it shows that convergence can be achieved
even with significant nonidealities in the PPR algorithm, nonidealities
that are unavoidable in any practical implementation. We are now well-
equipped to develop the proposed SiLVR model with some confidence.

1.6 SiLVR
In this section we describe the SiLVR model and its features in detail.

1.6.1 The Model
SiLVR implements PPR, but uses building blocks and training algo-
rithms that are different from the classical PPR method of [FS81]. The



28 FAST STATISTICAL ANALYSIS

Figure 1.7. Examples of sigmoidal functions

SiLVR model can be represented mathematically as a standard PPR
model:

ŷ =

r
∑

i=1

gi(w
T
i x). (1.52)

However, the functions gi are not purely nonparametric. In this case we
use a linear combination of sigmoidal functions (σ(·)) to represent gi, as

gi(t) =

q
∑

j=1

aijσ(bijt + cij) : aij , bij , cij ∈ R, i ∈ {1,2, . . .}, j ∈ {1, . . . , q},

(1.53)
where q is the number of sigmoids used for the approximation of one
ridge function. The complete model can then be written as

ŷ = fSiLVR(x) =

r
∑

i=1

q
∑

j=1

aijσ(bijw
T
i x + cij). (1.54)

A sigmoidal function or sigmoid is typically defined as a continuous, mo-
notonic function σ(t) such that limt→∞ σ(t) = 1 and limt→−∞ σ(t) = 0.
Any such function taken through scaling and translation is also a sig-
moid. Standard examples of sigmoidal functions are the logistic function

σl(t) =
1

1 + e−t
, (1.55)

and the hyperbolic tangent function

σh(t) = tanh(t) =
e2t − 1

e2t + 1
. (1.56)



SiLVR 29

Figure 1.8. The network corresponding to the i-th component in the SiLVR model
(1.54)

Both are shown in Fig. 1.7. In fact, these two sigmoids are equivalent in
terms of their nonlinear approximation power using linear combinations
because

σh(t) = 2σl(2t) − 1. (1.57)

These functions have a very desirable property that their derivative is
easily computed:

dσh

dt
= 1 − σ2

h. (1.58)

This is useful for efficient training, which typically involves gradient com-
putations within some optimizer. Section 1.6.4.2 shows how we exploit
this property for SiLVR. Also, using a parametric model with few ba-
sis functions is much more efficient computationally than using data-
dependent non-parametric methods like the PPR method of Friedman
and Stuetzle. We will use the tanh function and refer to it simply as σ.

The i-th component of the model of (1.54) is shown graphically in
Fig. 1.8. Along the lines of PPR or a nonlinear form of LVR, the model
consists of two parts:

1) A linear projection ti = wT
i x =

∑s
j=1 wijxj from the s-dimensional

input space to one-dimensional latent variable (LV) ti lying along the
projection vector wi. The projection vector is chosen to be the one
that is most important for explaining the behavior in the modeled
output.

2) A nonlinear function gi(ti) defined over this one-dimensional LV.
This nonlinear function is a combination of q sigmoids, as in (1.53).



30 FAST STATISTICAL ANALYSIS

This is essentially a 3-layer perceptron with only one input, one hid-
den layer with q sigmoidal nodes, and one output gi.

Together, these two components define one ridge function. This represen-
tation of the ridge function allows us to interpret it as a neural network.
Hence, we can draw upon the theory and algorithms from the domain of
statistical inference using neural networks to compute the best model.
Let us define a sampling version of the residue for the i-th LV, similar
to (1.33).

ei,j = yj −
i

∑

k=1

gk(w
T
k xj) = ei−1,j − gi(w

T
i xj). (1.59)

This is the value of the residue for the j-th sample point, after extracting
the i-th ridge function. Then, we define our model fitting criterion for
the i-th ridge function, similar to (1.34), as follows:

(wi, gi) = argmin
w,g

n
∑

j=1

|ei−1,j − g(wTxj)|2. (1.60)

Thus, the i-th ridge function is chosen so as to minimize the least squared
error in fitting the residue at that iteration across the training set. More
specifically to SiLVR, using (1.53), we can write this objective as

(wi,ai,bi,ci) = arg min
w,a,b,c

n
∑

j=1

[

ei−1,j −
q

∑

k=1

akσ(bkw
Txj + ck)

]2

. (1.61)

We know from Theorem 1.6 that the best gi along any given wi is the
expectation of the residue at that iteration, along wi. However, it is not
easy to compute this expectation using arbitrary training points. Hence,
we do not explicitly state this constraint in the optimization formulation
and assume that a good optimizer will converge close to this optimum.
We make a similarly reasonable assumption for the best wi (given by
Theorem 1.7).

The basic training algorithm for SiLVR is shown as Algorithm 1.4. As
expected, there is close similarity in the basic steps of the algorithm with
the original PPR algorithm (Algorithm 1.3). The primary differences are
in the representation of the ridge function, the formulation of the objec-
tive function of the “best” ridge function and the search algorithm for
the “best” ridge function. The straightforward least-squares formulation
of (1.61) can lead to overfitting issues of the type discussed in Sect. 1.5.1,
and we absolutely must avoid such problems to achieve a well-behaved



SiLVR 31

Algorithm 1.4 The top-level SiLVR training algorithm

Require: some fixed q, the number of sigmoids per LV
1: normalize the training points xj , yj

n
j=1 to mean 0 and variance 1

2: ej ← yj , j = 1, . . . , n
3: for i = 1 to r do
4: find the “best” ridge function of the form (1.53) to approximate

ej across all training points. This involves solving the objective
function (1.61) appended with some penalty function to reduce
overfitting (e.g., see (1.81))

5: ej ← ej − ∑q
j=1 aijσ(bijt + cij), j = 1, . . . , n

6: end for
7: the r-LV model is (1.54)

interpretable model from SiLVR. Hence, step 5 in Algorithm 1.4 intro-
duced a modified objective to reduce overfitting. We discuss these issues
in more detail in Sect. 1.6.4.

1.6.1.1 Model Complexity

Note that the number of model parameters to solve for is s+3q per LV,
where q is the number of nodes in the sigmoid layer. Hence, if r is the
total number of ridge functions that we use in the complete model, the
number of model parameters is

np = r(s + 3q) = O(s), (1.62)

which increases linearly with the dimensionality, assuming that the num-
ber sigmoids per ridge function is independent of the dimensionality. This
is a reasonable assumption, since q is determined by the anticipated non-
linearity of the functions along a single direction. This one-dimensional
curve fitting depends on the modeled behavior and not on the dimen-
sionality s. Also, q can be kept very small – 12 for our experiments across
various circuit examples. The number of LVs, r, is also usually small in
most cases – within 2 for our experiments. Hence, SiLVR can lead to
very compact and yet, extremely flexible RSMs.

In the next section we review some theoretical results supporting this
model formulation. For further algorithmic details on training the model
and interpreting it in the context of RSM for circuits, the reader may
skip forward to Sect. 1.6.4.

1.6.2 On the Convergence of SiLVR
In Sect. 1.5.2 we saw some results establishing the convergence of the
PPR approach under some conditions that retain much practical rele-



32 FAST STATISTICAL ANALYSIS

vance. These results do apply to SiLVR, but there is one extra consid-
eration – the use of a finite number of sigmoids for estimating the ridge
function gi – that is not covered by them. We review some results in this
section that help “plug this last hole”.

Cybenko showed in [Cyb89] that any function continuous over the unit
cube in s dimensions can be approximated arbitrarily well by a 3-layer
perceptron (3LP). This is stated concretely in the following theorem.

Theorem 1.10 (Cybenko [Cyb89]). Let σ be any continuous sigmoidal
function. Then finite sums of the form

∑q
j=1 ajσ(bT

j x+ cj) are dense in

C[0,1]s. In other words, given any f ∈ C[0,1]s and ǫ > 0, there is a sum
of this form, for which

∣

∣

∣

∣

∣

q
∑

j=1

ajσ(bT
j x + cj) − f(x)

∣

∣

∣

∣

∣

< ǫ, ∀x ∈ [0,1]s. (1.63)

In the case of SiLVR, we only need the one-dimensional case of this
theorem. It says that there exists a gi(t) of the form (1.53) that can ap-
proximate any continuous univariate function over any bounded region
of the real line. Hornik et al. [HSW89] showed similar density results
for unbounded regions, with a finite probability distribution for the in-
put space. This result gives us the confidence to use linear combinations
of sigmoids as the ridge function approximators for SiLVR. Also, com-
bined with Theorem 1.9 by Hall [Hal89] they suggest convergence for
a practical implementation of SiLVR. In fact, Chui and Li in [CL92]
have proved density results that can be directly applied to the complete
model of SiLVR as in (1.54). We restate this here, relating it explicitly
to SiLVR:

Theorem 1.11 (Chui and Li [CL92]). Assume that the set of possible
projection vectors w ∈ W satisfies the condition of Theorem 1.4. Then,
for any function f continuous over any compact set D ∈ Rs, and any
ǫ > 0, there exists a SiLVR model as in (1.54) such that

|f(x) − fSiLVR(x)| < ǫ, ∀x ∈ D. (1.64)

This can be extended to handle the case of probability distributions of
x over all of Rs using the arguments in Hornik et al. [HSW89].

Barron [Bar93] established bounds on the error of approximation using
linear combinations of any fixed sigmoidal function. Here we only state
the one-dimensional version. For a large class of functions f over some
bounded set B ∈ R, whose Fourier transform satisfies a finite-moment



SiLVR 33

criterion (refer [Bar93]), the following holds.

∫

B
(f(t) − g(t))2dP = O(1/q), (1.65)

where g(t) is a q-sigmoid approximation, as in (1.53). The 1/q behavior
extends to s dimensions; that is, it is independent of the dimension-
ality. This says that for any given projection vector w, the error in
nonlinear function part of one component of the SiLVR model (Fig. 1.8)
converges as 1/

√
q, as long as the Fourier transform is bounded in the

sense of [Bar93]. The finite-moment criterion essentially restricts the
spread of the Fourier transform of f . This translates to restricting the
“sharpness” and discontinuity in the function f . A counter-example is
the Dirac delta function, which has a uniform Fourier transform and is
understandably very difficult to model with any accuracy using smooth
sigmoids. It is interesting to note the dimensionality-independent 1/

√
q

convergence, similar to the dimensionality-independent convergence of
standard Monte Carlo integration, as shown in Sect. 1.2.2.

According to this result, the more the number of sigmoids the better.
However, in a sampling context, where we have only partial information
because of a finite number of sampling points, this high model flexibility
(complexity) can lead to overfitting problems. This overfitting problem
is significantly exacerbated in the context of a PPR model like SiLVR, as
discussed in Sect. 1.5.1. One way to counter overfitting is to reduce the
model complexity by reducing the number of sigmoids q in the univariate
approximation, so that the model is incapable of fitting the training
sample exactly. Hence, there is this trade-off between high accuracy and
less overfitting; i.e., between variance and bias in the model. A more
detailed discussion of this issue in the context of PPR can be found in
Sect. 1.5.1.

The interested reader can refer to several other results in the literature
studying the density, convergence and construction of neural networks
under different conditions [IM88][Fun89][Mha96][CLM96][Lig92][Bar89].
For now, we proceed on to discuss how we can interpret the SiLVR model
in the context of response surface modeling for circuit.

1.6.3 Interpreting the SiLVR Model
The concept of latent variables behind SiLVR allows interpretations of
the RSM that lead to useful insights in the context of circuits. We will
look at two quantitative measures of these “designer’s insight” that we
can immediately extract from a 1-LV SiLVR model (i.e., r = 1).



34 FAST STATISTICAL ANALYSIS

Figure 1.9. A function of two variables with dominant latent variable along {1,2}

1.6.3.1 Relative Global Sensitivity

Consider the function y = f(x1, x2) of two variables shown in Fig. 1.9.
The primary variation of f is along the shown direction {1,2}. Assuming
that SiLVR can extract this feature well, the first projection vector will
be given by w1 = {1,2}. The corresponding SiLVR model will be

ŷ =

q
∑

j=1

a1jσ(b1j(1 · x1 + 2 · x2) + c1j). (1.66)

Hence, we can interpret from this that changes in x2 have twice the
impact on ŷ as similar changes in x1. In other words, ŷ is twice as
“sensitive” in a global sense to x2 than to x1. Then, if we normalize
the projection vector to be of unit length (w1/‖w1‖2), we can interpret
the normalized projection weights (w1j/‖w1‖2) as estimates of relative
global sensitivities of the output y to the inputs xj . We can then define
the relative global sensitivity to the j-th input variable as

Sj = w1j/‖w1‖2. (1.67)

This measure of global sensitivity captures the designer’s insight regard-
ing which are the “important” variables or components in the circuit
that have the most impact on the relevant circuit performance met-
ric.

Note that these measures of global sensitivity are different from the
standard measure of sensitivity ∂f(x)/∂xj that models the linear rela-
tionship between y and the inputs xj in a small neighborhood around a
given point x. Sj , however, takes a global view, not specific to any neigh-
borhood around any point, but over the entire sampled input domain:
it captures the overall contribution of the variable xj to the variation in
the output y. For a similar, more general interpretation of global sen-
sitivity based on analysis of variance (ANOVA), please refer to [SK05].



SiLVR 35

Of course, Sj can be believed to be a good estimate of the global sen-
sitivity only if a 1-LV SiLVR model explains the behavior of the circuit
performance sufficiently well. In general, the accuracy of these sensitiv-
ity estimates decreases with increasing error in the 1-LV model. How-
ever, as we shall see in Sect. 1.7, a 1-LV model can extract much of
the circuit behavior for some commonly used circuits. A more general
definition of sensitivity using a multi-LV SiLVR model may be possible
using analysis of variance, on the lines of [SK05]. This, however, is not
addressed in this thesis, and can be a potential component of future
work.

1.6.3.2 Input-Referred Correlation

Suppose we have 1-LV SiLVR models for two different circuit perfor-
mance metrics. We can then use the global sensitivity estimates of the
previous section to define a measure of correlation between the two out-
puts that is robust to the presence of strong nonlinearities in the re-
lationship between them. Let us first qualitatively define the idea of
“nonlinear correlation”. Two variables y1 and y2 are strongly corre-
lated in a nonlinear sense if they have similar causal dependencies . This
means that the perturbations that cause changes in y1 also cause changes
in y2.

In a circuit design context, let us consider a standard two-stage opamp.
If changing the widths of the input pair of transistors causes significant
changes in both the DC gain and the DC offset of the opamp, we say that
the DC gain and DC offset share this causal dependence on the width of
the input devices. Extending this idea, if any design change made to im-
pact the DC gain also impacts the DC offset and vice versa, we say that
the two metrics have similar causal dependencies. Note that here we are
not placing any conditions on the actual relationship between the two
variables. For example, Pearson’s linear correlation extracts the strength
of the linear relationship and Spearman’s rank correlation (Sect. 1.6.4.1)
extracts the strength of any monotonic relationship. Here we relax such
constraints and allow any, possibly nonlinear, relationship. A side-effect
of not assuming monotonicity is that the sign of the relationship loses
meaning. For correlation measures relying on monotonicity, positive cor-
relation means that y1 and y2 increase together and negative correlation
means that one decreases when the other increases. However if we do
not have monotonicity then both behaviors might be seen for the same
pair of variables (e.g., y1 is linear while y2 is quadratic, but both have
similar causal dependencies).

1-LV SiLVR models for y1 and y2 allow us to extract this measure of
“nonlinear correlation” using input-referred correlation or IRC, defined



36 FAST STATISTICAL ANALYSIS

as follows.

R(y1, y2) = S(1) · S(2) =
w

(1)
1 · w(2)

1

‖w
(1)
1 ‖‖w

(2)
1 ‖

, (1.68)

where S(i) is the vector of s relative global sensitivities (1.67) for yi, and

w
(i)
1 is the corresponding first projection vector. Thus, IRC between y1

and y2 is the dot product of the relative global sensitivity vectors, or the
normalized first projection vectors, of y1 and y2. Qualitatively, the IRC
value is high if y1 and y2 are similarly sensitive to the same set of in-
put variables. IRC can be useful for circuit design since it quantitatively
captures the designer’s insight regarding the dependencies between dif-
ferent performances in the circuit. Such insight can help guide designers
to make well-informed design decisions that do not ignore significant
trade-offs.

1.6.4 Training SiLVR
The last, but arguably the most important, piece of the SiLVR RSM
methodology that we have not discussed yet is the training algorithm:
how do we compute all the model parameters efficiently to achieve a
near-optimal model, given a finite set of training points? We hinted at
the relevant issues in Sect. 1.6.1. We now discuss these in detail. The
search algorithm used to find the “best” ridge function in the SiLVR
training algorithm (Algorithm 1.4) has to satisfy the following three
important requirements.

1) Good generalizability: This means that the search should strive to
minimize overfitting the training points and the influence from direc-
tions orthogonal to the candidate projection vector, as discussed in
detail in Sect. 1.5.1. This is accomplished by using a variable band-
width smoothing kernel in the original PPR algorithm [FS81], as in
general nonparametric methods [Pra83]. However, these techniques
are not directly applicable to parametric methods like neural net-
works.

2) Robust convergence: The search should consistently settle on the
same, or almost the same, model every time it is run. The desired
property here is that we should be able to run the training algorithm
just once and rely on the result, knowing that it is very unlikely that
the search will settle in some deeply inferior local minimum.

3) Fast convergence: While ensuring the previous two requirements,
the search should not sacrifice too much in terms of speed and the
training time should be reasonable (e.g., up to several seconds).



SiLVR 37

The following four techniques are used during step 5 of Algorithm 1.4
to ensure one or more of these requirements:

1) Initialization of projection vectors using Spearman’s rank corre-
lation [PFTV92]. This helps start the search closer to the optimal
projection vector than just a random initialization, helping achieve
robust and fast convergence (requirements 2 and 3).

2) The Levenberg–Marquardt algorithm [Mar63] is used as the search
algorithm. This algorithm blends the fast Gauss–Newton method
with the robust steepest descent method to achieve fast convergence
(requirement 3).

3) Bayesian regularization [Mac92] is used to reduce model com-
plexity by restricting the values of the model parameters. This helps
reduce overfitting and meet requirement 1.

4) A modified 5-fold cross-validation method is used to achieve a ro-
bust model that does not overfit the training data and, thus, helps
satisfy requirements 1 and 2.

We will now discuss each of these techniques in some detail.

1.6.4.1 Initialization Using Spearman’s Rank Correlation

We saw in Sect. 1.6.3.1 that the normalized projection weights of the
first LV can be interpreted as relative global sensitivities of the out-
put to the inputs. We can extend this same interpretation to the i-th
LV. The normalized i-th projection weights {wij }s

j=1 can be interpreted
as relative global sensitivities of the residue being modeled by the i-th
ridge function. Hence, if we can initialize the projection weights with
some simple estimates of the relative global sensitivities, we can start
the search closer to the global optimum, at least in the sub-space of
projection weights (the entire search space has all the model parame-
ters (ai,bi,ci,wi) as dimensions). The simple estimates we use here are
the Spearman’s rank correlation coefficients between the output and the
different inputs. Spearman’s rank correlation [PFTV92] between two
variables x, y, given the sample set {xj , yj }n

j=1, is given by

ρS(x, y) =

∑n
j=1(Pj − P̄ )(Qj − Q̄)

√

∑n
j=1(Pj − P̄ )2

√

∑n
j=1(Qj − Q̄)2

, (1.69)

where Pj and Qj are the ranks of xj and yj in the sample set, as shown
by the example in Table 1.1. To compute the rank of, say xj , we sort
all the x values in increasing order and take the position of xj in this



38 FAST STATISTICAL ANALYSIS

x P y Q

0.1 2 101 2
−0.1 1 89 1

0.89 4 130 3
0.76 3 132 4

Table 1.1. Example illustrating the concept of ranks for Spearman’s rank correlation.
The rank of a value is its position in a sorted list of its class; for example, 0.76 is third
in the list of x values sorted in increasing order

sorted list as its rank. P̄ and Q̄ denote the means of the ranks. Hence,
ρS is just Pearson’s linear correlation on the ranks. However, this mea-
sure of correlation does not assume linearity like the latter, and, hence,
gives better estimates of the sensitivities. It does assume a monotonic
relationship between x and y. wi is then initialized as the normalized
vector of rank correlations between the inputs and the current residue.

wi =
{ρS }

‖{ρS }‖ , {ρS } = {ρS(x1, e), . . . , ρS(xs, e)}. (1.70)

If the actual relationship is non-monotonic, in the worst case the rank
correlation will not capture it and the initialization will be similar to
starting at the origin.

1.6.4.2 The Levenberg–Marquardt Algorithm

We use the Levenberg–Marquardt [Mar63] algorithm to search for the
best ridge function in step 5 of Algorithm 1.4. We refer to it as simply
LM. LM has been found to be especially well suited for training neural
networks with a least squared error formulation, as in [HM94]. It employs
a blend of the fast, but sensitive Gauss–Newton method and the robust,
but slower steepest descent. Steepest descent takes steps along the di-
rection of maximum slope of the objective function. Gauss–Newton uses
a quadratic approximation of the local region around the current point
in the search space to estimate the minimum point. The same procedure
is repeated from this new point in the next iteration. Gauss–Newton is
a simplified version of Newton’s method, and, like Newton’s method,
shows very desirable quadratic convergence close to the minimum point.
However, for nonconvex surfaces, Gauss–Newton can get lost far from
the global minimum. In such a situation steepest descent is a better
choice.

We now delve briefly into the mathematical details of LM. Let us
denote any point in our np-dimensional model parameter search space



SiLVR 39

as p. Also denote the objective function to be minimized by f for this
discussion on LM. The steepest descent method is an iterative procedure
that traces a sequence of points pi, ideally towards the desired minimum
point pmin. The move from a current point pi−1 to the next point pi is
called a step. Steepest descent takes steps of the form

pi = pi−1 − δ∇f(pi−1), (1.71)

where ∇f(p) is the gradient vector of f at the point p, composed of the
partial derivatives of f with respect to the model parameters,

∇f =

{

∂f

∂p1
, . . . ,

∂f

∂pnp

}T

, (1.72)

and δ is a step-size parameter. Hence, with each step, the search moves
in the direction of decreasing f . As indicated by the step equation, the
step length becomes smaller with smaller gradients, as happens close to
a minimum point (∇f(p) = 0). As a result, steepest descent performs
well far from the optimum, but is a bad choice when the search is close to
the optimum. The asymptotic convergence of steepest descent is linear.

Standard Newton’s method speeds up the convergence by also using
second-order information. The Newton step is given by

pi = pi−1 − [∇2f(pi−1)]
−1∇f(pi−1), (1.73)

where ∇2f(pi−1) is the Hessian matrix composed of second-order par-
tial derivatives of f with respect to the model parameters pj . pi here
is basically the minimum point of a quadratic model of f around the
previous iteration point pi−1.

Now, suppose that the function f is a least-squares objective function,

f(p) =

n
∑

j=1

ǫ2
j (p), (1.74)

where ǫj(p) is the error for the j-th sample. An example is the SiLVR
objective function in (1.61). By simple differentiation we get

∇f(p) = JT (p)e(p), (1.75)

∇2f(p) = JT (p)J(p) +

n
∑

j=1

ǫj(p)∇2ǫj(p), (1.76)



40 FAST STATISTICAL ANALYSIS

where J is the Jacobian matrix function

J =

⎡

⎢

⎢

⎢

⎢

⎣

∂ǫ1
∂p1

∂ǫ1
∂p2

. . . ∂ǫ1
∂pnp

∂ǫ2
∂p1

∂ǫ2
∂p2

. . . ∂ǫ2
∂pnp

...
...

. . .
...

∂ǫn

∂p1

∂ǫn

∂p2
. . . ∂ǫn

∂pnp

⎤

⎥

⎥

⎥

⎥

⎦

. (1.77)

The last term in (1.76) is very small near the solution, since ǫj(p) is
very small there by definition, and it can be assumed to be ≈ 0. Then,
we can write the Newton step of (1.73) as

pi = pi−1 − [JT (p)J(p)]−1JT (p)e(p). (1.78)

This is the Gauss–Newton method. Note that this modification of New-
ton’s method requires no explicit computation of second order deriv-
atives. Newton’s method has quadratic convergence near the solution
because it uses the second-order information in the Hessian, and the
Gauss–Newton method also shows this convergence behavior. This is
significantly faster than the steepest descent method. Hence, the Gauss–
Newton method is preferable once the search is close to the solution.
However, far from the solution, the Hessian can be ill-conditioned, or
the quadratic model might be a bad approximation of the surface, caus-
ing the search to get “lost” and move away from the actual minimum.
Here, the steepest descent method, which is insensitive to the second-
order behavior of the surface, is more robust and is preferable.

Recognizing this, the LM step is a intuitive blend of the two

pi = pi−1 − [JT (p)J(p) + μI]−1JT (p)e(p), (1.79)

where μ is an adaptive parameter: larger μ causes steepest descent
steps, while smaller μ causes Gauss–Newton steps. Note that larger
μ effectively improves the conditioning of the Hessian approximation
[JT (p)J(p) + μI] by imposing diagonal dominance [GL96]. μ is multi-
plied by some factor β ≫ 1 (increased) when a step results in an increase
in f , and divided by β (decreased) when the step reduces f . In the for-
mer case, the steepest descent part of (1.79) is increased and in the
latter, the Gauss–Newton part is increased. For further details, please
refer to [HM94]. We can see the flavor of typical model-trust region
methods [DS96] where good solutions from the quadratic model lead to
increasing the belief in the quadratic model and bad solutions lead to
decreasing the belief. In fact, the LM method can be developed as a
model-trust region method [DS96]. Significant improvement over steep-
est descent or Gauss–Newton has been seen while using LM for neural
network training, as shown in [HM94].



SiLVR 41

Apart from these desirable features of LM, we also note that comput-
ing the partial derivatives for J in (1.77) is very simple in the specific
case of SiLVR, because of the easy derivate calculation for the tanh
sigmoid, shown in (1.58). Using (1.61),

∂ǫj

∂pi
=

∂

∂pi

[

ej −
q

∑

k=1

akσ(bkw
Txj + ck)

]

=

q
∑

k=1

∂

∂pi
[akσ(bkw

Txj + ck)],

(1.80)
where pi is one of ak, bk, ck for some k ∈ {1, . . . , q}. Note that we have
dropped the subscript for the LV here. Hence, the only derivative we
need to compute is for σ, which is easily done using (1.58).

1.6.4.3 Bayesian Regularization

Optimizing the objective function in (1.61) will drive the search towards
a ridge function that exactly fits the sample points along the projection
vector. As discussed in Sect. 1.5.1, this is not desirable for achieving a
generalizable PPR model with low overfitting. Regularization is a stan-
dard technique used to constrain the model complexity and reduce this
overfitting behavior and involves adding a penalty term to the stan-
dard least squared error objective. Roughly speaking, the penalty term
models the model complexity, using the fitting parameters themselves.
If we denote the pure data-driven standard objective of (1.61) by ED,
regularization augments it as follows.

min
p

ER, ER = βED + αEp, (1.81)

where Ep is the sum of squares of the network parameters,

Ep = pTp = ‖wi‖2
2 + ‖ai‖2

2 + ‖bi‖2
2 + ‖ci‖2

2, (1.82)

and α and β determine the trade-off between accuracy and general-
izability, or variance and bias, respectively. Restricting the values of
the network parameters reduces the flexibility in the model and in-
creases the smoothness of the response. This is analogous to increasing
the bandwidth in kernel smoothing methods [Pra83], as in the original
PPR algorithm of [FS81]. Such a penalty is also known as a rough-
ness penalty , and has been studied by several authors, for example
[Mac92][GJP95][Bar89][HTF01].

A typical problem is estimating the proper values for α and β. A Bayes-
ian formulation of this problem allows elegant, adaptive computation of
these weights, as shown by MacKay in [Mac92]. The argument for this
formulation is as follows. We recognize that the optimal values for α and
β are determined by the specific neural network (or any other model)



42 FAST STATISTICAL ANALYSIS

Algorithm 1.5 Bayesian regularization in the Levenberg–Marquardt
framework

1: initialize the network parameters normally, and set α = 0 and β = 1
2: take one LM step (1.79) to minimize ER

3: use the Gauss–Newton approximation for the Hessian, from LM

∇2ER ≈ 2βJT J + 2αInp , (1.85)

where J is as in (1.77) and Inp is the np × np identity matrix, to
compute γ = np − 2α/tr(∇2ER)

4: compute new estimates of α,β using the current point pi, and ER

in (1.84)
5: if converged as per LM criterion then
6: return
7: else
8: go to step 2
9: end if

structure M , and the available training data D. Given D and M , the
posterior probability of some α,β is given by Bayes’ rule as

P (α,β|M,D) =
P (D|α,β,M)P (α,β|M)

P (D|M)
. (1.83)

Under a Bayesian framework we want to use those values for α,β that
maximize this probability. If we assume a prior density P (α,β|M), this
can be achieved by maximizing P (D|α,β,M). P (D|α,β,M) is the like-
lihood of seeing the training data D, given M and some α,β. Let p∗

denote the best choice of parameters, that minimizes (1.81). Under as-
sumptions of Gaussian prior distributions for noise in the training set,
and for the network parameters, it can be shown [FH97] that the opti-
mum values of α,β at p∗ are

α0 =
γ

2Ep(p∗)
, β0 =

n − γ

2ED(p∗)
, γ = np − 2α0

trace(∇2E∗
R)

, (1.84)

where ∇2E∗
R is the Hessian of the regularization objective function (1.81)

at p∗. γ is called the effective number of parameters and is a measure
of the number of model parameters actually used for reducing the er-
ror. [FH97] showed how this elegant formulation fits with the same el-
egance in the LM framework. The resulting algorithm for LM is shown
as Algorithm 1.5, where the Hessian approximation from LM is used
for ∇2ER.



SiLVR 43

Algorithm 1.6 Modified 5-fold cross-validation used to reduce overfit-
ting and avoid local optima

Require: a training set D of n points
1: divide D into 5 random, nonoverlapping sets {D1, . . . ,D5} which

n/5 points each – D =
⋃

Di

2: E∗ = ∞
3: for i = 1 to 5 do
4: M ← 1-LV SiLVR model trained on D \ Di

5: E ← sum of squared error of Mi on Di

6: if E < E∗ then
7: E∗ = E, M ∗ = M
8: end if
9: end for

10: return M ∗

1.6.4.4 Modified 5-Fold Cross-validation

Even with this regularization technique, we cannot be completely con-
fident of the accuracy of the resulting model on unseen test data, since
we are only optimizing for the training data. Also, the surface of the
objective function in (1.81) can be nonconvex because it is defined by
a sum of sigmoids. Hence, there are chances that the search may settle
on a local optimum that is much worse than the desired global optimum
(or, at least, a very good local optimum). A popular technique used for
selecting a model that is generalizable is k-fold cross-validation. For ex-
ample, cross-validation may be used for selecting the number of sigmoids
to be used in a neural network to achieve the best generalizability. For
details on how it is used for model selection, the reader may refer to
[HTF01]. In our case, however, the model structure is fixed. We can still
exploit cross-validation to address the two issues mentioned above by
choosing good model parameter values.

The modified 5-fold cross-validation that we use is shown as Algo-
rithm 1.6. The algorithm trains 5 different SiLVR models, each time
excluding one of the subsets Di, then computes the testing error for
each model on its unseen Di, and finally, picks the model that has the
lowest testing error. Hence, it ensures that testing error is used as the
criterion for parameter selection, rather than only training error (with
regularization). Furthermore, it runs 5 different training runs, signif-
icantly increasing the chances of finding a model close to the global
optimum. Note that the cross-validation Algorithm 1.6 is run once for
each LV – it is part of step 5 in Algorithm 1.4.



44 FAST STATISTICAL ANALYSIS

1.7 Experimental Results
SiLVR was implemented in Matlab. We now present some experimen-

tal results to demonstrate the performance of this implementation. We
first test it on our example of (1.20), reproduced (once more) here in its
general form, for the convenience of the reader.

y2 = x1x2 = 0.25(x1 + x2)
2 − 0.25(x1 − x2)

2

= (4ab)−1[(ax1 + bx2)
2 − (ax1 − bx2)

2]. (1.86)

We sampled 1000 values of x1 and x2 from a standard normal distri-
bution N (0,1), and trained SiLVR on the resulting set, using all the
techniques of Sect. 1.6.4. The results are shown in Fig. 1.10. Figure 1.10
shows the training points and the surface extracted by a 2-LV SiLVR
model. Comparing, with Fig. 1.4 we see that SiLVR does extract a rea-
sonable approximation of the underlying assumption from the train-
ing set it is provided. We do see some artifacts in the under-sampled
regions, but that is because of the lack of sufficient data there, and
the heavy smoothing imposed on the training algorithm. Typically the
under-sampled regions are less important because events occur rarely
there, and errors in the model can be tolerated there. The well-sampled
regions, however, must be modeled well and SiLVR does meet this cri-
terion. Figures 1.10(b) and 1.10(c) show the first and second ridge func-
tions extracted, respectively (along the first and second projection vec-
tors, respectively). Again, we see agreement in shape and alignment with
the solutions in Fig. 1.4. From (1.86), we know that two candidate projec-
tion vectors are w1 = (a, b) and w2 = (a, −b) for ab �= 0. The vectors that
SiLVR extracts are w1 = (0.7285,0.6851) and w2 = (0.7296, −0.6838),
which are very close to the expected results. This implies that even if
there are errors in the model in under-sampled regions, we should still
obtain good estimates of the dominant projection vectors, and hence of
the relative global sensitivities and IRC, when applicable. The average
absolute error on the training set is 2.23%.

Now we show results for three realistic circuit test cases, each repre-
senting a different family of circuit behavior:

1) Master–slave flip-flop with the scan chain component,

2) Two-stage RC-compensated opamp, and

3) Sub-1 V bandgap voltage reference in CMOS.

The number of process parameters range from 13 to 122 (including one
inter-die parameter). SiLVR is able to extract good estimates of the LVs,
along with the accompanying ridge function model, using 1,000 training



SiLVR 45

Figure 1.10. A 2-LV SiLVR model for y = x1x2 for (x1, x2) ∼ N (0, I2)

samples for each case. The training points are generated using standard
Monte Carlo sampling, following the probability distributions for the sta-

tistical parameters. The circuit simulator used is Spectre� [Kun95] by
Cadence Design Systems. We also compare SiLVR with a straightforward

Matlab� implementation of a near-optimal, reduced quadratic model,
built using the PROBE [LLPS05] algorithm, discussed in Sect. 1.2.3.
The best PROBE results (up to rank 10) are used for graphical compar-
isons. All models are evaluated on a separate test set of 10,000 Monte
Carlo samples. Training points where the circuit does not function, are
not used for modeling, but no extra samples are simulated to replace
them.

1.7.1 Master–Slave Flip-Flop with Scan Chain
The first test case is a commonly seen master–slave flip-flop with scan
chain shown in Fig. 1.11, which we refer to as simply MSFF. The circuit
has been implemented using the 45 nm CMOS Predictive Technology
Models of [ZC06]. The variations considered are random dopant fluc-
tuation (RDF) for all transistors and one global gate oxide thickness
(tox) variation. The RDF is modeled as normally distributed indepen-
dent threshold voltage (Vt) variation:

δVt ∼ N
(

0,

(

13.5Vt0√
WL

)2)

, (1.87)

where W,L are the transistor width and length in nm, and Vt0 is the
nominal threshold voltage. This results in about 30% standard deviation
for a minimum-sized transistor. This is large for current CMOS technolo-
gies, but we want to make sure that SiLVR is powerful enough for future
technologies too, where large variations will be inevitable. The standard
deviation for tox is taken as only 2% of the nominal value, since tox is



46 FAST STATISTICAL ANALYSIS

Figure 1.11. A master–slave flip-flop with the scan chain component

Figure 1.12. Performance of SiLVR on the MSFF test case

typically better controlled than RDF. The number of statistical parame-
ters, or input dimensionality of the model, is 31. We are modeling one
output: the clock-output delay of the flip-flop (τcq). The setup time of the
flip-flop is such that the variations result in the onset of some metastable
behavior, resulting in strongly nonlinear behavior in some parts of the
sampled region of the statistical parameter space. This realistic situation
makes the modeling problem a harder test case.

Figure 1.12(a) shows the projection vector w1 for the first extracted
latent variable t1, and Fig. 1.12(b) plots the simulated and predicted
delay values against t1. The latter shows the predictions from SiLVR
and also from the best reduced quadratic model. We can clearly observe
two things: 1) only 6–8 out of 31 input dimensions (corresponding to



SiLVR 47

Figure 1.13. A 2-stage RC-compensated operational amplifier

transistors in the circuit) affect the output, and 2) SiLVR performs much
better than a quadratic model. Also, note that just using one LV we
are able to explain the general behavior of this test case. Figure 1.21
(a few pages later) shows error bars comparing the error of SiLVR against
the error of PROBE, and we can immediately see the improvement in
modeling accuracy. These are errors for the best SiLVR model and the
best PROBE model: both PROBE and SiLVR perform best for rank-one
and a one-LV model, respectively. Beyond this, we see only overfitting of
the training data and larger errors on the test data. Table 1.3 shows this
in more detail, as it compares the errors quantitatively with increasing
number of LVs/rank: the best average error is reduced by 2.5×: from
16.3% for PROBE to 6.4%. The results for rank (number of LVs) greater
than 6 do not provide any relevant insight and are excluded to avoid
clutter.

1.7.2 Two-Stage RC-Compensated Opamp
This next test case [GJLM01], shown in Fig. 1.13, is representative of a
large class of circuits in the analog domain: amplifiers. We test SiLVR
on the DC, AC and transient characteristics of the opamp. The opamp
has been implemented using models from the Cadence 90 nm Generic
PDK library. Once again, we model RDF on all transistors as indepen-
dent variation on the threshold voltage Vt. We also include a global tox

variation, and variations on the passives (resistors, capacitors) and the
current source. All variations are assumed to be normally distributed.
The Vt standard deviation is about 18% of nominal Vt:

δVt ∼ N
(

0,

(

5 mV√
WL

)2)

, (1.88)



48 FAST STATISTICAL ANALYSIS

where W , L are the transistor width and length in µm. The standard
deviation for tox is taken as 2% of the nominal value. Each passive and
current source component has its own normally distributed variation
with a standard deviation of 5%. The resulting input dimensionality for
the RSM is 13, and we are modeling five performance metrics (outputs):

1) DC gain

2) Unity gain frequency (UGF)

3) Phase margin (PM)

4) Settling time (ST)

5) DC input offset

For details regarding these metrics and opamp operation, please refer to
any standard textbook on circuit design, e.g., [GJLM01].

Figure 1.14 shows the first projection vector w1 for each of the out-
puts. Figure 1.15 plots the simulated and predicted values for each out-
put against the respective first LV t1, on the test points. The following
observations are obtained immediately from these figures:

Strongly nonlinear behavior exists even for simple circuits like the
2-stage opamp: for DC gain and PM in this case.

A quadratic model performs well for near-linear behaviors, as ex-
pected, but has large errors for these strongly nonlinear behaviors.

One (the first) LV is able to explain much of the behavior for some
circuits: both the MSFF and the opamp till now.

SiLVR is able to model even the strongly nonlinear behaviors reason-
able well.

Apart from these obvious ones, we make some more subtle, but im-
portant observations. Having the explicit projections, as a result of the
projection pursuit approach, provides deep insight into the circuit be-
havior. First, we can actually see the behavior clearly, removing any need
for guesswork. We found a direct application of this advantage during
the course of performing these experiments. Our initial results for the
input offset showed a surprising (and, as it turned out, erroneous) step-
shaped behavior when the offset values were plotted against the first LV
extracted by SiLVR. This is shown in Fig. 1.16. This result can also be
found in our initial publication [SR07a]. However, this step behavior was
unexpected for the offset of the opamp: we expected a near-linear behav-
ior as described in [GJLM01]. This led to further investigation, resulting



SiLVR 49

Figure 1.14. Opamp test case: Normalized projection vectors for the first LVs of the
opamp metrics: we can see the strong relationship between gain, PM and offset

in the discovery of the cause of this anomaly – a tolerance parameter in
the circuit simulator was too loose. On correcting the parameter, and
re-running SiLVR training, we obtained the expected near-linear behav-
ior shown in Fig. 1.15. This example shows just one of may possible
scenarios where the better modeling flexibility, visualization potential
and interpretive power that SiLVR provides can be practically useful.
The step behavior could be observed easily because we could reduce the
dimensionality to the most important one and visualize the behavior
easily.

SiLVR also provides us some quantitative measures to better under-
stand circuit behavior: relative global sensitivities and input-referred cor-
relation (Sect. 1.6.3). If we look at the projection vectors for gain, PM
and offset in Fig. 1.14, we can immediately see that these outputs de-



50 FAST STATISTICAL ANALYSIS

Figure 1.15. Opamp test case: Simulated, PROBE-predicted (green plus) and SiLVR-
predicted (red triangle) opamp outputs, plotted against first LV. For the nonlinear
cases, the simulated and SiLVR-predicted graphs coincide in many places

Output pair |Linear corr.| |Rank corr.| IRC

Gain–PM 0.871 0.986 1.000
PM–offset 0.119 0.161 1.000
Gain–offset 0.054 0.099 1.000

Table 1.2. Rank and linear correlation compared with IRC as a measure of correla-
tion between strongly correlated opamp metrics



SiLVR 51

Figure 1.16. Staircase behavior for incorrectly simulated input offset modeled by
SiLVR

Figure 1.17. Simulated opamp gain, phase margin and offset plotted against the LV
for gain, showing strong correlation among the three

pend almost identically on the same parameter subset (parameters 3–6):
these are the driver and load devices in the input differential amplifier.
Hence, they have similar causal dependencies, as defined in Sect. 1.6.3.2,
and are strongly correlated in a nonlinear sense. This is confirmed by
plotting all three simulated metrics against the first LV of gain, as in
Fig. 1.17. This is where the power of SiLVR is really evident. Table 1.2
compares the rank correlation and linear correlation among these met-
rics, with the IRC. We see that the rank correlation performs better
than linear correlation, but both completely fail to capture the strength
of the relationship between gain and offset, and gain and PM. At the
same time, IRC succeeds nicely.

Figure 1.21 compares the average absolute percentage error for SiLVR
and PROBE on this test case. Quantitative comparisons of the errors



52 FAST STATISTICAL ANALYSIS

Figure 1.18. Low-voltage CMOS bandgap voltage reference circuit from [BSUM99],
with a parameter space of 122 dimensions

are provided in Table 1.4, for increasing number of LVs and rank of the
quadratic model. The results for rank (number of LVs) greater than 6
do not provide any relevant insight and are excluded to avoid clutter.
As expected, a quadratic model has large errors for the nonlinear, non-
quadratic behavior of gain and PM. SiLVR can model these well and
reduce the error significantly – by up to an absolute improvement of
34% for gain. The errors for the near-linear outputs worsen a little, but
are still within reasonable limits. For this test case too, a 1-LV SiLVR
model has the lowest testing error amongst all SiLVR models, as we can
see from the table.

1.7.3 Sub-1 V CMOS Bandgap Voltage Reference
Figure 1.18 shows a low-voltage CMOS bandgap voltage reference cir-
cuit, proposed in [BSUM99]. The circuit is able to provide reference
voltages that are less than 1 V, and is built using standard CMOS tech-
nology. It was chosen for its relevance in today’s and tomorrow’s low-
voltage designs, and also because the related RSM problem has a high
input dimensionality of 122 and strong nonlinear behavior. The opamp
in the circuit is the same as in Sect. 1.7.2. The circuit has 101 diodes.
The transistor device and variation models are the same 90 nm CMOS
as the opamp. Variations in each diode are modeled as a normally dis-
tributed variation on the saturation current, with standard deviation of
10%. Each resistor and capacitor has its own normally distributed vari-
ation source, with a standard deviation of 5%. There are a total of 121
local variation parameters and one global tox variation. In this case, we
measure two metrics: 1) the output voltage Vref , and 2) the dropout



SiLVR 53

Figure 1.19. Performance of SiLVR on the sub-1 V CMOS voltage reference circuit
test case

voltage Vdo. Vdo is the difference between the supply voltage and Vref ,
when Vref falls by 1% of its nominal value: lower Vdo implies a circuit
more robust to variations in the supply voltage. The nominal Vref we
designed for is 600 mV.

Figure 1.19(a) shows the 122-dimensional projection vector for the
first LVs of the bandgap performance metrics. Figure 1.20 plots the sim-



54 FAST STATISTICAL ANALYSIS

Figure 1.20. Simulated, PROBE-predicted (green plus) and SiLVR-predicted (red
triangle) outputs, plotted against the first LV, for the sub-1 V CMOS voltage reference
circuit test case

ulated and predicted outputs against their corresponding LVs. Here we
see that PROBE performs well for the linearly behaved Vref , but com-
pletely breaks down for the nonlinearly behaved Vdo. SiLVR, however,
is able extract a good estimate of this strong nonlinear behavior, as ev-
idenced also by Table 1.3. For the case of Vdo, we can actually improve
the fit further by using a 2-LV model, as shown both by Fig. 1.19(b)
and by the last column in Table 1.3. The former plots the simulated and
SiLVR-predicted values of the dropout voltage for the test set points.
Only for this figure, the SiLVR model was trained using a (separate)
training set of 10,000 points to achieve a fit that is visually obvious in
three dimensions. However, the results in Table 1.3 and in Fig. 1.21 are
for a model trained using the standard sample size of 1,000 points.

Hence, even though we started with a large dimensionality of 122,
only 2 LVs can still explain most of the behavior. Also, the normalized

inner product of the first two projection vectors
wT

1 w2

‖w1‖‖w2‖ is only 1.2e–3,

meaning that they are almost orthogonal. This implies that SiLVR can
extract almost all the information from the first LV before looking at
the second LV. We saw similar results supporting this inference for the
example y = x1x2 at the beginning of Sect. 1.7.

1.7.3.1 Training Time

The training run times to build each LV are quite reasonable, even with
the complex cross-validation strategy to improve neural network robust-

ness: each LV requires 13–24 CPU seconds of Matlab� computation.
This is especially attractive for higher dimensional cases like the volt-



SiLVR 55

Figure 1.21. Best SiLVR errors compared with best PROBE errors: PROBE shows
large errors for the nonlinear performances. SiLVR significantly reduces those errors
and maintains low errors for the near-linear cases (UGF, Settling Time, DC offset,
Vref )

r MSFF delay Bandgap Vref Vdo

SiLVR PROBE SiLVR PROBE SiLVR PROBE

1 6.41 16.3 0.278 0.639 11.1 35.4
2 7.24 19.7 0.341 0.707 10.4 39.9
3 8.15 21.3 0.374 0.726 11.9 41.9
4 8.17 22.2 0.375 0.736 11.9 42.3
5 8.35 22.9 0.374 0.739 11.9 42.4
6 7.79 23.2 0.374 0.738 11.9 42.4

Table 1.3. Average percentage error on a test set of 10,000 Monte Carlo samples, for
MSFF and the voltage reference. r is the rank of the quadratic model or the number
of LVs used in the SiLVR model, as applicable

age reference, where even the simple quadratic model of PROBE can be
relatively expensive to train.

1.8 Future Work
SiLVR possesses some very desirable features as an RSM technique.

It elegantly handles nonlinear surfaces, enables performance-oriented di-
mensionality reduction, provides useful quantitative measures to under-
stand the circuit design problem (relative global sensitivity and IRC),
and enables insightful visualization of performance behavior in much
reduced dimensions. Even before its application to automatic optimiza-
tion, these features can find good use in the manual design process. For



56
F
A

S
T

S
T
A
T

IS
T

IC
A

L
A

N
A

L
Y

S
IS

r Opamp gain UGF PM Settling time Input offset

SiLVR PROBE SiLVR PROBE SiLVR PROBE SiLVR PROBE SiLVR PROBE

1 1.69 35.7 0.061 0.042 1.90 16.7 0.507 0.248 1.62 0.58
2 1.74 36.4 0.063 0.022 1.97 16.8 0.517 0.240 1.80 0.12
3 1.73 36.9 0.066 0.013 1.94 16.9 0.528 0.243 2.11 0.10
4 1.66 37.2 0.068 0.010 1.99 16.9 0.531 0.244 2.38 0.09
5 1.69 37.1 0.070 0.009 2.01 16.9 0.540 0.244 2.41 0.09
6 1.72 37.0 0.072 0.009 2.03 16.9 0.552 0.245 2.59 0.09

Table 1.4. Average percentage error on a test set of 10,000 Monte Carlo samples, for the opamp. r is the rank of the quadratic model
or the number of LVs used in the SiLVR model, as applicable



SiLVR 57

example, after running an increasingly popular Monte Carlo run for yield
analysis, the designer can obtain a SiLVR model and all its by-product
features in a few seconds without running any more simulations. This
is a very simple use-mode that is minimally intrusive to most circuit
design flows, and still provides a useful new design tool to the designer.
The practical, real examples from the case of the opamp in Sect. 1.7.2
illustrate this usefulness.

Given this, much can still be done to extend the power and usefulness
of SiLVR. Here we briefly introduce some possible directions of further
research, targeting various aspects of this RSM strategy.

Researchers in statistics and data mining have developed techniques
to refine the PPR model. One relevant technique is so called back-
fitting [HTF01]. In this procedure, after the i-th projection in the
PPR model is extracted, the previously extracted projections are re-
optimized, to better model the residue after removing the behavior
modeled by this i-th projection.

The SiLVR training algorithm emphasizes the reduction of overfit-
ting, by employing a minimal number of sigmoids and using reg-
ularization and cross-validation techniques. It is not very clear if
it currently sits at the best trade-off between accuracy and gener-
alizability; that is, between variance and bias. This issue deserves
further investigation to determine a near-optimal trade-off for the
SiLVR model.

Finally, a goal of most RSM strategies is to be employed as circuit
performance models in automatic yield-aware optimization. Such is
also the case for SiLVR. How can SiLVR be best incorporated in
yield-aware circuit synthesis? This is a “loaded” question and any
inquiry into its answer will require answering several other ques-
tions: How can SiLVR be adapted to work across both the statistical
parameter and design variable spaces to allow larger model-trust re-
gions in the design space? How can the information available from
SiLVR be best used for guiding the search algorithm? Which search
algorithms fit best with SiLVR?



Chapter 2

Quasi-Monte Carlo for Fast Statistical

Simulation of Circuits

2.1 Motivation

Continued device scaling has dramatically increased the statistical
variability with which circuit designers must contend to ensure the reli-
ability of a circuit to these variations. As discussed in the introduction
to this thesis, traditional process corner analysis is no longer reliable be-
cause the variations are numerous and much more complex than can be
handled by such simple techniques. Going forward, it is increasingly im-
portant that we account accurately for the statistics of these variations
during circuit design. In a few special cases, we have analytical meth-
ods that can cast this inherently statistical problem into a determinis-
tic formulation, e.g., optimal transistor sizing and threshold assignment
in combinational logic under statistical yield and timing constraints, as
in [MDO05]. Unfortunately, such analytical solutions remain rare. In the
general case, some combination of complex statistics, high dimension-
ality, profound nonlinearity or non-normality, stringent accuracy, and
expensive performance evaluation (e.g., SPICE simulation) thwart our
analytical aspirations. This is where Monte Carlo methods [Gla04] come
to our rescue as true statistical methods.

Monte Carlo simulation can emulate a real statistical process using
a given technique for simulating any event from this statistical process.
For example, the performance of chips coming out of a manufactur-
ing process is emulated by simulating multiple instances of the relevant
circuit, with each instance having a different set of values for its manu-
facturing related parameters. Over the years, Monte Carlo has become
a standard technique for statistical simulation of circuits and for yield
estimation during the design phase [SP81][HLT83][SKC99][Eli94]. How-

A. Singhee, R.A. Rutenbar, Novel Algorithms for Fast Statistical Analysis
of Scaled Circuits, Lecture Notes in Electrical Engineering 46,
c© Springer Science + Business Media B.V. 2009



60 FAST STATISTICAL ANALYSIS

ever, we gain the flexibility and accuracy that Monte Carlo offers at
the cost of speed: a single Monte Carlo run can cost a few thousand
SPICE simulations. Given its importance, it is surprising that Monte
Carlo has not received the research effort it deserves, from the EDA
community. There has been much research for methods to either replace
Monte Carlo simulation all together, using acceptance region modeling
[AMH91][AGW94][SVK94], or replacing SPICE simulations, using re-
sponse surface modeling [YKHT87][FD93][LLPS05]. The SiLVR model
presented in Chap. 1 falls under the category of response surface models.
However, these methods gain speed by sacrificing accuracy, and in many
cases accuracy is very important. An ideal solution would be to somehow
speed up Monte Carlo simulation, while still using SPICE simulations
and maintaining the generality of its application. There has been some
research on this [HLT83][SKC99], but there is much more that needs to
be done.

Here we observe that similar problems exist in various other fields
of science and engineering. In particular, we look at the field of com-
putational finance, where pricing financial instruments and derivatives
(e.g., Asian options, mortgage-backed securities) requires the simula-
tion of high dimensional stochastic processes, for which Monte Carlo
has remained the main practical method [Gla04]. These problems are
not only very nonlinear, they can also be quite large: pricing a portfolio
of options or securities over a several year horizon can create problems
with 1,000+ statistical variables, as in [NT96b]. Accuracy is often re-
quired to the level of one basis point (a relative accuracy of 10−4) under
impressively short time constraints (minutes, in the case of real-time
arbitrage). In this chapter we attempt at redepolying a particularly suc-
cessful Monte Carlo technique from this domain to our problem domain
of circuits. This technique is commonly referred to as quasi-Monte Carlo
(QMC) and is essentially Monte Carlo, but using a deterministic set of
points from some, so called, low-discrepancy sequence.

Note that the theoretical underpinnings of QMC are not completely
new, as evidenced by number theoretic results by Halton in 1960 [Hal60a].
However, recent developments in both theory and implementation com-
plexity, along with the empirical discovery that it is unexpectedly ef-
ficient at evaluating certain high-dimensional integrals, have propelled
QMC onto the center stage in the computational finance world, as evi-
denced by extensive articles in both popular and practitioner literature
(The Economist, August 12, 1995; The New York Times, September 25,
1995; Risk Magazine). QMC has also found application for high dimen-
sional integration problems in physics [MC95][Spa95]. A motivational
example from finance is provided by Ninomiya and Tezuka in [NT96b],



Quasi-Monte Carlo 61

where they evaluate the price of a five-year discount bond. For this 1,439-
dimensional problem, they observe a speedup of about 150 for an accu-
racy level of 1 basis point, on using QMC instead of Monte Carlo. Much
work has been done to study the application of QMC to finance prob-
lems [CMO97][ABG98][OE04][PT95]. Our goal here will be to study its
application to circuit problems.

In the rest of the chapter, we will review the standard Monte Carlo
method and its convergence behavior, relevant results from number the-
ory and resulting QMC techniques, and our proposed framework for
applying QMC to statistical simulation of circuits. While developing
our framework we will also discuss some important idiosyncrasies of the
QMC technique, because of which a naive, direct application might not
work well. Based on this discussion we will then develop the essential
pieces of our flow. We shall see in the results section that this proposed
framework can lead to speedups of about 2 to 50 times over standard
Monte Carlo while maintaining the same level of accuracy. A concise
version of this chapter was presented in [SR07b].

2.2 Standard Monte Carlo
Let us first concretely define the canonical problem that Monte Carlo

simulation addresses. We take two seemingly very different examples to
arrive at common terminology. We will then base further discussion on
this common terminology and the canonical problem.

2.2.1 The Problem: Bridging Computational
Finance and Circuit Design

Consider two problems from two completely different domains:

A. pricing an Asian option in computational finance, and

B. estimating circuit yield in VLSI design.

Let us see what is common between these two problems. This will allow
us to develop a canonical representation for the general problem that
Monte Carlo solves, which will further enable us to clearly understand
and apply related results.

2.2.1.1 Pricing an Asian Option

An option gives an investor the right to purchase one unit of a security
at a specified strike price K at a future time T ; for example, the right
to purchase shares of company XYZ at 5 dollars per share on a fixed
date in the future. Given K,T , we wish to determine the price that the
investor should pay for this option at present time 0. Merton expanded



62 FAST STATISTICAL ANALYSIS

the work by Black and Scholes to develop the Black–Scholes options
pricing model [Mer73]. Merton and Scholes received the Nobel Prize in
Economics in 1973 for this and other related work. Among other results,
the model gives the payoff on an arithmetic Asian option, one of several
types of options [Gla04], as

[
1

T

∫ T

0
S(t)dt − K

]

+

, where [·]+ = max(0, ·), (2.1)

where S(t) is the price of the underlying security (stock) at time t. S(t)
is given as

dS(t)

dt
= rdt + σx(t)

√
dt (2.2)

⇒ S(t) = S(0)e[(r−0.5σ2)t+σ
∫ t

0 x(t)
√

dt ], (2.3)

where r is the risk-free, continuously compounded interest rate, and x(t)
is a random process such that for every instant t, x(t) ∼ N (0,1). Thus,

W (t) =
∫ t
0 x(t)

√
dt is a Wiener process [Gla04]; that is, W (t) ∼ N (0, t).

Here, x(t)
√

dt embodies the random volatility in the price of the security
and σ is the magnitude of this volatility.

The Black–Scholes model gives the appropriate price of the option at
time 0 as the expected value of the discounted payoff:

K0 = E

{
e−rT

[
1

T

∫ T

0
S(t)dt − K

]

+

}
, (2.4)

where e−rT accounts for the fact the option will be purchased at time 0,
but exercised at a future time T . The typical way to evaluate this price
K0 is to first discretize time t into s samples, with equal steps of size Δt
as

t0 = 0, Δt =
T

s
, ti = ti−1 + Δt, i ∈ {1, . . . , s}. (2.5)

Then, the xi = x(ti) are s independent, identically distributed random
variables ∼ N (0,1). We can now write the security price from (2.3) as

S(ti) ≈ S(0)e[(r−0.5σ2)iΔt+σΔt
∑i

j=0xj ], i = {1, . . . , s}. (2.6)

Then, evaluating S(ti) at each time sample, we can numerically approx-

imate the 1
T

∫ T
0 S(t)dt in (2.4) as

1

T

∫ T

0
S(t)dt ≈ S̄s =

1

s

s∑

i=1

S(ti) (2.7)



Quasi-Monte Carlo 63

and compute the option price from (2.4) as

K0 ≈ E{e−rT [S̄s − K]+}. (2.8)

Note that S̄s is a function of the s random variables {xi}s
i=1 that follow

a joint multivariate density distribution π(x) = N (0, Is). We can then
write the option price as

K0 ≈
∫

Rs

f(x)π(x)dx, where f(x) = e−rT [S̄s − K]+. (2.9)

Hence, the problem is now of evaluating an integral over an s-dimensional
space.

2.2.1.2 Estimating Circuit Yield

Consider some circuit with s statistical parameters, or simply inputs,
{xi}s

i=1 and sY performance metrics, or simply outputs, {yi}sY
i=1. The

relationship between the outputs and the inputs can be written as

y = fsim(x) (2.10)

where evaluating fsim might involve running one or more circuit simula-
tions (e.g., AC analysis) and subsequent computations to compute the
metrics (e.g., gain), as needed to compute the metrics in y. Of course,
fsim also take the design variables as arguments, but we assume a fixed
design for this discussion. Also, there are some specifications that the
performance metrics must meet for an acceptable design. Denoting these
specifications by {ti}sY

i=1, we require {yi ≤ ti}s
i=1, or equivalently y ≤ t.

Please note that here we use ≤ without any loss of generality. If for
some given x, the design meets this criterion, we denote the event as a
pass event, otherwise it is a fail event. In the context of manufacturing
variations, we might be interested in estimating the yield of the circuit
given probability distributions for the statistical parameters. The yield
is the percentage of manufactured instances of the circuit that pass the
specifications. We now state this mathematically. Let us define A, the
acceptance region for a given design, as the set of input vectors that give
us a passing circuit:

A = {x : fsim(x) ≤ t, x ∈ Rs}. (2.11)

Also, define the characteristic function of A as

IA(x) =

{
1, x ∈ A
0, x /∈ A (2.12)



64 FAST STATISTICAL ANALYSIS

which is 1 for pass and 0 for fail. This is also known as the indicator
function in the VLSI CAD literature [HLT83]. Now, we can define the
circuit yield as the probability of a circuit instance lying in the accep-
tance region:

Yt = P (x ∈ A) = E(IA(x)) (2.13)

which can be written as

Yt =

∫

Rs

IA(x)π(x)dx. (2.14)

This is now a problem of s-dimensional integration, similar to the prob-
lem of pricing Asian options.

2.2.1.3 The Canonical Problem

Equations (2.9) and (2.14) are identical in their form

Q =

∫

Rs

g(x)π(x)dx (2.15)

and suggest a canonical form for the general problem. Only one step
remains before we can reach this canonical form. let πi be the marginal
probability density distribution for xi and Πi be the corresponding mar-
ginal cumulative distribution. Then, for independent xi, we can write
(2.15) as

Q =

∫

Rs

g(x1, . . . , xs)π1(x1)π2(x2) . . . πs(xs)dx

=

∫

[0,1]s
g(Π−1

1 (z1), . . . ,Π
−1
s (zs))dz, (2.16)

leading us to the canonical form we seek by renaming zi as xi:

Q =

∫

Cs

f(x)dx, Cs = [0,1]s (2.17)

where Cs is the unit cube in s dimensions. For the rest of our discussions
in this chapter we consider only Cs as our integration domain and as-
sume that all required transformations have been incorporated into the
function f .

2.2.2 Monte Carlo for Numerical Integration: Some
Convergence Results

The general integration problem does not usually admit an analytical
solution. A common approach to solve it then is to use numerical inte-
gration or quadrature, also known as cubature for s ≥ 2 [Str71][Coo99].



Quasi-Monte Carlo 65

These quadrature rules typically involve evaluating the function f at
strategically placed points in Cs and doing a weighted sum to arrive at
the estimate for the integral Q. The problem with these classical cuba-
ture methods is that they become intractable as the dimensionality s
increases. The following theorem [Nik50] states this problem concretely.

Theorem 2.1 ([Nik50]). Let f ∈ W k
p (Cs), where W k

p (Cs) is the Sobolev
class [Ada75] of functions defined on the unit cube Cs whose weak deriva-
tives up to order k exist and are bounded under the Lp norm (see Sect. 1.4
and [Ada75] for definitions). Let Q(f) be the exact integral for f , and
Qdet

n (f) be any n-point quadrature approximation to Q(f). If pk > s then

inf
Qdet

n

sup
{f :‖f ‖k,p ≤1}

|Q(f) − Qdet
n (f)| = Θ(n−k/s) (2.18)

where the norm ‖f ‖k,p is the norm for the Sobolev space W k
p (Cs).

The theorem essentially says that for a given class of smooth functions,
the error of any numerical quadrature method using n deterministic
points decreases asymptotically as Θ(n−1/s) with the dimensionality.
This implies that to halve the error, the number of points must increase
by a factor of 2s. Also, to maintain the same error, the number of quadra-
ture points must increase exponentially with the dimensionality s. Thus,
for circuit yield estimation, the number of circuit simulations in (2.14)
must increase exponentially with the number of statistical parameters.
This can very easily become intractable, even for very few parameters.
Here, we have run into the well-known curse of dimensionality . We face
this “curse” in all the three chapters of this thesis and a part of each
proposed method is some technique to defeat it.

Monte Carlo is able to defeat this curse. This is the primary reason
for its popular adoption for computing high-dimensional integrals in a
wide variety of fields. Another class of quadrature techniques based on
sparse grids proposed by Smolyak [Smo63] also improves the conver-
gence to make moderate-dimensional integration feasible. However, for
large dimensions (100s) only Monte Carlo techniques are known to be
tractable. For more details on sparse grid-based quadrature, please refer
to [GG98]. The quadrature points used by standard Monte Carlo are
randomly chosen. We will also refer to these as sample/sampling points
in the context of Monte Carlo. In general, any random method for com-
putation is a Monte Carlo method [Hei96], but we focus primarily on
independent Monte Carlo, where every point is generated independently
of the other points. Examples of dependent Monte Carlo methods are
Markov chain Monte Carlo methods like Gibbs sampling and simulated



66 FAST STATISTICAL ANALYSIS

Algorithm 2.1 The standard Monte Carlo algorithm

Require: function f , joint probability distribution Π(x), and sample
size n

1: for i = 1 to n do
2: randomly generate xi = (x1, . . . , xs) from Π
3: evaluate yi = f(xi)
4: end for
5: return Monte Carlo estimate Qn = 1

n

∑n
i=1 yi

annealing: a good survey is provided in [Fis06]. The standard Monte
Carlo algorithm is shown as Algorithm 2.1.

One Monte Carlo run involves evaluating the function f at n ran-
domly chosen locations in the input space. Since xi, and hence yi, are
independent and identically distributed, the Monte Carlo estimate Qn

converges almost surely to Q as the sample size n is increased by the
strong Law of Large Numbers [HC71]; i.e.,

P ( lim
n→∞

Qn = Q) = 1. (2.19)

From Algorithm 2.1, we can easily see that if we ran multiple n-point
Monte Carlo runs, we would obtain a different estimate Qn each time. As
a result, the integration error of Monte Carlo is probabilistic in nature
and a deterministic bound, as in Theorem 2.1, does not make sense. An
average error, however, does make sense. Bakholov [Bak59] showed the
following result.

Theorem 2.2 (Bakholov [Bak59]). Assume the conditions of Theo-

rem 2.1. The average Monte Carlo integration error is Θ(n− k
s

− 1
2 ).

A proof can be found in [Hei94]. Thus, we can significantly improve over
the exponential complexity of the worst error for deterministic meth-
ods. For small s, the convergence behavior is close that for the classical

quadrature methods, n− k
s . However, for moderate to large values of s

(typically ≥ 6), the dimension dependent part becomes negligible and

the convergence is close to n− 1
2 . The extra gain of n− k

s is possible if we
exploit the smoothness of the function using variance reduction tech-
niques: these are enhancements to the standard algorithm that reduce
the variance of the estimate Qn [Fis06]. If we do not exploit the smooth-
ness, or if f is not necessarily smooth, we can still derive a similar result
using standard statistics.



Quasi-Monte Carlo 67

Theorem 2.3. Let f ∈ L1(C
s) be integrable over Cs. Define

σ(f) =

[∫

Cs

(f(x) − f̄)2dx

] 1
2

, f̄ =

∫

Cs

f(x)dx = Q. (2.20)

Then the average (r.m.s.) error of Monte Carlo is

√
E[(Q − Qn)2] → σ(f)√

n
as n → ∞. (2.21)

Proof. This is obvious from the central limit theorem (Theorem 3.2 in
Sect. 3.2.2) [HC71], which says that

lim
n→∞

Qn − Q√
σ2/n

d→ N (0,1). (2.22)

Hence, the Monte Carlo error decreases asymptotically as n− 1
2 for gen-

eral integrable f . Note that the proportionality constant for this behavior
is the standard target for variance reduction techniques like importance
sampling, control-variates, and Rao–Blackwellization among others: for
a review, see [Fis06][Gla04]. The next few sections will develop a frame-
work that can improve on this convergence behavior, using quasi-Monte
Carlo. Hence, it is complementary to these standard variance reduction

techniques: it targets the behavior n− 1
2 and not the proportionality con-

stant σ(f).

2.2.3 Discrepancy: Uniformity and Integration
Error

Suppose we have two different methods of numerical integration, which
use the same number of points n, but the points are placed differently.
We do not know anything else about the way these points are used by
the two methods. Is there something we can say about the relative errors
of the two methods with only this information regarding them?

One general way to address this question is to look at the properties
of the quadrature point set being used, in particular the uniformity of
the points. The following is based on Niederreiter’s development of this
topic in the comprehensive [Nie78]. Before discussing this more theoret-
ically, let us see an example to illustrate the context. Figure 2.1 shows
two sets of points that might be used for integration, say by a Monte
Carlo algorithm. In Fig. 2.1(a) we have a 200-point “random” sample
generated using a standard pseudorandom number generator (e.g., the
linear congruential generator [Fis06]). In Fig. 2.1(b) we have a 200-point



68 FAST STATISTICAL ANALYSIS

Figure 2.1. In two dimensions, Sobol’ points are more uniformly distributed than
typical pseudo-random points

“deterministic” sample from the so-called Sobol’ sequence. It is imme-
diately clear that the random sample is less uniform than the Sobol’
sample. In other words there is more discrepancy in the way the ran-
dom points are laid out from one region to the other, as compared to
the Sobol’ points. The uniformity, or rather the lack of it, is often mea-
sured in terms of a quantity understandably called discrepancy. Hence,
we say that the points in Fig. 2.1(a) have high discrepancy, while those
in Fig. 2.1(b) have low-discrepancy.

The uniformity of the point set is important because we are integrating
over the entire domain Cs in (2.17), and the error will tend to 0 with
increasing n only if the points are drawn from a uniform distribution over
the entire unit cube. Hence, at least asymptotically the points should
tend towards perfect uniform distribution over Cs. For a theoretical
treatment of this intuitive explanation and a comprehensive discussion
on uniformity please see [KN74]. The question is that if a point set
achieves better uniformity (lower discrepancy) with some fixed finite n,
is the corresponding integration estimate more accurate? We now review
some theoretical results that try to address this question and suggest
practical implications for Monte Carlo.

There can be several definitions for discrepancy [MC94][Hic98]. The
one immediately relevant to our discussion is the L∞ star discrepancy ,
or simply the star discrepancy, which we now define. The reader may use
Fig. 2.2 as a reference illustration for the following. Let us say that we
have n points {xi : xi ∈ Cs}n

i=1 in our quadrature (Monte Carlo) point
set. For some hyperrectangle J ⊆ Cs, let Vol(J) be the volume of J and
let IJ(x) be the characteristic function (2.12) for J . Define the nJ as the



Quasi-Monte Carlo 69

Figure 2.2. Illustration for the definition of discrepancy: nJ is the number of points
inside any hyperrectangle J within the unit cube Cs

number of points lying inside J

nJ =

n∑

i=1

IJ(xi). (2.23)

Then, we define the discrepancy as

Dn = sup
J ⊆Cs

∣∣∣∣
nJ

n
− Vol(J)

∣∣∣∣. (2.24)

Hence, it is the maximum difference between the exact volume of any J
and the estimate (nJ

n ) of its volume using the points lying inside J . If
we only look at hyperrectangles with one corner at the origin, J = [0,a)
where a ∈ Cs, then we get the star discrepancy

D∗
n = sup

a∈Cs

∣∣∣∣
n[0,a)

n
− Vol([0,a))

∣∣∣∣. (2.25)

The following result by Koksma in one dimension and by Hlawka in
multiple dimensions provides a partial, but useful answer to our question
from the beginning of this section.

Theorem 2.4 (Koksma–Hlawka [Hla61][Nie78]). If function f has
bounded variation in the sense of Hardy and Krause, then the Monte
Carlo error is bounded as follows.

ǫ(f) = |Q − Qn| ≤ V (f)D∗
n (2.26)

where V (f) is the variation of f in the sense of Hardy and Krause, and
D∗

n is the star discrepancy of the point set.



70 FAST STATISTICAL ANALYSIS

V (f) is a measure of the total variation of the function over the unit
cube. For a smooth function in one dimension

V (f) =

∫ 1

0
|df | (2.27)

which is just the integral of the absolute value of the gradient of f . Hence,
the more the function changes over the interval, higher is the value of
V (f). This can be generalized to multiple dimensions for non-smooth
functions, in the sense of Hardy and Krause. The definition of this vari-
ation is not relevant for our discussion, and an intuitive understanding is
sufficient. The definition is presented at the end of this section to avoid
distraction.

Inequality (2.26) provides us an upper bound on the integration error
for Monte Carlo using any given point set. It is particularly attractive
because it separates out the two influences on the error: the properties
of the function f , and the properties of the point set. Hence, it suggests
that the error might be reduced if we used points with lower discrepancy.
For a random sequence of points uniformly distributed over Cs, it has
been shown that [Kie61]

D∗
n = O

([
log logn

n

] 1
2
)

(2.28)

with probability 1. Combining this with the deterministic bound in
(2.26) we see a good match with the n−0.5 convergence of the probabilis-
tic error bound (2.21) for standard Monte Carlo. Taking the suggestion
of Theorem 2.4 we ask if there are point sequences with lower discrep-
ancy, and does it help to replace random sampling with these sequences?

Similar to the star discrepancy, the L2 star discrepancy is defined as

T ∗
n =

[∫

Cs

(
n[0,a)

n
− Vol([0,a))

)2

da

] 1
2

. (2.29)

It is known that [Nie78]
D∗

n ≥ T ∗
n . (2.30)

Roth [Rot80] proved a lower bound for the L2 star discrepancy of any
set of n points in Cs, which then also applies to the star discrepancy

D∗
n ≥ T ∗

n > cs
(logn)

s−1
2

n
(2.31)

where cs depends only on s. For the first n points of an infinite sequence,
it is modified [KN74] to

D∗
n > c′

s

(logn)
s
2

n
. (2.32)



Quasi-Monte Carlo 71

We take this opportunity to clarify the difference between a set of n
points and a sequence. The former is of finite size, while latter extends
to infinite size. Hence, if the required sample size n is known before
hand, we can better tailor the n point locations, as compared to when
the required n is not known in advance and the point generation scheme
must be able to keep generating points incrementally. The bound (2.31)
applies to the former, while (2.32) applies to the latter. There is a widely
believed conjecture in the theory of uniform distributions that says that
a tighter bound exists with the exponent s−1

2 replaced by s − 1 in (2.31)
and s

2 replaced by s in (2.32). This has been proved only for s ≤ 2 in the
first case and for s = 1 in the second, but it is the best seen behavior yet
for arbitrary s. Hence, any such sequence, for which

D∗
n = O

(
(logn)s

n

)
(2.33)

is called a low-discrepancy sequence (LDS) or a quasi-random sequence.
We will use the former term in this thesis. Halton, in [Hal60b], showed
the existence of infinite deterministic sequences in any dimension s which
satisfy (2.33), and provided a construction for one such sequence, com-
monly referred to as the Halton sequence. Hence, for large values of n,
we can achieve n−1 convergence of the discrepancy, as compared to only
n−0.5 for random sequences. The points shown in Fig. 2.1(b) are from
one such LDS, discovered by Sobol’ [Sob67]. We can clearly see the lower
discrepancy as compared to the pseudorandom points in Fig. 2.1(a).

Other definitions and generalization for discrepancy have been pro-
posed [Nie78][MC94][Hic98][Wo91]. In many cases corresponding results
similar to the Koksma–Hlawka inequality, often for some special class
of functions, have been also provided. For example, [Wo91] provides an
estimate for the average error over a class of functions following the
Brownian sheet measure – a generalization of Brownian motion to s
dimensions – using the L2 star discrepancy T ∗

n .

2.2.3.1 Variation in the Sense of Hardy and Krause

Here we define the variation of a function f over Cs in the sense of Hardy
and Krause, as given in [Nie78]. For any interval (hyperrectangle) in Cs,

J = [a
(1)
1 , a

(1)
2 ] × · · · × [a

(s)
1 , a

(s)
2 ] ⊆ Cs, define

δ(f ;J) =
2∑

e1=1

· · ·
2∑

es=1

(−1)e1+· · ·+esf(a(1)
e1

, . . . , a(s)
es

). (2.34)

Here we add up the function value at all “even” corners of J (e1 + · · · +
es even) and subtract out the function values at all the “odd” corners



72 FAST STATISTICAL ANALYSIS

(e1 + · · · + es odd). Now define any grid over Cs with any number of
slices along each dimension. Each slice along any dimension can be of
any arbitrary, non-trivial width, but with no overlap between slices. The
set of all single cells in the grid is a partition P of Cs. Now define

V (s)(f) = sup
P

∑

J ∈ P

|δ(f ;J)| (2.35)

where the supremum is over all possible partitions of Cs. This is the
variation in the sense of Vitali. Let u = {i1, . . . , ik } be a subset of the
dimensions, such that 1 ≤ k ≤ s and 1 ≤ i1 < · · · < ik ≤ s. Define Cs

u =
{a ∈ Cs : ai = 1 for ai /∈ u} as the subset of Cs with all coordinates not
in u set to 1. With f restricted to Cs

u, define V (k)(f ;u) as the variation
in the sense of Vitali over Cs

u, where k = card(u) = |u|. Then, we can
define V (f) in the sense of Hardy and Krause as

V (f) =
s∑

k=1

∑

{u:|u|=k}

V (k)(f ;u). (2.36)

If V (f) is finite, then f has bounded variation in the sense of Hardy
and Krause. If f is sufficiently smooth (has finite partial derivatives of
sufficient order), then we can use partial derivatives instead of the finite
sums and differences in (2.35), as shown in [MC94].

2.3 Low-Discrepancy Sequences
Quasi-Monte Carlo is Monte Carlo performed with points from a

deterministic low-discrepancy sequence (Sect. 2.2.3). There two main
classes of LDS:

1) (t, s)-sequences, and

2) integration lattices.

(t, s)-sequences have enjoyed more popularity and research than integra-
tion lattices, one reason being that it is more difficult to extend lattices
to infinite sequences. In this thesis, we focus on (t, s)-sequences for these
reasons. The interested reader is referred to [HHLL00][FW94][HW81] for
details on integration lattices.

2.3.1 (t,m, s)-Nets and (t, s)-Sequences in Base b

In this section we present a definition of (t,m, s)-nets and (t, s)-sequences
in based b, following the development in [Nie87]. As a preview, we note
that a (t,m, s)-net in base b is a fixed set of exactly bm points, where b
is the base we will work in (e.g., 2 if binary), and m determines the size



Quasi-Monte Carlo 73

of this finite point set. Also, s is the number of dimensions and t is a
measure of the quality of the sequence in terms of uniformity – smaller t
will imply better uniformity for fixed m, s and b. These interpretations
extend also to the case of (t, s)-sequences in base b, which are fixed
infinite sequences of points in s dimensions, which are composed of an
infinite number of (t,m, s)-nets in a particular manner. Smaller t still
implies better uniformity, for fixed s and b. Now, we proceed towards a
concrete definition.

A b-ary box is an interval of Cs of the form

J =

s∏

i=1

[
ai

bdi
,
ai + 1

bdi

)
(2.37)

for integers di ≥ 0 and 0 ≤ ai < bdi . Hence, if we create a grid over Cs

with bdi slices of equal width along dimension i, then each cell of the
grid is a b-ary box. If any di = 0, then their is no slice along dimension i.
Given integers b ≥ 2 and 0 ≤ t ≤ m we can define a (ttt,mmm,sss)-net in base
b as a point set consisting of bm points, such that nJ = bt for every b-
ary box with volume Vol(J) = bt−m. We recall from (2.23) that nJ is
the number of points lying inside J , as used in the definition of star
discrepancy (2.25), which we reproduce here for convenience.

D∗
n = sup

a∈Cs

∣∣∣∣
n[0,a)

n
− Vol([0,a))

∣∣∣∣. (2.38)

Figure 2.3 illustrates this idea with a (0,3,2)-net in base 2: t = 0, m = 3,
s = 2 and b = 2. The number of points in the net is bm = 23 = 8. All
possible 2-ary box shapes, with volume bt−m = 20−3 = 1/8 are shown
cornered at the origin. Stacking any of these shapes side by side with no
overlap, to fill out the unit square will give us all the 2-ary boxes with
volume 1/8 for that shape. Repeating this for all four shapes will give us
all possible 2-ary boxes of volume 1/8. We can see that every such 2-ary
box contains exactly 1 (bt = 20) point. Hence, we call this a (0,3,2)-net
in base 2, and we say that the net balances all 2-ary boxes with volume
1/8. Any box J is balanced by a net with n points, if it contains exactly
n × Vol(J) points; i.e., its volume can be exactly computed using the
fraction of points lying in it (Vol(J) = nJ/n). This property of (t,m, s)-
nets helps reduce the star discrepancy (2.38) by making the term in the
supremum equal to zero for some choices of a (for the b-ary boxes with
Vol(J) = bτ −m, where t ≥ τ ≤ m), and by reducing the chances of a large
term for any a. We note here that any (t,m, s)-net is also a (τ,m, s)-net
for every integer τ ≥ t. By t we will imply the smallest such value of τ .
We can see that smaller values of t lead to better uniformity, since the
net can then balance, or uniformly fill, smaller boxes.



74 FAST STATISTICAL ANALYSIS

Figure 2.3. A (0,3,2)-net in base 2 balancing all 2-ary boxes with volume 1/8

For base b, we write Zb = {0,1, . . . , b − 1} for the set of digits in base b.
For any real number x ∈ [0,1], we can write the b-adic expansion (e.g.,
binary expansion for base 2) as

x =

∞∑

j=1

xjb
−j , xj ∈ Zb, ∀j. (2.39)

Truncating this at m digits (e.g., using 32 bits of computer precision),
we define

[x]b,m =

m∑

j=1

xjb
−j (2.40)

as the m-digit truncation of x. Here we make a sudden change in the
notation for the coordinates of a vector: let us write any vector x ∈ Cs

as x = (x(1), . . . , x(s)). This is done for notational convenience in the
following theory. Then, we can write an m-digit truncation for x in
base b as

[x]b,m = ([x(1)]b,m, . . . , [x(s)]b,m). (2.41)

Let b ≥ 2 and t ≥ 0 be integers. Then, we define a (ttt,sss)-sequence in
base b as a sequence of points {xi : i = {1,2, . . .}} in Cs, such that for all
integers k ≥ 0 and m > t, the set of points {[xi]b,m : kbm ≤ i < (k +1)bm}
is a (t,m, s)-net in base b. Again, we see that a sequence with smaller
t for fixed s and b is preferred, since it will contain (t,m, s)-nets with
smaller t. The popular constructions of Sobol’ [Sob67] and Faure [Fau82]
are instances of (t, s)-sequences as shown by Niederreiter [Nie87], who



Quasi-Monte Carlo 75

then proposed (t, s)-sequences with better properties: Niederreiter se-
quences [Nie88] and, subsequently Niederreiter–Xing sequences [Nie98].

In the context of exploiting low discrepancy, as defined by (2.33), we
want to know the discrepancy of (t, s)-sequences. According to [Nie87],
the discrepancy of a (t, s)-sequence is bounded by

D∗
n ≤ c(t, s, b)

(logn)s

n
+ O

(
(logn)s−1

n

)
, ∀n ≥ 2. (2.42)

This shows that any (t, s)-sequence is an LDS as defined by (2.33).
c(t, s, b) is independent of n, and is given by

c(t, s, b) =

⎧
⎪⎪⎨

⎪⎪⎩

bt

s

(
b − 1

2 log b

)s

, s = 2 or b = 2, s = 3,4

bt

s!

b − 1

2⌊b/2⌋

( ⌊b/2⌋
log b

)s

, otherwise

, (2.43)

where ⌊x⌋ is the greater integer ≤ x. From this, we can see that smaller
values of b are preferable for given t and s, as they lower the bound on the
discrepancy. The Sobol’ sequences [Sob67] are in the smallest base, b = 2,
with t dependent on – and increasing with – s. It is also obvious from
(2.43) that, for given b and s, smaller values of t are better, in agreement
with our previous conclusion based on the definitions of (t,m, s)-nets and
(t, s)-sequences. Faure’s construction [Fau82] achieve the minimum vale
of t, t = 0, for b dependent on s: b is p(s), the smallest prime ≥ s.

Given this, it is natural to ask which of the two sequences is better.
This is a difficult question and a clear answer is not known. In cer-
tain asymptotic terms, the discrepancy bound for the Faure sequences
shows large improvement over the bound for the Sobol’ sequences. The
discrepancy bound constant c(t, s, b) for Sobol’ points takes the form

cS =
2t

s!(log 2)s
. (2.44)

Sobol’ [Sob67] gives the following bound for t as a function of s, for the
Sobol’ sequence:

t(s) ≥ K
s log s

log log s
. (2.45)

This means that for the Sobol’ sequences t increases superlinearly with
increasing dimensionality s, and, thus, the constant in the discrepancy
bound increases superexponentially with s. This is definitely not desir-
able. For the Faure sequence, the constant can be written as [Fau82]

cF =
1

s!

(
p(s) − 1

2 log p(s)

)s

, (2.46)



76 FAST STATISTICAL ANALYSIS

which has the very desirable property that lims→∞ CF = 0. However,
we want to stress caution while using these asymptotic properties of
the discrepancy bounds to compare the Sobol’ and Faure sequences, or
any other sequences. It is easily shown [MC94] that for practical values
of n, the Faure bound actually increases to very large values before
reducing back towards 0. We can see this by computing the maximum
of the dominant term in the Faure bound. It is shown in [MC94], using
basic calculus, that the maximum occurs for n = es. This shows that the
dominant term in the Faure discrepancy bound increases with increasing
number of points n up to n = es, whereas, it is to be expected that the
actual discrepancy (uniformity) should reduce (improve) with increasing
number of points. Hence, the convergence behavior of the bound sets
in only after an extremely large number of points even for moderately
large s.

Also, the bound in (2.42) is just that: a bound. There can be a large
difference between the bound and the actual discrepancy in terms of
magnitude and behavior. We cannot rely on the bound to compare the
actual discrepancies of Sobol’ and Faure points, as evidenced by the
initial, but long increasing behavior of the Faure bound. These argu-
ments extend for the general case of any set of (t, s)-sequences, and
illustrate the difficulty in making a theory-backed choice between them.
This difficulty is further worsened by the fact that the Koksma–Hlawka
inequality (2.26) also only provides an upper bound on the integration
error; and this bound may also be very loose, as shown for one class of
functions in [Wo91][MC94]. [MC94] provides further insightful discus-
sion and illustrations on this topic. Also see [Fox99], Chap. 12. We will
choose the Sobol’ points for our demonstrations, but based on empirical
and practical considerations. However, this choice should not be taken
as a definite rule for choosing Sobol’ points over Faure points, since it
is not backed by rigorous theoretical comparisons. We will revisit these
considerations in more detail in Sect. 2.3.2.3, after we see how we can
actually construct these (t, s)-sequences, along with some more examples
that show better properties than both the Sobol’ and Faure sequences.

2.3.2 Constructing Low-Discrepancy Sequences:
The Digital Method

2.3.2.1 The Van der Corput Sequence: A Building Block

Van der Corput proposed one dimensional low-discrepancy sequences in
1935 [Van35], using b-adic expansions similar to (2.39) in some base b,
where b is an integer ≥ 2. Say we are generating the n-th point, where



Quasi-Monte Carlo 77

n n binary xn = ψ2(n) binary xn (fraction)

0 0 0. 0 0
1 1 0. 1 1/2
2 10 0. 01 1/4
3 11 0. 11 3/4
4 100 0. 001 1/8
5 101 0. 101 5/8
6 110 0. 011 3/8
7 111 0. 111 7/8
8 1000 0. 0001 1/16

Table 2.1. First nine points of a Van der Corput sequence in base 2

n = 1,2, . . . . Consider the b-adic expansion of n − 1,

n − 1 =

∞∑

k=0

ak(n)bj = . . . a2a1a0, (2.47)

where ak(n) is the k-th digit in the base b representation of n − 1, as
represented by the last term, where we have dropped (n) to reduce no-
tation. For finite n, only a finite number of ak(n) will be nonzero. The
n-th Van der Corput point xn ∈ [0,1) is then given by

xn = ψb(n) =

∞∑

k=1

ak−1(n)

bk
= 0.a0a1a2 . . . . (2.48)

ψb is the radical inverse function and it basically mirrors the digits about
the base b radix point. A example for base 2 is shown in Table 2.1.
We can see how each subsequent point is strategically placed to fill out
some largest remaining gap, ensuring good uniformity over the interval
[0,1).

Halton [Hal60b] provided the first method for constructing an LDS
in arbitrary dimensions, by extending Hammersley’s method [Ham60]
of generating finite point sets with low-discrepancy. The method uses
one-dimensional Van der Corput sequences [Van35] with a distinct base
for each coordinate, such that the bases are relatively prime integers
greater than 1. Taking the first s prime numbers is typical since smaller
bases result in uniformity with fewer samples for the Van der Corput
sequence. However, the Halton sequence suffers from very poor unifor-
mity in high dimensions because of an undesirable feature of the Van
der Corput sequence for large base b. We illustrate this with the ex-
ample of base 10. For n = {1,2,3,4,5}, the radical inverse function ψ10



78 FAST STATISTICAL ANALYSIS

gives the first 5 points as {0.1,0.2,0.3,0.4,0.5} which are all clustered
in one half of the interval [0,1). This “monotonic” filling is more pro-
nounced for larger values of b, leading to only small parts of Cs being
filled for even moderate dimensionality s. Hence, the Halton sequence
is unsuited for our application where we expect to see s of the order of
101–102, and we do not dwell further on it here. For more discussion
on it and its improvements, which remain inadequate, see [Gla04]. The
Sobol’ and Faure sequences were huge improvements over Halton’s con-
struction and enabled practical use of QMC for large dimensions. Both
these methods construct each coordinate by using some generalization
of the Van der Corput sequence in some base that results in a permu-
tation of the Van der Corput sequence. In fact, as we will see, both
the Sobol’ and Faure constructions fall under a single general class of
(t, s)-sequence constructions by Niederreiter [Nie92], called the digital
method . The digital method uses generalizations of the Van der Cor-
put sequence for generating the different coordinates of a sequence in s
dimensions.

2.3.2.2 The Digital Method, Digital Nets and Digital
Sequences

To avoid excessive technical notation, we now define digital nets and
sequences only over a residue class field Zb with b prime. The elements
of Zb are {0,1, . . . , b − 1}. Hence, we can define any real number in base
b using this field. For a more general definition over arbitrary finite com-
mutative rings, see [Nie92]. The reduced definition is more than sufficient
for our endeavors.
Digital sequence: Let s ≥ 1 be the dimensionality, and b ≥ 2 be a prime
base. Let {C(i)}s

i=1 be s ∞ × ∞ matrices over Zb; i.e., each element of
the matrices is a digit in base b. For integer n ≥ 1 let

n − 1 =

∞∑

k=0

ak(n)bk (2.49)

be the base b representation of n − 1. Then define a sequence {xn} with
the n-th point

xn = (x(1)
n , . . . , x(s)

n ), (2.50)

x(i)
n =

∞∑

k=1

y
(i)
k (n)

bk
, (2.51)



Quasi-Monte Carlo 79

where {y
(i)
k (n)} are given by

⎛
⎜⎜⎝

y
(i)
1 (n)

y
(i)
2 (n)

...

⎞
⎟⎟⎠ = C(i) ·

⎛
⎜⎝

a0(n)
a1(n)

...

⎞
⎟⎠ (mod b). (2.52)

Such a sequence is called a digital sequence over Zb. Here it is assumed
that for each n only finitely many digits (ak(n)) equal b − 1. The matrices
C(i) are called generator matrices. Comparing with the Van der Corput
sequence in (2.48) we see that each coordinate of this digital sequence
is a permuted form of the Van der Corput sequence in base b. This
permutation is provided by the generator matrices. For a C(i) = I∞ we
get the original base-b Van der Corput sequence.
Digital nets: We note that the generator matrices are of size ∞ to
theoretically allow an infinite digit representation. However, in practice
n will always be finite, in fact, only a few thousands or millions usually,
needing only a finite number of significant digits in its b-adic expansion.
If we use only m digits, then only the upper left m × m submatrix of
every C(i) will be relevant, and we can generate a maximum of bm points.
With such digit truncation, we are no longer truly generating a sequence
with finite matrices; we are generating finite point sets or nets. A point
set with bm points, so generated, is called a digital net. In a practical
setting, say while applying this digital method for yield estimation of
circuits, we will set m sufficiently high such that we never generate bm

points. Also, we will typically need to have the ability to generate points
incrementally, without initial knowledge of the exact value of n we will
need. In such a case, even if we are use finite generator matrices, we are
effectively choosing points from the underlying infinite sequence. Hence,
it is sufficient and also more relevant, to discuss only sequences from
here on.
Digital (ttt,sss)-sequences: A digital sequence is of use to us here only
when it is a (t, s)-sequence. Niederreiter [Nie92] provides us the criteria
for this requirement. Let

c
(i)
j = {c

(i)
j1 , c

(i)
j2 , . . .} (2.53)

be the j-th row of matrix C(i). For integer m > 0 let

c
(i)
j (m) = {c

(i)
j1 , c

(i)
j2 , . . . , c

(i)
jm} (2.54)

be the j-th row of the upper left m × m matrix of C(i). Define a system
of vectors

C = {c
(i)
j : 1 ≤ j ≤ m, 1 ≤ i ≤ s}, (2.55)



80 FAST STATISTICAL ANALYSIS

taking only the first m rows of the C(i) matrices. Then for integers 0 ≤
d1, . . . , ds ≤ m, and

∑s
i=1 di = d, define σ(C) as the largest d such that

any subsystem {c
(i)
j : 1 ≤ j ≤ di,1 ≤ i ≤ s} ⊆ C is linearly independent

over Zb. Now define the system of vectors

C(m) = {c
(i)
j (m) : 1 ≤ j ≤ m, 1 ≤ i ≤ s}. (2.56)

For integers m > t ≥ 0, if σ(C(m)) ≥ m − t, then the corresponding dig-
ital sequence is a (t, s)-sequence in base b. Note that we are usually
interested in the smallest such t.

Some notable examples of digital (t, s)-sequences are constructions by

1) Sobol’ [Sob67]: Sobol’ constructed (t, s)-sequences in base 2 for any
dimension s, with t depending on s and of order of magnitude
O(s log s). This leads to a superexponential increasing behavior for
the constant c(t, s, b) in the leading term of the discrepancy bound
(2.42) for Sobol’ sequences. This was discussed in more detail in
Sect. 2.3.1. The generator matrices are constructed using the coef-
ficients of primitive polynomials over the field Z2. A software im-
plementation was shown in [BF88] and refined in [JK03]. We will
describe the construction in detail in Sect. 2.3.3.

2) Faure [Fau82]: Faure constructed (0, s)-sequences in any prime base
b ≥ s for any dimension s. These sequences improved the asymptotic
behavior of c(t, s, b) in the discrepancy bound (2.42) to
lims→∞ c(t, s, b) = 0. Implication of this “improvement” and related
caveats were discussed in Sect. 2.3.1. Faure used powers of the upper-
triangular Pascal matrix modulo b, Pb to create the generator ma-
trices:

C(i) = Pi−1
b , for i ≥ 2, C(1) = I (identity matrix). (2.57)

The (j, k)-th element of the i-th generator matrix for i ≥ 2 is then
given by

c
(i)
jk =

{
k−1Cj−1i

(k−j), j ≤ k
0, j > k

, i ≥ 2. (2.58)

See [Gla04] for further details. [Fox86] presents a software implemen-
tation.

3) Niederreiter [Nie88]: Niederreiter generalized these previous construc-
tions and, for the first time, showed a construction for (t, s)-sequences
for all dimensions s and all bases b. For fixed b, the order of mag-
nitude of t = O(s log s), similar to Sobol’ points. However, on us-
ing different b for different s, better values of t can be obtained.



Quasi-Monte Carlo 81

The generator matrices are constructed using coefficients of distinct
monic irreducible polynomials of minimum degree. A software imple-
mentation is presented in [BFN92]. A generalization of the Halton
sequence using a polynomial version of the radical inverse function
(Sect. 2.3.2.1) was shown by Tezuka [Tez93], which is similar to the
Niederreiter sequences. [NT96b] shows how the Sobol’ and Faure
sequences are special cases of these sequences, and obtains natural
generalizations for both Sobol’ and Faure sequences.

4) Niederreiter and Xing (NX) [XN95]: These researchers proposed the
idea of using algebraic curves over finite fields (or, equivalently global
function fields) to construct generator matrices, resulting in (t, s)-
sequences with significantly improved theoretical quality over all
previous constructions. At least four different constructions on this
idea were proposed by them and are summarized in [Nie98]. For any
given s, the constructions in [XN95] and [NX96] achieve the lowest
values of t. The best achievable order of magnitude of t for these
NX sequences is O(s) for fixed b, which is significantly better than
the otherwise common O(s log s). [Pir02] shows an implementation
of the construction in [XN95] for dimensions 4 to 16. The construc-
tion of NX sequences require algebraic curves with certain specific
properties to achieve the optimal t [Nie98]. Known examples of such
algebraic curves are limited, and this limits the number of dimensions
that can be constructed. Further, due to the very abstract nature of
the formulation of these constructions, it is difficult for the general
practitioner to implement them.

2.3.2.3 Comparing (t, s)-Sequences and Choosing One

Table 2.2, reproduced from [Nie98], shows a comparison of the t val-
ues for (t, s)-sequences constructed in base b using methods 1 [Sob67],
3 [Nie88] and 4 [NX96]. The much lower t values for the NX sequences
suggest much lower discrepancy (2.43) and, consequently and potentially,
much lower integration error (2.26). However, as discussed above, there
are significant implementation difficulties with the NX sequences. Also,
the Niederreiter sequences (method 3) do not offer significant improve-
ment over the Sobol’ or Faure sequences, for the general case. Given these
reasons and the immense popularity of the Sobol’ and Faure sequences
among practitioners, we make a choice between the latter two options,
for our experiments. Theoretical considerations do not provide a clear
choice, as discussed in Sect. 2.3.1. Hence, we rely on empirical obser-
vations provided in [ABG98][Gla04] which show better performance on
using Sobol’ sequences. Furthermore, the fact that the Sobol’ sequences



82 FAST STATISTICAL ANALYSIS

s 1) Sobol’ [Sob67] 3) Nied [Nie88] 4) NX [NX96]

1 0 0 0
2 0 0 0
3 1 1 1
4 3 3 1
5 5 5 2
6 8 8 3
7 11 11 4
8 15 14 5
9 19 18 6

10 23 22 8
11 27 26 9
12 31 30 10
13 35 34 11
14 40 38 13
15 45 43 15
16 50 48 15
17 55 53 18
18 60 58 19
19 65 63 19
20 71 68 21

Table 2.2. Comparison of values of t for (t, s)-sequences in base 2, for 1 ≤ s ≤ 20.
The NX sequences have the lowest t values, and the best uniformity properties in
terms of discrepancy (2.42). Reproduced from [Nie98]

are in base 2 allows us to exploit fast bit-level Boolean operations in
the software implementation. For these reasons, we will use Sobol’ se-
quences as our representative LDS to demonstrate the performance of
QMC, and we will discuss only their construction in detail. Note that
the performance of Sobol’ sequences can only be improved upon by using
the significantly better NX points.

2.3.3 The Sobol’ Sequence
Sobol’ [Sob67] gave the first construction of a (t, s)-sequence (he used
the name LPτ -sequence). Here we review the construction in the context
of the digital method. We first show how the generator matrices are con-
structed, after which we discuss some practical issues for optimizing the
uniformity of the sequences and for fast software implementation. Since
each coordinate in the sequence is generated using a distinct generator
matrix, let us focus on only on dimension first, and it can then be easily
extended to arbitrary dimensions. Dropping the superscript for dimen-
sion, we want to compute the generator matrix C for a one dimensional



Quasi-Monte Carlo 83

Sobol’ sequence. We recollect that the sequence is in base 2, hence every
element of C is a bit: a 0 or a 1. In practice we will work with a finite
number of bits for the generated values; say this is m. Then, C is an
m × m matrix. Each column of this matrix can be considered as an m-
bit binary expansion of some number vj ∈ [0,1), with an implied radix
point: the uppermost element in the column is the most significant bit.

vj =

m∑

k=1

cki

2k
= 0.c1ic2i . . . cmi. (2.59)

These numbers vj are called direction numbers . Using these direction
numbers, we can write the digital method of (2.52) as

xn = a0(n)v1 ⊕ a1(n)v2 ⊕ · · · ⊕ am−1(n)vm, n = 1,2, . . . , (2.60)

where ⊕ denotes bitwise binary addition (modulo 2),

0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0, (2.61)

which is the same as a bitwise XOR operation, and the ai bits are from
the binary representation of n − 1.

Now the problem is to compute the m direction numbers. Sobol’s
method starts by selecting a primitive polynomial over Z2 = {0,1},

xq + d1x
q−1 + · · · + dq−1x + 1, di ∈ {0,1}, ∀i. (2.62)

This is a polynomial of degree q and coefficients di in {0,1}, satisfying
two properties with respect to binary arithmetic (modulo 2):

it is irreducible; i.e., it cannot be factored, and

the smallest power p for which the polynomial divides xp + 1 is p =
2q + 1.

Tables listing primitive polynomials are widely available, for example
in [PW72], and generation algorithms have also been suggested, as in
[RB95]. We also need to choose odd integers m1, . . . ,mq, such that 0 <
mj < 2j . The polynomial (2.62) defines a recurrence relation,

mj = 2d1mj−1 ⊕ 22d2mj−2 ⊕ · · · ⊕ 2q−1dq−1mj−q+1 ⊕ 2qmj−q ⊕ mj−q,

j > q, (2.63)

where again ⊕ denotes bitwise binary addition (modulo 2), or bitwise
XOR. Now we can define the direction numbers as

vj =
mj

2j
. (2.64)



84 FAST STATISTICAL ANALYSIS

Note that dividing by 2j is equivalent to shifting the radix point to the
left j places in the binary representation of mj . Then, we can use (2.62)
to define a recurrence relation for vj ,

vj = d1vj−1 ⊕ c2vj−1 ⊕ · · · ⊕ dq−1vj−q+1 ⊕ vj−q ⊕ vj−q

2q
, j > q.

(2.65)

Note that we are choosing the first q direction numbers by choosing the
first q mj values. The remaining m − q direction numbers (columns of
the generator matrix) can be computed using this recurrence relation.

We illustrate this procedure with an example. Consider the primitive
polynomial

x3 + x + 1, (2.66)

where q = 3. Then the recurrence (2.64) becomes

vj = vj−2 ⊕ vj−3 ⊕ vj−3

23
. (2.67)

Suppose we initialize with m1 = 1,m2 = 1,m3 = 3. The corresponding
direction numbers are calculated by dividing mj by 2j , or shifting the
binary radix point to the left by j places in the binary representation
of mj . Hence, in binary form

v1 = m1/2 = 0.1, v2 = m2/22 = 0.01, v3 = m3/23 = 0.011.
(2.68)

Also suppose that we are using m = 5 bits. Using the recurrence (2.67),
we can compute the remaining m − q = 5 − 3 = 2 direction numbers:

v4 = v2 ⊕ v1 ⊕ v1

23

= 0.0100 ⊕ 0.1000 ⊕ 0.0001

= 0.1101,

v5 = v3 ⊕ v2 ⊕ v2

23

= 0.01100 ⊕ 0.01000 ⊕ 0.00001

= 0.00101. (2.69)

Using the bits of these direction numbers, we can write our generator
matrix as

C =

⎛
⎜⎜⎜⎜⎝

1 0 0 1 0
0 1 1 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

. (2.70)



Quasi-Monte Carlo 85

Note that the generator matrix is an upper diagonal matrix. This is
true in general for any Sobol’ generator matrix. This is because the j-th
column (direction number) is generated by taking a number mj with
maximum j bits (mj < 2j). Also, every diagonal element is 1 because
every mj is odd. We can use this generator matrix in (2.52) to generate
the Sobol’ points. Instead, equivalently, we use (2.60) exploiting efficient
bitwise binary operations.

x1 = 0(0.10000) ⊕ 0(0.01000) ⊕ 0(0.01100) ⊕ 0(0.11010) ⊕ 0(0.00101)

= 0.0 = 0

x2 = 1(0.10000) ⊕ 0(0.01000) ⊕ 0(0.01100) ⊕ 0(0.11010) ⊕ 0(0.00101)

= 0.1 = 1/2

x3 = 0(0.10000) ⊕ 1(0.01000) ⊕ 0(0.01100) ⊕ 0(0.11010) ⊕ 0(0.00101)

= 0.01 = 1/4

x4 = 1(0.10000) ⊕ 1(0.01000) ⊕ 0(0.01100) ⊕ 0(0.11010) ⊕ 0(0.00101)

= 0.11 = 3/4

x5 = 0(0.10000) ⊕ 0(0.01000) ⊕ 1(0.01100) ⊕ 0(0.11010) ⊕ 0(0.00101)

= 0.011 = 3/8

x6 = 1(0.10000) ⊕ 0(0.01000) ⊕ 1(0.01100) ⊕ 0(0.11010) ⊕ 0(0.00101)

= 0.111 = 7/8

x7 = 0(0.10000) ⊕ 1(0.01000) ⊕ 1(0.01100) ⊕ 0(0.11010) ⊕ 0(0.00101)

= 0.001 = 1/8

... =
... (2.71)

We can see that the resulting points are permutations of the Van der
Corput sequence in base 2 (Sect. 2.3.2.1). For the case of multiple di-
mensions (s > 1), each dimension gets its own distinct primitive polyno-
mial and a corresponding set of initial mj values. This leads to different
permutations of the Van der Corput sequence in different dimensions,
resulting in uniform distribution in the sampling region Cs.

The Sobol’ construction takes two external inputs for each dimension:
the primitive polynomial and the set of mj values. Two natural questions
that follow are:

How do these inputs affect the properties of the resulting sequence?

What are good choices for these inputs?



86 FAST STATISTICAL ANALYSIS

Sobol’ provides us with some answers to these questions. First we look
at the choice of polynomials.

2.3.3.1 Choosing Primitive Polynomials for Good Sobol’
Sequences

Sobol’ [Sob67] showed that under certain conditions the t parameter for
a Sobol’ sequence is

t =

s∑

i=1

(qi − 1) = q1 + q2 + · · · + qs − d, (2.72)

where qi is the degree of the primitive polynomial used for dimension i.
In the general case, a Sobol’ sequence might achieve a lower t value:
this is an upper bound on the lowest t value, that is exact under the
conditions given in [Sob67]. Since a lower value of t leads to better uni-
formity and a lower bound on the discrepancy (Sect. 2.3.1), this result
recommends using polynomials of lowest possible degree. Hence, we sort
the polynomials with nondecreasing degree and use them in the same
order for increasing dimensions.

2.3.3.2 Choosing Initial Direction Numbers for Good Sobol’
Sequences

Sobol’ [Sob76] defines two uniformity properties for any sequences:

Property A: An s-dimensional sequence {xn} satisfies property A
if for every j = 0,1, . . . exactly one of the points {xk : j2s ≤ k <
(j + 1)2s} falls in each of the 2s cubes of the form

s∏

i=1

[
ai

2
,
ai + 1

2

)
, ai ∈ {0,1}. (2.73)

In other words, every set of points {xk : j2s ≤ k < (j + 1)2s} is a
(0, s, s)-net in base 2. Note that some similar properties are satisfied
by any (t, s)-sequence (Sect. 2.3.1), but this property strengthens the
uniformity requirement.

Property A’: An s-dimensional sequence {xn} satisfies property A’
if for every j = 0,1, . . . exactly one of the points {xk : j22s ≤ k <
(j + 1)22s} falls in each of the 22s cubes of the form

s∏

i=1

[
ai

4
,
ai + 1

4

)
, ai ∈ {0,1,2,3}. (2.74)



Quasi-Monte Carlo 87

In other words, every set of points {xk : j22s ≤ k < (j + 1)22s} is a
(0,2s, s)-net in base b. Once again, although there are similarities
with the (t,m, s)-net properties of a (t, s)-sequence, this property
strengthens the uniformity requirement.

Sobol’ [Sob76] also provides conditions on the direction numbers to en-
sure these additional uniformity properties for the resulting Sobol’ se-

quences. Denote the j-th direction number for the i-th dimension by v
(i)
j .

Thus, the generator matrix X(i) is composed from {v
(i)
1 , v

(i)
2 , . . .}, where

we have used the column vector interpretation of each v
(i)
j . Denote the

first bit of v
(i)
j by v

(i)
j,1: this is also the first element of the j-th column

of C(i) or, equivalently, the j-th element of the first row of C(i). Then,
property A holds for the generated sequence if and only if

∣∣∣∣∣∣∣∣∣∣∣

v
(1)
1,1 v

(1)
2,1 . . . v

(1)
s,1

v
(2)
1,1 v

(2)
2,1 . . . v

(2)
s,1

...
...

. . .
...

v
(s)
1,1 v

(s)
2,1 . . . v

(s)
s,1

∣∣∣∣∣∣∣∣∣∣∣

�= 0 mod 2. (2.75)

Note that this condition is on the first s direction numbers. In practice
we will use m direction numbers and for large s, m may be less than s.
However, theoretically, all s direction numbers do exist from their recur-
rence relation (2.64). Following the notation from above, let us denote

the second bit of v
(i)
j by v

(i)
j,2: this is also the second element of the j-th

column of C(i) or, equivalently, the j-th element of the second row of
C(i). Sobol’ also shows that property A’ holds if and only if

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v
(1)
1,1 v

(1)
2,1 . . . v

(1)
2s,1

v
(1)
1,2 v

(1)
2,2 . . . v

(1)
2s,2

...
...

. . .
...

v
(s)
1,1 v

(s)
2,1 . . . v

(s)
2s,1

v
(s)
1,2 v

(s)
2,2 . . . v

(s)
2s,2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�= 0 mod 2. (2.76)

We note that property A applies to subsequences of length 2s, whereas
property A’ applies to subsequences of length 22s. Hence, even for mod-
erately large s (order of 10), property A is of more interest to us in
practical settings. Bratley and Fox [BF88] provide values of mj that sat-
isfy property A, for up to 40 dimensions. Joe and Kuo [JK03] propose a
method to compute good mj values and further extend the list to 1,111
dimensions.



88 FAST STATISTICAL ANALYSIS

2.3.3.3 Gray Code Construction

Antanov and Saleev [AS79] show that the implementation of Sobol’s con-
struction is simplified if the binary representation {a0(n), . . . , am−1(n)}
of n − 1 in (2.60) is replaced by the Gray code representation {g0(n), . . . ,
gm−1(n)} of n − 1. They show that this does not affect the asymptotic
discrepancy behavior of the sequence. The binary Gray code can be ob-
tained from the binary representation using

gm−1 . . . g1g0 = am−1 . . . a1a0 ⊕ 0am−1 . . . a1, (2.77)

where ai is the i-th significant bit in the binary representation and gi is
the corresponding i-th bit in the Gray code representation. The reason
for the simplification is that the Gray code of subsequent integers n − 1
and n differ only in one bit. Let us rewrite the Sobol’ point xn (2.60) in
one dimension as

xn = g0(n)v1 ⊕ g1(n)v2 ⊕ · · · ⊕ gm−1(n)vm (2.78)

using the Gray code of n − 1. Suppose the Gray codes of n − 1 ({gi(n)})
and n ({gi(n + 1)}) differ in the l-th bit. Then, we can write

xn+1 = g0(n + 1)v1 ⊕ g1(n + 1)v2 ⊕ · · · ⊕ gm−1(n + 1)vm

= g0(n)v1 ⊕ g1(n)v2 ⊕ · · · ⊕ (gl(n) ⊕ 1)vl ⊕ gm−1(n)vm

= xn ⊕ vl. (2.79)

Hence, the points can be computed recursively, using only one bitwise
XOR operation instead of m in (2.60). In the next section, we take a
diversion to review Latin hypercube sampling, which is a popular Monte
Carlo sampling technique that also tries to ensure good uniformity, and
has been suggested for use on circuit problems [SKC99].

2.3.4 Latin Hypercube Sampling
Latin hypercube sampling (LHS), introduced in [MBC79], is a variance
reduction technique applied to Monte Carlo. Recalling the asymptotic
Monte Carlo variance (2.21)

σ2
MC =

σ2(f)

n
, (2.80)

LHS reduces this variance by reducing the contribution of σ2(f). LHS
is effective for functions that can be largely separated into a sum of
one dimensional functions, each one depending on only one of the input
variables. We will discuss this in more concrete terms after introduc-
ing the concepts of ANOVA decomposition and effective dimension in



Quasi-Monte Carlo 89

Figure 2.4. Latin hypercube sample of 10 points in 2 dimensions

Sect. 2.4.1. For now we review the construction of an LHS sample and
satisfy ourselves with an intuitive, but convincing argument of its vari-
ance reduction effectiveness. We also discuss the connection between an
LHS sample and (t,m, s)-nets.

2.3.4.1 Construction

Suppose we want to generate n points uniformly distributed in the s
dimensional unit cube Cs. For this, a necessary condition is that the
marginal distribution along each dimension should be uniform. Latin hy-
percube sampling tries to ensure good uniformity along each dimension
as follows. Divide each dimension into n equal slices, or strata, forming
a grid of ns equal cells. For each stratum j = {1, . . . , n} in dimension i,

independently draw a uniformly distributed random value y
(i)
j within

the stratum. Generate n such values independently for each dimension:

y
(i)
j =

j − 1 + U
(i)
j

n
, i = 1, . . . , s, j = 1, . . . , n, (2.81)

where U
(i)
j are uniformly distributed, independent random variables over

[0,1). This gives us n random values for each coordinate i, resulting in
n points in Cs. However, the coordinate values for point j lie within
the same stratum j along each dimension, resulting in points that are
arranged in the diagonal cells. An example is shown in Fig. 2.4(a): the
dotted lines show the strata along each dimension. This is definitely not
uniformly distributed in the sense we desire. To achieve this uniform
distribution, we randomly rearrange the strata along each dimension as



90 FAST STATISTICAL ANALYSIS

follows. For dimension i fix a permutation πi : {1, . . . , n} → {1, . . . , n}:
this essentially “scrambles” the slices, and hence the coordinate values,
along dimension i. s permutations π1, . . . , πs, one for each dimension,
are randomly drawn from the set of n! such permutations. Denote by
πi(j) the permuted value of j: the j-th stratum along dimension i is
scrambled to location πi(j). This scrambling of the strata along each
dimension also causes a scrambling of the sampled coordinate values as

x
(i)
j = y

(i)
πi(j)

=
πi(j) − 1 + U

(i)
j

n
, i = 1, . . . , s, j = 1, . . . , n, (2.82)

with an independent scrambling scheme for each dimension. Now, we
can compose the points in the LHS as

xj = {x
(1)
j , x

(2)
j , . . . , x

(s)
j }, j = 1, . . . , n. (2.83)

Figure 2.4(b) shows the resulting set of points after scrambling the points
from Fig. 2.4(a). Note that the coordinate values of the points are not
changed by this scrambling, only the relative ordering is. Hence, the
points have very good uniformity along each dimension.

2.3.4.2 Variance (and Integration Error) Reduction

LHS is a special case of stratified sampling [Fis06][Gla04] – a popular,
general method for variance reduction – because it stratifies each dimen-
sion. This stratification tries to ensure that the sample points are well
spread out over the unit cube and there is not much variation in the
way the integrand f is sampled if we generate different LHS samples
with the same number of points. As a result there is also less variation
in the integral estimate Qn from one LHS run to another. Compare this
with standard Monte Carlo, where due to lack of any such stratifica-
tion, there is some chance that in two different runs the points will be
clustered together in two different parts of the unit cube. This can re-
sult in large variation in the way f is sampled, and in the estimate Qn.
Hence, we often see a decrease in the variance of Qn, and hence, the in-
tegration error, on using Latin hypercube sampling instead of standard
Monte Carlo. McKay et al. [MBC79] derive the following result for the
asymptotic variance of LHS.

σ2
LHS = σ2

MC +
n

n − 1
Cov(μ1, μ2), (2.84)

where μ1, μ2 are the mean values of f over any two cells in the grid
resulting from the stratification, and Cov is the covariance, computed
by taking the expectation over all possible pairs of cells. The paper



Quasi-Monte Carlo 91

Figure 2.5. (0,1,2)-net in base 10: pre-scrambled non-perturbation version of the
LHS sample in Fig. 2.4(b)

also shows conditions when the second component of the variance can
be negative, resulting in a variance reduction: when f is monotonic in
each of its inputs. We review a different mathematical treatment of the
variance reduction process of LHS, along with more general conditions
on f that lead to efficient variance reduction, in Sect. 2.4.2.

2.3.4.3 LHS Sample Is a Scrambled (t,m, s)-Net

It is obvious from the construction that the sample size n is required in
advance to generate an LHS sample, and arbitrary additions to the sam-
ple are not possible. One LHS run, then, generates a fixed set of points,
also called a net as in our discussion of (t,m, s)-nets in Sect. 2.3.1. One

popular construction of LHS samples replaces U
(i)
j by 1/2 in (2.82),

placing every point at the exact center of the cell containing it. This im-
proves the uniformity of the sample along each dimension, but increases
the bias in the integral estimate: as the number of points is increased, Qn

does not tend exactly to Q. However, this error is often relatively small
compared to the variance for practical sample sizes. The pre-scrambled
version of such an LHS sample, with coordinate values given by

y
(i)
j =

j − 1 + 0.5

n
, i = 1, . . . , s, j = 1, . . . , n, (2.85)

is a (0,1, s)-net in base n. This is because it is a set of n points that bal-
ances every n-ary box (refer (2.37)) of volume n0−1 = 1/n, as required
by the definition of a (0,1, s)-net in base n. The resulting LHS sample
is a scrambled (0,1, s)-net in base n, which has the same uniformity
properties as the pre-scrambled version. The complete construction, us-



92 FAST STATISTICAL ANALYSIS

Figure 2.6. Dimensions 38 and 39 of a 40-dimensional Sobol’ sequence showing un-
desirable patterns

ing U
(i)
j as in (2.82) results in a scrambled (0,1, s)-net in base n with

small random perturbations to the coordinates. The non-perturbed pre-
scrambled (0,1,2)-net in base 10 is shown in Fig. 2.5 for our two di-
mensional LHS example. We will further discuss scrambled nets and
sequences in Sect. 2.5.3 in the context of extracting variance estimates
for quasi-Monte Carlo. We will also revisit LHS in Sect. 2.4.2 where we
compare it to Sobol’ points.

2.4 Quasi-Monte Carlo in High Dimensions
A necessary, but not sufficient, condition for uniformity in all dimen-

sions is uniformity in low dimension projections. Suppose we generate
an s = 40 dimensional Sobol’ point set. Now pick any two coordinates
and plot the values of those coordinates. If we do not see a uniform dis-
tribution in the results space [0,1)2, then the point set is not uniform in
40 dimensions. Figure 2.6(a) plots coordinates 38 and 39, corresponding
to primitive polynomials x8 +x4 +x3 +x2 +1 and x8 +x6 +x5 +x4 +1,
respectively, for the first 2,048 Sobol’ points. It is obvious that the pro-
jection is not uniform, and hence, the 40-dimensional Sobol’ point set is
not uniform. As we increase the number of points, the gaps get filled out
and we achieve good uniformity in the projection, and ultimately in all
dimensions.

We can see why this happens if we refer to the definition of a (t, s)-
sequence in base b given in Sect. 2.3.1. Given m > t, we need at least
bt+1 points for the (t,m, s)-net property to manifest. The minimum uni-
formity criterion for all dimensions in this context is to balance (equally
fill) all b-ary boxes (2.37) resulting from the minimum number of non-
trivial slices along each dimensions (di > 0, ∀i). The minimum number
of slices is b, resulting in bs boxes, each of volume b−s. To balance these
boxes with points from a (t, s)-sequence, a minimum of bt+s points are



Quasi-Monte Carlo 93

Figure 2.7. Dimensions 1 and 30 of a 70-dimensional Faure sequence showing unde-
sirable patterns

required, such that every box has bt points. The asymptotic discrepancy
rate (2.42) therefore starts only from n = bt+s points. From Table 2.2
of t values, we can see that the required n can become astronomical for
large s. For our Sobol’ example, we use 8-th order polynomials for both
dimensions 38 and 39. From the t value bound of (2.72), this 2 dimen-
sional projection has a t value of 8+8 − 2 = 14 or less. Hence, we should
expect to see good uniformity with 214 points. If we add the next 100
points, we see that the gaps start to get filled in Fig. 2.6(b), and we actu-
ally reach good uniformity with 212 points (Fig. 2.6(c)), indicating that
the t value for this two dimensional projection might be less than 14. We
see similar patterns with other low discrepancy sequences too; Fig. 2.7
shows an example for a sample from a Faure sequence [Fau82].

Lack of uniformity in high dimensions is also evidenced by the asymp-
totic discrepancy behavior

D∗
n = O

(
(logn)s

n

)
. (2.86)

For large s, the numerator dominates for practical values of n. An ex-
tremely large number of samples is required for the denominator to
dominate and for the rate to improve to n−1. Despite this impracti-
cally large values of n, QMC has been found to work well for several
high-dimensional problems in finance [NT96b][PT95][Gla04] with realis-
tic sample sizes. The reason for this is that low dimensional projections
of QMC points can have small discrepancy, and this can exploit domi-
nant low dimensional structure of the integrand. For example, the two
dimensional projection of Fig. 2.6 has a t value of ≤ 14, while the original
40 dimensional sequence has a much larger t value (≤ 193). We next re-



94 FAST STATISTICAL ANALYSIS

view some theoretical concepts that provide us guidelines for exploiting
this feature.

2.4.1 Effective Dimension of the Integrand
Assume function f ∈ L2(C

s) is square integrable over Cs. Let u ⊆
{1, . . . , s} denote any subset of the input dimensions of f . We use |u| for
its cardinality and −u for its complementary set {1, . . . , s} − u. Then,
for any point x = {x1, . . . , xs} ∈ Cs, xu = {xi : i ∈ u} is the vector of the
coordinates of x belonging to u. Cu is the unit cube in the dimensions
belonging to u. We can write f as the sum of 2s “simpler” functions
using its analysis of variance (ANOVA) decomposition as

f(x) =
∑

u⊆ {1,...,s}
fu(x), (2.87)

where each function fu depends only on xu, excluding the effect of the
proper subsets of xu. We note that the integral of f over −u is a function
of only xu. For example, if s = 2, f = x2

1 + x3
2, u = {1} and −u = {2},

∫

C{2}
(x2

1 + x3
2)dx2 = x2

1 + 1/4. (2.88)

Hence, the ANOVA terms are defined as

fu(x) =

∫

C−u

(
f(x) −

∑

v⊂u

fv(x)

)
dx−u (2.89)

=

∫

C−u

f(x)dx−u −
∑

v⊂u

fv(x). (2.90)

To compute the function fu we subtract out the effect of all the proper
subsets of u and then average over the dimensions that are not in u.
Note that for the empty set, f∅(x) =

∫
Cs f(x)dx = Q is a constant equal

to the integral of f . These ANOVA terms enjoy the following properties.
∫ 1
0 fudxj = 0 for any j ∈ u.

The ANOVA decomposition is orthogonal:
∫
Cs fufvdx = 0 if u �= v.

If σ2 =
∫
Cs(f(x) − Q)2dx is the variance of f , then σ2 =

∑
|u|>0 σ2

u,

where σ2
u =

∫
Cs fu(x)2dx is the variance of fu. Note that σ∅ = 0 since

f∅(x) is constant.

We can use the variance contribution σ2
u of any fu to measure the relative

importance of fu. In fact, normalized variances σ2
u/σ2 are used as such



Quasi-Monte Carlo 95

measures and are called global sensitivity indices in [SK05]. These are
similar, but more general, in concept to the relative global sensitivity
metric proposed in Sect. 1.6.3.1 of this thesis.

We now make some observations regarding f using its ANOVA de-
composition. Let gt(x) =

∑
|u|=t fu(x) for 0 ≤ t ≤ s. Then gt captures

that part of f that depends on t dimensional inputs, or, in other words,
the part that is exactly t dimensional. Consequently,

∑t
i=1 gi(x) is that

part of f that is at most t dimensional. From the orthogonality of the
ANOVA terms, it follows that the variance of gt is σ2(gt) =

∑
|u|=t σ

2
u.

If, for some f , σ2(g1) ≥ 0.99σ2, then most (99%) of the variance of f
is contributed by one dimensional ANOVA terms, and we say that f is
effectively one dimensional in its inputs. Similarly, if σ2(g1) + σ2(g2) +
σ2(g3) ≥ 0.99σ2, then f is effectively three dimensional in its inputs.
Caflish et al. [CMO97] formalize two measures of the effective dimen-
sion of any function f .
Superposition sense: The effective dimension of f with variance σ2,
in the superposition sense, is the smallest integer sS such that

∑

0<|u| ≤sS

σ2
u ≥ 0.99σ2. (2.91)

Truncation sense: The effective dimension of f with variance σ2, in
the truncation sense, is the smallest integer sT such that

∑

u⊆ {1,...,sT }
σ2
u ≥ 0.99σ2. (2.92)

From these definitions, we can see that sS ≤ sT . Wang and Fang
[WF03] extend Sobol’s method of computing ANOVA variances [SK05],
to compute effective dimension. The proposed technique uses extensive
Monte Carlo runs to approximate the variances of the ANOVA terms.
The threshold of 0.99 in the definitions is arbitrary; other values may
be preferable in different setting. sS is an indicator of whether only low
dimensional interactions dominate the variance in f , while sT is the num-
ber of leading dimensions, given an ordering, that account for most of
the variance in f . For example, if f = x1 +x2 +x4, only one dimensional
“interactions” can be added up to explain f . Hence, sS = 1. However,
the four leading dimensions {x1, . . . , x4} are needed to explain at least
99% of the variance of f . Hence, sT = 4. Note that if we reorder the
dimensions by swapping x3 and x4, then only the leading 3 dimensions
are needed and sT is now reduced to 3. We will rely on such reorderings
to make QMC effective even in high dimensions for our circuit analy-
sis problems. We note here that, typically, circuit performance metrics



96 FAST STATISTICAL ANALYSIS

are significantly affected only by some small subset of the parameters in
the circuit. This claim is supported by results from experiments on the
SiLVR model proposed in Chap. 1 of this thesis. These results are pre-
sented in Sect. 1.7. Hence, in many cases, the integrand for a statistical
circuit analysis problem (e.g., Sect. 2.2.1.2) has a low effective dimen-
sion, at least in the truncation sense, assuming a proper ordering of the
statistical parameters. The following result from [CMO97] provides hints
as to how we can exploit this feature of our integrands.

For an n-point sample from an LDS, let D∗
n,u be the star discrepancy

of the |u| dimensional points obtained by selecting only the coordinates
in u. For example the discrepancy of the two dimensional projection of
the Sobol’ points on u = {38,39} is denoted by D∗

n,{38,39}. Denote the

integration error of an n-point quadrature on any function f by

en(f) =

∣∣∣∣
∫

Cs

f(x)dx − 1

n

n∑

i=1

f(xi)

∣∣∣∣, (2.93)

where {xi}n
i=1 are the quadrature points: the sample points for Monte

Carlo or QMC. We can write this error using the ANOVA terms of f as

en(f) =

∣∣∣∣∣

∫

Cs

∑

u⊆ {1,...,s}
fu(x)dx − 1

n

n∑

i=1

∑

u⊆ {1,...,s}
fu(xi)dx

∣∣∣∣∣

=

∣∣∣∣∣
∑

u⊆ {1,...,s}:|u|>0

[∫

Cu

fu(xu)dxu − 1

n

n∑

i=1

fu((xi)u)

]∣∣∣∣∣

(using f∅(x) = constant Q)

≤
∑

u⊆ {1,...,s}:|u|>0

∣∣∣∣∣

∫

Cu

fu(xu)dxu − 1

n

n∑

i=1

fu((xi)u)

∣∣∣∣∣

(using the triangle inequality)

=
∑

u⊆ {1,...,s}:|u|>0

en(fu). (2.94)

Then, using the Koksma–Hlawka inequality (2.26) for each ANOVA
term, we can write

en(f) ≤
∑

u⊆ {1,...,s}:|u|>0

en(fu) ≤
∑

u⊆ {1,...,s}:|u|>0

Vu(fu)D∗
n,u, (2.95)

where Vu(fu) is the variation of fu taken as a function over Cu. Dif-
ferent versions of this relation are given in [WS07]. Also see [Hic98]. If,



Quasi-Monte Carlo 97

for the subsets u that show large variance σu (related to Vu(fu)), the
discrepancy D∗

n,u of the projection of the LDS onto u is small, then all
the terms in the error bound are small, leading to a small error bound.
This suggests two possible ways of achieving low integration error in
high dimensions with QMC points that are not very uniform in high
dimensions. In both these ways we exploit any low effective dimension
properties of the integrand, for example, the integrand for circuit yield
analysis.

1) If the effective dimension of f in the superposition sense, sS , is small,
it may be possible achieve very low integration error with an LDS
that has good uniformity in low dimensional projections. From the
discussion at the beginning of this Sect. 2.4, we know that QMC
points can achieve good uniformity in low dimensional projections.
This may not be true for some combinations of dimensions, as shown
in Fig. 2.6, but on average the low dimension projections can show
better uniformity than pseudorandom points even for realistic sample
sizes [WF03][WS07]. In other words, for small |u|, D∗

n,u is often small.
If sS is small then the high variance ANOVA terms are functions on
subsets u with small |u|. Hence, from (2.95), this can lead to low
integration errors, even if the overall discrepancy (2.86) of the LDS
is large.

2) If the effective dimension of f in the truncation sense, sT , is small,
we can lower the error bound with an LDS that is uniform in the
first sT dimensions, even if the higher dimensions are not sampled
uniformly. Typically, the initial dimensions are sampled more uni-
formly than the higher dimensions by samples from an LDS. Hence,
D∗

n,u can be small for u = {1, . . . , sT } if sT is not too large. We can
see this for the case of Sobol’ points, where the early dimensions
are generated using the lowest degree primitive polynomials. Hence,
using (2.72) the t value of the sequence containing only the first sT

dimensions (e.g., dimensions 1–10) will be lower than the t value of
any sequence containing any higher sT dimensions (e.g., dimensions
91–100). For circuit yield problems, low sT can be achieved for the
integrand by arranging the statistical parameters in decreasing order
of their impact on the relevant circuit performance, assuming that
the total number of important parameters is not large.

Researchers in finance use linear transformations such as Brownian
bridge (BB) and principal components analysis (PCA) on the input
variables to reduce the truncation dimension: most of the variance in
the resulting joint probability distribution of the transformed inputs is
concentrated in the early dimensions. Extensive experiments showing



98 FAST STATISTICAL ANALYSIS

the advantage of exploiting reduced effective dimension can be found in
[MC96][CMO97][ABG98][WF03][Owe03b]. For example, [WF03] shows
that for the problem of pricing an Asian option, the truncation dimension
can be reduced from 53 to 2 using PCA for a 64 dimensional problem,
resulting in large reductions in error and much improved convergence.
PCA is widely used in the electronic design automation community for
reducing the number of statistical parameters to a few dominant ones
that explain most of their variance [Ism93][CS05][LLPS05][LLP04]. In
our proposed framework, we start from the result of any such PCA, and
must further reduce the truncation dimension without the option of us-
ing PCA. Hence, we skip a detailed explanation. For details regarding
PCA and BB, please refer to [Gla04].

2.4.2 Why Is Quasi-Monte Carlo (Sobol’ Points)
Better Than Latin Hypercube Sampling?

We saw in Sect. 2.3.4 that an LHS sample is essentially a scrambled
(t,m, s)-net, specifically a (0,1, s)-net in base n, where n is the sample
size. Hence, it is natural to ask if we gain any improvement by moving
to a more general QMC approach, say using Sobol’ sequences? If yes,
then what are the reasons for such improvement? With the knowledge of
ANOVA decomposition and effective dimension, we now address these
questions, and provide simple illustrative examples in the results section,
Sect. 2.6.

We know that LHS is able to maintain very good uniformity in all
one dimensional projections because of its per-dimension stratification
scheme. As a result of this, the variance error in integrating the one
dimensional ANOVA terms {fu : |u| = 1} is very small. Using the or-
thogonality of ANOVA decomposition, we can write the overall function
variance as

σ2 = σ2
1 + σ2

>1: σ2
1 =

∑

|u|=1

σ2
u, σ2

>1 =
∑

|u|>1

σ2
u, (2.96)

where σ2
1 is the variance of the one dimensional part of f given by

g1(x) =
∑

|u|=1 fu(x) and σ2
>1 is the remaining variance of f − g1. Also

write the asymptotic variance of the standard Monte Carlo estimate as

σ2
MC =

σ2

n
=

σ2
1 + σ2

>1

n
. (2.97)

Using ANOVA decomposition, Stein [Ste87] showed that the asymptotic
variance of an LHS estimate is

σ2
LHS =

σ2
>1

n
+ o

(
1

n

)
. (2.98)



Quasi-Monte Carlo 99

Hence, compared to the Monte Carlo estimate (2.97), LHS achieves a
variance reduction by reducing the variance in estimating the integral of
the one dimensional part of f to o(n−1).

Note that every one dimensional projection of the LHS sample is a
scrambled (0,1,1)-net in base n. As a result, if the one dimensional part
is smooth (the derivatives of fu for |u| = 1 are continuous) then the
second term on the right hand side of (2.98) reduces as O(n−3), as per
the results of Owen [Owe97b] regarding scrambled nets (see (2.104)). It
is clear from (2.98) that this reduction is effective only if f has significant
variance contribution from its one dimensional component g1. If f has
an effective dimension of 1 in the superposition sense (sT = 1) then LHS
is an excellent quadrature technique. Even if sT > 1, many integrands
have large variance contribution from their one dimensional components,
explaining the success of LHS as a variance reduction technique. This
result also explains why LHS is unsuccessful as a variance reduction
technique in many settings: the integrand in those cases is probably not
primarily one dimensional, because of which the gains over standard
Monte Carlo are minimal.

Based on (2.98), for reasonably large sample size n, we can assume

σ2
LHS ≈ σ2

>1

n
and σ2

MC ≈ σ2

n
. (2.99)

Then, using (2.97) we get

σ2
1

σ2
= 1 − σ2

>1

σ2
≈ 1 − σ2

LHS

σ2
MC

. (2.100)

We can estimate σLHS and σMC by taking the sample variance across
the estimates from several LHS and Monte Carlo runs, respectively. This
gives a way of using LHS to estimate the contribution of one dimensional
ANOVA terms to the variance of f . We use this estimate in Sect. 2.6
to study the efficiency of LHS for different examples, and illustrate the
conditions when Sobol’ points perform better than LHS. For now we
discuss these conditions theoretically.

The numerical results in [WS07] indicate why QMC, and Sobol’ points
in specific, can outperform LHS. We enumerate three types of functions
for which Sobol’ points can provide quadrature with improved integra-
tion errors, along with the corresponding features of Sobol’ points that
enable the improvement.

1) High contribution from one dimensional ANOVA components : This
is the class of functions for which LHS provides large improvements
over standard Monte Carlo. Numerical results in [WS07] show that



100 FAST STATISTICAL ANALYSIS

the discrepancies of one dimensional projections of Sobol’ points are
even better than for LHS. This allows us to retain the advantages
that LHS provides: low variation in integration of the one dimensional
parts of the integrand f .

2) High contribution from one dimensional ANOVA components, but
truncation dimension sT > 1: LHS is not able exploit small trunca-
tion dimension if it is greater than 1, since it only targets one dimen-
sional components of the integrand. If we take any set u = {1, . . . , l},
1 < l ≪ s of the early dimensions of an LHS sample, the correspond-
ing discrepancy can be as high as that for pseudorandom point sets.
However, for l around 10 or less, the discrepancy of the early di-
mensions of a Sobol’ point set can be much lower for practical sam-
ple sizes. Hence, for integrands with truncation dimension sT ≤ 10,
Sobol’ points may provide significant improvement in quadrature er-
ror, compared to LHS and random sampling.

3) High contribution from higher dimensional ANOVA components with
small truncation dimension sT > 1: This condition on f further ex-
pands the class of functions from item 2, since now we allow higher
dimensional ANOVA components to have a large contribution to the
function variance, as long as the corresponding dimensions are from
the early dimensions of the point set. Clearly, LHS provides no extra
advantage beyond that for the one dimensional projections. Sobol’
points, however, do. The discrepancy of the projection of Sobol’
points onto some subset u, with small |u| > 1, tends to be lower
than that for LHS, as long as the subset is from the early dimen-
sions; i.e., u ⊂ {1, . . . , l} for small l > 1. These conditions on f are
significantly less restrictive in practice than those for LHS quadra-
ture being the best option, and suggest that Sobol’ sequences – and
any other competitive LDS – will perform better than, or as well as,
LHS in general.

The reader is referred to [WS07] for some convenient mathematical con-
structs for the discrepancy of projections of any point set, and simi-
lar discussions using these constructs. We stress here that all the the-
oretical results presented here to illustrate the implications of low ef-
fective dimension for QMC are suggestive since they rely on bounds
and asymptotes (e.g., the Koksma–Hlawka bound) and not exact rela-
tions. There may be cases where QMC performs well even with high
effective dimension, as shown in [Tez05] for a class of functions that
have full effective dimension in both the truncation and superposition
senses. Tezuka shows that for these functions the QMC error decreases as
O(n−1), without the troublesome logs(n) in the numerator, and that the



Quasi-Monte Carlo 101

Koksma–Hlawka bound is so loose for this case as to be completely use-
less. This shows that low effective dimension is not necessary for QMC
to beat Monte Carlo. Owen [Owe03b] points out that is also not a suffi-
cient condition. Given these caveats however, we and several researchers
[MC96][CMO97][ABG98][WF03][Owe03b] believe that low effective di-
mensions play a significant role in creating the conditions for improved
quadrature using QMC as compared to Monte Carlo. We provide some
simple examples to illustrate and support these arguments in Sect. 2.6.
For now, we believe these suggestive theoretical arguments and the cited
references, and propose a flow for applying QMC to statistical analysis
of circuits.

2.5 Quasi-Monte Carlo for Circuits

The foregoing sections provide us sufficient information to propose a
flow for applying QMC to statistical analysis of circuits. As suggested
by discussions in Sect. 2.3.2, we use the Sobol’ sequence as our represen-
tative LDS in the proposed flow. Once the construction of the promising
Niederreiter–Xing sequences [NX96] becomes feasible, we can use them
instead of the Sobol’ sequence in the reasonable hope of even better
performance.

2.5.1 The Proposed Flow

From Sect. 2.4.1 we know the importance of using transforms like prin-
cipal components analysis to maximize the amount of variance in the
inputs to the minimum number of early dimensions. Also, PCA is pop-
ularly used by researchers and practitioners in EDA [Ism93][CS05] to
reduce the number of statistical parameters into a small uncorrelated
set while still accounting for most of the variance of the original pa-
rameters. Hence, we assume that our QMC flow starts with post-PCA
statistical parameters: this enables us to focus on aspects that are truly
novel in the context of circuit analysis. In fact, if we have transformed
the input sampling space to be the unit cube, then we have effectively
used some orthogonal transformation like PCA to obtain independent
inputs with the same variance. Another way of exploiting low effective
dimension in this setting is to measure the contribution of each input of
f to the variation in f , and sort the inputs in decreasing order of this
measure. Such a rearrangement of the inputs helps minimize the effective
dimension sT in the truncation sense and exploit the good uniformity
of the early dimensions of Sobol’ points, as discussed in Sect. 2.4.2. We
refer to such a rearrangement as a variable-dimension mapping . The im-
pact of any input on the function can be estimated with some measure



102 FAST STATISTICAL ANALYSIS

Algorithm 2.2 QMC for statistical simulation of circuits

Require: circuit performance functions f = {f1, . . . , fsY }, joint proba-
bility distribution of inputs Π(x), input dimensionality s, and sample
size n

1: π ← InputOrdering(s, f , Π) – π(j) ∈ {1, . . . , s} is the j-th most im-
portant input index

2: skip 2⌊log2 n⌋ points of the s dimensional Sobol’ sequence
3: for i = 1 to n do
4: z ← NextSobolPoint()
5: xπ(j) = zj , j = {1, . . . , s}
6: xi = {x1, . . . , xs}
7: evaluate yi = f(Π−1(xi))
8: end for
9: return QMC sample points {(xi,yi)}n

i=1

of global sensitivity, as in [SK05] or in Sect. 1.6.3.1 of this thesis. Here
we use one of two much simpler options:

1) The designer can select the parameters that most affect the relevant
performance metrics, and these can be assigned to the initial dimen-
sions of the QMC. This can be a feasible option in manual design
settings where the statistical parameters correspond to different de-
vices in the circuit being designed, since circuit designers often have
good insight regarding the devices that significantly affect the rele-
vant performance metrics.

2) Run a small standard Monte Carlo run and compute Spearman’s rank
correlation coefficient between each input xi and the circuit perfor-
mance metric. Use this rank correlation as the measure of global sen-
sitivity and sort the inputs in decreasing order of correlation before
running QMC. For multiple performance metrics, use the sum of the
rank correlation coefficients across all metrics with each input. Spear-
man’s rank correlation is more robust than Pearson’s linear correla-
tion in the presence of nonlinear relationships. For an explanation of
Spearman’s rank correlation, please refer to Sect. 1.6.4.1. Of course,
better sampling techniques, like Latin hypercube sampling, or more
accurate estimates of global sensitivity, if available, may be used here.
However, this simple approach also proves to be sufficiently useful,
as demonstrated by the experimental results in Sect. 2.6.

Our proposed QMC algorithm is shown as Algorithm 2.2. The function
InputOrdering(), shown as Algorithm 2.3, performs the global sensi-
tivity computation to determine a permutation π such that π(j) gives



Quasi-Monte Carlo 103

Algorithm 2.3 The function InputOrdering() used in Algorithm 2.2

Require: circuit performance functions f = {f1, . . . , fsY }, joint proba-
bility distribution of inputs Π(x), input dimensionality s

1: ρi = 0, i = 1, . . . , s
2: for i = 1 to n do
3: randomly generate xi = (xi1, . . . , xis) from Π
4: evaluate yi = (yi1, . . . , yisY } using yij = fj(xi) for j = {1, . . . , sY }
5: end for
6: for j = 1 to sY do
7: for k = 1 to s do
8: ρk = ρk + |RankCorr({xik }n

i=1, {yij }n
i=1)|

9: end for
10: end for
11: return π : {1, . . . , s} → {1, . . . , s} such that ρπ(j) is the j-th largest

element in {ρk }s
k=1

the index of the input with the j-th largest measure of global sensitiv-
ity. In our implementation, this computation involves a nρ = 1,000-point
Monte Carlo run followed by computation of the rank correlation coef-
ficients. Note that, in Algorithm 2.2, we skip the first 2⌊log2 n⌋ points of
the Sobol’ sequence, as recommended empirically in [ABG98] for better
performance. The function NextSobolPoint() uses the smallest degree
primitive polynomials and direction numbers satisfying Sobol’s Prop-
erty A, as discussed in Sect. 2.3.3. The function RankCorr() in Algo-
rithm 2.3 computes Spearman’s rank correlation, as per Sect. 1.6.4.1.

The sample points returned by QMC can be used for computing some
metric, like circuit yield (Sect. 2.2.1.2) or the 99-th percentile, or for
further analysis, like visualization or response surface modeling.

2.5.2 Estimating Integration Error
In practice, the exact value of Q =

∫
f(x)dx is unknown, for example

the exact value of circuit yield. Usually, this is the reason for using
numerical quadrature methods. Then how do we estimate the error in
the quadrature estimate Qn? Random methods, namely Monte Carlo,
make this easy since the variance of the Monte Carlo estimate can be
used as a probabilistic measure of the error.

2.5.2.1 Estimating Monte Carlo Error

Theorem 2.3 in Sect. 2.2.2 shows us how, using the central limit theorem,
we can approximate the distribution of the Monte Carlo error as being



104 FAST STATISTICAL ANALYSIS

normal, and derive such a probabilistic measure of error. In practice,
relying on this assumption of normality, we can use the sample standard
deviation of the estimates from several different n-point Monte Carlo
runs, to compute this probabilistic measure. Suppose we computed nMC

estimates {Q
(i)
n }nMC

i=1 . The sample standard deviation is then given by

σ̂2
MC =

∑nMC
i=1 (Q

(i)
n − Q̄n)2

nMC − 1
, (2.101)

where the sample mean Q̄n is given by

Q̄n =

∑nMC
i=1 Q

(i)
n

n
. (2.102)

Then the magnitude of the Monte Carlo error is within

σ̂MCΦ−1

(
1 + p

2

)
(2.103)

with probability p, where Φ is the standard normal cumulative distrib-
ution function. This corresponds to the confidence interval with a con-
fidence level of p.

2.5.2.2 Estimating QMC Error with Scrambled Sequences

Quasi-Monte Carlo is a deterministic quadrature technique: we get the
same estimate Qn every time we run QMC with the same number of
points, assuming no changes in the parameters of the LDS (e.g., primitive
polynomials for Sobol’ points). Hence, there is no natural variance that
we can exploit to estimate the error as in the case of Monte Carlo. Also,
bounds on the error, like the Koksma–Hlawka bound (2.26), do not help
because of at least two reasons:

It is usually computationally infeasible to estimate both V (f) and
D∗

n with acceptable accuracy. It should be noted here that some ver-
sions of discrepancy can be computed in reasonable time. Warnock
[War72] derived an explicit formula for the L2 star discrepancy, that
was generalized in [CMO97]. See [Hic98] for some generalized error
bounds. However, computing the variation of the function still re-
mains infeasible.

Even if the error bound can be computed, it can be very different
from the actual error value, as discussed in Sects. 2.3.1 and 2.3.2.3.

One way to get around this problem is to artificially randomize the
QMC points. Then, we can run randomized QMC several times and es-
timate probabilistic error values, just as we did for Monte Carlo. Several



Quasi-Monte Carlo 105

schemes for randomizing deterministic LDSs have been proposed, and
are surveyed in [LL02]. Owen [Owe95] proposed a randomization scheme
that scrambles (t, s)-sequences and (t,m, s)-nets while maintaining two
important properties:

1) Every point in the scrambled set has a uniform distribution over Cs,
so that the approximation Qn is unbiased.

2) The resulting nets or sequences, are still (t,m, s)-nets and (t, s)-
sequences in base, respectively, b with probability one, and with no
change to t, m or b.

As mentioned in Sect. 2.3.4, a Latin hypercube sample falls under this
class of scrambled (t,m, s)-nets. Since scrambled sequences have the two
properties mentioned above, they obey the asymptotic properties and
error bounds of their deterministic counterpart. Hence, we can use mul-
tiple runs with different scramblings to estimate the variance σQMC of
randomized QMC and the corresponding probabilistic error estimates
using (2.103), with σMC replaced by σQMC.

For theoretical results on the variance of randomized (t,m, s)-nets,
see [Owe97a][Owe97b][Owe98b] by Owen. Owen shows that under cer-
tain smoothness conditions on the integrand, scrambled (t,m, s)-nets can
actually achieve variance of

O

(
logs−1(n)

n3

)
, (2.104)

implying an asymptotic integration error rate of n−1.5, which is even
better than the standard QMC asymptotic error rate. The smoothness
condition requires that the mixed partial derivative,

h(x) =
∂sf

∂x1 . . . ∂xs
, (2.105)

satisfies the Lipschitz condition,

|h(x) − h(x′)| ≤ B‖x − x′ ‖β
2 , (2.106)

for some finite B ≥ 0 and β ∈ (0,1]. Although we will see an example of
this rate in the results section (Sect. 2.6), these properties of scrambled
nets and their implications for statistical circuit analysis, are not studied
in detail in this thesis and can be a fruitful target for future research.



106 FAST STATISTICAL ANALYSIS

2.5.3 Scrambled Digital (t,m, s)-Nets and
(t, s)-Sequences

2.5.3.1 Owen’s Scrambling

Let {x1,x2, . . .} and {z1,z2, . . .} denote the original sequence and a ran-

domly scrambled version, respectively, both in base b. Let x
(i)
n be the

i-th coordinate of xn, and let its b-ary expansion be

x(i)
n =

∞∑

j=1

xi,jb
−j = 0.xi,1xi,2 . . . , i = {1, . . . , s}, (2.107)

where xi,j ∈ {0, . . . , b − 1} is a digit in base b. Note that we have dropped
the subscript n in the expansion, to reduce notation clutter. Assume

similar meanings for z
(i)
n and zi,j . Then,

zi,1 = πi(xi,1), (2.108)

where πi : {0, . . . , b − 1} → {0, . . . , b − 1} is a randomly chosen permuta-
tion for dimension i; a different such permutation is chosen randomly for
each dimension. This operation is, thus, scrambling the first digit of every
coordinate. Similarly, we scrambling all other digits with independent,
randomly chosen permutation schemes. Furthermore, the permutation of
the j-th digit depends on the precise values of the previous j − 1 digits.
We write this as

zi,j = πi
xi,1,xi,2,...,xi,j−1

(xi,j). (2.109)

For example, the permutation scheme of the third bit in 0.111 will be
separate from the permutation scheme of the third bit in 0.101 even
though the value of the third bit is the same in both cases. This is
because the entire sequence of bits before the third bit determines the
permutation applied to the third bit.

Such a scrambling scheme can be computationally tedious because
of the extensive bookkeeping required: the number of permutations is
s bm −1

b−1 for m digits. Less expensive scrambling schemes have been pro-
posed in [Mat98][FT02][Owe03a], among others. Owen [Owe03a] also
studies the variance of quadrature estimates from these different scram-
bling schemes. We use the linear matrix scrambling method for digital
nets and sequences, as implemented in [HH03].



Quasi-Monte Carlo 107

2.5.3.2 Linear Matrix Scrambling: A Simpler Scheme

Let us rewrite the digital construction of (2.52) in current notation. For
integer n = 1,2, . . . , the b-ary expansion of n − 1 is

n − 1 =
∞∑

k=0

akb
k = . . . a2a1a0. (2.110)

Then the digital construction of the i-th coordinate of n-th point is
⎛
⎜⎝

xi,1

xi,2
...

⎞
⎟⎠ = C(i)

⎛
⎜⎝

a0

a1
...

⎞
⎟⎠ (mod b), (2.111)

where we have suppressed n to reduce clutter. The linear matrix scram-
bling method modifies this construction as

⎛
⎜⎝

zi,1

zi,2
...

⎞
⎟⎠ = L(i) + e(i)

⎛
⎜⎝

xi,1

xi,2
...

⎞
⎟⎠

= L(i)C(i)

⎛
⎜⎝

a0

a1
...

⎞
⎟⎠ + e(i) (mod b), i = 1, . . . , s.

(2.112)

Here, L(i) are randomly and independently chosen non-singular lower-
triangular matrices over Zb = {0, . . . , b − 1}, of size ∞ × ∞ for infinite
precision, and m × m for m digits of precision. e(i) are randomly and
independently chosen vectors over Zb, of length same as L(i). The n-th
scrambled point is

zn = (0.z1,1z1,2 . . . , 0.z2,1z2,2 . . . , . . . , 0.zs,1zs,2 . . .). (2.113)

This scrambling method is clearly much simpler than Owen’s scrambling,
but is also less rich in its range of random permutations. For example,

from (2.112), the first digit zi,1 = l
(i)
11 xi,1 + e

(i)
1 , where l

(i)
11 and e

(i)
i are

the first elements of L(i) and e(i), respectively. l
(i)
11 ∈ {1, . . . , b − 1} for

non-singular L(i), and e
(i)
1 ∈ {0, . . . , b − 1}, giving us b(b − 1) possible

permutations, while in Owen’s method we have b! possibilities. However,
this smaller range of possibilities is not too restrictive and suffices for
our experiments. We now show how this scrambling technique can be
incorporated into Sobol’s construction using direction numbers.



108 FAST STATISTICAL ANALYSIS

2.5.3.3 Scrambling Sobol’ Sequences with Linear Matrix
Scrambling

We know from (2.59) that the j-th column of C(i) contains the bits of

j-th direction number v
(i)
j for dimension i. Let v

(i)
j denote the vector of

the bits of v
(i)
j ; i.e., v

(i)
j is the j-th column of C(i). If we write

L(i)C(i) = L(i)[v
(i)
1 v

(i)
2 . . .] = [v′(i)

1 v′(i)
2 . . .], (2.114)

then, denoting l
(i)
jk as the (j, k)-th element of L(i), and v

(i)
j,k as the k-th

bit in v
(i)
j , we get

v′(i)
j =

⎛
⎜⎜⎝

l
(i)
11 v

(i)
j,1 + l

(i)
12 v

(i)
j,2 . . .

l
(i)
21 v

(i)
j,1 + l

(i)
22 v

(i)
j,2 . . .

...

⎞
⎟⎟⎠ . (2.115)

Let l
(i)
j = (l

(i)
1j , l

(i)
2j , . . .)T be the j-th column of L(i). Then, using bitwise

Boolean operations we can write

v′(i)
j = v

(i)
j,1 · l(i)1 ⊕ v

(i)
j,2 · l(i)2 ⊕ · · · , 1 ≤ i ≤ s, j > 0. (2.116)

This bit vector, v′(i)
j , is the j-th column of the i-th scrambled generator

matrix given by L(i)C(i), and corresponds to a new scrambled direction

vector v
′(i)
j for the Sobol’ construction. Then, corresponding to (2.60),

the i-th coordinate for the n-th point is given by

z(i)
n = a0v

′(i)
1 ⊕ a1v

′(i)
2 ⊕ · · · ⊕ am−1v

′(i)
m ⊕ e(i). (2.117)

If we use the Gray code construction as in (2.79), we need to XOR e(i)

only once, to the first point, and subsequent points are given simply as

z
(i)
n+1 = z(i)

n ⊕ v′(i)
l , (2.118)

where l is the index of the bit where the Gray codes of n − 1 and n
differ. We are now well-equipped to demonstrate the performance of
QMC using experiments. We do this in the next section.

2.6 Experimental Results
In Sect. 2.4.2 we concluded, based on theoretical considerations, that

QMC using Sobol’ points should result in smaller errors and possibly
faster convergence, when compared to Latin hypercube sampling. We



Quasi-Monte Carlo 109

now test this conclusion experimentally on some simple examples that
also allow us to validate the results analytically. After this, we demon-
strate the performance of QMC on a variety of circuit benchmarks, in
comparison with standard Monte Carlo and LHS.

2.6.1 Comparing LHS and QMC (Sobol’ Points)
Let f be our integrand. We test two conclusions from Sect. 2.4.2 here:

1) LHS almost completely and exclusively removes the variance contri-
bution of the one dimensional ANOVA components of f , to achieve
variance reduction. Hence, we can estimate the variance contribution
of the one dimensional components via (2.100). See Sect. 2.4.1 for a
discussion on the ANOVA decomposition.

2) LHS restricts its variance reduction activity to the one dimensional
components of f . Sobol’ points provide further benefit by reducing
the error in integrating also some higher dimensional components,
because they enjoy highly uniform higher dimensional projections in
the early dimensions.

2.6.1.1 LHS (Almost) Exactly Removes One Dimensional
Variance Contribution

Consider the following three functions in five dimensions.

1) An additive function with only one dimensional nonzero components;
i.e., with effective dimension sS equal to 1, in the superposition sense.

fa = x2
1 + x2

2 + x2
3 + x2

4 + x2
5. (2.119)

Note that the function has full truncation dimension sT = 5. We
expect LHS to almost completely remove any variance in the integral
estimate for this function, because there is no contribution from any
multi-dimensional components.

2) A cross-term function with significant contributions from multi-
(two-)dimensional components; i.e., with superposition dimension
sS = 2. The truncation dimension is still 5.

fc = (x1 + x2 + x3 + x4 + x5)
2. (2.120)

Note that fa is part of fc. We expect the effectiveness of LHS to
be less for this function, and that the remaining variance in the
estimate (σ2

LHS) is proportional to the variance contribution from
the two dimensional components.



110 FAST STATISTICAL ANALYSIS

fa fc fs

σ̂2
MC 4.024 × 10−5 9.483 × 10−4 6.112 × 10−4

σ̂2
LHS 5.284 × 10−13 2.839 × 10−5 2.839 × 10−5

η̂LHS =
σ̂2
1

σ2 = 1 −
σ̂2
LHS

σ̂2
MC

1.000 0.970 0.954

Exact σ2 – 193/18
125/18

Exact σ2
1 – 94/9

20/3

η =
σ2
1

σ2 1 0.974 0.960

Table 2.3. Fractional variance contribution from one dimensional components of fa,
fc and fs computed using LHS estimate (2.100) and analytically. We see that LHS
does exclusively remove the variance from one dimensional components

3) A strongly cross-term function with even higher relative contribution
from two dimensional components.

fs = fc − fa = 2
4∑

i=1

5∑

j=i+1

xixj . (2.121)

We expect that the variance of LHS, σ2
LHS will not change from the

case of fc since we have only removed the one dimensional compo-
nents and not changed anything in the two dimensional components.

We ran 30 Monte Carlo runs and 30 LHS runs, each with a sam-
ple size of n = 10,000, to estimate the Monte Carlo variance (σ2

MC) and
the LHS variance (σ2

LHS), respectively. We use the sample variance for-
mula (2.101). Plugging these variance estimates into (2.100), we can
estimate the fraction of variance contributed by the one dimensional
components of f . Let σ2 be the total function variance, σ2

1 the variance
from the one dimensional components and η = σ2

1/σ
2 the fraction of vari-

ance from one dimensional components. Table 2.3 shows the results in
data rows 1–3. We can see that, as expected, the LHS variance for the
additive function fa is negligibly small. Since fa has only one dimen-
sional components, all its variance is from one dimensional components.
The estimate η̂LHS is almost exact (= 1). For the other functions, we
can analytically compute σ2, σ2

1 and η. These exact values are shown in
data rows 4–6. Derivations are given in Appendix A. We see that the
estimates η̂LHS are very close to the exact values, providing strong evi-
dence for the claim that LHS exclusively removes σ2

1 from the estimate
variance.



Quasi-Monte Carlo 111

2.6.1.2 Sobol’ Points Are Better Than LHS for Functions
with Significant Higher Dimensional Components

All three test functions above allow a simple analytical computation of
their exact integrals over the unit cube Cs, this being one of the reasons
for choosing them as test functions. These exact values are Q(fa) = 5/3,
Q(fc) = 20/3 and Q(fs) = 5. We also computed these integrals numeri-
cally in three different ways:

1) Using standard Monte Carlo with increasing number of points n.
The values of n are chosen to match those for the LHS samples sizes
below.

2) Using Latin hypercube samples with sample sizes of n = 100·2{0,...,7} =
{100,200,400, . . . ,12,800}.

3) Using Sobol’ point with the same samples sizes as LHS.

Since we know the exact answers, we can directly compute the relative
error without having to resort to probabilistic errors based on sample
variance. The plots in Fig. 2.8 show the relative integration error for
these three methods on all three test functions on a log10 − log10 scale.
Least squared-error linear fits in this scale, shown as dashed straight
lines, estimate the convergence exponent of each integration method as
the slope of the fit. These estimated rates are annotated on the corre-
sponding linear fits. We now discuss each of the three test cases is some
detail, in the context of these results.

Additive function fa (Fig. 2.8(a)): Monte Carlo achieves an esti-
mated error rate of n−0.4963, which is close to the expected n−0.5

rate. The Sobol’ points achieve a rate of n−0.8963, which is close to
the asymptotic rate of n−1 for QMC. This suggests that the trunca-
tion and superposition dimensions (sT = 5, sS = 1) are small enough
for the Sobol’ points to exploit. Interestingly, LHS achieves a much
faster convergence of n−1.5702 along with lower error. This superior-
ity of LHS over Sobol’ points is actually expected. We know, from
Sect. 2.3.4, that an LHS sample is a scrambled (t,m, s)-net. Since the
function fa satisfies Owen’s smoothness condition (2.106), the result
in (2.104) predicts an asymptotic n−1.5 convergence for LHS error.
Similar behavior is predicted by Fox in [Fox99], Theorem 9.1.2.

Cross-term function fc (Fig. 2.8(b)): Even with contribution from
higher dimensional components in f , Monte Carlo achieves more or
less the same convergence rate (n−0.4383), close to the expected, as-
ymptotic n−0.5. However, we see a big change in the performance



112 FAST STATISTICAL ANALYSIS

Figure 2.8. Comparison of relative errors of Monte Carlo, LHS and QMC (Sobol’
points) with increasing number of points. The three test functions have different
relative contributions from their one dimensional ANOVA components

of LHS. It provides no benefit over Monte Carlo in integrating the
two dimensional components of f , resulting in an overall error rate
of n−0.5529, which is closer to the Monte Carlo error rate. Note that
it is still significantly better than Monte Carlo because its excellent
performance on the one dimensional components. Interestingly, the
Sobol’ points maintain their low error and fast convergence in spite
of the increased superposition dimension of the integrand. This sup-
ports our argument that Sobol’ points have good uniformity in higher
dimensional projections of the early dimensions, which allows them
to integrate the higher dimensional ANOVA components with better
accuracy than Monte Carlo or LHS.

Strong cross-term function fs (Fig. 2.8(c)): This function has even
higher relative contribution from its two dimensional components.
However, we see no significant difference in the performance of any



Quasi-Monte Carlo 113

of the three methods. This is not surprising. The variance of Monte
Carlo, of course, does not exploit any ANOVA features of the inte-
grand. This explains the lack of change in its performance. LHS pri-
marily targets the one dimensional components and has Monte Carlo-
type performance on higher dimensional components of fs. fc and fs

differ only in their one dimensional components and have identical
two dimensional components. Hence, the error in the LHS estimate,
which is almost completely due to the latter, does not change. Simi-
lar arguments apply to the Sobol’ points: the change in the error due
to changes in the one dimensional components is very small.

Based on these experiments and the arguments in Sect. 2.4.2, we can con-
fidently conclude that, in the general case, Sobol’ sequences will show
lower error and faster convergence than LHS or Monte Carlo, as long as
the truncation dimension of the integrand is not too large. The only ex-
ception is when almost all of the variance contribution is due to the one
dimensional components of the integrand and the integrand is smooth, in
which case LHS or scrambled QMC will perform better. For the case of
statistical circuit analysis, we neither expect the integrand to be primar-
ily one dimensional, nor to be smooth (e.g., the characteristic function
integrand (2.12) for circuit yield). However, from common design knowl-
edge, we believe that the truncation dimension of the integrand will
not be too large. Hence, Sobol’ points (or any other competitive QMC
method) seem an appropriate choice.

2.6.2 Experiments on Circuit Benchmarks
We now demonstrate the performance of QMC on circuit benchmarks.
Before we discuss the benchmarks and the results, we briefly mention
some relevant implementation details. A linear congruential generator
(LCG) [Gla04] (drand48() in C) was used to generate the pseudoran-
dom sequences for standard Monte Carlo and for random scramblings of
the Sobol’ points. This generator enjoys widespread popularity and the
obtained results will be immediately relevant to the general practitioner.
Also, variance results in [OE04] comparing LCG with a generalized feed-
back shift register generator (GFSR) [MK94], do not show significant
improvements for GFSR in the context of randomized QMC. The stan-
dard Box Muller [BM58] method for generating normally distributed
variates is inaccurate, especially for a large number of samples [Tez95].
Hence, an inverse transform method, by Acklam [Ack], was used. This
is the Π−1

i in (2.17) for the case of normal variates. Now we describe the
benchmark circuits and the experiments. All results will be discussed
together after this description. We use the following three benchmarks.



114 FAST STATISTICAL ANALYSIS

1) Master–slave flip-flop with scan chain (MSFF): This is the
same circuit used as a benchmark for SiLVR in Sect. 1.7.1. In this
case, we are computing the parametric yield, given a maximum ac-
ceptable clock-output delay (τcq) of 200 ps. This is a 31 dimensional
problem. 10 Monte Carlo runs with 50,000 points each were run to
compute the Monte Carlo variance. The QMC variance is computed
across a set of 10 runs: one run using 50,000 Sobol’ points and 9 runs
using 50,000 scrambled Sobol’ points each. Each scrambled run uses
a distinct set of permutations.

2) Sub-1 V CMOS bandgap voltage reference: This benchmark
is also used for testing SiLVR in Sect. 1.7.3, where a detailed de-
scription is also provided. In this case, we compute the parametric
yield, given three specifications: 1) output voltage, Vref within 10%
of 600 mV, 2) output settling time τs ≤ 200 ns, and 3) dropout volt-
age Vdo ≤ 900 mV. The settling time is defined as the time taken
by the output to settle within 1% of its final value. This is a 122
dimensional problem. We use the same run plan as for the flip-flop
benchmark, but with a sample size of 20,000 for each run.

3) 64-bit SRAM column: This benchmark is also used for testing
Statistical Blockade in Sect. 3.3.4, where a detailed description is
also given. In this case, we are computing the 90-th percentile of the
write time τw in the presence of manufacturing variations. This is
a 403 dimensional problem. The same run plan as for the flip-flop
is used, with the only difference being the sample size for each run:
here we use 10,000 points.

It is clear that the problem dimensions are large enough such that
10,000–50,000 Sobol’ points will not be uniformly distributed over all
dimensions. We are bound to get undesirable patterns in several projec-
tions, similar to the ones shown in Sect. 2.4. Here, it becomes important
that we use some technique to reduce the effective dimension of the
problem. As described in Sect. 2.5.1, we use Spearman’s rank correla-
tion (1.69) as a measure of variable importance (or global sensitivity),
and arrange the statistical parameters in decreasing order of importance,
before running QMC.

As an illustrating example, let us look at how the rank correlation
based variable-dimension mapping works for the flip-flop, shown in
Fig. 2.9(a). Figure 2.9(b) shows the magnitude of the rank correlation
(|ρS |) of each parameter with the clock-output delay for rising output,
computed from an initial Monte Carlo run of 1,000 samples. The vari-
ables are sorted in decreasing order of importance (rank correlation mag-



Quasi-Monte Carlo 115

Figure 2.9. These figures illustrate the use of rank correlation as a measure of para-
meter importance, to be used for variable-dimension mapping

nitude): this is now the order they will be mapped to the increasing di-
mensions of the Sobol’ sequence. The three most important parameters
are labeled: 1) tox: global gate oxide variation, 2) PTg1: the Vt variation
in the pMOS device in the input transmission gate Tg1, and 3) NInv1:
the Vt variation in the nMOS device in the inverter Inv1. The latter two
devices are on the critical signal path for a high input causing a rising
output, and are important for correctly sampling a “1” at the input,
especially when the input timing is close to the setup limit. Since the
input was timed in such a manner in the testbench, these measures of
importance make intuitive sense.



116 FAST STATISTICAL ANALYSIS

Figure 2.10. Comparison of Monte Carlo and QMC estimates and std. deviation
convergence, for the flip-flop benchmark

2.6.2.1 Analysis of Results

Figures 2.10(a), 2.11(a) and 2.12(a) plot the values of the estimates
with increasing number of points for each Monte Carlo (pseudorandom)
and QMC (Sobol’) run. For all three cases, we can clearly see that the
QMC graphs converge more quickly than the Monte Carlo graphs in
general. In particular, the non-scrambled Sobol’ points converge very
fast towards the final result. This fact provides indirect validation that
our rank correlation based dimension mapping is an effective heuristic.
Scrambling the digits of an LDS sample changes the way the sampling
space is filled up, and hence, changes the patterns and the discrepan-
cies of the projections of the point set. We observe here that chang-
ing the patterns in this way causes the QMC performance to degrade



Quasi-Monte Carlo 117

Figure 2.11. Comparison of Monte Carlo and QMC estimates and std. deviation
convergence, for the voltage reference benchmark

in general for our benchmarks. This implies that the rank correlation
arranges the variables in a way that is optimal (or at least, advanta-
geous), given the patterns of the non-scrambled LDS. This behavior is
more pronounced as the problem dimensionality increases from MSFF
to the SRAM Column, suggesting that for low dimensionality (e.g., 31
dimensional MSFF), the LDS uniformity does not show large variation
for different projections. For high dimensional problems, however, ef-
fective variable-dimension mapping should give notable improvement,
over a random or uneducated assignment of variables to LDS dimen-
sions. Of course, the impact of such mappings depends on the mini-
mum possible truncation dimension of the integrand. If the truncation
dimension of a problem cannot be made much smaller than the full di-



118 FAST STATISTICAL ANALYSIS

Figure 2.12. Comparison of Monte Carlo and QMC estimates and std. deviation
convergence, for the SRAM column benchmark

mensionality, then all mappings will achieve similar performance. Again,
in high dimensions, it is very likely that the minimum possible trunca-
tion dimension will be much smaller than the full dimensionality. As a
result, using the correct mapping will result in much improved perfor-
mance.

Figures 2.10(b), 2.11(b) and 2.12(b) compare the standard deviation
of the Monte Carlo runs (σ̂MC) and the QMC runs (σ̂QMC) with in-
creasing number of points, showing the effectiveness of scrambled QMC
as a variance reduction method. The plots are in log10 − log10 scale,
where a σ ∝ n−α relationship will appear as a straight line with slope
−α, similar to the plots in Fig. 2.8. Linear fits, via least squared error,
are shown as dashed straight lines, and are annotated with the cor-



Quasi-Monte Carlo 119

responding convergence exponent. We can see that, in general, QMC
shows lower variance and faster convergence than Monte Carlo across
all three benchmarks. The estimated Monte Carlo convergence rates are
a little slower than the asymptotic rate of n−0.5. This can be because
we have not reached the asymptotic rate and also because the estimates
are computed from only 10 runs. A larger number of runs is definitely
desirable, but eludes us because of the large circuit simulation times.
Even with these approximate estimates we do get a good sense of the
performance of QMC relative to Monte Carlo. σQMC shows convergence
rates in between the Monte Carlo and QMC asymptotic rates of n−0.5

and n−1, respectively. This suggests that the integrands for these bench-
marks have superposition dimension greater than 1 and moderately large
truncation dimension. Another reason for these reduced rates can be the
lack of smoothness in characteristic function integrand (2.12). Integrand
smoothness can lead to better QMC performance as indicated in [MC96]
and [Fox99]. Figure 2.13 provide evidence for larger than one superpo-
sition dimension. Here we plot the standard deviation of LHS estimates
for the SRAM column and voltage reference cases. We can see that the
LHS curve lies in between the curves for Monte Carlo and QMC. This
indicates that there are some significant multi-dimensional components
of the integrands for which the Sobol’ points further reduce the inte-
gration error over LHS, similar to the case of functions fc and fs in
Fig. 2.8.

We now compute some estimates of the samples size needed to achieve
a given accuracy criterion. Say the exact value of the integral is Q and
we specify an accuracy criterion as follows: we want the estimate Qn to
be within δ% of Q with a probability of p. In other words, we want the
error magnitude to be less than or equal to Q( δ

100). Using the estimate
for probabilistic error from (2.103), we can write this as

σ̂MCΦ−1

(
1 + p

2

)
≤ Q

(
δ

100

)
. (2.122)

For p = 0.9545, we get

σ̂MC ≤ Q

(
δ

200

)
. (2.123)

Using the linear fits from Figs. 2.10(b), 2.11(b) and 2.12(b), we can
then estimate the number of points n needed to satisfy this criterion.
The same arguments hold for σQMC and the QMC sample size. The
results for δ = 1, 0.1 are shown in Table 2.4. Since, we do not know Q
for these circuit benchmarks, we estimate it using all the points at our
disposal – from 10 Monte Carlo and 10 QMC runs – and assume that
the error in this estimate is negligible in comparison with Q( δ

100). Even



120 FAST STATISTICAL ANALYSIS

Figure 2.13. Comparison of std. deviation convergence of Monte Carlo, LHS and
QMC

if the error is not negligible, because we are using the same assumption
for both Monte Carlo and QMC, the relative trends seen here can be
believed. We can see moderate to large speedups (2× to 50×), showing
the effectiveness of scrambled QMC as a variance reduction method.
Furthermore, these speedups tend to improve as the required accuracy
increases.

The results presented in this section are promising and recommend
using QMC for general circuit analysis problems. Of course, these are
initial results and there is much scope for more research in this area.
We discuss some immediate directions for future work in the following
section.



Quasi-Monte Carlo 121

δ MSFF SRAM column Voltage ref.

MC / QMC MC / QMC MC / QMC

1% 1,114 / 588 1,631 / 354 89,115 / 10,360
(1.9×) (4.6×) (8.6×)

0.1% 180,232 / 24,465 586,771 / 11,451 15,182,252 / 838,062
(7.4×) (51.2×) (18.1×)

Table 2.4. Number of points needed to achieve a given error with a confidence level
of 95.45%. Speedup of QMC over MC is shown in brackets

2.7 Future Work
This study brings up many relevant questions and possibilities. We

outline a few here.

1) Owen proposes Latin supercube sampling (LSS) in [Owe98a]. LSS
combines LHS and QMC in an attempt to exploit the excellent prop-
erties of QMC for the small dimensional projections, while achieving
at least Monte Carlo-type performance for the high dimensional pro-
jections. The set of s dimensions is divided into k exclusive subsets.
Scrambled QMC is used for each subset, with different scramblings
for each subset. Then, the points in each subset are randomly per-
muted, as in LHS, before combining them together to achieve an
s dimensional LSS sample. Each subset enjoys the scrambled QMC
rate of convergence and the variance resulting from the interaction
between subsets enjoys the Monte Carlo rate. We can see the sim-
ilarity with LHS, where each subset is of size one. In practice, the
number of statistical parameters in a circuit can become extremely
large (1,000s or more). In such cases, it will likely be essential to use
such mixed sampling methods to achieve effective performance from
QMC. Spanier [Spa95] suggests a less powerful, but easier to apply,
hybrid sampling technique using QMC for the first d dimensions and
Monte Carlo for the rest.

2) We saw theoretical results in Sect. 2.5.2 and experiments (on LHS)
in Sect. 2.6.1 that suggest that scrambled QMC can achieve up to
n−1.5 error convergence asymptotically, if the integrand is smooth.
Morokoff and Caflisch [MC95] show that the lack of continuity in the
integrand can reduce the effectiveness of non-scrambled QMC, re-
sulting in Monte Carlo type performance. Integrands in circuit yield
analysis are typically characteristic functions as in (2.12), which are
discontinuous at the boundary of the acceptance region where they



122 FAST STATISTICAL ANALYSIS

suddenly change from 1 to 0. For any arbitrary boundary, whether a
QMC point falls within the boundary to contribute a 1 to the inte-
gral, or outside the boundary to contribute a 0, is essentially random.
This random sampling around the entire boundary leads to the degra-
dation in QMC performance towards Monte Carlo performance. In
high dimensions, the boundary becomes relatively more significant
(e.g., the ratio of the boundary area of a unit cube to its volume,
in s dimensions is 2s), and the degradation worsens with increas-
ing dimensions. Moskowitz and Caflisch [MC96] shows a method of
“smoothing” such integrands by enforcing continuity, without chang-
ing the value of the integral. Fox [Fox99] discusses other forms of
smoothing in the context of randomized QMC. Using such, or novel,
smoothing techniques can help further improve the performance of
QMC for circuits with medium dimensionality, and make QMC ef-
fective on problems with very large dimensionality.

3) Variance reduction techniques [Gla04][Fis06] are widely employed to
reduce the variance – and, hence, the error – of standard Monte
Carlo. Since QMC shows Monte Carlo type performance on inte-
grands with large effective dimension, variance reduction techniques
like control variates, stratification and importance sampling should
be very useful in such cases. In fact, LSS is a form of stratified sam-
pling applied to QMC. Some applications of these techniques are
discussed in [Fox99].



Chapter 3

Statistical Blockade: Estimating Rare Event

Statistics

3.1 Motivation

Consider the case of a 1 megabit (Mb) SRAM array, which has 1 mil-
lion “identical” instances of an SRAM cell. These instances are designed
to be identical, but due to manufacturing variations, they usually differ.
Suppose we desire a chip yield of 99%; that is, no more that one chip per
100 should fail. This means that on average, not more than (approx.)
one per 100 × 1 million SRAM cells; that is 10 per billion, should fail.
This translates to a required circuit yield of 99.999999%, or a maximum
failure rate of 0.01 ppm for the SRAM cell. This failure probability is the
same as for a 5.6σ point on the standard normal distribution. If we want
to estimate the yield of such an SRAM cell in the design phase, a stan-
dard Monte Carlo approach would require at least 100 million SPICE
simulations on average to obtain just one failing sample point! Even then,
the estimate of the yield or failure probability will be suspect because
of the lack of statistical confidence, the estimate being computed using
only one failing example. Such a large number of simulation is utterly in-
tractable. This example clearly illustrates the widespread problem with
designing robust memories in the presence of process variations: we need
to simulate rare or extreme events and estimate the statistics of these
rare events. The problem of simulating and modeling rare events stands
for any circuit that has a large number of identical replications on the
same chip, as in DRAM arrays and non-volatile memories. We term such
circuits as high replication circuits (HRCs).

Note that systematic variations (e.g., proximity-based lithographic ef-
fects) can be well accounted for in SRAM cells, because they are typically
small in size: the ubiquitous 6T SRAM cell contains only six transistors.

A. Singhee, R.A. Rutenbar, Novel Algorithms for Fast Statistical Analysis
of Scaled Circuits, Lecture Notes in Electrical Engineering 46,
c© Springer Science + Business Media B.V. 2009



124 FAST STATISTICAL ANALYSIS

What really cause significant variation then are the random inter-device
variation sources, like RDF and RCO (Sect. I.1). Further, the impact
of variations is roughly inversely proportional to the square root of the
transistor area [PDW89], and the transistors in SRAM cells tend be of
minimum size. Hence, SRAM cells are particularly susceptible to these
random variations, increasing the need for an efficient yield estimation
technique for these cells.

Memory designers have typically side-stepped the problem of yield es-
timation by using multiple process and environmental corners with large
safety margins. This approach, of course, is unreliable since it does not
account for the actual statistics of the SRAM cell performance metrics.
Worse, it usually results in significant over-design, which translates to
a squander of chip area and power, both being expensive commodities.
Monte Carlo simulation would be the ideal technique for reliably esti-
mating the yield, but as we saw, it can be prohibitively expensive for
HRCs. One avenue of attack is to abandon Monte Carlo. Several analyt-
ical and semi-analytical approaches have been suggested to model the
behavior of SRAM cells [BTM01][MMR04][CC05] and digital circuits
[MMR05] in the presence of process variations. All suffer from approxi-
mations necessary to make the problem tractable, or apply to a specific
performance metric. [MMR04] and [MMR05] assume a linear relation-
ship between the statistical variables and the performance metrics (e.g.,
static noise margin (SNM)), and assume that the statistical process pa-
rameters are normally distributed. These assumptions result in a normal
distribution assumption for the performance metric too, which can suffer
from gross errors, especially while modeling rare events: we shall see ex-
amples in the results section. When the distribution varies significantly
from Gaussian, [MMR04] chooses an F-distribution in an ad hoc manner.
[BTM01] presents a complex analytical model limited to a specific long-
channel transistor model (the transregional model) and further limited
to only static noise margin analysis for the 6T SRAM cell. [CC05] again
models only the static noise margin (SNM) for sub-threshold SRAM
cells under assumptions of independence and identical distribution of
the upper and lower SNM, which may not always be valid. All these
methods are specific to either one circuit, or one device model, or one
performance metric. This is a general problem with analytical methods:
they are not generalizable.

A different avenue of attack is to modify the Monte Carlo strategy.
[HLT83] shows how importance sampling can be used to predict failure
probabilities. Recently, [KJN06] applied an efficient formulation of these
ideas for modeling rare failure events of single 6T SRAM cells, based
on the concept of mixture importance sampling from [Hes03]. The ap-



Statistical Blockade 125

proach uses real SPICE simulations with no approximating equations.
However, the method only estimates the failure (exceedance) probability
of a single threshold value of the performance metric. A re-run is needed
to obtain probability estimates for another failure threshold: no com-
plete model of the tail of the distribution is computed. The method also
combines all performance metrics to compute a failure probability, given
fixed thresholds. Hence, there is no way to obtain separate probability
estimates for each metric, other than a separate run per metric.

In this chapter, we develop a novel, general and efficient Monte Carlo
method that addresses both of the problems previously mentioned: very
fast generation of 1) rare event samples, and 2) sound models of the rare
event (distribution tail) statistics for any performance metric. We refer
to this method as statistical blockade (SB). It imposes almost no a priori
limitations on the form of the statistics for the statistical parameters,
device models or performance metrics. The method is conceptually sim-
ple and employs ideas from two rather non-traditional sources: extreme
value theory and machine learning.

Extreme value theory (EVT) [Res87] is a branch of probability that
studies and optimally quantifies the statistics of, as the name suggests,
extreme or rare events. It has found wide statistical application in fields
such as hydrology [dH90], insurance [EKM03] and finance [EKM03]
among several others: wherever there is a need to estimate the prob-
ability of rare events. One of the most consequential applications, and,
indeed, one of the driving forces for the development of the theory of
extremal statistics, was the Dutch dike project following the disastrous
North Sea flood of 1953 that took over 1,800 human lives. One aspect
of the post-flood response was to determine appropriate heights for the
sea dikes in the Netherlands, such that the probability of a flood in a
year is reduced to some very small amount (e.g., 10−4). Technically, this
involved estimating the height of sea-water level corresponding to this
probability level – definitely a rare event – using statistical inference
based on historical data of sea-water level measurements. Furthermore,
the quantile to be estimated was much beyond the available data range.
Our problem of estimating extreme quantiles of the SRAM static noise
margin, using a limited number of Monte Carlo samples, is similar in
flavor to the dike height problem (if not in impact on the human condi-
tion). Hence, we can employ the same technical tools from EVT for our
problem.

However, the yield estimation problem is more “extreme” in the sense
of the failure probabilities to be estimated: often 10−8 to 10−9 or smaller.
To achieve reliable estimates of these quantiles we can need, again, im-
practically large Monte Carlo sample sizes. We tackle this problem by



126 FAST STATISTICAL ANALYSIS

using a filter to intelligently simulate only those points that are impor-
tant; i.e., rare. We note that generating each Monte Carlo point is neither
challenging, nor expensive relative to evaluating it using a SPICE simu-
lation. Hence, we use an appropriate filter to block those points that are
unlikely to fall in the low-probability tails of the performance metrics.
Many points are generated, but only the “rare” events are simulated.
Such a partial sampling of the performance distributions fits well with
the results from EVT that we exploit. The filter we use is a standard
classifier from machine learning, and its “blocking” activity gives the
method its name of statistical blockade.

In the rest of the chapter, we review relevant results from EVT, high-
lighting the limit theorems for the distributions of rare events. Then we
show how we can use these results for statistical inference from data,
which in our case is generated from a Monte Carlo simulation. Some
background on classifiers is discussed, allowing us to develop the pro-
posed statistical blockade framework. We then show how to extend this
framework to metrics with conditionals (e.g., max(), min()) that result
in disjoint rare event regions in the statistical parameter space, along
with a recursion based extension to produce reliable estimates for ex-
tremely rare events (6 to 8σ). Finally, we present experimental results
demonstrating the effectiveness of statistical blockade on realistic, circuit
test cases.

3.2 Modeling Rare Event Statistics

Rare events and their statistics have been deeply studied in the fields
of probability, reliability, hydrology and actuarial science. Let us first
state our modeling problem concretely and compile some theoretical
results that will help us solve this problem.

3.2.1 The Problem

Suppose we want to model the rare event statistics of the write time
of an SRAM cell. Figure 3.1 shows an example of the distribution of
the write time. We see that it is skewed to the right with a heavy right
tail. A typical approach is to run a Monte Carlo with a small sample
size (e.g., 1,000) and fit a standard analytical distribution to the data,
for example, a normal or a lognormal distribution. Such an approach
can be accurate for fitting the “body” of the distribution, but will be
grossly inaccurate in the tail of the distribution: the skewness of the
actual distribution or the heaviness of its tail will be difficult to match.
As a result, any prediction of the statistics of rare events, lying far in
the tail, will be very inaccurate.



Statistical Blockade 127

Figure 3.1. A possible skewed distribution for some SRAM metric (e.g., write time)

Let F denote the cumulative distribution function (CDF) of the write
time y, and let us define a tail threshold t to mark the beginning of the
tail (e.g., the 99-th percentile). Let z be the excess over the threshold t.
We can write the conditional CDF of the tail as

Ft(z) = P (Y − t ≤ z|Y > t) =
F (z + t) − F (t)

1 − F (t)
, (3.1)

and the overall CDF as

F (z + t) = (1 − F (t))Ft(z) + F (t). (3.2)

If we know F (t) and can estimate the conditional CDF of the tail Ft(z)
accurately, we can accurately estimate rare event statistics. For example,
the yield for some extreme threshold yf > t is given as

F (yf ) = (1 − F (t))Ft(yf − t) + F (t), (3.3)

and the corresponding failure probability F̄ (yf ) = 1 − F (yf ) is given as

F̄ (yf ) = (1 − F (t))(1 − Ft(yf − t)). (3.4)

F (t) can be accurately estimated using a few thousand simulations, since
t is not too far out in the tail. Then, the problem here is to efficiently
estimate the conditional tail CDF Ft as a simple analytical form, which
can then be used to compute statistical metrics such as (3.3) and (3.4) for
rare events. Of course, here we assume that any threshold yf of interest
will be far into the tail, such that yf ≫ t. This is easily satisfied for any
real HRC scenario, for example our 1 Mb cache example from Sect. 3.1.
We also assume that the extreme values of interest lie only in the upper
tail of the distribution. This is without any loss of generality, because
any lower tail can be converted to the upper tail by replacing y = −y,



128 FAST STATISTICAL ANALYSIS

and if both tails are of interest (with symmetrical tail thresholds), we can
use y = |y|. This same approach of fitting a CDF to the exceedances over
some threshold has been developed and widely applied by hydrologists
under the name of the peaks over threshold (POT) method [EKM03]. In
their case though, the data is from historical record and not synthetically
generated. We now look at some results from extreme value theory that
are directly applicable to the problem of estimating the tail CDF.

3.2.2 Extreme Value Theory: Tail Distributions
Suppose that Y1, Y2, . . . is a sequence of independent, identically distrib-
uted random variables from the CDF F . For any sample {Y1, Y2, . . . , YN }
of size N , define the sample maximum as

MN = max(Y1, Y2, . . . , YN ), N ≥ 2. (3.5)

The probability of MN ≤ y is the probability of all of {Y1, Y2, . . . , YN }
being ≤ y. Hence,

P (MN ≤ y) = P (Y1 ≤ y, . . . , YN ≤ y) =
N
∏

i=1

P (Yi ≤ y) = FN (y). (3.6)

An important result from EVT addresses the question: What are the
possible limiting distributions of MN as N → ∞? This result is stated
in the following theorem by Fisher and Tippett [FT28].

Theorem 3.1 (Fisher–Tippett [FT28]). If there exist normalizing con-
stants aN , bN , and some non-degenerate CDF H, such that

P

(

MN − bN

aN
≤ y

)

= FN (aNy + bN ) → H(y) as N → ∞, y ∈ R,

(3.7)
then H belongs to the type of one of the following three CDFs :

Φα(y) =

{

0, y ≤ 0

e−y−α
, y > 0

, α > 0 (Fréchet), (3.8)

Ψα(y) =

{

e−(−y)α
, y ≤ 0

1, y > 0
, α > 0 (Weibull), (3.9)

Λ(y) = e−e−y
, y ∈ R (Gumbel). (3.10)

This amazing result formed the foundation of estimation of rare event
statistics. Roughly, it says that for a very large class of CDFs, we can
model the distribution of the normalized sample maximum MN as one of



Statistical Blockade 129

three standard distributions: Fréchet, Weibull and Gumbel. These three
CDFs can be combined together into a generalized extreme value (GEV)
distribution:

Hξ(y) =

{
e−(1−ξy)1/ξ

, ξ �= 0

e−e−y
, ξ = 0

, where 1 − ξy > 0. (3.11)

The three CDFs are obtained as follows.

ξ = −α−1 < 0 gives the Fréchet CDF Φα,

ξ = α−1 > 0 gives the Weibull CDF Ψα, and

ξ = 0 gives the Gumbel CDF Λ.

The condition (3.7) is commonly stated as F lies in the maximum do-
main of attraction of H , or F ∈ MDA(H). Hence, for non-degenerate H ,
Theorem 3.1 can be stated succinctly as

F ∈ MDA(H) ⇒ H is of type Hξ.

It is interesting to note the similarity between this theorem regarding
maxima and the popular central limit theorem (CLT), which provides
the limiting distribution for the sum of i.i.d. random variables. The most
popular form of the CLT is as follows.

Theorem 3.2 (Central Limit Theorem). Define SN = Y1 +Y2 + · · · +YN

as the sample sum of N i.i.d. random variables from some CDF F . Let
μ = E(Y ) be the mean, and σ2 = E[(y − μ)2] be the variance for F . If
σ < ∞, then

P

(

SN − μN

σ
√

N
≤ y

)

→ Φ(y) as N → ∞, y ∈ R, (3.12)

where Φ is the standard normal CDF with mean 0 and variance 1.

Φ, the standard normal CDF, is not to be confused with Φα, the
Fréchet CDF. We use this potentially confusing notation for consistency
with standard literature. Comparing (3.12) and (3.7), we easily see the
parallels between the two theorems, made explicit in Table 3.1. Of course,
the limiting distribution for maxima is more complex than that for sums
(of RVs with finite variance) because it has an extra parameter ξ, and the
normalizing constants have a more complex dependence on the CDF F .
[EKM03] provides these constants for some common distribution types
of F . Also, for a general form of the CLT that handles infinite variance,
see [EKM03].



130 FAST STATISTICAL ANALYSIS

CLT SN σ
√

N µN Φ standard normal
Fisher–Tippett MN aN bN Hξ GEV

Table 3.1. The Fisher–Tippett theorem for maxima is congruent to the central limit
theorem for sums

Hξ Distributions Expression
in MDA(Hξ)

Φ−1/ξ Cauchy F (y) = 1
2

+ arctan(y)
π

Pareto F (y) = 1 − y−α, K > 0, α = −1/ξ > 0

Loggamma f(y) = αβ

Γ(β)
(lny)β−1y−α−1, y > 1, α,β > 0

Ψ1/ξ Uniform f(y) = 1, y ∈ (0,1)

Beta f(y) = Γ(a+b)
Γ(a)Γ(b)

ya−1(1 − y)b−1, y ∈ (0,1), a, b,> 0

Λ Normal f(y) = e−(y−µ)2/2σ2

√
2πσ

Lognormal f(y) = e−(ln y−µ)2/2σ2

√
2πσy

, y > 0, µ ∈ R, σ > 0

Gamma f(y) = βα

Γ(α)
yα−1e−βy, y > 0, α,β > 0

Exponential F (x) = 1 − e−λy, y > 0, K,λ > 0

Table 3.2. Some common distributions lying in MDA(Hξ). For a longer list, see
[EKM03]. F denote the CDF and f the PDF

The conditions for which F ∈ MDA(H) for some non-degenerate H ,
although tighter than for the general CLT, are quite general for most
practical purposes, and known well. Gnedenko [Gne43] provided the first
rigorous proof for the Fisher–Tippett theorem, showing conditions on F
required for the convergence to each of the three limiting CDFs. We state
the conditions in Sect. 3.2.3. For now, we only list some common distrib-
utions belonging to MDA(Hξ), in Table 3.2, and immediately proceed to
the result due to Balkema and de Haan [BdH74] and Pickands [Pic75],
that forms the basis for our proposed tail modeling method. We recall
the definition of Ft as the conditional tail CDF for a tail threshold t, as
in (3.1). Then, the following is true.

Theorem 3.3 (Balkema and de Haan [BdH74], and Pickands [Pic75]).
For every ξ ∈ R, F ∈ MDA(Hξ) if and only if

lim
t→∞

sup
z≥0

|Ft(z) − Gξ,β(t)(z)| = 0 (3.13)



Statistical Blockade 131

for some positive function β(t), where Gξ,β(z) is the generalized Pareto
distribution (GPD)

Gξ,β(z) =

{
1 − (1 − ξ z

β )1/ξ, ξ �= 0, z ∈ D(ξ, β)

1 − e−z/β , ξ = 0, z ≥ 0
, (3.14)

where

D(ξ, β) =

{

[0, ∞), ξ ≤ 0
[0, β/ξ] , ξ > 0

.

In other words, for any distribution F in the maximum domain of at-
traction of the GEV distribution, the conditional tail distribution Ft

converges to a GPD as we move further out in the tail.
This is an extremely useful result: it implies that, if we can generate

enough points in the tail of a distribution (y ≥ t), in most practical cases,
we can fit the simple, analytical GPD to the data and make predictions
further out in the tail. This approach would be independent of the circuit
or the performance metric being considered. Of course, two important
questions remain:

1 How do we efficiently generate a large number of points in the tail
(y ≥ t)?

2 How do we fit the GPD to the generated tail points?

For answers to these questions, the reader may jump forward to
Sect. 3.2.4. We now review the conditions on F for these EVT limit
theorems to hold.

3.2.3 Tail Regularity Conditions Required
for F ∈ MDA(Hξ)

Until now we have “hand-waved” our way through the EVT limit the-
orems by saying that they apply to “large classes” of CDFs F . In this
section, we review the concrete necessary and sufficient conditions on the
tail of F , that completely characterize the maximum domain of attrac-
tion of the GEV Hξ (MDA(Hξ)). Sufficient conditions were provided by
von Mises [vM36], and Gnedenko first derived the complete MDA(Hξ)
in [Gne43]. We review the characterization of MDA(Hξ) using the pre-
sentations by Gnedenko, and in [EKM03].

From the form of the GPD in (3.14) and Fig. 3.2, intuition tells us
that the tail of F should show some “smoothness” or “regularity” in its
variation as we move farther out in the tail. Karamata’s mathematical
definition of regularity [Kar33] is relevant here:



132 FAST STATISTICAL ANALYSIS

Figure 3.2. The probability density function for a GPD with β = 1. We get long
unbounded tails for ξ ≤ 0

1) A positive, integrable function g(y) on (0, ∞) is slowly varying at ∞
if

lim
y→∞

g(ky)

g(y)
= 1, ∀k > 0. (3.15)

We write this as g ∈ R0.

2) A positive, integrable function f(y) on (0, ∞) has regular variation
of index α at ∞ if

lim
y→∞

f(ky)

f(y)
= tα, ∀k > 0. (3.16)

We write this as g ∈ Rα. Note that a regularly varying function f ∈
Rα can be written as

f(y) = yαg(y), (3.17)

where g(y) is a slowly varying function (g ∈ R0). Some examples of
functions regularly varying at ∞ are

yα, yα ln(1 + y), (y ln(1 + y))α,

for any real α, while the following are not regularly varying:

1 + cos(y), e[ln(1+y)],

where [·] gives the integer part.

We also define yF as the upper or right endpoint of F , such that

F (yF ) = 1, and F (y) < 1 for y < yF . (3.18)



Statistical Blockade 133

For F with infinite support, yF = ∞. Now we can state the characteri-
zations of MDA(Hξ).

Theorem 3.4 (MDA(Hξ) for ξ < 0; i.e., MDA(Φα) for α = −ξ−1). CDF
F ∈ MDA(Φα), α > 0, if and only if

1 − F (y) ∈ R −α. (3.19)

Theorem 3.5 (MDA(Hξ) for ξ = 0; i.e., MDA(Λ)). CDF F ∈ MDA(Λ),
if and only if there exists some continuous function a(y), such that
limy↑yF

a(y) = 0, and

lim
y↑yF

1 − F (y(1 + a(y)t))

1 − F (y)
= e−t. (3.20)

Here y ↑ yF means convergence from the left ; i.e., y ≯ yF .

Theorem 3.6 (MDA(Hξ) for ξ > 0; i.e., MDA(Ψα) for α = ξ−1). CDF
F ∈ MDA(Ψα), α > 0, if and only if

1 − F

(

yF − 1

y

)

∈ R −α. (3.21)

Detailed proofs and discussion of these conditions can be found in
[Res87]. Most common continuous CDFs satisfy one of these conditions
and, hence, allow a GPD approximation for their tails, as per Theo-
rem 3.3. Examples of common discrete distributions that do not satisfy
these conditions are the Poisson and hypergeometric distributions, as
discussed in [EKM03]. For our problems of statistical analysis of high
replication circuits, however, we expect mainly to see continuous CDFs
with long smooth tails, allowing reasonable application of the GPD ap-
proximation. This argument is supported by the promising results in
Sects. 3.3.4 and 3.4.4.

3.2.4 Estimating the Tail: Fitting the GPD to Data
For now, let us suppose that we can generate a reasonably large number
of points in the tail of our performance distribution. For this we might,
theoretically, use standard Monte Carlo simulation with an extremely
large sample size, or, more practically, the statistical blockade sampling
method proposed in Sect. 3.3.3. Let this data be Z = (Z1, . . . ,Zn), where
each Zi is the exceedance over the tail threshold t (Zi > 0, ∀i). All Zi

are i.i.d. random variables with common CDF Ft. Then we have the
problem of estimating the optimal GPD parameters ξ, β from this tail
data, so as to best fit the conditional tail CDF Ft. There are several



134 FAST STATISTICAL ANALYSIS

options; we review three of the most popular ones here. In particular we
focus on methods that require no manual effort and can be completely
optimized. For manual methods based on graphical exploration of the
data, see [EKM03].

3.2.4.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a standard statistical estima-
tion technique that tries to estimate those model parameters (here ξ, β
of the GPD) that maximize the “chances” of obtaining the data that we
have observed. The probability density function of a GPD Gξ,β is given
as

gξ,β(z) =

{
1
β (1 − ξ z

β )1/ξ−1, ξ �= 0, z ∈ D(ξ, β)
1
β e−z/β, ξ = 0, z ≥ 0

, (3.22)

where D(ξ, β) is defined in Theorem 3.3. Recall that all Zi are i.i.d.
random variables with common CDF Ft. We assume that Ft is of the
form of a GPD. The likelihood (“chances”) of having seen this data from
an underlying GPD is the multivariate probability density associated
with it, and is given as

L(ξ, β|Z) = gξ,β(Z1, . . . ,Zn) =
n

∏

i=1

gξ,β(Zi). (3.23)

Since L(ξ, β|Z) can be too small for accurate computation with finite
accuracy, it is typical to use the log-likelihood function

ℓ(ξ, β|Z) = ln(L(ξ, β|Z)) =

n
∑

i=1

ln(gξ,β(Zi)), (3.24)

which increases monotonically with L. MLE then computes (ξ, β) to
maximize this log-likelihood, as

(ξ̂, β̂)mle = argmaxξ,β

n
∑

i=1

ln(gξ,β(Zi)). (3.25)

Substitution of (3.22) in (3.25) and subsequent algebra allows for a sim-
plification to a one dimensional search, that can be exploited by a careful
implementation of a Newton–Raphson algorithm, as shown in [Gri93].

Smith [Smi87] studies convergence when Ft is not exactly of GPD

form, and provides limit results for the distributions of (ξ̂, β̂)mle for each
of the three cases, F ∈ MDA(Φ−1/ξ), F ∈ MDA(Λ) and F ∈ MDA(Ψ1/ξ).

For ξ < 1
2 , the MLE estimates are asymptotically normal and efficient



Statistical Blockade 135

(bias = 0) under certain regularity assumptions on F . If (ξ, β) are the
exact values to be estimated, then as the sample size n → ∞, the variance
of the MLE estimates is given as

var

[

ξ̂

β̂

]

→ 1 − ξ

n

[

1 − ξ β
β 2β2

]

, ξ <
1

2
. (3.26)

When ξ ≥ 1
2 , MLE convergence can be difficult and special techniques

are needed [Smi85]. However, ξ ≥ 1
2 is usually rare, since it corresponds

to a finite tail with gξ,β(z) > 0 at the endpoint (Fig. 3.2).

3.2.4.2 Moment Matching

An ad hoc way of estimating the GPD parameters is to match the mo-
ments of the GPD with the moments of the data, as we now describe.
According to [HW87], the p-th moment for the GPD exists if ξ > −1/p.
In many practical cases we expect finite mean and variance, and hence,
existence of the first and second moments. The mean and variance for
Gξ,β are given as

μ =
β

1 + ξ
, σ2 =

β2

(1 + ξ)2(1 + 2ξ)
, (3.27)

respectively. Equating these with the sample mean and variance, μ̂ and
σ̂2, respectively, we can compute estimates of ξ and β:

ξ̂ =
1

2

(

μ̂2

σ̂2
− 1

)

, β̂ =
μ̂

2

(

μ̂2

σ̂2
+ 1

)

. (3.28)

For ξ > −1/4, the estimates are asymptotically normal. See [HW87] for
variance estimates for this limit distribution, which are skipped here
since this method is not as popular or reliable as the other two methods
(MLE and PWM).

3.2.4.3 Probability-Weighted Moment Matching

Probability-weighted moments (PWMs) [Hos86] of a continuous random
variable Y with CDF F are generalizations of the standard moments,
and are defined as

Mp,r,s = E[Y pF r(Y )(1 − F (Y ))s]. (3.29)

The standard p-th moment is given by Mp,0,0. For the GPD, we have a
convenient relationship between M1,0,s and (ξ, β), given by

ms = M1,0,s =
β

(1 + s)(1 + s + ξ)
, ξ > 0. (3.30)



136 FAST STATISTICAL ANALYSIS

Then, we can write

β =
2m0m1

m0 − 2m1
, ξ =

m0

m0 − 2m1
− 2. (3.31)

We estimate these PWMs from the data sample, as

m̂s =
1

n

n
∑

i=1

(1 − qi)
sYi,n, (3.32)

where

Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n (3.33)

is the ordered sample, and

qi =
i + γ

n + δ
(3.34)

with γ = −0.35, δ = 0, as suggested in [HW87]. The estimates (ξ̂, β̂) con-
verge to the exact values as n → ∞, and are asymptotically normally
distributed with covariance given by

var

[

ξ̂

β̂

]

→ n−1

(1 + 2ξ)(3 + 2ξ)

×
[

(1 + ξ)(2 + ξ)2(1 + ξ + 2ξ2) β(2 + ξ)(2 + 6ξ + 7ξ2 + 2ξ3)
β(2 + ξ)(2 + 6ξ + 7ξ2 + 2ξ3) β2(7 + 18ξ + 11ξ2 + 2ξ3)

]

.

(3.35)

Based on an extensive simulation study, [HW87] suggests that the
PWM method often has lower bias than moment matching and MLE
for sample sizes up to 500. Also, the MLE search (3.25) is shown to
suffer from some convergence problems when ξ is estimated close to 1/2.
Finally, the study also suggests that PWM matching gives more reliable
estimates of the variability of the estimated parameters, as per (3.35).
Based on these reasons, we choose PWM matching for the purpose of
this thesis.

Once we have estimated a GPD model of the conditional CDF above
a threshold t, we can estimate the failure probability for any value yf

by substituting the GPD in (3.4) as

P (Y > yf ) ≈ (1 − F (t))(1 − Gξ,β(yf − t)). (3.36)

The next section addresses the important remaining question: How do
we efficiently generate a large number of points in the tail (y ≥ t)?



Statistical Blockade 137

3.3 Statistical Blockade
Before we can introduce the proposed rare event sampling technique,

a review of the concept of classification from machine learning seems
appropriate, given that it will form a cornerstone for the proposed tech-
nique. Readers familiar with classifiers may skip to Sect. 3.3.3.

3.3.1 Classification
Consider the problem of detecting spam in incoming email. A spam de-
tector is some computer program that takes in as inputs, certain features
of any new incoming email message, and predicts whether the message
is “email” or “spam”. The input features may be such as the sender
email id, the occurrence of words commonly seen in spam email, etc.
We can think of this program as a function with these features as in-
puts and a categorical or discrete output. The output can assume one
of two possible values, “email” or “spam”, which we call classes. Any
such function, that predicts the class of any given input vector, is called
a classifier, and this act of such prediction is called classification. In
the general case, we may have any number of classes, and any number
of input features. Consider, for example, Fig. 3.3, where there are two
input features x = (x1, x2) and three possible classes denoted by ◦, △
and +. A classifier would be a function C(x) that, given some input
vector x, returns 0, 1 or 2 (for ◦, △ or +, respectively); i.e., it predicts
the class that x belongs to. Hence, the classifier defines some inter-class
boundaries in the input space: Fig. 3.3 also shows a possible set of such
boundaries.

For a two-class problem with one linear boundary, a simple classifier
can be based on linear regression as

C(x) = sign[xTw + b], (3.37)

where w and b are chosen such that the linear function xTw + b is > 0
for any point in one class and < 0 for any point in the other class. The
sign[·] function returns the sign of the linear function, converting its
argument from a real variable to a discrete valued variable ∈ {−1,1}.
The boundary defined by such a linear regression based classifier is

xTw + b = 0. (3.38)

Before any classifier can be used, it has to be “trained”; i.e., optimal
values for its parameters have to be determined. In our linear regression
example, the parameters are the elements of w, and b. Such training
starts from a training sample of points for which the class values are
known, and then computes the parameters so as to minimize the error



138 FAST STATISTICAL ANALYSIS

Figure 3.3. Example with two input features (dimensions) and three possible classes.
The solid lines show a possible set of boundaries dividing the classes

between the classifier predictions and the actual class values for all the
training points. Denote the vector of all classifier parameters by p. Let
(x1, y1), (x2, y2), . . . , (xn, yn) be the n training points, where yi is the
class of the i-th point xi. We compute p such that

min
p

Error({C(xi), yi}n
i=1), (3.39)

where the precise definition of Error depends on the particular classifier
and optimization method used. We now review one particularly success-
ful type of classifier, called support vector machines, which we use for
the implementation of statistical blockade in this thesis.

3.3.2 Support Vector Classifier
A support vector machine (SVM) classifier uses the optimal separating
hyperplane as the decision boundary between classes in the input space.
We provide an introductory discussion of the basic ideas behind SVMs
in this section. SVMs enjoy extensive application for statistical inference
in a wide variety of problem domains; see [Bur98] for example. There
are good reasons for this widespread popularity of SMVs. The basic
idea is intuitive and simple, and it allows for classifiers with very good
generalizability (low overfitting), relative to many other competing ap-
proaches [Bur98][HTF01]. [Bur98] provides a good tutorial of SVMs in
the classification context.

The basic SVM separates two classes with a linear boundary (the op-
timal separating hyperplane), although, it has been generalized to easily



Statistical Blockade 139

Figure 3.4. Example of data separable with a hyperplane. In this case, the hyperplane
is a straight line. Multiple options for the separating hyperplane are shown as dashed
straight lines

handle nonlinear boundaries and multiple (≥ 3) classes, as discussed in
[Bur98] and [HTF01], for instance. Here we restrict our discussion to the
two-class, linear classifier that we use for our implementation of the pro-
posed statistical blockade method. First, let us assume that the training
points are separable with a linear boundary: there exists a hyperplane
that can completely divide the two classes without any errors. This case
is shown in Fig. 3.4. We call this hyperplane, the separating hyperplane.
We start with a linear classification rule, as in (3.37)

C(x) = sign[xTw + b] (3.40)

with the separating hyperplane given by

S : xTw + b = 0. (3.41)

Recall that the training data consists of n pairs (x1, y1), (x2, y2), . . . ,
(xn, yn), where y1 ∈ {−1,1}. If we can correctly orient this separating
hyperplane S; i.e., there are no training errors, then we expect that

xT
i w + b > 0 whenever yi = 1, and

xT
i w + b < 0 whenever yi = −1. (3.42)

Then,
yi(x

T
i w + b) > 0, ∀i. (3.43)

Even with this condition, there are several choices for the separating
hyperplane, as shown in Fig. 3.4: which is the best choice? The best
choice is called, understandably, the optimal separating hyperplane, and
it maximizes the distance to the point nearest to it from either class,



140 FAST STATISTICAL ANALYSIS

Figure 3.5. Optimal separating hyperplane maximizes the margin between the near-
est points from the two classes, shown here for both separable and non-separable data.
The support vectors lie on the margin hyperplanes, and are circled in both cases

as shown in Fig. 3.5(a). For any such hyperplane, let d+ and d− denote
the distance to the nearest point from classes 1 and −1, respectively.
We define the margin of the separating hyperplane as d+ +d−. Suppose,
we always center the hyperplane in the margin, so that yi(x

T
i w + b) = 1

for the nearest points in either class. The signed perpendicular distance
between any point x and the hyperplane is given by

xTw + b

‖w‖ . (3.44)

Hence,

d+ = d− =
1

‖w‖ , (3.45)

giving us a margin of 2
‖w‖ . The optimal separating hyperplane is obtained

by maximizing this margin as

min
w,b

1

2
‖w‖2

subject to yi(x
T
i w + b) ≥ 1, i = 1, . . . , n.

(3.46)

The Lagrangian formulation of this optimization problem is given as

min
w,b

1

2
‖w‖2 −

n
∑

i=1

μi[yi(x
T
i w + b) − 1], (3.47)



Statistical Blockade 141

where μi are the Lagrangian multipliers. At the solution, the derivatives
of the objective are zero, giving us

w =
n

∑

i=1

μiyixi. (3.48)

The multipliers μi are nonzero only for those points that satisfy the
equality in the constraints in (3.46); i.e., for points exactly on the mar-
gin hyperplanes (S+, S−). Hence, the orientation of the separating hy-
perplane is determined only by those points that lie on the margin hy-
perplanes, giving them the name of support points . Figure 3.5(a) shows
the support points as circled.

All of this development assumed that the training points are separa-
ble using a hyperplane. Of course, in many practical situations this is
not true: even the optimal separating hyperplane can suffer from mis-
classifications due to “overlap” in the classes. Figure 3.5(b) shows an
example. The complete linear SVM formulation accounts for these cases
by including positive “slack” variables δi, i = 1, . . . , n in the constraints
of (3.46) as

yi(x
T
i w + b) ≥ 1 − δi, i = 1, . . . , n,

δi ≥ 0, i = 1, . . . , n. (3.49)

For an error to occur on point i, δi > 1, hence
∑n

i=1 δi is an upper
bound on the number of misclassifications. Since we wish to minimize
the training error and maximize the margin size, a natural choice for the
optimization problem is

min
w,b

1

2
‖w‖2 + γ

n
∑

i=1

δi subject to (3.49), (3.50)

where γ is a user-supplied tuning parameter. Note that the distance
of a misclassified point from its margin hyperplane is δi

‖w‖ , as shown in

Fig. 3.5(b). All points on their margin hyperplane or on the wrong side of
it are called the support vectors, since they alone determine the estimates
of w and b, in a manner similar to the separable case. This optimiza-
tion problem is easiest to solve in its dual form. We refer the reader to
[Bur98] and [HTF01] for further details on these aspects, and generaliza-
tions of SVMs to nonlinear boundaries and multiple classes. SVMs are a
popular, well researched classification strategy, and optimized software
implementations are readily available; for example, SVMlight [Joa99] and
WEKA [WF05].



142 FAST STATISTICAL ANALYSIS

Figure 3.6. The tail and body regions in the statistical parameter space. The dashed
line is the exact tail region boundary for tail threshold t. The solid line is the relaxed
boundary modeled by the classifier for a classification threshold tc < t

3.3.3 The Statistical Blockade Algorithm
We are now almost ready to synthesize all the pieces of the proposed
statistical blockade: only a mapping of the theory in the foregoing sec-
tions to various aspects of the high replication circuit problem is needed.
As in Chap. 1, we let any circuit performance metric, or simply, output
y be computed as

y = fsim(x). (3.51)

Here, x is a point in the statistical parameter (e.g., Vt, tox ) space, or
simply, the input space, and fsim includes expensive SPICE simulation.
We assume that y has some probability distribution F , with an ex-
tended tail. Suppose, we define a large tail threshold t for y, then from
the developments in Sect. 3.2.2 we know that we can approximate the
conditional tail CDF Ft by a generalized Pareto distribution Gξ,β . Sec-
tion 3.2.4 shows how we can estimate the GPD parameters (ξ, β) from
data drawn from the tail distribution. We now make explicit our efficient
tail sampling strategy that will generate the tail points for fitting this
GPD.

Corresponding to the tail of output distribution, we expect a “tail
region” in the input space: any statistical parameter values drawn from
this tail region will give an output value y > t. Figure 3.6 shows an ex-
ample of such a tail region for two inputs. The rest of the input space
is called the “body” region, corresponding to the body of the output
distribution F . In Fig. 3.6 these two regions are separated by a dashed
line. The key idea behind the proposed sampling technique is to iden-
tify the tail region and simulate only those Monte Carlo points that are
likely to lie in this tail region. Here, we exploit the common fact that
generating the random values for a Monte Carlo sample point is very
cheap compared to actually simulating the point as in (3.51). Hence, if



Statistical Blockade 143

Algorithm 3.1 The statistical blockade algorithm for efficiently sam-
pling rare events and estimating their probability distribution

Require: training sample size n0 (e.g., 1,000); total sample size n; per-
centages pt (e.g., 99%), pc (e.g., 97%)

1: X = MonteCarlo(n0)
2: y = fsim(X)
3: t = Percentile(y, pt)
4: tc = Percentile(y, pc)
5: C = BuildClassifier(X, y, tc) // C is a classifier
6: y = fsim(Filter(C, MonteCarlo(n)))
7: ytail = {yi ∈ y : yi > t}
8: (ξ, β) = FitGPD(ytail − t)

we generate points as in standard Monte Carlo, but block – not simu-
late – those points that are unlikely to fall in the tail region, we can
drastically cut down the total time spent. This reduction in time spent
is drastic because we are trying to simulate only the rare events, which
by definition constitute a very small percentage of the total Monte Carlo
sample size. As might be obvious to the discerning reader, we can use
a classifier to distinguish the tail and body regions, and to block out
the body points. For any candidate point in the input space, generated
from standard Monte Carlo, the classifier can predict its membership in
either the “body” or the “tail” classes. Only the “tail” points are then
simulated.

To build this model of the tail region boundary, the classifier can be
trained with a small (e.g., 1,000 points) training set of simulated Monte
Carlo sample points. However, it is difficult, if not impossible to build
an exact model of the boundary in general. Misclassifications, at least
on points unseen during training, is unavoidable. Hence, we relax the
accuracy requirement to allow for classification error. This is done by
building the classification boundary at a classification threshold tc that
is less than the tail threshold t. Since we have assumed that only the
upper (right) tail is relevant, the tail region corresponding to t will be a
subset of the tail region corresponding to tc, if tc < t. This will help to
ensure that, even if the classifier is imperfect, it is unlikely that it will
misclassify points in the true tail region (for t). The relaxed boundary
corresponding to such a tc is shown as the solid line in Fig. 3.6.

The statistical blockade algorithm is then as in Algorithm 3.1. The al-
gorithm derives its name from the blocking activity of the classifier. We
also refer to this classifier as the blockade filter and its blocking activity
as blockade filtering. The thresholds t = pt-th percentile and tc = pc-th



144 FAST STATISTICAL ANALYSIS

Figure 3.7. The efficient tail (rare event) sampling method of statistical blockade

percentile are estimated from the small initial Monte Carlo run, which
also gives the n0 training points for the classifier. Typical values for these
constants are shown in Algorithm 3.1. The function MonteCarlo(n) gen-
erates n points in the statistical parameter space, which are stored in
the n × s matrix X, where s is the input dimensionality. Each row of X
is a point in s dimensions. y is a vector of output values computed from
simulations. The function BuildClassifier(X, y, tc) trains and re-
turns a classifier using the training set (X,y) and classification thresh-
old tc. The function Filter(C, X) blocks the points in X classified
as “body” by the classifier C, and returns only the points classified as
“tail”. FitGPD(ytail − t) computes the parameters (ξ, β) for the best
GPD approximation Gξ,β to the conditional CDF of the exceedances
of the tail points in ytail over t. We can then use this GPD model to
compute statistical metrics for rare events, for example, the failure prob-
ability for some threshold yf , as in (3.36). This sampling procedure is
also illustrated in Fig. 3.7.

3.3.3.1 Note on Choosing and Unbiasing the Classifier

The algorithm places no restrictions on the choice of classifier. In this
thesis, we use support vector machines, described in Sect. 3.3.2. We
make some practical observations here that are relevant for the choice of
classifier. High replication circuits naturally tend to be small, relatively
simple circuits. It is highly unlikely that a complex, large circuit will be



Statistical Blockade 145

replicated thousands to millions of times on the same chip. This level
of replication often naturally coincides with simple functionality. As a
result, we often do not expect to see drastically nonlinear boundaries
for the tail regions of these circuits. Nor do we expect to see very com-
plex topologies of the tail regions. These considerations, along with the
safety margin awarded by a classification threshold tc less than t, led us
to use linear SVMs. Indeed, linear SVMs suffer minimally from overfit-
ting issues and from the complex parameter selection problems of non-
linear, kernel-based SVMs. As we shall demonstrate with experiments
in Sects. 3.3.4 and 3.4.4, this choice does result in an effective imple-
mentation of statistical blockade. For cases where a strongly nonlinear
boundary exists, a linear classifier may not suffice, and more sophisti-
cated classification techniques may be required [HTF01]. The statistical
blockade framework however, should not need any fundamental change.

An important technical point to note about the classifier construction
is as follows. The training set will typically have many more body points
than tail points. Hence, even if all or most of the tail points are misclas-
sified, the training error will be low as long as most of the body points
are correctly classified. This will result in a classifier that is biased to
allow more misclassifications of points in the tail region. However, we
need to minimize misclassification of tail points to avoid distorting the
statistics of the simulated tail points. Hence, we need to reverse bias
the classification error. Using the technique proposed in [MBJ99], we
penalize misclassifications of tail points more than misclassifications of
body points. In the context of SVMs, let us rewrite the training objective
function (3.50) as

min
w,b

1

2
‖w‖2 + γ+

∑

i:yi=1

δi + γ−

∑

i:yi=−1

δi subject to (3.48), (3.52)

where γ+ and γ− are possibly different penalty factors for the two classes
(“tail” and “body” in our case). If, as in [MBJ99], we choose

γ+

γ−
=

Number of ‘ − ’ training points

Number of ‘ + ’ training points
=

Number of “body” points

Number of “tail” points
,

(3.53)
we can obtain an unbiased classifier. Any other choice of classifier (in-
stead of SVMs) will also require such asymmetric penalties during train-
ing.

3.3.4 Experimental Results
We now apply the statistical blockade method to three test cases:

1) a 6T SRAM cell,



146 FAST STATISTICAL ANALYSIS

2) a complete 64-bit SRAM column with write driver, and

3) a master–slave flip-flop with the scan chain component.

The initial training sample used to construct each blockade filter is from
a standard Monte Carlo run of n0 = 1,000 points. The filter is an SVM
classifier built using the 97-th percentile of each relevant performance
metric as the classification threshold tc. The tail threshold is defined as
the 99-th percentile.

In all cases the rare event statistical metric we compute is the failure
probability F̄ (yf ) for any failure threshold yf , using the GPD fit to the
tail defined by the tail threshold t. We represent this failure probability
as the equivalent quantile yσ on the standard normal distribution:

yσ = Φ−1(1 − F̄ (yf )) = Φ−1(F (yf )) (3.54)

where Φ is the standard normal CDF. For example, a failure probability
of F̄ = 0.00135 implies a cumulative probability of F = 1 − F̄ = 0.99865.
The equivalent point on a standard normal, having the same cumulative
probability, is yσ = 3. In other words, any yf with a failure probability
of 0.00135 is a “3σ” point.

We can compute F̄ (yf ), and hence yσ, in three different ways:

I. Empirically : Run a large Monte Carlo run where all points are fully
simulated; i.e., with no use of blockade filtering or EVT. Say we
use a sample size of nMC (e.g., 1 million), giving us nMC values
yi, i = 1, . . . , nMC. Then we can empirically compute F̄ (yf ) as

F̄ (yf ) ≈ |{yi : yi > yf }|
nMC

. (3.55)

Of course, for any yf > max({y1, . . . , ynMC }), we will get the same
estimate of 0 failure probability, and yσ = ∞, since there are no points
beyond this yf to give us any information about such rare events.
Hence, the prediction power of the empirical method is limited by
the Monte Carlo sample size.

II. Using GPD model, with no blockade filtering : We can run a full Monte
Carlo run with no filtering, as in the empirical estimation case, but
then fit a GPD to the points in the tail, defined by the tail threshold t.
These are the points {yi : yi > t}. Using this GPD, Gξ,β , in (3.36),
which we reproduce here for convenience,

F̄ (yf ) = P (Y > yf ) ≈ (1 − F (t))(1 − Gξ,β(yf − t)), (3.56)

we can compute the failure probability. F (t) can be estimated em-
pirically with good accuracy. The GPD model extends the prediction



Statistical Blockade 147

Figure 3.8. A 6-transistor SRAM cell with write driver and column mux

power all the way to ∞. Of course, the confidence in the prediction
would decrease as we move to very high values of yf .

III.Using statistical blockade: Here we use the complete statistical block-
ade flow, where only candidate tail points identified by the blockade
filter are simulated, and a GPD tail model is estimated from the ac-
tual tail points y > t. Here, too, we use (3.56), but the points used
to estimate (ξ, β) are obtained from blockade filtering. Further, we
use a Monte Carlo sample size that is much smaller than for method
II, to test statistical blockade in a practical setting, where we want
to use as small a sample size as possible.

For all the test cases we compare the predictions of yσ from these three
methods. Method II gives the most accurate estimates, since it uses a
large number of points and no filtering. In some cases, we also show
estimates computed using a Gaussian distribution fit to highlight the
error in such an approach. Let us now look at the test circuits in more
detail, along with the results we obtain.

3.3.4.1 6T SRAM Cell

The first test case is a standard 6T SRAM cell with bit-lines connected to
a column multiplexor and a non-restoring write driver, shown in Fig. 3.8.
The device and statistical models are the same as for the two-stage
opamp in Sect. 1.7.2. We use the Cadence 90 nm Generic PDK library,
with independent, normally distributed threshold voltage variation per
transistor and a global gate oxide thickness variation, also normally dis-
tributed. This gives us a total of 9 statistical parameters. The metric



148 FAST STATISTICAL ANALYSIS

τw (yf ) (I) Standard (II) GPD (III) Statistical
(FO4) Monte Carlo no blockade filter blockade

2.4 3.404 3.408 3.379
2.5 3.886 3.886 3.868
2.6 4.526 4.354 4.352
2.7 ∞ 4.821 4.845
2.8 ∞ 5.297 5.356
2.9 ∞ 5.789 5.899
3.0 ∞ 6.310 6.493

Number
of simulations

1,000,000 1,000,000 5,379

Table 3.3. Prediction of failure probability as yσ by methods I, II and III, for a
6T SRAM cell. The number of simulations for statistical blockade includes the 1,000
training samples. The write time values are shown in “fanout of 4” units

being measured is the write time τw: the time between the wordline go-
ing high, to the non-driven cell node (node 2) transitioning. Here, “going
high” and “transitioning” imply crossing 50% of the full voltage change.
For methods I and II, we use nMC = 1 million Monte Carlo points.
For statistical blockade (method III), 100,000 Monte Carlo points are
filtered through the classifier, generating 4,379 tail candidates. On sim-
ulating these 4,379 points, 978 true tail points (τw > t) were obtained,
which were then used to compute a GPD model for the tail conditional
CDF. Table 3.3 shows a comparison of the yσ values estimated by the
three different methods. We can see a close match between the predic-
tions by the accurate method II and statistical blockade, method III.
Figure 3.9 compares the conditional tail CDFs computed from the em-
pirical method and from statistical blockade, showing a good match.

Some observations highlighting the efficiency of statistical blockade
can be made immediately.

The empirical method fails beyond 2.6 FO4, corresponding to about
1 ppm circuit failure probability, because there are no points gener-
ated by the Monte Carlo run so far out in the tail.

Fitting a GPD model to the tail points (method II) allows us to make
predictions far out in the tail, even though we have no points that
far out.

Using blockade filtering, coupled with the GPD tail model, we can
drastically reduce the number of simulations (from 1 million to 5,379)
with very small change to the tail model.



Statistical Blockade 149

Figure 3.9. Comparison of GPD tail model from statistical blockade (5,379 simula-
tions) and the empirical tail CDF (1 million simulations) for the write time of the 6T
SRAM cell

Of course, the tail model cannot be relied on too far out from the avail-
able data, as suggested by the increased discrepancy between methods II
and III for the largest τw values. We further discuss and attack this prob-
lem in Sect. 3.4.

3.3.4.2 64-Bit SRAM Column

The next test case is a 64-bit SRAM column, with a non-restoring write
driver and column multiplexor, shown in Fig. 3.10. Only one cell is being
accessed, while all the other wordlines are turned off. Random threshold
variation on all 402 transistors (including the write driver and column
mux) are considered, along with a global gate oxide variation. The device
and variation models are the same 90 nm technology as for the 2-stage
opamp in Sect. 1.7.2. In scaled technologies, leakage current is no longer
negligible [RSBS04]. Hence, process variations on transistors that are
meant to be inaccessible (or off) can also impact the overall behavior of
a circuit. This test case allows us to see the impact of variations in the
leakage current passing through the 63 off cells, along with variations in
the write driver. Since the BSIM3v3 models [LJC+88] are used, the gate
leakage is not well modeled, but the drain leakage is.

Once again we measure the write time, in this case from the wordline
wl0 to node 2, for falling node 2. The number of statistical parameters
is 403. Building a reliable classifier with only n0 = 1,000 points in 403
dimensional space is nearly impossible. However, we can reduce the di-
mensionality by choosing only those dimensions (statistical parameters)
that have a significant impact on the write time. We address essentially



150 FAST STATISTICAL ANALYSIS

Figure 3.10. A 64-bit SRAM column with write driver and column multiplexor

the same problem – detecting the “important” variables – in both of
the other two chapters of this thesis; in particular, see Sects. 1.6.4.1
and 2.5.1. As in these sections, we use Spearman’s rank correlation co-
efficient, ρS (1.69), between each statistical parameter and the circuit
performance metric to quantitatively estimate the strength of their re-
lationship. For classification, only parameters with |ρS | > 0.1 are used,
reducing the dimensionality to only 11. Figure 3.11(a) shows the sorted
magnitudes of the 403 rank correlation values: we can see that only a
handful of the statistical parameters have significant correlation with
the write time. The transistors (the threshold voltages) chosen by this
method are

the pull-down and output transistors in the active write-driver AND
gate,



Statistical Blockade 151

Figure 3.11. Results for the SRAM column test circuit

the bitline pull-down transistors, and

all transistors in the active 6T cell, except for Mp2 (since node 2 is
being pulled down in this case).

This selection coincides with a designer’s intuition of the devices that
would have the most impact on the write time.

yσ is computed for increasing failure thresholds, using all three meth-
ods. We use nMC = 100,000 simulated Monte Carlo points for meth-
ods I and II. For statistical blockade, method III, we filter these 100,000
points through the classifier in reduced dimensions, giving 5,314 candi-



152 FAST STATISTICAL ANALYSIS

τw (yf ) (I) Standard (II) GPD (III) SB (III) SB Gaussian
(FO4) Monte Carlo no filter (100K) (20K) approximation

2.7 2.966 2.986 3.010 2.990 3.364
2.8 3.367 3.373 3.390 3.425 3.898
2.9 3.808 3.743 3.747 3.900 4.432
3.0 ∞ 4.101 4.088 4.448 4.966
3.1 ∞ 4.452 4.416 5.138 5.499
3.2 ∞ 4.799 4.736 6.180 6.033
3.3 ∞ 5.147 5.049 – 6.567
3.4 ∞ 5.496 5.357 – 7.100

Number 100,000 100,000 6,314 2,046 20,000
of simulations

Table 3.4. Prediction of failure probability as yσ by methods I, II, III and by
Gaussian approximation, for the SRAM column. The number of simulations for sta-
tistical blockade (SB) includes the 1,000 training samples. The write time values are
shown in “fanout of 4” units

date tail point. On simulation, we finally obtain 1,077 true tail points.
Table 3.4 compares the predictions by these three methods. We can see
the close match between the accurate method II and statistical blockade,
even though the total number of simulations is reduced from 100,000 to
6,314. The empirical method, once again, falls short of our needs, run-
ning out of data beyond τw = 2.9 FO4. Figure 3.11(b) graphically shows
the agreement between the conditional tail models extracted empirically
and using statistical blockade.

We further reduce the Monte Carlo sample size for statistical blockade,
to see if the simulation cost can be further reduced while maintaining
accuracy. We use statistical blockade on only 20,000 Monte Carlo points,
giving 1,046 filtered candidate tail points and 218 true tail points. How-
ever, the predictions (column 5) show large errors compared to our ref-
erence, method II. This suggests that a tail sample of only 218 is not
sufficient to obtain a reliable model. We also use a Gaussian fit to 20,000
simulated Monte Carlo points for estimating yσ. It is clear from the table
that, in this case, a Gaussian fit under-estimates the failure probability,
with the error increasing as we move to rarer events.

Comparing the statistics for the SRAM column in Table 3.4 with the
statistics for the SRAM cell in Table 3.3, we can see that the distribution
of write time has a larger spread for the SRAM column than for the
SRAM cell. For example, the 4.8σ point for the SRAM cell is 2.7 FO4,
while for the SRAM column, it is 3.2 FO4. The reason for this increased
spread is that the variations in the leakage current of the entire column



Statistical Blockade 153

contribute significantly to the variation of the performance of any single
cell. This shows that, in general, simulating variations in a single circuit,
without modeling variations in its environment circuitry can lead to large
errors in the estimated statistics.

3.3.4.3 Master–Slave Flip-Flop with Scan Chain

This last test case is a master-slave flip-flop with the scan chain com-
ponent (MSFF). It is implemented in 45 nm technology, and is exactly
the same as the one used in Sect. 1.7.1 for validating the SiLVR mod-
eling method proposed in this thesis. Flip-flops are ubiquitous in digital
circuits, and can be highly replicated in large chips. Here too, we are
measuring the clock-output delay τcq . The flip-flop has a peculiarity in
its rare event behavior. For large deviations in the statistical parameters,
the flip-flop reaches metastable behavior and, using standard circuit sim-
ulators, we fail to see the flip-flop output converge to a stable low/high
value. This leads to an undefined clock-output delay for some Monte
Carlo points. We reject any such points without replacement in this
experiment. Although these rejected points are also rare events, they
distort the smoothness of the tail that is required to apply the EVT
limit theorem, if not rejected. This still allows us to test the speed and
tail modeling efficiency of statistical blockade, since we use the same re-
jection method across all estimation methods. In practice, the fraction of
such undefined delay events can be estimated from the simulated points
in statistical blockade and added to the failure probability estimated
using the GPD model, to give the overall failure probability.

For methods I and II, we simulate nMC = 500,000 Monte Carlo points.
For statistical blockade (method III), we filter 100,000 Monte Carlo
points to obtain 7,785 candidate tail points which, on simulating, yield
692 tail points. Note that here we have ignored any tail points for which
the flip-flop output did not converge to a stable low/high value. Fig-
ure 3.12(b) compares the conditional tail CDFs from the empirical and
statistical blockade models. We also compare predictions from these
methods with those from a Gaussian fit to 20,000 simulated Monte Carlo
points. Figure 3.12(a) shows a histogram of the delay values obtained
from the 500,000-point Monte Carlo run. The extreme skewness and the
heavy tail of the histogram suggest that a Gaussian fit would be grossly
inaccurate.

Table 3.5 shows the estimates of yσ computed by these four methods:
we can clearly see the gross errors in the Gaussian estimates. In this case,
we also see some discrepancy between the empirical and GPD-predicted
values, that is larger than in the cases of the SRAM cell and column.

There can be two reasons for this:



154 FAST STATISTICAL ANALYSIS

Figure 3.12. Results for the MSFF test circuit

1) Due to the quite heavy tail, slight variations in the chosen tail samples
can cause significant variations in the model.

2) The tail threshold of t = the 99-th percentile might not be large
enough to fit a GPD with near exactness; that is, the tail conditional
CDF might not have converged to the GPD form.

It turns out that the actual reason is the second one. We further explore,
and address, this problem in Sect. 3.4. The GPD fits do, however, capture
the heavy tail of the distribution. To see this, compare Table 3.5 with
the results for the SRAM cell in Table 3.3. A 20% increase in the SRAM
write time, from 2.5 FO4 to 3 FO4, results in an increase of 2.424 in yσ,



Statistical Blockade 155

τcq (yf ) (I) Standard (II) GPD (III) Statistical Gaussian
(FO4) Monte Carlo no blockade filter blockade approximation

30 3.424 3.466 3.431 22.127
40 3.724 3.686 3.661 30.050
50 4.008 3.854 3.837 37.974
60 4.219 3.990 3.978 45.898
70 4.607 4.102 4.095 53.821
80 ∞ 4.199 4.195 61.745
90 ∞ 4.283 4.282 69.669

Number 500,000 500,000 8,785 20,000
of simulations

Table 3.5. Prediction of failure probability as yσ by methods I, II, III and by
Gaussian approximation, for the MSFF. The number of simulations for statistical
blockade includes the 1,000 training samples. The delay values are shown in “fanout
of 4” units

while a similar percentage increase in the MSFF delay, from 50 FO4 to
60 FO4, increases yσ by only 0.136, even though the increases are from
similar probability levels (3.886σ for the SRAM cell, and 3.854σ for the
MSFF).

In summary of these results, we see that statistical blockade provides
an efficient way of sampling rare events and modeling their statistics.
However, there are some issues that need to be addressed. First, the
predictions may not be reliable for events that are very far out in the
tail. Second, we saw some notable discrepancy between the empirical
and GPD tail models for the case of the flip-flop: the exact reason for
this is not yet obvious. The next section explores these issues in more
detail and proposes enhancements to the statistical blockade method to
address them.

3.4 Making Statistical Blockade Practical
Although statistical blockade provides us an effective method for sam-

pling rare events and modeling their statistics, there are still some prac-
tical issues left unresolved by the algorithm in Sect. 3.3.3. We saw a
glimpse of some of these issues in the results presented in Sect. 3.3.4.
Let us look at these in more detail now.

3.4.1 Conditionals and Disjoint Tail Regions
3.4.1.1 The Problem

SRAM performance metrics are often computed for two states of the
SRAM cell: while storing a 1, and while storing a 0. The final metric



156 FAST STATISTICAL ANALYSIS

value is then a maximum or a minimum of the vales for these two states.
The presence of such conditionals (max, min) can result in disjoint tail
regions in the statistical parameter space, making it difficult to use a
single classifier to define the boundary of the tail region. Let us look at
an example to illustrate this problem.

Consider the 6T SRAM cell. With technology scaling reaching nano-
meter feature sizes, sub-threshold and gate leakage become very signifi-
cant. Particularly, for the large memory blocks seen today, the standby
power consumption due to leakage can be intolerably high. Supply volt-
age (Vdd) scaling [KAdB02] is a powerful technique to reduce this leak-
age, whereby the supply voltage is reduced when the memory bank is
not being accessed. However, lowering Vdd also makes the cell unstable,
ultimately resulting in data loss at some threshold value of Vdd, known
as the data retention voltage or DRV. Hence, the DRV of an SRAM cell
is the lowest supply voltage that still preserves the data stored in the
cell. DRV is computed as follows.

DRV = max(DRV0,DRV1) (3.57)

where DRV0 is the DRV when the cell is storing a 0, and DRV1 it the
DRV when it is storing a 1. If the cell is balanced (symmetric), with
identical left and right halves, then DRV0 = DRV1. However, if there is
any mismatch due to process variations, they become unequal. This cre-
ates the situation where the standard statistical blockade classification
technique would fail because of the presence of disjoint tail regions.

Suppose we run a 1,000-point Monte Carlo, varying all the mismatch
parameters in the SRAM cell according to their statistical distributions.
This would give us distributions of values for DRV0, DRV1 and DRV. In
certain parts of the mismatch parameter space DRV0 > DRV1, and in
other parts, DRV0 < DRV1. This is clearly illustrated by Fig. 3.13(a): let
us see how. Using the SiLVR method proposed in this thesis (Chap. 1),
we extract the direction in the parameter space that has maximum im-
pact on DRV0. This direction is essentially the projection vector w1,DRV0

for the first latent variable of DRV0. The figure plots the simulated DRV0

and DRV1 values from the 1,000-point Monte Carlo run, along this di-
rection; i.e., against the first latent variable d1,DRV0 . It is clear that they
are inversely related: one decreases as the other increases.

Now, let us take the maximum as in (3.57), and choose the classifi-
cation threshold tc equal to the 97-th percentile. Then we pick out the
worst 3% points from the classifier training data and plot them against
the same latent variable in Fig. 3.13(a), as red squares. Note that we
have not trained the classifier yet, we are just looking at the points that
the classifier would have to classify as being in the tail. We can clearly



Statistical Blockade 157

Figure 3.13. Illustration of disjoint tail regions resulting from conditionals

see that these points (the red squares) lie in two disjoint parts of the
parameter space. Since the true tail region defined by the tail thresh-
old t > tc will be a subset of the classifier tail region (defined by tc),
it is obvious that the true tail region consists of two disjoint regions of
the parameter space. This is illustrated with a two dimensional example
in Fig. 3.13(b). The figure also shows the maximum impact direction
vector, similar to the projection vector w1,DRV0 extracted by SiLVR.
Although this vector is different from w1,DRV0 (which lies in a higher
dimensional space) we mark it as w1,DRV0 to make the relation obvi-



158 FAST STATISTICAL ANALYSIS

ous. The dark tail regions on the top-right and bottom-left corners of
the parameter space correspond to the large DRV values shown as (red)
squares in Fig. 3.13(a).

Such conditionals are very common for SRAM cell metrics, and hence,
a classification strategy for such cases is essential for practical use of
statistical blockade. We now propose such a strategy.

3.4.1.2 The Solution

Instead of building a single classifier for the tail of in (3.57), let us build
two separate classifiers, one for the 97-th percentile (tc,DRV0) of DRV0,
and another for the 97-th percentile (tc,DRV1) of DRV1. The generated
Monte Carlo samples can then be filtered through both these classifiers:
points classified as “body” by both the classifiers will be blocked, and
the rest will be simulated. In the general case for arbitrary number of
arguments in the conditional, let the circuit metric is given as

y = max(y0, y1, . . .). (3.58)

The resulting general algorithm is then as follows:

1) Perform initial sampling to generate training data to build the clas-
sifiers, and estimate tail and classification thresholds, ti and tc,i, re-
spectively, for each yi, i = 0,1, . . . . Also estimate the tail threshold t
for y.

2) For each argument, yi, i = 0,1, . . . , of the conditional (3.58), build
a classifier Ci at a classification threshold tc,i that is less than the
corresponding tail threshold ti.

3) Generate more points using Monte Carlo, but block the points clas-
sified as “body” by all the classifiers. Simulate the rest and compute
y for the simulated points.

Hence, in the case of Fig. 3.13(b), we build a separate classifier for each
of the two boundaries. The resulting classification boundaries are shown
as solid lines. From the resulting simulated points, those with y > t are
chosen as tail points for further analysis; e.g., for computing a GPD
model for the tail distribution of y. Note that this same algorithm can
also be used for the case of multiple circuit metrics. Each metric would
have its own thresholds and its own classifier, just like each argument
in (3.58), the only difference being that we would not be computing any
conditional.



Statistical Blockade 159

3.4.2 Extremely Rare Events and Statistics
3.4.2.1 Extremely Rare Events

The GPD tail model can be used to make predictions regarding rare
events that are farther out in the tail than any of the data we used
to compute the GPD model. Indeed, this is the compelling reason for
adopting the GPD model. However, as suggest by common intuition
and the results presented in Sect. 3.3.4, we expect the statistical confi-
dence in the estimates to decrease as we predict farther out in the tail.
Equivalently, the variance of the predictions will probably increase as we
move out in the tail. We can estimate this confidence or variance in two
different ways:

1) Empirically : Suppose we run 50 runs of Monte Carlo with nMC sam-
ples each and compute a GPD tail model from each run, using points
that exceed some fixed threshold t. This gives us 50 slightly different
pairs of the GPD parameters (ξ, β), one for each of 50 GPD models
so computed. Then, we can compute variance and confidence inter-
vals of any statistical metric using the 50 estimates obtained from
these tail models.

2) Using asymptotic variance: Sect. 3.2.4 gives us expressions for the as-

ymptotic covariance matrix Σξ,β of (ξ̂, β̂) estimated using probability-
weighted moment matching: see (3.35). We can replace the exact

values of (ξ, β) with the estimated (ξ̂, β̂) to obtain an approximate
covariance matrix Σξ̂,β̂ . For reasonable large number of tail samples

used in the estimation, we can assume normal distribution of these
estimates with mean (ξ̂, β̂) and covariance Σξ̂,β̂ . Then, we can sample

the GPD parameters from this distribution to compute different es-
timates of some statistical metric, which can be used to compute the
variance. Here we need to build only one GPD model using a single
Monte Carlo run of nMC points. However, because of the assumption
of the onset of asymptotic normal distribution and the approxima-
tion of the covariance matrix, we expect this method to show some
error.

We use both these methods to compute 95% confidence intervals
for the estimate of the mσ point of the SRAM cell write time, where
m ∈ [3,6]. For the empirical method we use 50 Monte Carlo runs of
nMC = 100,000 points each, and compute GPD models with t = the
99-percentile write time. This gives us 50 different estimates of the mσ
point. These estimates are shown in Fig. 3.14(a). As expected, the spread
of the estimates increases as we extrapolate further with the GPD model.
We then compute 95% confidence intervals of the mσ point estimates



160 FAST STATISTICAL ANALYSIS

Figure 3.14. Variance in the estimates increases as we move further out in the tail

using these 50 models. Say we have 50 estimates yi(m), i = 1, . . . ,50 for
the mσ point. From these we can empirically compute the 97.5% per-
centile and 2.5% percentile points, y97.5%(m) and y2.5%(m), respectively.
A 95% confidence interval κ95%(m) can then be computed as

κ95%(m) = y97.5%(m) − y2.5%(m). (3.59)

We express this confidence interval as a percentage of the mean of the
estimates

κ′
95%(m) =

κ95%(m)
1
n

∑50
i=1 yi(m)

. (3.60)



Statistical Blockade 161

We also compute similar 95% confidence intervals using the second meth-
od, using 10,000 pairs of GPD parameter values sampled from the normal
distribution with mean (ξ̂, β̂) and covariance Σξ̂,β̂ . In this case we express

the confidence interval as a percentage of the estimate y(m) computed
using the single GPD model Gξ̂,β̂ . Figure 3.14(b) shows these percentage

confidence intervals. Although there is some mismatch in the magnitudes
of the two estimates of the 95% confidence interval, we see a common
trend: the statistical confidence decreases as we move out in the tail. To
keep the error within 5% with a confidence of 95% we should not be
predicting farther than 4.28σ. For 10% error, we can go out to 4.95σ. Of
course these numbers will change from circuit to circuit and performance
metric to performance metric. The general inference is that we should
not rely on the GPD tail model too far out from our data.

3.4.2.2 The Reason for Error in the MSFF Tail Model

Here we return to our MSFF test circuit from Sect. 3.3.4, where we
saw some discrepancy between the empirical and GPD estimates for the
failure probability expressed as yσ. We will try to develop an explanation
for this undesirable, although small, discrepancy. For this purpose we
call on a common tool of graphical exploration of statistical data: the
sample mean excess plot . [EKM03] reviews some properties of the mean
excess plot. Here we focus on its properties in relation to the generalized
Pareto distribution. The mean excess function for a given threshold yf

is defined as

e(yf ) = E(y − yf |y > yf ); (3.61)

that is, the mean of exceedances over yf . Plotting e(yf ) against yf gives
us the mean excess plot. The sample mean excess function is the sample
version of e(yf ). For a given sample {yi : i = 1, . . . , n}, it is defined as

en(yf ) =

∑n
i=1(yi − yf )+

|{yi : yi > yf }| , where (·)+ = max(·,0); (3.62)

that is, the sample mean of only the exceedances over yf . A plot of
en(yf ) against yf gives us the sample mean excess plot. The mean excess
function of a GPD Gξ,β can be shown (see [EKM03]) to be a straight
line given by

e(yf ) =
β − ξyf

1 + ξ
, for yf ∈ D(ξ, β), (3.63)

where D(ξ, β) is as defined in Theorem 3.3. Hence, if the sample mean
excess function of any data sample starts to follow roughly a straight line
from some threshold, then it is an indication that the exceedances over



162 FAST STATISTICAL ANALYSIS

Figure 3.15. A sample mean excess plot for the MSFF circuit, showing the 99-th
percentile and 3σ tail thresholds

that threshold follow a GPD. In fact, this feature of the mean excess plot
can be employed to manually estimate an appropriate tail threshold.

Let us now look at the sample mean excess plot of the MSFF tail data
(τcq ≥ 99-percentile delay) from the 500,000-point Monte Carlo run. This
is shown in Fig. 3.15. The plot suggests a good reason for the observed
discrepancy in the estimated failure probabilities. It is clear from the
plot that the tail defined by the t = 99% point has not converged close
to a GPD form. Hence, the discrepancy could be a result of choosing
a tail threshold that is not large enough. To test this, let us choose
a threshold t = 3σ point and fit the GPD model to exceedances over
this t. Figure 3.15 suggests that this should show a better fit, since
the sample mean excess function seems to be roughly a straight line
from the 3σ threshold. The predictions of this new GPD model are
shown in Table 3.6. We also reproduce columns 2 and 3 of Table 3.5 for
comparison. As expected, we see more accurate predictions.

3.4.2.3 The Problem

For both the issues discussed above, the solution is to sample further out
in the tail and use a higher tail threshold for building the GPD model
of the tail. This is, of course, “easier said than done”. Suppose we wish
to support our GPD model with data up to the 6σ point. The failure
probability of a 6σ value is roughly 1 part per billion, corresponding to a
99% chip yield requirement for a 10 Mb cache (with no error protection).
This is definitely not an impractical requirement. However, for a 99% tail
threshold, even a perfect classifier (tc = t) will only reduce the number
of simulations to an extremely large 10 million. If we decide to use a



Statistical Blockade 163

τcq (yf ) (I) Standard (II) GPD at (II) GPD at
(FO4) Monte Carlo 99-th percentile 3σ point

30 3.424 3.466 3.443
40 3.724 3.686 3.729
50 4.008 3.854 3.978
60 4.219 3.990 4.198
70 4.607 4.102 4.396
80 ∞ 4.199 4.574
90 ∞ 4.283 4.737

Table 3.6. Prediction of failure probability as yσ using a GPD model (method II of
Sect. 3.3.4) with the tail threshold t at the 99-th percentile and at the 3σ point

99.9999% threshold, the number of simulations will be reduced to a
more practical 1,000 tail points (with a perfect classifier). However, we
will need to simulate an extremely large number of points (≥ 1 million)
to generate a classifier training set with at least one point in the tail
region. In both cases, the circuit simulation counts are too high. We
now describe a recursive formulation of statistical blockade that reduces
this count drastically.

3.4.3 A Recursive Formulation of Statistical
Blockade

Let us first assume that there are no conditionals. For a tail threshold
equal to the a-th percentile, let us represent it as ta, and the correspond-
ing classification threshold as tac . For this threshold, build a classifier Ca

and generate sufficient points beyond the tail threshold, y > ta, so that
a higher percentile (tb, tbc, b > a) can be estimated. For this new, higher
threshold (tbc), a new classifier Cb is trained and a new set of tail points
(y > tb) is generated. This new classifier will block many more points
than Ca, significantly reducing the number of simulations. This proce-
dure is repeated to push the threshold out more until the tail region of
interest is reached. The complete algorithm is shown in Algorithm 3.2.

The arguments to the algorithm are formulated a little differently
from the basic statistical blockade algorithm (Algorithm 3.1). Instead
of passing the tail and classification threshold probabilities (pt, pc), we
pass a tail sample size nt and a classification threshold probability func-
tion pc(p). The former is the number of tail points to be used finally
to compute the GPD tail model. The latter is a function that returns
the classification threshold probability for a given tail threshold proba-
bility. It is implicitly a function also of the classifier being used, since



164 FAST STATISTICAL ANALYSIS

Algorithm 3.2 The general recursive statistical blockade algorithm for
efficient sampling of extremely rare events, in the presence of conditional
induced disjoint tail regions
Require: initial sample size n0 (e.g., 1,000); total sample size n; tail sample size nt;

function pc(p), p ∈ (0,100); performance metric function y = max(y0, y1, . . .)
1: X = MonteCarlo(n0)
2: n′ = n0

3: nc = max(nt,1000) // Classifier training set size at least 1,000
4: Y = fsim(X) // Simulate initial Monte Carlo sample
5: ytail,i = Y·,i, i = 0,1, . . . // The i-th column contains values for yi in y =

max(y0, y1, . . .)
6: Xtail,i = X, i = 0,1, . . .
7: while n′ < n do

8: Δn = min(100n′, n) − n′ // Number of points to filter in this recursion step
9: pt = 100∆n

n′+∆n
; // Tail threshold is pt-th percentile

10: n′ = n′ + Δn // Total number of points filtered at the end of this recursion
step

11: X = MonteCarloNext(Δn) // The next Δn points in the Monte Carlo se-
quence

12: for all i : yi is an argument in y = max(y0, y1, . . .) do

13: (Xtail,i,ytail,i) = GetWorst(nc, Xtail,i, ytail,i) // Get the nt worst points
14: t = Percentile(ytail,i, pt)
15: tc = Percentile(ytail,i, pc(pt))
16: Ci = BuildClassifier(Xtail,i, ytail,i, tc)
17: (Xtail,i,ytail,i) = GetGreaterThan(t, Xtail,i, ytail,i) // Get the points with

yi > t
18: Xcand,i = Filter(Ci, X) // Candidate tail points for yi

19: end for

20: X = [XT
cand,0 XT

cand,1 . . .]T // Union of all candidate tail points
21: Y = fsim(X) // Simulate all candidate tail points
22: ycand,i = {Yj,i : Xj,· ∈ Xcand,i }, i = 0,1, . . . // Extract the tail points for yi

23: ytail,i = [yT
tail,i yT

cand,i]
T , Xtail,i = [XT

tail,i XT
cand,i]

T , i = 0,1, . . . // All tail
points till now

24: end while

25: ytail = MaxOverRows([ytail,0 ytail,1 . . .]) // Compute the conditional
26: ytail = GetWorst(nt,ytail)
27: (ξ, β) = FitGPD(ytail − min(ytail))

the error in the classifier will determine the appropriate safety mar-
gin. The functions that appear also in Algorithm 3.1 do the same work
here, hence we do not reiterate their description. fsim now returns mul-
tiple outputs: it computes the values of all the arguments of the condi-
tional in y = max(y0, y1, . . .). For example, in the case of DRV, it will
return the values of DRV0 and DRV1. These values, for any one Monte
Carlo point, are stored in one row of the result matrix Y. The function
MonteCarloNext(Δn) returns the next Δn points in the sequence of



Statistical Blockade 165

Algorithm 3.3 The recursive statistical blockade algorithm
with fixed sequences for the tail and classification thresholds:
t = 99%−,99.99%−,99.9999%−, . . . points and tc = 97%−,99.97%−,
99.9997%, . . . points. The total sample size is given by (3.64)

Require: initial sample size n0 (e.g., 1,000); total sample size n; performance metric
function y = max(y0, y1, . . .)

1: X = MonteCarlo(n0)
2: n′ = n0

3: Y = fsim(X) // Simulate initial Monte Carlo sample
4: ytail,i = Y·,i, i = 0,1, . . . // The i-th column contains values for yi in y =

max(y0, y1, . . .)
5: Xtail,i = X, i = 0,1, . . .
6: while n′ < n do

7: Δn = 99n′ // Number of points to filter in this recursion step
8: n′ = n′ + Δn // Total number of points filtered at the end of this recursion

step
9: X = MonteCarloNext(Δn) // The next Δn points in the Monte Carlo se-

quence
10: for all i : yi is an argument in y = max(y0, y1, . . .) do

11: (Xtail,i,ytail,i) = GetWorst(1,000, Xtail,i, ytail,i) // Get the 1,000 worst
points

12: t = Percentile(ytail,i, 99)
13: tc = Percentile(ytail,i, 97)
14: Ci = BuildClassifier(Xtail,i, ytail,i, tc)
15: (Xtail,i,ytail,i) = GetGreaterThan(t, Xtail,i, ytail,i) // Get the points with

yi > t
16: Xcand,i = Filter(Ci, X) // Candidate tail points for yi

17: end for

18: X = [XT
cand,0 XT

cand,1 . . .]T // Union of all candidate tail points
19: Y = fsim(X) // Simulate all candidate tail points
20: ycand,i = {Yj,i : Xj,· ∈ Xcand,i}, i = 0,1, . . . // Extract the tail points for yi

21: ytail,i = [yT
tail,i yT

cand,i]
T , Xtail,i = [XT

tail,i XT
cand,i]

T , i = 0,1, . . . // All tail
points till now

22: end while

23: ytail = MaxOverRows([ytail,0 ytail,1 . . .]) // Compute the conditional
24: ytail = GetWorst(nt, ytail)
25: (ξ, β) = FitGPD(ytail − min(ytail))

points generated till now. The function GetWorst(n, X, y) returns
the n worst values in the vector y and the corresponding rows of the
matrix X. This functionality naturally extends to the two argument
GetWorst(n, y). GetGreaterThan(t, X, y) returns the elements of
y that are greater than t, along with the corresponding rows of X.

The function pc(p) is not easy to determine, hence we also present a
less general version as Algorithm 3.3, which can be used immediately by
any practitioner. Here, we restrict the total sample size n to be some



166 FAST STATISTICAL ANALYSIS

Figure 3.16. Recursive formulation of statistical blockade as in Algorithm 3.3

power of 100, times 1,000:

n = 100j · 1000, j = 0,1, . . . . (3.64)

Also, we fix pt = 99% and pc = 97%. This will always give us 1,000 tail
points to fit the GPD. The tail threshold t moves with every recursion
step as

t = 99-th percentile,99.99-th percentile,99.9999-th percentile, . . .

and the classification threshold as

tc = 97-th percentile,99.97-th percentile,99.9997-th percentile, . . . .

The algorithms presented here are in iterative form, rather than recur-
sive form. To see how the recursion works, suppose we want to estimate
the 99.9999% tail. To generate points at and beyond this threshold, we
first estimate the 99.99% point and use a classifier at the 99.97% point
to generate these points efficiently. To build this classifier in turn, we
first estimate the 99% point and use a classifier at the 97% point. Fig-
ure 3.16 illustrates this recursion on the PDF of any one argument in
the conditional (3.58).

3.4.4 Experimental Results
We now test the recursive statistical blockade method on another SRAM
cell test case, where we compute the data retention voltage (DRV) as
in (3.57). In this case the SRAM cell is implemented in an industrial
90 nm process. Wang et al. [WSRC07] develop an analytical model for
predicting the CDF of the DRV, that uses not more than 5,000 Monte
Carlo points. The CDF is given as

F (y) = 1 − erfc(y0) +
1

4
erfc2(y0), where y0 =

μ0 + k(y − V0)√
2σ0

, (3.65)

where y is the DRV value and erfc() is the complementary error function
[PFTV92]. k is the sensitivity of the static noise margin (SNM) of the



Statistical Blockade 167

SRAM cell to the supply voltage, computed using a DC sweep. μ0 and
σ0 are the mean and standard deviation of the SNM (SNM0), for a user-
defined supply voltage V0. SNM0 is the SNM of the cell while storing a 0.
These statistics are computed using a short Monte Carlo run of 1,500
to 5,000 sample points. We direct the reader to [WSRC07] for complete
details regarding this analytical model of the DRV distribution. The q-th
quantile can be estimated as

DRV(q) =
1

k
(

√
2σ0erfc

−1(2 − 2
√

q) − μ0) + V0. (3.66)

Here DRV(q) is the supply voltage Vdd such that

P (DRV(q) ≤ Vdd) = q. (3.67)

We compute the DRV quantiles as mσ points, such that q is the
cumulative probability for the value m from a standard normal distrib-
ution. We use five different methods to estimate the DRV quantiles for
m ∈ [3,8]:

1) Analytical : Use (3.66).

2) Recursive statistical blockade without the GPD model : Algorithm 3.3
is run for n = 1 billion. This results in three recursion stages, corre-
sponding to total sample sizes of n′ = 100,000, 10 million and 1 bil-
lion Monte Carlo points, respectively. The worst DRV value for these
three recursion stages are estimates of the 4.26σ, 5.2σ and 6σ points,
respectively.

3) GPD model from recursive statistical blockade: The 1,000 tail points
from the last recursion stage of the recursive statistical blockade run
are used to fit a GPD model, which is then used to predict the DRV
quantiles.

4) Normal : A normal distribution is fit to data from a 1,000 point Monte
Carlo run, and used to predict the DRV quantiles.

5) Lognormal : A lognormal distribution is fit to the same set of 1,000
Monte Carlo points, and used for the predictions.

The results are shown in Fig. 3.17. From the plots in the figure, we
can immediately see that the recursive statistical blockade estimates are
very close to the estimates from the analytical model. This shows the
efficiency of the recursive formulation in reducing the error in predic-
tions for events far out in the tail. Table 3.7 shows the number of circuit
simulations performed at each recursion stage. The total number of simu-
lations is 41,721. This is not small, but in comparison to standard Monte



168 FAST STATISTICAL ANALYSIS

Figure 3.17. Estimates of DRV quantiles from five estimation methods. The GPD
model closely fits the analytical model (3.65). The (red) circles show the worst DRV
values from the three recursion stages of statistical blockade sampling. The normal
and lognormal models are quite inaccurate

Recursion stage Number of simulations

Initial 1,000
1 11,032
2 14,184
3 15,505

Total 41,721

Speedup over Monte Carlo 23,969×
Speedup over statistical blockade 719×

Table 3.7. Number of circuit simulation needed by recursive statistical blockade to
generate a 6σ point

Carlo (1 billion simulations), and basic, non-recursive statistical block-
ade (approximately, 30 million with tc = 97-th percentile) it is extremely
fast. 41,721 simulations for DRV computation of a 6T SRAM cell can
be completed in several hours on a single computer. With the advent
of multi-core processors, the total simulation time can be drastically
reduced with proper implementation.

Note that we can extend the prediction power to 8σ with the GPD
model, without any additional simulations. Standard Monte Carlo would
need over 1.5 quadrillion circuit simulations to generate a single 8σ point.
For this case, the speedup over standard Monte Carlo is extremely large.



Statistical Blockade 169

As expected, the normal and lognormal fits show large errors. The nor-
mal fit is unable to capture the skewness of the DRV distribution. On
the other hand, the lognormal distribution has a heavier tail than the
DRV distribution.

3.5 Future Work
Statistical blockade, in its recursive formulation, makes estimation of

rare event statistics practical. This capability can be of immense use
to designers of high capacity memories: SRAM, DRAM, non-volatile
memories. Since it exploits rigorous limit theorems from extreme value
theory, it has the unique capability of estimating the entire distribution
of rare events, even with limited data. However, this is still an initial
work, that brings up some questions that can be the focus of future
research:

What are the best tail and classification thresholds to use, so that the
overall simulation cost is minimized? A solution to this question will
probably depend on the characteristics of the specific tail distribution
and the classifier being used. It may be possible to use the sample
mean excess function to compute an appropriate threshold where
roughly linear behavior, similar to a GPD, starts.

Can fast Monte Carlo techniques like importance sampling and quasi-
Monte Carlo be combined with statistical blockade for improvements
in the quality of prediction? The extension to quasi-Monte Carlo
seems obvious: just replace the pseudorandom generator with a low-
discrepancy sequence generator. However, it is not clear if the exis-
tence of undesirable patterns in the QMC sequences would adversely
affect the estimates of rare event statistics.

How widely applicable is statistical blockade? Only adoption by cir-
cuit designers in the industry and widespread testing on industrial
test cases will answer this question.



Chapter 4

Concluding Observations

Statistical analysis of circuits at many, if not all, stages of the design
process is now inevitable. Recognizing this, this thesis proposed a set
of novel algorithms that significantly improve over current capabilities
for statistical analysis of custom circuits. In particular, first, we saw a
new response surface modeling strategy called SiLVR that employs the
concepts of projection pursuit and latent variable regression to create
flexible, robust, yet compact models of the circuit response to varia-
tions. SiLVR has the attractive virtue of reducing the dimensionality to
a few important variables, and capturing the designer’s insight as quan-
titative measures of relative global sensitivity and input referred correla-
tion. Second, a fast Monte Carlo sampling technique called quasi-Monte
Carlo was proposed for statistical simulation of circuit performances.
QMC uses deterministic low discrepancy sequences instead of the stan-
dard pseudorandom sequences of Monte Carlo. We showed how, using
intelligent variable-dimension mapping, we can achieve significant speed
or accuracy gains over the standard Monte Carlo technique. Third, an
efficient method for sampling rare circuit events and reliably modeling
their statistics was proposed. The method is called statistical blockade
and solves a critical problem for memory designers: estimating the ex-
tremely low failure probabilities required for robust memory design.

Each chapter provided introductory discussion and concluding re-
marks for the algorithm proposed therein. To avoid unnecessary rep-
etition, here we only discuss some common themes bridging the three
core chapters. An overarching aspect of the work presented in this the-
sis is the use of true statistical techniques to solve the increasingly
non-deterministic problems stemming from process variations in cir-
cuits. Linear model based statistical static timing analysis (SSTA)

A. Singhee, R.A. Rutenbar, Novel Algorithms for Fast Statistical Analysis
of Scaled Circuits, Lecture Notes in Electrical Engineering 46,
c© Springer Science + Business Media B.V. 2009



172 FAST STATISTICAL ANALYSIS

[CS05][VRK+04a] is one successful example of methods that cast the
statistical problem into a deterministic framework. Another example is
the power optimization approach proposed in [MDO05]. However, such
techniques tend to be restricted to very specific problems, and under-
standably so because they exploit some very specific problem charac-
teristics to achieve the deterministic formulation. Domain-independent
methods, however, are possible, and maintain as much generality as pos-
sible by not trying to analyze away the statistical nature of the problem.
All the algorithms proposed in this thesis fall in this latter category. They
accept the relevant problems as being statistical and use the methods
of statistical inference to obtain the solutions they seek. The focus is
to make this inference process as fast and accurate as possible. These
algorithms show that a statistical, domain-independent attack on these
difficult statistical problems of variations in circuits can lead to very
fruitful results.

Because of the common strategy of using statistical inference while
maintaining problem generality, the three proposed algorithms share
some common technical aspects. All three methods try to extract some
characteristics of the problem before applying the core solution tech-
niques: for QMC, we use designer input or an initial Monte Carlo sam-
ple to extract information about important variables; for SiLVR, we use
an initial Monte Carlo sample to fit the model to; and for statistical
blockade, we use an initial Monte Carlo sample to compute estimates
for the tail threshold and to train the classifier. This seems natural,
since a general technique, like Monte Carlo, can be improved upon often
by exploiting some more information about the problem. Of course, the
extreme cases of such an approach are problem-specific techniques like
linear model based SSTA, which are completely tailored for a particu-
lar, constrained set of problems. In this thesis we have started to work
toward methods on the other end of this spectrum; that is, closer to
completely general techniques.

It is inevitable that some generality will be lost if we try to exploit
any problem characteristic. The key is to use techniques that can adapt
to a large enough variety of problem characteristics, such that we can
still handle most practical scenarios. This is the guiding principle in de-
veloping all the algorithms proposed here. The QMC flow exploits small
effective dimension, thus restricting its domain of dominance over stan-
dard Monte Carlo to problems with reasonably small effective dimension.
However, in practice, most circuit performances depend primarily on a
small set of important variables. SiLVR again exploits a similar feature
of the problem: a few latent variables will be enough to explain most
of the circuit behavior. For the same reasons as in the case of QMC,



Concluding Observations 173

this is not very restrictive in practice. Further, it has the tools to auto-
matically extract all such required information about the problem. Sta-
tistical blockade targets high replication circuits, which by requirement
tend to be small, simple circuits. Consequently, such circuits are likely to
show some “well behaved” performance metrics allowing us to use sim-
ple, classical classifiers with some confidence. There are some common
cases where which good behavior is lost: when there is a conditional,
like max() in the computation of the performance metric. However, by
handling each argument of the such conditional operators independently,
we can reclaim this good behavior. Again, we see that although some
generality is lost by using simple classifiers, the lost generality is not
required often in practice. Hence, these algorithms solve somewhat dif-
ferent problems, but share much in their strategies of attacking these
problems.

Many ideas proposed in this thesis derive inspiration from parallel
problems existing in other technical fields. Nonlinear regression and fea-
ture selection in statistics and machine learning, leading to projection
pursuit, and regression in very high dimensions with insufficient data in
chemometrics leading to latent variable regression: these techniques form
the intellectual seeds for SiLVR. Similarly, a parallel is explicitly drawn
in Chap. 2 between circuit yield estimation and Asian option pricing,
suggesting that techniques for fast statistical quadrature can be ported
over from computational finance to circuit analysis. QMC is one popular
quadrature used in computational finance, and also in other domains like
statistical physics. These observations inspired the application of QMC
to circuit problems. Of course, this application required its own tricks
for ensuring effective use of QMC. Lastly, there are strong parallels be-
tween the problem of estimating extremely low failure probabilities of
SRAM cells and the problem of estimating the statistics of catastrophic
insurance claims in insurance risk analysis, or of disastrous floods in hy-
drology. The elegant theory of extreme values provides a sound footing
for developing statistical models of all these rare events. Classification
techniques from machine learning help make these models practical to
build. Overall, this thesis demonstrates, with rigorous examples, that ap-
plication of ideas from seemingly unrelated fields can lead to very new
ways of attacking and solving problems in our field of interest.



Appendix A
Derivations of Variance Values for Test
Functions in Sect. 2.6.1

Here we derive the exact values of the variance of fc and the one dimensional
variance of fs, as defined in Sect. 2.6.1. The derivations for the one dimensional
variance of fc and the variance of fs are not shown since they are very similar to
these derivations.

A.1 Variance of fc

We can write the integrand as

fc(x) =

( 5
∑

i=1

xi

)2

=
5

∑

i=1

x2
i + 2

4
∑

i=1

5
∑

j=i+1

xixj , (A.1)

where C5 = [0,1]5. The integral of fc is given by

Q(fc) =

∫

C5

fc(x)dx

=

∫

C5

( 5
∑

i=1

x2
i + 2

4
∑

i=1

5
∑

j=i+1

xixj

)

dx

=

5
∑

i=1

∫ 1

0

. . .

∫ 1

0

x2
i dx1dx2dx3dx4dx5

+2

4
∑

i=1

5
∑

j=i+1

∫ 1

0

. . .

∫ 1

0

xixjdx1dx2dx3dx4dx5

=
5

∑

i=1

x3
i

3

∏

j �=i

xj

∣

∣

∣

∣

∣

1

0

+ 2
4

∑

i=1

5
∑

j=i+1

x2
i x

2
j

4

∏

k �=i,j

xk

∣

∣

∣

∣

∣

1

0

= 5 · 1

3
+ 2 · 5(5 − 1)

2

1

4

=
20

3
. (A.2)

A. Singhee, R.A. Rutenbar, Novel Algorithms for Fast Statistical Analysis
of Scaled Circuits, Lecture Notes in Electrical Engineering 46,
c© Springer Science + Business Media B.V. 2009



176 FAST STATISTICAL ANALYSIS

The variance of fc is then given by

σ2(fc) =

∫

C5

(fc(x) − Q(fc))
2dx =

∫

C5

( 5
∑

i=1

x2
i + 2

4
∑

i=1

5
∑

j=i+1

xixj − 20

3

)2

= I1 + I2 + I3, (A.3)

where

I1 =

∫

C5

( 5
∑

i=1

x2
i

)2

dx, (A.4)

I2 = 4

∫

C5

( 5
∑

i=1

x2
i

)( 4
∑

i=1

5
∑

j=i+1

xixj − 10

3

)

dx, (A.5)

I3 = 4

∫

C5

( 4
∑

i=1

5
∑

j=i+1

xixj − 10

3

)2

dx. (A.6)

Expanding I1, we get

I1 =
5

∑

i=1

∫

C5

x4
i dx + 2

4
∑

i=1

5
∑

j=i+1

∫

C5

x2
i x

2
jdx

=

5
∑

i=1

x5
i

5

∏

j �=i

xj

∣

∣

∣

∣

1

0

+ 2

4
∑

i=1

5
∑

j=i+1

x3
i x

3
j

9

∏

k �=i,j

xk

∣

∣

∣

∣

1

0

(A.7)

= 5 · 1

5
+ 2 · 10 · 1

9
(A.8)

=
29

9
, (A.9)

where the 10 in (A.8) is = 5(5−1)
2

, the number of distinct cross terms x2
i x

2
j , as in (A.1).

Writing

T =
4

∑

i=1

5
∑

j=i+1

xixj , (A.10)

which has 10 terms xixj , and expanding I2, we get

I2 = 4

∫

C5

(

T − 10

3

) 5
∑

i=1

x2
i dx

= 4

{ 5
∑

i=1

∫

C5

x2
i Tdx − 10

3

5
∑

i=1

∫

C5

x2
i dx

}

. (A.11)

Plugging in the expansion for T , we get

∫

C5

x2
i Tdx =

∫

C5

x3
1

5
∑

i=2

xidx +

∫

C5

x2
1

4
∑

i=2

5
∑

j=i+1

xixjdx

=
x4

1

4

∣

∣

∣

∣

1

0

5
∑

i=2

∫

C4

xidx2dx3dx4dx5

+
x3

1

3

∣

∣

∣

∣

1

0

4
∑

i=2

5
∑

j=i+1

∫

C4

xixjdx2dx3dx4dx5



Appendix A 177

=
1

4
· 4 · 1

2
+

1

3
· 6 · 1

4

= 1. (A.12)

Also, the second term in (A.11),

5
∑

i=1

∫

C5

x2
i dx = 5 · 1

3
=

5

3
, (A.13)

as in (A.1). Substituting (A.12) and (A.13) into (A.11), we get

I2 = 4

{

5 · 1 − 10

3
· 5

3

}

= − 20

9
. (A.14)

Expanding I3, and using T from (A.10), we get

I3 = 4

{
∫

C5

TTdx − 20

3

∫

C5

Tdx +
100

9

∫

C5

dx

}

. (A.15)

Let us look closely at TT . It has a total of 10 × 10 = 100 product terms, and these
terms can be only of three types t1, t2, t3:

t1 ∼ x2
i x

2
j , i �= j,

t2 ∼ x2
i xjxk ∼ xix

2
jxk, i �= j �= k, (A.16)

t3 ∼ xixjxkxl, i �= j �= k �= l. (A.17)

We know that there are 10 possibilities for t1 given that T has 10 terms of type xixj .
For t2, if we fix some i, j then there are 3 choices for k such that k ∈ {1, . . . ,5} and
k �= i, k �= j. For each such choice of k, we can square either i or j to obtain x2

i xjxk

or xix
2
jxk, respectively. Hence, for each choice of {i, j} we have 6 distinct possibilities

for t2. Since there are 10 possibilities for {i, j} such that i, j ∈ {1, . . . ,5} and i �= j,
we get a total of 10 × 6 = 60 t2 terms. That leaves us with 100 − 10 − 60 = 30 terms
of type t3. Here we are counting each permutation as one separate term. Now, the
integrals of all t1 terms are equal because of symmetry of integrand and the range C5.
Similarly, for all t2 and all t3 terms. Since,

∫

C5

x2
1x

2
2dx =

x3
1x

3
2

9
x3x4x5

∣

∣

∣

∣

1

0

=
1

9
, (A.18)

∫

C5

x2
1x2x3dx =

x3
1x

2
2x

2
3

12
x4x5

∣

∣

∣

∣

1

0

=
1

12
, (A.19)

∫

C5

x1x2x3x4dx =
x2

1x
2
2x

2
3x

2
4

16
x5

∣

∣

∣

∣

1

0

=
1

16
, (A.20)

we can write
∫

C5

TTdx = 10

∫

C5

x2
1x

2
2dx + 60

∫

C5

x2
1x2x3dx + 30

∫

C5

x1x2x3x4dx

= 10 ·
1

9
+ 60 ·

1

12
+ 30 ·

1

16
=

575

72
. (A.21)



178 FAST STATISTICAL ANALYSIS

For the second term for I3 in (A.15), we can write
∫

C5

Tdx = 10

∫

C5

xixjdx = 10 · 1

4
=

5

2
, (A.22)

and for the third term,
∫

C5

dx = 1. (A.23)

Plugging these, and (A.20) into (A.15), we then get

I3 = 4

{

575

72
− 20

3
· 5

2
+

100

9

}

=
175

18
. (A.24)

Hence, using (A.9), (A.14) and (A.24) in (A.3), we get

σ2(fc) =
29

9
− 20

9
+

175

18
=

193

18
. (A.25)

A.2 One Dimensional Variance of fs

We write fs as

fs(x) = fc(x) − fa(x) = 2

4
∑

i=1

5
∑

j=i+1

xixj . (A.26)

Define f{i} as the ANOVA component of fs that is a function of only xi. From (2.89),
this is given as

f{i}(x) =

∫

C− {i}

(fs(x) − f∅(x))dx− {i}, (A.27)

where
−{i} = {1, . . . ,5} − {i} (A.28)

is the complementary set of {i}. f∅(x) is the same as Q(fs), the integral of fs, and
we can write fs as

fs(x) = 2xi

∑

j∈ − {i}

xj + 2
∑

k∈ − {i}

∑

l∈ − {i}:l>k

xkxl. (A.29)

Using this in (A.27), we can write

f{i}(x) = 2xi

∑

j∈ − {i}

∫

C− {i}

xjdx− {i} + 2
∑

k∈ − {i}

∑

l∈ − {i}:l>k

∫

C− {i}

xkxldx− {i}

− Q(fs)

∫

C− {i}

dx− {i}. (A.30)

By simple integration, as in the beginning of the previous section, we can show that
Q(fs) = 5. Integrating (A.29) and using this, we get

f{i}(x) = 2xi

(

4 · 1

2

)

+ 2 · 4(4 − 1)

2

1

4
− 5

= 4xi − 2. (A.31)

The variance of f{i} is denoted by σ2
{i}, and is given by

σ2
{i} =

∫

C5

(f{i}(x))2dx. (A.32)



Appendix A 179

Using (A.31), we get

σ2
{i} =

∫ 1

0

(4xi − 2)2dxi

=

∫ 1

0

(16x2
i − 8xi + 4)dxi

=
16

3
− 8 + 4

=
4

3
. (A.33)

The total variance from one dimensional components, σ2
1 , is given as

σ2
1 =

5
∑

i=1

σ2
{i} = 5 · 4

3
=

20

3
. (A.34)



References

[ABG98] P. Acworth, M. Broadie, and P. Glasserman. A comparison of some Monte
Carlo and quasi-Monte Carlo techniques for option pricing. In H. Nieder-
reiter, P. Hellekalek, G. Larcher, and P. Zinterhof, editors, Monte Carlo
and Quasi-Monte Carlo Methods 1996, pages 1–18. Springer, New York,
1998.

[Ack] P. J. Acklam. An algorithm for computing the inverse normal cu-
mulative distribution function. http://home.online.no/∼pjacklam/notes/
invnorm/.

[Ada75] R. A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[AGW94] K. J. Antreich, H. E. Graeb, and C. U. Weiser. Circuit analysis and op-
timization driven by worst-case distances. IEEE Trans. Computer-Aided
Design, 13(1):57–71, 1994.

[AMH91] H. L. Abdel-Malik and A.-K. S. O. Hassan. The ellipsoidal technique
for design centering and region approximation. IEEE Trans. Computer-
Aided Design, 10(8):1006–1014, 1991.

[AS79] I. A. Antanov and V. M. Saleev. An economic method of computing LPτ -
sequences. U.S.S.R. Comp. Math. and Math. Phys., 19:252–256, 1979
(English translation).

[Bak59] N. S. Bakhvalov. On approximate calculation of integrals. Vestnik
Moskow. Gos. Univ., Ser. Mat. Mekh. Astronom. Fiz. Khim., 4:3–18,
1959 (in Russian).

[Bar89] A. R. Barron. Statistical properties of artificial neural networks. In Proc.
28th Conf. Decision and Control, December 1989.

[Bar93] A. R. Barron. Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Trans. Inform. Theory, 39(3):930–945, 1993.

[BBT97] A. M. Bruckner, J. B. Bruckner, and B. S. Thompson. Real Analysis.
Prentice–Hall, Englewood Cliffs, 1997.

[BdH74] A. A. Balkema and L. de Haan. Residual life time at great age. Ann.
Prob., 2(5):792–804, 1974.

[BF88] P. Bratley and B. L. Fox. Algorithm 659: implementing Sobol’s quasiran-
dom sequence generator. ACM Trans. Math. Soft., 14(1):88–100, 1988.

A. Singhee, R.A. Rutenbar, Novel Algorithms for Fast Statistical Analysis
of Scaled Circuits, Lecture Notes in Electrical Engineering 46,
c© Springer Science + Business Media B.V. 2009

http://home.online.no/~pjacklam/notes/invnorm/
http://home.online.no/~pjacklam/notes/invnorm/


182 FAST STATISTICAL ANALYSIS

[BFN92] P. Bratley, B. L. Fox, and H. Niederreiter. Implementation and tests of
low-discrepancy sequences. ACM Trans. Modeling Comp. Sim., 2(3):195–
213, 1992.

[BM58] G. E. P. Box and M. E. Muller. A note on the generation of random
normal deviates. Ann. Math. Stats., 29:610–611, 1958.

[BMM99] G. Baffi, E. B. Martin, and A. J. Morris. Non-linear projection to latent
structures revisited (the neural network PLS algorithm). Comp. Chem.
Engg., 23(9):1293–1307, 1999.

[BN01] M. Burger and A. Neubauer. Error bounds for approximation with neural
networks. J. Approx. Theory, 112:235–250, 2001.

[BS06] A.-L. Boulesteix and K. Strimmer. Partial least squares: a versatile tool
for the analysis of high-dimensional genomic data. Brief. Bioinform.,
8(1):32–44, 2006.

[BSUM99] H. Banba, H. Shiga, A. Umezawa, and T. Miyaba. A CMOS bandgap
reference circuit with sub-1-v operation. IEEE J. Solid-State Circuits,
34(5):670–674, 1999.

[BTM01] A. J. Bhavnagarwala, X. Tang, and J. D. Meindl. The impact of intrinsic
device fluctuations on CMOS SRAM cell stability. IEEE J. Solid-State
Circuits, 36(4):658–665, 2001.

[Bur98] C. J. C. Burges. A tutorial on support vector machines for pattern recog-
nition. Data Min. Knowl. Discov., 2(2):121–167, 1998.

[BVM96] A. J. Burnham, R. Viveros, and J. F. MacGregor. Frameworks for latent
variable multivariate regression. J. Chemometrics, 20:31–45, 1996.

[CC05] B. H. Calhoun and A. Chandrakasan. Analyzing static noise margin for
sub-threshold SRAM in 65 nm CMOS. In Proc. Europ. Solid State Cir.
Conf., 2005.

[CL92] C. K. Chui and X. Li. Approximation by ridge functions and neural
networks with one hidden layer. J. Approx. Theory, 70:131–141, 1992.

[CLM96] C. K. Chui, X. Li, and H. N. Mhaskar. Limitations of the approximation
capabilities of neural networks with one hidden layer. Adv. Comp. Math.,
5:233–243, 1996.

[CLR01] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms, 2nd edition. MIT Press, Cambridge, 2001.

[CMO97] R. E. Caflisch, W. Morokoff, and A. Owen. Valuation of mortgage backed
securities using Brownian bridges to reduce effective dimension. J. Comp.
Finance, 1(1):27–46, 1997.

[Coo99] R. Cools. Monomial cubature rules since “Stroud”: a compilation –
part 2. J. Comput. Appl. Math., 112:21–27, 1999.

[CS96] F. M. Coetzee and V. L. Stonick. On the uniqueness of weights in single-
layer perceptron. IEEE Trans. Neural Networks, 7(2):318–325, 1996.

[CS05] H. Chang and S. Sapatnekar. Statistical timing under spatial correlations.
IEEE Trans. Computer-Aided Design, 24(9):1467–1482, 2005.

[Cyb89] G. Cybenko. Approximation by superpositions of sigmoidal functions.
Math. Control Signals Systems, 2:303–314, 1989.

[CYMSC85] P. Cox, P. Yang, S. S. Mahant-Shetti, and P. Chatterjee. Statistical mod-
eling for efficient parametric yield estimation of MOS VLSI circuits. IEEE
Trans. Electron Devices, 32(2):471–478, 1985.



References 183

[DFK93] S. W. Director, P. Feldmann, and K. Krishna. Statistical integrated cir-
cuit design. IEEE J. Solid-State Circuits, 28(3):193–202, 1993.

[dH90] L. de Haan. Fighting the arch-enemy with mathematics. Statist. Neer-
landica, 44:45–68, 1990.

[DJRS85] D. Donoho, I. Johnstone, P. Rousseeuw, and W. Stahel. Projection pur-
suit (discussion). Ann. Stats., 13(2):496–500, 1985.

[DS84] P. Diaconis and M. Shahshahani. On nonlinear functions of linear com-
binations. SIAM J. Sci. Statist. Comput., 5(1):175–191, 1984.

[DS96] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. SIAM, Philadelphia,
1996.

[DT82] P. Davies and M. K.-S. Tso. Procedures for reduced-rank regression.
Appl. Stats., 31(3):244–255, 1982.

[EIH02] T. Ezaki, T. Izekawa, and M. Hane. Investigation of random dopant fluc-
tuation induced device characteristics variation for sub-100 nm CMOS by
using atomistic 3d process/device simulator. In Proc. IEEE Int. Electron
Devices Meeting, 2002.

[EKM97] P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events. Springer, Berlin, 1997.

[EKM03] P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal
Events for Insurance and Finance, 4th printing edition. Springer, Berlin,
2003.

[Eli94] N. J. Elias. Acceptance sampling: an efficient, accurate method for es-
timating and optimizing parametric yield. IEEE J. Solid-State Circuits,
29(3):323–327, 1994.

[Fau82] H. Faure. Discrépance de suites associées à un système de numération
(en dimension s). Acta Arith., 41:337–351, 1982 (in French).

[FD93] P. Feldmann and S. W. Director. Integrated circuit quality opti-
mization using surface integrals. IEEE Trans. Computer-Aided Design,
12(12):1868–1879, 1993.

[FH97] F. D. Foresee and M. T. Hagan. Gauss–Newton approximation to
Bayesian learning. In Proc. Int. Conf. Neural Networks, June 1997.

[Fis06] G. S. Fishman. A First Course in Monte Carlo. Duxbury, N. Scituate,
2006.

[FL06] Z. Feng and P. Li. Performance-oriented statistical parameter reduc-
tion of parameterized systems via reduced rank regression. In Proc.
IEEE/ACM Int. Conf. on CAD, November 2006.

[Fox86] B. L. Fox. Algorithm 647: implementation and relative efficiency of qua-
sirandom sequence generators. ACM Trans. Math. Soft., 12(4):362–376,
1986.

[Fox99] B. L. Fox. Strategies for Quasi-Monte Carlo. Kluwer Academic,
New York, 1999.

[Fri84] J. H. Friedman. A variable span smoother. Dept. of Statistics Tech. Re-
port LCS 05, Stanford Univ., 1984.

[FS81] J. H. Friedman and W. Stuetzle. Projection pursuit regression. J. Amer.
Stat. Assoc., 76(376):817–823, 1981.



184 FAST STATISTICAL ANALYSIS

[FT28] R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency dis-
tribution of the largest or smallest member of a sample. Proc. Cambridge
Philos. Soc., 24:180–190, 1928.

[FT02] H. Faure and S. Tezuka. Another random scrambling of digital (t, s)-
sequences. In K.-T. Fang, F. J. Hickernell, and H. Niederreiter, edi-
tors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 242–256.
Springer, New York, 2002.

[FTIW99] D. J. Frank, Y. Taur, M. Ieong, and H.-S. P. Wong. Monte Carlo modeling
of threshold variation due to dopant fluctuation. In Proc. Int. Symp.
VLSI Tech., 1999.

[Fun89] K. Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural Networks, 2:183–192, 1989.

[FW94] K.-T. Fang and Y. Wang. Number Theoretic Methods in Statistics. Chap-
man and Hall, London, 1994.

[GG98] T. Gerstner and M. Griebel. Numerical integration using sparse grids.
Numerical Algorithms, 18(3–4):209–232, 1998.

[GH04] P. Gupta and F.-L. Heng. Toward a systematic-variation aware timing
methodology. In Proc. IEEE/ACM Design Autom. Conf., June 2004.

[GJLM01] P. R. Gray, P. J. Jurst, S. H. Lewis, and R. G. Meyer. Analysis and Design
of Analog Integrated Circuits, 4th edition. Wiley, New York, 2001.

[GJP95] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural
network architectures. Neural Computation, 7(2):219–269, 1995.

[GL96] G. Golub and C. Loan. Matrix Computations. JHU Press, Baltimore,
1996.

[Gla04] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer,
Berlin, 2004.

[Gne43] B. Gnedenko. Sur la distribution limite du terme maximum d’une
aleatoire. Ann. Math., 44(3):423–453, 1943.

[Gri93] S. D. Grimshaw. Computing maximum likelihood estimates for the gen-
eralized Pareto distribution. Technometrics, 35(2):185–191, 1993.

[Hal60a] J. H. Halton. On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals. Numerische Mathe-
matik, 2:84–90, 1960.

[Hal60b] J. H. Halton. On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals. Numerische Mathe-
matik, 2:84–90, 1960.

[Hal89] P. Hall. On projection pursuit regression. Ann. Stats., 17(2):573–588,
1989.

[Ham60] J. M. Hammersley. Monte Carlo methods for solving multivariate prob-
lems. Ann. New York Acad. Sci., 86:844–874, 1960.

[HC71] R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics, 3rd
edition. MacMillan, London, 1971.

[Hei94] S. Heinrich. Random approximation in numerical analysis. In K. D. Bier-
stedt, A. Pietsch, W. M. Ruess, and D. Vogt, editors, Functional Analysis,
Marcel Dekker, New York, pages 123–171, 1994.

[Hei96] S. Heinrich. Complexity theory of Monte Carlo algorithms. Lec. Appl.
Math., 32:405–419, 1996.



References 185

[Hes03] T. C. Hesterberg. Advances in importance sampling. Dept. of Statistics,
Stanford University, 1988, 2003.

[HH03] H. S. Hong and F. J. Hickernell. Algorithm 823: implementing scrambled
digital sequences. ACM Trans. Math. Soft., 29(2):95–109, 2003.

[HHLL00] F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and C. Lemieux. Extensible
lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comp.,
22(3):1117–1138, 2000.

[Hic98] F. J. Hickernell. A generalized discrepancy and quadrature error bound.
Math. Comp., 67(221):299–322, 1998.

[HIE03] M. Hane, T. Ikezawa, and T. Ezaki. Atomistic 3d process/device simu-
lation considering gate line-edge roughness and poly-si random crystal
orientation effects. In Proc. IEEE Int. Electron Devices Meeting, 2003.

[Hla61] E. Hlawka. Functionen von beschränkter variation in der theori der gle-
ichverteilung. Ann. Mat. Pura Appl., 54:325–333, 1961 (in German).

[HLT83] D. E. Hocevar, M. R. Lightner, and T. N. Trick. A study of variance re-
duction techniques for estimating circuit yields. IEEE Trans. Computer-
Aided Design, 2(3):279–287, 1983.

[HM94] M. T. Hagan and M. B. Menhaj. Training feedforward networks with
the Marquardt algorithm. IEEE Trans. Neural Networks, 5(6):989–993,
1994.

[Hos86] J. R. M. Hosking. The theory of probability weighted moments. IBM
Research Report, RC12210, 1986.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2:359–366, 1989.

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction. Springer, Berlin,
2001.

[Hub85] P. J. Huber. Projection pursuit. Ann. Stats., 13(2):435–475, 1985.

[HW81] L. K. Hua and Y. Wang. Applications of Number Theory to Numerical
Analysis. Springer, Berlin, 1981.

[HW87] J. R. M. Hosking and J. R. Wallis. Parameter and quantile estimation for
the generalized Pareto distribution. Technometrics, 29(3):339–349, 1987.

[IM88] B. Irie and S. Miyake. Capabilities of three-layered perceptrons. In Int.
Conf. Neural Networks, 1988.

[Ism93] C. Michael, M. I. Ismael. Statistical Modeling for Computer-Aided Design
of Mos VLSI Circuits. Springer, Berlin, 1993.

[JK03] S. Joe and F. Y. Kuo. Remark on algorithm 659: implementing Sobol’s
quasirandom sequence generator. ACM Trans. Math. Soft., 29(1):49–57,
2003.

[Joa99] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods – Support
Vector Learning. MIT Press, Cambridge, 1999.

[Joh55] F. John. Plane Waves and Spherical Means Applied to Partial Differential
Equations. Interscience Publishers, New York, 1955.

[Jon87] L. K. Jones. On a conjecture of Huber concerning the convergence of
projection pursuit regression. Ann. Stats., 15(2):880–882, 1987.



186 FAST STATISTICAL ANALYSIS

[KAdB02] R. K. Krishnamurthy, A. Alvandpour, V. De, and S. Borkar. High-
performance and low-power challenges for sub-70 nm microprocessor cir-
cuits. In Proc. Custom Integ. Circ. Conf., 2002.

[Kar33] J. Karamata. Sur un mode de croissance régulière. Théorèmes fondamen-
taux. Bull. Soc. Math. France, 61:55–62, 1933.

[Kie61] J. Kiefer. On large deviations of the empirical d. f. of vector chance
variables and a law of the iterated logarithm. Pacific J. Math., 11:649–
660, 1961.

[KJN06] R. Kanj, R. Joshi, and S. Nassif. Mixture importance sampling and its
application to the analysis of SRAM designs in the presence of rare event
failures. In Proc. IEEE/ACM Design Autom. Conf., 2006.

[KN74] L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. Wi-
ley, New York, 1974.

[Kun95] K. Kundert. The Designer’s Guide to SPICE and Spectre R©. Springer,
Berlin, 1995.

[LGXP04] X. Li, P. Gopalakrishnan, Y. Xu, and L. T. Pileggi. Robust ana-
log/RF circuit design with projection-based posynomial modeling. In
Proc. IEEE/ACM Int. Conf. on CAD, 2004.

[Lig92] W. Light. Ridge functions, sigmoidal functions and neural networks. In
E. W. Cheney, C. K. Chui, and L. L. Schumaker, editors, Approximation
Theory, VII. Academic Press, San Diego, 1992

[LJC+88] W. Liu, X. Jin, J. Chen, M.-C. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan,
K. Hui, J. Huang, R. Tu, P. Ko, and C. Hu. Bsim 3v3.2 mosfet model
users’ manual. Univ. California, Berkeley, Tech. Report No. UCB/ERL
M98/51, 1988.

[LL02] P. L’Ecuyer and C. Lemieux. A survey of randomized quasi-Monte Carlo
methods. In M. Dror, P. L’Ecuyer, and F. Szidarovski, editors, Modeling
Uncertainty: An Examination of Stochastic Theory, Methods, and Appli-
cations, pages 419–474. Kluwer Academic, New York, 2002.

[LLP04] J. Le, X. Li, and L. T. Pileggi. STAC: statistical timing analysis with
correlation. In Proc. IEEE/ACM Design Autom. Conf., June 2004.

[LLPS05] X. Li, J. Le, L. T. Pileggi, and A. Stojwas. Projection-based performance
modeling for inter/intra-die variations. In Proc. IEEE/ACM Int. Conf.
on CAD, November 2005.

[Lo77] M. Loéve. Probability Theory I & II, 4th edition. Springer, Berlin, 1977.

[LP93] V. Ya. Lin and A. Pinkus. Fundamentality of ridge functions. J. Approx.
Theory, 75:295–311, 1993.

[LS75] B. F. Logan and L. A. Shepp. Optimal reconstruction of a function from
its projections. Duke Math. J., 42:645–659, 1975.

[Mac92] D. J. C. MacKay. A practical Bayesian framework for backpropagation
networks. Neural Computation, 4(3):448–472, 1992.

[Mai99] V. E. Maiorov. On best approximation by ridge functions. J. Approx.
Theory, 99:68–94, 1999.

[Mar63] D. Marquardt. An algorithm for least squares estimation of non-linear
parameters. J. Soc. Indust. Appl. Math., 11:431–441, 1963.

[Mat98] J. Matoušek. On the l2-discrepancy for anchored boxes. J. Complexity,
14(4):527–556, 1998.



References 187

[MBC79] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code. Technometrics, 21(2):239–245, 1979.

[MBJ99] K. Morik, P. Brockhausen, and T. Joachims. Combining statistical learn-
ing with a knowledge-based approach – a case study in intensive care
monitoring. In Proc. 16th Int. Conf. Machine Learning, 1999.

[MC94] W. J. Morokoff and R. E. Caflisch. Quasi-random sequences and their
discrepancies. SIAM J. Sci. Comp., 15(6):1251–1279, 1994.

[MC95] W. J. Morokoff and R. E. Caflisch. Quasi-Monte Carlo integration.
J. Comput. Phys., 122(2):218–230, 1995.

[MC96] B. Moskowitz and R. E. Caflisch. Smoothness and dimension reduction
in quasi-Monte Carlo methods. Math. Comput. Modelling, 23(8/9):37–54,
1996.

[MDO05] M. Mani, A. Devgan, and M. Orshansky. An efficient algorithm for sta-
tistical minimization of total power under timing yield constraints. In
Proc. IEEE/ACM Design Autom. Conf., 2005.

[Mer73] R. C. Merton. Theory of rational option pricing. The Bell J. Econ. Man-
agement Science, 4(1):141–183, 1973.

[Mha92] H. N. Mhaskar. Approximation by superposition of sigmoidal and radial
basis functions. Adv. App. Math., 13:350–373, 1992.

[Mha96] H. N. Mhaskar. Neural networks for optimal approximation of smooth
and analytic functions. Neural Computation, 8:164–177, 1996.

[MK94] M. Matsumoto and Y. Kurita. Twisted GFSR generators II. ACM Trans.
Modeling Comp. Syst., 4:254–266, 1994.

[MMR04] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Statistical design and
optimization of SRAM cell for yield enhancement. In Proc. IEEE/ACM
Int. Conf. on CAD, 2004.

[MMR05] H. Mahmoodi, S. Mukhopadhyay, and K. Roy. Estimation of delay vari-
ations due to random-dopant fluctuations in nanoscale CMOS circuits.
IEEE J. Solid-State Circuits, 40(3):1787–1796, 2005.

[MP43] W. S. McCullough and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. Null. Math. Biophys., 5:115–133, 1943.

[MTM97] C. Malthouse, A. C. Tamhane, and R. S. H. Mah. Nonlinear partial least
squares. Comp. Chem. Engg., 21(8):875–890, 1997.

[Nie78] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random num-
bers. Bull. Amer. Math. Soc., 84(6):957–1041, 1978.

[Nie87] H. Niederreiter. Point sets and sequences with small discrepancy.
Monatsh. Math., 104(4):273–337, 1987.

[Nie88] H. Niederreiter. Low-discrepancy and low-dispersion sequences. J. Num-
ber Theory, 30:51–70, 1988.

[Nie92] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. SIAM, Philadelphia, 1992.

[Nie98] H. Niederreiter. The algebraic geometric approach to low-discrepancy
sequences. In H. Niederreiter, P. Hellekalek, G. Larcher, and P. Zinterhof,
editors, Monte Carlo and Quasi-Monte Carlo Methods 1996, pages 139–
160. Springer, New York, 1998.



188 FAST STATISTICAL ANALYSIS

[Nik50] S. M. Nikolskij. On the problem of approximation estimate by quadrature
formulas. Usp. Mat. Nauk, 5:165–177, 1950 (in Russian).

[NT96a] S. Ninomiya and S. Tezuka. Toward real-time pricing of complex financial
derivatives. App. Math. Finance, 3(1):1–20, 1996.

[NT96b] S. Ninomiya and S. Tezuka. Toward real-time pricing of complex financial
derivatives. App. Math. Finance, 3(1):1–20, 1996.

[NW90] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights. In Proc. Int.
Joint Conf. Neural Networks, 1990.

[NX96] H. Niederreiter and C. P. Xing. Low-discrepancy sequences and global
function fields with many rational places. Finite Fields Appl., 2:241–273,
1996.

[OE04] G. Ökten and W. Eastman. Randomized quasi-Monte Carlo methods in
pricing securities. J. Econ. Dyn. Control, 28(12):2399–2426, 2004.

[Owe95] A. B. Owen. Randomly permuted (t,m, s)-nets and (t, s)-sequences. In
H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing, pages 299–317. Springer, New
York, 1995.

[Owe97a] A. B. Owen. Monte Carlo variance of scrambled net quadrature. J. Nu-
mer. Anal., 34(5):1884–1910, 1997.

[Owe97b] A. B. Owen. Scrambled net variance for integrals of smooth functions.
Ann. Stats., 25(4):1541–1562, 1997.

[Owe98a] A. B. Owen. Latin supercube sampling for very high-dimensional simu-
lations. ACM Trans. Modeling Comp. Sim., 8(1):71–102, 1998.

[Owe98b] A. B. Owen. Scrambling Sobol’ and Niederreiter–Xing points. J. Com-
plexity, 14(4):466–489, 1998.

[Owe03a] A. B. Owen. Variance with alternative scramblings of digital nets. ACM
Trans. Modeling Comp. Sim., 13(4):363–378, 2003.

[Owe03b] A. B. Owen. The dimension distribution and quadrature test functions.
Stat. Sin., 13:1–17, 2003.

[PDW89] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers. Matching
properties of MOS transistors. IEEE J. Solid-State Circuits, 24(5):1433–
1440, 1989.

[Pet98] P. P. Petrushev. Approximation by ridge functions and neural networks.
SIAM J. Math. Anal., 30(1):155–189, 1998.

[PFTV92] W. H. Press, B. P. Flannery, A. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing, 2nd edition.
Cambridge University Press, Cambridge, 1992.

[Pic75] J. Pickands III. Statistical inference using extreme order statistics. Ann.
Stats., 3(1):119–131, 1975.

[Pir02] G. Pirsic. A software implementation of Niederreiter–Xing sequences. In
K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo
and Quasi-Monte Carlo Methods 2000, pages 434–445. Springer, New
York, 2002.

[Pra83] B. L. S. Prakasa Rao. Nonparametric Functional Estimation. Academic
Press, New York, 1983.



References 189

[PT95] S. Paskov and J. Traub. Faster valuation of financial derivatives. J. Port-
folio Management, 22:113–120, 1995.

[PW72] W. W. Peterson and E. J. Weldon, Jr. Error-Correcting Codes, 2nd edi-
tion. MIT Press, Cambridge, 1972.

[RB95] J. Rifà and J. Borrell. A fast algorithm to compute irreducible and primi-
tive polynomials in finite fields. Theory Comput. Syst., 28(1):13–20, 1995.

[Ren03] M. Rencher. What’s Yield Got to Do with IC Design. EETimes, Brussels,
2003.

[Res87] S. I. Resnick. Extreme Values, Regular Variation and Point Processes.
Springer, New York, 1987.

[Rip96] B. Ripley. Pattern Recognition and Neural Networks. Cambridge Univer-
sity Press, Cambridge, 1996.

[Ros60] H. H. Rosenbrock. An automatic method for finding the greatest or least
value of a function. Computer J., 3:175–184, 1960.

[Rot80] K. F. Roth. On irregularities of distribution IV. Acta Arith., 37:67–75,
1980.

[RSBS04] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester. Statistical analysis of
subthreshold leakage current for VLSI circuits. IEEE Trans. VLSI Syst.,
12(2):131–139, 2004.

[RV98] G. Reinsel and R. Velu. Multivariate Reduced-Rank Regression, Theory
and Applications. Springer, Berlin, 1998.

[SC92] X. Sun and E. W. Cheney. The fundamentality of sets of ridge functions.
Aequ. Math., 44:226–235, 1992.

[SK05] I. M. Sobol’ and S. S. Kucherenko. Global sensitivity indices for nonlinear
mathematical models. Review. Wilmott Magazine, 2:2–7, 2005.

[SKC99] J. F. Swidzinski, M. Keramat, and K. Chang. A novel approach to effi-
cient yield estimation for microwave integrated circuits. In IEEE Midwest
Symp. Circuit Syst., 1999.

[Smi85] R. L. Smith. Maximum likelihood estimation in a class of non-regular
cases. Biometrika, 72:67–92, 1985.

[Smi87] R. L. Smith. Estimating tails of probability distributions. Ann. Stats.,
15(3):1174–1207, 1987.

[Smo63] S. Smolyak. Quadrature and interpolation formulas for tensor products
of certain classes of functions. Dokl. Akad. Nauk SSSR, 4:240–243, 1963.

[Sob67] I. M. Sobol’. The distribution of points in a cube and the approximate
evaluation of integrals. U.S.S.R. Comp. Math. and Math. Phys., 7(4):86–
112, 1967 (English translation).

[Sob76] I. M. Sobol’. Uniformly distributed sequences with an additional uniform
property. U.S.S.R. Comp. Math. and Math. Phys., 16:1332–1337, 1976
(English translation).

[SP81] K. Singhal and J. F. Pinel. Statistical design centering and tolerancing
using parameter sampling. IEEE Trans. Circuits Syst., 28(7):692–702,
1981.

[Spa95] J. Spanier. Quasi-Monte Carlo methods for particle transport problems.
In H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-
Monte Carlo Methods in Scientific Computing, pages 121–148. Springer,
New York, 1995.



190 FAST STATISTICAL ANALYSIS

[SR07a] A. Singhee and R. A. Rutenbar. Beyond low-order statistical response
surfaces: latent variable regression for efficient, highly nonlinear fitting.
In Proc. IEEE/ACM Design Autom. Conf., 2007.

[SR07b] A. Singhee and R. A. Rutenbar. From finance to flip-flops: a study of
fast quasi-Monte Carlo methods from computational finance applied to
statistical circuit analysis. In Proc. Int. Symp. Quality Electronic Design,
2007.

[SR07c] A. Singhee and R. A. Rutenbar. Statistical Blockade: a novel method for
very fast Monte Carlo simulation of rare circuit events, and its applica-
tion. In Proc. Design Autom. Test Europe, 2007.

[Ste87] M. Stein. Large sample properties of simulations using Latin hypercube
sampling. Technometrics, 29(2):143–151, 1987.

[Str71] A. H. Stroud. Approximate Calculation of Multiple Integrals. Prentice–
Hall, Englewood Cliffs, 1971.

[SVK94] S. S. Sapatnekar, P. M. Vaidya, and S.-M. Kang. Convexity-based al-
gorithms for design centering. IEEE Trans. Computer-Aided Design,
13(12):1536–1549, 1994.

[SWCR08] A. Singhee, J. Wang, B. H. Calhoun, and R. A. Rutenbar. Recursive Sta-
tistical Blockade: an enhanced technique for rare event simulation with
application to SRAM circuit design. In Proc. Int. Conf. VLSI Design,
2008.

[Tez93] S. Tezuka. Polynomial arithmetic analogue of Halton sequences. ACM
Trans. Modeling Comp. Sim., 3(2):99–107, 1993.

[Tez95] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Aca-
demic, New York, 1995.

[Tez05] S. Tezuka. On the necessity of low-effective dimension. J. Complexity,
21:710–721, 2005.

[Van35] J. G. Van der Corput. Verteilungsfunktionen. Proc. Ned. Akad. v. Wet.,
38:813–821, 1935 (in Dutch).

[VK61] B. A. Vostrecov and M. A. Kreines. Approximation of continuous func-
tions by superpositions of plane waves. Soviet Math. Dokl., 2:1326–1329,
1961.

[vM36] R. von Mises. La distribution de la plus grande de n valeurs. In Selected
Papers 2, pages 271–294. American Mathematical Society, Providence,
1936.

[VRK+04a] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S.
Narayan. First-order incremental block-based statistical timing analysis.
In Proc. IEEE/ACM Design Autom. Conf., June 2004.

[War72] T. T. Warnock. Computational investigations of low discrepancy point
sets. In S. K. Zaremba, editor, Applications of Number Theory to Nu-
merical Analysis, pages 319–343. Academic Press, New York, 1972.

[WF03] X. Wang and K.-T. Fang. The effective dimension and quasi-Monte Carlo
integration. J. Complexity, 19(2):101–124, 2003.

[WF05] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques, 2nd edition. Morgan Kaufmann, San Francisco,
2005.

[Wo91] H. Woz̀niakowski. Average case complexity of multivariate integration.
Bull. Amer. Math. Soc., 24(1):185–194, 1991.



References 191

[WRWI84] S. Wold, A. Ruhe, H. Wold, and W. J. Dunn, III. The collinearity prob-
lem in linear regression. The partial least squares (PLS) approach to
generalized inverses. J. Sci. Stat. Comput., 5(3):735–743, 1984.

[WS07] X. Wang and I. H. Sloan. Low discrepancy sequences in high dimen-
sions: how well are their projections distributed? J. Comput. Appl. Math.,
213(2):366–386, 2008.

[WSE01] S. Wold, M. Sjöström, and L. Eriksson. PLS-regression: a basic tool of
chemometrics. Chemometr. Intell. Lab. Syst., 58:109–130, 2001.

[WSRC07] J. Wang, A. Singhee, R. A. Rutenbar, and B. H. Calhoun. Modeling the
minimum standby supply voltage of a full SRAM array. In Proc. Europ.
Solid State Cir. Conf., 2007.

[XN95] C. P. Xing and H. Niederreiter. A construction of low-discrepancy se-
quences using global function fields. Acta Arith., 73:87–102, 1995.

[YKHT87] T.-K. Yu, S. M. Kang, I. N. Hajj, and T. N. Trick. Statistical performance
modeling and parametric yield estimation of MOS VLSI. IEEE Trans.
Computer-Aided Design, 6(6):1013–1022, 1987.

[ZC06] W. Zhao and Y. Cao. New generation of predictive technology model
for sub-45 nm early design exploration. IEEE Trans. Electron Devices,
53(11):2816–2823, 2006.



Index

C(X), 13
Lp(X), 13
b-ary box, 73
p-norm, 13
(t,m, s)-net, 72, 73
(t, s)-sequence, 72, 74, 81

digital, 79
discrepancy, 75

A

acceptance region, 63
activation function, 11
ANOVA decomposition, 94, 175

B

balancing, 73, 92
bandgap voltage reference, 52, 114
Bayesian regularization, 37, 41
bias–variance tradeoff, 19
Black–Scholes model, 62
blockade filter, 143

C

causal dependency, 35
Central Limit Theorem, 129
characteristic function, 63, 68, 119
classification, 137

linear, 137
classification threshold, 142
compact set, 13
conditional CDF, 127
conditionals, 156
confidence interval, 159
cross-validation, 37, 43
curse of dimensionality, 65

D

data retention voltage, 156
distribution, 166

dense set, 13
digital method, 78

Faure sequence, 80
Niederreiter sequence, 80
Niederreiter–Xing sequence, 81
Sobol’ sequence, 80

digital net, 79
digital sequence, 78
digital (t, s)-sequence, 79
direction number, 83, 86
discrepancy, 68, 69

Faure sequence, 75
L2 star discrepancy, 70
random sequence, 70
Sobol’ sequence, 75
star discrepancy, 68, 69
(t, s)-sequence, 75

disjoint tail regions, 156, 157
dropout voltage

bandgap voltage reference, 53
Dutch dikes, 125

E

effective dimension, 95, 97, 100, 101
superposition, 95
truncation, 95

expectation, 22
extreme value theory, 125, 128
extremely rare events, 159

F

Faure sequence, 75
digital method, 80
discrepancy, 75

A. Singhee, R.A. Rutenbar, Novel Algorithms for Fast Statistical Analysis
of Scaled Circuits, Lecture Notes in Electrical Engineering 46,
c© Springer Science + Business Media B.V. 2009



194 FAST STATISTICAL ANALYSIS

Fisher–Tippett, 128
Fréchet, 128

G

Gauss–Newton method, 40
generalization, 21, 36
generalized extreme value, 129
generalized Pareto distribution, 131
generator matrix, 79
global sensitivity, 34
global sensitivity index, 95
gradient, 39
Gray code, 88
Gumbel, 128

H

Halton sequence, 77
Hardy and Krause, variation, 71
Hessian, 39, 42
high replication circuit, 123, 173
homogeneous polynomial, 15
hyperbolic tangent, 28

I

input-referred correlation, 35, 50
integration error, 65

estimate, 103
quasi-Monte Carlo, 104

integration lattice, 72
IRC, see input-referred correlation

J

Jacobian, 40

K

kernel trick, 9
Koksma–Hlawka, 69, 96
Kronecker product, 5

L

latent variable, 8, 19, 29
latent variable regression, 8
Latin hypercube sampling, 88

construction, 89
scrambled (t,m, s)-net, 91
Sobol’ sequence, comparison with,

98, 111
variance, 90, 98, 110

Latin supercube sampling, 121
LDS, see low-discrepancy sequence
Levenberg–Marquardt, 37, 38, 40, 42
LHS, see Latin hypercube sampling
likelihood, 134
linear model, 4
linear projection, 29
Lipschitz condition, 105

log-likelihood function, 134
logistic function, 28
low-discrepancy sequence, 71, 72
low-rank approximation, 6

M

master–slave flip-flop, 45, 114, 153
maximum domain of attraction, 129, 130

tail regularity, 131
maximum likelihood estimation, 134

variance, 135
MDA, see maximum domain of attraction
mean excess function, 161
measure, probability, 22
mixture importance sampling, 124
moment matching, 135
Monte Carlo, 66

convergence, 66, 69, 119
Bakholov, 66

variance, 67, 88

N

neural network, 11
Newton’s method, 39
Niederreiter sequence

digital method, 80
Niederreiter–Xing sequence

digital method, 81

O

option, 61
Asian option, 61
strike price, 61

overfitting, 20, 33

P

peaks over threshold, 128
perceptron, 11
PPR, see projection pursuit
primitive polynomial, 83, 86
probability-weighted distribution

variance, 136
probability-weighted moments, 135
PROBE, 6
projection matrix, 8
projection pursuit, 10, 12, 18

convergence, 21
Hall, 27
Huber, 24, 26
Jones, 26

projection vector, 8, 19
projection weight, 8, 34

Q

quadratic model, 5
quadrature, 65



Index 195

quasi-Monte Carlo, 72
circuits, 101
convergence, 119
patterns, 92
skip initial points, 103

R

radical inverse function, 77
random dopant fluctuation, 45
rank, 37
rare events, 127
reduced rank regression, 8
regular variation of function, 132
regularization, 41
relative global sensitivity, 34
residue, 18, 22
response surface model, 4
ridge function, 10

degree of approximation, 16
Maiorov, 17

density, 14
Sun and Cheney, 15
Vostrecov and Kreines, 15

Fourier series, 12
roughness penalty, 41

S

sample maximum, 128
limiting distribution, 128

sample mean excess plot, 161
scrambled sequence, 105

linear matrix scrambling, 107
Owen’s method, 106
Sobol’, 108
variance, 105

scrambling, 90
separating hyperplane, 139

optimal, 140
sigmoid, 28

derivative, 29
SiLVR, 27, 29

algorithm, 31
comparison with PROBE, 55
complexity, 31
convergence, 31

Barron, 32

Chui and Li, 32
Cybenko, 32

objective, 30
overfitting, 33

slowly varying function, 132
smooth, 18
smoothing, 122
Sobol’ sequence, 75, 82

construction, 82
digital method, 80
discrepancy, 75
Latin hypercube sampling, compar-

ison with, 98, 111
properties A and A’, 87
scrambling, 108

Spearman’s rank correlation, 37, 102, 115,
151

SRAM, 114, 123, 147, 149
statistical blockade, 125, 143, 144

comparison, 148, 152, 155, 168
recursive formulation, 163–165
variance, 160

steepest descent, 39
Stone–Weierstrass theorem, 14
support points, 141
support vector, 141
support vector machine, 138

T

tail, 127
fitting, 133
heavy, 126, 153
limiting distribution, 130

tail threshold, 127
two-stage opamp, 47

V

Van der Corput sequence, 76
variable-dimension mapping, 101
variance reduction, 90

W

Weibull, 128
Weierstrass theorem, 13
Wiener process, 62

Y

yield, circuit, 64


	Introduction
	Background and Motivation
	Major Contributions
	SiLVR: Nonlinear Response Surface Modeling  and Dimensionality Reduction
	Fast Monte Carlo Simulation Using  Quasi-Monte Carlo
	Statistical Blockade: Estimating Rare Event Statistics, with Application to High Replication Circuits

	Preliminaries
	Organization

	Contents
	 SiLVR: Projection Pursuit for Response  Surface Modeling
	Motivation
	Prevailing Response Surface Models
	Linear Model
	Quadratic Model
	PROjection Based Extraction (PROBE):  A Reduced-Rank Quadratic Model

	Latent Variables and Ridge Functions
	Latent Variable Regression
	Ridge Functions and Projection Pursuit Regression

	Approximation Using Ridge Functions:  Density and Degree of Approximation
	Density: What Can Ridge Functions Approximate?
	Degree of Approximation: How Good Are  Ridge Functions?

	Projection Pursuit Regression
	Smoothing and the Bias-Variance Tradeoff
	Convergence of Projection Pursuit Regression

	SiLVR
	The Model
	Model Complexity

	On the Convergence of SiLVR
	Interpreting the SiLVR Model
	Relative Global Sensitivity
	Input-Referred Correlation

	Training SiLVR
	Initialization Using Spearman's Rank Correlation
	The Levenberg-Marquardt Algorithm
	Bayesian Regularization
	Modified 5-Fold Cross-validation


	Experimental Results
	Master-Slave Flip-Flop with Scan Chain
	Two-Stage RC-Compensated Opamp
	Sub-1 V CMOS Bandgap Voltage Reference
	Training Time


	Future Work

	 Quasi-Monte Carlo for Fast Statistical  Simulation of Circuits
	Motivation
	Standard Monte Carlo
	The Problem: Bridging Computational  Finance and Circuit Design
	Pricing an Asian Option
	Estimating Circuit Yield
	The Canonical Problem

	Monte Carlo for Numerical Integration: Some Convergence Results
	Discrepancy: Uniformity and Integration  Error
	Variation in the Sense of Hardy and Krause


	Low-Discrepancy Sequences
	(t,m,s)-Nets and (t,s)-Sequences in Base b
	Constructing Low-Discrepancy Sequences:  The Digital Method
	The Van der Corput Sequence: A Building Block
	The Digital Method, Digital Nets and Digital  Sequences
	Comparing (t,s)-Sequences and Choosing One

	The Sobol' Sequence
	Choosing Primitive Polynomials for Good Sobol'  Sequences
	Choosing Initial Direction Numbers for Good Sobol' Sequences
	Gray Code Construction

	Latin Hypercube Sampling
	Construction
	Variance (and Integration Error) Reduction
	LHS Sample Is a Scrambled (t,m,s)-Net


	Quasi-Monte Carlo in High Dimensions
	Effective Dimension of the Integrand
	Why Is Quasi-Monte Carlo (Sobol' Points)  Better Than Latin Hypercube Sampling?

	Quasi-Monte Carlo for Circuits
	The Proposed Flow
	Estimating Integration Error
	Estimating Monte Carlo Error
	Estimating QMC Error with Scrambled Sequences

	Scrambled Digital (t,m,s)-Nets and  (t,s)-Sequences
	Owen's Scrambling
	Linear Matrix Scrambling: A Simpler Scheme
	Scrambling Sobol' Sequences with Linear Matrix  Scrambling


	Experimental Results
	Comparing LHS and QMC (Sobol' Points)
	LHS (Almost) Exactly Removes One Dimensional  Variance Contribution
	Sobol' Points Are Better Than LHS for Functions with Significant Higher Dimensional Components

	Experiments on Circuit Benchmarks
	Analysis of Results


	Future Work

	 Statistical Blockade: Estimating Rare Event Statistics
	Motivation
	Modeling Rare Event Statistics
	The Problem
	Extreme Value Theory: Tail Distributions
	Tail Regularity Conditions Required  for F MDA(Hxi)
	Estimating the Tail: Fitting the GPD to Data
	Maximum Likelihood Estimation
	Moment Matching
	Probability-Weighted Moment Matching


	Statistical Blockade
	Classification
	Support Vector Classifier
	The Statistical Blockade Algorithm
	Note on Choosing and Unbiasing the Classifier

	Experimental Results
	6T SRAM Cell
	64-Bit SRAM Column
	Master-Slave Flip-Flop with Scan Chain


	Making Statistical Blockade Practical
	Conditionals and Disjoint Tail Regions
	The Problem
	The Solution

	Extremely Rare Events and Statistics
	Extremely Rare Events
	The Reason for Error in the MSFF Tail Model
	The Problem

	A Recursive Formulation of Statistical  Blockade
	Experimental Results

	Future Work

	 Concluding Observations
	Appendix A  Derivations of Variance Values for Test Functions in Sect. 2.6.1
	Variance of fc
	One Dimensional Variance of fs

	References
	Index

