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Preface

The idea for this book grew out of a course given at a winter school of the In-
ternational Doctoral Program “Identification, Optimization and Control with Ap-
plications in Modern Technologies” in Schloss Thurnau in March 2009. Initially,
the main purpose of this course was to present results on stability and performance
analysis of nonlinear model predictive control algorithms, which had at that time
recently been obtained by ourselves and coauthors. However, we soon realized that
both the course and even more the book would be inevitably incomplete without
a comprehensive coverage of classical results in the area of nonlinear model pre-
dictive control and without the discussion of important topics beyond stability and
performance, like feasibility, robustness, and numerical methods.

As a result, this book has become a mixture between a research monograph and
an advanced textbook. On the one hand, the book presents original research results
obtained by ourselves and coauthors during the last five years in a comprehensive
and self contained way. On the other hand, the book also presents a number of
results—both classical and more recent—of other authors. Furthermore, we have
included a lot of background information from mathematical systems theory, op-
timal control, numerical analysis and optimization to make the book accessible to
graduate students—on PhD and Master level—from applied mathematics and con-
trol engineering alike. Finally, via our web page www.nmpc-book.com we provide
MATLAB and C++ software for all examples in this book, which enables the reader
to perform his or her own numerical experiments. For reading this book, we assume
a basic familiarity with control systems, their state space representation as well as
with concepts like feedback and stability as provided, e.g., in undergraduate courses
on control engineering or in courses on mathematical systems and control theory in
an applied mathematics curriculum. However, no particular knowledge of nonlin-
ear systems theory is assumed. Substantial parts of the systems theoretic chapters
of the book have been used by us for a lecture on nonlinear model predictive con-
trol for master students in applied mathematics and we believe that the book is well
suited for this purpose. More advanced concepts like time varying formulations or
peculiarities of sampled data systems can be easily skipped if only time invariant
problems or discrete time systems shall be treated.
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viii Preface

The book centers around two main topics: systems theoretic properties of nonlin-
ear model predictive control schemes on the one hand and numerical algorithms on
the other hand; for a comprehensive description of the contents we refer to Sect. 1.3.
As such, the book is somewhat more theoretical than engineering or application ori-
ented monographs on nonlinear model predictive control, which are furthermore
often focused on linear methods.

Within the nonlinear model predictive control literature, distinctive features of
this book are the comprehensive treatment of schemes without stabilizing terminal
constraints and the in depth discussion of performance issues via infinite horizon
suboptimality estimates, both with and without stabilizing terminal constraints. The
key for the analysis in the systems theoretic part of this book is a uniform way
of interpreting both classes of schemes as relaxed versions of infinite horizon op-
timal control problems. The relaxed dynamic programming framework developed
in Chap. 4 is thus a cornerstone of this book, even though we do not use dynamic
programming for actually solving nonlinear model predictive control problems; for
this task we prefer direct optimization methods as described in the last chapter of
this book, since they also allow for the numerical treatment of high dimensional
systems.

There are many people whom we have to thank for their help in one or the other
way. For pleasant and fruitful collaboration within joint research projects and on
joint papers—of which many have been used as the basis for this book—we are
grateful to Frank Allgower, Nils Altmiiller, Rolf Findeisen, Marcus von Lossow,
Dragan Nesi¢, Anders Rantzer, Martin Seehafer, Paolo Varutti and Karl Worthmann.
For enlightening talks, inspiring discussions, for organizing workshops and mini-
symposia (and inviting us) and, last but not least, for pointing out valuable references
to the literature we would like to thank David Angeli, Moritz Diehl, Knut Graichen,
Peter Hokayem, Achim Ilchmann, Andreas Kugi, Daniel Limén, Jan Lunze, Lalo
Magni, Manfred Morari, Davide Raimondo, Sasa Rakovi¢, Jorg Rambau, Jim Rawl-
ings, Markus Reble, Oana Serea and Andy Teel, and we apologize to everyone who
is missing in this list although he or she should have been mentioned. Without the
proof reading of Nils Altmiiller, Robert Baier, Thomas Jahn, Marcus von Lossow,
Florian Miiller and Karl Worthmann the book would contain even more typos and
inaccuracies than it probably does—of course, the responsibility for all remaining
errors lies entirely with us and we appreciate all comments on errors, typos, miss-
ing references and the like. Beyond proof reading, we are grateful to Thomas Jahn
for his help with writing the software supporting this book and to Karl Worthmann
for his contributions to many results in Chaps. 6 and 7, most importantly the proof
of Proposition 6.17. Finally, we would like to thank Oliver Jackson and Charlotte
Cross from Springer-Verlag for their excellent support.

Bayreuth, Germany Lars Griine
April 2011 Jiirgen Pannek



Contents

1 Introduction. . .. .. ... ............

1.1 What Is Nonlinear Model Predictive Control?

1.2 Where Did NMPC Come from? . . . ... ..
1.3 How Is This Book Organized? . . . . . . . ..
1.4 What Is Not Covered in This Book? . . . . . .

2  Discrete Time and Sampled Data Systems . . . .
2.1 Discrete Time Systems . . . . . . ... ....

2.2 Sampled Data Systems . . . . ... ... ...

2.3 Stability of Discrete Time Systems . . . . . .

2.4 Stability of Sampled Data Systems . . . . . .

2.5 Notes and Extensions . . . . .. ... ....

26 Problems . ... ... .. ... ... ...
References . . . . .. ... ... ... ....

3  Nonlinear Model Predictive Control . . . . . . .
3.1 The Basic NMPC Algorithm . ... ... ..

32 Constraints . . . . . ... ... ... ...

3.3 Variants of the Basic NMPC Algorithms . . .

3.4 The Dynamic Programming Principle . . . . .

3.5 Notes and Extensions . . . ... .. .. ...

36 Problems . ... ................
References . . . . ... ... ... ......

4 Infinite Horizon Optimal Control . . . . . . . . .

4.1 Definition and Well Posedness of the Problem

4.2 The Dynamic Programming Principle . . . . .
4.3 Relaxed Dynamic Programming . . . . . . . .
4.4 Notes and Extensions . . . .. ... .....
45 Problems . . .. ... ... L.

References . . . ... ... ... .. .....



Contents

Stability and Suboptimality Using Stabilizing Constraints . . . . . . 87
5.1 The Relaxed Dynamic Programming Approach . . . . . . ... .. 87
5.2 Equilibrium Endpoint Constraint . . . . . .. ... ... ..... 88
5.3 Lyapunov Function Terminal Cost. . . . . . . ... ... ..... 95
5.4 Suboptimality and Inverse Optimality . . . . . . ... ... .... 101
5.5 Notes and Extensions . . . . . .. ... ... ..o 109
56 Problems . . . ... ... ... 110

References . . . . . .. ... ... L 112
Stability and Suboptimality Without Stabilizing Constraints . . . . . 113
6.1 Setting and Preliminaries . . . . ... ... ... ... ...... 113
6.2 Asymptotic Controllability with Respectto ¢ . . . . . .. ... .. 116
6.3 Implications of the Controllability Assumption . . . . . ... ... 119
6.4 Computationof o . . . . . . .. .. ... 121
6.5 Main Stability and Performance Results . . . . . . ... ... ... 125
6.6 Design of Good Running Costs £ . . . . . ... ... ....... 133
6.7 Semiglobal and Practical Asymptotic Stability . . . . ... .. .. 142
6.8 Proof of Proposition 6.17 . . . . . . ... ... ... ... ... 150
6.9 Notes and Extensions . . . . . ... ... ... . ... ... .. 159
6.10 Problems . . . . . .. ... 161

References . . . . . . . . . ... . .. 162
Variants and Extensions . . . . . . ... ... ... . ........ 165
7.1 Mixed Constrained—Unconstrained Schemes . . . . . .. ... .. 165
7.2 Unconstrained NMPC with Terminal Weights . . . . ... .. .. 168
7.3 Nonpositive Definite Running Cost . . . . . . ... ... ..... 170
7.4 Multistep NMPC-Feedback Laws . . . . . .. ... ... ..... 174
7.5 FastSampling . . ... ... ... ... ... . 176
7.6 Compensation of Computation Times . . . . . ... ... ..... 180
7.7 Online Measurementof & . . . . . . ... .. ... ........ 183
7.8 Adaptive Optimization Horizon . . . . . . ... ... ....... 191
7.9 Nonoptimal NMPC . . . ... ... ... ............. 198
7.10 Beyond Stabilization and Tracking . . . . ... .. ... ... .. 207

References . . . . . . . . . . . 209
Feasibility and Robustness . . . . . . . . ... ... .. ........ 211
8.1 The Feasibility Problem . . . . . ... ... ... ... ...... 211
8.2 Feasibility of Unconstrained NMPC Using Exit Sets . . . . . . . . 214
8.3 Feasibility of Unconstrained NMPC Using Stability . . . ... .. 217
8.4 Comparing Terminal Constrained vs. Unconstrained NMPC . . . . 222
8.5 Robustness: Basic Definition and Concepts . . . . . . . . ... .. 225
8.6 Robustness Without State Constraints . . . . . . ... .. ..... 227
8.7 Examples for Nonrobustness Under State Constraints . . . . . . . 232
8.8 Robustness with State Constraints via Robust-optimal Feasibility . 237
8.9 Robustness with State Constraints via Continuity of Vyy . . . . . . 241
8.10 Notes and Extensions . . . . . ... ... ... .......... 246
8.11 Problems . . . . . .. . ... .. 249

References . . . . . . . . . . .. .. 249



Contents xi
9  Numerical Discretization . . . . . . ... ... ....... . ..... 251
9.1 Basic SolutionMethods . . . . ... ... ... ... ....... 251

9.2 Convergence Theory . . . . . .. ... ... ... . ........ 256

9.3 Adaptive Step Size Control . . . . ... .. ... ... 260

9.4 Using the Methods Within the NMPC Algorithms . . . . . .. .. 264

9.5 Numerical Approximation Errors and Stability . . . . . . ... .. 266

9.6 Notesand Extensions . . . . ... ... ... ........... 269

9.7 Problems . . . . . . ... 271
References . . . . . . . . . . ... L 272

10 Numerical Optimal Control of Nonlinear Systems . . . . . . . .. .. 275
10.1 Discretization of the NMPC Problem . . . .. ... ... ... .. 275

10.2 Unconstrained Optimization . . . . . . . . . . ... ... ..... 288

10.3 Constrained Optimization . . . . . . . ... ... ... ...... 292

10.4 Implementation Issues in NMPC . . . . ... ... ... ..... 315

10.5 Warm Start of the NMPC Optimization . . . . ... ... ... .. 324

10.6 Nonoptimal NMPC . . . . ... .. ... ... . ......... 331

10.7 Notes and Extensions . . . . . . . ... .. ... .. ....... 335

10.8 Problems . . . . . . . . . ... 337
References . . . . . . . . . . . . ... 337
Appendix NMPC Software Supporting ThisBook . . . . . .. ... .. 341
A.1 The MATLAB NMPC Routine . . ... ... ........... 341

A.2 Additional MATLAB and MAPLE Routines . . . ... ... ... 343

A3 The C++ NMPC Software . . . . .. ... ... ... ....... 345
Glossary . . . . . . . . . e 347
Index . . ... . . . . .. 353






Chapter 1
Introduction

1.1 What Is Nonlinear Model Predictive Control?

Nonlinear model predictive control (henceforth abbreviated as NMPC) is an opti-
mization based method for the feedback control of nonlinear systems. Its primary
applications are stabilization and tracking problems, which we briefly introduce in
order to describe the basic idea of model predictive control.

Suppose we are given a controlled process whose state x(n) is measured at dis-
crete time instants t,, n =0, 1,2, .... “Controlled” means that at each time instant
we can select a control input u(n) which influences the future behavior of the state
of the system. In tracking control, the task is to determine the control inputs u(n)
such that x () follows a given reference x*'(n) as good as possible. This means that
if the current state is far away from the reference then we want to control the system
towards the reference and if the current state is already close to the reference then
we want to keep it there. In order to keep this introduction technically simple, we
consider x(n) € X = R4 and u(n) € U =R™, furthermore we consider a reference
which is constant and equal to x, = 0, i.e., x"f(n) = x,, = 0 for all n > 0. With such
a constant reference the tracking problem reduces to a stabilization problem; in its
full generality the tracking problem will be considered in Sect. 3.3.

Since we want to be able to react to the current deviation of x(n) from the ref-
erence value x, = 0, we would like to have u(n) in feedback form, i.e., in the form
u(n) = pu(x(n)) for some map p mapping the state x € X into the set U of control
values.

The idea of model predictive control—linear or nonlinear—is now to utilize a
model of the process in order to predict and optimize the future system behavior. In
this book, we will use models of the form

xt=f(x,u) (1.1)

where f: X x U — X is a known and in general nonlinear map which assigns to a
state x and a control value u the successor state x T at the next time instant. Starting
from the current state x (n), for any given control sequence u(0), ..., u(N — 1) with

L. Griine, J. Pannek, Nonlinear Model Predictive Control, 1
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2 1 Introduction

horizon length N > 2, we can now iterate (1.1) in order to construct a prediction
trajectory x, defined by

w0 =x(m),  xk+1)=flr k), uk), k=0,...,N—1. (1.2)

Proceeding this way, we obtain predictions x, (k) for the state of the system x (n + k)
at time f,,4 in the future. Hence, we obtain a prediction of the behavior of the sys-

tem on the discrete interval ¢,,, ..., f,+n depending on the chosen control sequence
u(),...,u(N —1).
Now we use optimal control in order to determine u(0), ..., u(N — 1) such that

X, is as close as possible to x, = 0. To this end, we measure the distance between
Xy (k) and x, =0 for k=0,..., N — 1 by a function £(x, (k), u(k)). Here, we not
only allow for penalizing the deviation of the state from the reference but also—if
desired—the distance of the control values u(k) to a reference control u,, which
here we also choose as u, = 0. A common and popular choice for this purpose is
the quadratic function

£ (), u®)) = |2 ) |* + 2| uio) |

where || - | denotes the usual Euclidean norm and A > 0 is a weighting parameter
for the control, which could also be chosen as 0 if no control penalization is desired.
The optimal control problem now reads

2

—_

minimize J(x(n),u()) = Y £(xu(k), u(k))

=0

~

with respect to all admissible! control sequences u(0), ..., u(N — 1) with x, gen-
erated by (1.2).
Let us assume that this optimal control problem has a solution which is given by

the minimizing control sequence u*(0), ..., u*(N — 1), i.e.,
N-1

: J s . = V2 . k , * k )

u(O),.l.l.,lbltl(lN—l) (x(m), u() Z (xur (k) u* (k)

k=0
In order to get the desired feedback value u(x(n)), we now set w(x(n)) := u*(0),
i.e., we apply the first element of the optimal control sequence. This procedure is
sketched in Fig. 1.1.

At the following time instants t,1, #,42, ... we repeat the procedure with the
new measurements x(n 4+ 1), x(n + 2), ... in order to derive the feedback values
wx@+ 1)), u(x(m + 2)), .... In other words, we obtain the feedback law p by
an iterative online optimization over the predictions generated by our model (1.1).2
This is the first key feature of model predictive control.

IThe meaning of “admissible” will be defined in Sect. 3.2.

2 Attentive readers may already have noticed that this description is mathematically idealized since
we neglected the computation time needed to solve the optimization problem. In practice, when the
measurement x (n) is provided to the optimizer the feedback value w(x(n)) will only be available
after some delay. For simplicity of exposition, throughout our theoretical investigations we will
assume that this delay is negligible. We will come back to this problem in Sect. 7.6.
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Fig. 1.1 Illustration of the NMPC step at time ¢,

From the prediction horizon point of view, proceeding this iterative way the
trajectories x,(k), k = 0,..., N provide a prediction on the discrete interval
ty, ..., thyn attime t,, on the interval t,,41, ..., t,4 N+ at time #,41, on the interval
th42, .-+ it N2 at time #,47, and so on. Hence, the prediction horizon is moving
and this moving horizon is the second key feature of model predictive control.

Regarding terminology, another term which is often used alternatively to model
predictive control is receding horizon control. While the former expression stresses
the use of model based predictions, the latter emphasizes the moving horizon idea.
Despite these slightly different literal meanings, we prefer and follow the common
practice to use these names synonymously. The additional term nonlinear indicates
that our model (1.1) need not be a linear map.

1.2 Where Did NMPC Come from?

Due to the vast amount of literature, the brief history of NMPC we provide in this
section is inevitably incomplete and focused on those references in the literature
from which we ourselves learned about the various NMPC techniques. Furthermore,
we focus on the systems theoretic aspects of NMPC and on the academic develop-
ment; some remarks on numerical methods specifically designed for NMPC can be
found in Sect. 10.7. Information about the use of linear and nonlinear MPC in prac-
tical applications can be found in many articles, books and proceedings volumes,
e.g.,in [15, 22, 24].

Nonlinear model predictive control grew out of the theory of optimal control
which had been developed in the middle of the 20th century with seminal contri-
butions like the maximum principle of Pontryagin, Boltyanskii, Gamkrelidze and
Mishchenko [20] and the dynamic programming method developed by Bellman
[2]. The first paper we are aware of in which the central idea of model predictive
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control—for discrete time linear systems—is formulated was published by Propoi
[21] in the early 1960s. Interestingly enough, in this paper neither Pontryagin’s max-
imum principle nor dynamic programming is used in order to solve the optimal con-
trol problem. Rather, the paper already proposed the method which is predominant
nowadays in NMPC, in which the optimal control problem is transformed into a
static optimization problem, in this case a linear one. For nonlinear systems, the
idea of model predictive control can be found in the book by Lee and Markus [14]
from 1967 on page 423:

One technique for obtaining a feedback controller synthesis from knowl-
edge of open-loop controllers is to measure the current control process state
and then compute very rapidly for the open-loop control function. The first
portion of this function is then used during a short time interval, after which
a new measurement of the process state is made and a new open-loop con-
trol function is computed for this new measurement. The procedure is then
repeated.

Due to the fact that neither computer hardware nor software for the necessary “very
rapid” computation were available at that time, for a while this observation had little
practical impact.

In the late 1970s, due to the progress in algorithms for solving constrained linear
and quadratic optimization problems, MPC for linear systems became popular in
control engineering. Richalet, Rault, Testud and Papon [25] and Cutler and Ramaker
[6] were among the first to propose this method in the area of process control, in
which the processes to be controlled are often slow enough in order to allow for
an online optimization, even with the computer technology available at that time.
It is interesting to note that in [25] the method was described as a “new method
of digital process control” and earlier references were not mentioned; it appears
that the basic MPC principle was re-invented several times. Systematic stability
investigations appeared a little bit later; an account of early results in that direction
for linear MPC can, e.g., be found in the survey paper of Garcia, Prett and Morari
[10] or in the monograph by Bitmead, Gevers and Wertz [3]. Many of the techniques
which later turned out to be useful for NMPC, like Lyapunov function based stability
proofs or stabilizing terminal constraints were in fact first developed for linear MPC
and later carried over to the nonlinear setting.

The earliest paper we were able to find which analyzes an NMPC algorithm sim-
ilar to the ones used today is an article by Chen and Shaw [4] from 1982. In this
paper, stability of an NMPC scheme with equilibrium terminal constraint in contin-
uous time is proved using Lyapunov function techniques, however, the whole opti-
mal control function on the optimization horizon is applied to the plant, as opposed
to only the first part as in our NMPC paradigm. For NMPC algorithms meeting this
paradigm, first comprehensive stability studies for schemes with equilibrium termi-
nal constraint were given in 1988 by Keerthi and Gilbert [13] in discrete time and
in 1990 by Mayne and Michalska [17] in continuous time. The fact that for non-
linear systems equilibrium terminal constraints may cause severe numerical diffi-
culties subsequently motivated the investigation of alternative techniques. Regional
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terminal constraints in combination with appropriate terminal costs turned out to
be a suitable tool for this purpose and in the second half of the 1990s there was
a rapid development of such techniques with contributions by De Nicolao, Magni
and Scattolini [7, 8], Magni and Sepulchre [16] or Chen and Allgower [5], both in
discrete and continuous time. This development eventually led to the formulation
of a widely accepted “axiomatic” stability framework for NMPC schemes with sta-
bilizing terminal constraints as formulated in discrete time in the survey article by
Mayne, Rawlings, Rao and Scokaert [18] in 2000, which is also an excellent source
for more detailed information on the history of various NMPC variants not men-
tioned here. This framework also forms the core of our stability analysis of such
schemes in Chap. 5 of this book. A continuous time version of such a framework
was given by Fontes [9] in 2001.

All stability results discussed so far add terminal constraints as additional state
constraints to the finite horizon optimization in order to ensure stability. Among the
first who provided a rigorous stability result of an NMPC scheme without such con-
straints were Parisini and Zoppoli [19] and Alamir and Bornard [1], both in 1995 and
for discrete time systems. Parisini and Zoppoli [19], however, still needed a terminal
cost with specific properties similar to the one used in [5]. Alamir and Bonnard [1]
were able to prove stability without such a terminal cost by imposing a rank con-
dition on the linearization on the system. Under less restrictive conditions, stability
results were provided in 2005 by Grimm, Messina, Tuna and Teel [11] for discrete
time systems and by Jadbabaie and Hauser [12] for continuous time systems. The
results presented in Chap. 6 of this book are qualitatively similar to these refer-
ences but use slightly different assumptions and a different proof technique which
allows for quantitatively tighter results; for more details we refer to the discussions
in Sects. 6.1 and 6.9.

After the basic systems theoretic principles of NMPC had been clarified, more
advanced topics like robustness of stability and feasibility under perturbations, per-
formance estimates and efficiency of numerical algorithms were addressed. For a
discussion of these more recent issues including a number of references we refer to
the final sections of the respective chapters of this book.

1.3 How Is This Book Organized?

The book consists of two main parts, which cover systems theoretic aspects of
NMPC in Chaps. 2-8 on the one hand and numerical and algorithmic aspects in
Chaps. 9-10 on the other hand. These parts are, however, not strictly separated; in
particular, many of the theoretical and structural properties of NMPC developed in
the first part are used when looking at the performance of numerical algorithms.
The basic theme of the first part of the book is the systems theoretic analysis of
stability, performance, feasibility and robustness of NMPC schemes. This part starts
with the introduction of the class of systems and the presentation of background
material from Lyapunov stability theory in Chap. 2 and proceeds with a detailed
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description of different NMPC algorithms as well as related background information
on dynamic programming in Chap. 3.

A distinctive feature of this book is that both schemes with stabilizing terminal
constraints as well as schemes without such constraints are considered and treated in
a uniform way. This “uniform way” consists of interpreting both classes of schemes
as relaxed versions of infinite horizon optimal control. To this end, Chap. 4 first de-
velops the theory of infinite horizon optimal control and shows by means of dynamic
programming and Lyapunov function arguments that infinite horizon optimal feed-
back laws are actually asymptotically stabilizing feedback laws. The main building
block of our subsequent analysis is the development of a relaxed dynamic program-
ming framework in Sect. 4.3. Roughly speaking, Theorems 4.11 and 4.14 in this
section extract the main structural properties of the infinite horizon optimal control
problem, which ensure

e asymptotic or practical asymptotic stability of the closed loop,

e admissibility, i.e., maintaining the imposed state constraints,

e a guaranteed bound on the infinite horizon performance of the closed loop,

e applicability to NMPC schemes with and without stabilizing terminal constraints.

The application of these theorems does not necessarily require that the feedback
law to be analyzed is close to an infinite horizon optimal feedback law in some
quantitative sense. Rather, it requires that the two feedback laws share certain prop-
erties which are sufficient in order to conclude asymptotic or practical asymptotic
stability and admissibility for the closed loop. While our approach allows for inves-
tigating the infinite horizon performance of the closed loop for most schemes under
consideration—which we regard as an important feature of the approach in this
book—we would like to emphasize that near optimal infinite horizon performance
is not needed for ensuring stability and admissibility.

The results from Sect. 4.3 are then used in the subsequent Chaps. 5 and 6 in
order to analyze stability, admissibility and infinite horizon performance properties
for NMPC schemes with and without stabilizing terminal constraints, respectively.
Here, the results for NMPC schemes with stabilizing terminal constraints in Chap. 5
can by now be considered as classical and thus mainly summarize what can be
found in the literature, although some results—Ilike, e.g., Theorems 5.21 and 5.22—
generalize known results. In contrast to this, the results for NMPC schemes without
stabilizing terminal constraints in Chap. 6 were mainly developed by ourselves and
coauthors and have not been presented before in this way.

While most of the results in this book are formulated and proved in a mathemat-
ically rigorous way, Chap. 7 deviates from this practice and presents a couple of
variants and extensions of the basic NMPC schemes considered before in a more
survey like manner. Here, proofs are occasionally only sketched with appropriate
references to the literature.

In Chap. 8 we return to the more rigorous style and discuss feasibility and robust-
ness issues. In particular, in Sects. 8.1-8.3 we present feasibility results for NMPC
schemes without stabilizing terminal constraints and without imposing viability as-
sumptions on the state constraints which are, to the best of our knowledge, either
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entirely new or were so far only known for linear MPC. These results finish our
study of the properties of the nominal NMPC closed-loop system, which is why
it is followed by a comparative discussion of the advantages and disadvantages of
the various NMPC schemes presented in this book in Sect. 8.4. The remaining sec-
tions in Chap. 8 address the robustness of the stability of the NMPC closed loop
with respect to additive perturbations and measurement errors. Here we decided to
present a selection of results we consider representative, partially from the literature
and partially based on our own research. These considerations finish the systems
theoretic part of the book.

The numerical part of the book covers two central questions in NMPC: how
can we numerically compute the predicted trajectories needed in NMPC for finite-
dimensional sampled data systems and how is the optimization in each NMPC step
performed numerically? The first issue is treated in Chap. 9, in which we start by
giving an overview on numerical one step methods, a classical numerical technique
for solving ordinary differential equations. After having looked at the convergence
analysis and adaptive step size control techniques, we discuss some implementa-
tional issues for the use of this methods within NMPC schemes. Finally, we investi-
gate how the numerical approximation errors affect the closed-loop behavior, using
the robustness results from Chap. 8.

The last Chap. 10 is devoted to numerical algorithms for solving nonlinear fi-
nite horizon optimal control problems. We concentrate on so-called direct methods
which form the currently by far preferred class of algorithms in NMPC applications.
In these methods, the optimal control problem is transformed into a static optimiza-
tion problem which can then be solved by nonlinear programming algorithms. We
describe different ways of how to do this transformation and then give a detailed
introduction into some popular nonlinear programming algorithms for constrained
optimization. The focus of this introduction is on explaining how these algorithms
work rather than on a rigorous convergence theory and its purpose is twofold: on the
one hand, even though we do not expect our readers to implement such algorithms,
we still think that some background knowledge is helpful in order to understand the
opportunities and limitations of these numerical methods. On the other hand, we
want to highlight the key features of these algorithms in order to be able to explain
how they can be efficiently used within an NMPC scheme. This is the topic of the
final Sects. 10.4-10.6, in which several issues regarding efficient implementation,
warm start and feasibility are investigated. Like Chap. 7 and in contrast to the other
chapters in the book, Chap. 10 has in large parts a more survey like character, since
a comprehensive and rigorous treatment of these topics would easily fill an entire
book. Still, we hope that this chapter contains valuable information for those readers
who are interested not only in systems theoretic foundations but also in the practical
numerical implementation of NMPC schemes.

Last but not least, for all examples presented in this book we offer either MAT-
LAB or C++ code in order to reproduce our numerical results. This code is available
from the web page

www.nmpc-book.com
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Both our MATLAB NMPC routine—which is suitable for smaller problems—
as well as our C++ NMPC package—which can also handle larger problems with
reasonable computing time—can also be modified in order to perform simulations
for problems not treated in this book. In order to facilitate both the usage and the
modification, the Appendix contains brief descriptions of our routines.

Beyond numerical experiments, almost every chapter contains a small selection
of problems related to the more theoretical results. Solutions for these problems
are available from the authors upon request by email. Attentive readers will note
that several of these problems—as well as some of our examples—are actually lin-
ear problems. Even though all theoretical and numerical results apply to general
nonlinear systems, we have decided to include such problems and examples, be-
cause nonlinear problems hardly ever admit analytical solutions, which are needed
in order to solve problems or to work out examples without the help of numerical
algorithms.

Let us finally say a few words on the class of systems and NMPC problems
considered in this book. Most results are formulated for discrete time systems on
arbitrary metric spaces, which in particular covers finite- and infinite-dimensional
sampled data systems. The discrete time setting has been chosen because of its no-
tational and conceptual simplicity compared to a continuous time formulation. Still,
since sampled data continuous time systems form a particularly important class of
systems, we have made considerable effort in order to highlight the peculiarities
of this system class whenever appropriate. This concerns, among other topics, the
relation between sampled data systems and discrete time systems in Sect. 2.2, the
derivation of continuous time stability properties from their discrete time counter-
parts in Sect. 2.4 and Remark 4.13, the transformation of continuous time NMPC
schemes into the discrete time formulation in Sect. 3.5 and the numerical solution
of ordinary differential equations in Chap. 9. Readers or lecturers who are inter-
ested in NMPC in a pure discrete time framework may well skip these parts of the
book.

The most general NMPC problem considered in this book® is the asymptotic
tracking problem in which the goal is to asymptotically stabilize a time varying
reference x™f(n). This leads to a time varying NMPC formulation; in particular,
the optimal control problem to be solved in each step of the NMPC algorithm ex-
plicitly depends on the current time. All of the fundamental results in Chaps. 2—4
explicitly take this time dependence into account. However, in order to be able to
concentrate on concepts rather than on technical details, in the subsequent chapters
we often decided to simplify the setting. To this end, many results in Chaps. 5-8
are first formulated for time invariant problems x™f = x,—i.e., for stabilizing an
x,—and the necessary modifications for the time varying case are discussed after-
wards.

3Except for some further variants discussed in Sects. 3.5 and 7.10.
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1.4 What Is Not Covered in This Book?

The area of NMPC has grown so rapidly over the last two decades that it is virtually
impossible to cover all developments in detail. In order not to overload this book, we
have decided to omit several topics, despite the fact that they are certainly important
and useful in a variety of applications. We end this introduction by giving a brief
overview over some of these topics.

For this book, we decided to concentrate on NMPC schemes with online opti-
mization only, thus leaving out all approaches in which part of the optimization is
carried out offline. Some of these methods, which can be based on both infinite hori-
zon and finite horizon optimal control and are often termed explicit MPC, are briefly
discussed in Sects. 3.5 and 4.4. Furthermore, we will not discuss special classes of
nonlinear systems like, e.g., piecewise linear systems often considered in the explicit
MPC literature.

Regarding robustness of NMPC controllers under perturbations, we have re-
stricted our attention to schemes in which the optimization is carried out for a nom-
inal model, i.e., in which the perturbation is not explicitly taken into account in the
optimization objective, cf. Sects. 8.5-8.9. Some variants of model predictive con-
trol in which the perturbation is explicitly taken into account, like min—-max MPC
schemes building on game theoretic ideas or tube based MPC schemes relying on
set oriented methods are briefly discussed in Sect. 8.10.

An emerging and currently strongly growing field are distributed NMPC schemes
in which the optimization in each NMPC step is carried out locally in a number of
subsystems instead of using a centralized optimization. Again, this is a topic which
is not covered in this book and we refer to, e.g., Rawlings and Mayne [23, Chap. 6]
and the references therein for more information.

At the very heart of each NMPC algorithm is a mathematical model of the sys-
tems dynamics, which leads to the discrete time dynamics f in (1.1). While we will
explain in detail in Sect. 2.2 and Chap. 9 how to obtain such a discrete time model
from a differential equation, we will not address the question of how to obtain a
suitable differential equation or how to identify the parameters in this model. Both
modeling and parameter identification are serious problems in their own right which
cannot be covered in this book. It should, however, be noted that optimization meth-
ods similar to those used in NMPC can also be used for parameter identification;
see, e.g., Schittkowski [26].

A somewhat related problem stems from the fact that NMPC inevitably leads to
a feedback law in which the full state x (n) needs to be measured in order to evaluate
the feedback law, i.e., a state feedback law. In most applications, this information is
not available; instead, only output information y(n) = h(x(n)) for some output map
h is at hand. This implies that the state x (n) must be reconstructed from the output
y(n) by means of a suitable observer. While there is a variety of different techniques
for this purpose, it is interesting to note that an idea which is very similar to NMPC
can be used for this purpose: in the so-called moving horizon state estimation ap-
proach the state is estimated by iteratively solving optimization problems over a
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moving time horizon, analogous to the repeated minimization of J(x(n), u(-)) de-
scribed above. However, instead of minimizing the future deviations of the pre-
dictions from the reference value, here the past deviations of the trajectory from
the measured output values are minimized. More information on this topic can be
found, e.g., in Rawlings and Mayne [23, Chap. 4] and the references therein.
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Chapter 2
Discrete Time and Sampled Data Systems

2.1 Discrete Time Systems

In this book, we investigate model predictive control for discrete time nonlinear
control systems of the form

xt = f(x,u). (2.1

Here, the transition map f : X x U — X assigns the state xT € X at the next time
instant to each pair of state x € X and control value u € U. The state space X and
the control value space U are arbitrary metric spaces, i.e., sets in which we can
measure distances between two elements x, y € X or u, v € U by metrics dx (x, y)
or dy (u, v), respectively. Readers less familiar with metric spaces may think of
X =R and U =R" for d, m € N with the Euclidean metrics dx (x, y) = |lx — y||
and dy (u, v) = ||u — v|| induced by the usual Euclidean norm || - ||, although some of
our examples use different spaces. While most of the systems we consider possess
continuous transition maps f, we do not require continuity in general.

The set of finite control sequences u(0), ..., u(N — 1) for N € N will be denoted
by UY and the ser of infinite control sequences u(0), u(1),u(2),... by U*. Note
that we may interpret the control sequences as functions u : {0, ..., N — 1} - U or
u : Ng — U, respectively. For either type of control sequences we will briefly write
u(-) or simply u if there is no ambiguity. With N, we denote the natural numbers
including oo and with Ny the natural numbers including 0.

A trajectory of (2.1) is obtained as follows: given an initial value xo € X and a
control sequence u(-) € U K for K € Ny, we define the trajectory x, (k) iteratively
via

xu (0) = xo, xu(k 4-1) = f (xu k), u(k)), 2.2)

forall k e Ngif K =ocand fork=0,1,..., K — 1 otherwise. Whenever we want
to emphasize the dependence on the initial value we write x,, (k, x0).
An important basic property of the trajectories is the cocycle property: given an

initial value xg € X, a control u € U" and time instants k1, k> € {0, ..., N — 1} with
k1 < k> the solution trajectory satisfies

xy(ka, x0) = xLl(-+k])(k2 — ki, x, (ky, X())). (2.3)
L. Griine, J. Pannek, Nonlinear Model Predictive Control, 13
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Here, the shifted control sequence u(- + k1) € UNF1 is given by
u(-+kp)k) =utk+ky), ke{0,...,N—k —1}, (2.4)

i.e., if the sequence u consists of the N elements u(0), u(1),...,u(N — 1), then
the sequence & = u(- + k1) consists of the N — ky elements u(0) = u(ky), u(l) =
utky +1),...,u(N —k; — 1) =u(N — 1). With this definition, the identity (2.3) is
easily proved by induction using (2.2).

We illustrate our class of models by three simple examples—the first two being
in fact linear.

Example 2.1 One of the simplest examples of a control system of type (2.1) is
givenby X =U =R and

xtT=x+u=: fx,u).

This system can be interpreted as a very simple model of a vehicle on an infinite
straight road in which u € R is the traveled distance in the period until the next time
instant. For u > 0 the vehicle moves right and for # < 0 it moves left.

Example 2.2 A slightly more involved version of Example 2.1 is obtained if we
consider the state x = (x1, x2) | € X = R2, where x; represents the position and x;
the velocity of the vehicle. With the dynamics

+
XU\ (xitx24+u/2Y
<xz+)_< X2 +u >_'f(x’u)

on an appropriate time scale the control # € U = R can be interpreted as the (con-
stant) acceleration in the period until the next time instant. For a formal derivation
of this model from a continuous time system, see Example 2.6, below.

Example 2.3 Another variant of Example 2.1 is obtained if we consider the vehicle
on a road which forms an ellipse, cf. Fig. 2.1, in which half of the ellipse is shown.
Here, the set of possible states is given by

()=}

Fig. 2.1 Illustration of 1
Example 2.3 08l

X:{XGR2
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Since X is a compact subset of R? (more precisely a submanifold, but we will
not need this particular geometric structure) we can use the metric induced by the
Euclidean norm on R?, i.e., dx (x, y) = ||x — y||. Defining the dynamics

xt o sin@@)+u) ) .
(xér) N (Cos(zﬁ‘(x) +u)/2) =: f(x,u)
withu € U =R and

arccos 2xs, x1 >0,

?(x) =
2w —arccos2xy, x1 <0

the vehicle moves on the ellipse with traveled distance # € U = R in the next time

step, where the traveled distance is now expressed in terms of the angle ¥. For u > 0

the vehicle moves clockwise and for # < 0 it moves counterclockwise.

The main purpose of these very simple examples is to provide test cases which we
will use in order to illustrate various effects in model predictive control. Due to their
simplicity we can intuitively guess what a reasonable controller should do and often
even analytically compute different optimal controllers. This enables us to compare
the behavior of the NMPC controller with our intuition and other controllers. More
sophisticated models will be introduced in the next section.

As outlined in the introduction, the model (2.1) will serve for generating the
predictions x, (k, x(n)) which we need in the optimization algorithm of our NMPC
scheme, i.e., (2.1) will play the role of the model (1.1) used in the introduction.
Clearly, in general we cannot expect that this mathematical model produces exact
predictions for the trajectories of the real process to be controlled. Nevertheless,
during Chaps. 3-7 and in Sects. 8.1-8.4 of this book we will suppose this idealized
assumption. In other words, given the NMPC-feedback law p : X — U, we assume
that the resulting closed-loop system satisfies

xt = f e u) (2.5)

with f from (2.1). We will refer to (2.5) as the nominal closed-loop system.

There are several good reasons for using this idealized assumption: First, satis-
factory behavior of the nominal NMPC closed loop is a natural necessary condition
for the correctness of our controller—if we cannot ensure proper functioning in the
absence of modeling errors we can hardly expect the method to work under real life
conditions. Second, the assumption that the prediction is based on an exact model
of the process considerably simplifies the analysis and thus allows us to derive suf-
ficient conditions under which NMPC works in a simplified setting. Last, based on
these conditions for the nominal model (2.5), we can investigate additional robust-
ness conditions which ensure satisfactory performance also for the realistic case in
which (2.5) is only an approximate model for the real closed-loop behavior. This
issue will be treated in Sects. 8.5-8.9.



16 2 Discrete Time and Sampled Data Systems

2.2 Sampled Data Systems

Most models of real life processes in technical and other applications are given as
continuous time models, usually in form of differential equations. In order to convert
these models into the discrete time form (2.1) we introduce the concept of sampling.

Let us assume that the control system under consideration is given by a finite-
dimensional ordinary differential equation

x(1) = fe(x@),v(®) (2.6)

with vector field f.:R¢ x R™ — R, control function v : R — R”, and unknown
function x : R — R?, where % is the usual short notation for the derivative dx /dt
and d, m € N are the dimensions of the state and the control vector. Here, we use
the slightly unusual symbol v for the control function in order to emphasize the
difference between the continuous time control function v(-) in (2.6) and the discrete
time control sequence u(-) in (2.1).

Caratheodory’s Theorem (see, e.g., [15, Theorem 54]) states conditions on f. and
v under which (2.6) has a unique solution. For its application we need the following
assumption.

Assumption 2.4 The vector field f.:RY x R™ — R¥ is continuous and Lipschitz
in its first argument in the following sense: for each r > O there exists a constant
L > 0 such that the inequality

| feCxev) = ferv)| < Liix =yl

holds for all x,y € R and all v € R™ with ||x|| <r, |yl <r and ||v|| <r.

Under Assumption 2.4, Caratheodory’s Theorem yields that for each initial value
xo € R?, each initial time 7y € R and each locally Lebesgue integrable control func-
tion v : R — R™ equation (2.6) has a unique solution x (¢) with x (#p) = xo defined
for all times ¢ contained in some open interval / € R with #y € /. We denote this
solution by ¢(t, ty, X0, V).

We further denote the space of locally Lebesgue integrable control functions
mapping R into R by L*°(R, R™). For a precise definition of this space see, e.g.,
[15, Sect. C.1]. Readers not familiar with Lebesgue measure theory may always
think of v being piecewise continuous, which is the approach taken in [7, Chap. 3].
Since the space of piecewise continuous functions is a subset of L*°(R, R™), ex-
istence and uniqueness holds for these control functions as well. Note that if we
consider (2.6) only for times ¢ from an interval [fy,#1] then it is sufficient to
specify the control function v for these times ¢ € [ty, 1], i.e., it is sufficient to
consider v € L*([fy, t1], R™). Furthermore, note that two Caratheodory solutions
o(t, to, x0, v1) and @(t, ty, Xo, v2) for vi, vy € L*° (R, R™) coincide if v and v, co-
incide for almost all T € [#, t], where almost all means that v (t) # v, (t) may hold
for T € 7 C [tg, t] where 7 is a set with zero Lebesgue measure. Since, in particular,
sets 7" with only finitely many values have zero Lebesgue measure, this implies that
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for any v € L*°(R, R™) the solution ¢(z, fg, xg, v) does not change if we change the
value of v(7) for finitely many times t € [#g, 1.t

The idea of sampling consists of defining a discrete time system (2.1) such that
the trajectories of this discrete time system and the continuous time system coincide
at the sampling times t) < t] <t <--- <1y, i.€.,

(p(tn:tOvXOvv)z)Cu(n’x()), n=0,1,2,...,N, (27)

provided the continuous time control function v : R — R™ and the discrete time
control sequence u(-) € UV are chosen appropriately. Before we investigate how
this appropriate choice can be done, cf. Theorem 2.7, below, we need to specify the
discrete time system (2.1) which allows for such a choice.

Throughout this book we use equidistant sampling times #,, =nT, n € Ny, with
sampling period T > 0. For this choice, we claim that

xT = fx,u):=¢(T,0,x,u) (2.8)

for x € RY and u € L*°([0, T], R™) is the desired discrete time system (2.1) for
which (2.7) can be satisfied. Clearly, f(x,u) is only well defined if the solution
@(t,0,x,u) exists for the time r = T. Unless explicitly stated otherwise, we will
tacitly assume that this is the case whenever using f (x, u) from (2.8).

Before we explain the precise relation between u in (2.8) and u#(-) and v(-) in
(2.7), cf. Theorem 2.7, below, we first look at possible choices of u in (2.8). In
general, u in (2.8) may be any function in L°°([0, T], R™), i.e., any measurable
continuous time control function defined on one sampling interval. This suggests
that we should use U = L®°([0, T], R™) in (2.1) when f is defined by (2.8). How-
ever, other—much simpler—choices of U as appropriate subsets of L ([0, T], R™)
are often possible and reasonable. This is illustrated by the following examples and
discussed after Theorem 2.7 in more detail.

Example 2.5 Consider the continuous time control system
x(t)=v(t)
with n =m = 1. It is easily verified that the solutions of this system are given by
t
o(t,0,x0,v) = xo +f v(t)dr.
0

Hence, for U = L°°([0, T], R) we obtain (2.8) as

T
x+=f(x,u)=x+/ u(r)dr.
0

IStrictly speaking, L functions are not even defined pointwise but rather via equivalence classes
which identify all functions v € L*° (R, R™) which coincide for almost all # € R. However, in order
not to overload the presentation with technicalities we prefer the slightly heuristic explanation
given here.
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If we restrict ourselves to constant control functions u(t) = u € R (for ease of no-
tation we use the same symbol u for the function and for its constant value), which
corresponds to choosing U = R, then f simplifies to

fx,u)=x+Tu.
If we further specify T = 1, then this is exactly Example 2.1.

Example 2.6 Consider the continuous time control system

X1(0) | _ [ x2(0)
x2(1) v(7)
with n =2 and m = 1. In this model, if we interpret x (¢) as the position of a vehicle
at time ¢, then x,(f) = x1(¢) is its velocity and v(¢) = x> () its acceleration.
Again, one easily computes the solutions of this system with initial value xo =
(xo1. Xx02) " as
(1.0, x0.v) = (x()l —i—féxZ(‘E)d‘E) _ (xm —}—fot(xoz +fOT U(s)ds)d‘l?)
T )Coz—l-fotv(l')dl' x02+folv(r)dt '
Hence, for U = L*([0, T], R) and x = (x1, x2) | we obtain (2.8) as

x1+Txo + fOT fé u(s)ds dt)
X2+ [ u(ryde
If we restrict ourselves to constant control functions u(¢) = u € R (again using the

same symbol u for the function and for its constant value), i.e., U = R, then f
simplifies to

= fu) = (

x1+ Txy + T2u/2)

If we further specify T = 1, then this is exactly Example 2.2.

In order to see how the control inputs v(-) in (2.6) and u(-) in (2.8) need to be
related such that (2.8) ensures (2.7), we use that the continuous time trajectories
satisfy the identity

(1,10, X0, v) = ¢ (1 — 5,10 — 5, x0, V(- +5)) (2.9)

forall 7, s € R, provided, of course, the solutions exist for the respective times. Here
v(- +5) : R — R™ denotes the shifted control function, i.e., v(- + 5)(#) = v(t + s),
see also (2.4). This identity is illustrated in Fig. 2.2: changing ¢(z, to — s, x0, v(- +
s5)) to o(t — s, tg — s, xp, V(- +5)) implies a shift of the upper graph by s to the right
after which the two graphs coincide.

Identity (2.9) follows from the fact that x(¢) = ¢(t — s, f0 — s, X0, V(- + 5)) satis-
fies

) d
x() = E(p(l — 8,10 — s, X0, V(- +s))
= f(p(t —s.t0 — 5. x0, V(- + ), v(- + )t —5)) = f(x (1), v(1))



2.2 Sampled Data Systems 19

Pt —sov(+s) | ]
/ (P(T,IO,X(), V)

v(r+s)

:::::::::::::::::::::ZZ::::::::::::::::: \\\\\
v(t)
fo— S to t

Fig. 2.2 Illustration of equality (2.9)

and

x(t0) = ¢(to — 5,10 — 5, %0, v(- + ) = x0.

Hence, both functions in (2.9) satisfy (2.6) with the same control function and fulfill
the same initial condition. Consequently, they coincide by uniqueness of the solu-
tion.

Using a similar uniqueness argument one sees that the solutions ¢ satisfy the
cocycle property

o(t, t, X0, V) =<p(t,s,g0(s,to,x0, v),v) (2.10)

for all ¢, s € R, again provided all solutions in this equation exist for the respective
times. This is the continuous time version of the discrete time cocycle property
(2.3). Note that in (2.3) we have combined the discrete time counterparts of (2.9)
and (2.10) into one equation since by (2.2) the discrete time trajectories always start
at time O.

With the help of (2.9) and (2.10) we can now prove the following theorem.

Theorem 2.7 Assume that (2.6) satisfies Assumption 2.4 and let xo € R? and v €
L ([tg, ty], R™) be given such that ¢(ty, to, xo, v) exists for all sampling times t, =
nT,n=0,...,N with T > 0. Define the control sequence u(-) € UV with U =
L*°([0, T1, R™) by

u(n) = vl e +12), n=0,...,N =1, @2.11)

where V||, 1., denotes the restriction of v onto the interval [t,, t,41]. Then

Ih41
(ty, to, X0, V) = xy (1, x0) (2.12)

holds for n =0, ..., N and the trajectory of the discrete time system (2.1) defined
by (2.8).
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Conversely, given u(-) € UN with U = L*([0, T],R™), then (2.12) holds for
n=0,...,N forany v e L*([tg, ty], R™) satisfying

v(t) =um)( —t,) foralmostallt € lt,, tyy1]and alln =0,...,N —1,
(2.13)

provided ¢(t,, to, X0, V) exists for all sampling times t, =nT,n=0,...,N.

Proof We prove the assertion by induction over n. For n = 0 we can use the initial
conditions to get

Xy (to, u) = xo = @ (o, to, X0, V).

For the induction step n — n + 1 assume (2.12) for #, as induction assumption.
Then by definition of x,, we get

xu(n + 1, x0) = f (xu(n, x0), u(n)) = (T, 0, x, (n, x0), u(n))
=¢(T. 0, ¢(t. 10, X0, v), V(- + 1))
= @(tns1. tws @(tn, 10, X0, V), V)
= ¢(tnt1, 10, X0, V),

where we used the induction assumption in the third equality, (2.9) in the fourth
equality and (2.10) in the last equality.

The converse statement follows by observing that applying (2.11) for any v sat-
isfying (2.13) yields a sequence of control functions #(0), ..., u(N — 1) whose el-
ements coincide with the original ones for almost all # € [0, T']. O

Remark 2.8 At first glance it may seem that the condition on v in (2.13) is not
well defined at the sampling times ¢,: from (2.13) for n — 1 and ¢ = 7, we obtain
v(ty) =uln — 1)(t, — ty,—1) while (2.13) for n and r = ¢, yields v(t,) = u(n)(0)
and, of course, the values u(n — 1)(¢t, — t,—1) and u(n)(0) need not coincide. How-
ever, this does not pose a problem because the set of sampling times #, in (2.13)
is finite and thus the solutions ¢(, fg, xg, v) do not depend on the values v(t,),
n=0,..., N —1,cf. the discussion after Assumption 2.4. Formally, this is reflected
in the words almost all in (2.13), which in particular imply that (2.13) is satisfied
regardless of how v(t,),n =0, ..., N — 1 is chosen.

Theorem 2.7 shows that we can reproduce every continuous time solution at the
sampling times if we choose U = L*°([0, T'], R™). Although this is a nice property
for our subsequent theoretical investigations, usually this is not a good choice for
practical purposes in an NMPC context: recall from the introduction that in NMPC
we want to optimize over the sequence u(0),...,u(N — 1) e U N in order to de-
termine the feedback value w(x(n)) =u(0) € U. Using U = L*°([0, T], R™), each
element of this sequence and hence also @ (x(n)) is an element from a very large
infinite-dimensional function space. In practice, such a general feedback concept
is impossible to implement. Furthermore, although theoretically it is well possible
to optimize over sequences from this space, for practical algorithms we will have
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u(n) v(t)

01234567891011" t()tl72t3t4t5t6t7lgt9110t11t12t

Fig. 2.3 Illustration of zero order hold: the sequence u(n) € R™ on the left corresponds to the
piecewise constant control functions with v(¢) = u(n) for almost all € [#,, t,+1] on the right

to restrict ourselves to finite-dimensional sets, i.e., to subsets U C L*° ([0, T'], R™)
whose elements can be represented by finitely many parameters.

A popular way to achieve this—which is also straightforward to implement in
technical applications—is via zero order hold, where we choose U to be the space
of constant functions, which we can identify with R™, cf. also the Examples 2.5 and
2.6. For u(n) € U, the continuous time control functions v generated by (2.13) are
then piecewise constant on the sampling intervals, i.e., v(t) = u(n) for almost all
t € [y, ty+1], as illustrated in Fig. 2.3. Recall from Remark 2.8 that the fact that the
sampling intervals overlap at the sampling instants 7, does not pose a problem.

Consequently, the feedback . (x(n)) is a single control value from R™ to be used
as a constant control signal on the sampling interval [#,, #,+1]. This is also the choice
we will use in Chap. 9 on numerical methods for solving (2.6) and which is imple-
mented in our NMPC software, cf. the Appendix. In our theoretical investigations,
we will nevertheless allow for arbitrary U € L*°([0, T'], R™).

Other possible choices of U can be obtained, e.g., by polynomials « : [0, T] —
R™ resulting in piecewise polynomial control functions v. Yet another choice can
be obtained by multirate sampling, in which we introduce a smaller sampling period
Tt =T/K for some K € N, K > 2 and choose U to be the space of functions which
are constant on the intervals [jz, (j + 1)t), j =0, ..., K — 1. In all cases the time n
in the discrete time system (2.1) corresponds to the time #, = nT in the continuous
time system.

Remark 2.9 The particular choice of U affects various properties of the resulting
discrete time system. For instance, in Chap. 5 we will need the sets Xy which
contain all initial values xo for which we can find a control sequence u(-) with
xu(N, x0) € Xp for some given set Xo. Obviously, for sampling with zero order
hold, i.e., for U = R™, this set X will be smaller than for multirate sampling or for
sampling with U = L°°([0, T], R™). For this reason, we will formulate all assump-
tions needed in the subsequent chapters directly in terms of the discrete time system
(2.1) rather than for the continuous time system (2.6), cf. also Remark 6.7.
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Fig. 2.4 Schematical sketch
of the inverted pendulum on a
cart problem: The pendulum
(with unit mass m = 1) is
attached to a cart which can
be controlled using the
acceleration force u. Via the
joint, this force will have an
effect on the dynamics of the
pendulum

V\ —ucos(x)

When using sampled data models, the map f from (2.8) is usually not available
in exact analytical form but only as a numerical approximation. We will discuss this
issue in detail in Chap. 9.

We end this section by three further examples we will use for illustration pur-
poses later in this book.

Example 2.10 A standard example in control theory is the inverted pendulum on a
cart problem shown in Fig. 2.4.

This problem has two types of equilibria, the stable downright position and the
unstable upright position. A typical task is to stabilize one of the unstable upright
equilibria. Normalizing the mass of the pendulum to 1, the dynamics of this system
can be expressed via the system of ordinary differential equations

x1(1) = x2(1),

(1) = —% sin(x1(1)) — u(r) cos(x1 (1)) — kTsz(t) [2(0)| — krsgn(x2()),
x3(1) = x4(1),

X4(1) = u(r)

with gravitational force g, length of the pendulum /, air friction constant k7 and
rotational friction constant kg. Here, x| denotes the angle of the pendulum, x, the
angular velocity of the pendulum, x3 the position and x4 the velocity of the cart. For
this system the upright unstable equilibria are of the form ((2k 4 1)7,0,0,0) T for
kelZ.

Our model thus presented deviates from other variants often found in the liter-
ature, see, e.g., [2, 9], in terms of the types of friction we included. Instead of the
linear friction model often considered, here we use a nonlinear air friction term
kTLxg (t)|x2(2)| and a rotational discontinuous Coulomb friction term kg sgn(x2(¢)).
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The air friction term captures the fact that the force induced by the air friction grows
quadratically with the speed of the pendulum mass. The Coulomb friction term is
derived from first principles using Coulomb’s law, see, e.g., [17] for an introduction
and a description of the mathematical and numerical difficulties related to discon-
tinuous friction terms. We consider this type of modeling as more appropriate in an
NMPC context, since it describes the evolution of the dynamics more accurately,
especially around the upright equilibria which we want to stabilize. For short time
intervals, these nonlinear effect may be neglected, but within the NMPC design we
have to predict the future development of the system for rather long periods, which
may render the linear friction model inappropriate.

Unfortunately, these friction terms pose problems both theoretically and numer-
ically:

k
X2(t) = —§ sin(x1 () — u(r) cos(x1 (1)) — TLx2(t)|x2(t)| — kg sgn(x2(1)).
- —— e ————

L C2 discontinuous
no

The rotational Coulomb friction term is discontinuous in x(¢), hence Assump-
tion 2.4, which is needed for Caratheodory’s existence and uniqueness theorem,
is not satisfied. In addition, the air friction term is only once continuously differen-
tiable in x2(¢), which poses problems when using higher order numerical methods
for solving the ODE for computing the NMPC predictions, cf. the discussion before
Theorem 9.5 in Chap. 9.

Hence, for the friction terms we use smooth approximations, which allow us to
approximate the behavior of the original equation:

x1(8) = x2(1), (2.14)

Xo(t) = —§ sin(x (1)) — kTL arctan(1000x2(1))x3 () — u(r) cos(x1 (1))

dax)(t) 2arctan(bx;(t))
R (1 + 4Haxa ()2 7 ) 19
x3(1) = x4(1), (2.16)
X4(t) = u(t). 2.17)

In some examples in this book we will also use the linear variant of this system.
To obtain it, a transformation of coordinates is applied which shifts one unstable
equilibrium to the origin and then the system is linearized. Using a simplified set of
parameters including only the gravitational constant g and a linear friction constant
k, this leads to the linear control system

0 1

0
x() = x() + (1) u(t). (2.18)
1

S O,

Example 2.11 1In contrast to the inverted pendulum example where our task was
to stabilize one of the upright equilibria, the control task for the arm/rotor/platform
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Fig. 2.5 Graphical
illustration of the A
arm/rotor/platform (ARP)
problem, see also [1, A
Sect. 7.3]: The arm (A) is

driven by a motor (R) via a

flexible joint. This motor is

mounted on a platform (P)

which is again flexibly v
connected to a fixed base (B).

Moreover, we assume that

there is no vertical force and

that the rotational motion of

the platform is not present

Y

4+ ——-d——

(ARP) model illustrated in Fig. 2.5 (the meaning of the different elements A, R, P
and B in the model is indicated in the description of this figure) is a digital redesign
problem, see [4, 12].

Such problems consist of two separate steps: First, a continuous time control sig-
nal v(¢) derived from a continuous time feedback law is designed which—in the
case considered here—solves a tracking problem. Since continuous time control
laws may perform poorly under sampling, in a second step, the trajectory corre-
sponding to v(#) is used as a reference function to compute a digital control using
NMPC such that the resulting sampled data closed-loop mimics the behavior of the
continuous time reference trajectory. Compared to a direct formulation of a tracking
problem, this approach is advantageous since the resulting NMPC problem is easier
to solve. Here, we describe the model and explain the derivation of continuous time
control function v(¢). Numerical results for the corresponding NMPC controller are
given in Example 7.21 in Chap. 7.

Using the Lagrange formalism and a change of coordinates detailed in [1,
Sect. 7.3], the ARP model can be described by the differential equation system

X1(1) = x2(1) + x6(t)x3(2), (2.19)

. k1 b1 mr

x2(1) = —MM(I) - MXz(t) + x6(£)xa(t) — mbl%(t), (2.20)

x3(t) = —x6(1)x1 () + x4(2), (2.21)

. ki b1 mr

x4(1) = —x6(H)x2(t) — st(t) - MM(I) + mkl, (2.22)

x5(1) = x6(1), (2.23)

X6(t) = —ayxs(t) — axxe(t) +arx7(t) + azxs(t) — p1x1(t) — p2x2(t),
(2.24)

x7(1) = x3(1), (2.25)

1
X(1) = a4xs(1) +asxe(t) — asx7(t) — (as + ae)xs(t) + @ (2.26)
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where
ksM k3 mr r
aly = _—, aq = -, = — .
VS M = (mr)? 4T PY= 0t — o2 !
bsM? — by (mr)? b3 mr b
=" as = —, =— ).
2T MIMI = (mr)?] ST P2 =t =2 !
bsM by
an=—— ag = —,
3T MI = (mr)? 6=

Here, M represents the total mass of arm, rotor and platform and m is the mass of
arm, r denotes the distance from the A/R joint to the arm center of mass and 7, J
and D are the moment of inertia of the arm about the A/R joint, of the rotor and of
the platform, respectively. Moreover, ki, k; and k3 denote the translational spring
constant of the P/B connection as well as the rotational spring constants of the P/B
connection and the A/R joint. Last, by, by, b3 and by describe the translational fric-
tion coefficient of P/B connection as well as the rotational friction coefficients of the
P/B, A/R and R/P connection, respectively. The coordinates x; and x» correspond
to the (transformed) x position of P and its velocity of the platform in direction x
whereas x3 and x4 represent the (transformed) y position of P and the respective
velocity. The remaining coordinates x5 and x7 denote the angles 6 and « and the
coordinates x¢ and xg the corresponding angular velocities.

Our design goal is to regulate the system such that the position of the arm relative
to the platform, i.e. the angle xs, tracks a given reference signal. Note that this task
is not simple since both connections of the rotor are flexible. Here, we assume that
the reference signal and its derivatives are known and available to the controller.
Moreover, we assume that the relative positions and velocities x5, xg, x7 and xg are
supplied to the controller.

In order to derive the continuous time feedback, we follow the backstepping ap-
proach from [1] using the output

as
¢(1) =x5(1) — 7[)66(1) —azx7(1)]. (2.27)
axas
The output has relative degree 4, that is, the control v(¢) appears explicitly within

the fourth derivative of ¢(t). Expressing ¢ (¢) by the known data, we obtain the
continuous time input signal®

J
a3 +a3[p] - [ 25280) - [(1)] + [2Geeil )

v(t) =

<—(—01XS(Z) — ayxe(t) +arx7(t) + azxg(t) — [pl- [n(®)])

(—a% + ajaz(az — a3) + (as[p] - [F (x6(t)) — (a1 + aza3)[p]])
I F (x6(1)) 3G (x6(1))
[[ 96 (1) ] o]+ [ 0 H

2For details of the derivation see [13, Sect. 7.3].
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+ 2a3[P]|:agi);6(t(;)):| ALF (s )] - [n0)] + [G(xsm)]])

— (a4xs(1) + asxe(t) — asx7(1) — (as + ag)xs (1))

oF
oo 28]

2G
[t || a-o))

— (aslp]- [F(x6(0))] —ailp]) - [F (x6(®)] - [[F (x6(®))] - [n(®)]
+[G(x6()]]
— (—a1(x6(t) — xs(0)) = [p]- [[F (x6(®))] - [n®)] + [G (x6(1))]])

oF 3G
(—al(az —a3) +a3[pl- [[%] ) [U(I)] + [ 8;’&:;»]})

(2.28)

+ (a1 — a2a3)ﬁ(t)>

where we used the abbreviations

[1(0)] = (x10) x2(0) x3(1) x4(1))
[x ()] := (x50 x6(1) x7(0) x3(0)) ",
ok 1 x6@) 0
— % 0 t
[F(x(0)] = —xév(lt) a0 ""’1()),
ki by
xo(t M M
mrb
[G(wo()]:= |~ m)
. —daj —ay ai as
[Al: 0 0 0 1
ay as —a4 —(as+ae)
0 0 0
) —p1 —D2 10
E1=| 0" ) ) [B].(O
0 0 :

as well as the row vector [p] := (p; p2 00). In (2.28), we added the function (),
which we will now use as the new input. Given a desired reference per(-) for the
output (2.27), we can track this reference by setting v in (2.28) as

50) =¢8P0 — 3£ ) = (D 0) — 2(E (1) — et (D))
—c1(S(0) = Gref(1)) — o (£ (1) — Lrer (1))
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with design parameters ¢; € R, ¢; > 0. These parameters are degrees of freedom
within the design of the continuous time feedback which can be used as tuning
parameters, e.g., to reduce the transient time or the overshoot.

Example 2.12 Another class of systems fitting our framework, which actually goes
beyond the setting we used for introducing sampled data systems, are infinite-
dimensional systems induced by partial differential equations (PDEs). In this ex-
ample, we slightly change our notation in order to be consistent with the usual PDE
notation.

In the following controlled parabolic PDE (2.29) the solution y(#, x) with y :
R x Q — R depends on time ¢ as well as on a one-dimensional state variable x €
Q = (0, L) for a parameter L > 0. Thus, the state of the system at each time ¢ is
now a continuous function y(z, -) : 2 — R and x becomes an independent variable.
The control v in this example is a so-called distributed control, i.e., a measurable
function v : R x € — R. The evolution of the state is defined by the equation

Ye(t,x) =0y (t.%) = yo (8, 3) + p(y(t. %) — y(t,x)°) +v(t,x)  (2.29)

for x € Q and t > 0 together with the initial condition y(0, x) = yp(x) and the
boundary conditions y(¢,0) = y(0, L) =0.

Here y; and y, denote the partial derivatives with respect to ¢ and x, respectively
and y,, denotes the second partial derivative with respect to x. The parameters 6
and p are positive constants. Of course, in order to ensure that (2.29) is well defined,
we need to interpret this equation in an appropriate weak sense and make sure that
for the chosen class of control functions a solution to (2.29) exists in appropriate
function spaces. For details on these issues we refer to, e.g., [10] or [18]. As we
will see later in Example 6.27, for suitable values of the parameters 6 and p the
uncontrolled equation, i.e., (2.29) with v = 0, has an unstable equilibrium y, =0
which can be stabilized by NMPC.

Using the letter z for the state of the discrete time system associated to the sam-
pled data solution of (2.29), we can abstractly write this system as

7t = f(z.u)
with z and zT being continuous functions from Q to R. The function f maps yo = z
to the solution y(7, x) of (2.29) at the sampling time T using the measurable control
function u = v : [0, T] x 2 — R. Thus, it maps continuous functions to continuous
functions; again we omit the exact details of the respective functions spaces.

As in the ordinary differential equation case, we can restrict ourselves to the zero
order hold situation, i.e., to control functions u (¢, x) which are constantin ¢t € [0, T].
The corresponding control functions v generated via (2.11) are again constant in  on
each sampling interval [¢,, t,+1). Note, however, that in our distributed control con-
text both u and v are still arbitrary measurable—i.e., in particular non-constant—
functions in x.

For sampled data systems, the nominal closed-loop system (2.5) corresponds to
the closed-loop sampled data system

X0 = fo(x@), n(x@))E — 1)), t€ltntar1), n=0,1,2,... (2.30)
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whose solution with initial value xo € X we denote by ¢(¢, fy, xo, ). Note that
the argument “(¢r — #,)” of p(x(#,)) can be dropped in case of sampling with zero
order hold when—as usual—we interpret the control value u(x(t,)) e U =R™ asa
constant control function.

2.3 Stability of Discrete Time Systems

In the introduction, we already specified the main goal of model predictive control,
namely to control the state x(n) of the system toward a reference trajectory x°f(n)
and then keep it close to this reference. In this section we formalize what we mean by
“toward” and “close to” using concepts from stability theory of nonlinear systems.
We first consider the case where x™f is constant, i.e., where x"f = x, holds for
some x, € X. We assume that the states x (n) are generated by a difference equation

of the form

=g (2.31)

for a not necessarily continuous map g : X — X via the usual iteration x(n + 1) =
g(x(n)). As before, we write x(n, xo) for the trajectory satisfying the initial condi-
tion x (0, xg) = xo € X. Allowing g to be discontinuous is important for our NMPC
application, because g will later represent the nominal closed-loop system (2.5) con-
trolled by the NMPC-feedback law u, i.e., g(x) = f(x, u(x)). Since u is obtained
as an outcome of an optimization algorithm, in general we cannot expect © to be
continuous and thus g will in general be discontinuous, too.

Nonlinear stability properties can be expressed conveniently via so-called com-
parison functions, which were first introduced by Hahn in 1967 [5] and popularized
in nonlinear control theory during the 1990s by Sontag, particularly in the context
of input-to-state stability [14]. Although we mainly deal with discrete time systems,
we stick to the usual continuous time definition of these functions using the notation
R = [0, c0).

Definition 2.13 We define the following classes of comparison functions:

K:= { : ]R+ — Rg | « is continuous & strictly increasing with o (0) = 0},

— R} | € K, a is unbounded},

L:

[5 ]R+ — R+ ‘ § is continuous & strictly decreasing with hm 8(t) = ]
{B:

KL: Ry x R — R} | B is continuous, B(-,1) € K, B(r,-) € E}.

The graph of a typical function 8 € KL is shown in Fig. 2.6.
Using this function, we can now introduce the concept of asymptotic stability.
Here, for arbitrary x, x, € X we denote the distance from x; to x, by

|x1]x, :=dx (x1, x2).
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Ny
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Fig. 2.6 Illustration of a typical class XL function

Furthermore, we use the ball
By (xy) := {x eX | x|y, < n}

and we say that a set Y C X is forward invariant for (2.31) if g(x) € Y holds for all
xeY.

Definition 2.14 Let x, € X be an equilibrium for (2.31), i.e., g(x4) = x4. Then we
say that x, is locally asymptotically stable if there exist n > 0 and a function 8 € KL
such that the inequality

[x(n, x0)|, < B(Ix0lx,, n) (2.32)

holds for all xg € B;,(x+) and all n € Np.

We say that x, is asymptotically stable on a forward invariant set Y with x, € Y
if there exists 8 € ICL such that (2.32) holds for all xg € Y and all n € Ny and we
say that x, is globally asymptotically stable if x, is asymptotically stable on ¥ = X.

If one of these properties holds then g is called attraction rate.

Note that asymptotic stability on a forward invariant set Y implies local asymp-
totic stability if ¥ contains a ball B, (x,). However, we do not necessarily require
this property.

Asymptotic stability thus defined consists of two main ingredients.

(i) The smaller the initial distance from xg to x, is, the smaller the distance from
x(n) to x, becomes for all future n, or formally: for each & > 0 there exists § > 0
such that |x(n, x0)|x, < & holds for all n € Ng and all xg € Y (or xo € B, (x4))
with [xg[x, < 6.

This fact is easily seen by choosing § so small that §(§, 0) < ¢ holds, which
is possible since (-, 0) € K. Since B is decreasing in its second argument, for
|x0|x, <& from (2.32) we obtain

[x(n,x0)|, < B(1x0lx,, 1) < B(Ixo0lx,, 0) < B(S,0) <e.
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Fig. 2.7 Sketch of
asymptotic stability (left) as
opposed to practical
asymptotic stability (right)

X0 x(n,xo) X0 x(nvx())

(i) As the system evolves, the distance from x(n, xo) to x, becomes arbitrarily
small, or formally: for each ¢ > 0 and each R > 0O there exists N > 0 such
that |x(n, xo)|x, < & holds for all n > N and all xg € Y (or xo € B, (x+)) with
|x0lx, < R. This property easily follows from (2.32) by choosing N > 0 with
B(R, N) < ¢ and exploiting the monotonicity properties of 8.

These two properties are known as (i) stability (in the sense of Lyapunov) and (ii)
attraction. In the literature, asymptotic stability is often defined via these two prop-
erties. In fact, for continuous time (and continuous) systems (i) and (ii) are known to
be equivalent to the continuous time counterpart of Definition 2.14, cf. [8, Sect. 3].
We conjecture that the arguments in this reference can be modified in order to prove
that equivalence also holds for our discontinuous discrete time setting.

Asymptotic stability includes the desired properties of the NMPC closed loop
described earlier: whenever we are already close to the reference equilibrium we
want to stay close; otherwise we want to move toward the equilibrium.

Asymptotic stability also includes that eventually the distance of the closed-loop
solution to the equilibrium x, becomes arbitrarily small. Occasionally, this may
be too demanding. In the following chapters, this is for instance the case if the
system is subject to perturbations or modeling errors, cf. Sects. 8.5-8.9 or if in
NMPC without stabilizing terminal constraints the system cannot be controlled to
x, sufficiently fast, cf. Sect. 6.7. In this case, one can relax the asymptotic stability
definition to practical asymptotic stability as follows. Here we only consider the
case of asymptotic stability on a forward invariant set Y.

Definition 2.15 Let Y be a forward invariant set and let P C Y be a subset of Y.
Then we say that a point x, € P is P-practically asymptotically stable on Y if there
exists B € KL such that (2.32) holds for all xo € Y and all n € Ny with x(n, xo) ¢ P.

Figure 2.7 illustrates practical asymptotic stability (on the right) as opposed to
“usual” asymptotic stability (on the left).

This definition is typically used with P contained in a small ball around the
equilibrium, i.e., P € Bs(x,) for some small § > 0. In this case one obtains the
estimate

x(n, x0)| . < max{B(|xol.,n), 3} (2.33)

for all xp € Y and all n € Ny, i.e., the system behaves like an asymptotically stable
system until it reaches the ball Bs(x,). Note that x, does not need to be an equilib-
rium in Definition 2.15.
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For general non-constant reference functions x™! : Ny — X we can easily extend
Definition 2.14 if we take into account that the objects under consideration become
time varying in two ways: (i) the distance under consideration varies with n and
(ii) the system (2.31) under consideration varies with n. While (i) is immediate, (ii)
follows from the fact that with time varying reference also the feedback law u is
time varying, i.e., we obtain a feedback law of the type p(n, x(n)). Consequently,
we now need to consider systems

xt =g, x) (2.34)

with g of the form g(n, x) = f(x, u(n, x)). Furthermore, we now have to take the
initial time 7 into account: while the solutions of (2.31) look the same for all initial
times no (which is why we only considered nop = 0) now we need to keep track of
this value. To this end, by x(n, ng, xo) we denote the solution of (2.34) with initial
condition x(ng, no, xg) = xo at time ng. The appropriate modification of Defini-
tion 2.14 then looks as follows. Here we say that a time-dependent family of sets
Y(n) C X, n € Ny is forward invariant if g(n,x) € Y(n 4 1) holds for all n € Ny
and all x € Y(n).

Definition 2.16 Let x™ : Ng — X be a trajectory for (2.31), i.e., x™ (n + 1) =
g(x™f(n)) for all n € Ny. Then we say that x™' is locally uniformly asymptotically
stable if there exists n > 0 and a function 8 € KL such that the inequality

[x (12, 10, X0) et ) = B(IX0]xret (g 1 = 10) (2.35)

holds for all xo € B, (x™!(n¢)) and all ng, n € Ng with n > ny.

We say that x, is uniformly asymptotically stable on a forward invariant family
of sets Y (n) with x™'(n) € Y (n) if there exists 8 € KL such that (2.35) holds for all
ng, n € Ng with n > ng and all xo € Y (ng) and we say that x, is globally uniformly
asymptotically stable if x, is asymptotically stable on Y (n) = X for all ng € Np.

If one of these properties hold then g is called (uniform) attraction rate.

The term “uniform” describes the fact that the bound ﬁ(|x0|xref(n0), n —ng) only
depends on the elapsed time n — ng but not on the initial time ng. If this were the
case, i.e., if we needed different § for different initial times ng, then we would call
the asymptotic stability “nonuniform”. For a comprehensive discussion of nonuni-
form stability notions and their representation via time-dependent XL functions we
refer to [3].

As in the time-invariant case, asymptotic stability on a forward invariant fam-
ily of sets Y (n) implies local asymptotic stability if each Y (n) contains a ball
B, (x"f(n)). Again, we do not necessarily require this property.

The time varying counterpart of P-practical asymptotic stability is defined as
follows.

Definition 2.17 Let Y (n) be a forward invariant family of sets and let P(n) C Y (n)
be subsets of Y (). Then we say that a reference trajectory x™! with x™{(n) € P (n)
is P-practically uniformly asymptotically stable on Y (n) if there exists 8 € KL such
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that (2.35) holds for all xg € Y (ng) and all ng, n € Ny with n > ng and x(n, ng, xo) ¢
P(n).

Analogous to the time-invariant case, this definition is typically used with
P(n) C Bs(x™(n)) for some small value § > 0, which then yields

‘x(n, ng, xo) aret(ny < max{ﬁ(|xo|xmf(no), n— no), 5}. (2.36)

In order to verify that our NMPC controller achieves asymptotic stability we
will utilize the concept of Lyapunov functions. For constant reference x™f = x, € X
these functions are defined as follows.

Definition 2.18 Consider a system (2.31), a point x, € X and let S C X be a subset
of the state space. A function V : § — R(J)r is called a Lyapunov function on S if the
following conditions are satisfied:

(i) There exist functions a1, ap € Ko such that
ai(Ixly,) £ V) < aa(lxly,) (2.37)

holds for all x € S.
(i) There exists a function oy € K such that

V(gx)) < V(x) —ay(lxly,) (2.38)
holds for all x € S with g(x) € S.

The following theorem shows that the existence of a Lyapunov function ensures
asymptotic stability.

Theorem 2.19 Let x, be an equilibrium of (2.31) and assume there exists a Lya-
punov function 'V on S. If S contains a ball B, (x,) with g(x) € S for all x € B, (xx)
then x, is locally asymptotically stable with n = 052_1 oai1(v). If S =Y holds for
some forward invariant set Y C X containing x, then x, is asymptotically stable on
Y. If S = X holds then x, is globally asymptotically stable.

Proof The idea of the proof lies in showing that by (2.38) the function V (x(n, x¢))
is strictly decreasing in n and converges to 0. Then by (2.37) we can conclude that
x(n, xo) converges to x,. The function 8 from Definition 2.14 will be constructed
from o1, @z and ay . In order to simplify the notation, throughout the proof we write
|x| instead of |x]y,.

First, if S is not forward invariant, define the value y := «1(v) and the set S:=
{x € X|V(x) < y}. Then from (2.37) we get

xesS = a1(|x|)§V(x)<y = |x|<oz1_1(y)=v = xebB,(xy),

observing that each o € IEOO is invertible with ¢! € K.
Hence, for each x € § Inequality (2.38) applies and consequently V(g(x)) <
V(x) < y implying g(x) € S. If S =Y for some forward invariant set ¥ € X we



2.3 Stability of Discrete Time Systems 33

define S := S. With these definitions, in both cases the set S becomes forward in-
variant.

Now we define a’V =ayoa, ! Note that concatenations of X-functions are
again in /C, hence O‘/V € K. Since |x| > 0‘2_] (V(x)), using monotonicity of «y this
definition implies

av(lx]) = ayv ooy (V) =ay (V(x)).

Hence, along a trajectory x (n, xo) with xg € S, from (2.38) we get the inequality

V(x(n + 1,x0)) < V(x(n,xo)) —av(|x(n,xo)|)
< V(x(n,xo)) —(x;/(V(x(n,xo))). (2.39)

For the construction of 8 we need the last expression in (2.39) to be strictly
increasing in V (x(n, xo)). To this end we define

ay(r):= Sg{l(i)r}]{o/v(s) + (r — s)/2}.

Straightforward computations show that this function satisfies rp — &y (r2) > r| —
ay(r1) = 0 for all r; > r; > 0 and min{ay, (r/2),r/4} < @y (r) < o, (r) for all
r > 0. In particular, (2.39) remains valid and we get the desired monotonicity when
oy, is replaced by ay .

We inductively define a function f; : R(J)r x No — R(J)r via

pi(r,0) :=r, Bi(r,n+1) = Bi(r,n) —ay (1 (r,n)). (2.40)

By induction over n using the properties of ay () and Inequality (2.39) one easily
verifies the following inequalities:

Bi1(r2,n) > B1(r1,n) >0 forallry,>ry>0andalln e Ny, (2.41)

Bi1(r,n1) > B1(r,np) >0 forallny >ny>0andallr >0, (2.42)

V(x(n, xo)) < B (V(xo), n) for all n € Ng and all xg € S. (2.43)

From (2.42) it follows that 81(r,n) is monotone decreasing in n and by (2.41)
it is bounded from below by 0. Hence, for each r > O the limit ﬂfo(r) =
lim,,_, o B1(r, n) exists. We claim that ,Bfo(r) = 0 holds for all r. Indeed, con-
vergence implies B1(r,n) — B1(r,n + 1) — 0 as n — oo, which together with
(2.40) yields ay(B1(r,n)) — 0. On the other hand, since &y is continuous, we
get ay (B1(r,n)) — ay (B7°(r)). This implies

av (Bier) =0,

which, because of &y (r) > minf{ay, (r/2),r/4} and o, € K, is only possible if
() =0,

Consequently, B (r, n) has all properties of a L function except that it is only
defined for n € Ny. Defining the linear interpolation

Bo(r,t)y:=(n+1-0)p1(r,n)+ @ —n)p1(r,n+1)
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fort € [n,n + 1) and n € Np, we obtain a function 8, € XL which coincides with
B1 for t =n € Ny. Finally, setting

B, 0):=ay ' o Bo(aa(r), 1)

we can use (2.43) in order to obtain

|x(n,x0)| < afl(V(x(n,xo))) < afl ) ﬁl(V(xo), n)
=a; ' o Ba(V(x0).n) <oy o Ba(e2(Ix0l). n) = B(Ix0l, n),

for all xg € S and all n € Ny. This is the desired Inequality (2.32). If S=S =Y
this shows the claimed asymptotic stability on Y and global asymptotic stability
if Y =X.If § # S, then in order to satisfy tlle local version of Definition 2.14 it
remains to show that x € B;(x,) implies x € S. Since by definition of n and y we
have n = ozz_l(y), we get

xeByx) = kl<n=o'(y) = V@<a(x)<y = xeb
This finishes the proof. U

Likewise, P-practical asymptotic stability can be ensured by a suitable Lyapunov
function condition provided the set P is forward invariant.

Theorem 2.20 Consider forward invariant sets Y and P C Y and a point x, € P.
If there exists a Lyapunov function V on S =Y \ P then x, is P-practically asymp-
totically stable on Y .

Proof The same construction of g as in the proof of Theorem 2.19 yields
[x(n, x0)| < B(1xlx., n) (2.32)

forall n =0,...,n* — 1, where n* € Ny is minimal with x(n*, xo) € P. This fol-
lows with the same arguments as in the proof of Theorem 2.19 by restricting the
times considered in (2.39) and 243)ton =0,...,n* —2and n=0,...,n* — 1,
respectively.

Since forward invariance of P ensures x(n, xg) € P for all n > n*, the times n
for which x(n, xo) ¢ P holds are exactly n =0, ..., n* — 1. Since these are exactly
the times at which (2.32) is required, this yields the desired P-practical asymptotic
stability. O
In case of a time varying reference x™f we need to use the time varying asymp-
totic stability from Definition 2.16. The corresponding Lyapunov function concept
is as follows.

Definition 2.21 Consider a system (2.34), reference points x™(n), subsets of the
state space S(n) € X and define S := {(n,x)|n € Ny, x € S(n)}. A function V :
S — Ra’ is called a uniform time varying Lyapunov function on S (n) if the following
conditions are satisfied:
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(i) There exist functions a1, oy € K such that
(0] (|x |xref(n)) f V(n, x) S 052(|x|xref(n)) (244)

holds for all n € Ng and all x € S(n).
(ii) There exists a function ay € K such that

V(n+1,g(n,x)<Vnx)—ay(|x|mwg,) (2.45)
holds for all n € Ny and all x € S(n) with g(n,x) € S(n 4+ 1).

Theorem 2.22 Let x™' be a trajectory of (2.34) and assume there exists a uniform
time varying Lyapunov function V on S(n). If each S(n) contains a ball B, (x"(n))
with g(n,x) € S(n + 1) for all x € B, (x™ (n)) then x™' is locally asymptotically
stable with n = ozz_1 o a1 (v). If the family of sets S(n) is forward invariant in the
sense stated before Definition 2.16, then x™' is asymptotically stable on S(n). If
S(n) = X holds for all n € Ny then x™' is globally asymptotically stable.

Proof The proof is analogous to the proof of Theorem 2.19 with the obvious modi-
fications to take n € N into account. O

Indeed, the necessary modification in the proof are straightforward because the
time varying Lyapunov function is uniform, i.e., o1, &2 and @y do not depend on n.
For the more involved nonuniform case we again refer to [3].

The P-practical version of this statement is provided by the following theorem in
which we assume forward invariance of the sets P(n). Observe that here x™f does
not need to be a trajectory of the system (2.34).

Theorem 2.23 Consider forward invariant families of sets Y (n) and P(n) C Y (n),
n € Ny, and reference points x*(n) € P(n). If there exists a uniform time varying
Lyapunov function V on S(n) =Y (n) \ P(n) then x™ is P-practically asymptoti-
cally stable on Y (n).

Proof The proof is analogous to the proof of Theorem 2.20 with the obvious modi-
fications. O

2.4 Stability of Sampled Data Systems

We now investigate the special case in which (2.31) represents the nominal closed-
loop system (2.5) with f obtained from a sampled data system via (2.8). In this case,
the solutions x (n, xg) of (2.31) and the solutions ¢(#,, f9, xo, 1) of the sampled data
closed-loop system (2.30) satisfy the identity

x(n, x0) = @(ty, to, X0, 1) (2.46)
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for all n € Np. This implies that the stability criterion from Definition 2.14 (and anal-
ogous for the other stability definitions) only yields inequalities for the continuous
state of the system at the sampling times ¢,, i.e.,

o (tn, 10, xo0, M)|x* < B(Ixoly,.n) foralln=0,1,2,... (2.47)

for a suitable B € ICL. However, for a continuous time system it is in general de-
sirable to ensure the existence of 8 € KL such that the continuous time asymptotic
stability property

lo(t, 10, x0, u)\x* < B(Ixolx,.7) forallr >0 (2.48)

holds.

In the remainder of this chapter we will show that under a reasonable additional
assumption (2.47) implies the existence of 8 € £ such that (2.48) holds. For sim-
plicity, we restrict ourselves to local asymptotic stability and to the case of time-
invariant reference x'f = x,. The arguments can be modified to cover the other
cases, as well.

The necessary additional condition is the following boundedness assumption on

the solutions in between two sampling instants.

Definition 2.24 Consider a sampled data closed-loop system (2.30) with sampling
period T > 0. If there exists a function y € KC and a constant 1 > 0 such that for all
x € X with |x|x, <n, the solutions of (2.30) exist on [0, 7'] and satisfy

|0, 0,0, |, < v(Ixls,)

for all ¢ € [0, T'] then the solutions of (2.30) are called uniformly bounded over T .

Effectively, this condition demands that in between two sampling times #, and
41 the continuous time solution does not deviate too much from the solution at
the sampling time #,. Sufficient conditions for this property formulated directly in
terms of the vector field f; in (2.30) can be found in [11, Lemma 3]. A sufficient
condition in our NMPC setting is discussed in Remark 4.13.

For the subsequent analysis we introduce the following class of CL functions,
which will allow us to deal with the inter sampling behavior of the continuous time
solution.

Definition 2.25 A function 8 € KL is called uniformly incrementally bounded if
there exists P > 0 such that 8(r, k) < PB(r,k+ 1) holds for all » > 0 and all k € N.

Uniformly incrementally bounded KL functions exhibit a nice bounding prop-
erty compared to standard KCL functions which we will use the proof of Theo-
rem 2.27. Before, we show that any ICL function fB—Ilike the one in (2.47)—can
be bounded from above by a uniformly incrementally bounded KL function.
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Lemma 2.26 For any 8 € KL the function
B, 1) := m%x 27 B(r,t — 1)

is a uniformly incrementally bounded KL function with B(r, 1) < B(r, t) forallr > 0
andallt > 0 and P =2.

Proof The inequality 8 < B follows immediately from the definition. Uniform in-
cremental boundedness with P = 2 follows from the inequality
B(r,t)= max 27 TB(r,t —t)= max 2'7TB(rt—t+1)
7€[0,7] e[l 1+1]

=2 max 27'B(rt—1+1)<2 max 2 'B(r,t—t+1)
refl,1+1] Te[0,1+1]

=2B8(r,t +1).

It remains to show that 8 € KL.

Since B € KL it follows that A is continuous and (0, t) = 0 for any ¢ > 0. For
any rp > ry >0, B € KL implies 277 B(r2,t — ) > 27" B(r1, 1 — 7). This shows
that B(r», t) > B(r1,t) and hence B(-, 1) € K.

Next we show that for any fixed r > 0 the function ¢ > B(r, 1) is strictly decreas-
ing to 0. To this end, in the following we use that forallt > s >¢g >0and all» >0
the inequality

max 27 B(r,t — 1) <279B(r,t — )

t€lq,s]
holds. In order to show the strict decrease property for r > 0, let t» > #; > 0. Defin-
ing d := tp — t; we obtain

B(r,t) = max 27°B(r,th — 1)

t€[0,n]

=max{ max 2 °'B(r,tr — 1), max 27 TB(r,t, — 1),
7€[0,d/2] t€ld/2,d]

max 277 B(r, tr — r)}

t€ld,tr]

<max{,3(r t—d)2),2792B(r, 1 — d), max 27 g, tl—t)}

0,11]
=max{B(r.t; +d/2),27?B(r,11),2” d,B(r m}.

Now the strict monotonicity ,B(r n) < ﬁ(r ,11) follows since B(r,11 +d/2) <
B(r.t1) < B(r.11), 2792 B(r, 1) < B(r,11) < B(r.t1) and 279 B(r, 1)) < B(r, 11).

Finally, we prove lim;_, » ﬁ(r t) =0 for any r > 0. Since
B(r,t) < ma ax 27 'B(r,t —t), max 277 ,t—r}
Blr.t) < X{Te‘fé,t’}z] Pt =D, max 2B~ D)

<max{B(r,1/2),27'?B(r,00} >0 ast— oo

the assertion follows. U

Now, we are ready to prove the final stability result.
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Theorem 2.27 Consider the sampled data closed-loop system (2.30) with sampling
period T > 0 and the corresponding discrete time closed-loop system (2.5) with f
from (2.8). Then (2.30) is locally asymptotically stable, i.e., there exists n > 0 and
B € KL such that (2.48) holds for all x € By (xy), if and only if (2.5) is locally
asymptotically stable and the solutions of (2.30) are uniformly bounded over T .

Proof If (2.30) is locally asymptotically stable with some B € KL, then by (2.46)
it immediately follows that the discrete time system (2.5) is asymptotically stable
with B(r, k) = B(r, kT) and that the solutions of (2.30) are uniformly bounded with

y(r)=pB(r,0).

Conversely, assume that (2.5) is locally asymptotically stable and that the solu-
tions of (2.30) are uniformly bounded over 7. Denote the values n > 0 from Defini-
tion 2.14 and Definition 2.24 by ° and ?, respectively. These two properties imply
that there exist 8 € KL and y € K such that

Ixly, <n* = |@kT,0,x, M)\X* <B(Ixly,. k) forallk >0, (2.49)
|x|x, < r}b - |g0(t, 0, x, u)|x* < y(|x|x*) forallt € [0, T]. (2.50)

In order to show the assertion we have to construct n > 0 and 8 € KL with
Ixly, <n = | 0,x, M)|x* <B(Ixly,.t) forallz>0. (2.51)

Define yy(r) := B(r,0) and let n = min{n*, yofl(nb)}. This definition implies
B(n,0) <n” and n < n*. In what follows we consider arbitrary x € X with |x| X <
n. For these x, (2.49) and n < n°® yield

o kT, 0,x, 1], <B(Ixlx,. k) <B®,0)<n” forallk>0. (2.52)
For any k > 0 and ¢ € [kT, (k + 1)T] the definition of (2.30) implies
9,0, x, ) =(t —kT,0,9(kT,0,x, 1), 1n).
Since (2.52) implies |@(kT,0,x, w)lx, < n? for all k > 0, (2.50) holds for x =
@(kT, 0, x, n) and from (2.50) and (2.52) we obtain
0@, 0,x, 0], <y (|e*T,0,x, ) <y (B(IxIl.. k) (2.53)
forall t € [kT, (k —i—Al)T] and all k > 0. .

Now we define B(r,t) := y(B(r,1)). Cle?rly, B € KL and by Lemma 2.26 we
can assume without loss of generality that A is uniformly incrementally bounded;
otherwise we replace it by 8 from this lemma.

Hence, for k € Ny and s € [0, 1] we obtain

B(r.k) < PB(r,k+1) < PB(r.k +5). (2.54)
Now pick an arbitrary # > 0 and let k € Ny be maximal with k <¢/T. Then (2.53)
and (2.54) with s =¢/T — k € [0, 1] imply

|0(t,0,x, W), < B(Ixllx,. k) < PB(Ix]x,, k+ (/T — k) = PB(1xlx.. 1/ T).

This shows the assertion with 8(r, ) = P ,é(r, t/T). O
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Concluding, if we can compute an asymptotically stabilizing feedback law for
the discrete time system induced by the sampled data system, then the resulting
continuous time sampled data closed loop is also asymptotically stable provided its
solutions are uniformly bounded over T'.

2.5 Notes and Extensions

The general setting presented in Sect. 2.1 is more or less standard in discrete time
control theory, except maybe for the rather general choice of the state space X and
the control value space U which allows us to cover infinite-dimensional systems as
illustrated in Example 2.12 and sampled data systems without the zero order hold
assumption as discussed after Theorem 2.7.

This definition of sampled data systems is not so frequently found in the litera-
ture, where often only the special case of zero order hold is discussed. While zero
order hold is usually the method of choice in practical applications and is also used
in the numerical examples later in this book, for theoretical investigations the more
general approach given in Sect. 2.2 is appealing, too.

The discrete time stability theory presented in Sect. 2.3 has a continuous time
counterpart, which is actually more frequently found in the literature. Introductory
textbooks on this subject in a control theoretic setting are, e.g., the books by Khalil
[7] and Sontag [15]. The proofs in this section are not directly taken from the liter-
ature, but they are based on standard arguments, which appear in many books and
papers on the subject. Formulating asymptotic stability via JCL-function goes back
to Hahn [5] and became popular in nonlinear control theory during the 1990s via the
input-to-state stability (ISS) property introduced by Sontag in [14]. A good survey
on this theory can be found in Sontag [16].

While here we only stated direct Lyapunov function theorems which state that the
existence of a Lyapunov function ensures asymptotic stability, there is a rather com-
plete converse theory, which shows that asymptotic stability implies the existence
of Lyapunov functions. A collection of such results—again in a control theoretic
setting—can be found in the PhD thesis of Kellett [6].

The final Sect. 2.4 on asymptotic stability of sampled data systems is based on the
Paper [11] by Nesié, Teel and Sontag, in which this topic is treated in a more general
setting. In particular, this paper also covers ISS results for perturbed systems.

2.6 Problems

1. Show that there exists no differential equation x(¢) = f.(x(¢)) (i.e., without con-
trol input) satisfying Assumption 2.4 and f,(0) = O such that the difference equa-
tion x* = f(x) with

3, x=0,

fx)= { 2

—x, x<0
is the corresponding sampled data system.
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2 Discrete Time and Sampled Data Systems

(a) Show that x™f(n) = Y o 2,1%,{ sin(k) is a solution of the difference equation

x(n+1)= %x(n) + sin(n).

(b) Prove that x™' from (a) is uniformly asymptotically stable and derive a com-
parison function 8 € ICL such that (2.35) holds. Here it is sufficient to derive
a formula for B(r, n) for n € Ny.

(c) Show that xref(n) = ZZ:O % sin(k) is a solution of the difference equation

n+1
1) =
X+ 1) n—+2

x(n) + sin(n).

(d) Can you also prove uniform asymptotic stability for x™ from (c)?

Hint for (b) and (d): One way to proceed is to derive a difference equation
for z(n) = x(n, no, xo) — x** (n) and look at the equilibrium x,, = 0 for this new
equation.

. Consider the two-dimensional difference equation

xt=(1-|lxll) (_01 (l))x

with x = (x1, x2) T € R2.

(a) Prove that V(x) = x% —i—x% is a Lyapunov function for the equilibrium x,, =0
onS={xeR?||x| <1}

(b) Is V also a Lyapunov function on § = R??

(c) Solve (a) and (b) for the difference equation

1 0 1
= X
L+ [lxll <—1 0>

Consider a globally asymptotically stable difference equation (2.31) with equi-
librium x, € X and a Lyapunov function V on § = X with «(r) = 2r2,
ar(r) =3r and ay (r) = r2.

Compute the rate of attraction 8 € KL such that (2.32) holds. Here it is suffi-
cient to derive a formula for 8(r, n) for n € Ny.

Hint: Follow the construction of 8 from the proof of Theorem 2.19. Why can
you use &y = oy, for this problem?

. Consider a difference equation (2.31) with equilibrium x, € X and a function

V:X— Rg which satisfies (2.37) but only
V(gx) = V(x)
instead of (2.38).
(a) Prove that there exists o € K such that the solutions of (2.1) satisfy the
inequality
|x(n, x0) |x* < ag(|xol).

(b) Conclude from (a) that the system is stable in the sense of Lyapunov, cf. the
discussion after Definition 2.14.
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Chapter 3
Nonlinear Model Predictive Control

In this chapter, we introduce the nonlinear model predictive control algorithm in a
rigorous way. We start by defining a basic NMPC algorithm for constant reference
and continue by formalizing state and control constraints. Viability (or weak forward
invariance) of the set of state constraints is introduced and the consequences for the
admissibility of the NMPC feedback law are discussed. After having introduced
NMPC in a special setting, we describe various extensions of the basic algorithm,
considering time varying reference solutions, terminal constraints and costs and ad-
ditional weights. Finally, we investigate the optimal control problem corresponding
to this generalized setting and prove several properties, most notably the dynamic
programming principle.

3.1 The Basic NMPC Algorithm

As already outlined in the introductory Chap. 1, the idea of the NMPC scheme is as
follows: at each sampling instant n we optimize the predicted future behavior of the
system over a finite time horizon k =0, ..., N — 1 of length N > 2 and use the first
element of the resulting optimal control sequence as a feedback control value for the
next sampling interval. In this section we give a detailed mathematical description
of this basic idea for a constant reference x™ = x,, € X. The time varying case as
well as several other variants will then be presented in Sect. 3.3.

A prerequisite for being able to find a feedback law which stabilizes the sys-
tem at x, is that x, is an equilibrium of the nominal closed-loop system (2.5),
i.e., xx = f (x4, n(x4))—this follows immediately from Definition 2.14 with g(x) =
f(x, u(x)). A necessary condition for this is that there exists a control value u, € U
with

X = f (X, Uy), 3.1
which we will assume in the sequel. The cost function to be used in our optimization

should penalize the distance of an arbitrary state x € X to x. In addition, it is often
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desired to penalize the control u € U. This can be useful for computational reasons,
because optimal control problems may be easier to solve if the control variable is
penalized. On the other hand, penalizing u may also be desired for modeling pur-
poses, e.g., because we want to avoid the use of control values u € U corresponding
to expensive high energy. For these reasons, we choose our cost function to be of
the form £ : X x U—>R8‘.

In any case, we require that if we are in the equilibrium x, and use the control
value u, in order to stay in the equilibrium, then the cost should be 0. Outside the
equilibrium, however, the cost should be positive, i.e.,

L(xs,ue)=0 and £€(x,u)>0 forallxe X, ueU withx #x,. (3.2)

If our system is defined on Euclidean space, i.e., X = R? and U = R”, then we may
always assume x, = 0 and u, = 0 without loss of generality: if this is not the case
we can replace f(x,u) by f(x + x, u + u,) — x4, which corresponds to a simple
linear coordinate transformation on X and U. Indeed, this transformation is always
possible if X and U are vector spaces, even if they are not Euclidean spaces. In this
case, a popular choice for £ meeting condition (3.2) is the quadratic function

€, u) = [|x)1* 4 Allull?,

with the usual Euclidean norms and a parameter A > 0. In our general setting on
metric spaces with metrics dy and dy on X and U, the analogous choice of ¢ is

0(x,u) = dx (x, x:)> + Ady (u, us)?. (3.3)

Note, however, that in both settings many other choices are possible and often rea-
sonable, as we will see in the subsequent chapters. Moreover, we will introduce
additional conditions on ¢ later, which we require for a rigorous stability proof of
the NMPC closed loop.

In the case of sampled data systems we can take the continuous time nature of
the underlying model into account by defining £ as an integral over a continuous
time cost function L : X x U — ]Rar on a sampling interval. Using the continuous
time solution ¢ from (2.8), we can define

T
€(x, u) ::/ L(p(t,0,x,u), u(r)) dt. (3.4)
0

Defining ¢ this way, we can incorporate the intersampling behavior of the sampled
data system explicitly into our optimal control problem. As we will see later in Re-
mark 4.13, this enables us to derive rigorous stability properties not only for the
sampled data closed-loop system (2.30). The numerical computation of the inte-
gral in (3.4) can be efficiently integrated into the numerical solution of the ordinary
differential equation (2.6), see Sect. 9.4 for details.

Given such a cost function £ and a prediction horizon length N > 2, we can now
formulate the basic NMPC scheme as an algorithm. In the optimal control problem
(OCPy) within this algorithm we introduce a set of control sequences UV (xg) € UV
over which we optimize. This set may include constraints depending on the initial
value xg. Details about how this set should be chosen will be discussed in Sect. 3.2.
For the moment we simply set UV (x() := U" for all xo € X.
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Algorithm 3.1 (Basic NMPC algorithm for constant reference x"™f =x,) Ateach
sampling time t,, n =0,1,2...:

(1) Measure the state x(n) € X of the system.
(2) Set xg := x(n), solve the optimal control problem

N-1
minimize JN(xo, u(-)) = Z E(x,, (k, x0), u(k))
k=0 (OCPn)
with respectto  u(-) € uN (x0), subjectto

xu(0,x0) =x0,  xulk+1,x0) = f(xulk, x0), u(k))

and denote the obtained optimal control sequence by u*(-) € UV (xo).
(3) Define the NMPC-feedback value py (x(n)) := u*(0) € U and use this control
value in the next sampling period.

Observe that in this algorithm we have assumed that an optimal control sequence
u*(+) exists. Sufficient conditions for this existence are briefly discussed after Defi-
nition 3.14, below.

The nominal closed-loop system resulting from Algorithm 3.1 is given by (2.5)
with state feedback law u = uy, i.e.,

xF = f (o uv ). (3.5
The trajectories of this system will be denoted by x,,, (n) or, if we want to emphasize
the initial value xo = x,,, (0), by x,,,, (1, xp).

During our theoretical investigations we will neglect the fact that computing the
solution of (OCPy) in Step (2) of the algorithm usually needs some computation
time 7. which—in the case when 7. is relatively large compared to the sampling
period T—may not be negligible in a real time implementation. We will sketch a
solution to this problem in Sect. 7.6.

In our abstract formulations of the NMPC Algorithm 3.1 only the first element
u*(0) of the respective minimizing control sequence is used in each step, the re-
maining entries u*(1), ..., u*(N — 1) are discarded. In the practical implementation,
however, these entries play an important role because numerical optimization algo-
rithms for solving (OCPy) (or its variants) usually work 1terat1vely starting from
an initial guess u°(-) an optimization algorithm computes iterates u'(-), i =1, 2, .
converging to the minimizer #*(-) and a good choice of u°(-) is crucial in order to
obtain fast convergence of this iteration, or even to ensure convergence, at all. Here,
the minimizing sequence from the previous time step can be efficiently used in order
to construct such a good initial guess. Several different ways to implement this idea
are discussed in Sect. 10.4.

3.2 Constraints

One of the main reasons for the success of NMPC (and MPC in general) is its abil-
ity to explicitly take constraints into account. Here, we consider constraints both on
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the control as well as on the state. To this end, we introduce a nonempty state con-
straint set X C X and for each x € X we introduce a nonempty control constraint set
U(x) € U. Of course, U may also be chosen independent of x. The idea behind in-
troducing these sets is that we want the trajectories to lie in X and the corresponding
control values to lie in U(x). This is made precise in the following definition.

Definition 3.2 Consider a control system (2.1) and the state and control constraint
sets XC Xand U(x) CU.

(i) The states x € X are called admissible states and the control values u € U(x)
are called admissible control values for x.

(ii) For N € N and an initial value xo € X we call a control sequence u € U" and
the corresponding trajectory x,, (k, xo) admissible for xo up to time N, if

u(k) € U(xu(k,xo)) and x,(k+1,x)€eX

holdforallk =0, ..., N — 1. We denote the set of admissible control sequences
for xo up to time N by U (xo).

(iii) A control sequence u € U and the corresponding trajectory x,(k, xo) are
called admissible for x if they are admissible for xo up to every time N € N.
We denote the set of admissible control sequences for xg by U (xg).

(iv) A (possibly time varying) feedback law u : Ng x X — U is called admissible
if w(n, x) € U'(x) holds for all x € X and all n € Ny.

Whenever the reference to x or xq is clear from the context we will omit the
additional “for x” or “for xo”.

Since we can (and will) identify control sequences with only one element with the
respective control value, we can consider U! (xp) as a subset of U, which we already
implicitly did in the definition of admissibility for the feedback law ., above. How-
ever, in general U! (x0) does not coincide with U(xg) € U because using x, (1, x) =
f(x,u) and the definition of UV (x) we get Ul(x) := fuelx) | f(x,u) e X}.
With this subtle difference in mind, one sees that our admissibility condition (iv) on
w ensures both p(n, x) € U(x) and f(x, u(n, x)) € X whenever x € X.

Furthermore, our definition of UV (x) implies that even if U(x) = U is indepen-
dent of x the set UV (x) may depend on x for some or all N € N.

Often, in order to be suitable for optimization purposes these sets are assumed
to be compact and convex. For our theoretical investigations, however, we do not
need any regularity requirements of this type except that these sets are nonempty.
We will, however, frequently use the following assumption.

Assumption 3.3 For each x € X there exists u € U(x) such that f(x, #) € X holds.

The property defined in this assumption is called viability or weak (or con-
trolled) forward invariance of X. It excludes the situation that there are states
x € X from which the trajectory leaves the set X for all admissible control val-
ues. Hence, it ensures UV (xq) # @ for all xo € X and all N € No. This property is
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important to ensure the feasibility of (OCPy): the optimal control problem (OCPy)
is called feasible for an initial value x if the set U (x() over which we optimize is
nonempty. Viability of X thus implies that (OCPy) is feasible for each xp € X and
hence ensures that 1y (x) is well defined for each x € X. Furthermore, a straight-
forward induction shows that under Assumption 3.3 any finite admissible control
sequence u(-) € UM (x0) can be extended to an infinite admissible control sequence
i(-) € U®(xp) with u(k) =u(k) forallk=0,...,N — 1.

In order to see that the construction of a constraint set X meeting Assumption 3.3
is usually a nontrivial task, we reconsider Example 2.2.

Example 3.4 Consider Example 2.2, i.e.,

x+:f(x u)=<xl+x2+u/2>'

X2+ u

Assume we want to constrain all variables, i.e., the position x|, the velocity x, and
the acceleration u to the interval [—1, 1]. For this purpose one could define X =
[—1,1]2 and U(x) = U = [—1, 1]. Then, however, for x = (1, 1), one immediately
obtains

X =xi b tu/2=2+u/2>3/2

for all u, hence x™ ¢ X for all u € U. Thus, in order to find a viable set X we need to
either tighten or relax some of the constraints. For instance, relaxing the constraint
on u to U =[-2, 2] the viability of X =[—1, 12 is guaranteed, because then by
elementary computations one sees that for each x € X the control value

0, x1+xe[—1,1],

u=142-—2x; —2x, X1 +x2>1,

—2—2x1 —2x3, x1+x<-—1
is in U and satisfies f(x, u) € X. A way to achieve viability without changing U is
by tightening the constraint on x; by defining

X={(1, )7 eR?|x; e[~1,11, x2 € [-1, 11N[=3/2 = x1,3/2 = x11},

(3.6)
see Fig. 3.1. Again, elementary computations show that for each x € X and
1, xy < —1/2,
u=14 —2x3, x2€[-1/2,1/2],
-1, x2>1/2

the desired properties # € U and f(x, u) € X hold.

This example shows that finding viable constraint sets X (and the corresponding
U or U(x)) is a tricky task already for very simple systems. Still, Assumption 3.3
significantly simplifies the subsequent analysis, cf. Theorem 3.5, below. For this
reason we will impose this condition in our theoretical investigations for schemes
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Fig. 3.1 Illustration of the
set X from (3.6)
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without stabilizing terminal constraints in Chap. 6. Ways to relax this condition will
be discussed in Sects. 8.1-8.3.

For schemes with stabilizing terminal constraints as featured in Chap. 5 we will
not need this assumption, since for these schemes the region on which the NMPC
controller is defined is by construction confined to feasible subsets Xy of X, see
Definition 3.9, below. Even if X is not viable, these feasible sets Xy turn out to
be viable provided the terminal constraint set is viable, cf. Lemmas 5.2 and 5.10.
For a more detailed discussion of these issues see also Part (iv) of the discussion in
Sect. 8.4.

NMPC is well suited to handle constraints because these can directly be inserted
into Algorithm 3.1. In fact, since we already formulated the corresponding optimiza-
tion problem (OCPy) with state dependent control value sets, the constraints are
readily included if we use UM (xp) from Definition 3.2(ii) in (OCPy). The follow-
ing theorem shows that the viability assumption ensures that the NMPC closed-loop
system obtained this way indeed satisfies the desired constraints.

Theorem 3.5 Consider Algorithm 3.1 using UN (xq) from Definition 3.2(ii) in the
optimal control problem (OCPN) for constraint sets X C X, U(x) C U, x € X, sat-
isfying Assumption 3.3. Consider the nominal closed-loop system (3.5) and suppose
that x,, (0) € X. Then the constraints are satisfied along the solution of (3.5), i.e.,

xuy(m)eX and un (xﬂN (n)) € [U(x,LN (n)) (3.7

for all n € N. Thus, the NMPC-feedback y is admissible in the sense of Defini-
tion 3.2(iv).

Proof First, recall from the discussion after Assumption 3.3 that under this assump-
tion the optimal control problem (OCPy) is feasible for each x € X, hence py (x) is
well defined for each x € X.

We now show that x,,, (n) € X implies py (x,, (1)) € U(x,y (n)) and x,,, (n +
1) € X. Then the assertion follows by induction from x,, (0) € X.
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The viability of X from Assumption 3.3 ensures that whenever x,, (n) € X
holds in Algorithm 3.1, then xo € X holds for the respective optimal control prob-
lem (OCPy). Since the optimization is performed with respect to admissible con-
trol sequences only, also the optimal control sequence u*(-) is admissible for
X0 = Xy, (n). This implies un (x;,, (1)) = u*(0) € U! (xy () € U(x;y(n)) and
thus also

Xy +1) = f(xuy ), un (xuy (M)) = f(x(n), u*(0)) €X,
ie. xu,(n+1)eX. O

Theorem 3.5 in particular implies that if a state x is feasible for (OCPy), which
under Assumption 3.3 is equivalent to x € X (cf. the discussion after Assump-
tion 3.3), then its closed-loop successor state f(x, uy(x)) is again feasible. This
property is called recursive feasibility of X.

In the case of sampled data systems, the constraints are only defined for the
sampling times 7, but not for the intersampling times ¢ # t,,. That is, for the sampled
data closed-loop system (2.30) we can only guarantee

(p(tn,t(),xo,,u,)EX forn=0,1,2,...
but in general not
o(t, tg, x0, ) €X fort#t,, n=0,1,2,....

Since we prefer to work within the discrete time framework, directly checking
@(t, 19, x0, u) € X for all ¢ does not fit our setting. If desired, however, one could
implicitly include this condition in the definition of U(x), e.g., by defining new
control constraint sets via

U(x) = {u e U) | ¢(z,0,x,u) € X forall 7 € [0, T1}.

In practice, however, this is often not necessary because continuity of ¢ in ¢ ensures
that the constraints are usually only “mildly” violated for ¢ # ¢, i.e., (¢, t9, X0, L)
will still be close to X at intersampling times. Still, one should keep this fact in mind
when designing the constraint set X.

In the underlying optimization algorithms for solving (OCPy), usually the con-
straints cannot be specified via sets X and U(x). Rather, one uses so-called equality
and inequality constraints in order to specify X and U(x) according to the following
definition.

Definition 3.6 Given functions Gf X xU—>R,ic&S= {L,..., pg} and HiS :
XxU—R,i EIS={p8+ L,..., pg + pr} with rg, r, € No, we define the con-
straint sets X and U(x) via

X:= {x € X | there exists u € U with G?(x,u)=0foralli e £
and H (x,u) > 0 foralli e 7%}

and, for x € X
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Ux) := {u eU | G,-S(x, u)=0foralli € £ and
His(x, u) >0 for all i GIS}.

Here, the functions Gl.S and Hl.S do not need to depend on both arguments. The
functions Gf s HiS not depending on u are called pure state constraints, the functions
GiS , Hl.S not depending on x are called pure control constraints and the functions
GiS, HiS depending on both x and u are called mixed constraints.

Observe that if we do not have mixed constraints then U(x) is independent of x.

The reason for defining X and U(x) via these (in)equality constraints is purely
algorithmic: the plain information “x,, (k, xg) ¢ X does not yield any information
for the optimization algorithm in order to figure out how to find an admissible u(-),
i.e., a u(-) for which “x, (k, xo) € X holds. In contrast to that, an information of
the form “Hl.S (xy (k, x0), u(k)) < 0” together with additional knowledge about HiS
(provided, e.g., by the derivative of H. l.S ) enables the algorithm to compute a “direc-
tion” in which u(-) needs to be modified in order to reach an admissible u(-). For
more details on this we refer to Chap. 10.

In our theoretical investigations we will use the notationally more convenient
set characterization of the constraints via X and U(x) or UV (x). In the practical
implementation of our NMPC method, however, we will use their characterization
via the inequality constraints from Definition 3.6.

3.3 Variants of the Basic NMPC Algorithms

In this section we discuss some important variants and extensions of the basic
NMPC Algorithm 3.1; several further variants will be briefly discussed in Sect. 3.5.
We start by incorporating non-constants references x™f(n) and afterwards turn to
including terminal constraints, terminal costs and weights.

If the reference x™ is time varying, we need to take this fact into account in the
formulation of the NMPC algorithm. Similar to the constant case where we assumed
that x, is an equilibrium of (2.1) for control value u,, we now assume that xfisa
trajectory of the system, i.e.,

x™(n) = X et (1, X0)

for xo = x™f(0) and some suitable admissible reference control sequence u™(-) €
U (xp). In contrast to the constant reference case of Sect. 3.1, even for X = R and
U =R™ we do not assume that these references are constantly equal to 0, because
this would lead to time varying coordinate transformations in X and U. For this
reason, we always need to take x™f(-) and u™'(-) into account when defining £. As a
consequence, £ becomes time varying, too, i.e., we use a function £ : No x X x U —
Ra’ . Furthermore, we need to keep track of the current sampling instant n in the
optimal control problem.
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Again, we require that the cost function ¢ vanishes if and only if we are exactly
on the reference. In the time varying case (3.2) becomes
£(n, x"(n), uref(n)) =0 forallneNy and

(3.8)
Cn,x,u) >0 forallneNy, x € X, ueU withx #x"(n).

For X = R4 , U = R"™ with Euclidean norms, a quadratic distance function is now
of the form

L(n,x,u)= ||x — x““’f(n)H2 + )LHu - uref(n)H2
with A > 0 and in the general case
€, x, u) = dx (x, x*'(n))” + Ady (1, ™ (n))?

is an example for £ meeting (3.8).

For sampled data systems, we can again define £ via an integral over a continuous
time cost function L analogous to (3.4). Note, however, that for defining L we will
then need a continuous time reference.

For each k =0, ..., N — 1, the prediction x, (k, xo) with xo = x(n) used in the
NMPC algorithm now becomes a prediction for the closed-loop state x (n 4+ k) which
we would like to have close to x™(n + k). Consequently, in the optimal control
problem at time n we need to penalize the distance of x,(k, xo) to x®(n + k),
i.e., we need to use the cost £(n + k, x,(k, x0), u(k)). This leads to the following
algorithm where we minimize over the set of control sequences UV (xo) defined in
Sect. 3.2.

Algorithm 3.7 (Basic NMPC algorithm for time varying reference x™) At each
sampling time t,,, n =0, 1,2...:

(1) Measure the state x(n) € X of the system.
(2) Set xg = x(n), solve the optimal control problem

N-1

minimize JN(n, X0, u(-)) = Z E(n + k, x, (k, x0), u(k))
k=0
OCP}
with respectto  u(-) € UV (x9), subjectto ( N)

xu(0,x0) =x0,  xu(k+1,x0) = f(xulk, x0), u(k))

and denote the obtained optimal control sequence by u*(-) € UV (xo).
(3) Define the NMPC-feedback value uy (n, x(n)) := u*(0) € U and use this con-
trol value in the next sampling period.

Note that Algorithm 3.7 and (OCPy) reduce to Algorithm 3.1 and (OCPy), re-
spectively, if £ does not depend on n.

The resulting nominal closed-loop system is now given by (2.5) with u(x) =
unn, x),ie.,

xt = f(x, un(n, x)). 3.9)
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As before, the trajectories of this system will be denoted by x,,,, (n). Since the right
hand side is now time varying, whenever necessary we include both the initial time
and the initial value in the notation, i.e., for a given no € Ng we write x,, (1, ng, xo)
for the closed-loop solution satisfying x,. (no, no, xo) = xo. It is straightforward to
check that Theorem 3.5 remains valid for Algorithm 3.7 when (3.7) is replaced by

Xuy(m)eX and /LN(n,xMN(n))GU(xMN(n)). (3.10)

Remark 3.8 Observe that Algorithm 3.7 can be straightforwardly extended to the
case when f and X depend on n, too. However, in order to keep the presentation
simple, we do not explicitly reflect this possibility in our notation.

More often than not one can find variations of the basic NMPC Algorithms 3.1
and 3.7 in the literature in which the optimal control problem (OCPy) or (OCPY)
is changed in one way or another in order to improve the closed-loop performance.
These techniques will be discussed in detail in Chap. 5 and in Sects. 7.1 and 7.2.
We now introduce generalizations (OCPy ¢) and (OCP& o) of (OCPy) and (OCPY),
respectively, which contain all the variants we will investigate in these chapters and
sections.

A typical choice for such a variant is an additional terminal constraint of the form

Xy (N, x(n)) € Xo for a terminal constraint set Xg C X (3.11)

for the time-invariant case of (OCPy) and

Xy (N, x(n)) € Xo(n + N) for terminal constraint sets Xo(n) C X, n € Np
(3.12)

for the time varying problem (OCPY;). Of course, in the practical implementation
the constraint sets Xy or Xo(n) are again expressed via (in)equalities of the form
given in Definition 3.6.

When using terminal constraints, the NMPC-feedback law is only defined for
those states x( for which the optimization problem within the NMPC algorithm is
feasible also for these additional constraints, i.e., for which there exists an admissi-
ble control sequence with corresponding trajectory starting in x¢ and ending in the
terminal constraint set. Such initial values are again called feasible and the set of all
feasible initial values form the feasible set. This set along with the corresponding
admissible control sequences is formally defined as follows.

Definition 3.9
(i) For Xy from (3.11) we define the feasible set for horizon N € N by
Xy = {x0 € X | there exists u(-) € U (xo) with x, (N, x0) € X}
and for each xg € Xy we define the set of admissible control sequences by

U, (x0) == {u(-) € UV (x0) | x4 (N, x0) € Xo}.
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(i) For Xy(n) from (3.12) we define the feasible set for horizon N € N at time
n € Np by

Xy (n) := {xo € X | there exists u(-) € UN (xo) with x, (N, x0) € Xo(n + N)}
and for each xg € Xy (n) we define the set of admissible control sequences by

UF, (n, x0) == {u() € UN (x0) | x4 (N, x0) € Xo(n + N)}.

Note that in (i) Xy = X and Ugo (x) = UN(x) holds if Xg =X, i.e., if no ad-
ditional terminal constraints are imposed. Similarly, in case (ii)) Xy (n) = X and
Ug, (n, x) = U" (x) holds if Xo(n) = X.

Another modification of the optimal control problems (OCPy) and (OCPY),
often used in conjunction with this terminal constraint is an additional termi-
nal cost of the form F(x,(N,x(n))) with F : X — R(")" in the optimization ob-
jective. This function may also be time depending, i.e., it may be of the form
F(n 4+ N,x,(N,x(n))) with F :Nyp x X — IR?)'. An alternative to using ter-
minal costs is to put weights on some summands of the objective, i.e., replac-
ing €(x, (k, xp), u(k)) by oy—il(x,(k, xo), u(k)) for weights wi, ..., oy > 0. Al-
though for NMPC schemes we will only investigate the effect of the weight w
in detail, cf. Sect. 7.2, here we introduce weights for all summands since this of-
fers more flexibility and does not further complicate the subsequent analysis in this
chapter. The need for the “backward” numbering of the wy_x will become clear in
the proof of Theorem 3.15, below.

In the sequel, we will analyze schemes with terminal cost F' and schemes with
weights wy_j separately, cf. Sects. 5.3, 7.1 and 7.2. However, in order to reduce the
number of variants of NMPC algorithms in this book we include both features in the
optimization problems (OCPy ) and (OCP“N’ o) in the following NMPC algorithms
extending the basic Algorithms 3.1 and 3.7, respectively. Note that compared to
these basic algorithms only the optimal control problems are different, i.e., the part
in the boxes in Step (2). We start by extending the time-invariant Algorithm 3.1

Algorithm 3.10 (Extended NMPC algorithm for constant reference x™ = x,) At
each sampling time ¢,,n =0, 1,2...:

(1) Measure the state x(n) € X of the system.
(2) Set xg := x(n), solve the optimal control problem

N-1

minimize  Jy (xo, u()) == Z wn—kl(xu(k, x0), u(k))
k=0
+ F(xu(N, x0)) (OCPn.e)

with respectto  u(-) € Ugo (x0), subjectto
XM(O,.X()):.X(), xu(k—i-l,xO)zf(xu(k,X()),u(k))

and denote the obtained optimal control sequence by u*(-) € Ugo (x0).
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(3) Define the NMPC-feedback value uy (x(n)) := u*(0) € U and use this control
value in the next sampling period.

Similarly, we can extend the time-variant Algorithm 3.7.

Algorithm 3.11 (Extended NMPC algorithm for time varying reference x™f) At
each sampling time ¢,,,n =0, 1,2...:

(1) Measure the state x(n) € X of the system.
(2) Set xg = x(n), solve the optimal control problem

N-1
minimize Jy (n, X0, u(~)) = Z wN_kE(n + k, x, (k, x0), u(k))
k=0

+ F(n+ N, x,(N, x))
with respectto  u(-) € [Ugo (n,x0), subjectto

xu(0,x0) =x0,  xu(k+1,x0) = f(xu(k, x0), u(k))

(OCPY )

and denote the obtained optimal control sequence by u*(-) € Ugo (n, xp).
(3) Define the NMPC-feedback value uy (n, x(n)) := u*(0) € U and use this con-
trol value in the next sampling period.

Observe that the terminal constraints (3.11) and (3.12) are included via the re-
strictions u(-) € Ugo (xp) and u(-) € Ugo (n, x0), respectively.

Algorithm 3.10 1s a special case of Algorithm 3.11 if £, F and Xy do not de-
pend on n. Furthermore, Algorithm 3.1 is obtained from Algorithm 3.10 for F =0,
oy, =1, k=0,...,N — 1 and Xy = X. Likewise, we can derive Algorithm 3.7
from Algorithm 3.11 by setting F =0, wy, =1, k=0, ..., N —1 and Xo(n) =X,
n € Ny. Consequently, all NMPC algorithms in this book are special cases of Algo-
rithm 3.11 and all optimal control problems included in these algorithms are special
cases of (OCPY ).

We end this section with two useful results on the sets of admissible control
sequences from Definition 3.9 which we formulate for the general setting of Algo-
rithm 3.11, i.e., for time varying terminal constraint set Xo(n).

Lemma 3.12 Let xo € Xy(n), N e Nand K €{0, ..., N} be given.

(i) Foreachu(-) € Ugo(n, xo) we have x, (K, xg) € Xy_x(n + K).
(ii) For each u(-) € Ugo (n, xq) the control sequences uy € UX and uy e UN—K
uniquely defined by the relation

uy(k), k=0,...,K—1,
k) = 3.13
u(k) {u2(k—K), k=K,....N—1 (3-13)

satisfy uy € UgN—K (n, x0) and uy € Ugo_K(n + K, x,, (K, x0)).
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(iii) For each u,(-) € IU%N—K (n, xq) there exists uy(-) € Ugo_K(n + K, x,, (K, x0))
such that u(-) from (3.13) satisfies u € Ugo (n, xp).

Proof (i) Using (2.3) we obtain the identity
xu(K+-) (N - Ka xu(Kv xO)) = xu(N’ )C()) € XO(” + N)v

which together with the definition of Xy_g implies the assertion.
(i1) The relation (3.13) together with (2.3) implies

xu|(k,x0)7 k=0,...,K,

3.14
Xu, (k — K, x,, (K, x0)), k=K,...,N. ( )

xu (k, x0) = {

For k =0,..., K — 1 this identity and (3.13) yield
uitk) =uk) € U(xu (k, xo)) = [U(xul (k, xo))
and fork=0,..., N — K — 1 we obtain
ury(k)y=uk+K) € [U(xu (k+ K, xo)) = TU(xu2 (k, Xy, (K, xo))),

implying u; € UX(x¢) and u, € TUN*K()C,,1 (K, x0)). Furthermore, (3.14) implies
the equation x,, (N — K, x,,, (K, x0)) = x4, (N, x0) € Xo(n + N) which proves u; €
UY %+ K, xy, (K, x0)). This, in turn, implies that U}~ (n + K, x,, (K, x0)) is
nonempty, hence x,, (K, xo) € Xy_g (n+ K) and consequently u; € UgN_K (n, x0)
follows.

(iii) By definition, for each x € Xy_g (n+ K) there exists u; € Ug{;K (n+K,x).
Choosing such a uy for x = x,, (K, x0) € Xy_g (n + K) and defining u via (3.13),
similar arguments as in Part (ii), above, show the claim u € Ugo (n, xo). O

A straightforward corollary of this lemma is the following.

Corollary 3.13

(1) For each x € Xy the NMPC-feedback law .y obtained from Algorithm 3.10
satisfies

fx un () € Xyoy.

(i) Foreachn € N and each x € Xy (n) the NMPC-feedback law pn obtained from
Algorithm 3.11 satisfies

[y, x)) € Xy_1(n+ 1),

Proof We show (ii) which contains (i) as a special case. Since uy(n,x) is
the first element ©*(0) of the optimal control sequence u* € Ugﬂ (n,x) we get
f(x, un@m, x)) =x,+(1, x). Now Lemma 3.12(i) yields the assertion. [l
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3.4 The Dynamic Programming Principle

In this section we provide one of the classical tools in optimal control, the dynamic
programming principle. We will formulate and prove the results in this section for
(OCPY, ), since all other optimal control problems introduced above can be ob-
tained a special cases of this problem. We will first formulate the principle for
the open-loop control sequences in (OCPY, .) and then derive consequences for the
NMPC-feedback law . The dynamic pfogramming principle is often used as a
basis for numerical algorithms, cf. Sect. 3.5. In contrast to this, in this book we
will exclusively use the principle for analyzing the behavior of NMPC closed-loop
systems, while for the actual numerical solution of (OCPY, ) we use different al-
gorithms as described in Chap. 10. The reason for this is that the numerical effort
of solving (OCPy ) via dynamic programming usually grows exponentially with
the dimension of the state of the system, see the discussion in Sect. 3.5. In contrast
to this, the computational effort of the methods described in Chap. 10 scales much
more moderately with the space dimension.
We start by defining some objects we need in the sequel.

Definition 3.14 Consider the optimal control problem (OCPY ) with initial value
xo € X, time instant n € Ny and optimization horizon N € Nj.

(i) The function

Vn(n,x0):= inf  Jy(n, xo,u("))
u()eUY (x0)
is called optimal value function.

(ii) A control sequence u*(-) € Ugo (x0) is called optimal control sequence for x,
if

Vn (n, x0) = Iy (n, x0, u*(-))

holds. The corresponding trajectory x,+ (-, xo) is called optimal trajectory.

In our NMPC Algorithm 3.11 and its variants we have assumed that an optimal
control sequence u*(-) exists, cf. the comment after Algorithms 3.1. In general, this
is not necessarily the case but under reasonable continuity and compactness condi-
tions the existence of u#*(-) can be rigorously shown. Examples of such theorems for
a general infinite-dimensional state space can be found in Keerthi and Gilbert [10]
or Dolezal [7]. While for formulating and proving the dynamic programming princi-
ple we will not need the existence of u*(-), for all subsequent results we will assume
that u*(-) exists, in particular when we derive properties of the NMPC-feedback law
un . While we conjecture that most of the results in this book can be generalized to
the case when upy is defined via an approximately minimizing control sequence,
we decided to use the existence assumption because it considerably simplifies the
presentation of the results in this book.

The following theorem introduces the dynamic programming principle. It gives
an equation which relates the optimal value functions for different optimization hori-
zons N and for different points in space.
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Theorem 3.15 Consider the optimal control problem (OCP&e) with xo € Xy (n)
andn, N € Ng. Then forall N e Nandall K =1, ..., N the equation

K—1
Vi (n, x0) = inf [ > oy kl(n+ k. x, (k. xo). u(k))
(n,x0)

K
u()eUx, k=0

+VN_K(n+K,xu(K,xo))} (3.15)

holds. If, in addition, an optimal control sequence u*(-) € Ugo (n, xo) exists for xg,
then we get the equation
K—1
VN (. x0) = Y on—ib(n +k, x,0 (k, x0), u* (k) + V— (n + K, x4+ (K, x0)).
k=0
(3.16)

In particular, in this case the “inf” in (3.15) is a “min”.

Proof First observe that from the definition of Jy for u(-) € [Ugo (n, x9) we imme-
diately obtain
K—1
Iy (n,x0,u()) =Y on-it(n +k, x,(k, x0), u(k))
k=0
+JIn-k (n+ K, x4 (K, x0), u(- + K)). (3.17)

Since u(- + K) equals u2(-) from Lemma 3.12(ii) we obtain u(- + K) € UQ{;K (n+
K, x,(K,x0)). Note that for (3.17) to hold we need the backward numbering of
WN—f-
We now prove (3.15) by proving “>" and “<” separately. From (3.17) we obtain
K—1
JN(n, X0, u(-)) = Z a)N_kE(n + k, x, (k, x0), u(k))
k=0
+ In—k (n+ K, x4 (K, x0), u(- + K))
K—1
> > oyil(n+ k. x, (k. x0), u(k)) + Vn_k (n + K. x, (K. x0)).
k=0
Since this inequality holds for all u(-) € Ugo (n, xp), it also holds when taking the
infimum on both sides. Hence we get

Vn(n,xo)=  inf  Jy(n, xo,u(")
u(-)eUgo(n,xo)
K—-1
> inf > on-ib(n+k, x,(k, x0), u(k))

u(-)ely (m.xo0) | 1 2o
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+ VN_K(n + K,xu(K,xo))}

K—1
— inf [ > oy kl(n+ k. xy, (k. x0), u(k))

w(elf x| ;5o
+ Vy_k(n+ K,xul(K,xo))},

i.e., (3.15) with “>". Here in the last step we used the fact that by Lemma 3.12(ii) the
control sequence u| consisting of the first K elements of u(-) € Ugo (n, xp) lies in

U)I(foK (n, xo) and, conversely, by Lemma 3.12(iii) each control sequence in u1(-) €

[UggN—K (n, xp) can be extended to a sequence in u(-) € Ugo (n, x¢). Thus, since the
expression in braces does not depend on u(K), ..., u(N — 1), the infima coincide.
In order to prove “<”, fix £ > 0 and let u® () be an approximately optimal control
sequence for the right hand side of (3.17), i.e.,
K—1
Z wn—il(n + k, xue (k, x0), u® (k) + Iy (n + K, x4e (K, x0), u° (- + K))
k=0

K—1
< inf { > oy -kl (n+ k. x,(k, x0). u(k))

- u(-)EUgo(n,xo) k=0
+JN—K(”+K,xu(Kax0)»u('+K))} +e.

Now we use the decomposition (3.13) of u(-) into u; € UgN_K(n, x0) and uy €
UQJK(n + K, xu, (K, x0)) from Lemma 3.12(ii). This way we obtain

K—1
inf Z a)N,kZ(n +k, x,(k, xg), u(k))
u(~)€U§¥O (n,x0) =0

+JNK(”+K,Xu(Kva):u(‘+K))}

K—-1
= inf D oy -kl (n+ k. xu, (k, x0), u1 (k)
uy (‘)GU[}gN_K (n,x0) k=0

12 (YeUy K (n4-K oy (K x0))

+ JN*K(n + Kv xul(K,XO)a MZ())}

K—1
— inf ){ ZwN_kZ(n+k,xul(k,x0),u1(k))
(n,x0

K
u(euf, =
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+ VN_K(n—I—K,xu](K,xo))}.

Now (3.17) yields

Vi (1. x0) < Jy (. x0. u° ()
K-1
= D on—kl(n +k,xur (k, x0), 1 (k)
k=0

+ JN—K(” + K, x,e (K, x0), u® (- + K))

K—1
< inf > oy -kl(n+ k. x, (k. xo). u(k))
u(~)€U§N_K(n,x0) k=0

—}—VN_K(n-l—K,xu(K,xo))} +e.

Since the first and the last term in this inequality chain are independent of ¢ and
since ¢ > 0 was arbitrary, this shows (3.15) with “<” and thus (3.15).
In order to prove (3.16) we use (3.17) with u(-) = u*(-). This yields

Vi (n, x0) = Iy (n, xo, u*(-))

K—1

= Z wN,kK(n + k, x,* (k, x0), u*(k))
k=0
+ In-k (n+ K, x(K, x0), u* (- + K))
K—1

> > oy il (n+ k. xyx (k. x0), u* () + Viy_g (n + K, x,+ (K x0))
k=0

K—1
> inf > oy -il(n+ k. x, (k. xo). u(k))
u(~)€U§N7K (n.x0) | =0

+ Vy—k(n+ K, x, (K, xo))}

= Vn(n, xo),

where we used the (already proven) Equality (3.15) in the last step. Hence, the two
“>"1in this chain are actually “="" which implies (3.16). O

The following corollary states an immediate consequence of the dynamic pro-
gramming principle. It shows that tails of optimal control sequences are again opti-
mal control sequences for suitably adjusted optimization horizon, time instant and
initial value.
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Corollary 3.16 If u*(-) is an optimal control sequence for initial value xg € Xy (n),
time instant n and optimization horizon N > 2, then for each K = 1,..., N — 1 the
sequence uy (1) =u*(-+ K), i.e.,

Wi (k) =u*(K +k), k=0,....N—K—1

is an optimal control sequence for initial value x,~ (K, xq), time instant n + K and
optimization horizon N — K.

Proof Inserting Vy (n, x0) = Jy (1, x0, u*(-)) and the definition of u}(-) into (3.17)
we obtain
K—1
V(n.x0) = ) on—il(n+ k. xus (k. x0). 1" (k))
k=0
+ Iv—k (n+ K, x, (K, x0), s ().

Subtracting (3.16) from this equation yields
0= JN—K(” + K,.xu*(K,XO), u;{()) - VN—K(” + Kv-xu*(Ka-xO))

which shows the assertion. O

The next theorem relates the NMPC-feedback law wy defined in the NMPC
Algorithm 3.11 and its variants to the dynamic programming principle. Here we use
the argmin operator in the following sense: for amap a : U — R, a nonempty subset
U C U and a value u* € U we write

u* = argmina(u) (3.18)
Lteﬁ

if and only if a(«*) = inf,, 77 a(u) holds. Whenever (3.18) holds the existence of the
minimum min,, .7 a(u) follows. However, we do not require uniqueness of the mini-
mizer u*. In case of uniqueness equation (3.18) can be understood as an assignment,

otherwise it is just a convenient way of writing “u* minimizes a(u)”.

Theorem 3.17 Consider the optimal control problem (OCPR],e) with xo € Xy (n)
and n, N € Ny and assume that an optimal control sequence u* exists. Then the
NMPC-feedback law py (n, xo) = u*(0) satisfies

un(n,xg) =  argmin {a)NZ(n,xo, u) + VN_l(n + 1, f(xo, u))} (3.19)

1
MGUXN,I (n,x0)
and

Vn (1, x0) = @nL(n, xo, iy (1, X0)) + V—1(n + 1, f(x0. un(n.x0)))  (3.20)

where in (3.19) we interpret U%Nil (n, x0) as a subset of U, i.e., we identify the one
element sequence u = u(-) with its only element u = u(0).
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Proof Equation (3.20) follows by inserting u*(0) = uy(n, xo) and x,~(1, x0) =
f (x0, un(n, x9)) into (3.16) for K = 1.

Inserting x, (1, xo) = f(xo, «) into the dynamic programming principle (3.15)
for K =1 we further obtain

Vy (1, x0) = inf {one®n, xo,u) + Vy_1(n+1, f(xo,w))}. (3.21)

1
uel n,x
XN*I( 0)

This implies that the right hand sides of (3.20) and (3.21) coincide. Thus, the defi-
n~ition of argmin in (3.18) with a(u) = wy€(n, xo,u) + Vy_1(n + 1, f(x0,u)) and
U="Uy,  (n xo) yields (3.19). O

Our final corollary in this section shows that we can reconstruct the whole opti-
mal control sequence u*(-) using the feedback from (3.19).

Corollary 3.18 Consider the optimal control problem (OCP&) o) with xo € X and
n,N € Ny and consider admissible feedback laws uny—_r : No x X - U, k =
0,..., N — 1, in the sense of Definition 3.2(iv). Denote the solution of the closed-
loop system

x(0) = xo,

x(k+1) = f(x(k), un—r(n+k,x(k))), k=0,....N—1 (3.22)
by x,.(-) and assume that the |1y i satisfy (3.19) with horizon N — k instead of N,

time index n + k instead of n and initial value xo = x, (k) for k=0,...,N — 1.
Then

w* (k) = un—i(n+k,x, (k), k=0,...,N—1 (3.23)

is an optimal control sequence for initial time n and initial value xo and the solution
of the closed-loop system (3.22) is a corresponding optimal trajectory.

Proof Applying the control (3.23) to the dynamics (3.22) we immediately obtain

xu*(nvxo):x”,(n), n:O,,N—l
Hence, we need to show that
N—1
Vi (1, x0) = Jn (1, x0, u*) = Z won—il(n +k,x(k), u* (k) + F(n + N, x(N)).
k=0
Using (3.23) and (3.20) for N — k instead of N we get

Vn_i(n+k,x0) = on_il(n +k,x(k), u*(k)) + Vy—r—1(n +k +1,x(k + 1))

fork =0,..., N—1.Summing these equalities fork =0, ..., N — 1 and eliminating

the identical terms Vy_y(n +k, x9), k =1, ..., N — 1 on both sides we obtain
N-1
Vn(n,x0) = Y on—it(n+k x(k), u* (k) + Vo(n + N, x(N)).
k=0

Since by definition of Jy we have Vo(n + N,x) = F(n + N, x), this shows the
assertion. O
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3.5 Notes and Extensions

The discrete time nonlinear model predictive control framework introduced in
Sects. 3.1-3.3 covers most of the settings commonly found in the literature. For
continuous time systems, one often also finds nonlinear model predictive control
frameworks in explicit continuous time form. In these frameworks, the optimiza-
tion in (OCP“N’ o) and its variants is carried out at times fy, 1, f2, ... minimizing an
integral criterion along the continuous time solution of the form

Topt
]Topl(x()v v) = / L((/)(t, X0, U), U(t)) dt + F(QD(Topts N9 X0, U))
0

The feedback law wr,, computed at time 7, is then obtained by applying the first
portion v*{[0,s,,,—1,] of the optimal control function v* to the system, see, e.g.,
Alamir [1] or Findeisen [9]. Provided that ¢,,..1 —t,, = T holds for all n, this problem
is equivalent to our setting if the sampled data system (2.8) and the integral criterion
(3.4) is used.

Regarding notation, in NMPC it is important to distinguish between the open-
loop predictions and the NMPC closed loop. Here we have decided to denote the
open-loop predictions by x, (k) or x,(k, xp) and the NMPC closed-loop trajecto-
ries by either x(n) or—more often—by x,, (n) or x,, (n, xo). There are, however,
various other notations commonly found in the literature. For instance, the predic-
tion at time instant n is occasionally denoted as x(k|n) in order to emphasize the
dependence on the time instant n. In our notation, the dependence on 7 is implic-
itly expressed via the initial condition xg = x(n) and the index n in (OCPY) or
(OCP& o). Whenever necessary, the value of n under consideration will be specified
in the context. On the other hand, we decided to always explicitly indicate the de-
pendence of open-loop solutions on the control sequence u. This notation enables
us to easily distinguish between open-loop and closed-loop solutions and also for
simultaneously considering open-loop solutions for different control sequences.

In linear discrete time MPC, the optimization at each sampling instant is oc-
casionally performed over control sequences with predefined values u(K),...,
u(N —1) forsome K € {1,..., N—1},i.e,only u(0),...,u(K —1) are used as op-
timization variables in (OCPy ¢) and its variants. For instance, if x, =0 and u, =0,
cf. Sect. 3.1, then u(K),...,u(N — 1) =0 is a typical choice. In this setting, K
is referred to as optimization horizon (or control horizon) and N is referred to as
prediction horizon. Since this variant is less common in nonlinear MPC, we do not
consider it in this book; in particular, we use the terms optimization horizon and
prediction horizon synonymously, while the term control horizon will receive a dif-
ferent meaning in Sect. 7.4. Still, most of the subsequent analysis could be extended
to the case in which the optimization horizon and the prediction horizon do not
coincide.

Regarding the cost function £, the setting described in Sects. 3.1 and 3.3 is easily
extended to the case in which a set instead of a single equilibrium or a time-variant
family of sets instead of a single reference shall be stabilized. Indeed, if we are given
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a family of sets X" (n) C X such that for each x € X™f(n) there is a control u, with
f(x,uy) € X™(n + 1), then we can modify (3.8) to

n,x,uy) =0 forallx € X“(n) and
(3.24)
n,x,u) >0 forallxe X\ X*(n), uel.

Similarly, we can modify (3.2) in the time-invariant case.

Another modification of ¢, again often found in the linear MPC literature,
are running cost functions which include two consecutive control values, i.e.,
L(x,(k), u(k), u(k — 1)). Typically, this is used in order to penalize large changes
in the control input by adding a term o |lu(k) — u(k — 1)|| (assuming U to be a
vector space with norm || - ||, for simplicity). Using the augmented state x, (k) =
(x4 (k), u(k — 1)) this can be transformed into a cost function meeting our setting by
defining £(%, (k), u(k)) = £(x, (k), u(k), u(k —1)).

Yet another commonly used variant are running costs in which only an output
y = h(x) instead of the whole state is taken into account. In this case, £ will usually
no longer satisfy (3.2) or (3.8), i.e., £ will not be positive definite, anymore. We
will discuss this case in Sect. 7.3. In this context it should be noted that even if the
running cost £ depends only on an output, the NMPC-feedback u n will nevertheless
be a state feedback law. Hence, if only output data is available, suitable observers
need to be used in order to reconstruct the state of the system.

The term dynamic programming was introduced by Bellman [2] and due to his
seminal contributions to this area the dynamic programming principle is often also
called Bellman’s principle of optimality. The principle is widely used in many ap-
plication areas and a quite comprehensive account of its use in various different
settings is given in the monographs by Bertsekas [4, 5]. For K = 1, the dynamic
programming principle (3.15) simplifies to

Vy(n, x) = inf  {onln+k x,u)+Vy_i(n+1, f(x,u)}  (3.25)

1
uel n,x
XN—I( )

and in this form it can be used for recursively computing Vi, V,, ..., Vi starting
from Vy(n, x) = F(n, x). Once Vy and Vy_1 are known, the feedback law py can
be obtained from (3.19).

Whenever Vi can be expressed using simple functions this approach of comput-
ing V can be efficiently used. For instance, when the dynamics are linear and finite
dimensional, the running cost is quadratic and there are no constraints, then Vy can
be expressed as Vi (x) = x " Pyx for a matrix Py € R4*¢ and (3.25) reduces to the
Riccati difference equation, see, e.g., Dorato and Levis [8].

For nonlinear systems with low-dimensional state space it is also possible to
approximate Vy numerically using the backward recursion induced by (3.25) with
approximations Vl ~V,..., VN ~ V. These approximations can then, in turn, be
used in order to compute a numerical approximation of the NMPC-feedback law
wun - This is, roughly speaking, the idea behind the so-called explicit MPC methods,
see, e.g., Borrelli, Baotic, Bemporad and Morari [6], Bemporad and Filippi [3],
Tgndel, Johansen and Bemporad [11], to mention but a few papers from this area
in which often special problem structures like piecewise linear dynamics instead of
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general nonlinear models are considered. The main advantage of this approach is
that Vy and the approximation of py can be computed offline and thus the online
computational effort of evaluating j is very low. Hence, in contrast to conventional
NMPC in which (OCPR], o) is entirely solved online, this method is also applicable
to very fast systems which require fast sampling.

Unfortunately, for high-dimensional systems, the numerical effort of this ap-
proach becomes prohibitive since the computational complexity of computing Vy
grows exponentially in the state dimension, unless one can exploit very specific
problem structure. This fact—the so-called curse of dimensionality—arises because
the approximation of Vy requires a global solution to (OCP“N’ o) Or its variants for all
initial values xp € X or at least in the set of interest, which is typically a set of full
dimension in state space. Consequently, the dynamic programming method cannot
be applied to high-dimensional systems. In contrast to this, the methods we will dis-
cuss in Chap. 10 solve (OCPY, ) for a single initial value xo only at each sampling
instant, i.e. locally in space. Since this needs to be done online, these methods are in
principle slower, but since the numerical effort scales much more moderate with the
state dimension they are nevertheless applicable to systems with much higher state
dimension.

3.6 Problems

1. Consider the control system
x+:f(x,u) =ax + bu

withx € X =R, u € U =R, constraints X =[—1, 1] and U = [—100, 100] and
real parameters a, b € R.
(a) For which parameters a, b € R is the state constraint set X viable?
(b) For those parameters for which X is not viable, determine a viable state
constraint set contained in X.
2. Compute an optimal trajectory for the optimal control problem (OCPy )

N—1
minimize Z u(k)z,
k=0
subject to  x1(k + 1) = x1 (k) + 2x(k),

x2(k +1) =2u(k) — x2(k),

x1(0) =0, x2(0) =0,

x1(N) =4, x(N)=0
with N =4 via dynamic programming.

3. Consider the NMPC problem defined by the dynamics

x+:f(x,u):x+u
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with x € X =R, u € U = R and running costs

0x,u) = x> +u’.

(a) Compute the optimal value function V, and the NMPC-feedback law > by
dynamic programming.

(b) Show that V, is a Lyapunov function for the closed loop and compute the
functions o1, ap and ay in (2.37) and (2.38).

(c) Show that the NMPC closed loop is globally asymptotically stable without
using the Lyapunov function V5.

. Consider an optimal trajectory x,« (-, xo) for the optimal control problem (OCPy)

with initial value xo and optimization horizon N > 2. Prove that for any K €
{1,..., N — 1} the tail

X< (K, x0), ... xx(N — 1, x0)
of the optimal trajectory along with the tail
w(K),...,u*(N—1)
of the optimal control sequence are optimal for (OCPy) with new initial value
x,x (K, x0) and optimization horizon N — K, i.e., that

N-1

D (i (k. x0). u* () = Viy—k (xur (K, x0))

k=K
holds.

. After a lecture in which you presented the basic NMPC Algorithm 3.1, a student

asks the following question:

“If I ride my bicycle and want to make a turn to the left, I first steer a little
bit to the right to make my bicycle tilt to the left. Let us assume that this way
of making a turn is optimal for a suitable problem of type (OCPy). This would
mean that the optimal control sequence will initially steer to the right and later
steer to the left. If we use this optimal control sequence in an NMPC algorithm,
only the first control action will be implemented. As a consequence, we will
always steer to the right, and we will make a turn to the right instead of a turn to
the left. Does this mean that NMPC does not work for controlling my bicycle?”

What do you respond?
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Chapter 4
Infinite Horizon Optimal Control

In this chapter we give an introduction to nonlinear infinite horizon optimal control.
The dynamic programming principle as well as several consequences of this prin-
ciple are proved. One of the main results of this chapter is that the infinite horizon
optimal feedback law asymptotically stabilizes the system and that the infinite hori-
zon optimal value function is a Lyapunov function for the closed loop system. Moti-
vated by this property we formulate a relaxed version of the dynamic programming
principle, which allows to prove stability and suboptimality results for nonoptimal
feedback laws and without using the optimal value function. A practical version of
this principle is provided, too. These results will be central in the following chapters
for the stability and performance analysis of NMPC algorithms. For the special case
of sampled-data systems we finally show that for suitable integral costs asymptotic
stability of the continuous time sampled data closed loop system follows from the
asymptotic stability of the associated discrete time system.

4.1 Definition and Well Posedness of the Problem

For the finite horizon optimal control problems from the previous chapter we can
define infinite horizon counterparts by replacing the upper limits N — 1 in the re-
spective sums by co. Since for this infinite horizon formulation the terminal state
X, (N) vanishes from the problem, it is not reasonable to consider terminal con-
straints. Furthermore, we will not consider any weights in the infinite horizon case.
Hence, the most general infinite horizon problem we consider is the following:

minimize  Joo (1, X0, u (")) := Zﬁ(n + k, xy (k, x0), u(k))

k=0 (OCPY,)
with respect to  u(-) € U™(xg), subject to

xu (0, x0) = Xo, xu(k +1,x0) = f (xu (k, x0), u(k)).

Here, the function £ is as in (3.8), i.e., it penalizes the distance to a (possibly time
varying) reference trajectory x™f. We optimize over the set of admissible control se-
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quences U (x() defined in Definition 3.2 and assume that this set is nonempty for
all xg € X, which is equivalent to the viability of X according to Assumption 3.3. In
order to keep the presentation self-contained all subsequent statements are formu-
lated for general time varying reference x™'. In the special case of constant reference
x™f = x, the running cost £ and the functional J, in (OCPY,) do not depend on the
time 7.

Similar to Definition 3.14 we define the optimal value function and optimal tra-
jectories.

Definition 4.1 Consider the optimal control problem (OCPY,) with initial value
xo € X and time instant n € Ny.

(i) The function

VOO(nv-xO) = inf JOO(nv-x()’u('))
u(-)€U®(xp)
is called optimal value function.
(ii) A control sequence u*(-) € U (xq) is called optimal control sequence for x if

VOO(nv -XO) = JOO(nv X0, M*())

holds. The corresponding trajectory x,« (-, xo) is called optimal trajectory.

Since now—in contrast to the finite horizon problem—an infinite sum appears
in the definition of J, it is no longer straightforward that V, is finite. In order to
ensure that this is the case the following definition is helpful.

Definition 4.2 Consider the control system (2.1) and a reference trajectory x'f :
No — X with reference control sequence u™" € U (x™f(0)). We say that the system
is (uniformly) asymptotically controllable to x™' if there exists a function g € KL
such that for each initial time n¢ € Ny and each admissible initial value x¢ € X there
exists an admissible control sequence u# € U (xq) such that the inequality

|xu (na .X'O) |xref(n+n0) = IB(le'x"ef(no)a I’l) (41)

holds for all n € Ny. We say that this asymptotic controllability has the small control
property if u € U>(xg) can be chosen such that the inequality

|xu (nv X()) erf(n+n()) + |1/l(7’l) urcf(”+n0) =< ,3(|X()|xref(n0), i’l) (42)

holds for all n € Ny. Here, as in Sect. 2.3 we write |x1|x, = dx (x1, x2) and |u1],, =
dy(uy, uz).

Observe that uniform asymptotic controllability is a necessary condition for uni-
form feedback stabilization. Indeed, if we assume asymptotic stability of the closed-
loop system x* = g(n,x) = f(x, u(n, x)), then we immediately get asymptotic
controllability with control u(n) = w(n + no, x(n 4 ng, ng, x9)). The small control
property, however, is not satisfied in general.
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In order to use Definition 4.2 for deriving bounds on the optimal value function,
we need a result known as Sontag’s K £-Lemma [24, Proposition 7]. This proposi-
tion states that for each ICL-function 8 there exist functions yy, 2 € Koo such that
the inequality

B(r.n) < yi(e " y2(r))
holds for all 7,n > 0 (in fact, the result holds for real n > 0 but we only need it for
integers here). Using the functions y; and y, we can define running cost functions
Cn,x,u) =i (I yrergy) + AV (11t ) (4.3)

for A > 0. The following theorem states that under Definition 4.2 this running cost
ensures (uniformly) finite upper and positive lower bounds on V.

Theorem 4.3 Consider the control system (2.1) and a reference trajectory x™ :
No — X with reference control sequence u™" € U (x™(0)). If the system is asymp-
totically controllable to x™F, then there exist oy, ar € Koo such that the optimal
value function Vo corresponding to the cost function £ : Ng x X x U — RS‘ from
(4.3) with A = 0 satisfies

1 (%01 gret (n)) < Voo (0, X0) < a2 (|X0] yret () 4.4)

for all ny € Ng and all xg € X.
If, in addition, the asymptotic controllability has the small control property then
the statement also holds for £ from (4.3) with arbitrary A > 0.

Proof For each xq, ng and u € U (xp) we get

o]

Joo(no, x0,u) =y £(no + k, x, (k, x0), u(k)) > £(n, x4(0, x0), u(0))
k=0

= yl_l (|x0|xref(no))

for each A > 0. Hence, from the definition of Vi, we get

Voo (g, X0) = inf Jn,x,u~>7]x ref .
00 (110, X0) el o0 (10, X0, () = i (1%0] pret () )

This proves the lower bound in (4.4) for o] = yfl.
For proving the upper bound, we first consider the case A = 0. For all n¢p and xg
the control u € U (xg) from Definition 4.2 yields

Voo (10, X0) < Joo(n0, X0, 1)

=" 0(no + k. xu (k. x0), u(k))
k=0

o0
=> v (Jxutk, x0)
k=0

xref()10+k))
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k=0

o0 o0
< D (B(1%0lxwetgug)» k) < D e va(1x0lsreray) )
k=0
e

= 1V2(|x0|xref(n0)),

i.e., the upper inequality from (4.4) with ay(r) = ey2(r)/(e — 1). If the small
control property holds, then the upper bound for A > 0 follows similarly with

az(r) = (14 Meya(r)/(e = 1). O

In fact, the specific form (4.3) is just one possible choice of ¢ for which this
theorem holds. It is rather easy to extend the result to any £ which is bounded from
below by some /Coo-function in x (uniformly for all # and n) and bounded from
above by £ from (4.3) in balls B, (x™f(n)). Since, however, the choice of appropriate
cost functions ¢ for infinite horizon optimal control problems is not a central topic
of this book, we leave this extension to the interested reader.

4.2 The Dynamic Programming Principle

In this section we essentially restate and reprove the results from Sect. 3.4 for the
infinite horizon case. We begin with the dynamic programming principle for the
infinite horizon problem (OCPZ,). Throughout this section we assume that Vi (x)
is finite for all x € X as ensured, e.g., by Theorem 4.3.

Theorem 4.4 Consider the optimal control problem (OCPL,) with xo € X and n €
No. Then for all K € N the equation

K-1
Voo (1, x0) = inf Ln—+k,x,k,xo), u(k
(1, X0) u<.)ew(m>{§)( u(k, x0). u(k))

+ Voo (n + K, xu(K, xo))} 4.5)

holds. If, in addition, an optimal control sequence u*(-) exists for xg, then we get
the equation

K—1
Voo (11, X0) = Z e(n+ k, xur(k, x0), u* (k) + Voo (n + K, x4 (K, x0)). (4.6)
k=0

In particular, in this case the “inf” in (4.5) is a “min”.
Proof From the definition of J, for u(-) € U*(xg) we immediately obtain

Joo(n, x0,u("))
K—-1

=) L(n+k xuk,x0), u(k)) + Joo(n + K, x4 (K, x0),u(- + K)), (4.7)
k=0
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where u(- + K) denotes the shifted control sequence defined by u(- + K)(k) =
u(k + K), which is admissible for x, (K, xp).
We now prove (4.5) by showing “>" and “<” separately: From (4.7) we obtain

>
L

Joo(n,xo, u(-)) = K(n +k, x, (k, x0), u(k)) + Joo(n + K, x, (K, x0), u(- + K))

=~
(=}

>

> Z E(n + k, x, (k, xp), u(k)) + Voo(n + K,xu(K,xo)).
k=0

Since this inequality holds for all u(-) € U, it also holds when taking the infimum
on both sides. Hence we get

Voo (n, x0) = inf Joo(”»xo,u('))
u(-)eU (xo)

K—-1
> inf ln+k,x,(k,x0), u(k)) + Voo(n + K, x, (K, x ,
u(-)eUK(xo){ kgo ( u( 0), u( )) oo( ul O))

i.e., (4.5) with “>".
In order to prove “<”, fix ¢ > 0 and let u®(-) be an approximately optimal control
sequence for the right hand side of (4.7), i.e.,

K—-1

K(ﬂ +k’xu5 (kaxo)v ué‘(k)) + Joo(n + K,.xué' (Ka-xo)v ué‘(. + K))
k=0

K—1
< inf {Ze(n+k,xu(k,xo),u(k))

< n
u()eU™ o) | =

+Joo(n+K,xu(K,XO),u(~+K))} +e.

Now we decompose u(-) € U®(xg) analogously to Lemma 3.12(ii) and (iii) into
uy € UK (xp) and up € U®(x,, (K, x0)) via
k), k=0,...,K—1,
w(k) = uy (k)
uy(k— K), k>K.
This implies
1

K
inf K(n +k, x,(k, x0), u(k)) + Joo(n + K, x, (K, x0), u(- + K))
u(-)elU*(xo) X

Il
=}

K—1

= inf D t(n + k. xu, (k. xo), u1 (k)
ut ()UK (xp) =0

u2 ()€U (xy | (K,x0))

+ Joo(n + K, x4, (K, x0), uz('))}
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K-1

= inf > t(n+ k., xy, (e, x0), w1 (K)) + Voo (n + K xu, (K, x0)) £
u1 (-)€UK (xo)

k=0
Now (4.7) yields
Voo (1, x0) < Joo(n, x0, u°())
K-1
=Y £(n+ k. xye (k. x0), uf (k)
k=0

+ Joo (n+ K, x4 (K, x0), u° (- + K))

IA

K—-1
inf { Z e(n+ k, x, (k, x0), u(k))

ek o) | =5

+Voo(n+K,xu(K,x0))} +e,

ie.,

1

K
Voo, x9) < inf L(n+k,x,(k, xo), u(k)
00 0) u(-)eUK(xo){ kX:(:) ( u 0), u(k))

—i—Voo(n—I—K,xu(K,xo))} + 6.

Since ¢ > 0 was arbitrary and the expressions in this inequality are independent of
¢, this inequality also holds for ¢ = 0, which shows (4.5) with “<” and thus (4.5).
In order to prove (4.6) we use (4.7) with u(-) = u*(-). This yields

Voo (11, X0) = Joo (1, X0, u*(+))

K—1
= ) U(n+k, xux(k, x0), u* (k) + Joo (n + K, xu2 (K, x0), u* (- + K))

> ) U(n+k, xux(k, x0), u* (k) + Voo (n + K, x4 (K, x0))

K—1

> inf L(n+k, x,(k, xo), u(k)) + V. + K. x, (K,
_u(~)ell[I}K(x0) ]; (n Xu(k, x0), u( )) 00(” Xu ( XO))

= Vo (n, X0),

where we used the (already proved) Equality (4.5) in the last step. Hence, the two
“>"1in this chain are actually “="" which implies (4.6). (]

The following corollary states an immediate consequence from the dynamic pro-
gramming principle. It shows that tails of optimal control sequences are again opti-
mal control sequences for suitably adjusted initial value and time.
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Corollary 4.5 [fu*(-) is an optimal control sequence for (OCPY, ) with initial value
xo and initial time n, then for each K € N the sequence u (-) = u*(- + K), i.e.,

uy(k)=u*(K +k), k=0,1,...

is an optimal control sequence for initial value x,+ (K, xo) and initial time n + K .

Proof Inserting Vo (n, x0) = Joo (11, X0, u*(-)) and the definition of u% (-) into (4.7)
we obtain
K—1

Voo, x0) = £(n + k, x2 (k, x0), u* (k) + Joo (n + K, x, (K, X0), uk ().
k=0

Subtracting (4.6) from this equation yields
0= Joo(n + K, x, (K, X0), w§ () = Voo (1 + K, x4 (K, X0))

which shows the assertion. O

The next two results are the analogs of Theorem 3.17 and Corollary 3.18 in the
infinite horizon setting.

Theorem 4.6 Consider the optimal control problem (OCPL.) with xo € X and n €
No and assume that an optimal control sequence u*(-) exists. Then the feedback law
Moo (1, x0) = u*(0) satisfies

Moo (n, x0) = argmin, cyyi (o) { €, x0, 1) + Voo (n + 1, f(x0, 1))} (4.8)
and

Voo, x0) = E(n, X0, Moo (1, xo)) + Voo(n +1, f(xo, Hoo(n, xo))) 4.9
where in (4.8)—as usual—we interpret U' (xo) as a subset of U, i.e., we identify the
one element sequence u = u(-) with its only element u = u(0).

Proof The proof is identical to the finite horizon counterpart Theorem 3.17. (]

As in the finite horizon case, the following corollary shows that the feedback law
(4.8) can be used in order to construct the optimal control sequence.

Corollary 4.7 Consider the optimal control problem (OCPL,) with xo € X and n €
No and consider an admissible feedback law i~ : Ng x X — U in the sense of
Definition 3.2(iv). Denote the solution of the closed-loop system

xO) =x0,  x(k+1)=f(xk), poo(n +k x(k)), k=0,1,... (4.10)

by x,., and assume that [ satisfies (4.8) for initial values xo = x,,., (k) for all
k=0,1,....Then

u* (k) = poo (n 4k, x40 (k, x0)),  k=0,1,... @.11)

is an optimal control sequence for initial time n and initial value xo and the solution
of the closed-loop system (4.10) is a corresponding optimal trajectory.
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Proof From (4.11) for x(n) from (4.10) we immediately obtain
Xpo(n,x0)=xmn), n=0,1,....
Hence we need to show that
Voo(n, x0) = Joo (1, x0, u*),

where it is enough to show “>" because the opposite inequality follows by definition
of V. Using (4.11) and (4.9) we get

Voo (n + k, x0) =£(n + k, x(k), u*(k)) + Voo(n +k+1,xk+ 1))

for k=0, 1, .... Summing these equalities for k =0, ..., K — 1 for arbitrary K € N
and eliminating the identical terms Vo (n 4+ k, x0), k =1, ..., K — 1 on the left and
on the right we obtain

K-1
Voo (n, x9) = Z(n—}—k,x(k),u*(k))—i—Voo(n—i—K,x(K))

>~
('S

>N e(n +k, x(k), u* (k).
0

x~
Il

Since the sum is monotone increasing in K and bounded from above, for K — oo
the right hand side converges to J (1, X, u*) showing the assertion. Il

Corollary 4.7 implies that infinite horizon optimal control is nothing but NMPC
with N = oo: Formula (4.11) for k = 0 yields that if we replace the optimization
problem (OCPY) in Algorithm 3.7 by (OCPL), then the feedback law resulting from
this algorithm equals . The following theorem shows that this infinite horizon
NMPC-feedback law yields an asymptotically stable closed loop and thus solves
the stabilization and tracking problem.

Theorem 4.8 Consider the optimal control problem (OCPL,) for the control system
(2.1) and a reference trajectory x™' : Ny — X with reference control sequence u™" €
U (x™(0)). Assume that there exist a1, a2, a3 € Koo such that the inequalities

a1(|x|xref(n)) < Voo(l’l, x) < az(lxlxref(n)) and e(l’l, X, M) > a3(|x|xref(n))

4.12)

hold for all x € X, n € Ng and u € U. Assume furthermore that an optimal feedback
Uoo €xists, i.e., an admissible feedback law L : Ng x X — U satisfying (4.8) for
all n € Ng and all x € X. Then this optimal feedback asymptotically stabilizes the
closed-loop system

x+ = g(n,x) = f(x, uoo(n,x))

on X in the sense of Definition 2.16.
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Proof For the closed-loop system, (4.9) and the last inequality in (4.12) yield

Voo(n, x) =E(n,x, Moo(n,x)) + Voo(n +1, f(x, ,uoo(n,x)))
> 03 (|| gret () + Voo (n + 1, £ (x, too (1, X))).

Together with the first two inequalities in (4.12) this shows that V4, is a Lyapunov
function on X in the sense of Definition 2.21 with ey = «3. Thus, Theorem 2.22
yields asymptotic stability on X. 0

By Theorem 4.3 we can replace (4.12) by the asymptotic controllability condition
from Definition 4.2 if £ is of the form (4.3). This is used in the following corollary
in order to give a stability result without explicitly assuming (4.12).

Corollary 4.9 Consider the optimal control problem (OCPY,) for the control sys-
tem (2.1) and a reference trajectory x*' : Ng — X with reference control sequence
u'™ € U® (x™(0)). Assume that the system is asymptotically controllable to x*f
and that an optimal feedback |1, i.e., a feedback satisfying (4.8), exists for the cost
Sfunction £ :Nog x X x U — ]R(J)r from (4.3) with & = 0. Then this optimal feedback
asymptotically stabilizes the closed-loop system

xt =g, x) = f(x, too(n, x))

on X in the sense of Definition 2.16.
If, in addition, the asymptotic controllability has the small control property then
the statement also holds for £ from (4.3) with arbitrary A > 0.

Proof Theorem 4.3 yields

241 (|x()|xref(”0)) S VOO (n07 xO) S a2(|x0|xref(n0))

for suitable o1, o € K. Furthermore, by (4.3) the third inequality in (4.12) holds
with a3 = yfl. Hence, (4.12) holds and Theorem 4.8 yields asymptotic stability
on X. O

4.3 Relaxed Dynamic Programming

The last results of the previous section show that infinite horizon optimal control can
be used in order to derive a stabilizing feedback law. Unfortunately, a direct solution
of infinite horizon optimal control problems is in general impossible, both analyti-
cally and numerically. Still, infinite horizon optimal control plays an important role
in our analysis since we will interpret the model predictive control algorithm as an
approximation of the infinite horizon optimal control problem. Here the term “ap-
proximation” is not necessarily to be understood in the sense of “being close to”
(although this aspect is not excluded) but rather in the sense of “sharing the impor-
tant structural properties”.

Looking at the proof of Theorem 4.8 we see that the important property for sta-
bility is the inequality
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Voo (1, x) > E(n,x, /Loo(n,x)) + Voo(n +1, f(x, Uoo (1, x)))

which follows from the feedback version (4.9) of the dynamic programming princi-
ple. Observe that although (4.9) yields equality, only this inequality is needed in the
proof of Theorem 4.8.

This observation motivates a relaxed version of this dynamic programming in-
equality which on the one hand yields asymptotic stability and on the other hand
provides a quantitative measure of the closed-loop performance of the system. This
relaxed version will be formulated in Theorem 4.11, below. In order to quantitatively
measure the closed-loop performance, we use the infinite horizon cost functional
evaluated along the closed-loop trajectory which we define as follows.

Definition 4.10 Let i : Ng x X — U be an admissible feedback law. For the tra-
jectories x,,(n) of the closed-loop system xT = f(x, u(n, x)) with initial value
xu(no) = xo € X we define the infinite horizon cost as

o
Joo(no, x0. ) := Y £(no + k. X (no + k), 1(no + k. x,(no + k))).
k=0

Since by (3.8) our running cost £ is always nonnegative, either the infinite sum
has a well defined finite value or it diverges to infinity, in which case we write
JOO(”Os xOs M) = Q.

By Corollary 4.7 for the infinite horizon optimal feedback law (1, we obtain

Joo (10, X0, o) = Voo(n0, X0)

while for all other admissible feedback laws u we get

Joo(ng, X0, 1) = Voo (no, Xo).

In other words, Vs is a strict lower bound for Joo (1, xg, it).

The following theorem now gives a relaxed dynamic programming condition
from which we can derive both asymptotic stability and an upper bound on the
infinite horizon cost J (19, xg, () for an arbitrary admissible feedback law (.

Theorem 4.11 Consider a running cost £ : Ng x X x U — R(J)r and a function
V:Ngx X —> ]R(")F. Let u:Ng x X — U be an admissible feedback law and let
S(n) € X, n € Ny be a family of forward invariant sets for the closed-loop system

x+=g(n,x)=f(x,u(n,x)). 4.13)

Assume there exists o € (0, 1] such that the relaxed dynamic programming inequal-

ity

V(n,x)> otﬁ(n,x, /L(n,x)) + V(n +1, f(x, u(n,x))) “4.14)
holds for all n € No and all x € S(n). Then the suboptimality estimate
Joo(n, x, 1) < V(n,x)/a (4.15)

holds for all n € Nog and all x € S(n).
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If, in addition, there exist a1, ay, a3 € Koo such that the inequalities
o] (|X|xref(n)) <Vn,x)< (¥2(|x|xref(n)) and £(n,x,u)> 0[3(|X|xref(n))

hold for all x € X, n € No, u € U and a reference trajectory x*' : Ng — X, then
the closed-loop system (4.13) is asymptotically stable on S(n) in the sense of Defi-
nition 2.16.

Proof In order to prove (4.15) consider n € Ny, x € S(n) and the trajectory x,(-) of
(4.13) with x, (n) = x. By forward invariance of the sets S(n) this trajectory satisfies
X, (n+k) € S(n + k). Hence from (4.14) for all k € Ny we obtain
aé(n +k,x (n+k), /,L(}'l +k,x,(n+ k)))
<V(+kx,(n+k)—=V(n+k+1,x,(n+k+1).

Summing over k yields for all K e N

K—-1
o E(n+k,xu(n+k),u(n+k,xu(n+k)))
k=0
< V(n,xu(n)) — V(n + K, x,(n+ K))
=Vi(n,x)

since V(n+ K, x, (n + K)) > 0 and x, (n) = x. Since the running cost £ is nonneg-
ative, the term on the left is monotone increasing and bounded, hence for K — oo
it converges to @ Jx (1, x, ;). Since the right hand side is independent of K, this
yields (4.15).

The stability assertion now immediately follows by observing that V satisfies all
assumptions of Theorem 2.22 with ay = 3. U

Remark 4.12 An inspection of the proof of Theorems 2.19 and 2.22 reveals that
for fixed oy, oy € Koo and ay = @ a3 with fixed a3 € Ko and varying « € (0, 1]
the attraction rate 8 € KL constructed in this proof depends on « in the following
way: if By and B, are the attraction rates from Theorem 2.22 for ¢y = o 3 and
ay = o'z, respectively, with &’ > a, then By (r, t) < B, (r, t) holds for all r, t > 0.
This in particular implies that for every o € (0, 1) the attraction rate 85 is also an
attraction rate for all @ € [&, 1], i.e., we can find an attraction rate 8 € XL which is
independent of « € [a, 1].

Remark 4.13 Theorem 4.11 proves asymptotic stability of the discrete time closed-
loop system (4.13) or (2.5). For a sampled data system (2.8) with sampling period
T > 0 this implies the discrete time stability estimate (2.47) for the sampled data
closed-loop system (2.30). For sampled data systems we may define the running
cost £ as an integral over a function L according to (3.4), i.e.,

T
£(x,u) :=/ L((p(t,O,x,u),u(t))dt.
0
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We show that for this choice of £ a mild condition on L ensures that the sampled
data closed-loop system (2.30) is also asymptotically stable in the continuous time
sense, i.e., that (2.48) holds. For simplicity, we restrict ourselves to a time invariant
reference x™°f = x,.

The condition we use is that there exists § € Ko such that the vector field f,. in
(2.6) satisfies

| fox,w) | < max{e, 8(1/e)L(x,u)} (4.16)

for all x € X, all u € U and all ¢ > 0. For instance, in a linear—quadratic problem
with X =R?, U = R” and x, = 0 we have I fe(x,u)|| = |Ax 4+ Bull < C1(||x|| +
lull) and L(x,u) =xT Qx +u' Ru > Ca(||x|| + |lu]))* for suitable constants Ci,
C> > O provided Q and R are positive definite. In this case, (4.16) holds with §(r) =
C12/C2r, since || fo(x, u)|| > & implies C(||x|| + |lu||) > & and thus

Cc? , C? »
Cr(llxll + llull) < 7‘(||x||+||u||) < C—;8C2(||x||+llull) =8(1/e)L(x,u).

In the general nonlinear case, (4.16) holds if f. is continuous with f, (x4, uy) =0,
L(x,u) is positive definite and the inequality || fo(x, u)|| < CL(x, u) holds for some
constant C > 0 whenever | f.(x, u)|| is sufficiently large.

We now show that (4.16) together with Theorem 4.11 implies the continuous
time stability estimate (2.48). If the assumptions of Theorem 4.11 hold, then (4.15)
implies £(x, u(x)) < V(x)/a < az(|x|y,)/c. Thus, for ¢ € [0, T] Inequality (4.16)
yields

t
o, 0,x, W, =< Ixls, +/0 | fe(p(z, 0,2, ), n(0) (@) | dr

t
< Ixls, —i—max{te,&(]/s)/ L(p(x,0,x, ), n(x)(1)) d
0

<|x|x, —{-max{Te,S(l/a)Z(x,u)}
<|x|x, +rnax{Ts,8(1/8)a2(|x|x*)/a}.
Setting ¢ = y (|x|x,) with
1

V)= ———
N e

for r > 0 and y(0) =0 yields y € K and

8(1/&)aa(Ixlx,) = /a2 (Ixlx.)-

y(r)=r+max{T7y(r), Voo (r)/a}

Hence, defining

we finally obtain

(2,0, x, W, <v(lxlx,)
forall t € [0, T] with y € Koo.
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Hence, if (4.16) and the assumptions of Theorem 4.11 hold, then the sampled
data closed-loop system (2.30) fulfills the uniform boundedness over T property
from Definition 2.24 and consequently by Theorem 2.27 the sampled data closed-
loop system (2.30) is asymptotically stable.

We now turn to investigating practical stability. Recalling Definitions 2.15
and 2.17 of P-practical asymptotic stability and their Lyapunov function characteri-
zations in Theorems 2.20 and 2.23 we can formulate the following practical version
of Theorem 4.11.

Theorem 4.14 Consider a running cost £ : Ng x X x U — Rg‘ and a function
V:Nox X —> ]R(J)r. Let p: No x X — U be an admissible feedback law and let
S(n) € X, and P(n) C S(n), n € Ny be families of forward invariant sets for the
closed-loop system (4.13).

Assume there exists a € (0, 1] such that the relaxed dynamic programming in-
equality (4.14) holds for all n € Ng and all x € S(n) \ P(n). Then the suboptimality
estimate

Jex(n,x, 1) < V(n, x)/a (4.17)
holds for all n € Ny and all x € S(n), where k* € Ny is the minimal time with
xu(k* +n,n,x) e P(k* +n) and

k*—1
Jee(n, x, ) := Z E(n +k,x,(n+k,n,x), ,u(n +k,x (n+k,n, x)))
k=0

is the truncated closed-loop performance functional from Definition 4.10.
If, in addition, there exist a1, oy, a3 € Ko such that the inequalities

O{]('X'xref(n)) <Vn,x)< Of2(|x|xref(n)) and £(n,x,u)> “3(|x|xf5f(n))

hold for all x € X, n € Ng and u € U and a reference xref No — X, then the closed-
loop system (4.13) is P-asymptotically stable on S(n) in the sense of Definition 2.17.

Proof The proof follows with analogous arguments as the proof of Theorem 4.11 by
only considering k < k* in the first part and using Theorem 2.23 with Y (n) = S(n)
instead of Theorem 2.22 in the second part. U

Remark 4.15

(i) Note that Remark 4.12 holds accordingly for Theorem 4.14. Furthermore, it
is easily seen that both Theorem 4.11 and Theorem 4.14 remain valid if f in
(4.13) depends on n.

(i) The suboptimality estimate (4.17) states that the closed-loop trajectories
X, (-, x) from (4.13) behave like suboptimal trajectories until they reach the
sets P(-).

As a consequence of Theorem 4.11, we can show the existence of a stabilizing
almost optimal infinite horizon optimal feedback even if no infinite horizon optimal



80 4 Infinite Horizon Optimal Control

feedback exists. The assumptions of the following Theorem 4.16 are identical with
the assumptions of Theorem 4.8 except that we do not assume the existence of an
infinite horizon optimal feedback law 1t o.

Theorem 4.16 Consider the optimal control problem (OCPY,) with running cost
€ of the form (3.8) for the control system (2.1) and a reference trajectory x™ :
No — X with reference control sequence u™" € U (x™(0)). Assume that there exist
ap, 0, a3 € Koo such that the Inequalities (4.12) hold for all x € X, n € Ny and
uel.

Then for each o € (0, 1) there exists an admissible feedback j1, : Ng x X — U
which asymptotically stabilizes the closed-loop system

xt =g, x) = f(x, pa(n,x))

on X in the sense of Definition 2.16 and satisfies

‘]OO(nv-xv M()t) S VOO(nvx)/a
forall x € X and n € Ny.

Proof Fix a € (0, 1) and pick an arbitrary x € X. From (4.5) for K = 1 for each
x € X and each ¢ > 0 there exists u’, € Ul (x) with

Voo, x) > E(n,x, ufc) + Voo(n +1, f(xui)) —e.

If Voo(n, x) > 0, then (4.12) implies x # xref(n) and thus again (4.12) yields the
inequality inf,cy £(n, x, u) > 0. Hence, choosing ¢ = (1 — «) inf,cy £(n, x, u) and
setting o (n, x) = us yields

Veo(n, x) > aﬁ(n,x, ,ua(n,x)) + Voo(n +1, f(x, ua(n,x))). (4.18)

If Voo(n,x) = 0, then (4.12) implies x = x™'(n) and thus from the definition
of u™ we get f(x,u™(n)) = x™(n + 1). Using (4.12) once again gives us
Veo(n + 1, f(x,u™(n))) = 0 and from (3.8) we get £(n, x, u™ (n)) = 0. Thus,
o (n, x) = u™ (n) satisfies (4.18). Hence, we obtain (4.14) with V = V,, for all
x € X. In conjunction with (4.12) this implies that all assumptions of Theorem 4.11
are satisfied for V = Vi, with S(n) = X. Thus, the assertion follows. ]

Again we can replace (4.12) by the asymptotic controllability condition from
Definition 4.2.

Corollary 4.17 Consider the optimal control problem (OCPY,) for the control sys-
tem (2.1) and a reference trajectory x*' : Ng — X with reference control sequence
u™ € U (x™1(0)). Assume that the system is asymptotically controllable to x™' and
that the cost function £ :Ng x X x U — R(")" is of the form (4.3) with A = 0. Then
for each a € (0, 1) there exists an admissible feedback 1y : No x X — U which
asymptotically stabilizes the closed-loop system

2 =g(n.x) = f(x. pa(n,x)
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on X in the sense of Definition 2.16 and satisfies

JOO(nv-xv /’La) S VOO(nv-x)/a

forall x € X and n € Ny.
If, in addition, the asymptotic controllability has the small control property then
the statement also holds for £ from (4.3) with arbitrary . > 0.

Proof Theorem 4.3 yields

1 (10| yref () < Voo (10, %0) < a2 ([x0] cref )

for suitable |, ap € K. Furthermore, by (4.3) the third inequality in (4.12) holds
with o3 = yl_l. Hence, (4.12) holds and Theorem 4.16 yields the assertion. O

While Theorem 4.16 and Corollary 4.17 are already nicer than Theorem 4.8 and
Corollary 4.9, respectively, in the sense that no existence of an optimal feedback law
is needed, for practical applications both theorems require the (at least approximate)
solution of an infinite horizon optimal control problem, which is in general a hard,
often infeasible computational task, see also the discussion in Sect. 4.4, below.

Hence, in the following chapters we are going to use Theorem 4.11 and Theo-
rem 4.14 in a different way: we will derive conditions under which (4.14) is satisfied
by the finite horizon optimal value function V = Vy and the corresponding NMPC-
feedback law p = uy. The advantage of this approach lies in the fact that in order
to compute uy (19, xo) it is sufficient to know the finite horizon optimal control se-
quence u* for initial value xg. This is a much easier computing task, at least if the
optimization horizon N is not too large.

4.4 Notes and Extensions

Infinite horizon optimal control is a classical topic in control theory. The version
presented in Sect. 4.1 can be seen as a nonlinear generalization of the classical (dis-
crete time) linear—quadratic regulator (LQR) problem, see, e.g., Dorato and Levis
[6]. A rather general existence result for optimal control sequences and trajecto-
ries in the metric space setting considered here was given by Keerthi and Gilbert
[15]. Note, however, that by Theorem 4.16 we do not need the existence of optimal
controls for the existence of almost optimal stabilizing feedback controls.

Dynamic programming as introduced in Sect. 4.2 is a very common approach
also for infinite horizon optimal control and we refer to the discussion in Sect. 3.5
for some background information. As in the finite horizon case, the monographs of
Bertsekas [2, 3] provide a good source for more information on this method.

The connection between infinite horizon optimal control and stabilization prob-
lems for nonlinear systems has been recognized for quite a while. Indeed, the well
known construction of control Lyapunov functions in continuous time by Sontag
[23] is based on techniques from infinite horizon optimal control. As already ob-
served after Corollary 4.7, discrete time infinite horizon optimal control is nothing
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but NMPC with N = oo. This has lead to the investigation of infinite horizon NMPC
algorithms, e.g., by Keerthi and Gilbert [16], Meadows and Rawlings [19], Alamir
and Bornard [1]. For linear systems, this approach was also considered in the mono-
graph of Bitmead, Gevers and Wertz [4].

The stability results in this chapter are easily generalized to the stability of sets
X" (n) ¢ X when ¢ is of the form (3.24). In this case, it suffices to replace the
bounds aj(|.x|xref(n)), j=1,2,3,in, e.g., Theorem 4.11 by bounds of the form

o] (yer)r(lrlerfl(n) Ix| y). (4.19)
Alternatively, one could formulate these bounds via so-called proper indicator func-
tions as used, e.g., by Grimm et al. in [8].

By Formula (4.8) the optimal—and stabilizing—feedback law ps, can be com-
puted by solving a rather simple optimization problem once the optimal value func-
tion Vi is known. This has motivated a variety of approaches for solving the dy-
namic programming equation (4.5) (usually for K = 1) numerically in order to ob-
tain an approximation of (o from a numerical approximation of V. Approxi-
mation techniques like linear and multilinear approximations are proposed, e.g.,
in Kreisselmeier and Birkholzer [17], Camilli, Griine and Wirth [S] or by Falcone
[7]. A set oriented approach was developed in Junge and Osinga [14] and used for
computing stabilizing feedback laws in Griine and Junge [10] (see also [11, 12] for
further improvements of this method). All such methods, however, suffer from the
so-called curse of dimensionality which means that the numerical effort grows expo-
nentially with the dimension of the state space X. In practice, this means that these
approaches can only be applied for low-dimensional systems, typically not higher
than 4-5. For homogeneous systems, Tuna [25] (see also Griine [9]) observed that it
is sufficient to compute V4, on a sphere, which reduces the dimension of the prob-
lem by one. Still, this only slightly reduces the computational burden. In contrast to
this, a numerical approximation of the optimal control sequence u* for finite hori-
zon optimal control problems like (OCPy) and its variants is possible also in rather
high space dimensions, at least when the optimization horizon N is not too large.
This makes the NMPC approach computationally attractive.

Relaxed dynamic programming in the form introduced in Sect. 4.3 was origi-
nally developed by Lincoln and Rantzer [18] and Rantzer [20] in order to lower
the computational complexity of numerical dynamic programming approaches. In-
stead of trying to solve the dynamic programming equation (4.5) exactly, it is only
solved approximately using numerical approximations for Vo, from a suitable class
of functions, e.g., polynomials. The idea of using such relaxations is classical and
can be realized in various other ways, too; see, e.g., [2, Chap. 6]. Here we use re-
laxed dynamic programming not for solving (4.5) but rather for proving properties
of closed-loop solutions, cf. Theorems 4.11 and 4.14. While the specific form of
the assumptions in these theorems were first used in an NMPC context in Griine
and Rantzer [13], the conceptual idea is actually older and can be found, e.g., in
Shamma and Xiong [22] or in Scokaert, Mayne and Rawlings [21]. The fact that
stability of the sampled data closed loop can be derived from the stability of the
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associated discrete time system for integral costs (3.4), cf. Remark 4.13, was, to the
best of our knowledge, not observed before.

4.5 Problems

1. Consider the problem (OCPZ) with finite optimal value function Vi : Ng x
X — RS‘ and asymptotically stabilizing admissible optimal feedback law (o :
NoxX—>U.LetV:Ngx X — Rar be a function which satisfies

V(n,xo)= min {€(n,xo,u)+V(n+1, f(xo,u))} (4.20)
uelU! (xg)
for all n € Ny and all xg € X.
(a) Prove that V(n, x) > Vo (n, x) holds for all n € Ny and all x € X.
(b) Prove that for the optimal feedback law the inequality

Vn,x) — Ve(n,x) < V(n +1, f(x, ;Loo(n,x)))
— Voo(n +1, f(x, ,u,oo(n,x)))

holds for all n € N and all x € X.
(c) Assume that in addition there exist oy € K such that the inequality

V(n,x) < op(|x]grer())

holds for all n € Ny, x € X and a reference trajectory x™ : Ny — X. Prove

that under this condition V (n, x) = Vs (n, x) holds for all n € Ny and all
x eX.

(d) Find a function V : Ny x X — ]R(J)r satisfying (4.20) but for which V (n, x) =
Vo (n, x) does not hold. Of course, for this function the additional condition
on V from (c) must be violated.

Hint for (a): Define a feedback p which assigns to each pair (n, x) a minimizer
of the right hand side of (4.20), check that Theorem 4.11 is applicable for S(n) =
X (for which « € (0, 1]?) and conclude the desired inequality from (4.15).

Hint for (c): Perform an induction over the inequality from (b) along the opti-
mal closed-loop trajectory.

2. Consider the unconstrained linear control system

xT = Ax + Bu
with matrices A € R9%4 B € R4*™  Consider problem (OCP%,) with
0x,u)=x"0Ox+u'Ru

with symmetric positive definite matrices Q, R of appropriate dimension (this
setting is called the linear—quadratic regulator (LQR) problem). If the pair (A, B)
is stabilizable, then it is known that the discrete time algebraic Riccati equation

P=Q+AT(P—PB(BTPB+R) 'BTP)A

has a unique symmetric and positive definite solution P € R?*4,
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(a) Show that the function V(x) = x T Px satisfies (4.20). Note that since the
problem here is time invariant we do not need the argument 7.
(b) Use the results from Problem 1 to conclude that Vao (x) = x | Px holds. You
may assume without proof that an optimal feedback p exists.
(c) Prove that the corresponding optimal feedback law asymptotically stabilizes
the equilibrium x, = 0.
Hint for (a): For matrices C, D, E of appropriate dimensions with C, D symmet-
ric and D positive definite the formula
m]il%n {xTCx +u'Du+u'ETx+ xTEu} = xT(C - ED_lET)x
ueR™
holds. This formula is proved by computing the zero of the derivative of the
expression in the “min” with respect to u (which is also a nice exercise).
Hint for (b) and (c¢): For any symmetric and positive definite matrix M € Rdxd
there exist constants C»> > C1 > 0 such that the inequality C; ||)c||2 <x"Mx <
C5||x||* holds for all x € R?.

. Consider the finite horizon counterpart (OCPy) of Problem 2. For this setting

one can show that the optimal value function is of the form Vy(x) = x ' Pyx
and that the matrix Py converges to the matrix P from Problem 2 as N — oo.
This convergence implies that for each & > 0 there exists Ny > 0 such that the
inequality

xTPyx —x' Px| <elx|?
holds for all N > N,. Use this property and Theorem 4.11 in order to prove that
the NMPC-feedback law from Algorithm 3.1 is asymptotically stabilizing for

sufficiently large optimization horizon N > 0.
Hint: Look at the hint for Problem 2(b) and (c).

. Consider the scalar control system

x+=x+u

with x € X =R, u € U = R which shall be controlled via the NMPC Algo-
rithm 3.1 using the quadratic running cost function
L(x,u)= x2 4+ u’.

Compute Vi (x0) and Joo(x0, ty (+)) for N =2 (cf. Chap. 3, Problem 3). Using
these values, derive the degree of suboptimality o from the relaxed dynamic
programming inequality (4.14) and from the suboptimality estimate (4.15).
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Chapter 5
Stability and Suboptimality Using Stabilizing
Constraints

In this chapter we present a comprehensive stability and suboptimality analysis for
NMPC schemes with stabilizing terminal constraints. Both endpoint constraints as
well as regional constraints plus Lyapunov function terminal cost are covered. We
show that viability of the state constraint set can be replaced by viability of the termi-
nal constraint set in order to ensure feasibility of the NMPC optimal control problem
along the closed loop trajectories. The “reversing of monotonicity” of the finite time
optimal value functions is proved and used in order to apply the relaxed dynamic
programming framework introduced in the previous chapter. Using this framework,
stability, suboptimality (i.e., estimates about the infinite horizon performance of the
NMPC closed loop system) and inverse optimality results are proved.

5.1 The Relaxed Dynamic Programming Approach

In this chapter we investigate stability and performance of NMPC schemes with
stabilizing terminal constraints. Before we turn to the precise definition of these
constraints, we outline the main arguments we will use in our analysis. The central
idea is to apply the relaxed dynamic programming result from Theorem 4.11 to
uw=puy and V = Vy from Algorithm 3.11 and its variants and Definition 3.14,
respectively.

According to the assumptions of Theorem 4.11, in order to obtain the subopti-
mality estimate Joo (1, x, ) < Vy(n, x)/a we have to ensure the inequality

Vn(n,x) > ozﬁ(n,x, uN(n,x)) + VN(n +1, f(x, [LN(?Z,X))) 5.1

to hold for all x € X, n € Ny and some « € (0, 1], preferably as close to one as
possible.

For asymptotic stability, in addition we have to ensure the existence of «y, oy,
a3 € K such that the inequalities

ay(1x]yrety) < Vi, x) < @a(|xlyety) and £, x,u) = o3 ()x] erg,)  (52)
holdforallx e X,neNpandu € U.
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In order to motivate why stabilizing terminal constraints can be helpful when
verifying (5.1), let us consider the problem of verifying (5.1) for the optimal control
problem (OCPY,). Looking at Equality (3.20) from Theorem 3.17 and noting that
oy = 1 holds if we specialize (OCPY, ,) to (OCPY) we see that uy and Vy satisfy

Vn(n, x0) = €(n, x0, un (. x0)) + V-1 (n + 1, f(x0. n (1, x0))).  (5.3)

This is “almost” (5.1), even with « = 1, except that (5.3) contains the function Vy_
at the place where we would like to have Vy.

The trouble now is that Vy is obtained by optimizing over N steps while Vy_1
is obtained by optimizing over only N — 1 steps. Hence, for each admissible control
sequence u € UV (xq) we get

IN(m, xo,u) > Iy_1(n, x0, u).

This inequality immediately carries over to the corresponding optimal value func-
tions, i.e., we obtain

Vi (n, x0) = Vy—1(n, xo). (5.4)

Unfortunately, this is exactly the opposite of what we would need in order to con-
clude (5.1) from (5.3).

This is the point where suitable terminal constraints provide a way out. In the
following sections we discuss terminal constrained variants (OCPy ¢) and (OCP& )
of the optimal control problems (OCPy) and (OCPY), respectively, under which
Inequality (5.4) is reversed. Throughout this chapter we will not need viability of
the state constraint set X, i.e., Assumption 3.3 will not be needed. As we will see,
viability of the terminal constraint set X is sufficient in order to prove that the
resulting NMPC-feedback law maintains the imposed state constraints; see also the
comments after Lemma 5.2 and before Assumption 5.9, below.

5.2 Equilibrium Endpoint Constraint

A simple way of constructing stabilizing terminal constraints consists of explicitly
including the desired reference solution in the optimization constraints. We intro-
duce this variant for the case of a constant reference x™ = x,, and the corresponding
Algorithm 3.10 and discuss the general case of a time varying reference at the end
of this section, cf. Problem (5.14). Within Algorithm 3.10 we use the optimization
problem (OCPy ) with Xo = {x4}, F=0and wx =1 for k =0,..., N — 1. This
means that we specialize (OCPy ¢) to

N—-1
minimize Jy (xo, u(-)) = Z Z(xu(k, X0), u(k))

k=0 (5.5)
with respect to () € UY, (xo)  with Xo = {x,}

subject to  x, (0, xo) = xo, xulk 4+ 1,x0) = f(xuk, x0), u(k)).
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Recall from Definition 3.9 that each trajectory x, (-, xo) with u(-) € Ugo (xp) sat-
isfies x, (N, xp) € Xo, i.e., x,(N, xp) = x4«. Thus, in (5.5) we only optimize over
trajectories satisfying this equilibrium endpoint constraint. Note that (5.5) is only
well defined if xg is an element of the feasible set X from Definition 3.9.

The idea behind the equilibrium endpoint constraint x, (N, xg) = x4 is intuitive:
since we want our closed-loop system to converge to x, we simply add this re-
quirement as a constraint to the optimal control problem. And since “convergence”
is difficult to formalize for the finite horizon predictions it appears reasonable to
require the predictions to end exactly at the desired equilibrium.

For the analysis of this problem we will use the following assumptions.

Assumption 5.1

(i) The point x, € X is an equilibrium for an admissible control value u, i.e., there
exists a control value u, € U(x,) with f(xy, ty) = Xx.
(i) The running cost£: X x U — RS‘ satisfies £(xy, uy) = 0 for u, from (i).

Observe that Assumption 5.1(i) is nothing else but a viability assumption for
Xo = {x4}, cf. Assumption 3.3. In order to show that Inequality (5.4) is indeed re-
versed for Problem (5.5) satisfying Assumption 5.1, we first need an auxiliary re-
sult for the feasible sets X and the corresponding admissible control sequences
Ugo (xp) from Definition 3.9. For the specific constraint x,, (N, x9) = x, in (5.5), the
following lemma states that each admissible control sequence on the horizon N — 1
can be extended to an admissible control sequence on the horizon N.

Lemma 5.2 If Assumption 5.1(1) holds for the terminal constraint set Xy = {x},
then for each N > 2 the following properties hold.

(1) Foreach xo € Xy_1 and eachuy_1(-) € Ug{;l (x0) the control sequence
unyk) :=uy_1(k), k=0,...,N =2, un(N =1 :=u, (5.6)

satisfies uy € [Ugo (x0).
(i1) The inclusion Xy_1 € Xy holds.

Proof (i) The idea of the proof is simple: since the trajectory related to uny_1(-) €
Ugo_l (xp) ends up in x,, the trajectory corresponding to the prolonged control se-
quence uy from (5.6) satisfies x,,, (N, xg) = Xs.
In order to verify uy € Ug (x0) we need to show that x, (k, xo) € X for k =
0,....,N,uy(k) € U(xy, (k, x0)) for k=0,...,N — 1 and x,, (N, x0) = Xs.
Fromuy_; € Ugo_l (xp) and Lemma 3.12 we obtain

Xun_1 (k’ )C()) € XN—]—k - X’
un_1(k) € U (xuy_, (k. x0)), k=0,....N—2 (5.7)
and

Xuy (N —=1,x0) =x, €XpCX (5.8)
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and from (5.8) and the definition of uy we get
Xuy (kyx0) = x4y (k,x0), k=0,...,N—1, Xuy (N, x0) =x4. (5.9)

Hence (5.7) and (5.8) are also valid for x,, . In addition, we get uy (N — 1) = uy €
U(xs) = Uxyy (N = 1,x0)) and x,y (N, x0) = f(xuy (N — 1, x0), un(N — 1)) =
f (x4, uy) = x4. Thus, uy € Ugo(xo).

(ii) Let xo € Xy—1. Then there exists uy_1 € Ugo_l (x0) and by (i) we can con-

clude that there exists uy € Ugo (x0). Thus, Ugo (x0) # @, from which x¢ € Xy
follows. O

Observe that we did not need to impose viability of the constraint set X in this
proof. In fact, we implicitly used that under Assumption 5.1(i) the set Xy is forward
invariant for all admissible control sequences Ugo (x). We explicitly formulate a
consequence of this property for the NMPC closed-loop system in the following
lemma.

Lemma 5.3 Under Assumption 5.1() for each N € N the NMPC-feedback law uy
obtained from Algorithm 3.10 with (OCPN ) = (5.5) renders the set Xy forward
invariant, i.e., f(x, un(x)) € Xy for all x € Xy.

Proof Follows immediately from Corollary 3.13 and Lemma 5.2(ii). U

This lemma shows that if a state x is feasible, i.e., contained in the feasible set
Xy then its closed-loop successor state f (x, uy(x)) is again feasible. Thus, Xy is
recursively feasible in the sense defined after Theorem 3.5. Using Lemma 5.2 it is
now easy to establish that Inequality (5.4) is reversed for (5.5).

Lemma 5.4 If Assumptions 5.1(1) and (ii) hold, then for each N > 2 and each
x0 € Xy_1 the optimal value functions of Problem (5.5) satisfy

Vi (x0) < Vn—1(x0). (5.10)

Proof We first show that for each uy_1 € Ugo_l(xo) the control sequence uy €
Ugo (xg) from (5.6) satisfies
In(xo, un) < In—1(x0, un—1)- (5.11)

To this end, recall from the proof of Lemma 5.2 that the trajectories x,, (-, xo) and
Xuy_, (-, xo) satisfy

Xuy (k,x0) = x4y (k,x0), k=0,...,N—1, Xuy (N, X0) = Xy
Together with (5.6) this yields

N-1

In o, un) = ) L(xuy (k, x0), un (K))
k=0
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=
)

Z(-xuj\](ks xO), MN(k)) +£(xu1\/ (N - ]1 xO), MN(N - ]))

T I
Lo

C(xuy_, (ky x0), un—1(K)) +L(xs, 1) = JIn—1(x0, un—1).
——
=0

~
Il
=}

=Jn-1(x0,uN-1)

This shows (5.11). In fact, we even proved “=" but we will only need “<” for
proving (5.10). In order to prove (5.10), let ”]1(\/—1 € Ugo_l (x0), k € N, be a sequence
of control sequences such that

Vn-1(o) = inf  Jy—i(xo,u) = inf Jy—1(x0,uly_;)
uely ™ (xo) keN

holds. Then, we can find uf; € Ugo (xo) such that (5.11) holds for uy = uk; and
UN—1 = ”]1{\/71' This implies

Vn(xo)= inf  Jy(xo,u) < inf Iy (xo, %) < inf Jy_; (xo, u%,
. inf Jy (x0, ) < inf Jv—1 (x0, k)
= Vn—1(x0)
and thus (5.10). O

Note that for Problem (5.5) in general (5.4) does no longer hold, because the
terminal constraint is more restrictive for smaller horizon than for larger ones. Thus,
with the terminal constraint we do not get (5.10) on top of (5.4). Rather, we replaced
(5.4) by (5.10).

Lemma 5.4 in conjunction with (5.3) enables us to conclude that the optimal
value function Vy satisfies Inequality (5.1). This will be used in the proof of our
following first stability theorem for an NMPC scheme in which we simply assume
(5.2). Sufficient conditions for these inequalities will be discussed after the theorem.

Theorem 5.5 Consider the NMPC Algorithm 3.10 with (OCPN ¢) = (5.5) and opti-
mization horizon N € N. Let Assumptions 5.1(i) and (ii) hold and assume that (5.2)
holds for suitable a1, a2, a3 € Koo. Then the nominal NMPC closed-loop system
(3.5) with NMPC-feedback law 11y is asymptotically stable on Xy .
In addition, for Joo(x, L n) from Definition 4.10 the inequality
Joo(x, un) < VN (x)

holds for each x € Xy .

Proof Combining Equality (3.20) from Theorem 3.17 with Inequality (5.10) from
Lemma 5.4 with xg = f(x, un(x)), for each x € Xy we obtain

V() = £(x, un () 4+ V-1 (f (x. v () = £(x, v () + Vv (f (5. n ().
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Thus, the assumptions of Theorem 4.11 are satisfied with V = Vy, u = un,
S(n) = Xy (which is forward invariant by Lemma 5.3) and « = 1 which yields
the assertion. O

The fact that each predicted trajectory x,, in (5.5) satisfies x,, (N, xo) = x4 does
by no means imply that the NMPC closed-loop trajectory satisfies x;,, (N) = x.
The following example illustrates this fact.

Example 5.6 Consider again Example 2.1, i.e.,
xt=x+u=: f(x,u)

with X=X =U = U =R and x, = 0. We use the running cost £(x, u) = x2 4 u?
and the terminal constraints Xo = {x,}.

Observing that every u(-) € U%io (x) must satisfy f(x,u(0)) =0 we get u(0) =
—x. Hence, (3.19) yields

Viy= inf  €(x,u(0)) =x? + (—x)? =2x?

uely (x)
and p1(x) = —x. Now, using (3.19) for (5.5) with N =2 we get

() = argmin{£x, 1) + V(£ (x,10) )

2
= argmin{)c2 +ut+ 2(x + u)z} =——x,
uelR 3
which is easily computed by setting the first derivative w.r.t. u of the term in braces
to 0, observing that the second derivative is strictly positive. Thus, the NMPC closed
loop for N = 2 becomes

2
= fx @) =x — pa(x) =x — 3F=3%

with solutions
1

Xy, (0, x0) = 3—nx0.
Hence, the closed-loop solution asymptotically converges to x, = 0 but never
reaches 0 in finite time.

In Theorem 5.5 we have made the assumption that Vyy satisfies the inequalities
in (5.2). In terms of the problem data f and ¢ this is an implicit condition which
may be difficult to check. For this reason, in the following proposition we give a
sufficient condition on f and £ for these inequalities to hold true.

Proposition 5.7 Let Vi denote the optimal value function of Problem (5.5) for
optimization horizon N € N.
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(1) Assume there exists a function a3 € Koo such that the inequality
0, u) = as(|xly,)

holds for all x € X and all u € U. Then

VN (x) = 053(|x|x*)

holds for all x € Xy.

(i) Assume that f and € are continuous in X x U, U is compact and there exists
aball B,(x,) C X, v >0, and a function @y € Ko with the following property:
For each x € B, (x) N X there is u, € U(x) with f(x,uy) = x4 and

0(x, uy) < @(lxly,). (5.12)
Then there exists ar € Koo such that

Vn (x) < aa(|xly,) (5.13)
holds for all x € Xy.

Proof (1) is immediate from the definition of Vy.
In order to prove (ii), first observe that for x € B, (x,) N X the existence of u,
with f(x, u,) = x, immediately implies x € X; and
Vi) = inf  £(x,u(0)) < £(x,uy) <aa(|xly,),

uETU;{O (x)

because the control sequence u(-) € U ! defined by u(0) = u, lies in U;io (x) since
by assumption f(x, uy) = x,. Now by Lemma 5.4 the inequality

Vy(x) < an(lxly,)

follows for each N € N and each x € B, (x,) N X.

For x € X} outside this ball consider an arbitrary closed ball B, (x4) forr >0
and an arbitrary N € N. Since f and ¢ are assumed to be continuous, the functional
IJnv X xUN —> Rg is continuous, too, and since U is assumed to be compact the

set B, (x4) x UV is also compact (both continuity and compactness hold with the
usual product topology on X x UN). Thus the value

ar(r) :=max{JN(x, u) |x € B, (xy), ue UN}

exists and is finite and the resulting function &; is continuous and monotone increas-
ing in r. By this definition, for each x € X we get

Vi (x) < éa(Ixly,).
Now define a function o5 : Rg — R(J)r by
az(v) +aa(r), r>v,
ay(r) +raz(v)/v, rel0,v).

This function is continuous since both expressions are equal for r = v, equal to
0 at r = 0 and strictly increasing and unbounded due to the addition of r. Hence,

a(r)=r+ {
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ay € Koo. Furthermore, it satisfies a(r) > @(r) for r € [0, v] and ap(r) > @ (r)
for r > v. Thus, it is the desired upper bound for Vy. O

The specific upper bound « constructed in this proof depends on N and will
in general grow unboundedly as N — oco. However, since by Inequality (5.10) we
know that the functions Vjy are decreasing in N we can actually conclude the ex-
istence of an upper bound in Ky, which is independent of N. However, since we
did not (and do not want to) assume continuity of the Vy the construction of this
Kso-function is somewhat technically involved which is why we skip the details.

If we want to deduce local asymptotic controllability from the asymptotic stabil-
ity on X we need that X contains a ball 5, (x,) around the equilibrium x,, cf.
the comment after Definition 2.14. The following example shows that this does not
necessarily mean that X for k < N — 1 must contain such a ball, too.

Example 5.8 Consider the system x* = f(x,u) withx e X=X =R%>, uecU=

[0,1]CcU =R, x,=0and
_fx1 (1 —u)
ren=("15")

We use the NMPC Algorithm 3.10 with (OCPx ) = (5.5). For x # 0 the system is
controllable to Xy = {0} in one step if and only if x; = 0. Thus X; ={x € R? | x; =
0} which obviously does not contain a neighborhood of x, = 0.

On the other hand, using the control sequence u(0) = 1, u(1) = 0 for each initial
value x € R? one obtains

T
xu(ov-x)z-x’ -xu(lv-x)z(oﬂ ||.X||) s xu(zv-x)zoa

which implies X =R = X and thus Xy =R = X forall N > 2.
Furthermore, using the running cost £(x, u) = ||x > we obtain the upper bound

Vo) < [l + [ 0, 1x) " * =20x 112

and the lower bound ||x||> < Vi (x) for all N > 2. Hence, Theorem 5.5 implies that
the NMPC-feedback law wy stabilizes the system on Xy = R2 for each N > 2.

The method described in this section is easily extended to time varying reference
trajectories x™'(-) replacing (5.5) by

N-1
minimize  Jy(n, xo, u(-)) := Z e(n +k, x, (k, x0), u(k))

k=0 (5.14)
with respect to  u(-) € Ugo (n,x0) with Xon) = {xref(n)}

subjectto  x, (0, x9) = xo, xu(k +1,x0) = f (xu(k, x0), u(k))

and choosing (OCP&e) = (5.14) in Algorithm 3.11. Since x™(.) is known, the
constraint x, (n + N, xo) = x"f(n + N) is as easy to implement as its time invariant
counterpart in (5.5). All proofs in this section are easily extended to the time varying
case by including the appropriate time instants in €, Jy, Vi and uy.
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5.3 Lyapunov Function Terminal Cost

The equilibrium terminal constraint described in the previous section provides a
way to guarantee stability which is intuitive and easy to implement. Still, it has the
obvious drawback that the system under consideration must be exactly controllable
to x, in finite time in order to ensure that the feasible sets Xy of (5.5) or (5.14)
indeed contain a neighborhood of x, or x™f(n) in the time varying case. Thus, it
cannot be applied to systems which are merely stabilizable but not controllable to
Xxx. As a simple system where this is the case consider, e.g., the system with two-
dimensional state x = (x1, x2) | and one-dimensional control u given by

_ _[(x1t+u
x+—f(x,u)—< X2)2 )

This system is obviously stabilizable at x, = 0, e.g., by the feedback law u(x) =
—x1/2. However, it is not controllable to x, = 0 in finite time since for any ini-
tial value xo = (xo1,X02) ' with xq2 # 0 the second component of the solution
xu(k, x0) = (xu(k, x0)1, xu(k, x0)2) | satisfies x, (k, x0)2 =2 ¥xg2 # 0 forall k > 0
regardless of the choice of u(-).

Furthermore, for nonlinear and nonconvex optimal control problems the strict
point constraint x, (N, xg) = x, may cause numerical difficulties in the optimization
algorithm, such that the algorithm may not be able to find a feasible solution even if
such a solution exists.

In this section we are going to present a method in which the terminal constraint
is relaxed by choosing X as a larger set containing x... In order to guarantee stability
for this relaxed terminal constraint we make use of the terminal cost function F in
(OCPn,e). Again, we introduce the method for constant reference x'ef = x, and
explain the necessary modifications for the general case at the end of this section.

We choose the optimal control problem (OCPy ) in Algorithm 3.10 as

N—1
minimize  Jy (xo, u(-)) := Z €(xy (k, x0), u(k)) + F (x4 (N, x0))

k=0 (5.15)
with respectto  u(-) € Ugo (xo) with x, € X

subject to  x, (0, x0) =x0, xu(k +1,x0) = f (xu(k, x0), u(k)).

Recall again that by Definition 3.9 the choice u(:) € Ugo (xo) guarantees x, (N, xg) €
Xp and that (5.15) is only well defined for x( in the feasible set X from Defini-
tion 3.9.

We are now going to specify the properties of the terminal constraint set Xo € X
and the terminal cost F : Xy — R(J)r. As in the last section we do not need to impose
Assumption 3.3, i.e., viability for the state constraint set X. However, in order to
compensate for this we need viability of Xg.

Assumption 5.9 For the closed terminal constraint set X¢g C X defining Ugﬂ (xp) in
(5.15) via Definition 3.9 and the terminal cost F' : Xg — Rg in (5.15) we assume:
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(i) Xy is viable, i.e., for each x € X there exists an admissible control value u, €
U(x) such that

fx,ux) €Xo (5.16)

holds.
(ii) The terminal cost F : Xy — R:{ in (5.15) is such that for each x € X there
exists an admissible control value u, € U(x) for which (5.16) and

F(f(x,uy)) +€0x,uy) < F(x)
hold.

Assumption 5.9(ii) implies that F is a local control Lyapunov function of our
control system. The approach of adding F is often referred to as quasi-infinite hori-
zon NMPC. The reason for this denomination is that if the terminal cost F is an
approximation of the infinite horizon optimal value function V., then the finite
horizon dynamic programming principle (3.15) is an approximation of the infinite
horizon dynamic programming principle (4.5) and consequently (5.15) can be in-
terpreted as an approximation to the infinite horizon problem (OCP,). While a
function F satisfying Assumption 5.9(ii) exists under mild conditions on the system
provided it is asymptotically controllable, cf. the discussion on control Lyapunov
functions in Sect. 2.5, it is not always easy to find—we will sketch a linearization
based approach to find F' and X in Remark 5.15, below. Note that the equilib-
rium terminal constraint problem (5.5) can be seen as a special case of (5.15) with
Xo = {x4} and F =0, in which case Assumption 5.9 implies Assumption 5.1. The
more interesting case, however, is obtained when Xy contains a whole ball around
X, because in this case the terminal constraint is considerably weaker than in the
case X9 = {x4} and consequently more easy to achieve for the optimization algo-
rithm.

The subsequent analysis is analogous to the respective results in Sect. 5.2 with
the goal to establish that Inequality (5.4) is reversed.

Lemma 5.10 If Assumption 5.9() holds for the terminal constraint set Xy C X,
then for each N > 2 the following properties hold.
(i) Foreach xy € Xy_1 and eachupn_1(-) € Ugo_l (x0) the control sequence
uy(k):=uy_1(k), k=0,...,N—2, uy(N —1):=uy, (5.17)
with uy from Assumption 5.9(G) for x = x,(N — 1, xo) satisfiesuy € Ugo (x0).

(ii) The inclusion Xy_1 C Xy holds.

Proof The proof is completely analogous to the proof of Lemma 5.2, replacing
f (X, uy) = x4 by f(x,uy) € Xp for x € Xp. O

As in the equilibrium constraint case from the previous section the set Xy is
invariant under the MPC feedback law uy as shown in the following lemma.
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Lemma 5.11 Under Assumption 5.9(1) for each N € N the NMPC-feedback law
obtained from Algorithm 3.10 with (OCPn ) = (5.15) renders the set Xy forward
invariant, i.e., f(x, un(x)) € Xy for all x € Xy.

Proof This follows immediately from Corollary 3.13 and Lemma 5.10(ii). O
Using Lemma 5.10 we can now prove that Inequality (5.4) is reversed for (5.15).

Lemma 5.12 [f Assumptions 5.9(1) and (ii) hold, then for each N > 2 and each
xo € Xny—_1 the optimal value functions of Problem (5.15) satisfy

Vi (x0) = Vn—1(x0). (5.18)

Proof We first show that for each uy_1 € Ug;] (x0) the control sequence uy €
U, (xo) from (5.17) satisfies
In(xo, un) < In—1(x0, un—1)- (5.19)

To this end, observe that by construction of uy the trajectories x,, (-, xp) and
Xuy_; (-, x0) satisfy

Xuy (k, x0) = xupy_, (k, x0), k=0,...,N—1, Xuy (N, x0) € Xo.

We abbreviate X = x,,,, (N — 1, xo) € Xg and uz = u (N — 1), noting that by (5.17)

uz coincides with u, from Assumption 5.9(ii) for x = x. Thus (5.17) and Assump-
tion 5.9(ii) yield

N—

Iy o, un) =Y £(xuy (k, x0), un (k) + F (xuy (N, x0))

—_

>~
S

=
S}

€(xuy (k, x0), un (k) + €(xuy (N = 1,x0), uy (N — 1))

+ T

0
F(xuN (N, xo))
2

= D> L(ruy (k, x0), un—1(k)) +L(F, uz) + F(f (%, up))

=z

~
Il
=}

=Jn-1(x0,un—1)—F (%)
= In_1(x0, un—1) —F (%) + £(X, uz) + F(f (X, uz))

=<0

< JIn-1(x0, un—1).

Now we can conclude (5.18) from (5.19) as in the proof of Lemma 5.4. ]

As in the last section we want to emphasize that for Problem (5.15) in general
(5.4) does no longer hold.
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We can obtain a similar inequality to (5.18) also for N = 1. Indeed, given x € Xg
and using the one element control sequence u#(0) = u, with u, from Assump-
tion 5.9(ii), we obtain

Vi(x) < Jy(x,u) = €(x, (0, x), u(0)) 4+ F(x, (1, x))
=€(x,uy) + F(f(x,ux)) < F(x)
which together with (5.18) proves
Vy(x) < F(x) forallx € Xg, N eN. (5.20)

Lemma 5.12 in conjunction with (5.3) enables us to conclude that the optimal
value function Vy satisfies Inequality (5.1). This will be used in the proof of our
following second stability theorem for NMPC schemes. Again, we simply assume
(5.2) and discuss sufficient conditions afterwards.

Theorem 5.13 Consider the NMPC Algorithm 3.10 with (OCPx) = (5.15) and
optimization horizon N € N. Let Assumptions 5.9(1) and (ii) hold and assume that
(5.2) holds for suitable a1, aa, a3 € Koo. Then the nominal NMPC closed-loop sys-
tem (3.5) with NMPC-feedback law wy is asymptotically stable on Xy .
In addition, for Joo(x, in) from Definition 4.10 the inequality
Joo (X, uN) = Vi (x)
holds for each x € Xy .

Proof Combining Equality (3.20) from Theorem 3.17 with Inequality (5.18) from
Lemma 5.12 with xg = f(x, uy(x)), for each x € Xy we obtain
VN () = €(x, un (x)) + Vo1 (f (x, v (0)) = £(x, un (x)) + Vv (f (x, mv ().

Thus, the assumptions of Theorem 4.11 are satisfied with V = Vy, u = un,
S(n) = Xy (which is forward invariant by Lemma 5.11) and o = 1 which yields
the assertion. O

So far the results in this section were very much in parallel to the respective
results for equilibrium terminal constraints in Sect. 5.2. The difference between the
two approaches becomes apparent in the following proposition, where we look at
sufficient conditions on the problem data under which (5.2) holds. In contrast to
Proposition 5.7(ii) in which we needed a condition on f and ¢, in Part (ii) of the
following proposition we can give a sufficient condition in terms of F.

Proposition 5.14 Let Viy denote the optimal value function of Problem (5.15) for
some N € N.
(i) Assume there exists a function as € K such that the inequality
e, u) > o3(|xlx,)
holds for all x € X and all u € U. Then
Vn(x) = a3(]xlx,)
holds for all x € Xy.
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(ii) Assume that f, £ and F are continuous in X x U or Xy, respectively, that U
is compact and that Assumption 5.9 is satisfied. Assume furthermore that X
contains a ball B, (x,), v > 0, and that there exists a function &, € Koo such
that

F(x) <a(lxly,)
holds for all x € Xo N By, (x4). Then there exists oy € Koo such that

Vi (x) < o(|xlx,) (5.21)
holds for all x € Xy.

Proof (i) is immediate from the definition of V.
In order to prove (ii), observe that for x € B, (x,) the bound on F together with
(5.20) implies

Vi (x) < F(x) <@ (|xly,)-

Now we can proceed as in the proof of Proposition 5.7 in order to construct the
desired ap € Ko O

Remark 5.15 For nonlinear systems with X = R¢ and U = R™ whose linearization
at x, is stabilizable, F' and X¢ satisfying Assumption 5.9 can be constructed by a
linear—quadratic approach (LQR) via the corresponding Riccati equation, provided
X and U contain neighborhoods of x, and u,, respectively. We briefly sketch this
approach considering for simplicity of notation x, = 0 and u, = 0: Assume that the
dynamics f satisfies

fx,u)=Ax + Bu+ f(x,u) (5.22)

with A € R4 B ¢ R4>*m and f ‘RY x R™ — RY, Assume furthermore that
the pair (A, B) is stabilizable and that the map f satisfies || f(x, u)|| < C(||x|* +
lx |||l + |l]|*) for some constant C > 0 and all x, u with ||x|, lu]| < & for some
8> 0.

Under these assumptions, given symmetric and positive definite matrices Q €
RI%d R ¢ R™*™M \ye can solve the infinite horizon linear—quadratic optimal control
problem

o0
minimize Joo(y.u) = Y yu(k.y) " Qyu(k. y) +u(k) " Ru(k)
k=0

over u(-) € U®, where y, (k, y) solves y* = Ay + Bu. N

More precisely, the optimal value function of this problem is given by Vo (y) =
y ! Py, where P € R4*? is the unique symmetric and positive definite solution of
the discrete time algebraic Riccati equation

P=ATPA—(ATPB)(R+B"PB)"' (BT PA)+ Q. (5.23)
Once P is computed, the optimal control for Joo is available in feedback form

w*(y)=—(R+BTPB) 'BTPAy. (5.24)
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The infinite horizon dynamic programming principle (4.6) for this problem for
K =1 reads

Vo) =yT 0y + () Ru*(y) + Voo (Ay + Bu* (). (5.25)

We now show how \700, which is readily computable e.g. by solving the algebraic
Riccati equation (5.23) numerically, can be used in order to construct X and F in
Assumption 5.9. To this end, we choose £ satisfying

x,u)=x"Ox+u' Ru+l(x,u) (5.26)

with [£(x, u)| < D(||x11? + Ix 12wl + x|l + [|u|®) for some constant D > 0
and all ||x||, |lu]| < 8. For this choice, for u = u*(x) from (5.24) with y = x and
using (5.25) we can compute

Vm(f(x, u)) = (Ax + Bu + f(x, u))TP(Ax + Bu + f(x, u))
= (Ax + Bu)" P(Ax + Bu)
+2(Ax + Bu) TP f(x,u)+ fx,u) P f(x,u)
= (x,u)
= VOO(x) — xTQx —u"Ru +r(x,u)
= Voo (X) — £(x, u) + £(x, u) + r(x, u).

Now the structure of r(x,u) and £(x, u) together with the fact that u = u*(y) in
(5.24) depends linearly on y = x implies the existence of a constant £ > 0 with
[r(x,u)|+ |l7(x, u)| < E|lx|]%, cf. Problem 2(a) in this chapter. Thus, for each o > 1
we find § > 0 such that ||x|| <& implies

—ex,u) + L0 u) +r (e, 1) < —L(x,u) /o
for u = u*, cf. Problem 2(b). From this inequality we obtain
Voo (f (x, 1)) < Voo (x) = £(x, 1) fo (5.27)

whenever ||lx|| < 4. Fixing some o > 1 and the corresponding § > 0 we now pick
v > 0 such that for all x € R? the inequality Vo (x) < v implies

x| <8, xeX and u*(x)el,

which exists since P is positive definite. We claim that X := {x € RY | Voo x) <v}
and F(x) =0 VOO (x) satisfy Assumption 5.9.

Indeed, picking x € Xy and using the control value u = u*(x) Inequality (5.27)
implies Vm(f(x, u)) < Voo (x) <v and thus Assumption 5.9(i) and

F(f 1)) <0 Voo (fx, 1)) < 0 Voo (x) — £(x,u) = F(x) — £(x, u)

which is exactly Assumption 5.9(ii). Note that in this construction the set Xg will
become the smaller the smaller o > 1 becomes.

The following example illustrates this construction.



5.4 Suboptimality and Inverse Optimality 101

Example 5.16 Consider the one-dimensional bilinear system
xT=x+u+xu

which is of the form (5.22) with A= B =1 and f(x, u) = xu. For simplicity, we
do not consider state and control constraints, i.e., we set X = X =R and U(x) =
U = R. We consider the running cost

E(x,u):x2+u2+u4

which is of the form (5.26) with Q = R =1 and l (x,u) = u®. The Riccati equation
for the linearization reads

P=P—PU+P)'P+1

and its solution is P = %(1 + ﬁ). Thus, the optimal value function of the linear—
quadratic problem becomes

~ 1
Vo) =501 ++/5)y% & 1.618y?
and the corresponding optimal feedback control reads

1+5
3445

Numerical evaluation then yields that Assumption 5.9(ii) holds for F(x) = o \700 (x)
and uy =u*(x), e.g., foro = 0.9 and all x € R with Voo (x) <v=0.1.

u*(y) =—

y~ —0.618y.

Remark 5.17 All results in this section can be easily generalized to tracking time
varying references x™' replacing X by Xo(n) and generalizing the two conditions
in Assumption 5.9 by

fx,uy) eXon+1)
and
F(n +1, f(x,ux)) +4Ll(n,x,uy) < F(n,x),

both for x € Xg(n).

However, constructing F in the time varying case is considerably more compli-
cated than in the time invariant case, because in the time varying case linearization
and linear—quadratic control does not lead to an algebraic Riccati equation which
can be easily solved.

5.4 Suboptimality and Inverse Optimality

Having established the stability of the NMPC closed loop, another important ques-
tion which naturally arises in the context of NMPC schemes is the performance of
the NMPC-feedback law. Here and in what follows we again consider the simpler
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case of time invariant problems noting that the extension to time varying problems
is straightforward.

While performance of general stabilizing feedback laws can be measured in
many different ways, in NMPC it is natural to compare the NMPC controller with
the infinite horizon optimal controller. To this end, for linear MPC controllers var-
ious characteristic values like gains and poles can be compared, see, e.g., [17,
Sect. 6.5]. In the nonlinear setting considered in this book, a convenient and mean-
ingful performance measure for the optimization based NMPC-feedback law uy
is the infinite horizon cost along the closed-loop trajectory as defined in Defini-
tion 4.10. In the time invariant setting it is given by

Joo (X0, un) 1= (xuy (k, x0), o (Xpuy (K, %0))).
k=0

In general, it is too optimistic to assume that the NMPC feedback wy yields the
optimal value Joo (X0, tny) = Voo(xp). The following two examples illustrate this
point.

Example 5.18 Consider again Example 5.6, i.e.,
xT=x+u, E(x,u):xz—i—u2

with X = X = U = U = R. Using the terminal constraints X = {0}, in Example 5.6
we have seen that the NMPC-feedback law for N =2 is pp = — %x.
By solving the associated discrete time algebraic Riccati equation

P=P—P1+P)'P+1

we can obtain the infinite horizon optimal solution. The positive solution of this
equation is P = %(1 + \/5) and thus the infinite horizon optimal value function
reads

1
Voolr) = (1 + V5)x? 2 1.618x2,
cf. also Example 5.16. Evaluating J (x, t2) for the NMPC-feedback law p(x) =

—2x with trajectory X, (n, x) = %,,x yields

JsoOr ) = 3y (k)% 4 (k1))
k=0

o
4\ 1 13
= 2(1 + 5) 9—kx2 = Exz = 1.625x7.
k=0
Although this value is quite close to Vo (x), it is not optimal.

Example 5.19 Consider again Example 5.6 but now with a nonquadratic cost, i.e.,

xT=x+u, Z()c,u):)c2+u4
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in which large u are penalized more heavily. As in Example 5.6 we use the equilib-
rium terminal constraint Xo = {0}. Repeating the computations of Example 5.6 we
obtain

Vilx) = X2+ xt

and

uar(x) = argmin{)c2 +ut + (x + u)2 +(x + u)4}.
ueR

Solving this minimization problem (e.g., with MAPLE, cf. Sect. A.2) yields the
nonlinear feedback law

1 1
wa(x) = E(—108x 4 124/324x6 4 324x% + 189x2 + 12)3
3x2 41 1

(—108x + 12+/324x6 + 324x% + 189x2 + 12)5 2

Numerical evaluation of the corresponding infinite horizon cost along the closed-
loop solution for xp = 20 yields

Joo (20, 1) & 11240.39.

Since this problem is not linear—quadratic we cannot use the Riccati equation in
order to compute the exact optimal value. However, the feedback law

1 1 1
uix) = —(—54x +6v6+ 81x2) 3 —
6 (—54x + 6:/6 + 81x2)3

—whose derivation we will explain in Example 8.23 in Chap. 8—yields
Jo (20, w) &~ 1725.33 which was again evaluated numerically. Hence, the optimal
value function satisfies Vo, (20) < 1725.33 which shows that u, is far from optimal
in this example.

An alternative to the direct evaluation of Joo(xg, ) as performed in these ex-
amples is readily available from Theorems 5.5 and 5.13. These theorems provide
the explicit upper bound

Joo (X0, i) < Vi (x0) (5.28)

for the NMPC-feedback law p derived from Algorithm 3.10 with either (OCPy ¢)
= (5.5) or (OCPn.e) = (5.15). Unfortunately, in general there is no simple formula
for the mismatch between Vi and the infinite horizon optimal value function V.
This is due to the fact that in both (5.5) and (5.15) the optimization is restricted
to the controls u(-) € Ugo (x0) whose corresponding trajectories enter the terminal
constraint set Xg after at most N steps. The following proposition shows that this
inevitably leads to the inequality Vi (x) > Vo (x) for all x € Xy .

Proposition 5.20 Consider the optimal control problem (5.5) or (5.15) and the in-
finite horizon optimal control problem (OCPY,) with same running cost £ and con-
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straints X and U(x). Let the assumptions of the respective Theorem 5.5 or 5.13 be
satisfied. Then the inequality

VN (x) = Voo (x)
holds for all x € Xy .

Proof Given x € Xy we define a control sequence u(-) € UV (x) by evaluating
un (x) along the NMPC closed-loop trajectory, i.e.,

u(k) = ,uN(xuN(k,x)).
Then we get
VOO(-X) S JOO(xa M) = JOO(-xv /'LN) S VN(-X)7

where the last inequality is obtained from Theorem 5.5 and 5.13, respectively. This
shows the assertion. U

Unfortunately, the quantitative effect of the stabilizing constraints, i.e., the ques-
tion about how much larger Vy is compared to V is in general difficult if not
impossible to answer. Still, we can provide asymptotic results, i.e., conditions under
which Vy converges to V, on arbitrary (but fixed) balls around x, as N — oo.

Theorem 5.21 Consider the optimal control problem (5.5) or (5.15) and the infinite
horizon optimal control problem (OCPY,) with same running cost £ and constraints
X and U(x). Let the assumptions of Theorem 4.16 hold and assume that there is
No € N such that the assumptions of the respective Theorem 5.5 or 5.13 hold for
N = Ny. Assume, furthermore, that Xy, contains a ball B, (xy). Then for each R >
0 and each € > 0 there exists Nr . > 0 such that the inequality

VN (x) < Voo(x) t+ &
holds for all N > Ng . and all x € Xy with |x|,, < R.

Proof For Ny from the assumption, oy from the assumption of Theorem 5.5 or 5.13,
respectively, and from (5.10) we get

Vi (x) < Vi (x) < an(|x1y,)

for all N > Ny and all x € B, (x,). Since the assumptions of Theorem 4.16 are
satisfied, for any « € (0, 1) the feedback law 1, from Theorem 4.16 satisfies

Joo (X, ) < Voo(x)/at

for all x € X with |x|,, < R. Furthermore, u, asymptotically stabilizes the system,
i.e., there exists 8 € KL such that

g (1.0 < Bl )

holds for all x € X and all k € Ny. Fixing some arbitrary @ € (0, 1), by Remark 4.12
we may assume that g is independent of « € [«, 1).
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Now let ng . € N be large enough such that the inequalities
B(R,nge)<v and or(B(R,nge)) <¢
hold and set Ng . = No + ng . By the monotonicity properties of o and 8 the
choice of npg ¢ implies x,, (n, x) € B, (x) C Xy, and
Vo (Xq (1, %)) < 02 (B(1x1x, 5 nRe)) <&

foralln > ng . and all x € Xy with [x[,, < R.

For such an x and an N > Ng ., consider the control sequence u(-) € Ugﬂ (x)
/""a(xﬂa(nﬂx))7 n=09"'9N_N0_1’
u*(m— N+ Nyg), n=N-—Ny,...,N—1,

where u* is the optimal control sequence for (5.5) or (5.15) with N = Ny and
X0 = Xu, (N — No, x). The control u(-) lies in Ugo(x) because it inherits u(-) €

u(n):{

UV (x) from p, and u* and the corresponding trajectory ends in X, because
u*() e Ugg (x4, (N — No, x)). For this control sequence we get

N-1
Vn(x) < In(e,u) =Y £(x,(n, x), u(m) + F (x, (N, x))
n=0
N—Ny—1 1
= Z Z(xu(n,x), u(n)) + Z E(xu(n,x),u(n)) + F(xu(N,x))
n=0 n=N—N
N—Ny—1
= Z €(xu(n, x), u(m)) + Ing (xu (N — No, x), u(- + N — Np))
n=0
N—No—1
= Z K(x#a (n,x), ,ua(xua (n,x))) + JNo(xua (N — Ny, x), u*(.))
n=0

< Joo(x, tta) + Vg (xpe (N — No, X)) < Voo(x) /o + &

where we used N — Ng > Ng o — No > ng ¢ for estimating Vi, (x,, (N — No, x))
in the last inequality. From this inequality we obtain the assertion since o € («, 1)
was arbitrary and Np . is independent of @ € (a, 1). ([l

While in Theorem 5.21 the lower bound on the necessary optimization horizon
N depends on R and ¢, we can exploit the special structure of (5.15) in order to give
a condition under which the bound on N merely depends on R and on properties
of F.

Theorem 5.22 Consider the optimal control problem (5.15) and the infinite horizon
optimal control problem (OCPY,) with same running cost £ and constraints X and
U(x). Let the assumptions of Theorem 4.16 hold and assume that there is Ny € N
such that the assumptions of Theorem 5.13 hold for N = Ny. Assume in addition
that Xy contains a ball B, (x4) and that the terminal cost F satisfies

|F(x) — Voolx)| <&
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for all x € B, (xy) and some & > 0. Then for each R > 0 there exists Ng > 0 such
that the inequality

V(x) < Voolx) +¢
holds for all N > Ng and all x € Xy with |x|,, < R.

Proof Using a and B as in the proof of Theorem 5.21 we choose N € N such that
the inequality

B(R,Ng) <v

holds. Given x € X with |x|y, < R and N > Ny and an arbitrary « € [a, 1) we
define the control sequence

u(n) = po (X, (n,x)), n=0,...,N—1
with p, from Theorem 4.16, i.e., satisfying (4.18). This control sequence lies in
Ugo (xp) since
¥ (N, )| < B(Ix]x,, N) < B(R, NR) <V,
thus x, (N, x) = x,, (N, x) € By, (xx) € Xo. For this u(-) we get

N-1

VN () < v @) =Y €(x(n,x), u(m) + F(x, (N, x))
n=0

T

E(xua (n,x), g (xua (n, x))) + F(xﬂa (N, x))

IA I
> 3
o
—_ O

K(xua (n,x), hy (xua (n, x))) + Voo(xua (N, x)) +¢

N—
< Z E(xua (n,x), ly (Xu(, (n, x))) + Voo(xua (N, x))/a +¢&, (5.29)

Il
- o

where we used Voo (xy, (N,x)) > 0 and o < 1 in the last inequality. Now (4.18)
implies

E(xum (n,x), o (xMa (n, x))) < Ve (xua (n, x))/a — Voo (x,m n+1, x))/ot.
Inserting this inequality into (5.29) yields

N-1

Vy(x) < Z (X (1, %), pa (Xpg (1, X)) + Voo (X0 (N, X)) ot + €
n=0
N—1

< Z Voo(xua(n,x))/ot — Voo(x,m (n+ l,x))/ot + Voo(xw (N,x))/a +¢
n=0

< Voo (%4 (0, ) for + & = Voo (x) /o + €

and since « € [«, 1) was arbitrary the assertion follows. O
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Example 5.23 We illustrate Theorem 5.21 by Example 5.6 and 5.18. Observing that
Xy =R holds for N > 1, the dynamic programming equation (3.15) for K =1 and
N > 2 becomes

Vy(x) = inf{x2 +u®+ V_i1(x + u)}.
uelR

Using this equation in order to iteratively compute Vy starting from Vj(x) = 2x2,
cf. Example 5.6, we obtain the (approximate) values

Vi(x) = 2x2, Va(x) = 1.666666667x2,
V3(x) = 1.625x2, Vi(x) =1.619047619x2,
Vs(x) = 1.618181818x2, Ve(x) = 1.618055556x2,
V7 (x) = 1.618037135x2, Ve(x) = 1.618034448x2,
Vo(x) = 1.618034056x2, Vio(x) = 1.618033999x2,

cf. Problem 4. Since, as computed in Example 5.18, the infinite horizon optimal
value function is given by

1
Voo (x) = 5(1 +/5)x% ~ 1.618033988x2,

this shows that, e.g., for R = 1, the inequality Vy(x) — Voo(x) < € holds for ¢ =
221075 for N =6, fore =4.6-10~7 for N =8 and fore = 1.1- 1078 for N = 10.

We end this section by investigating the inverse optimality of the NMPC-
feedback law . While the suboptimality estimates provided so far in this section
give bounds on the infinite horizon performance of iy, inverse optimality denotes
the fact that py is in fact an infinite horizon optimal feedback law—not for the
running cost £ but for a suitably adjusted running cost £. The motivation for such
a result stems from the fact that optimal feedback laws have desirable robustness
properties. This can be made precise for continuous time control affine systems

x(t) = go(x) + g1(x)u (5.30)

with x e R?, u e R, go : R — R? and g; : RY — R¥*™_ For these systems it
is known that a stabilizing (continuous time) infinite horizon optimal feedback law
Woo has a sector margin (1/2, o) which means that u = o (x) stabilizes not only
(5.30) but also

x(t) = go(x) + g1(x)¢ (u) (5.31)

for any ¢ : R — R satisfying ||u||%/2 <u'¢(u) < oo forall u e R, see Magni
and Sepulchre [9] for details.

Although we are not aware of analogous discrete time results in the literature, it
seems reasonable to expect that this robustness is inherited in an approximate way
for optimal control of sampled data systems with sufficiently fast sampling. This
justifies the investigation of inverse optimality also in the discrete time setting.

For the NMPC schemes presented in this chapter we can make the following
inverse optimality statement.
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Theorem 5.24 Consider the optimal control problem (5.5) or (5.15) for some
N € N with the usual constraints x € X and u € U(x). Let the assumptions of the
respective Theorem 5.5 or 5.13 hold for this N. Then on the set Xy the feedback
UN equals the infinite horizon optimal feedback law for (OCPL,) with running cost

Cx,u) o= C(x,u) + Vo1 (f (eow) — Vv (f (e, w) (5.32)

and constraints x € Xy_1 and u € U(x).

Proof First observe that the assumptions of Theorem 5.5 or 5.13 imply (5.4) and
V (x4) = 0. Hence, (5.32) satisfies ¢ > ¢, is of the form (3.2), and the inequality for
£ in (5.2) remains valid for £. We denote the infinite horizon optimal value function
of (OCP},) with running cost l by V and the corresponding optimal feedback law

by in.
From the dynamic programming principle (3.15) with K =1 and the definition
of £ we get

Vnxo)= inf  {€(xo,u) + Vy_i(f (x0.u))}

1
MEUXN—I (x0)

= inf {Z(xo,u)—i- VN(f(xo,u))}.
uely (%0

Similarly, (3.19) implies

Vv (x0) = €(x0, tn (x0)) + Viv (f (x0, v (x0)))-
From these two equations, by induction for each K € N we get
K-1
Vn(x0) < Y £(xu(k, x0), u(k)) + Viy (xu (K, x0)) (5.33)
k=0
for every u € U (xg) with U°(x¢) defined with respect to the constraint x € Xy _1,
and

K

VN (x0) = Z (o (ky x0), 1y (X (k. X0))) + Viv (xpy (K, x0)). - (5.34)

-1
k=0

Since £ > 0, for an arbitrary u € U (xp) in (5.33), for K — oo the sum
K—1
> (xu k. xo). u(k))
k=0

either grows unboundedly or converges to some finite value. Since £(x,u) >
a3(|x|x,), convergence is only possible if x, (k, u) converges to x, as k — oo, i.e., if
Vn (x,(K,u)) — 0as k — oo. Thus, in either case letting K — oo in (5.33) we get
o0
Viv(x0) < D (xu(k, x0), u(k))

k=0
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for all u € U*(xg), which implies Vy (xg) < Voo (x0).
On the other hand, since puy asymptotically stabilizes the system, in (5.34) we
get Viy (xuy (K, x0)) — 0 as K — oo and thus letting K — oo in (5.34) yields

VN (x0) = Y €(xpuy (k, x0), son (X (ks X0))) (5.35)
k=0

which implies Vi (xp) > \700 (x0). Consequently, we get Vy (xg) = \700 (x0) and from
(5.35) it follows that [loo = un is the infinite horizon optimal feedback law for
running cost £. 0

Observe that for the inverse optimality statement to hold we need to replace the
constraints x € X in (OCPZ,) by the in general tighter constraints x € Xy_1, where
Xn_1 is the feasible set for (5.5) or (5.15) with horizon N — 1. This is because
by (3.19) the feedback wy is obtained by minimization with respect to these con-
straints. Thus, it cannot in general be optimal for the infinite horizon problem with
the usually weaker original constraints x € X.

5.5 Notes and Extensions

Most of the results in this chapter are classical and can be found in several places
in the NMPC literature. In view of the huge amount of this literature, here we do
not make an attempt to give a comprehensive list of references but rather restrict
ourselves just to the literature from which we learned the results presented in this
chapter.

While the proofs in the NMPC literature are similar to the proofs given here, the
relaxed dynamic programming arguments outlined in Sect. 5.1 are usually applied
in a more ad hoc manner. The reason we have put more emphasis on this approach
and, in particular, used Theorem 4.11 in the stability proofs is because the analysis
of NMPC schemes without stabilizing terminal constraints in the following Chap. 6
will also be based on Theorem 4.11. Hence, proceeding this way we can highlight
the similarities in the analysis of these different classes of NMPC schemes.

For discrete time NMPC schemes with equilibrium terminal constraints as fea-
tured in Sect. 5.2, a version of Theorem 5.5 was published by Keerthi and Gilbert [8]
in 1988, even for the more general case in which the optimization horizon may vary
with time. Their approach was inspired by earlier results for linear systems, for more
information on these linear results we refer to the references in [8]. Even earlier, in
1982 Chen and Shaw [1] proved stability of an NMPC scheme with equilibrium
terminal constraint in continuous time, however, in their setting the whole optimal
control function on the optimization horizon is applied to the plant, as opposed to
only the first part. Continuous time and sampled data versions of Theorem 5.5 were
given by Mayne and Michalska [10] in 1990, using, however, a differentiability as-
sumption on the optimal value function which is quite restrictive in the presence of
state constraints.
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The “quasi-infinite horizon” idea of imposing regional terminal constraints X
plus a terminal cost satisfying Assumption 5.9 as presented in Sect. 5.3 came up in
the second half of the 1990s in papers by De Nicolao, Magni and Scattolini [3, 4],
Magni and Sepulchre [9] or Chen and Allgower [2], both in discrete and continuous
time. Typically, these papers provide specific constructions of F' and X satisfying
Assumption 5.9 rather than imposing this assumption in an abstract way as we did
here. The abstract formulation of these conditions given here was inspired by the
survey article by Mayne, Rawlings, Rao, and Scokaert [11], which also contains a
comparative discussion of the approaches in some of the cited papers. For a con-
tinuous time version of such abstract conditions we refer to Fontes [5]. A terminal
cost meeting Assumption 5.9 was already used before by Parisini and Zoppoli [14],
however, without terminal constraint; we will investigate this setting in Sect. 7.1.
The construction of F' and X in Remark 5.15 is similar to the construction in [2]
and [14]. A related NMPC variant which may have motivated some of the authors
cited above was proposed by Michalska and Mayne [12]. In this so-called dual mode
NMPC the prediction horizon length is an additional optimization variable and the
prediction is stopped once the set X is reached. Inside this set, the control value u,
from Assumption 5.9(ii) is used.

Establishing the existence of a suitable upper bound of Vy is essential for being
able to use Vi as a Lyapunov function. The argument used here in the proofs of
Propositions 5.7(ii) and 5.14(ii) was adopted from Rawlings and Mayne [16, Propo-
sition 2.18]. Of course, this is not the only way to obtain an upper bound on Vy.
Other sufficient conditions, like, e.g., the controllability condition “C” in Keerthi
and Gilbert [8, Definition 3.2], may be used as well.

Regarding the suboptimality results in Sect. 5.4, for the special case of equilib-
rium terminal constraints Xo = {x,} and F = 0, a version of the suboptimality result
in Theorem 5.21 was given by Keerthi and Gilbert [8]. For the case of general X
and F we are not aware of a result similar to Theorem 5.21, although we would
not be surprised to learn that such a result exists in the huge body of NMPC litera-
ture. Theorem 5.22 is a variant of Griine and Rantzer [6, Theorem 6.2] and extends
Theorem 2 of Hu and Linnemann [7] in which the case F = V, is considered.

Inverse optimality was extensively investigated already for linear MPC leading
to the famous “fake” algebraic Riccati equation introduced by Poubelle, Bitmead
and Gevers [15]. For nonlinear systems in continuous time this property was proved
by Magni and Sepulchre [9]. While the discrete time nonlinear version given in
Theorem 5.24 is used in an ad hoc manner in several papers (e.g., in Ne§i¢ and Griine
[13]), we were not able to find it in the literature in the general form presented here.

5.6 Problems

1. Consider the scalar control system

xT=x+u, x(0) =xo

with x € X =R, u € U = R which shall be controlled via NMPC using the
quadratic running cost
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00x,u) = x% +u?

and the stabilizing endpoint constraint x, (N, xp) = x4, = 0. For the horizon
N =2, compute an estimate for the closed-loop costs Juo (x, 12(+)).
2. Consider the setting of Remark 5.15 and prove the following properties.
(a) There exists a constant E > 0 such that |r(x, u)| + [£(x, u)| < E||x|]* holds
for each x € R? with || x|| sufficiently small and u = u*(x).
(b) For each o > 1 there exists § > 0 such that ||x| < § implies

—C(x,u) +0(x, u) +r(x,u) < —L(x,u)/o

for u = u*(x).
Hint for (b): Look at the hints for Problem 2 in Chap. 4.
3. Consider f, ¢, Xp and F satisfying the assumptions of Proposition 5.14(i)
and (ii). Prove the following properties.
(a) The running cost satisfies £(x, uy) < az(|x|y,) for x € Xo, u, from Assump-
tion 5.9(ii) and &; from the assumption of Proposition 5.14(ii).
(b) For the feedback law w(x) := u, with u, from Assumption 5.9(ii) the
closed-loop system xT = f(x, u(x)) is asymptotically stable on Xg.
4. Consider the setting from Problem 1. Prove without using Theorem 5.21 that for
all ¢ > 0 and R > 0 there exists N, € N such that

VN (x) < Voolx) + &

holds for all N > N, and all x € R with |x| < R. Proceed as follows:
(a) Use dynamic programming in order to show Vy(x) =C nx2 with C; =2
and
8CY_, + 12Cy_1 + 4

©4CH_ | +8CN-1 +4

Cy

(b) Use the expression from (a) to conclude that Cy — %(1 + +/5) holds as
N — oo.
(c) Use the exact expression for Vi, from Example 5.23 in order to prove the
claim.
5. Consider Example 2.3, i.e.,

o _x+ i Sin(ﬂ(x) + M)
flr )= (xi) - <cos(l9(x) +u)/2>

2
with
arccos 2xs, x1 >0,
?(x) =
2w — arccos2xay, x1 <0,

initial value (0, 1/2) and running cost £(x,u) = ||x — x*ll2 + u? with x, =
(0, —1/2). The control values are restricted to the set U = [0, 0.2] which allows
the car to only move clockwise on the ellipse

- 1}.

(>0

Perform the following numerical simulations for this problem.

X:{xeR2
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(a) Implement the NMPC closed loop for N = 8 and confirm that the closed-
loop trajectory does not converge toward x.

(b) Modify the NMPC problem by introducing the terminal constraint
Xo = {x4}. Again considering the horizon length N = 8§, verify that now
x(n) = xy.

(c) Check the control constraints for each NMPC iterate from (b) more closely,
verify that they are violated at some sampling instants and explain why this
happens. Determine by simulations how large N needs to be such that these
violations vanish.

Hint: Instead of implementing the problem from scratch you may suitably modify

the MATLAB code for Example 6.26, cf. Sect. A.1.
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Chapter 6
Stability and Suboptimality Without Stabilizing
Constraints

In this chapter we present a stability and suboptimality analysis for NMPC schemes
without stabilizing terminal constraints. After defining the setting and presenting
motivating examples we introduce an asymptotic controllability assumption and
give a detailed derivation of stability and performance estimates based on this as-
sumption and the relaxed dynamic programming framework introduced before. We
show that our stability criterion is tight for the class of systems satisfying the con-
trollability assumption and give conditions under which the level of suboptimality
and a bound on the optimization horizon length needed for stability can be explicitly
computed from the parameters in the controllability condition. As a spinoff we re-
cover the well known result that—under suitable conditions—stability of the NMPC
closed loop can be expected if the optimization horizon is sufficiently large. We fur-
ther deduce qualitative properties of the running cost which lead to stability with
small optimization horizons and illustrate by means of two examples how these cri-
teria can be used even if the parameters in the controllability assumption cannot be
evaluated precisely. Finally, we give weaker conditions under which semiglobal and
semiglobal practical stability of the NMPC closed loop can be ensured.

6.1 Setting and Preliminaries

In this chapter we consider the NMPC schemes without stabilizing constraints.
Throughout this chapter we will use the basic NMPC Algorithms 3.1 and 3.7
with optimal control problems (OCPy) and (OCPY), respectively. Weights wy as
in (OCPy,¢) and (OCPﬁ,e)—more precisely, terminal weights—will be discussed
in Sect. 7.2. We consider state and control constraints X and U(x) as introduced in
Sect. 3.2 and the respective set UV (x) of admissible control sequences from Defi-
nition 3.2. Throughout this chapter the state constraint set X C X is supposed to be
viable in the sense of Assumption 3.3. Relaxations of this viability assumption on
X will be discussed in Sects. 8.1-8.3.

L. Griine, J. Pannek, Nonlinear Model Predictive Control, 113
Communications and Control Engineering,
DOI 10.1007/978-0-85729-501-9_6, © Springer-Verlag London Limited 2011
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As in the previous chapter, our goal is to apply Theorem 4.11, for which we need
to establish the inequalities

Vn(n,x) = ab(n,x, uy(n,x)) + Vy(n+ 1, f(x, un(n, x))) (5.1

for all x € X, n € Ny and some « € (0, 1], and the existence of ay, ar, a3 € Koo
such that the inequalities

(Xl(|.x|xref(n)) < VN(”,X) Sa2(|x|xref(n)) and
€(n, x,u) = o3 ()x] prety) (5.2)

hold for all x € X, n € Ng and u € U, cf. Sect. 5.1. Again, the inequality
Vi (n, x0) = £(n, xo, oy (1, x0)) + V-1 (n + 1, f(x0, un(n,x0))), (5.3)

which follows from (3.20), plays a vital role in our analysis. In Sect. 6.7 we will
also use Theorem 4.14 in order to prove practical stability properties.

For the optimal value functions Vi of (OCPy) or (OCPY)) and Vi, of the corre-
sponding infinite horizon problems (OCP%,) it is immediate that we get the inequal-
ities

Vn-1(n,x0) < Vi (n,x0) < Voo (n, x0) (6.1)

for all n € Ny, all N € N and all xo € X. This inequality follows since minimization
is carried out with the same constraints for all N (including co) and the running cost
£ is nonnegative. Hence, Jy is increasing in N, which carries over to Vy.
For this reason, the arguments of the last section in which we used the terminal
constraints in order to reverse the inequalities in (6.1) do not work anymore.
Nevertheless, NMPC without terminal constraints works, as the following two
simple examples show, in which « in (5.1) can be computed explicitly.

Example 6.1 Consider again Example 5.6, i.e.,
xt=x+u, Z()c,u):)c2~|—u2

with X=X =TU = U =R. Here we get
0
Vi(xo) = inf ;E(xu (k. x0). u(k)) = inf xf +u® =3
and, by (3.15) for N=2and K =1,
Valxo) = inf  {€(xu(0,x0), u(0)) + Vi (xu(1, x0))}
u(-)eUl (xo)
= inf {xg +u’+ (xo + u)2} = inf {2x5 +2u® + 2x0u}.
uel uel

The minimum of this expression is attained at u = —x/2, which by (3.19) implies
u2(xp) = —xo/2. The resulting minimum is

3 2
Vz(XQ) = EXO.
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Thus, (5.1) for N = 2 becomes

3 3

Exz > ot(x2 +x2/4) + §(x2/4),

which is satisfied for all x by @ = 0.9, i.e., (5.1) is satisfied for N = 2 and this « for
allx e X =R.

Note that the closed-loop system for w5 is given by xT = x /2, for which asymp-
totic stability at x, = 0 is also easily seen directly.

Example 6.2 'We consider the previous Example 6.1 again, i.e.,
xT=x+u, E()c,u):)cz—i—u2
with X = X = U = R but now we impose the control constraint U(x) = U =

[—1, 1]. While the computation for V| again yields Vi(xg) = xg, the expression
for V, now becomes

Va(xg) = ue[iEil: 1]{2x3 +2u® + 2xou},

whose minimizer is
g = [max(=0/2, =1} w0
H220 =1 min{xg/2, 13, x <0.

Consequently, V> becomes

%x(%’ X0 € [_27 2]7

V =
> (x0) {2(x8_|x0|+1), xo ¢ [-2,2].

For |x| < 2, Inequality (5.1) for N = 2 is as in the previous example and is thus
satisfied for « = 0.9. For |x| € (2, 3), (5.1) becomes

3
2(xg — xol + 1) > a(x? + 1) + SG— 1)%,
which is satisfied for all |x| € (2, 3) with @ = 0.8. For |x| > 3 we get
2(xg — Ixol + 1) = ar(x* + 1) +2(x3 — 3lxol + 3),

which is satisfied for o = 4(|x| — 1)/()62 +1).

Hence, if we restrict the state space X =R to X = [—a, a] for some a > 0 (note
that each such X is forward invariant under the closed-loop system), then we al-
ways find @ € (0, 1) such that (5.1) holds for all x € X = [—a, a]. Consequently, the
feedback u; asymptotically stabilizes the system at x, = 0 on each set of the form
X =[—a, a] and thus also globally.

The last example shows one of the advantages of NMPC without stabilizing ter-
minal constraints over the constrained approach from the previous chapter: Since in
this example | f (x, u) — x| < 1 holds for each x € R and each u € U =[—1, 1], us-
ing a terminal constraint of the form Xy = [—e¢, €] implies that the feasible sets are
given by Xy =[—N — ¢, N + ¢]. Hence, in order to compute a controller defined
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on a large set Xy, a large horizon length N is needed. In contrast to this, the NMPC
feedback py without stabilizing terminal constraints globally asymptotically stabi-
lizes the system already for N = 2.

Further advantages of NMPC without stabilizing terminal constraints are that no
Lyapunov function terminal cost F has to be computed in advance and that no addi-
tional constraints have to be added to the optimization problem; a detailed compara-
tive discussion of schemes with and without stabilizing terminal constraints is given
in Sect. 8.4. For these reasons, stabilizing terminal constraints are often avoided in
practice.

A rigorous proof for the fact that one can obtain asymptotic stability without im-
posing stabilizing terminal constraints and terminal costs was—to the best of our
knowledge—first given by Alamir and Bornard in [1] for nonlinear discrete time
systems whose linearization with respect to u satisfies a specific rank condition and
for quadratic running costs £. Ten years later, this result was extended by Jadbabaie
and Hauser in [8] (for continuous time systems) and by Grimm et al. in [4] (for dis-
crete time systems) to systems without any rank conditions and to arbitrary positive
definite costs using an exponential controllability condition in [8] and a bound on
the finite horizon optimal value function Vy in [4]. The proofs in these references
exploit that for N — oo the open-loop optimal trajectories converge to a region in
which ¢ is small. This fact is either used directly as in [4] or indirectly by exploiting
that it implies the convergence Vy — Vy_1 — 0 for N — oo as in [1, 8]. This con-
vergence was also used by Griine and Rantzer in [6] in order to estimate « in (5.1)
from suitable bounds on Vy, which in turn can be guaranteed by an appropriate
controllability condition.

Even though [6] showed that the convergence Viy — Viy_; — 0 for N — oo can
be used in order to estimate « in (5.1), in this book we present a different approach in
order to estimate «, which we consider advantageous, because it uses the available
information—either from a controllability condition or from bounds on the opti-
mal value functions—in a more efficient way; a discussion on this fact is given in
Sect. 6.9. In particular, we will not try to establish (5.1) from the fact that Viy — Vy_
becomes small. Rather, we will use a direct argument based on properties of opti-
mal trajectories in order to derive an upper bound for Vy(n + 1, f(x, un(n, x)))
in (5.1). As we will see, this approach leads to a tight characterization of « in (5.1)
and—under suitable conditions—to an explicit formula relating « to the parameters
in the controllability condition, whose precise form will be introduced in the next
section.

Following the structure from the previous chapter, we will first present our con-
cepts and results for the time-invariant case of Algorithm 3.1 and then discuss the
extensions to the time varying case of Algorithm 3.7 at the end of Sect. 6.5.

6.2 Asymptotic Controllability with Respect to ¢

In order to introduce the controllability assumption needed for our analysis, we first
slightly enlarge the class of X L-functions introduced in Definition 2.13.
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Definition 6.3 We say that a continuous function 8 : R>¢ x R>0 — Rx¢ is of class
KLy if for each r > 0 we have lim,_, o, B(r, ) = 0 and for each t > 0 we either have
B(, 1) € Koo or B(-, 1) =0.

Compared to the class ICL, here we do not assume monotonicity in the second
argument and we allow for S(-, t) being identically zero for some ¢. This allows for
tighter bounds for the actual controllability behavior of the system. It is, however,
easy to see that each 8 € KLy can be overbounded by a 8 € KL, e.g., by setting
B(r.1) =max,>, B(r,T) + e 'r.

For the following assumption we define

0 (x) = in(fjﬁ(x, u). (6.2)

Assumption 6.4 Consider the optimal control problem (OCPy). We assume that the
system is asymptotically controllable with respect to £ with rate 8 € KLy, i.e., for
each x € X and each N € N there exists an admissible control sequence u, € UV (x)
satisfying

€(xu, (n, %), ux (n)) < B(£(x), 1)
foralln €{0,...,N —1}.

Special cases for B € KL are

B(r,n) =Cao"r (6.3)
for real constants C > 1 and o € (0, 1), i.e., exponential controllability, and
B(r,n) =cnr (6.4)

for some real sequence (c;)nenN, With ¢; > 0 and ¢, = 0 for all n > ny, i.e., finite
time controllability with linear overshoot bound.

It is easily seen that if the state trajectories themselves are exponentially control-
lable to some equilibrium x, then exponential controllability, i.e., Assumption 6.4
with B from (6.3), holds if ¢ has polynomial growth. In particular, this covers the
usual linear—quadratic setting for stabilizable systems.

However, even if the system itself is not exponentially controllable, exponential
controllability in the sense of Assumption 6.4 can be achieved by proper choice of
£, as the following example shows.

Example 6.5 Consider the control system

x+=x+ux

with X =[—1,1] and U = [—1, 1]. The system is controllable to x, = 0, which
can be seen by choosing u = —1. This results in the system x* = x — x> whose
solutions approach x,. = 0 monotonically for xp € X.

However, the system it is not exponentially controllable to 0: exponential con-
trollability would mean that there exist constants C > 0, ¢ € (0, 1) such that for
each x € X there is u,, € U (x) with

3

|xux(n,x)| <Co"|x|.
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This implies that by choosing n* > 0 so large such that C o™ < 1/2 holds the in-
equality

|xux (n*,x)| <l|x|/2 (6.5)

must hold for each x € X. However, for each x > 0 the restriction u € [—1, 1] im-
plies x* > x — x> = (1 — x?)x, which by induction yields

xu(n*,x) > (1 — xz)n*x

for all u € U (x), which contradicts (6.5) for x < 1 — 271/,

On the other hand, since |x| < 1 we obtain (1 — x2)2(2x2 + 1) =1 + 2x0 —
3x% < 1, which implies
1 241 1

—1—

>22 41 = — <- = =
o 221 —x2)2 = 22 2x2

(1—x2)2 "~

Hence, choosing

1
Lx,u)=4L(x)=¢ 27,

for u = —1 we obtain

_ 1 — 1 1
(xT)=e(x - x3) =e 22027 = 220-27 <eleTn? =7l (x).

By induction this implies Assumption 6.4 with 8 from (6.3) with C =1 and o =
21
e .

For certain results it will be useful that 8 in Assumption 6.4 has the property
,3(r,n—|—m)§,3(,3(r,n),m) forall » >0, n,m € Np. (6.6)

Inequality (6.6), often referred to as submultiplicativity, ensures that any sequence
of the form b, = B(r,n), r > 0, also fulfills by,,, < B(b,, m). It is, for instance,
always satisfied in case (6.3) and satisfied in case (6.4) if ¢, 1, < c,cp. If needed,
this property can be assumed without loss of generality, because by Sontag’s KC.L-
Lemma [12, Proposition 7] (cf. also the discussion before Theorem 4.3) the function
B in Assumption 6.4 can be replaced by a B8 of the form B(r, t) = a1 (az(r)e™") for
ay, a2 € Koo. Then, (6.6) is easily verified if oy o oy (r) > r, which is equivalent to
a1 o az(r) > r, which in turn is a necessary condition for Assumption 6.4 to hold
forn=0and B(r, 1) = ai(ay(r)e™).

Remark 6.6 Computing B satisfying Assumption 6.4 is in general a hard task for
nonlinear systems. One way to obtain such a 8 is via a suitable control Lyapunov
function, similar to the procedure described in Khalil [9, Sect. 4.4] or used in Nesi¢
and Teel [10, Proof of Proposition 1]. However, as we will see later, the precise
knowledge of B is not necessarily needed in order to apply our results, because we
will be able to identify structural properties of 8 which guarantee good performance
of the NMPC closed loop, cf. Sect. 6.6.



6.3 Implications of the Controllability Assumption 119

Remark 6.7 Note that Assumption 6.4 is an assumption in discrete time. In the case
of sampled data systems with zero order hold this implies that the discrete time sys-
tem obtained from (2.8) with constant control function u : [0, T] — R™ needs to
satisfy this assumption. Due to the fact that this system corresponds to the continu-
ous time system (2.6) with control functions v : R — R™ which are constant on the
sampling intervals, this is in general a stronger assumption than requiring (2.6) to
be asymptotically controllable with measurable control functions v € L*(R, R™),
cf. also Remark 2.9.

6.3 Implications of the Controllability Assumption

In this section we will use the Controllability Assumption 6.4 in order to establish
three lemmas which yield bounds for optimal value functions and functionals along
pieces of optimal trajectories. In the subsequent section, these bounds will then be
used for the calculation of « in (5.1).

A first immediate consequence of Assumption 6.4 is the following lemma.

Lemma 6.8 If Assumption 6.4 holds then for each N > 1 and each x € X the in-
equality

VN (x) < In(x,uy) < By (£(x)) (6.7)
holds for uy from Assumption 6.4 and
N—-1
By(r):=)_ B(r.n). (6.8)
n=0

Proof The inequality follows immediately from

N—1
VN (x) < InGe,ux) = €(x(n, 1), uy (n))
n=0
N-1
<Y B(e*(x).n) = By (£* (). O
n=0
In the special case (6.3) the values By, N > 1, evaluate to
1—oVN
By(r)=C r
l1—o
while for (6.4) we obtain
min{ng,N—1}
By(r)=Cyr withCy= > ¢

j=0
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In order to be able to calculate « in (5.1), we will need an upper bound for
Vn (f (x, un(x))). To this end, recall from Step (3) of Algorithm 3.1 that wy (xo)
is the first element of the optimal control sequence u*(-) for (OCPy) with initial
value xg. In particular, this implies f (xo, un(x0)) = x,+(1, x0). Hence, if we want
to derive an upper bound for Vi (f(xo, 1y (x0))) then we can alternatively derive
an upper bound for Vy (x,+(1, xp)). This will be done in the following lemma.

Lemma 6.9 Suppose Assumption 6.4 holds and consider xo € X and an optimal
control u* € UN (xo) for (OCPy). Then for each j =0, ..., N — 2 the inequality

Vi (xur (1, x0)) < Jj (3 (1, x0), (1 + ) 4+ By—j (€* (xu (1 + j, x0)))
holds for By from (6.8).

Proof We define the control sequence

~()_{u*(l+n), nef0,...,j—1},
S luet—j), nelj,... . N—1)

for u, from Assumption 6.4 applied to x = x,+(1 + j,x9) and N = N — j. By
construction, this control sequence is admissible for x,+(1, xo) and we obtain

Vi (s (1, x0)) < J (x4 (1, x0), i)
= Jj (xu (1, x0), u™ (1 + ) + In—j (xu (1 + j, x0), ux)
< Jj(xur (1, x0), u* (1 + ) + By—j (€* (xux (1 + j, x0)))
where we used (6.7) in the last step. This is the desired inequality. ]

In words, the idea of this proof is as follows. The upper bound for each j €
{0, ..., N — 2} is obtained from a specific trajectory. We follow the optimal trajec-
tory for initial value xq for j steps and for the point x reached this way we use the
control sequence u, for another N — j steps.

In the next lemma we derive upper bounds for the Ji-terms along tails of the
optimal trajectory x,+, which will later be used on order to bound the right hand side
of the inequality from Lemma 6.9. To this end we use that these tails are optimal
trajectories themselves. While we could deduce this fact from Corollary 3.18, here
we prefer to give an elementary self contained proof.

Lemma 6.10 Suppose Assumption 6.4 holds and consider xo € X and an optimal
control u* e UN (x) for (OCPN). Then for each k =0, ..., N — 1 the inequality

In k(% (k, x0), u* (k +-)) < By (£ (xux (k. x0)))
holds for By from (6.8).
Proof Pick any k € {0,..., N — 1}. Using u, from Assumption 6.4 with x =
xux(k, xp) and N = N — k, from (6.7) we obtain

IN—k (xux (k. x0), ux (1)) < Bk (I* (xu (k, x0)))- (6.9)
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Hence, for the control sequence defined by

- u*(n), nef0,...,k—1},
un) =

uy(n—=k), neik,...,N}
we obtain

Vi (x0) < Iy (xo, it) = Ji(x0, u™) + Ty —i (xur (k, X0), ux (+)).
On the other hand we have
Vi (x0) = Jy (x0, u™) = Jx (x0, u™) 4+ Iy —i (xux (k, x0), ™ (k + ).
Subtracting the latter from the former yields

0 < Jn—i(xur(k, x0), ux () — Iy —i (3 (k, x0), u™ (k +-)),
which using (6.9) implies

TN (e (k) u™* (ke + ) < v (s (k, x0), ux (1) < By —i (€% (x4 (K, x0))),
i.e., the assertion. O

Remark 6.11 Since u* € UN(xg) we obtain x,+(k,xq) € X for k =0,...,N.
For k =0,...,N — 1 this property is crucial for the proofs of Lemma 6.9 and
Lemma 6.10 because this property ensures that u, from Assumption 6.4 with
x =x,+(1 + j, xp) or x = x,+(k, xp), respectively, exists. Note, however, that we
do not need x,= (N, xg) € X in the proofs. In fact, all results in this and the ensuing
sections remain true if we remove the state constraint on x,« (N, xg) € X from the
definition of UV (x¢) or replace it by some weaker constraint.

6.4 Computation of o

We will now use the inequalities derived in the previous section in order to compute
« for which (5.1) holds for all x € X. When trying to put together these inequalities
in order to bound Vy (x,+(1, x9)) from above, one notices that the functionals in
Lemma 6.8 and 6.10 are not exactly the same. Hence, in order to combine these
results into a closed form which is suitable for computing o we need to look at the
single terms of the running cost £ contained in these functionals.

To this end, let u* be an optimal control for (OCPy) with initial value xop = x.
Then from the definition of Vi and py it follows that (5.1) is equivalent to

N-1

Z E(xu* (k, x), u*(k)) > aﬁ(x, u*(O)) + Vn (xu*(l, x)). (6.10)

k=0
Thus, in order to compute « for which (5.1) holds for all x € X we can equivalently
compute « for which (6.10) holds for all optimal trajectories x,,= (-, x) with initial
values x € X.

For this purpose we now consider arbitrary real values Ag,...,Ay—1,v >0
and start by deriving necessary conditions which hold if these values coincide
with the cost along an optimal trajectory £(x,=(k, x), u*(k)) and an optimal value
Vi (x,+ (1, x)), respectively.
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Proposition 6.12 Suppose Assumption 6.4 holds and consider N > 1, values \,, >
0,n=0,...,N—1,andavalue v > 0. Consider x € X and assume that there exists
an optimal control sequence u* € UN (x) for (OCPy) such that
Ak :Z(xu*(k,x), u*(k)), k=0,...,N—1

holds. Then

N—1

ZAnSBN_k(Ak), k=0,...,.N—2 6.11)

n=k
holds. If, furthermore,

v = Vy(x(1,x))

holds then

j—1

VEZMH-FBN—/(/\J'H), j=0,...,.N=2 (6.12)

n=0

holds.

Proof If the stated conditions hold, then A, and v must meet the inequalities given
in Lemmas 6.9 and 6.10, which is exactly (6.12) and (6.11). O

Using this proposition we can give a sufficient condition for (6.10) and thus for
(5.1). The idea behind the following proposition is to express the terms in Inequality
(6.10) using the values XA, ..., Axy—1 and v introduced above.

Proposition 6.13 Consider 8 € KLy and N > 1 and assume that all values L, > 0,
n=0,...,N —1andv >0 fulfilling (6.11) and (6.12) satisfy the inequality

N—1
D a—vzak (6.13)
n=0

for some o € (0, 1]. Then for this o and each optimal control problem (OCPN)
satisfying Assumption 6.4 Inequality (5.1) holds for puy from Algorithm 3.1 and all
xeX.

Proof Consider a control system satisfying Assumption 6.4 and an optimal control
sequence u* € UV (x) for initial value x € X. Then by Proposition 6.12 the values
M = L(xyx(k, x), u*(k)) and v = Vi (x,+(1, x)) satisfy (6.11) and (6.12), hence by
assumption also (6.13). Thus, using £(x, u*(0)) = £(x,* (0, x), u*(0)) = A9 we ob-
tain

N-—1 N-—1
Vv (xur (1, ) + ol (x, u*(0)) = v + aro < Z e = Z €(xur (ky x), u* (K)).
k=0 k=0
This proves (6.10) and thus also (5.1). O

Proposition 6.13 is the basis for computing « as specified in the following theo-
rem.
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Theorem 6.14 Consider B € KLy and N > 1 and assume that the optimization
problem

N-1
An—V
o= inf 72":0 '
AQyeees AN—1,V )\,()
subject to the constraints (6.11), (6.12), and (6.14)

M>0,A1,...,An-1,v>0

has an optimal value o € (0, 1]. Then for this a and each optimal control problem
(OCPn) satisfying Assumption 6.4 Inequality (5.1) holds for uy from Algorithm 3.1
and all x € X.

Proof Consider arbitrary values XA, ..., Ay—1, v > 0 satisfying (6.11) and (6.12).
If A9 > O then the definition of Problem (6.14) immediately implies (6.13).
If Ao = 0, then Inequality (6.11) for k = 0 together with By (0) = 0 implies
A, ...y An—1 =0. Thus, (6.12) for j = 1 yields v = 0 and again (6.13) holds.
Hence, (6.13) holds in both cases and Proposition 6.13 yields the assertion. [

Remark 6.15

(i) Note that all we need in order to formulate the constraints (6.11) and (6.12)
in optimization problem (6.14) are the bounds Bk (¢£*(x)) on Vg (x) and
Jx (x,uy) induced by B from Assumption 6.4 via Lemma 6.8 for K =
2,...,N. Thus, in Theorem 6.14 (as well as in Propositions 6.12, 6.13 and in
all subsequent statements) Assumption 6.4 can be replaced by the assumption

Vi (x) < Bg (£*(x)) (6.15)

forallx e Xand all K =2,..., N, replacing u, from Assumption 6.4 by the
optimal control sequence u* for Jx (x, u).

(i1) Theorem 6.14 shows Inequality (5.1) for all x € X if Assumption 6.4 or, equiv-
alently, (6.15) holds forall x e X and K =2,..., N.

If we want to establish Inequality (5.1) only for states xg € ¥ for a subset
Y C X, then from the proofs of the Lemmas 6.9 and 6.10 it follows that Propo-
sition 6.12 holds for all xg € Y (instead of for all x € X) under the following
condition:
(6.15) holds for x = x,*(k, xg) forall k =0,...,N—1, allxge Y

6.16)
andall K =2,..., N, where u* is the optimal control for Jy (xg, u).

This implies that under condition (6.16) Theorem 6.14 holds for all xg € Y and
consequently (5.1) holds for all xp € Y.

(iii) A further relaxation of the assumptions of Theorem 6.14 can be obtained by
observing that if we are interested in establish Inequality (5.1) only for states
xg € Y, then in (6.14) we only need to optimize over those A; which cor-
respond to optimal trajectories starting in Y. In particular, if we know that
infy ey £*(xp) > ¢ for some ¢ > 0, then the constraint 19 > 0 can be tightened
toro>¢.
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The following lemma shows that the optimization problem (6.14) specializes to
a linear program if the functions By (r) are linear in r.

Lemma 6.16 If the functions By (r) from (6.8) in the constraints (6.11), (6.12) are
linear in r, then o from Problem (6.14) coincides with

N—1
o= min E Ap—V
AQy-- AN—1,V
n=0

subject to the (now linear) constraints (6.11), (6.12), and (6.17)
M=1,A1,...,An_1,v>0.
In particular, this holds if B(r, t) in (6.8) is linear inr.

Proof Due to the linearity, all sequences A, ..., Ay_1, v satisfying the constraints
in (6.14) can be written as y Ag, .. ., YAN-1, 7YV for some Ao, ..., An—_1, v satisfying
the constraints in (6.17), where y = 1/X. Since
- L _ _ N-1
Yoo b =D _ Yo Yha = yv _ Yoo = v — Z)‘ v
= - - - n— Y
Ao 0 Ao e
the values « in Problems (6.14) and (6.17) coincide. O

Our last result gives an explicit solution of Problem (6.17) and thus also (6.14) if
the functions By are linear.

Proposition 6.17 If the functions By (r) from (6.8) in the constraints (6.11), (6.12)
are linear in r, then the solution of Problems (6.14) and (6.17) satisfies the inequal-

iy
a>ay (6.18)

for

(v = DT = 1)
[T 7 = o = D
where yy. is well defined by linearity of By.

If, in addition, B in (6.8) is linear in its first argument and satisfies (6.6), then
equality holds in (6.18), i.e.,

ay:=1-— with yx = Bi(r)/r, (6.19)

a=oay. (6.20)
Proof The rather technical proof of this proposition can be found in Sect. 6.8. [

In the special cases of exponential controllability (6.3) and finite time controlla-
bility (6.4) we get
k min{ng,k—1}
and y=Cr= Z Cj,
j=0

ve=Cq—

respectively. We will further investigate Formula (6.19) in Sect. 6.6.
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6.5 Main Stability and Performance Results

We are now ready to state our main result on stability and performance of the basic
NMPC Algorithm 3.1 without stabilizing terminal constraints. In this section we
deal with global asymptotic stability, i.e., asymptotic stability on the whole state
constraint set X. Further results on semiglobal and practical asymptotic stability
will be provided in Sect. 6.7.

Theorem 6.18 Consider the NMPC Algorithm 3.1 with optimization horizon N € N
and running cost € satisfying o3 (|x|y,) < £*(x) < aa(|x|y,) for suitable a3, a4 €
Koo- Suppose that Assumption 6.4 holds and that o from Theorem 6.14 satisfies
a € (0, 1]. Then the nominal NMPC closed-loop system (3.5) with NMPC-feedback
law py is asymptotically stable on X.

In addition, the inequality

Joo(x, uN) S VN(x) /ot < Vo (x) /et
holds for each x € X.

Proof The assertion follows readily from Theorem 4.11 and Inequality (6.1) if we
prove the Inequalities (5.1) and (5.2). Inequality (5.1) follows directly from Theo-
rem 6.14.

Regarding (5.2), observe that the inequality for ¢ follows immediately from our
assumptions. From the definition of Vyy we get

Vn(x)= inf Jy(x,u)> inf E(x, u(O)) =0"(x) > a3(|x|x*),
ueUN (x) uelUN (x)

thus the lower inequality for V follows with o = a3.

It remains to show the upper inequality for Vy in (5.2). To this end, from
Lemma 6.8 we get

N—1 N-1
V() < By (€)= D B (), n) < Y Blaa(lxl), n)
n=0 n=0
for B € KLo from Assumption 6.4. The definition of the class L implies either
B(-,n) € Koo or B(-,n) =0. For n =0 we obtain from Assumption 6.4 that
ﬁ(@*(x), 0) > Z(x, ux(O)) >£x) >0
for x # x,. This implies B(-, 0) s 0 and hence B(-, 0) € K. Hence we get

N-1
()= ) Blaa(),n) € Koo,
n=0
which shows the desired upper inequality for Vi in (5.2) for this o (r). O

The next corollary is an immediate consequence of Theorem 6.18.
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Corollary 6.19 Consider the NMPC Algorithm 3.1 with optimization horizon
N € N and running cost € satisfying a3(|x|x,) < €*(x) < as(|x|y,) for suitable
a3, 04 € Koo. Suppose that Assumption 6.4 holds for some B € KLy, which is lin-
ear in its first argument and that a = oy from Formula (6.19) satisfies a € (0, 1].
Then the nominal NMPC closed-loop system (3.5) with NMPC-feedback law uy is
asymptotically stable on X.

In addition, the inequality

Joo (X, uN) = VN(X) /a0 < Voo (x) /et
holds for each x € X.

Proof The assertion follows from Theorem 6.18 and Proposition 6.17 since linearity
of B in its first argument implies linearity of By from (6.8). U

The main advantage of Corollary 6.19 over Theorem 6.18 lies in the fact that
a is given explicitly by Formula (6.19) rather than implicitly by the optimization
problem (6.14). The class of systems which is covered by Corollary 6.19 is still quite
large, since, e.g., exponential controllability holds on compact sets X whenever the
linearization of f in x, is stabilizable and £ is quadratic.

The following simple example illustrates the use of Corollary 6.19 for the case
of a nonexponentially controllable system.

Example 6.20 We reconsider Example 6.5, i.e.,
e
xt=x4ux® with€(x,u)=¢ 22.
As shown in Example 6.5, Assumption 6.4 holds with B(r, k) = C okr with C =1
and o = e~ !. For this B, Corollary 6.19 is applicable and (6.6) holds, hence we
obtain o = oy with o, from Formula (6.19).
The bounds from Lemma 6.8 become

By () Cl—oN Cl—e’N
= r =
N l-o 1 —e!
and hence the y, in Formula (6.19) are given by
—Cl —ek
Y= 1—e 17

A straightforward computation reveals that for these values Formula (6.19) simpli-
fies to

v =DITm=D _
[JRESTE DARYCTRY
Hence, for N =2 we obtain « = 1 — e™% ~ 0.865 and for N =3 we get o = 1 —
e~3 2~ 0.95. Hence, Corollary 6.19 ensures asymptotic stability for all N > 2 and—

since 1/0.95 &~ 1.053—for N = 3 the performance of the NMPC controller is only
about 5.3% worse than the infinite horizon controller.

1-—
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While in this simple example the computation of & via Formula (6.19) is possible,
in many practical examples this will not be the case. However, Formula (6.19) can
still be used to obtain valuable information for the design of NMPC schemes. This
aspect will be discussed in detail in Sect. 6.6.

Although the main benefit of the approach developed in this chapter compared
to other approaches is that we can get rather precise quantitative estimates, it is
nevertheless good to know that our approach also guarantees asymptotic stability
for sufficiently large optimization horizons N under suitable assumptions. This is
the statement of our final stability result.

Theorem 6.21 Consider the NMPC Algorithm 3.1 with optimization horizon N € N
and running cost £ satisfying a3(|x|y,) < £*(x) < aa(|x|y,) for suitable a3, a4 €
Koso. Suppose that Assumption 6.4 holds for some 8 € KLy which is linear in its
first argument and is summable, i.e.,

oo
Zﬂ(r, k) <oo forallr > 0.
k=0
Then the nominal NMPC closed-loop system (3.5) with NMPC-feedback law .y is
asymptotically stable on X provided N is sufficiently large.
Furthermore, for each C > 1 there exists Nc > 0 such that
Joo (X, un) S CVy(x) < CVoo(x)

holds for each x € X and each N > N¢.

Proof The assertion follows immediately from Corollary 6.19 if we show that
o, — 1 holds in (6.19) as N — oo. This property holds if and only if

L v = DR =D
N=oo [T, e = [Tiea i = D
with y; defined in (6.19). Note that y, > 1 holds for all k € N and y;/ > yx holds for
K >k>1.

If y% = 1 holds for some k > 2, then we immediately get the assertion since then
the expression in (6.21) equals O for all N > j. Thus, we may assume y; > 1 for all
k>2.

In order to prove (6.21), observe that for each ¢ € (0, 1) the summability of g
implies the existence of K > 0 with

Y Bk <e,
k=K

which in turn implies yx < yg + ¢ for all k € N. This shows that the factor (yny — 1)
in (6.21) is uniformly bounded by yx + ¢ — 1 for all N € N.
The remaining factor in (6.21) can be written as

e — D B 1 1

[Tow - - Oz y’j\,—nﬁzz(”’_l) [ et — 1
nkzz(}’k—l)

6.21)
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Now the estimates yx <y < yg + ¢ for all k > K imply for N > K

- N—-K
> — 00
k—l H k_1<7/K+8—1>

as N — oo, since ¢ < 1 and thus yx +¢& — 1 < yk. Thus,

k=2

S 75 . L,
N=oo [l i = [Thca i — D) RS [Tis T
which shows the claim. O

This theorem justifies what is often done in practice: we set up an NMPC scheme
using a reasonable running cost ¢ and increase N until the closed-loop system be-
comes stable. While this procedure may work in many applications, it is certainly
not the most sophisticated way to proceed and a clever design of £ may signifi-
cantly improve the performance. Examples in which this is the case can be found in
Sect. 6.6.

Remark 6.22 Recall from Sect. 6.1 that throughout this chapter we use our standing
assumption that X is viable. This property is needed in order to ensure recursive
feasibility of X, cf. the discussion after Theorem 3.5. Approaches which allow us
to relax these assumptions are discussed in Sects. 8.1-8.3, cf. also the discussion in
Sect. 8.4(iv).

Theorem 6.18 and Corollary 6.19 give a sufficient condition for asymptotic sta-
bility for the nominal NMPC closed-loop system (3.5) in terms of the value «. More
precisely, if a from (6.14) or o, from (6.19), respectively, is positive, then we can
conclude asymptotic stability whenever Assumption 6.4 is satisfied for the optimiza-
tion problem (OCPy) in Algorithm 3.1.

The following theorem shows that for 8 € KLy satisfying (6.6)—which implies
o = o,y if B is linear in its first argument—this condition is tight for the class of
systems satisfying Assumption 6.4 in the following sense: if o from (6.14) is nega-
tive, then there exists a control system (2.1) and a running cost £ such that Assump-
tion 6.4 holds but the nominal NMPC closed-loop system (3.5) is not asymptotically
stable.

Theorem 6.23 Consider B € KLy satisfying (6.6), let N > 1 and assume that the
optimization problem (6.14) has an optimal value o < 0.

Then there exists a control system (2.1) and a running cost £ satisfying Assump-
tion 6.4 and a3(|x|y,) < £*(x) < a4(|x|y,) for suitable o3, as € Koo, such that the
nominal NMPC closed-loop system (3.5) is not asymptotically stable.

Proof We first show that o < 0 in (6.14) implies the following property:



6.5 Main Stability and Performance Results 129

there exists Ag, ..., Ay—1, v > O satisfying

(6.11) with strict inequalities, (6.12) and (6.22)
N-1

Z A —v<0

n=0

In order to prove (6.22) we use that « < 0 in (6.14) yields the existence of o >0,
M, ..oy AN—1, Y > 0 satisfying (6.11), (6.12) and

T

These properties imply A; > O,...,kN:1 >0 and ¥ > 0: the inequality v > 0
immediately follows from (6.23) and A; > 0. Assuming Ay = O for some k €

T:I

(6.23)

{1, — 1}, the respective inequality from (6.11) together with By_¢(0) =0
1mp11es Ak+1 = =AN_] = 0 Thus in particular An_1 =0, which using (6.12)
forj=N-2 1mphes V< Z An+1, contradicting (6.23).

Now we pick an arbitrary & > 0 and set
X0 := Ao, AN—2:=AN_2, AN—1:=AN_1 —&,

and

N-2
V= min{f), Z An+1+ Ba(Ay—1)
n=0

We claim that for these values (6.22) holds for all sufficiently small & > 0. In order
to see this, first one easily checks that (6.11) and (6.12) hold. Furthermore, since
AN_] < AN_1] appears on the left hand side but not on the right hand side of each
inequality in (6.11), it follows that the inequalities in (6.11) are indeed strict. Fur-
thermore, for ¢ > 0 sufficiently small the inequality Ay_; > 0 holds. In order to
complete the proof of (6.22) it remains to show that for ¢ > 0 sufficiently small the
inequality v > 0 and the inequality in the last line of (6.22) holds.

To this end, we use that the second term in the “min” is exactly (6.12) for j =
N — 2. Thus, by continuity of B, the value v converges to v > 0 as ¢ — 0. Hence,
for ¢ > 0 sufficiently small v > 0 implies v > 0 and (6.23) implies the inequality in
the last line of (6.22), which completes the proof of (6.22).

Now we construct a control system (2.1) on the state space

={(g.p)eR*|ge{0}u{27" |keNo},pe{(-N+1)q.....Nq}}.
For the control values U = {—1, 0, 1} we define the dynamics
(1 p),—1)=(l,max{-N+1,p—1}), pe{(-N+1yq,....Ng},
f((1,p),0) =(1/2, p/2), pel{(=N+1)q,...,Nq},
£((1, p), 1) = (1, min{N, p + 1}), pe{(-=N+1)q....,Nq},
)=

(g, p),u)=(q/2, p/2), (q.p)eX, g<1/2, uelU
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for which x, = (0, 0) is an equilibrium for all # € U. On X we use the metric

induced by the usual Euclidean norm || (g, p)|| = v/¢2 + p? implying lxlx, = llx]l.
We do not impose any constraints, i.e., we set X = X and U(x) = U for all x € X.

Using the values Aq, ..., Ay—1 and v from (6.22) we define the running cost £ in
(OCPy) as
(1, p), 1) = pe{0,N -1},
(1, p), 1) = p¢{0,N —1},

e(c1, py, -1 e((l,—p+1),1),
e((1, p),0) = B(min{e((1, p), 1), £((1, p), =1)},0),

¢((27%, p),u) = p(min{e((1,2°p), 1), ¢((1,2"p), 1) }.k), k=1, ueU.
We first verify that f and ¢ satisfy the stated assumptions.

The running cost £ satisfies the inequalities from the assumption for o}(r) =
infyex |x)zr €(x) and & (r) = sup,c x <, £*(x). Due to the discrete nature of the
state space oy and o are discontinuous but they are easily under- and overbounded
by continuous K functions o3 and o4, respectively, for which the assumed in-
equalities a3(|x|y,) < £*(x) < as(|x|y,) hold.

In order to see that Assumption 6.4 is satisfied for the given B, first observe that
Assumption 6.4 for n = 0 implies B(r, 0) > r. From this inequality and the definition
of £ we obtain

~— O~ — ~—

¢((1, p), 0) = min{¢((1, p), 1), £((1, p), —1)}
and thus
(1, p)) :min{é((l, p). 1), ¢((1, p), —1)}.
Furthermore, for k > 1 we see that £((27%, p), u) is independent of u, which yields
(7 ) =27 ). 0).

Now for u, = 0 and initial value x = (g, p) € X with g = 270 the trajectory be-
comes

Xy, (k,x) = (271{7"0, 27kp).
Thus, by construction of £ and (6.6) we obtain

€(xu, (k, ), ux (k) = B(min{e((1, 250 p), 1), £((1,2% p), —1)}, k + ko)
= B(£*(1,2p), k + ko)
=B(B(¢ (1 2%p). ko). k) = B(£((27. p). 0).K)
=B (27", p)). k) = B(£" ). k),

which yields Assumption 6.4.

Now we prove the existence of a closed-loop trajectory which does not converge
to x4, which shows that asymptotic stability does not hold. To this end we abbre-
viate A = Z A (note that (6.22) implies v > A) and investigate the values
IN((1,0), u) for different choices of u:
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Case 1 u(0) = 0. In this case, regardless of the values u(n), n > 1, we obtain
x(n,u) =(27",0) and thus

v((1,0),u) Zﬁ min{¢((1,0), 1), €((1,0), —1)}, )

= BN (mln{ ((1,0),1), £((1,0), =1)}) = By (minfig, A1}).

In case that the minimum is attained in Ag, by the (strict) Inequality (6.11) for k =0
we obtain Jy((1,0),u) > A. If the minimum is attained in A; then by (6.12) for
Jj =0and (6.22) we obtain Jx ((1, 0), u) > v > A. Thus, in both cases the inequality
Jn((1,0), u) > A holds.

Case 2 u(n) =—1,n=0,...,N — 2. This choice yields x(n,u) = (1, —n) for
n=0,..., N —1 and thus
N-2

In((1.0),u) =D At + (1. =N = 1), =1) = £((1. =(N = 1)), 1)

n=0
=E((1, N), 1) =v> A.

Case3 u(n)=—1,n=0,...,k—1,andu(k)=1forak e{l,..., N —2}. In this
case we obtain x(n,u) = (1, —n) forn =0, ..., k implying

v((1,0), u) ZAHHH =k, 1) > €((,—k), 1) =v > A.

Case 4 un)=—-1,n=0,...,k— 1, and u(k) =0 fora ke {1,...,N — 2}.
This control sequence yields x(n,u) = (1, —n) for n =0, ...,k while for n =
k+1,....,N—1wegetx(n,u)=Q "R —2==bk) Thus

v ((1,0), 1) Z’\"H + Z,B (min{e((1, —k), 1), £((1, —k), —=1)}, n — k)
k—1
= Z)‘”“ + By—k(Ak+1) Z v > A,
n=0

where we have used (6.12) for j = k in the second last inequality.

CaseS u(n)=1,n=0,..., N — 1. This yields x(n, u) = (1, n) and thus

v ((1,0), u) an_A

Summarizing, we obtain that any optimal control % for x = (1, 0) must satisfy
u%(0) = 1 because for u(0) = 1 we can realize a value < A while for u(0) # 1 we
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inevitably obtain a value > A. Consequently, the NMPC-feedback law puy(x) =
u’(0) will steer the system from x = (1,0) to x* := (1, 1).
Now we use that by construction f and £ have the symmetry properties

for all (¢, p) € X, which implies J((¢q, p),u) = J((g, —p + q), —u). Observe that
xT =(1,1) is exactly the symmetric counterpart of x = (1, 0). Thus, any optimal
control u;+ for x* must satisfy u;+ (n) = —u (n) for some optimal control u} for
initial value x. Hence, we obtain u;Jr (0) = —1, which means that the NMPC feed-
back py (x*) =u?, (0) steers xT back to x. Thus, under the NMPC-feedback law
we obtain the closed-loop trajectory (x,x+, x, x ™, ...), which clearly does not con-
verge to x, = (0, 0). This shows that the closed-loop system is not asymptotically
stable. g

Remark 6.24 1f we weaken the assumptions of Theorem 6.23 to o = 0 instead of
a < 0, then the inequalities in (6.22) will not be strict. Under this weaker assump-
tion, in Cases 1—4 in the proof of Theorem 6.23 we get Jy ((1,0),u) > A instead
of Jy((1,0),u) > A. This means that the control sequence u(n) = 1 from Case 5 is
still optimal but it is no longer the unigue optimal control sequence. Consequently,
the value of uy ((1,0)) depends on the optimization algorithm. The algorithm may
select uy ((1,0)) = 1—leading to a closed-loop system which is not asymptotically
stable—or it may select a control value which yields asymptotic stability. Thus, in-
stability may occur for o = 0 but it does not necessarily need to occur.

All results developed so far in this chapter remain valid for the time varying
case when the Controllability Assumption 6.4 holds uniformly in time, i.e., if the
following assumption holds.

Assumption 6.25 Consider the optimal control problem (OCPY). We assume that
the system is uniformly asymptotically controllable with respect to £ with rate 8
KLy, ie., for each x € X, each N € N and each n( € Ny there exists an admissible
control sequence u, € UV (x) satisfying

E("O +n’ xu,\- (n7'x)7 ux(n)) S ﬂ(ﬁ*(n()?x)’ Vl)
foralln e {0,..., N —1}.

Under this assumption, all results in this chapter carry over to the time-dependent
setting when we replace A and v in Proposition 6.12 by

Ak=£(no+k,xu*(k,x),u*(k)) and v=VN(no+1,xu*(1,x)).

Proceeding this way, one easily sees that all results remain valid.



6.6 Design of Good Running Costs £ 133

87 8 7
71 71
6 6
5 N=16 a<0 5 | a<0.5
c C N=16
49 4 4
N=8
3 3 N=8
1 N=4 4
2 2 N=4
N=2 —
1 T T T T N 1 sz T T T |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(9 (e}

Fig. 6.1 Suboptimality regions for different optimization horizons N depending on C and o in
(6.3) for a* = 0 (left) and a* = 0.5 (right)

6.6 Design of Good Running Costs £

In this section we illustrate by means of several examples how our theoretical find-
ings and in particular Theorem 6.14 in conjunction with Proposition 6.17 can be
used in order to identify and design running costs £ such that the NMPC feedback
law ppy exhibits stability and good performance with small optimization horizons
N. To this end we first visualize Formula (6.19) for different 8 € KLy, starting with
the case of exponential controllability (6.3). Note that in this case (6.6) and thus
(6.20) always holds.

Given a desired suboptimality level o* > 0, we use Formula (6.19) in order to
determine the regions in the (o, C)-plane for which ap > a* holds for different
optimization horizons N. Figure 6.1 shows the resulting regions for o* = 0 (i.e.,
“plain” stability) and o* = 0.5.

Looking at Fig. 6.1 one sees that the parameters C and o play a very differ-
ent role. While for both parameters the necessary optimization horizon N becomes
the smaller the smaller these parameters are, small overshoot C (i.e., values of C
close to 1) have a much stronger effect than small decay rates o (i.e., values of o
close to 0). Indeed, Fig. 6.1(left) shows that for sufficiently small C we can always
achieve stability for N = 2 while for C > 8 even values of o very close to 0 will
not yield stability for N < 16. For the required higher suboptimality level o > 0.5,
Fig. 6.1(right) indicates a qualitatively similar behavior.

For finite time control, i.e., controllability with ICLy-functions satisfying (6.4),
the situation is very similar. For instance, consider functions of the form g(r,0) =
cor, B(r,1) =cr, co > c1, and B(r,n) =0 for n > 2, i.e., ng = 2. This function
again satisfies (6.6), hence (6.20) holds. For this 8, Fig. 6.2 shows the analogous
graphs as in Fig. 6.1.

One immediately sees that the qualitative behavior depicted in Fig. 6.2 is very
similar to the analogous graphs in Fig. 6.1: again, reducing the overshoot ¢y we can
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Fig. 6.2 Suboptimality regions for different optimization horizons N depending on ¢¢ and c1/co
in (6.4) with ng =2 for o* = 0 (left) and a* = 0.5 (right)

always achieve stability with N = 2 regardless of the ratio c;/co while reducing ¢
and keeping cp fixed, in general we need N > 2 in order to guarantee stability.

Finally, in Fig. 6.3 we compare the effect of the overshoot co and the time ng
in (6.4) by using B(r,0) = cor, B(r,n) =cor/2 forn=1,...,np and g(r,n) =0
for n > ng. Again, it turns out that the time ny needed to control the system to x,
is less important than the overshoot: for all times ng > 1 we can always achieve
stability for cq sufficiently close to 1 while for fixed cq this can in general not be
achieved even for ng = 1, i.e., for controllability in one step. Note that for co < 2
this function 8 does not satisfy (6.6), thus for these values of ¢y Formula (6.19)
only provides a lower bound for «, cf. (6.18). Consequently, for ¢y < 2 the regions
depicted in Fig. 6.3 may underestimate the true regions. Still, for all ng the lower
bounds obtained from (6.18) ensure both asymptotic stability and the desired per-
formance bound « > 0.5 for N = 2 whenever cy is sufficiently close to 1.

Together, these examples lead to a conclusion which is as intuitive as simple:
an NMPC controller without stabilizing terminal constraints will yield stability and
good performance for small horizons N if £ can be chosen such that Assumption 6.4
is satisfied with a 8 € KLy with small overshoot. Thus, the criterion “small over-
shoot” can be used as a design guideline for selecting a good running cost £.

For some systems, it is possible to rigorously compute 8 in Assumption 6.4,
which leads to a precise determination of, e.g., C and o in (6.3). Examples where
this is possible also include infinite-dimensional systems, like the linear wave equa-
tion or certain classes of semilinear parabolic equations, cf. [3]. However, more
often than not precise estimates for § cannot be obtained due to the complexity of
the dynamics. Still, using heuristic arguments it may be possible to determine run-
ning costs £ for which the overshoot is reduced. In the remainder of this section we
will illustrate this procedure for two examples.
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Fig. 6.3 Suboptimality regions for different optimization horizons N depending on cp and ng in
(6.4)with ¢, =co/2forn=1,..., ng — 1 for o* =0 (left) and o* = 0.5 (right)

Example 6.26 'We consider Example 2.3, i.e.,
+ .
_(* Y _( sin(@(x)+u)
Flxw) = (xj) - (cos(z?(x) +u)/2)

arccos 2xz, x; >0,

with

2w —arccos2xy, x1 <0

U(x)= {

using the control values U = [0, 0.2], i.e., the car can only move clockwise on the

ellipse
X1 _
Ga)l=1)

As in illustrated in Fig. 6.4, we want to stabilize the system at the equilibrium x, =
(0, —1/2) T starting from the initial value xo = (0, 1/2) .

Interpreting X as a subset of R?, we can try to achieve this goal by using NMPC
without terminal constraints with the running cost

00x,u) = ||x — x4 ||* + . (6.24)

X:{xeRz

As the simulations in Fig. 6.5 show, asymptotic stability of x, = (0, —1/2) is
achieved for N = 11 but not for N = 10.

The reason for the closed loop not being asymptotically stable for N = 10 (and,
in fact, for all N < 10) is the overshoot in the running cost £ when moving along
the ellipse; see Fig. 6.6.

The fact that this overshoot of £ appears along the NMPC closed-loop trajec-
tory does in general not imply that the overshoot is present for all possible control
sequences u controlling the system to x,. However, in this example a look at the
geometry reveals that for £ from (6.24) the overshoot is in fact not avoidable: no
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Fig. 6.4 Illustration of the 1
stabilization problem 0.8
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matter how we control the system to x,, before we can eventually reduce ¢ to 0, we
need to increase £ when moving along the ellipse around the curve. Thus, loosely
speaking, the loss of asymptotic stability for N < 10 is caused by the fact that the
optimizer does not “see” that in the long run it is beneficial to move around the curve
and thus stays at the initial value x¢ for all future times.

Looking closer at the geometry of the example, one easily sees that the overshoot
is entirely due to the xj-component of the solution: while x, converges monotoni-
cally to the desired position x,, = —0.5, x1 first needs to move from 0 to 1 before
we can eventually control it to x,; = 0, again. From this observation it follows that
the overshoot in £ can be avoided by putting more weight on the x,-component.
Indeed, if we replace £(x, u) = ||x — x4 ||> + u? = (x1 — x51)% + (x2 — X42)% + u?
from (6.24) by

£, u) = (X1 — x21)% 45002 — x42)> + 12, (6.25)

then we obtain asymptotic stability even for N = 2, cf. Fig. 6.7.

Figure 6.8 shows the running cost along the closed-loop trajectory for this ex-
ample. The figure clearly shows that the overshoot has been removed completely,
which explains why the NMPC closed loop is stable for N =2.

We would like to emphasize that for removing the overshoot we did not use any
quantitative information, i.e., we did not attempt to estimate the function 8 in As-
sumption 6.4. For selecting a good cost function £ it was sufficient to observe that
putting a larger weight on x, will reduce the overshoot. On the basis of this obser-
vation, the fact that the weight “5” used in (6.25) is sufficient to achieve asymptotic
stability with N = 2 was then determined by a simple try-and-error procedure using
numerical simulations.

Example 6.27 As a second example we consider the infinite-dimensional PDE
models introduced in Example 2.12. We first consider the system with distributed
control, i.e.,

Yi(t,x) = 0yex(t, X) = yi(t. %) + p(y(t.x) — y(t.%)°) +u(t,x)  (6.26)



6.6 Design of Good Running Costs £ 137

e X,
e X%,
= 0.5¢ 0 ©0-0-0 ©-0-0-0-© ©-0-0-© ©-0-0-0 6 ©-0-0 6 © 4
:(\l
S
0
\S
\S
\G
o
-05 “oq -05
a0 5 0 15 TRTTT s A 5 0 15 20 25

Fig. 6.5 NMPC closed-loop trajectories for Example 2.3 with running cost (6.24) and optimiza-
tion horizons N = 11 (left), N = 10 (right)

Fig. 6.6 Running cost (6.24) 1.4
along the NMPC closed-loop
trajectory for N =11 1.2
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with control function u € L*°(R x 2, R), domain 2 = (0, 1) and real parameters
0 =0.1, p = 10. Here y; and y, denote the partial derivatives with respect to ¢ and
x, respectively, and y,, denotes the second partial derivative with respect to x.

The solution y of (6.26) is supposed to be continuous in € and to satisfy the
boundary and initial conditions

y(t,0) =0, y(,1)=0 forallr>0 and
(6.27)
y(0,x) = yo(x) forallx € Q

for some given continuous function yy : Q — R with y0(0) = yo(1) =0.

Observe that we have changed notation here in order to be consistent with the
usual PDE notation: x € Q2 is the independent space variable while the unknown
function y(z, -) : 2 — R in (6.26) is the state now. Hence, the state is now denoted
by y (instead of x) and the state space of this PDE control system is a function
space, more precisely the Sobolev space H(} (£2), although the specific form of this
space is not crucial for the subsequent reasoning.
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Fig. 6.7 NMPC closed-loop 1
trajectories for Example 2.3
with running cost (6.25) and
optimization horizon N =2

Fig. 6.8 Running cost (6.25) 6
along the NMPC closed loop
for N =2

1(x(n), 1y (x(n)))

Figure 6.9 shows the solution of the uncontrolled system (6.26), (6.27), i.e., with
u = 0. For growing ¢ the solution approaches an asymptotically stable steady state
v 7 0. The figure (as well as all other figures in this section) was computed nu-
merically using a finite difference scheme with 50 equidistant nodes on (0, 1) (finer
resolutions did not yield significantly different results) and initial value yy with
v0(0) = yo(1) =0, yol[0.02,0.31 = —0.1, yo0l[0.32,0.98) = 0.1 and linear interpolation
in between.

By symmetry of (6.26) the function — Yy, must be an asymptotically stable steady
state, too. Furthermore, from (6.26) it is obvious that y, = 0 is another steady state,
which is, however, unstable. Our goal is now to use NMPC in order to stabilize the
unstable equilibrium y, = 0.

To this end we consider the sampled data system corresponding to (6.26) with
sampling period 7 = 0.025. In order to obtain a more intuitive notation for the
solution of the sampled data system, instead of introducing the abstract variable z
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Fig. 6.9 Solution y(t, x) of Uncontrolled equation
(6.26), (6.27) withu =0
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as in Example 2.12 here we denote the state of the sampled data system at the nth
sampling instant, i.e., at time nT by y(n, -). For penalizing the distance of the state
y(n, ) to y, = 0 a popular choice in the literature is the L> functional

(. um ) = |y ) [fag +2Jum g, ©28)

which penalizes the mean squared distance from y(n, -) to y, = 0 and the control
effort with weighting parameter A > 0. Here we choose A =0.1.

Another possible choice of measuring the distance to y, = 0 is obtained by using
the H' norm

Hy(n, ')“HI(Q) = ”)’(”’ ) ||i2(sz) + HYX(”’ ) ”22(9)'
This leads us to define

() um) = [ym) | ag + 170 12
+ A un, ')”22(9)’ (6.29)

which in addition to the L? distance and the control effort as in (6.28) also penal-
izes the mean squared distance from y,(n, -) to y, x = 0. Figs. 6.10 and 6.11 show
the respective NMPC closed-loop solutions with optimization horizons N = 3 and
N=11.

Figure 6.10 indicates that for N = 3 the NMPC scheme with ¢ from (6.28) does
not stabilize the system at y, = 0, while for £ from (6.29) it does. For (6.28) we need
an optimization horizon of at least N = 11 in order to obtain a stable closed-loop
solution, cf. Fig. 6.11. For £ from (6.29) the right images in Figs. 6.10 and 6.11 show
that enlarging the horizon does not improve the closed-loop behavior any further.

Using our theoretical results we can explain why € from (6.29) performs much
better for small horizons N. For this example our controllability condition Assump-
tion 6.4 reads

e(y(n, ), un, ) < Co”t*(y(0,)). (6.30)
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Fig. 6.10 NMPC closed loop for (6.26) with N =3 and ¢ from (6.28) (left) and (6.29) (right)

Distributed control: L2, N=11 Distributed control: H1, N =11

y(x.t)

Fig. 6.11 NMPC closed loop for (6.26) with N = 11 and £ from (6.28) (left) and (6.29) (right)

For ¢ from (6.28) this becomes

Hy(n, ')”i2(sz) ‘H‘”“("’ ')HiZ(Q) < Co"||y(0, ')’|i2(9)‘ (6.31)

Now in order to control the system to y* = 0, in (6.26) the control needs to com-
pensate for y, and p(y(¢, x) — y(¢, x)3), ie., any control steering y(n, -) to 0 must
satisfy

”“(”’ ')HiZ(Q) ~ ”)’x("’ ) HiZ(Q) + Hp(y(n, )=y, ')3)|’iZ(Q)' (6.32)

Inserting this approximate equality into (6.31) implies—regardless of the value of
o—that the overshoot bound C in (6.31) is large if ||y, (n, )”L2(§2) > |1y(0, ) ||i2(9)

holds, which is the case in our example.
For ¢ from (6.29) Inequality (6.30) becomes

||y(n, ) ||i2(sz) + ”y)c(”’ ')HEZ(Q) + )»||u(n, ')||i2(sz)
< Co" (|30 )20y + 130 ) F2())- (6.33)
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Dirichlet boundary control: L2, N=15 Dirichlet boundary control: H1, N=15
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Fig. 6.12 NMPC closed loop for (6.34) with N = 15 and ¢ from (6.28) (left) and (6.29) (right)

Due to the fact that ||y, (0, )17, @ > 190, [ (o, holds in our example, inserting
the approximate equation (6.32) into (6.33) does not imply large C, which explains
the considerable better performance for £ from (6.29).

The fact that the H'-norm penalizes the distance to y, = 0 in a “stronger” way
than the L2-norm may lead to the conjecture that the better performance for this
norm is intuitive. Our second example shows that this is not the case. This example
is similar to equations (6.26), (6.27), except that the distributed control is changed

to Dirichlet boundary control. Thus, (6.26) becomes

Yi(t,x) =0y (1. %) — ye(t, %) + p(y(2, x) — y(1,x)°), (6.34)
again with & = 0.1 and p = 10, and (6.27) changes to

y(t,0) =up(1), y(t, 1) =ui(t) forallt>0,
y(0,x) = yo(x) forallx € Q
with ug, u; € L* (R, R). The cost functions (6.28) and (6.29) change to

(. ), um, ) = |y, )| 72y + o) +ur(n)?) (6.35)

and

(v, ) u, ) = 30 ) [Fag) + 960 ) 22
+ A(uo(m)* +ur(n)?), (6.36)

respectively, again with A =0.1.

Due to the more limited possibilities to control the equation the problem obvi-
ously becomes more difficult, hence we expect to need larger optimization horizons
for stability of the NMPC closed loop. However, what is surprising at first glance is
that £ from (6.35) stabilizes the system for smaller horizons than ¢ from (6.36), as
the numerical results in Fig. 6.12 confirm.

A closer look at the dynamics reveals that we can again explain this behavior with
our theoretical results. In fact, steering the chosen initial solution to y, = 0 requires
u1 to be such that a rather large gradient appears close to x = 1. Thus, during the
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2

L2(R)
to become large and thus causes a large overshoot bound C in (6.30). In ¢ from
(6.35), on the other hand, these large gradients are not “visible”, which is why the

overshoot in (6.30) is smaller and thus allows for stabilization with smaller N.

transient phase ||y, (n, )| becomes large, which in turn causes £ from (6.36)

6.7 Semiglobal and Practical Asymptotic Stability

We have seen in Theorem 6.21 that linearity of 8 in Assumption 6.4 guarantees
that for sufficiently large optimization horizon N the nominal NMPC closed-loop
system (3.5) will be asymptotically stable on the whole set X. Even though the
examples in the last section show that this condition can be fulfilled, it is easy to
come up with examples in which this property is not satisfied or at least difficult
or almost impossible to check. In this section we show that also in this case one
can guarantee that NMPC without stabilizing terminal constraints has reasonable
stability properties. However, to this end we have to weaken the stability notion
according to the following definition.

Definition 6.28 Consider the NMPC Algorithm 3.1 and the resulting nominal
closed-loop system (3.5) with feedback law 1y and solutions x,,, (k, x).

(1) We call the closed-loop system (3.5) semiglobally asymptotically stable with
respect to the optimization horizon N if there exists f € KL such that the fol-
lowing property holds: for each A > 0 there exists No € N such that for all
N > N and all x € X with |x|x, < A the inequality

|x,uN (ka x)‘x* S /3(|x|x*9 k)

holds for all £ € Ny.

(i) We call the closed-loop system (3.5) semiglobally practically asymptotically
stable with respect to the optimization horizon N if there exists B € KL such
that the following property holds: for each § > 0 and A > § there exists Ns a €
N such that for all N > Nj A and all x € X with |x|,, < A the inequality

[y (k)| < max{B(|x]x,. k), 8}
holds for all £ € Nj.

Semiglobal asymptotic stability relaxes the asymptotic stability condition by re-
quiring asymptotic stability only for the set of initial values x € X with |x|,, < A.
Although A can be chosen arbitrarily large by suitably adjusting the optimization
horizon N, for each finite N it will in general be a finite value.

Semiglobal practical asymptotic stability additionally relaxes the requirement
that the solution exactly tends to the equilibrium x, by only requiring that the solu-
tion behaves like an asymptotically stable solution until it reaches a 5-neighborhood
of x,. Similar to the value of A, the size § of this neighborhood can be arbitrar-
ily tuned by adjusting the optimization horizon N, but for each finite N it will in
general be a positive value.
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Of course, both definitions can be straightforwardly extended to the time varying
case with reference xref(n) instead of x..

Semiglobal and semiglobal practical asymptotic stability can be expressed via
the stability properties already introduced in Chap. 2. This is made precise in the
following lemma.

Lemma 6.29

(i) The NMPC closed loop is semiglobally asymptotically stable with respect to the
optimization horizon N if for each A > 0 there exists Nao > 0 such that for all
N > N there exists a forward invariant set Y with Ba (x4) C Y such that the
system is asymptotically stable on Y in the sense of Definition 2.14.

(i) The NMPC closed loop is semiglobally practically asymptotically stable with
respect to the optimization horizon N if for each § > 0 and A > § there ex-
ists N5 .a > 0 such that for all N > Nj a there exist forward invariant sets Y
and P with Ba(xy) C Y and P C Bs(xs) such that the system is P-practically
asymptotically stable on Y in the sense of Definition 2.15.

Proof (i) follows immediately from the definition. (ii) follows from the fact that
according to Definition 2.15 for each k € Ny either |x,, (k, x)|x, < B(|x|x,, k) or
Xy (k, x) € P holds. Since the latter implies |x,,, (k, x)|x, <& we obtain the asser-
tion. O

In order to give conditions under which the NMPC closed loop shows this be-
havior, it turns out to be convenient to work directly with the bounds By induced by
B from Assumption 6.4 via Lemma 6.8, cf. Remark 6.15. This amounts to replace
Assumption 6.4 by the following assumption.

Assumption 6.30 Consider the optimal control problem (OCPy). We assume that
there exist functions By € Ko, k € N, such that for each x € X the inequality

Vie(x) < Bi (€5 (x))
holds for all £k > 2.

Assumption 6.4 and the linearity and summability assumption on 8 imposed in
Theorem 6.21 can then be replaced by Assumption 6.30 with each By being linear
and satisfying limy_, o, By (r) < oo for all r > 0.

For obtaining semiglobal stability, it turns out that a “semiglobal” linearity as-
sumption on the By is sufficient. This is the statement of the following theorem.

Theorem 6.31 Consider the NMPC Algorithm 3.1 with optimization horizon N € N
and running cost £ satisfying o3(|x|y,) < £*(x) < aa(|xl|x,) for suitable a3, a4 €
Koo Assume that Assumption 6.30 holds for functions By € Koo which for each
R > 0and all r € [0, R] satisfy the inequality

Bi(r) < yer with constants ykR satisfying sup ykR < 00.
keN
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Then the nominal NMPC closed-loop system (3.5) with NMPC feedback law [y is
semiglobally asymptotically stable on X with respect to the optimization horizon N.
Furthermore, for each C > 1 and each A > 0 there exists Nc, A > 0 such that

Joo(x, uy) S CVN(x) < CVxo(x)
holds for each x € Ba(xy) N X and each N > Nc -

Proof We first show the existence of & € K, such that the inequality By (r) <o (r)
holds for all » > 0 and all k € N. To this end, we define yolg = SUPgen ykR for each
R > 0. Then the inequality By () < y&r holds for all k € N and all r € [0, R]. Now
for R=1,2, ... we inductively define 7' = yolo and

yAH = max{y R,y M.

This definition implies 78! > 7R and By (r) < 7%r for all r € [0, R], R € N.
Setting
ar):=R—-ryfr+ ¢ —-R+ 1Dy, re[R—1,R], ReN
we obtain a continuous, strictly increasing and unbounded function with &(0) = 0,
hence @ € K. Forr € [R — 1, R] and R € N we obtain
Bi(r) <7Rr =R —r)7Rr + (r — R+ 1)7%r
<R-rV*r+ 0 —R+ 17,

which shows By (r) <wo(r) for r € [R — 1, R]. Since this holds for each R € N, we
get the desired inequality By (r) < a(r) for all r > 0.

Now fix A > 0 and set L :=a(x(A)). Since for each N € N we have the in-

equality Vi (x) <o (€*(x)) < o(aa(|x|y,)), for x € Ba(xy) we obtain Vy(x) < L
and thus the inclusion

Ba(x,) € Vi (10, L]) =: Sy, (6.37)
where Vy, ! denotes the sublevel set
Vil (10, L]) := {x e X | Vv (x) € [0, L1}.
Defining further L' := oegl (L), forall x € Sy and all y ¢ B;/(x,) we obtain
Vv () < L=03(L") <a3(lyle,) < ).

This implies that for all Ne N and all x € Sy each optimal trajectory x,+(-, x) of
length N will remain in li 1/ (x4). This holds because if there exists k' € {0, ..., N —
1} with y = x,» (k’, x) ¢ B/ (x4) we obtain
N—1
In(x,u*) = €(xyr (ky x), u* (k) = €(xye (K, x), u* (K') = €5(y) > Vv (x)
k=0
contradicting the optimality of u*. Setting R := a4 (L") then implies £* (x,« (k, x)) <
R forall k =0,..., N — 1 and each optimal trajectory for Vi (x) with x € Sy and
arbitrary N € N.
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Now we fix an arbitrary o € (0, 1) and note that the values ykR can without
loss of generality be assumed to be increasing in k; otherwise we may replace ykR
by max; < yklf. Then by the same arguments as in the proof of Theorem 6.21 we
find Nao > 0 such that for all N > Na the inequality oy > a9 holds in (6.19)
with y = ykR. Now for each x € Sy we have shown above that the optimal tra-
jectory for Vy(x) satisfies £*(x,~(k,x)) < R for all k =0,..., N — 1 and thus
B (8% (x,+(k, x))) < ykRE*(xu* (k, x)) holds. Hence, by Remark 6.15(ii) Inequal-
ity (5.1) holds for all x € Sy. In particular, this implies Vi (f(x, un(x))) < Vy(x)
for all x € Sy and thus by definition of Sy as a sublevel set of Vy this set is for-
ward invariant. Hence, Theorem 4.11 can be applied with S(n) = Sy. Together
with Lemma 6.29(i) and (6.37) this proves semiglobal asymptotic stability and with
oo = 1/C we obtain the estimate for Joo (x, py). ]

Let us now turn to practical (and semiglobal) stability. We have seen so far that a
global linearity assumption on the By implies global stability while a “semiglobal”
linearity assumption, i.e., the existence of a linear upper bound for By on each inter-
val of the form [0, R], implies semiglobal stability. This observation naturally leads
to the conjecture that a “semiglobal practical” linearity assumption, i.e., a linear
bound on the By on each interval [p, R] with R > p > 0 should be sufficient for
semiglobal practical stability. As we will see, this is indeed the case, however, we
can formulate this condition in an even weaker way by simply assuming the exis-
tence of o € Koo with Bi(r) <o(r) for all k € N and all » > 0. This is because on
each interval [p, R] for R > p > 0 any so-function & can be bounded from above
by the linear function r +— yr for y = max,¢[p ) (r)/r. Hence, any Ko, function
automatically satisfies a “semiglobal practical” linearity assumption.

Before we can formulate the respective Theorem 6.33, we have to provide a tech-
nical lemma which we will need in its proof. Without the linearity assumption the
functions By appearing in the constraints (6.11), (6.12) in (6.14) become nonlin-
ear functions. Hence, (6.14) does no longer reduce to the linear problem (6.17), for
which our Formula (6.19) is valid. In the semiglobal case in Theorem 6.31 we could
circumvent this problem in the proof by ensuring that all finite time optimal trajecto-
ries starting in Sy stay in the region where By is linear. In the following semiglobal
practical case we have to cope with nonlinearities in the By (r) not only for large r
but also for small », which correspond to small neighborhoods of x.. Since there is
no way to exclude that the finite time optimal trajectories enter small neighborhoods
of x,—after all, this is precisely what we want them to do when we minimize the
distance from x,—we cannot use the same trick as in the proof of Theorem 6.31.
Instead, we show in the following lemma that changing the By in a region where By
is small does only slightly change the optimal value of (6.14), at least for trajectories
starting sufficiently far away from O, i.e., for values A¢ in (6.14) which are bounded
from below by some sufficiently large constant ¢. This statement is made precise in
the following lemma.
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Lemma 6.32 Consider increasing functions B,i : ]R(')F — Ra' forkeNandi=1,2.
Assume that these functions satisfy B,i(r) >r forall k e N, r >0 and that there
exist constants o, p > 0 with

|B,i(r)| <o forallr <pandk eN
fori=1,2and
B,l (r)= B,%(r) forallr > p and k € N.
Fori =1,2 and a constant { > p consider the optimization problems
Youo Mn =V

)»0 ,,,,, )LN,|,V )\.()

subject to the constraints (6.11), (6.12) with By = B,’;, and (6.38)

A’OE{’)\'I""’)\'Nf‘l’UEO‘

Then the inequality |o' — o*| < /¢ holds.

Proof We show the inequality ! <« + o/¢. Then the assertion follows by sym-
metry of the two problems.
In order to show the assertion, fix & > 0 and pick -optimal values A7, ..., A%,

V2, i.e., values which satisfy the constraints in (6.38) for i =2 and

N-1,2 2
Zn:O )‘n -V

<a®+e.
)L2
0

The proof now consists in constructing A!, v! satisfying the constraints in (6.38) for
i=1and

N—141 1
A, —V
Lo Pa =V K <o’ +e+o/C.
)‘0

To this end, we distinguish two cases:

Case 1 )»,% >pforalln €{0,..., N —1}.In this case B,l (A%) and B,%()»,%) coincide,
hence )»,11 = A%, n=0,...,N—1,and v! := 12 satisfy the constraints (6.11), (6.12)
for By, = B,i. This implies
N-1 N-1
1 Zn:O )‘rll —v! Zn:O )‘5 B vZ

a = I = 5 =a’te.
Ao Ao

Case 2 )L,% < p for some n € {0, ..., N — 1}. In this case, let n* € {0,..., N — 1}
be minimal with )\3* < p, which implies BIZV_n*Jrl (Aﬁ*) < 0. Since )»(% >¢>pwe
obtain n* > 1. From (6.12) with j = n™ — 1 it follows that
n*—1 n*—1
V2 Y a4 Byowri(A) < ) A +o (6.39)
n=1

n=1
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We now set )»,ll ::A% forn:O,...,n*—l,)»,ll =0,n=n*...,N—1 and

vl := max{v? — o, 0}. This definition implies

BN_ (M) =B _((3}) fork=0,....,n* —1,

N-1 N—-1
D m=) ap fork=0,....N -1
n=k n=k

and

Y ap=0 fork=n*....N-1,
n=k

which implies (6.11) for By = B,i. Since v, satisfies (6.12), for v; we get the in-
equality

j—1
2 2 1 .
= )‘n+l+BN / j+1 Z)‘ 1+BN /( ]+]) forjfn*—z.
0

1

vl <2

n

In case v! = 0 we furthermore get

Jj—
Z L+ By_j(33,) forj=n*—1

and in case v! = v? — o from (6.39) and the definition of the A,ll we obtain

n*=2 j—1

1_.2 2 1 1 1 . *

vV =1V —0 < E iy < )‘n+1+BN—j()‘j+1) for j >n* —1.
n=0 n=0

This shows (6.12) for B! = B/ Thus, since A} = A3 > ¢, the values A}, ..., A} _,,

v! satisfy all constraints in (6.38) and we can conclude

N—1,1 N-1,2 1 N-1,2 .2
a1<Zn 0)L <Zn:0)“n_v <Zn 0)L +U< 2 ©
1 - 2 - 2 -

)”0 )‘O )\'0 ¢

where we used A(l) = k(z) and )% >
Thus, in both cases we obtain

1 2 o
a <a”"+e+ —,

¢
which shows the assertion since ¢ > 0 was arbitrary. ([

Now we are able to prove our main result on semiglobal practical asymptotic
stability of the NMPC closed loop.

Theorem 6.33 Consider the NMPC Algorithm 3.1 with optimization horizon N € N
and running cost £ satisfying az(|x|y,) < £*(x) < aa(|x|y,) for suitable a3z, a4 €
Koo Assume that Assumption 6.30 holds for functions By € Koo which satisfy

Bi(r) <a(r)
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for some & € Koo, all k € N and all r > 0. Then the nominal NMPC closed-loop
system (3.5) with NMPC feedback law 1y is semiglobally practically asymptotically
stable on X with respect to the optimization horizon N.

Furthermore, for each C > 1 and each A > § > 0 there exists Nc s o > 0 such
that

Jx(x, uy) < CVy(x) < CVso(x)
for all x € Ba(xs«) N X and all N > Ncs.a where k* € Ny is minimal with

Xy k¥, x) <6.

Proof We first show the a priori estimate

Vn (f(x, v (0)) <@(Vi(x)) (6.40)
forall N > 2 and all x € X. Indeed, we have
N—1
Vv () = D (xu, k. ) () = €% (3, (1, 1)) = £5(f (x, e (1))
k=0

By Assumption 6.30 this implies
VN (f(x, v () < By (€°(f (x, un () =@(€(f (x, v (0)))) = @(Va (),

i.e., (6.40). Furthermore, we observe that with &y = @3 and oy = @ o @4 the inequal-
ities
ar(|xly,) < Va(x) < aa(lxly,)

hold for all N > 2 and all x € X.
Now we fix arbitrary A > § > 0. We pick R > 0 as in the proof of Theorem 6.31
and define the values

ro == a1 (8), ric=a (o) and =@ '(r).

These definitions yield the implications

Vn(x)<ro = |xlx, =9, (6.41)
W) = = Vn(f(x.uvm))) <ro (6.42)

and
VW) >=r = al*@))=rn = @w=¢, (6.43)

where we used (6.40) for (6.42) and Assumption 6.30 together with the bound & on
the By, for (6.43).
Now we pick o € (0, 1), set 0 = (1 — )¢ /2 and p =@ (o). Defining y :=
max,¢[p,R) &(r)/r we obtain
Bi(r) <wu(r) <yr forallre€[p,R].
Defining further
max{yr, Bx(r)}, r€[0,R],

Bl(r)= d BXr)=
(r) =yr an () {yr, r>R
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we get B,,l r)= B,?(r) for r > p and B,: r) < B,%(r) <a(r) <o for r € [0, p].
Hence, B,l and B,f satisfy the assumptions of Lemma 6.32. Since B,l (r) is linear in
r, by the same arguments as in the proof of Theorem 6.21 we find N5 o > 0 such
that (6.19) for B, = B,l yields o > /2 + 1/2 for all N > Ns a. This implies
a! > /2 + 1/2 in Lemma 6.32 and consequently

> >ap/241/2—0/C =ap/2+1/2 — (1 —ap)/2 = .

Now using the set Sy = Vy 1([0, L]) 2 Ba(xy) defined in the proof of Theo-
rem 6.31, as in this proof we obtain that each optimal trajectory starting in x € Sy
satisfies £* (x,*(k, x)) < R. Setting Y = Sy \ V,\71 ([0, r1]), by (6.43) we furthermore
obtain £*(x) > ¢ for all x € Y. Hence, for this set Y the variant of the optimization
problem (6.14) obtained from Remark 6.15(ii) and (iii) coincides with the optimiza-
tion problem from Lemma 6.32 with i = 2, yielding & = &> > g in Theorem 6.14.
Consequently, we obtain (5.1) with ¢ = forall x € Y.

We claim that this implies that the sublevel set V,, ! ([0, ro]) is forward invari-
ant for the closed-loop system, i.e., that Vy(f(x, un(x))) < ro holds whenever
Vn (x) < rg holds. Indeed, if Vy(x) € [r1, rol, then we have x € Y and thus (5.1)
holds with « = ¢ > 0, which implies Vy(f(x, un(x))) < Vy(x) < rg. On the
other hand, if Vi (x) <rj then (6.42) yields Vy (f (x, un(x))) <ro.

Thus, defining P = Vil([O, rol) and S = Sy, all assumptions of Theorem 4.14
are satisfied and furthermore the inclusions Ba (xx) € S and P C Bs(x,) hold by
(6.37) and (6.41). Hence, Theorem 4.14 yields semiglobal practical stability using
Lemma 6.29(ii) and the estimate for Ji+ (x, i) by choosing ap = 1/C. O

We end this section by a simple example which illustrates the practical stability.

Example 6.34 Consider the control system (2.1), i.e.,

x+=x+u,

with equilibrium x,, = 0 and running cost
0(x,u) = x>+ |ul.

The system is controllable to O in finite time, which is easily seen if for initial value
x we choose 1, (0) = —x and u, (n) = 0 for n > 1. The resulting trajectories satisfy
Xy, (n) =0 for n > 1. In particular, we obtain

N-1

VN () < D (xu, (), ur () = £(x, 4, (0)) = x> + |x|
n=0

and since £*(x) = x2 this shows that Assumption 6.30 holds with By (r) =r + /7.
In particular, the assumptions of Theorem 6.33 hold with @(r) = r + +/r, which
ensures semiglobal practical asymptotic stability of the NMPC closed loop.

On the other hand, for the given running cost Assumption 6.4 does not hold with
B linear in r. We show this property by contradiction: Suppose that Assumption 6.4
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N=2 N=3 N=4

X

COO0O —A—aaa
ONPDO=NADOON
X

0000 —A—aaa
ONPDO=NLPODOON

COO0O ——aaa
ONPDO=NADON
X

o
(&)
-
o
-
[&)]
o

5 10 15
n n n

o
(&)
-
o
-
&)

Fig. 6.13 Closed-loop behavior for optimization horizons N =2, 3,4

holds with 8 linear in r, i.e., B(r,n) = p,r with p, — 0. Then Assumption 6.4
implies

|x ()] < £(xu, (), ux () < B(£*(x), 1) = pux? (6.44)

for all x € R and all n € Ny. Denoting C := SUpP,eN, Pn this implies |uy(n)| < Cx2,
which in turn yields

|xux (n, x)| > x| — Cnx?.
Together with (6.44) we obtain
onx? > E(xux (n), ux(n)) > |qu (n,x)’2 > (le - Cnxz)z.
Since p, — 0 there exists n* € N such that p,» < 1/2, which implies
x2/2> (x| — Cn*x?)?

for all x € R. This, however, is not possible for |x| < 1/(Cn*2), hence Assump-
tion 6.4 cannot hold with B(r, t) linear in r.

As a consequence, Theorem 6.21 is not applicable and we cannot expect asymp-
totic stability of the closed loop. The numerical simulations shown in Fig. 6.13
confirm this behavior. From left to right the closed-loop trajectory for N =2, 3,4
with xo = 2 is shown. As Theorem 6.33 predicts, the solutions converge to smaller
and smaller neighborhoods of x, = 0 as N increases, but they do not converge to
x5 = 0 for fixed N.

6.8 Proof of Proposition 6.17

In this section we provide the proof of Proposition 6.17. We start by observing that
Assumption 6.4 for n = 0 implies B(r, 0) > r from which the inequalities B (r) > r
and y, > 1 follow.

Now, the main part of the proof consists of three steps. In the first step we trans-
form (6.17) into an equivalent form more suitable for our analysis. In the second
step we show that «; from (6.19) is the explicit solution of this equivalent problem
if we remove some of the constraints. Since the solution of the minimization prob-
lem with fewer constraints is always less or equal than the solution of the problem
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with all constraints, this proves (6.18). Finally, in the third step we show that under
condition (6.6) the removed constraints are always satisfied for the optimal solution
of the problem from Step 2, which shows (6.20). Some technical equalities that we
need throughout the proof are collected in Lemma 6.36 at the end of this section.

Step 1 The optimal value o of (6.17) equals the optimal value of the following
optimization problem:

min | — (y2 = DAy (6.45)
subject to the (componentwise) constraints A = (A1, ...,Ay—1) | >0 and
N-2
Y iy <yn—1, (6.46)
n=1
N-2
Z)&n_VN—j)Lj'i‘)‘N—lfov j=1,...,N =2, (6.47)
n=j
N-2
An—VYN—j+1rj +Y2An-1 =0, j=1,...,N-2. (6.48)

3
Il

J

Proof of Step 1 We first show that for the optimal values Aq,...,Ay—1 and v in
(6.17) the Inequality (6.12) for j = N — 2 is an equality. To this end, assume that
Inequality (6.12) for j = N — 2 is strict, i.e., that it holds with <.

If Axy—1 > 0, then we can—at least slightly—reduce A _; without violating the
Inequalities (6.11) and (6.12). Since this reduces the value under the minimum in
(6.17), this contradicts the optimality of Ag, ..., Ay—1 and v.

If Axy—1 =0, then the strict inequality (6.12) for j = N — 2 and the inequal-
ity Ay—2 < B3(An_2) implies that (6.12) for j = N — 3 must be strict, too. Thus,
assuming Ay—_» > 0 leads to a contradiction similarly to the case Ay_; > 0, above.
Proceeding inductively yields A1 = A2 = --- = Axy_1 = 0 and consequently the right
hand side of (6.12) for j = N — 2 equals zero. Since v > 0 this contradicts this in-
equality being strict.

Since we have shown that equality holds in (6.12) for j = N — 2, we obtain the
expression

N-2 N-2
V=Y At Ban-1) =) dn+y2hN-1. (6.49)
n=1 n=1

Inserting this into the expression under the minimum in (6.17) and using 1o = 1
yields

N-1 N-2

Dh= dn—vhnoi=h+ Ay —yiv2=1— (2= Din1.

n=0 n=1
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This shows that the optimization objectives in (6.17) and (6.45) coincide. In order to
show that the optimal values coincide it hence remains to show that the constraints

(6.11), (6.12) with Ao = 1 are equivalent to (6.46)—(6.48).
To this end, we first note that (6.11) for kK = 0 becomes

N-1
Z An S YNAO = VYN,
n=0

which is equivalent to (6.46) since Ag = 1.

The remaining inequalities (6.11) for k =1, ..., N — 2 can be rewritten as
N-2
AN—1 J YN—kAk — an, k=1,...,N =2,
n=k

which is exactly (6.47) if we change the index from k to j.
Inserting the expression (6.49) into (6.12) and shifting the summation index by
1, the Inequalities (6.12) can be equivalently rewritten as

N-2
VAN—1 S YN—j+1hj — an, Jj=1...,N=2,
n=j
which is (6.48). This shows the claim in Step 1. U

In the following second step we remove the constraints (6.47) from Prob-
lem (6.45) and provide an explicit solution for this relaxed problem.

Step 2 The optimization problem (6.45) with constraints (6.46), (6.48) and A >0
has the solution

mkinl —(2—DAiy-1=ay

with a y; from (6.19). Furthermore, A* = (A7, ..., Ay_,) with

i—1
dy-1-j—1 V2 .
AN i =— Av_1, i=1,...,N—2 (6.50)
N—1-—i (jl:[l dN*]*j )dN]i N-—1

withdj =1 — yy_j41 is a corresponding minimizer.

Proof of Step 2 First observe that y» = 1 implies min; 1 — (y2 — 1)Ay—1 =1 and
that A1 = --- = Ay—1 = 0 is a minimizer. In this case one easily verifies the assertion
of Step 2, hence in what follows we will assume y, > 1, which implies y; > 1 for
all j > 2.
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We can equivalently rewrite the constraints (6.46), (6.48) compactly as AL < b
(interpreted componentwise), where

11 ... 1 1

YN — 1
d] 1 N 1 2 0
A=|0 d . : : and b:= :
; . . L » 0
0 ... 0 dyva 0

with d; defined as above. This equivalence follows since the first inequality in AA <
b is equlvalent to (6.46) while the remaining N — 2 inequalities are equivalent to
6.48),j=1,...,N—2.

Now denote by A* > 0 a minimizer of (6.45) satisfying the constraints AA* < b.
We show by contradiction that AL* = b holds. To this end, assume that AL* £ b
holds, i.e., that there exists k € {1, ..., N — 1} such that

> Ak < bi (6.51)

n=1

holds. In order to obtain the contradiction, note that y» > 1 implies that minimizing
(6.45) is equivalent to maximizing Ay_1.
If (6.51) holds for k = 1, then we define the constants

e::bl—ZAlnk;>O, 8::—_max di >0

i=1,...,
and choose £ > 0 such that

N-2 N—2—i
] (1+3)
8(1 ) ) 5.

i=1
Weset Ay—1 =A}_; + & and

e (N2
)\iZ)\i+8)/zw, i=1, SN =2
This implies
N—-1 N—-1 N-2
. . _ (1 +5)N—2—n .
Z Aphy = Z Aph, + €+ Z 8V2W <ApA,+e=b;
n=1 n=1 n=1

and, fork=2,...,N —1,

(1+5)N 2—n . _
ZAkn n—ZAkn )h tEY——— sN—1-n +AkN—l()¥N,1+8)
n=1

( )N 1-k N— B (1+5)N 2—n B
Ze + ye.
n=k

N-1
=D Ak +diiEyr—— g SN—k T gN—1-n
n=1
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Now we can estimate

dk—lgy25N77k ‘EVZW-%VQE
n=k

A+8V-1=+ L2 (14N

N-2
. (1+oN-1k (14 oN=2"
:8<dk]y23N7—k +Y gyt

n=k
o s, O A T R
SE\ OV v 8N k + 7/2 8N 1—n +V2

n=

~ —2—k

&

8Nylk( (1+6)le+ E (1+8)N2kn+5le> O
n=0

where we used (6.58) in the last step. This shows

N-1 N-1
Z Akn)‘«n = Z Akn)\; = bk-
n=1 n=1

Thus, we have constructed a vector A > 0 satisfying the constraints AA < b and
AN-1> Ay_,;- Since Ay—1 must be maximal for the optimal solution, this contra-
dicts the optimality of A*. Hence, (6.51) cannot hold for k = 1.

Now assume (6.51) for some k > 2. Let k* be maximal such that (6.51) holds
for k = k*. Then, since d; < 0, A}._, is the only entry with negative sign in this
inequality and thus it must be strictly positive since by = 0. On the other hand,
A%._; appears with positive sign in all inequalities for k < k* — 1 and it does not
appear at all in all inequalities for k > k* 4 1. Thus, for & > 0 sufficiently small the
sequence

=y A=) = (A o Ay M — & M - A g)

satisfies the constraints AA < b and yields the same optimal value in (6.45) as A*.
Thus, A is optimal, too. However, the inequality Az»—1 < A}._, implies that (6.51)
holds for A and k = 1. By the first part of the proof, this contradicts the optimality
of A. Hence, (6.51) cannot hold for k > 2.

The considerations made so far show that the optimal A* satisfies AA* = b. We
use this linear system of equations in order to prove (6.50) by induction over i.

For i = 1, (6.50) follows immediately from the last equation in AA* = b. For the
induction step i — 1 — i we use the (N —i)th equation in AA* = b in order to obtain

1
1 l
AN == (sz\zv 1D Ao k)
—dN_1- Pt
Using the induction assumption, i.e., (6.50) for i — 1 instead of i we can continue

: . =
%(VN‘NI +Z)‘le)

_dN—l—z k=1
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1kl
—lel = le, delfk
1

-y
- y2N1(1+lZ

Jj=
”i—[ll—dN_l_j 1 )
k=1 j= /

| —Adv-1-j —dN-1-k

_ Py (H(l—dN -7 H (—dy-1 ]>>

nj 1(=dn-1-j) (5 j=k+1

i—1i—1

3]
= (1 —dy-1-))
nlj:1(_dN—l—j) k=0 j=1

i—1
dy—1—j—1 oo,

dy_1—
j=1 ON-1=J

where in the second last step we have used Lemma 6.36(i) with §; = —d;. This
shows (6.50) for i.

Finally, we use this formula in order to show that &, from (6.19) is the optimal
value for the problem defined in Step 2. To this end we rewrite the first equation
of AM*=basyn —1—-Ay_, = Z,](V:? Ak Inserting (6.50) into this equation and
using the definition d; =1 — yy_ ;41 we obtain

. N-2 N-=-2 [/k—1 dN_l—j _1 » .
yw—1=ro =3 == (]] . AN-1
k=1 -

dy_1-
k=1 j=1 ON-1=j

N=2 /k-1
Vi+2 V2 *
=1 \ j=1 Vi+2 Vi+2
N-2 N-2
= 2 WVji2— D] |r2iy_
Vj+2—1< (1_[)/]+ l—[ Vi )) N=1

j=1 k=1 j=k+1
N 1 N k—1 N

-1 ,_1(2(11% [T o-0) s
j=3 Vi k=3 \j=3  j=k+1

Il
1=
—
N
—

S
1:12

(V] - 1)) VZ)LN 1

j=3 Vi~ 1 =3
ol Y
=(H - Qmwl
=3V
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where we used (6.59) in the second last equality. Solving for A}, _; yields

* yN - 1
Ao = 1
py2+
and inserting this into (6.45) we obtain
. N (r2—Dyv—1)
minl —(yp —DAy_1=1-(p—DAy_=1— —"T""F""—.(652)
py2 +1
The denominator of this fraction can be written as
N y N vi
j j=37J
py,+1= Il ptl=—=—"—p (-1
Qlw—l [ =1

N N
_ [lvi—Ilj=2(vi—D
M= =1
Inserting this into (6.52) we finally obtain
(2= D = DT =D
N N
[Ty —Ilj=; =D

which is exactly oy from (6.19). This finishes the proof of Step 2. ]

minl —(y — DiAy_1=1-—

Let us summarize what we have proved so far: In Step 1 we have shown that
Problem (6.17) can be equivalently reformulated as (6.45) subject to the constraints
A >0, (6.46), (6.47) and (6.48). In Step 2 we have shown that the optimal value
of the Problem (6.45) subject to the constraints A > 0, (6.46) and (6.48) is exactly
ay from (6.19). Since this is the optimal value of a minimization problem which
is equivalent to (6.17) but with fewer constraints, o, must be less or equal than the
optimal value of (6.17). Hence, we have shown (6.18).

The proof of the remaining equation (6.20) provided (6.6) holds is an immediate
consequence of our final Step 3.

Step 3 If (6.6) holds, then the optimal solution A* of Problem (6.45) subject to the
constraints (6.46) and (6.48) satisfies the constraints (6.47).

Proof of Step 3 We prove the assertion by showing that for A = A* the Inequal-

ities (6.47) for j =2,..., N — 2 are implied by the respective inequalities (6.48).

Since (6.48) holds for A* by definition of the constraints in Step 2, this shows (6.47).
To this end, it is sufficient to show that

—YN—jA; AN S —YN— 1A AN
or, equivalently,

(2= DAN_y = (Yn—jr1 — YN=j)A] (6.53)
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holds for j =2, ..., N — 2. Inserting (6.50) one sees that (6.53) is equivalent to

N—j+1 N—j
[T wi—v=njri—wp[[n (6.54)
i=2 i=2

Now we define ¢, := B(r, n)/r. Note that the ¢, are well defined since 8 is linear
in r and that the identity y; = Zﬁ;(l) cn holds. Property (6.6) then implies!

Cntm < cpcy foralln,m e Ny. (6.55)

In order to prove (6.54) we prove the auxiliary inequality

N—j N—j+k—1 N—j
[Toi-D > ea—evjua [[ri=0 (6.56)
i=2 n=k i=2

for arbitrary k e Nand j =1,..., N — 2 by induction over j, starting with j =
N — 2. In this case for arbitrary k € N we get

N—j N—j+k—1 N—j
[[Toi-D > a—cevjma [[vi=02—Dx+ar) —ann
i=2 n=k i=2

= Y2Ck — Ck — Ck41
=C0oCk + C1Ck — Ck — Ck+1
>ck+ kg1 —ck— k41 =0

using (6.55) for m =k and n = 0 and 1 in the >-estimate. For the induction step
Jj + 1 — j and arbitrary k € N we can write the right hand side of (6.56)

N—j N—j+k—1 N—j
[Toi-D Y a—enjmar [[ %
i=2 n=k i=2
N—j—1 N—jtk—1
=D [] w-D > o«
i=2 n=k
N—j—1 N—j+k—1 N—j—1
+VN—j|: l—[ vi—1 Z Cn — CN—jtk—1 H J/i:|
i=2 n=k i=2
N—j—1 N—j+k—1
= l_[ i — 1)<CkVN—j - Z Cn)
i=2 n=k
N—j—1 N—j+k—1 N—j—1
+VN—j|: l—[ vi—1 Z Cn — CN—jtk—1 V;}
i=2 n=k+1 i=2

n fact, (6.55) is the reason for calling (6.6) “submultiplicativity”.



158 6 Stability and Suboptimality Without Stabilizing Constraints

Now the induction assumption implies that the second summand is > 0, since the
term in square brackets is the right hand side of (6.56) with j 4+ 1 and k + 1 instead
of j and k. For the first summand, using (6.55) we can estimate

N—j—1 N—j—1 N—j—1 N—j+k—1
CkYN—j = Ck Z Cn = Z CkCn = Z Ck4n = Z Cn.
n=0 n=0 n=0 n=k

This shows that the term in brackets and thus the whole first summand is > 0, which
proves (6.56).

Using the equality yx = Zﬁ;(l) cx and co > 1, the left hand side of the desired
inequality (6.54) can be estimated by

N—j+1 N—j N—j N—j N—j
[] wi—-v= H(yl-—l)(ch—l) >[[oi=D) e
i=2 i=2 n=0 i=2 n=1

For the right hand side we obtain

N—j N—j
(YN—j+1 —YN—j) 1_[ Yi =CN—j l_[ Vi
i=2 i=2
Hence, (6.56) for kK = 1 implies (6.54) and thus (6.53). This proves Step 3. O

Step 3 implies that the optimal solution &, from (6.19) of (6.45) subject to the
constraints (6.46) and (6.48) obtained in Step 2 equals the optimal solution of (6.45)
subject to the constraints (6.46), (6.47) and (6.48). Since by Step 1 the latter prob-
lem is equivalent to (6.17), this proves (6.20) and thus finishes the proof of Propo-
sition 6.17.

Remark 6.35 In Step 3 we have shown that under the condition (6.6) the conditions
(6.47) are redundant in (6.45). Since in Step 1 we have shown that the conditions
(6.47) are equivalent to (6.11) fork =1, ..., N — 2, this shows that under condition
(6.6) the optimal value of Problem (6.17) does not change if we remove the con-
straints (6.11) for k =1, ..., N — 2. While this has no consequences for the results
in this book—since we get these constraints for free from the optimality of the tra-
jectory x,+ (-, xg) via Lemma 6.10—this observation may be useful in other settings,
e.g., when analyzing NMPC with nonoptimal trajectories.

We end this section with a technical lemma we needed in the preceding proof.

Lemma 6.36
(i) Forall §1,...,0y—2€Randalli €{l,..., N — 1} the equation

i1 i—1 fk—1 i1
H(l+3N—1—j)=Z(H(1+5N—1—j) l_[ 5N—1—j>- (6.57)

j=1 k=0 \ j=I j=k+1

2

holds (with the usual convention ey = Lif jo < j1)-



6.9 Notes and Extensions 159

(ii) Forall§ eRandk €{l1,..., N — 1} the equation

N—-2—k
(1 +8)N717k — Z (1 _I_(s)N*z*k*nSn_'_aN*l*k (658)
n=0
holds.
(iii) Forall y3,...,yN € R the equation
N N
[1ri= ]‘[(m—l)+2(1‘[w [1 (V]—1)> (6.59)
=3 k=3 \j=3  j=k+1
holds.

Proof (i) We prove (6.57) by induction over i. For i = 1 the equality is obvious.
Under the induction assumption that (6.57) holds for i — 1 instead of i we obtain

i—1 i—2 (i—1)—1

[Ta+svap=]]a+snva-p+ovaa [[ A+onv-1-))

j=1 Jj=1 j=1
i—2
= (1+8N717])
j=1
(i-D)—1 /k—1 (i—1)—1
+ON-1-(i-1) Z (1_[(1+5N1j) l_[ 5N1j>
k=1 /—1 j=k+1
=z(n<1+3N o T v )
k=0 j=k+1

i.e., (6.57) fori.

(i) Formula (6.58) follows immediately from (6.57) by setting §; = --- =
Sy—1=dandk=N —1i.

(iii) Using (6.57) with 6y _1—j = yj42 — 1 andi = N — 1 yields

N2 N=2 k-1
l_[ Yi+2 = Z (1_[ Yi+2 1_[ (Vj+2 — 1))
j=1

k=0 Jj=k+1

Writing the summand for k£ = 0 on the right hand side separately and using the
summation indices j + 2 instead of j and k + 2 instead of k yields (6.59). O

6.9 Notes and Extensions

The conceptual idea of establishing stability and performance of NMPC schemes
via relaxed dynamic programming ideas as outlined in Sect. 6.1 was to our knowl-
edge first used by Shamma and Xiong [11]. However, in this reference different
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inequalities from (5.1) were used and the inequalities were verified by numerical
evaluation. In the form presented here, relaxed dynamic programming was intro-
duced for the analysis of NMPC schemes in Griine and Rantzer [6], where also a
first controllability condition for verifying this inequality was given.

The asymptotic controllability condition with respect to £ from Sect. 6.2 was in-
troduced in Griine [5] and most of the results in Sects. 6.2-6.5 were taken from this
reference with minor modifications and extensions. Exceptions are Proposition 6.17
and Theorem 6.21 and their respective proofs, which were taken from Griine, Pan-
nek, Seehafer and Worthmann [7]. Note that in [7] Proposition 6.17 is proved in a
more general setting (and with an even more involved proof); we will sketch this
setting in Sect. 7.4.

Section 6.6 summarizes and extends discussions from [5] and [7]. Example 6.26
in this section has not been published before while Example 6.27 was taken from
Altmiiller, Griine and Worthmann [2]. Sect. 6.7 consists of previously unpublished
material, however, the semiglobal practical stability result in Theorem 6.33 was
proved before by Grimm, Messina, Tuna and Teel in [4, Theorem 1] using a dif-
ferent proof technique and slightly different technical assumptions. Corollaries 2
and 3 in [4] provide counterparts of Theorems 6.31 and 6.21 proving semiglobal
and “real” asymptotic stability, respectively, under similar conditions as in our The-
orems. Since the results in this reference are quite similar to our approach presented
in this chapter, we will briefly discuss the main differences.

The decisive difference to our results is that in [4] bounds of the type Vi (x) <
ay (|x|y,) for ay € K« independent of N together with suitable bounds on «y and
the other /o functions involved are used while our analysis relies on the Assump-
tions 6.4 or 6.30. The main advantage of using these assumptions instead of the
bound Vi (x) < ay(|x|y,) lies in the fact that the fine structure of B(r, k) or By—
in particular the dependence of these functions on k—can be used. The benefit of
using this structure is nicely illustrated in the exponential controllability case (6.3):
for B(r, k) = Co*r and £*(x) < as(|x|x,) we obtain the bound Vi (x) < ay(|x]y,)
for ay (r) = Cas(r)/(1 — o). Given C| < C; and o1 > o, with

Cy Cy

l—0op 1—0p

this will thus yield the same «ay. Hence, using the upper bound ay in the stability
analysis, we cannot distinguish between large overshoot C, and fast decay o, and
small overshoot C| and slow decay 0. However, our analysis in Sect. 6.6 based on
Assumption 6.4 shows that the pair C1, o7 provides a much better stability behavior
than C», 0. Particularly, Fig. 6.1 shows that for C sufficiently close to 1 we always
enter the region where stability holds for N = 2, a fact which remains invisible when
looking only at ay .

Another advantage of our approach is that it automatically leads to suboptimality
estimates which are not provided in [4]. On the other hand, a major advantage of the
approach in [4] is that it allows us to handle nonpositive definite running costs £ via
a suitable detectability condition. We will discuss this aspect in Sect. 7.3.

Besides the approach presented in this chapter and [4] there are various other
approaches which ensure stability of NMPC schemes without stabilizing terminal
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constraints and terminal cost. Probably the earliest reference is Alamir and Bornard
[1], another well known reference is Jadbabaie and Hauser [8]. Both have already
briefly been discussed at the end of Sect. 6.1; here we only remark that these refer-
ences do not provide bounds on the optimization horizon N.

We finally mention that inverse optimality in the sense of Theorem 5.24 does
in general not hold for problems without stabilizing terminal constraints, since the
modified running cost used in Theorem 5.24 may become negative, see Problem 6,
below.

6.10 Problems

General remark: all NMPC algorithms in the following problems are meant without
stabilizing terminal constraints.

1. Consider a control system (2.1) on X =R¢ and U = R™ which is exponentially
controllable to x, = 0. This means that there exist constants K > 0and n € (0, 1)
such that for each x € R? there is a control sequence u, € UV (x) such that

|, G, )| < K" llx |

holds for all k € Ny.

(a) Show that the system satisfies the Controllability Assumption 6.4 with g €
KLy of type (6.3) for any running cost of the form £(x,u) = x ' Qx with
positive definite matrix Q € R?*4.

(b) Does the assertion from (a) also hold for a running cost of the form £(x, u) =
x T Ox + u' Ru for positive definite matrices Q € R?*¢ and R € R"™*™? If
not, which additional property must be satisfied?

Hint: Look at the hints for Problem 2 in Chap. 4.

2. Consider a function 8 € KL of the form (6.4).

(a) Prove that there exist C > 1 and o € (0, 1) such that for the function 5 e KLy

of type (6.3) with B(r, n) = Co"r the inequality

B(r,n) < B(r,n)

holds for all n € Ny and all » > 0.
(b) Determine C > 1 and o € (0, 1) (with C as small as possible) such that the
inequality from (a) holds for the values nop =2, co =2 and ¢y = 1 in (6.4).
(c) Compute « for B(r,n) and ,g (r, n) for the values from (b) and N =3,4,5,6
using (6.20) (MAPLE or MATLAB may be helpful here). Which function
provides better values?
3. Consider the control system

o+ 1) = <_;1 lil)xm) + (?) u(n)

with x(n) € X =R, u(n) € U =R and running cost £(x, u) = max{||x| co, u}.
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(a) Given the initial value x(0) = (x, x2), use the control sequence u(0) =
%xl —2x2, u(l) = %xl + %xz, u(n) =0 for all n > 2 to compute the
minimal horizon length N for which stability can be guaranteed.

(b) Try to reduce the minimal required horizon length N from (a). To this end,
change the term u in the running cost £ to nu for some n € R(')" and analyze
the impact of this change.

Hint for (a): Construct B such that Assumption 6.4 holds and Corollary 6.19 is

applicable.

4. Consider a control system (2.1), an admissible feedback law p : X — U and
a Lyapunov function V : X — Ra' for the closed-loop system xT = g(x) :=
f(x, u(x)). Show that the NMPC-feedback law py for running cost ¢(x, u) =
V (x) stabilizes the system for N = 2.

Hint: A direct argument may be easier than trying to apply one of the theorems
from this chapter.

5. Consider the control system

x(n+1)=2x(n) 4+ u)

withx(n) €e X =R, u(n) e U =R.
(a) Show that for running cost £(x, u) = x> the NMPC control law uy : X — U
is optimal for the infinite horizon problem for arbitrary N > 2.
(b) For the running cost £(x, u) = x4+ u?, compute minimal horizon lengths N
such that « > @ holds in (5.1) for @ € {0.5,0.9, 0.99}.
6. Consider the modified running cost function

Cx,u) =00, u) + Viv—1 (f (e, w) — Vv (f (x, w)

which we used for the inverse optimality statement in Chap. 5, cf. (5.32). Con-
sider the NMPC problem x* =x/2 +u?, X =X=U =U =R and £(x) = x?
without stabilizing terminal constraints and prove that for each N > 2 the func-
tion £ is not of the form 3.2).
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Chapter 7
Variants and Extensions

The results developed so far in this book can be extended in many ways. In this
chapter we present a selection of possible variants and extensions. Some of these
introduce new combinations of techniques developed in the previous chapters, oth-
ers relax some of the previous assumptions in order to obtain more general results
or strengthen assumptions in order to derive stronger results. Several sections con-
tain algorithmic ideas which can be added on top of the basic NMPC schemes from
the previous chapters. Parts of this chapter contain results which are somewhat pre-
liminary and are thus subject to further research. Some sections have a survey like
style and, in contrast to the other chapters of this book, proofs are occasionally only
sketched with appropriate references to the literature.

7.1 Mixed Constrained—Unconstrained Schemes

The previous Chaps. 5 and 6 have featured two extreme cases, namely NMPC
schemes with terminal constraints Xy and costs F' on the one hand and schemes
without both Xg and F on the other hand. However, it appears natural to consider
also intermediate or mixed cases, namely schemes in which (nonequilibrium) ter-
minal constraint sets Xg but no terminal costs F are used and schemes in which
terminal costs F but no terminal constraints sets X are used.

Schemes with terminal constraints Xo but without terminal costs F appear as a
special case of Algorithm 3.10 (or its time varying counterpart 3.11) with (OCPy ¢)
= (5.15) and F = 0. For this setting, it is not reasonable to expect that Assump-
tion 5.9(ii) holds. Consequently, the argument used in the proof of Theorem 5.13
does not apply; in fact, we are not aware of results in the literature analyzing such
schemes with the techniques from Chap. 5.

Fortunately, the stability analysis in Chap. 6 provides a remedy to this problem.
Observe that the main structural assumption on the control sequences from Assump-
tion 6.4 needed in the fundamental Lemmas 6.9 and 6.10 in Chap. 6 is that each
admissible control sequence u € U¥ (x) can be extended to an admissible control
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sequence it € UNTK(x) for each K > 1. Since Lemma 5.2(i) ensures this property
for Ugo (x) provided X is viable, we can incorporate the terminal constraint set Xg
into the analysis from Chap. 6.

As a consequence, replacing UV (x) by Ug (x) in Assumption 6.4 and assum-
ing Assumption 5.9(i), i.e., viability of Xo, all results in Chap. 6 carry over to the
scheme with terminal constraint set. In particular, the stability results Theorem 6.18,
Corollary 6.19, Theorem 6.21 and Theorem 6.33 remain valid. However, like in The-
orem 5.13 the resulting controller py is only defined on the feasible set X from
Definition 3.9.

This combined scheme inherits certain advantages and disadvantages from both
schemes. From the terminal constrained scheme we inherit that the resulting con-
troller wy is only defined on the feasible set Xy . On the other hand, as discussed
before Lemma 5.3, we do not need to assume viability of X but only for the termi-
nal constraint set Xy (further methods to avoid the viability assumption on X will
be discussed in Sects. 8.1-8.3).

From the unconstrained scheme we inherit the advantage that no terminal cost
satisfying Assumption 5.9(ii) needs to be constructed. On the other hand, we need
to ensure that the assumptions of one of the mentioned stability results from Chap. 6
hold whose rigorous verification may be involved, cf. also Sect. 6.6. For a more com-
prehensive discussion on advantages and disadvantages of different NMPC schemes
we refer to Sect. 8.4.

Another way of imposing terminal constraints without terminal costs which can
be found in the literature is via so-called contractive constraints. Here the termi-
nal constraint set depends on the initial value xo of the optimal control problem
(OCPn,e) via

Xo= {)C €X| 1 |, §V|X0|x*}

for some constant y € (0, 1); see, e.g., the book of Alamir [1] or the works of de
Oliveira Kothare and Morari [28] and De Nicolao, Magni and Scattolini [5]. How-
ever, for these constraints stability is only guaranteed if either the whole optimal
control sequence (as opposed to only the first element) is applied or if the optimiza-
tion horizon is treated as an optimization variable and the contractivity condition is
incorporated into the optimization objective [1, Chap. 4]. Since these approaches do
not conform with the MPC paradigm used throughout this book, we do not discuss
their analysis in detail.

Schemes with terminal cost F' but without terminal constraint Xy have been in-
vestigated in several places in the literature, for instance in Grimm, Messina, Tuna
and Teel [13] and Jadbabaie and Hauser [22] (for more information on these ref-
erences see also the discussions at the end of Sect. 6.1 and in Sect. 6.9). In both
references stability results for such schemes are derived in which only positive defi-
niteness of F is assumed. Roughly speaking, these references show that the addition
of F does not destroy stability. While the authors emphasize the potential positive
effects of adding such costs, they do not rigorously analyze these positive effects.
In contrast to this, in the work of Parisini and Zoppoli [30] the specific properties of
the terminal cost described in Remark 5.15 were exploited in order to show stability.
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The proof in [30] uses that under suitable conditions and for sufficiently large opti-
mization horizon N for all initial values from a given region the open-loop optimal
trajectories end up in the terminal constraint set without actually imposing this as a
condition. The same proof idea has been generalized later by Lim6n, Alamo, Salas
and Camacho [24] for a more general terminal cost.

Here we outline an approach from Griine and Rantzer [17] which we combine
with the analysis technique from Chap. 6. This approach rigorously shows the pos-
itive effect of adding a terminal cost also in the absence of stabilizing terminal con-
straints. In contrast to [30] or [24] the stability property is not restricted to sets of
initial values for which the open-loop optimal trajectories end up in a terminal con-
straint set. However, the fact that this happens for a set of initial values around the
origin will be used in our proof. We start from a terminal cost function F satisfy-
ing Assumption 5.9(ii) with a forward invariant neighborhood X of x,, however,
we will not use Xy as a terminal constraint set. Instead, we assume that F =c¢ > 0
holds on the boundary dX¢ with ¢ > SUpyex, F (x). This is, for instance, satisfied if
F is constructed from a linearization via linear—quadratic techniques according to
Remark 5.15 and X is a sublevel set of F. Then we may extend F continuously to
the whole set X by setting F (x) := ¢ for all x € X'\ Xp.

With this setting we obtain the following theorem.

Theorem 7.1 Let the assumptions of Theorem 6.33 be satisfied for the NMPC Algo-
rithm 3.1 without terminal cost. Let F : X — Rg and assume that Assumption 5.9
holds for some set Xo containing a ball B, (x,) for some n > 0. Assume, further-
more, that F = c holds outside Xo with ¢ > sup, x, F(x) and that F (x) < a2(|x|x,)
holds for all x € Xy and some ay € K. Consider the NMPC Algorithm 3.10 with
(OCPn.e) = (5.15) for this F but without terminal constraints, i.e., with Xo = X
in (5.15).

Then the nominal NMPC closed-loop system (3.5) with NMPC feedback law
is semiglobally asymptotically stable on X with respect to the parameter N in the
sense of Definition 6.28(1).

Proof We consider the following three optimal control problems

(a) (5.15) with Xp = X, which generates p in this theorem
(b) (5.15) with X from Assumption 5.9 for F, which generates w in Theorem 5.5
(c) (OCPn), which generates wy in Theorem 6.18

and denote the respective optimal value functions by V(”), V1£,b> and VIE,C). For each
x € X we obtain the inequalities VIE,C) x) < Vli,“)(x) < V]f,c) (x) + ¢ and, for x € Xy
(where X denotes the feasible set from Definition 3.9 for Problem (b)), we have
Vi) < v ).

In order to show semiglobal asymptotic stability, i.e., Definition 6.28(i), we fix
A > 0. For an arbitrary x € X we consider the optimal control #* for Problem (a)
(which implies p y (x) = u*(0) for py from this theorem) and distinguish two cases:
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(1) x,» (N, x) € Xp: This implies u* € Ugﬂ (x) and hence x € Xy and VIE]a)(x) =

V/f,b) (x). Using x,«(1,x) = f(x, uny(x)) € Xy and V,g,“) < V,f,h) on Xy, the proof
of Theorem 5.5 yields

V) = V2 (x) = £(x, un () + VO (f (x, pn (0))
> £(x, v () + VP (f (. v (). (7.1)

This inequality will be used below in order to conclude asymptotic stability. Before
we turn to case (ii) we show that case (i) applies to all points x € Bs(x,) for some
8 >0:

Since (5.20) shows V,i,b) (x) < F(x) on Xp, we obtain VIS,”)(x) < Vli,b) x) <
& (|x|y,) for x € By(xs) € Xo. For 8 = min{n, & ' (c/2)} this implies V\* (x) <
c/2 for all x € Bs(x,). On the other hand, x,+ (N, x) ¢ Xo implies F (x,*(N, x)) =c
and thus VIE,C’) (x) > c¢. Hence, case (i) occurs for all x € By(x).

(ii) x,* (N, x) ¢ Xo: This implies F (x,«(N, x)) = ¢ and thus V]f,”) x) = Vlf,c) (x)+
¢. This implies that u* is an optimal control for Viff) (x) and from the proof of The-
orem 6.33 we obtain that (5.1), i.e.,

VO (0 = al(x, iy () + Vi (f (x, v (1))

holds for all x € Y = S\ P with S and P chosen as in the proof of Theorem 6.33.
The sets S and P are forward invariant and by choosing N € N sufficiently large
we obtain & > 0, Ba(x,) € S and P C Bs(x,) for A fixed above and § defined
at the end of case (i). Since V,f,a)(x) = ,i,c)(x) + ¢ and V;,a)(f(x,,uN(x))) <

V/ff)(f(x, 1y (x))) + ¢ we obtain

VAT () = el (x, un () + Vi ( (6, v (1)) (7.2)

for all y € Y and some o > 0.

Now, the choice of N and P implies that for x € S \ Bs(x,) Inequality (7.2)
holds while for x € Bs(x,) Inequality (7.1) holds. This implies that Theorem 4.14
is applicable with S(n) = S which yields semiglobal practical stability using
Lemma 6.29(1). O

Comparing Theorem 7.1 with Theorem 6.33, one sees that the benefit of includ-
ing the terminal cost F is that here we obtain semiglobal asymptotic stability while
without ' we can only guarantee semiglobal practical asymptotic stability. Loosely
speaking, the unconstrained scheme guarantees stability up to the neighborhood
Bs(x4), while F ensures asymptotic stability inside this neighborhood.

7.2 Unconstrained NMPC with Terminal Weights

Our next extension analyzes the effect of inclusion of terminal weights in (OCPy),
i.e., in NMPC schemes without stabilizing terminal constraints and costs. Both in



7.2 Unconstrained NMPC with Terminal Weights 169

numerical simulations and in practice one can observe that adding terminal weights
can improve the stability behavior of the NMPC closed loop. Formally, adding ter-
minal weights can be achieved by replacing the optimization criterion in (OCPy)
by
N-2
IN (xo, u(~)) = Z Z(xu (k, x0), u(k)) + a)E(xu(N —1,x0),u(N — 1)) (7.3)
k=0
for some w > 1. For w = 1 we thus obtain the original problem (OCPy). This exten-
sion is a special case of (OCPy ) in which we specify Xo =X, F =0, w1 = w and
wr) =w3 =---=wy = 1. In a similar way, such a terminal weight can be added to
the respective time variant problem (OCPY) leading to a special case of (OCPY ).
Thus, all results developed in Chap. 3 apply to this problem. Given that the optimal
control value u(N — 1) in (7.3) will minimize £(x, (N — 1, x¢), u(N — 1)), this ap-
proach is identical to choosing F(x) = wf*(x) and N = N — 1 in the terminal cost
approach discussed in the previous section, with £* from (6.2). However, the spe-
cific structure of the terminal cost allows for applying different and more powerful
analysis techniques which we explain now.

The terminal weight leads to an increased penalization of £(x, (N — 1, xp), u(N —
1)) in Jy and thus to an increased penalization of the distance of x, (N — 1, xg) to
xx. Thus, for @ > 1 the optimizer selects a finite time optimal trajectory whose
terminal state x,« (N — 1, x9) has a smaller distance to x,. Since our goal is that the
NMPC-feedback law p steers the trajectory to x,, this would intuitively explain
better stability behavior.

Formally, however, the analysis is not that easy because in closed loop we never
actually apply u*(1), ..., u*(N — 1) and the effect of @ on u*(0) is not that obvious.
Hence, we extend the technique developed in Chap. 6 in order to analyze the effect
of w. To this end, we change the definition (6.8) of By to

N-2
By(r):=Y_ B(r.n)+wp(r.N — ).
n=0
With this definition, all results in Sect. 6.3 remain valid for the extended problem.
Proposition 6.12 remains valid, too, if we change (6.11) to
N-2
Dt whno1 < By—g(u), k=0,...,N 2.
n=k

If, furthermore, in the subsequent statements we replace Z,I:I;OI Ay by 25;02 An +

wApN—1, then it can be shown that Proposition 6.17 remains valid if we replace (6.19)
by

v = D2 =) [IL04 = 1)
My — - [Tl — D

The proof is similar to the proof of Proposition 6.17 and can be found in Griine,
Pannek, Seehafer and Worthmann [20].

af=1— (7.4)
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With this expression, Theorem 6.18 and its corollaries remain valid, except for
the inequalities Vi (x)/a < Voo (x) /o and C Vi (x) < CVo(x), which do in general
no longer hold because of the additional weight which is present in Vy but not
in V.

Figure 7.1 shows the values from (7.4) for an exponential § of type (6.3)
with C =2 and o = 0.55, optimization horizon N = 5 and terminal weights
w=1,2,...,20. The figure illustrates that our analysis reflects the positive effect
the terminal weight has on the stability: while for v = 1,2 we obtain negative val-
ues for « and thus stability cannot be ensured, for w > 3 stability is guaranteed.
However, one also sees that for @ > 10 the value of « is decreasing, again. For more
examples for the effect of terminal weights we refer to [20] and Example 7.14, be-
low.

7.3 Nonpositive Definite Running Cost
In many regulator problems one is not interested in driving the whole state to a
reference trajectory or point. Rather, often one is only interested in certain output

quantities. The following example illustrates such a situation.

Example 7.2 'We reconsider Example 2.2, i.e.,
+
XP\ _(x1+xa+u/2Y .
()= (") = s

L(x,u) =x12 +u?.

with running cost

In contrast to our standing assumption (3.2), no matter how we choose x, € R2, this
function does not satisfy £(x, u) > 0 for all x € X and u € U with x # x,. Instead,
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Fig. 7.2 MPC closed-loop
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following the interpretation of x; and x; as position and velocity of a vehicle in a
plane, the running cost only penalizes the distance of the position x; from 0 but not
the velocity.

However, the only way to put the system at rest with x; = 0 is to set x, = 0.
Hence, one may expect that the NMPC controller will “automatically” steer x, to
0, too. The numerical simulation shown in Fig. 7.2 (performed with optimization
horizon N =5 without stabilizing terminal constraints and with state constraints
X = [—1, 1]? and control constraints U = [—1/4, 1/4]) confirms that this is exactly
what happens: the system is perfectly stabilized at x,, = 0 even though the running
cost does not “tell” the optimization problem to steer x> to 0.

How can this behavior be explained theoretically? The decisive difference of ¢
from this example to £ used in the theorems in the previous chapters is that the
lower bound £(x, u) > a3(|x|y,) imposed in all our results is no longer valid. In
other words, the running cost is no longer positive definite.

For NMPC schemes with stabilizing terminal constraints and costs satisfying
Assumption 5.9, the notion of input/output-to-state stability (IOSS) provides a way
to deal with this setting. IOSS can be seen as a nonlinear detectability condition
which ensures that the state converges to x, if both the output and the input converge
to their steady state values, which can in turn be guaranteed by suitable bounds on £.
We sketch this approach for time invariant reference x™f = x, with corresponding
control value u, satisfying f (x,, uy) = X4.

To this end, we relax the assumptions of Theorem 5.13 as follows: instead of
assuming (5.2) we consider an output function s : X — Y for another metric space
Y. In Example 7.2 we have X = R2, Y =R and h(x) = x.

Now we change (5.2) to

ar(|h)],, ) < Vv@) <e(jxly.) and

(7.5)
e ) = a3([h@)], ) + o3 (lul,)
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with y, = h(xy) and |h(x)]y, = dy(h(x), y«), where dy (-,-) is the metric on Y. Fur-
thermore, we assume that the system with output y = h(x) is IOSS in the following
sense: There exist 8 € KL and yj, y» € K such that for each x € X and each
admissible control u € U (x) the inequality

ratn. ), = max{B(ixlom)n (_max Gk, ).

,,,,,

(o)

,,,,,

holds for all n € Ny with y(k) = h(x,(k, x)).
With these changed assumptions, the assertion of Theorem 5.13 remains valid.
The proof relies on the fact that the function Vy still satisfies

Vv (x) > £(x, un () + Vv (f (x, v ().

This implies that Vv (x,,, (n, x)) is monotone decreasing in n and since it is bounded
from below by 0 it converges to some value as n — oo, although not neces-
sarily to 0. However, the convergence of Vy (x,, (n,x)) implies convergence of
L(xpy(n, x), un (X (1, x))) — 0 which by means of the last inequality in (7.5)
yields h(xyy (n, x)) — 0 and py (xy, (n, x)) — 0. Now the IOSS property can be
used to conclude asymptotic stability of the closed loop. For more details of this
approach, we refer to the book of Rawlings and Mayne [31, Sect. 2.7 and the refer-
ences therein].

While the approach just sketched relies on stabilizing terminal constraints, the
simulation in Example 7.2 shows that asymptotic stability can also be expected
without such constraints. For this setting, a stability proof was given in the work of
Grimm, Messina, Tuna and Teel [13] and the main result in this reference extends
Theorem 6.33. Again, a detectability condition is used, but this time it is formu-
lated via a suitable auxiliary function W: we assume the existence of a function
W:X— Rg which satisfies the inequalities

W(x) <@w(|xly,),
W(f@x,u) = Wx) < —aw(lxly,) +yw(€x,u)

for all x € X, u € U(x) and suitable functions aw, aw, yw € K. In turn, we
remove the lower bound o3 (|x|.,) < £*(x) for £* from (6.2) from the assumptions
of Theorem 6.33. Observe that whenever this lower bound holds, the detectability
condition is trivially satisfied with W =0, yw (r) =r and oy = o3.

Under these modified assumptions, it is shown in [13, Theorem 1] that the
semiglobal practical stability assertion of Theorem 6.33 remains valid. Furthermore,
[13, Corollary 2 and Corollary 3] provide counterparts to Theorems 6.31 and 6.21
which prove semiglobal and “real” asymptotic stability, respectively. In contrast to
the I0SS-based result for stabilizing terminal constraints, the proof of [13, Theo-
rem 1] yields a Lyapunov function constructed from the optimal value function Vy
and the function W from the detectability condition. In the simplest case, which oc-
curs under suitable bounds on the involved oo -functions, this Lyapunov function
is given by Viy + W. In general, a weighted sum has to be used.

(7.6)
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In Example 7.2, numerical evaluation suggests that the detectability condition is
satisfied for W (x) = max{—|xjx2| +x§, 0}/2 and yw (r) = r. Plots of the difference
W(x) — W(f(x,u)) + €(x,u) in MAPLE indicate that this expression is positive
definite and can hence be bounded from below by some function aw (|x|y,); a rig-
orous proof of this property is, however, missing up to now.

As discussed in Sect. 6.9, the analysis in [13] uses a condition of the form
Vn (x) < ay(r) in order to show stability, which compared to our Assumptions 6.4
or 6.30 has the drawback to yield fewer information for the design of “good” run-
ning costs £. Furthermore, suboptimality estimates are not easily available. It would
hence be desirable to extend the statement and proof of Theorem 6.18 to the case
of nonpositive definite running costs. A first attempt in this direction is the follow-
ing: suppose that we are able to find a function W : X — RS‘ satisfying (7.6) with
yw (r) = r. Then the function

Lw(x,u):=W(kx)— W(f(x, u)) + £(x, u)
satisfies a lower bound of the form
) ==min€w (x,u) > aw(|xly,)
uelU

for all x € X. Let u* be an optimal control for Vy(x), i.e.,

N—-1
Vn(x) = Iy (x,u*) = Z (e ke, 1), u* (K))
k=0
and define
~ N—1
VN () =D w (xue (k. x), u* (k).
k=0

The definition of £y then implies
Vv () = W) — W(xus (N, x)) + Vi (x).
Changing the inequality in Assumption 6.30 to
Vi(x) < B (€ (x)) — W(x)
then implies
Vi) < Be(€5, ().

Using this inequality, it should be possible to carry over all results in Sect. 6.3 to Vy
using £ in place of £. A rigorous investigation of this approach as well as possible
extensions will be the topic of future research.

In this context we would like to emphasize once again that even if the running
cost £ only depends on an output y, the resulting NMPC-feedback law is still a state
feedback law because the full state information is needed in order to compute the
prediction x,, (-, xg) for xo = x(n).
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7.4 Multistep NMPC-Feedback Laws

Next we investigate what happens if instead of only the first control value u*(0) we
implement the first m values u*(0), ..., u*(m — 1) before optimizing again. For-
mally, we can write this NMPC variant as a multistep feedback law

un(x, k) :=u*k), k=0,....m—1,

where ©* is an optimal control sequence for problem (OCPy ) (or one of its vari-
ants) with initial value xo = x. The resulting generalized closed-loop system then
reads

x(n+1) = f(x@), un(x([nn), n — [nln)). (7.7)
where [n],, denotes the largest product km, k € Ny, with km < n. The value m €
{1, ..., N — 1} is called the control horizon.

When using stabilizing terminal constraints, the respective stability proofs from
Chap. 5 are easily extended to this setting which we illustrate for Theorem 5.13.
Indeed, from Vy(x) < Vy_1(x) one immediately gets the inequality Vy(x) <
Vn_m(x) for each m € {1,..., N — 1} and each x € Xy_,,. Proceeding as in the
proof of Theorem 5.13 using Equality (3.20) inductively for N, N —1,..., N —
m~+ 1 and Vy(x) < Vy_,,(x) one obtains

m—1
V() = Y L(xuy (k. x), oy (k. ) + Viy (0, (m, x)).

k=0
This shows that Vi is a Lyapunov function for the closed-loop system at the times
0,m,2m,.... Since a similar argument shows that Vy (x,, (k, x)) is bounded by
Vn(x) fork=1,...,m — 1, this proves asymptotic stability of the closed loop.

Without stabilizing terminal constraints, our analysis can be adjusted to the mul-

tistep setting, too, by extending Proposition 6.17 as well as the subsequent stability
results, accordingly. The respective extension of Formulas (6.19) and (7.4) (includ-
ing both control horizons m > 1 and terminal weights w > 1) is given by

o0? =1 — Gmr1=0) [T =D Ty =D .

=Nm 1 Y= i1 =) T2 = D ATyt Y6 =TTy 5= D)
Again, the proof proceeds along the lines of the proof of Proposition 6.17 but be-
comes considerably more involved, cf. the paper by Griine, Pannek, Seehafer and
Worthmann [20].

It is worth noting that these extended stability and performance results remain
valid if m is time varying, i.e., if the control horizon is changed dynamically, e.g.,
by a network induced perturbation. This has interesting applications in NMPC for
networked control systems, cf. the work of Griine, Pannek and Worthmann [18].

Figure 7.3 shows how o = o, depends on m for an exponential B of type
(6.3) with C =2 and o = 0.75, optimization horizon N = 11, terminal weight v =
1 and control horizons m =1, ..., 10. Here one observes two facts: first, the o-
values are symmetric, i.e., Q(;v),m = g‘;\’,‘ ~N_m and second, the values increase until
m = (N — 1)/2 and then decrease, again. This is not a particular feature of this
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example. In fact, it can be rigorously proved for a general class of 8 € KLy; see
[20] for details.

It is interesting to compare Fig. 7.3 with «-values which have been obtained
numerically from an NMPC simulation for the linear inverted pendulum, cf. Exam-
ple 2.10 and Sect. A.2 or [18] for the precise description of the problem. Figure 7.4
shows the resulting values for a set of different initial values. These values have
been computed by Algorithm 7.8 described in Sect. 7.7, below.

While the monotonicity is—at least approximately—visible in this example, the
perfect symmetry from Fig. 7.3 is not reflected in Fig. 7.4. A qualitatively similar
behavior can be observed for the nonlinear inverted pendulum; see Example 7.14,
below. In fact, so far we have not been able to find an example for which the symme-
try could be observed in simulations. This may be due to the fact that our stability
estimate is tight not for a single system but rather for the whole class of systems
satisfying Assumption 6.4, cf. Theorem 6.23. Our numerical findings suggest that
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the conservativity induced by this “worst case approach” is higher for small m than
for large m. This is also supported by Monte Carlo simulations performed by Griine
in [14].

7.5 Fast Sampling

Let us now turn to the special case of sampled data systems. In this case, according
to (2.12) the discrete time solution x,, (1, xo) represents the continuous time solution
o(t,0, x0, v) at sampling times ¢t = nT. In this setting, it is natural to define the
optimization horizon not in terms of the discrete time variable n but in terms of the
continuous time ¢. Fixing an optimization horizon Top > 0 and picking a sampling
period T > O where we assume for simplicity of exposition that Top is an integer
multiple of T, the discrete time optimization horizon becomes N = T,/ T, cf. also
Sect. 3.5.

Having introduced this notation, an interesting question is what happens to sta-
bility and performance of the NMPC closed loop if we keep Top fixed but vary the
sampling period T'. In particular, it is interesting to see what happens if we sample
faster and faster, i.e., if we let T — 0. Clearly, in a practical NMPC implementation
we cannot arbitrarily reduce T because we need some time for solving the optimal
control problem (OCPy) or its variants online. Still, in particular in the case of zero
order hold it is often desirable to sample as fast as possible in order to approximate
the ideal continuous time control signal as good as possible, cf., e.g., the paper of
Nesi¢ and Teel [26], and thus one would like to make sure that this does not have
negative effects on the stability and performance of the closed loop.

In the case of equilibrium endpoint constraint from Sect. 5.2 it is immediately
clear that the stability result itself does not depend on T, however, the feasible set
Xy may change with T'. In the case of zero order hold, i.e., when the continuous
time control function v is constant on each sampling interval [T, (n + 1)T), cf.
the discussion after Theorem 2.7, it is easily seen that each trajectory for sampling
period T is also a trajectory for each sampling period 7 /k for each k € N. Hence,
the feasible set Xy for sampling period 7 /k always contains the feasible set Xy
for sampling period 7, i.e., the feasible set cannot shrink for k — oo and hence for
sampling period 7'/ k we obtain at least the same stability properties as for sampling
period T.

In the case of Lyapunov function terminal costs F as discussed in Sect. 5.3 either
the terminal costs or the running costs need to be adjusted to the sampling period
T in order to ensure that Assumption 5.9 remains valid. One way to achieve this
is to choose a running cost in integral form (3.4) and the terminal cost F such
that the following condition holds: for each x € Xy and some Ty > O there exists a
continuous time control v satisfying ¢(¢, 0, x, v) € X and

13
V(p(t,0,x,v)) = V(x) < —/ L(p(7,0,x,v),v(r))dt (7.8)
0



7.5 Fast Sampling 177

for all t € [0, T'], cf. also Findeisen [9, Sect. 4.4.2]. Under this condition one easily
checks that Assumption 5.9 holds for ¢ from (3.4) and all T < Ty, provided the
control function v in (7.8) is of the form v, 7, (n+1)1)(t) = u(n)(¢) for an admissible
discrete time control sequence u(-) with u(n) € U. If U = L°°([0, T], R™) then this
last condition is not a restriction but if we use some smaller space for U (as in the
case of zero order hold, cf. the discussion after Theorem 2.7), then this may be more
difficult to achieve; see also [9, Remark 4.7].

Since the schemes from Chap. 6 do not use stabilizing terminal constraints Xq
and terminal costs F, the difficulties just discussed vanish. However, the price to
pay for this simplification is that the analysis of the effect of small sampling periods
which we present in the remainder of this section is somewhat more complicated.

Fixing Tope and letting 7 — O we obtain that N = T,/ T — oo. Looking at
Theorem 6.21, this is obviously a good feature, because this theorem states that the
larger N becomes, the better the performance will be. However, we cannot directly
apply this theorem because we have to take into account that 8 in the Controllability
Assumption 6.4 will also depend on T'.

In order to facilitate the analysis, let us assume that in our discrete time NMPC
formulation we use a running cost £ that only takes the states ¢(nT, 0, xg, v) at the
sampling instants and the respective control values into account.! For the continuous
time system, the controllability assumption can be formulated in discrete time. We
denote the set of admissible continuous time control functions (in analogy to the
discrete time notation) by V' (x). More precisely, for the admissible discrete time
control values U(x) € U C L*°([0, T], R™) (recall that these “values” are actually
functions on [0, T'], cf. the discussion after Theorem 2.7) and any 7 > O we define

V¥ (x) :={v e L%([0, 7], R™) | there exists u € UN(x) with N > 7/T + 1
such that u(n) = U|[nT,(n+l)T](' +nT)
holds for all n € No with nT < t}.
Then, the respective assumption reads as follows.
Assumption 7.3 We assume that the continuous time system is asymptotically con-

trollable with respect to ¢ with rate 8 € KL, i.e., for each x € X and each 7 > 0
there exists an admissible control function v, € V7 (x) satisfying

(@, 0,x,v5), vx(1)) < B(E*(x), 1)
forall r € [0, T].

For the discrete time system (2.8) satisfying (2.12) the Controllability Assump-
tion 7.3 translates to the discrete time Assumption 6.4 as

€(xu, (n, x), ux(n)) < B(€*(x),nT).

1Integral costs (3.4) can be treated, too, but this is somewhat more technical, cf. Griine, von Lossow,
Pannek and Worthmann [21, Sect. 4.2].
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Fig. 7.5 Suboptimality index 1
a from (6.19) for fixed Top
and varying sampling
period T
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In the special case of exponential controllability, 8 in Assumption 7.3 is of the form
Br,t)=Ce *r (7.9)

for C > 1 and A > 0. Thus, for the discrete time system, the Controllability As-
sumption 6.4 becomes

(xu, (1, ), ux (n)) < Ce ™% (x) = C(e™*T) " 0¥ (x)

and we obtain a JCLy-function of type (6.3) with C from (7.9) and o = e M,

Summarizing, if we change the sampling period 7', then not only the discrete time
optimization horizon N but also the decay rate ¢ in the exponential controllability
property will change, more precisely we have ¢ — 1 as T — 0. When evaluating
(6.19) with the resulting values

k—1
—AjT
ye=y _ Ce M7,
—t

it turns out that the convergence o — 1 counteracts the positive effect of the growing
optimization horizons N — oo. In fact, the negative effect of ¢ — 1 is so strong
that o diverges to —oo as T — 0. Figure 7.5 illustrates this fact (which can also be
proven rigorously, cf. [21]) for C =2, A =1 and Tyt = 5.

This means that whenever we choose the sampling period 7' > 0 too small, then
performance may deteriorate and eventually instability may occur. This predicted
behavior is not consistent with observations in numerical examples. How can this
be explained?

The answer lies in the fact that our stability and performance estimate is only tight
for one particular system in the class of systems satisfying Assumption 6.4, cf. The-
orem 6.23 and the discussion preceding this theorem, and not for the whole class.
In particular, the subclass of sampled data systems satisfying Assumption 6.4 may
well behave better than general systems. Thus, we may try to identify the decisive
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property which makes sampled data systems behave better and try to incorporate
this property into our computation of «.

To this end, note that so far we have not imposed any continuity properties of f
in (2.1). Sampled data systems, however, are governed by differential equations (2.6)
for which we have assumed Lipschitz continuity in Assumption 2.4. Let us assume
for simplicity of exposition that the Lipschitz constant in this assumption is inde-
pendent of r. Then, for a large class of running costs £ the following property for
the continuous time system can be concluded from Gronwall’s Lemma; see [21] for
details.

Assumption 7.4 There exists a constant L > 0 such that for each x € X and each
7 > 0 there exists an admissible control function v, € V¥ (x) satisfying

e(gﬂ(l, 09 X, Ux)s Ux(t)) < eLtg*(X)

forall r € [0, T].

The estimates on ¢ induced by this assumption can now be incorporated into the
analysis in Chap. 6. As a result, the values y, in Formula (6.19) change to

k—1 k—1
Y = min ZCe_)‘]T, ZeL]T .
i=0 i—0

The effect of this change is clearly visible in Fig. 7.6. The «-values from (6.19) no
longer diverge to —oo but rather converge to a finite—and for the chosen parameters
also positive—value as T — 0. Again, this convergence behavior can be rigorously
proved; for details we refer to [21].
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Fig. 7.7 Scheme of the NMPC closed-loop components

7.6 Compensation of Computation Times

Throughout the previous chapters we assumed that the solution of the optimal con-
trol problems (OCPy ) and its variants in Step (2) of Algorithms 3.1, 3.7, 3.10
and 3.11 can be obtained instantaneously, i.e., with negligible computation time.
Clearly, this is not possible in general, as the algorithms for solving such problems,
cf. Chap. 10 for details, need some time to compute a solution. If this time is large
compared to the sampling period T', the computational delay caused by Step (2) is
not negligible and needs to be considered. One way for handling these delays would
be to interpret them as perturbations and use techniques similar to the robustness
analysis in Sects. 8.5-8.9. In this section we pursue another idea in which a delay
compensation mechanism is added to the NMPC scheme.

Taking a look at the structure of the NMPC algorithm from Chap. 3, we see that
Steps (1)—(3) correspond to different physical tasks: measuring, computing and ap-
plying the control. These tasks are operated by individual components as shown
schematically in Fig. 7.7. Note that in the following actuator, sensor and controller
are not required to be physically decomposed, however, this case is also not ex-
cluded.

While it is a necessity to consider different clocks in a decomposed setting, it
may not be the case if the components are physically connected. Here, we assume
that every single component possesses its own clock and, for simplicity of expo-
sition, that these clocks are synchronized (see the work of Varutti and Findeisen
[34, Sect. III.C] for a possible way to relax this assumption). To indicate that a time
instant n is considered with respect to a certain clock, we indicate this by adding
indices s for the sensor, ¢ for the NMPC controller and a for the actuator.

The idea behind the compensation approach is to run the NMPC controller com-
ponent with a predefined time offset. This offset causes the controller to compute a
control ahead of time, such that the computed control value is readily available at
the time it is supposed to be applied, cf. Fig. 7.8. In this figure, 7. denotes the actual
computational delay and /"** denotes the predefined offset. In order to be operable,
this offset needs to be chosen such that it is larger than the maximal computing time
required to solve the optimal control problem in Step (2) of the considered NMPC
algorithm. At time n, this optimal control problem is solved with a prediction X (n,)
of the initial value x(n,) based on the available measurement x (n.) = x(ng). This
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prediction is performed using the same model which is used for the NMPC predic-
tion in (OCPy ) or its variants, i.e., using (2.1).

In order to perform this prediction, the control values wuy(n,x(n)), n €
{ng,...,n,} which are to be applied at the plant during the time interval [ng, n,]
and which have been computed before by the NMPC controller are needed and are
therefore buffered. Thus, we extend the scheme given in Fig. 7.7 by adding the re-
quired predictor to the controller. The structure of the resulting scheme is shown in
Fig. 7.9.

Observe that in this scheme we buffer the control values twice: within the predic-
tor, but also at the actuator since the computation of w(n,, x(n,)) will be finished
ahead of time if 7. < t."®, which is the typical case. Alternatively, one could use
only one buffer at the controller and send each control value “just in time”. Using
two buffers has the advantage that further delays induced, e.g., by network delays
between the controller and the actuator can be compensated; see also the discussion
at the end of this section.

The corresponding algorithm has the following form. Since all NMPC algorithms
stated in Chap. 3 can be modified in a similar manner, we only show the algorithm
for the most general form given in Algorithm 3.11:

Algorithm 7.5 (Time decoupled NMPC algorithm for time varying reference) At
each sampling time t,, n =0, 1,2, ...:

(1) Measure the state x (n) := x(n) € X of the system and send pair (g, x(n5))
to controller.
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(2a) Delete pair (n, — 1, uy(ne — 1, x(ne — 1))) from buffer B, and compute the
predicted state X (n. + t/"*) from the measured state x (r.).
(2b) Set 7 :=n. + ™, xo = X(71) and solve the optimal control problem

N-1

minimize  Jy (71, xo, u(-)) := Z wN—il (i +k, x4 (k, x0), u(k))
k=0

+ F(i+ N, xu(N, x0))

with respectto  u(-) € Ugo (n,xp9), subject to
x4 (0, x0) = xo, xu(k 4+ 1,x0) = f (xu(k, x0), u(k))

(OCP} )

and denote the obtained optimal control sequence by u*(-) € Ugo (n, xp).
(2¢) Add pair (2, uy (1, x(n))) := (n, u*(0)) to Buffer B, and send it to actuator.
(3a) Delete pair (n, — t™ — 1, un(ng — t™* — 1, x(ng — t"* —1))) and add
received pair (n,, Uy (ng, X(ny))) to buffer B, .
(3b) Use un(ng — t*, X(ng — t"%)) in the next sampling period.

At a first glance, writing this algorithm using three different clocks and sending
time stamped information in Steps (1) and (2c) may be considered as overly compli-
cated, given that ng in Step (1) is always equal to n. in Step (2a) and n. in Step (2c)
always equals n, in Step (3a). However, this way of writing the algorithm allows us
to easily separate the components—sensor, predictor/controller and actuator—of the
NMPC scheme and to assume that the “sending” in Steps (1) and (2c) is performed
via a digital network. Then, we can assign Step (1) to the sensor, Steps (2a)—(2c) to
the controller and Steps (3a) and (3b) to the actuator. Assuming that all transmis-
sions between the components can be done with negligible delay, we can run these
three steps as separate algorithms in parallel. Denoting the real time by n, the re-
sulting scheduling structure is sketched in Fig. 7.10 for t/"** = 2. For comparison,
the structure of the NMPC Algorithm 3.11 without prediction is indicated by the
dashed lines.

Since the algorithm is already applicable to work in parallel, it can be extended to
a more complex networked control context in which transmission delays and packet
loss may occur. To this end, such delays have to be considered in the prediction
and an appropriate error handling must be added for handling dropouts; see, e.g.,
the paper by Griine, Pannek and Worthmann [19]. In the presence of transmission
delays and dropouts, we cannot expect that all control values are actually available
at the actuator when they are supposed to be applied. Using NMPC, this can be
compensated easily using the multistep feedback concept and the respective stability
results from Sect. 7.4 as presented by Griine et al. in [18].

Besides [19], which forms the basis for the presentation in this section, model
based prediction for compensating computational delay in NMPC schemes has been
considered earlier, e.g., in the works of Chen, Ballance and O’Reilly [4] and Find-
eisen and Allgower [10]. Note that the use of the nominal model (2.1) for predicting
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future states may lead to wrong predictions in case of model uncertainties, distur-
bances etc. In this case, the predicted state x(72) may differ from the actual state
x(ng) at time n, = 71 and hence (OCPy ) is solved with a wrong initial value. In
the paper of Zavala and Biegler [35] a method for correcting this mismatch based
on NLP sensitivity techniques is presented, cf. also Sect. 10.5.

7.7 Online Measurement of o

In the analysis of NMPC schemes without stabilizing terminal constraints in
Chap. 6, one of the central aims was to establish conditions to rigorously guarantee
the existence of « € (0, 1] such that the inequality

Vy(n,x) = al(n,x, uy(n,x)) + Vy(n+ 1, f(x, un(n, x))) (5.1

holds for all x € X and n € Ny. While Theorem 6.14 and Proposition 6.17 provide
computational methods for estimating « from the problem data, the assumptions
needed for these computations—in particular Assumption 6.4—may be difficult to
check.

In this section we present methods from Griine and Pannek [15] and Pannek [29]
which allow for the online computation or estimation of « along simulated NMPC
closed-loop trajectories. There are several motivations for proceeding this way. First,
as already mentioned, it may be difficult to check the assumptions needed for the
computation of « using Theorem 6.14 or Proposition 6.17. Although a simulation
based computation of « for a selection of closed-loop trajectories cannot rigorously
guarantee stability and performance for all possible closed-loop trajectories, it may
still give valuable insight into the performance of the controller. In particular, the
information obtained from such simulations may be very useful in order to tune
the controller parameters, in particular the optimization horizon N and the running
cost £.

Second, requiring (5.1) to hold for all x € X may result in a rather conservative
estimate for «. As we will see in Proposition 7.6, below, for assessing the perfor-
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mance of the controller along one closed-loop trajectory it is sufficient that (5.1)
holds only for those points x € X which are actually visited by this trajectory.

Finally, the knowledge of o may be used for an online adaptation of the opti-
mization horizon N; some ideas in this direction are described in the subsequent
Sect. 7.8.

Our first result shows that for assessing stability and performance of the NMPC
controller along one specific closed-loop trajectory it is sufficient to find « such that
(5.1) holds for the points actually visited by this trajectory.

Proposition 7.6 Consider the feedback law ny : Ng x X — U computed from
Algorithm 3.7 and the closed-loop trajectory x(-) = xy,, (-) of (3.9) with initial value
x(0) € X at initial time 0. If the optimal value function Vy : Ng x X — Rg satisfies

Vn(n,x(m) = Vn(n+ 1, x(n 4+ 1)) + «b(n, x(n), uy(n, x(n)))  (7.10)

for some o € (0, 1] and all n € Ny, then

aVoo(n,x(n)) < adoo(n, x(n), un) < Vi (n,x(n)) < Voo (n,x(n)) (7.11)

holds for all n € Ny.

If, in addition, there exist a1, an, a3 € Koo such that (5.2) holds for all (n, x) €
No x X with n € Ny and x = x(n), then there exists B € ICL which only depends on
oy, o2, a3 and a such that the inequality

|x(n) |xref(n) < B(|x(©) |xref(0)’ n)

holds for all n € Ny, i.e., x behaves like a trajectory of an asymptotically stable
system.

Proof The proof of (7.11) is similar to the proof of Theorem 4.11.

The existence of B follows with the same construction as in the proof of Theo-
rem 2.19, observing that the definition of g in this proof only depends on &1, a» and
ay = awag and not on the specific form of V = Vy. O

Proposition 7.6 gives us a way to compute o from the data available at runtime
and guarantees the performance estimate (7.11) as well as—under the additional
assumption that (5.2) holds—asymptotic stability-like behavior for the considered
closed-loop trajectory if o > 0. Moreover, under this additional assumption (7.10)
immediately implies that Vi strictly decreases along the trajectory, i.e., it behaves
like a Lyapunov function.

Since the values of « for which (5.1) holds for all x € X and for which (7.10)
holds along a specific trajectory x,, will be different in general, we introduce the
following definition.

Definition 7.7

(1) We call @ := max{« | (5.1) holds for all x € X} the global suboptimality degree.
(2) For fixed x € X the maximal value of « satisfying (5.1) for this x is called local
suboptimality degree in x.
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(3) Given a closed-loop trajectory x,, (-) of (3.9) with initial time 0 we call
o :=max{a | (7.10) holds for all n € Ny with x(-) = x,, (-)} the closed-loop
suboptimality degree along x,, ().

An algorithm to evaluate « from (7.10) can easily be obtained and integrated into
Algorithm 3.7:

Algorithm 7.8 (NMPC algorithm for time varying reference x™' with a posteriori
suboptimality estimate) Set o = 1. At each sampling time #,,n=0,1,2,...:

(1) Measure the state x(n) € X of the system.
(2) Set xg = x(n) and solve the optimal control problem

N-1
minimize Jy (n, X0, u(~)) = Z(n +k, x, (k, x0), M(k))
k=0 (OCPY)
with respectto  u(-) € UV (xg), subject to

Xu (07 xO) = X0, Xu (k + 1’ xO) = f(xu(k» xO)’ u(k))

and denote the obtained optimal control sequence by u*(-) € U (xp).

(3) Define the NMPC-feedback value wy (n, x(n)) := u*(0) € U and use this con-
trol value in the next sampling period.

(4) If n > 1 compute « via

_ Vwnin—1,x(n—1)) — Vy(n, x(n))
B Ln—1,x(n—1), uy(n—1,x(n —1)))’
o = min{a, o;}.

o]

Proposition 7.6 and Algorithm 7.8 are easily extended to the multistep NMPC
case described in Sect. 7.4. In this case, (7.10) is replaced by

VN(n,x(n)) > VN(n +m+1,x(n+m+ 1))
m
+ o ZZ(n +k, xy, (k, x(n)), u*(k, x(n)))
k=0
and the definition of «; in Step (4) is changed, accordingly.

Note that in Step (4) of Algorithm 7.8, the computation of «; does not provide
the value of « in (7.10) for the current time instant n but for n — 1. This is why
we call o from Algorithm 7.8 an a posteriori estimate. The distinction between
the current value of «; and « in Step (4) is required in order to be consistent with
Proposition 7.6 since ¢ corresponds to the local suboptimality degree in x(n — 1)
while the suboptimality degree according to Proposition 7.6 is the minimum over
all oy along the closed loop.

While Algorithm 7.8 is perfectly suited in order to evaluate the performance of
an NMPC controller via numerical simulations, its a posteriori nature is not suitable
if we want to use the estimated « in order to adjust the optimization horizon N. For
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instance, if we detect that at some time n the value of « in (7.10) is too small—or
even negative—then we may want to increase N in order to increase « (see Sect. 7.8
for more details on such procedures). However, in Algorithm 7.8 the value of « in
(7.10) only becomes available at time n 4 1, which is too late in order to adjust N.

A simple remedy for this problem is to solve at time » a second optimal control
problem (OCPY) with initial value x, (1, x(n)) and initial time n := n + 1. However,
since solving the problem (OCPY) is the computationally most expensive part of the
NMPC algorithm, this solution would be rather inefficient.

In order to obtain an a priori estimate with reduced additional computing costs,
a few more insights into the local NMPC problem structure are required. The main
tool we are going to use is the following lemma.

Lemma 7.9 Consider the feedback law puy : Nyg x X — U computed from Algo-
rithm 3.7 and the closed-loop trajectory x(-) = x, (-) of (3.9) with initial value
x(0) = xg € X at initial time 0. If
Vy(n+ Lx(n+1)—Vy_i(n+1,x(n+ 1))
<1 —a)t(n,x(n), uy(n,x(n))) (7.12)
holds for some o € [0, 1] and some n € Ny, then (7.11) holds for this n.

Proof Using the dynamic programming principle (3.16) with K = 1 we obtain

VN(n,x(n)) =£(n,x(n), ,uN(n,x(n))) + Vn_i1 (n +1,x(n+ 1))
> E(n,x(n), MN(n,x(n))) + VN(n +1,x(n+ 1))
- - oe)E(n,x(n), MN(n, x(n)))
= VN(n + 1, x(n+ 1)) —+—ot€(n,x(n), /LN(n, x(n))).

Hence, (7.10) holds and Proposition 7.6 guarantees the assertion. 0

Now, we would not gain much if we tried to compute « using (7.12) directly,
since we would again need the future information Vy(n 4+ 1, x(n + 1)), i.e., the
solution of another optimal control problem (in contrast to that Vy_1(n + 1, x(n +
1)) is readily available at time n since by the dynamic programming principle it can
be computed from Vy (n, x(n)) and £(x(n), uy(x(n)))). There is, however, a way
to reduce the size of the additional optimal control problem that needs to be solved.
To this end, we introduce the following assumption which will later be checked
numerically in our algorithm.

Assumption 7.10 For given N, Ny € N, N > Ny > 2, there exists a constant y > 0
such that for the optimal open-loop solution x,+ (-, x (n)) of (OCPY) in Algorithm 3.7
the inequalities
Vo (n + N — No, x,»(N — No, x(n)))
y+1
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S . max E(n+j,xu(}’l+j,x(n)),/,LN_j_l(}’l+j,XM*(j,x(}’l)))),

Vitn+ N —k, x,»(N — k, x(n)))
y+1
§£(n+N —k,xu~(N—k,x(n)),,uk(n—i—N—k,xu*(N —k,x(n))))

hold for all k € {Ng+ 1, ..., N} and all n € Ny.

Note that computing y for which this assumption holds requires only the com-
putation of p; for j =1,..., No — 1 in the first inequality, since i in the second
inequality can be obtained from u* via (3.23). This corresponds to solving Ny — 2
additional optimal control problems which may look like a step backward, but since
these optimal control problems are defined on a significantly smaller horizon, the
computing costs are actually reduced. In fact, in the special case that £ does not
depend on u, no additional computations have to be performed, at all. In this as-
sumption, the value Ny is a design parameter which affects the computational effort
for checking Assumption 7.10 as well as the accuracy of the estimate for « obtained
from this assumption.

Under Assumption 7.10 we can relate the minimal values of two optimal control
problems with different horizon lengths.

Proposition 7.11 Suppose that Assumption 7.10 holds for N > No > 2. Then

(y + DN
(V + 1)N—N0 + yN—N0+1
holds for all n € Ny.

Vi (n,x(m)) < Viy-1(n, x(n))

Proof In the following we use the abbreviation x, (j) := x,(j, x(n)), j =0,..., N,
since all our calculations use the open-loop trajectory with fixed initial value x (n).
Set n := N — k. Using the principle of optimality and Assumption 7.10 we obtain

Vici(n+7a+1, f(xu (@), wic(n + 7, x4 (7))))
<yl(n+n,x,R), pi(n + 7, x,(7))) (7.13)

forallk e {Ng+1,..., N} and all n € Ny.
(y+DFMN

(y+DF=No F=No+T

nVi(m + n,x,(n)) < Vy_1(n + n,x,(n)) by induction over k = Ny, ..., N. By

choosing

x,(0) = x(n) with n being arbitrary but fixed we obtain

We abbreviate n; = and prove the main assertion

Vg (1 + N — No, x4 (N — No))
<(y+ 1)/ max En+N—j,xu(N = ), j—1(n+N— j, xu(N = J)))
j=2,....No

No

S()/+1)ZZ(H+N—j,xu(N—j)ij—l(n-l-N—j,xu(N—j)))
j=2
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1
= —Vng—1(n+ N = No, xu(N = No)).
NNy

For the induction step k — k + 1 the following holds, using (7.13) and the induction
assumption:
Vi (n +11, Xy (ﬁ))
= Vici(n+ i+ 1, f (xu @), e (n + 2, x4 ())))
+€(n+ i, x, (), i (n + i, x4, (7))

1 — g
>l 1+
( Y +nk

)Vk(n +7+ 1, f(xu @), i (n + 7, x4 (7))

+ <1 —y ; 122)@@ + 71, x, (1), e (n 4 71, x, (1))

y+1
Y+
+€(n + 1, x,(n), uk(n +fl,xu(ﬁ))))

=Nk (Vi(n+a+1, f (xu (1), px(n + 17, x,(7))))

using the dynamic programming principle (3.16) with K = 1 in the last step. Hence,

we obtain Vi (n + 7, x,, (7)) > ;:ﬂlk Vit1(n + 1, x,,(n)) with
; y+1  (y+ D2 y+1 _ (y+ D! .
k Y+ e (y + 1)k—2 + )/k_l v+ (y+1)k=2 (y + l)k—l + )/k k+1-
G+ D24y

If we choose k = N then we get n = 0. Inserting this into our induction result we
can use x,(0) = x,,(0, x(n)) = x(n) and the assertion holds. O

Finally, we can now use Proposition 7.11 within the NMPC closed loop. This al-
lows us to verify Condition (7.12) and to estimate « directly from Assumption 7.10.

Theorem 7.12 Consider y > 0 and N, Ny € N, N > Ny such that (y + 1)V =N >
yN=NoF2 holds. If Assumption 7.10 is fulfilled for these y, N and No, then the
estimate (7.11) holds for all n € Ny where

(]/ + l)N—N() _ )/N_NO+2
(v + DV

(7.14)

Proof From Proposition 7.11 we know
yN=No+l
Vn (n,x(n)) — VN2t (n,x(n)) < WVN_I (n,x(n)).
Setting j =n — 1, we can reformulate this and obtain
Vn(j+LxG+ D)= Vyoi(j+ Lx(G+1D)
yN=Not1

<G N WU LS (0.2(D). i (0 (0. 6())))
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using the dynamics of the optimal open-loop solution. Now, we can use (7.13) with
k= N and get

Vn(j+1,xG+ D)= Vyoi(j+ 1Lx(G+ D)
,}/N—N0+2

< @
T+ DV

Hence, the assumptions of Lemma 7.9 are fulfilled with

(. x()s un(j. x())).

VN7N0+2 B ()/ + 1)N7N0 _ yN*N(H»Z

C(y+DNVN T (y + HN-Mo

and the assertion follows. O

Similar to Proposition 7.6, the required values of y and « are easily computable
and allow us to extend Algorithm 3.7 in a similar manner as we did in Algorithm 7.8.

Algorithm 7.13 (NMPC algorithm for time varying reference x™! with a priori sub-
optimality estimate) Set o = 1. At each sampling time #,,»n =0, 1,2, ...:

(1) Measure the state x(n) € X of the system.
(2) Set xg = x(n) and solve the optimal control problem

N-1
minimize  Jy (n, x0, u(-)) := Z e(n+k, x,(k, x0), u(k))
k=0 (OCPY)
with respect to  u(-) € UV (xp), subject to

xbl (07 XO) = X0, Xu (k + 1’ -xO) = f(xu(k’ xO)» M(k))

and denote the obtained optimal control sequence by u*(-) € UV (xo).

(3) Define the NMPC-feedback value uy (n, x(n)) := u*(0) € U and use this con-
trol value in the next sampling period.

(4) Compute o via

Find the minimal y which satisfies the inequalities
in Assumption 7.10 for the current n and set
(J/ 4 ])N—NO _ yN—N(H-Z
(y + DHN-No }

a:min{a,

Note that checking the additional condition (y 4+ 1)V ~No > N=No+2 from The-
orem 7.12 is unnecessary, since a violation would lead to a negative « in which case
asymptotic stability cannot be guaranteed by means of Theorem 7.12, anyway.

Similar to Proposition 7.6, the results from Theorem 7.12 are easily carried over
to the multistep NMPC case described in Sect. 7.4 by extending Assumption 7.10.

Example 7.14 To illustrate these results, we consider the inverted pendulum on a
cart problem from Example 2.10 with parameters g =9.81,/ =10 and kg = k1 =
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-6 -4 2 0 2 4 6 - - 2 0 2 4 6

(a) Vector field of the inverted pendulum on a (b) Contour plot of the cost function /.
cart example 2.10. Here, the first two compo- Similar to Figure 7.11a, only the depen-
nents are displayed which represent the pendu- dency on the first two components is dis-
lum. played.

Fig. 7.11 Vector field and cost function

0.01 and control constraint set U = [—15, 15]. Our aim is to stabilize one of the
upright positions x € S := {((k + 1)7,0,0,0) " | k € 27Z}. For this example we will
provide online measurements of « using Algorithm 7.8 for one fixed initial value
and varying terminal weights w, cf. Sect. 7.2, and control horizons, cf. Sect. 7.4. For
a comparison of Algorithms 7.8 and 7.13 we refer to [15] and [29].

In order to obtain a suitable cost function, we follow the guidelines from Sect. 6.6
and construct a cost function for which—at least in the first two components—
the overshoot of £ along a typical stable trajectory becomes small. To this end, we
have used the geometry of the vector field of the first two differential equations
representing the pendulum, see Fig. 7.11(a), and shaped the cost function such that
it exhibits local maxima at the downward equilibria and “valleys” along the stable
manifolds of the upright equilibria to be stabilized. The resulting cost function £ is
of the integral type (3.4) with

L(x,u) == 10"*% + (3.51sin(x; — 7)? + 4.82sin(x; — 7)x2
+231x3 +0.1((1 = cos(x; — 1)) - (14 cos(x2)?))
+0.01x3 +0.1x7)°,
cf. Fig. 7.11(b). Using the terminal weights from Sect. 7.2, the cost functional be-
comes
N-2
In (o, u) =D €(x(@), u(@)) + wl(x(N = 1), u(N — 1)).
i=0
This way of adjusting the cost function to the dynamics allows us to considerably

reduce the length of the optimization horizon for obtaining stability in the NMPC
scheme without stabilizing terminal constraints compared to simpler choices of £.
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Fig. 7.12 Computed value for a3, ,, for the nonlinear inverted pendulum example 2.10 with con-
trol horizons m € {1, ..., 20} and terminal weights w € {1, ..., 10}

However, for the initial value xo = (2w + 1.5, 0, 0, 0) and sampling period T = 0.05,
which have been used in the subsequent computations, we still need a rather large
optimization horizon of N =70 to obtain stability of the closed loop.

Since the cost function is 27 -periodic it does not penalize the distance to a spe-
cific equilibrium in S; rather, it penalizes the distance to the whole set. For a better
comparison of the solutions for different parameters we want to force the algorithm
to stabilize one specific upright position in S. To this end, we add box-constraints
to X limiting the x{-component to the interval [—z + 0.01, 37 — 0.01]. The toler-
ances of the optimization routine and the differential equation solver are set to 10~°
and 1077, respectively. The NMPC closed-loop trajectories displayed in Fig. 7.12
are simulated for terminal weights w =1, ..., 10, cf. Sect. 7.2, and control horizons
m=1,...,10,cf. Sect. 7.4. The resulting «-values from Algorithm 7.8, denoted by
aﬁ,m, are shown in Fig. 7.12.

Note that for w = 1 the o values are negative for control horizons m =1, ..., 4.
Still, larger control horizons exhibit a positive « value such that stability is guaran-
teed. This is in accordance with the theoretical results from Sect. 7.4, even though
these simulation based results do not share the monotonicity of the theoretical
bounds from Fig. 7.3. Additionally, an increase of o can be observed for all con-
trol horizons m if w is increased. This confirms the stabilizing effect of terminal
costs shown theoretically in Sect. 7.2; cf. Fig. 7.1.

Summarizing, these results show that the online measurement of « yields valu-
able insights into the performance analysis of NMPC schemes without terminal
constraints and thus nicely complements the theoretical results from Chap. 6 and
Sects. 7.2 and 7.4.

7.8 Adaptive Optimization Horizon

In the previous Sect. 7.7 we have shown how the suboptimality degree o can be
computed at runtime of the NMPC scheme without stabilizing terminal constraints.
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If the horizon length N is not chosen adequately, then it is likely that during runtime
a value o < 0 is obtained. In this case, stability of the closed loop cannot be guaran-
teed by Proposition 7.6 or Theorem 7.12. However, the ability to compute « for each
point x(n) on the closed-loop trajectory using the techniques from Sect. 7.7 natu-
rally leads to the idea of adapting the optimization horizon N at each time n such
that stability and desired performance can be guaranteed. In this section, we will
show some algorithms for this purpose, taken from Pannek [29]. Here we restrict
ourselves to the basic idea and refer to [29] for more sophisticated approaches.

The fundamental idea of such an adaptive algorithm is rather simple: introducing
a stability and suboptimality threshold & > 0, at each sampling instant n we prolong
the optimization horizon if « for the current horizon is smaller than . If o > &
holds, then we may reduce N in order to save computational time. This leads to the
following algorithm.

Algorithm 7.15 (Adaptive horizon NMPC algorithm for time varying reference)
Set No > 0 and @ > 0. At each sampling time #,,n =0, 1,2, ...:

(1) Measure the state x(n) € X of the system and set o = 0.
(2) While o > o
(a) Setxg=x(n), N= N, and solve the optimal control problem

N_
minimize  Jy (n, x0, u(-)) := Z e(n+k, xu(k, x0), u(k))
k=0 (OCPYR)
with respectto  u(-) € N (xp), subjectto
x(0,x0) =x0,  xu(k+1,x0) = f(xu(k, x0), u(k)).

—_

Denote the obtained optimal control sequence by u*(-) € U (xo).
(b) Compute o via Proposition 7.6 or Theorem 7.12.
(c) If ¢ > @ call reducing strategy for N,, else call increasing strategy for N,;
obtain u*(-) for the new N = N,, and an initial guess for N,.
(3) Define the NMPC-feedback value upy (n, x(n)) := u*(0) € U and use this con-
trol value in the next sampling period.

Here, the initial guess N, in Step (2c) will typically be N,4+1 = N,,, however,
as we will see below, in the case of reducing N,, the choice N+ = N,, — 1 is more
efficient, cf. the discussion after Proposition 7.18.

If this algorithm is successful in ensuring & > « for each n, then the assumptions
of Proposition 7.6 or Theorem 7.12 are satisfied. However, these results require the
optimization horizon N to be fixed and hence do not apply to Algorithm 7.15 in
which N, changes with time.

To cope with this issue, we generalize Proposition 7.6 to varying optimization
horizons. To this end, for each x € X and N € N we denote the maximal « from
(7.10) by a(N). We then introduce the following assumption, which guarantees that
for any horizon N satisfying o(N) > & the controller shows a bounded guaranteed
performance if the horizon length is increased.
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Assumption 7.16 Given n € Ny, x € X, N < oo and a value o € (0, 1) with
a(N) > o, we assume that there exist constants C;, Cy > 0 such that the inequalities

C[E(n,x, MN(n,x))

Vi(n,x) = Vi +1, f(x, un(n, x)))

Vi(n,x) = Vi +1, f(x, uj(n, x))’
Cya(N) <a(N) (7.16)

hold for all N > N.

gﬁ(n,x,,uﬁ(n,x)) (7.15)

The reason for Assumption 7.16 is that it is possible that the performance of the
controller ;£ may not improve monotonically as N increases; see Di Palma and
Magni [6]. Consequently, we cannot expect a(]\NJ ) > a(N) for N > N. Still, we need
to ensure that «(N) does not become too small compared to «(N), in particular,
«(N) should not drop below zero if the horizon length is increased; this is ensured
by (7.16). Furthermore, we need an estimate for the dependence of £(n, x, uy (1, x))
on N which is given by (7.15). Unfortunately, for both inequalities so far we were
not able to provide sufficient conditions in terms of the problem data, like, e.g., a
controllability condition similar to Assumption 6.4. Still, numerical evaluation for
several examples showed that these inequalities are satisfied and that C; and Cy
attain reasonable values.

Using Assumption 7.16, we obtain a stability and performance estimate of the
closed loop in the context of changing horizon lengths similar to Proposition 7.6.
Since the closed-loop control resulting from Algorithm 7.15 now depends on a se-
quence of horizons (N,),en, We obtain a sequence of control laws (., )nen,. The
closed-loop trajectory generated by this algorithm is then given by

x(n~|—1)=f(x(n),uNn(n,x(n))). (7.17)

Theorem 7.17 Consider the sequence of feedback laws (un,) computed from Al-
gorithm 7.15 and the corresponding closed-loop trajectory x (-) from (7.17). Assume
that for optimal value functions Vy, : Ng x X — Rg of (OCPY) with N = Ny the
inequality

VN, (n,x()) = Vi, (n + 1, x(n + 1)) + @L(n, x(n), pw, (n, x(m))) (7.18)
holds for all n € Ny and that Assumption 7.16 is satisfied for all triplets (n,x, N) =
(n,x(n), Ny), n € Ng, with constants Cl("), Cé,"). Then

acVoo(n, x(n)) < acJoo(n, x(n), i) < Ve (1, x(n)) < Voo (n, x(n))  (7.19)
holds for all n € Ng where ac := min;en,, Céi)Cl(i)E.
Proof Given (i,x(i), N;) for some i € No, Assumption 7.16 for (n,x, N) =
(i, x (@), N;) guarantees o (N;) < a(N)/C(g,l) for N > N;. Choosing N = N*, we ob-

tain@ < a(N;) < a(N*)/CY using the relaxed Lyapunov Inequality (7.18). Multi-
plying by the stage cost £(i, x (i), iu; (i, x(i))), we can conclude
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al(i,x(), uy, (i, x(0)))
a(N*) . . o
= = i (3))
o
_ V@ x@) = V- G+ 1, f(x @), v+ (G x (D))
C G, x (@), e (i x (D))

_ Vv G x @) = Vi + 1, @), e, G x(0)))

- Cg)Cl(l)
using (7.18) and (7.15). In particular, the latter condition allows us to use an identical
telescope sum argument as in the proof of Proposition 7.6 since it relates the closed-

loop varying optimization horizon to a fixed one. Hence, summing the running costs
along the closed-loop trajectory reveals

e(i,x @), i (i, x0)) )

K
ac Y L(i.x(). (i, x(0)) < Vs (n.x(n)) = V= (K + 1, x(K + 1))

i=n

where we defined oc := min;c,,... k] Cé”c,”)a. Since Vy+(K +1,x(K +1)) >0
holds, we can neglect it in the last inequality. Taking K to infinity yields

K
ac Voo™ (n, x(n)) = ac Jim > e(ix (@), wy, (i x(@))) < Vive (n x ().

l=n
Since the first and the last inequality of (7.19) hold by definition of V and Vi, the
assertion follows. t

If the conditions of this theorem hold, then stability-like behavior of the closed
loop can be obtained analogously to Proposition 7.6.

Having shown the analytical background, we now present adaptation strategies
which can be used for increasing or reducing the optimization horizon N in Step (2c¢)
of Algorithm 7.15. For simplicity of exposition, we restrict ourselves to two simple
strategies and consider a posteriori estimates based variants only. Despite their sim-
plicity, these methods have shown to be reliable and fast in numerical simulations.
A more detailed analysis, further methods and comparisons can be found in [29].
The following proposition yields the basis for a strategy for reducing N,,.

Proposition 7.18 Consider the optimal control problem (OCPY) with initial value
xo = x(n), N, € N, and denote the olztimal contr_ol sequence by u*. For fixed o €
(0, 1), suppose there exists an integer i € Ng, 0 <i < N such that
VNn_i(n +i+ 1,xu~(i + l,x(n)))
+ Eé(n + 1, X, (i, x(n)), UN,—i (n + 1, X, (i, x(n))))
< Vn,—i(n+i,x0 (i, x())) (7.20)
holds for all 0 <i <i. Then, setting Nny; = N, — i and UN,;(n+i,x(n+1)) =
u (@) for0<i < i—1, Inequality (7.18) holds forn =n, ..., n +i—1.
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Proof The proof follows immediately from the fact that for uy, (n +i,x(n +
i)) = u* (i) the closed-loop trajectory (7.17) satisfies x (n +i) = x, (i, x(n)). Hence,
(7.18) follows from (7.20). O

Observe that Proposition 7.18 is quite similar to the results from Sect. 7.4, since
MUN,,; (n+1i,x(n+1i)) as defined in this theorem coincides with the multistep feed-
back law from Sect. 7.4. Thus, Proposition 7.18 guarantees that if i > 1, then the
multistep NMPC feedback from Sect. 7.4 can be applied with m =i steps such that
the suboptimality threshold @ can be guaranteed. With the choice N,4; = N,, — i,
due to the principle of optimality we obtain that the optimal control problems within
the next i — 1 NMPC iterations are already solved since Ny (n+1,x(n +1)) can
be obtained from the optimal control sequence u*(-) € UN (x(n)) computed at time
n. This implies that the most efficient way for the reducing strategy in Step (2¢) of
Algorithm 7.15 is not to reduce N, itself but rather to reduce the horizons N, 4; by
i for the subsequent sampling instants n + 1,...,n + i, i.e., we choose the initial
guess in Step (2¢) as N,4+1 = N, — 1. Still, if the a posteriori estimate is used, the
evaluation of (7.20) requires the solution of an additional optimal control problem
in each step in order to compute Vy,_;(n +1i + 1, x,~(i + 1, x(n))).

In contrast to this efficient and simple shortening strategy, it is quite difficult
to obtain efficient methods for prolonging the optimization horizon N in Step (2c)
of Algorithm 7.15. In order to understand why this is the case, we first introduce
the basic idea behind any such prolongation strategy: at each sampling instant we
iteratively increase the horizon N, until (7.18) is satisfied and use this horizon for
the next NMPC step. In order to ensure that iteratively increasing N,, will eventually
lead to a horizon for which (7.18) holds, we make the following assumption.

Assumption 7.19 Given @ € (0, 1), for all xo € X and all n € Ny there exists a
finite horizon length N = N(n, xo) € N such that (7.18) holds with «(N,) > & for
x(n) =xpand N, > N.

Assumption 7.19 can be seen as a performance assumption which requires the
existence of a horizon length N, such that the predefined threshold @ can be sat-
isfied. If no such horizon exists, no prolongation strategy can be designed which
can guarantee closed-loop suboptimality degree « > o. Assumption 7.19 is, for in-
stance, satisfied if the conditions of Theorem 6.21 hold.

The following proposition shows that under this assumption any iterative strategy
which increases the horizon will terminate after finitely many steps with a horizon
length N for which the desired local suboptimality degree holds.

Proposition 7.20 Consider the optimal control problem (OCPY) with initial value
xo = x(n) and N, € N. For fixed o € (0, 1) suppose that Assumption 7.19 holds.
Then, any algorithm which iteratively increases the optimization horizon N, and
terminates if (7.18) holds will terminate in finite time with an optimization hori-
zon N, for which (7.18) holds. In particular, Theorem 7.17 is applicable provided
Assumption 7.16 holds.
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Proof The proof follows immediately from Assumption 7.19. ]

Unfortunately, if (7.18) does not hold it is in general difficult to assess by how
much N, should be increased such that (7.18) holds for the increased N,,. The most
simple strategy of increasing N,, by one in each iteration shows satisfactory results
in practice, however, in the worst case it requires us to check (7.18) N-—N,+1
times at each sampling instant. In contrast to the shortening strategy, the principle
of optimality cannot be used here to establish a relation between the optimal con-
trol problems for different N, and, moreover, these problems may exhibit different
solution structures which makes it a hard task to provide a suitable initial guess for
the optimization algorithm; see also Sect. 10.5.

In order to come up with more efficient strategies, different methods have been
developed [29] which utilize the structure of the suboptimality estimate itself to
determine by how much N, should be increased. Compared to these methods, how-
ever, the performance of the simple strategy of increasing N, by one is still ac-
ceptable. In the following example we illustrate the performance of this strategy for
Example 2.11.

Example 7.21 For the ARP system (2.19)-(2.26) we have already analytically de-
rived a continuous time tracking feedback in (2.28). However, this feedback law per-
forms poorly under sampling, in particular, for the sampling period 7' = 0.2 which
we consider here we obtain an unstable closed-loop sampled data system.

In order to obtain a sampled data feedback law which shows better performance
we use the digital redesign technique proposed by Nesi¢ and Griine in [27]: given
a signal v(¢) to track, we numerically simulate the continuous time controlled sys-
tem in order to generate the output x™ which in turn will be used as the refer-
ence trajectory for an NMPC tracking problem. The advantage of proceeding this
way compared to the direct formulation of an NMPC tracking problem lies in the
fact that—according to our numerical experience—the resulting NMPC problem is
much easier to solve and in particular requires considerably smaller optimization
horizons in order to obtain a stable NMPC closed loop.

Specifically, we consider the piecewise constant reference function

{ 10, t€[0,5U][9,10),
v(t) =
0, r€l[59UI[l10,15)

for the xs5-component of the trajectory of the system. In order to obtain short tran-
sient times for the continuous time feedback, we set the design parameters c¢; in
(2.28) to (cy, c1, €2, ¢3) = (10000, 3500, 500, 35). Then, we incorporate the result-
ing trajectory displayed in Fig. 7.13 as reference x™(-) in the NMPC algorithm.
Since our goal is to track the reference with the xs-component of the trajectory, we
use the simple quadratic cost function

N Lj+1
J(x0,u) = Z/ |5, (2, %0) — x5 ref(1)| 1t
j=0"1
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Fig. 7.13 Reference function X5
for the continuous time : B
feedback (solid) and state 10— -
trajectory using the I | o
continuous time feedback Y : ‘I ,'
(dashed). The latter will be S I
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within the NMPC algorithm : !

Fig. 7.14 Optimization N
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Algorithm 7.15 for the ARP :
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estimate (solid) and the a 3f\r=————= A ____ A - T
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within the adaptive horizon NMPC Algorithm 7.15. Moreover, we select the sam-
pling period T = 0.2 and fix the initial value x(0) = (0, 0, 0, 0, 10, 0, 0, 0) for both
the continuously and the sampled-data controlled system.

Using the a posteriori and a priori estimation techniques within the adaptive
NMPC Algorithm 7.15, we obtain the evolutions of horizons N, along the closed
loop for the suboptimality bound o = 0.1 as displayed in Fig. 7.14. Comparing the
horizons chosen by the a priori and the a posteriori estimates, one sees that the a
posteriori algorithms yields smaller optimization horizons which makes the result-
ing scheme computationally more efficient, however, at the expense that the evalua-
tion of the a posteriori criterion itself is computationally more demanding; see also
Fig. 7.15, below.

It is also interesting to compare these horizons to the standard NMPC Algo-
rithm 3.7 with fixed N which needs a horizon of N = 6 in order to guarantee o > o
along the closed loop. Here, one observes that the required horizon N,, for the adap-
tive NMPC approach is typically smaller than N = 6 for both the a posteriori and
the a priori estimate based variant. One also observes that the horizon is increased
at the jump points of the reference function v(-), which is the behavior one would
expect in a “critical” situation and nicely reflects the ability of the adaptive horizon
algorithm to adapt to the new situation.

Although the algorithm chooses to modify the horizon length throughout the run
of the closed loop, one can barely see a difference between the resulting x5 trajecto-
ries and the (dashed) reference trajectory given in Fig. 7.13. For this reason, we do
not display the closed-loop solutions. Instead, we additionally plotted the computing
times of the two adaptive NMPC variants in Fig. 7.15. Again, one can immediately
see the spikes in the graph right at the points in which v(-) jumps. This figure also
illustrates the disadvantage of the algorithm of having to solve multiple additional
optimal control problems whenever N is increased, which clearly shows up in the
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Fig. 7.15 Computing times Computing time in ms
of the adaptive NMPC
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higher computation times at these points, in particular for the computationally more
expensive a posteriori estimation.

While the adaptive optimization horizon algorithm produces good results in this
example, we would like to mention that there are other examples—Ilike, e.g., the
swing-up of the inverted pendulum—for which the algorithm performs less con-
vincing. We conjecture that a better understanding of Assumption 7.16 may provide
the insight needed in order to tell the situations in which the adaptive algorithms
provides good results from those in which it does not.

7.9 Nonoptimal NMPC

In the case of limited computational resources and/or fast sampling, the time avail-
able for solving the optimization problems (OCPy) or its variants may not be suf-
ficient to obtain an arbitrary accurate solution. Typically, the algorithms for solving
these problems, i.e., for obtaining u* and thus .y (x(n)) = u*(0), work iteratively?
and with limited computation time may we may be forced to terminate this algo-
rithm prior to convergence to the optimal control sequence u*.

It is therefore interesting to derive conditions which ensure stability and perfor-
mance estimates for the NMPC closed loop in this situation. To this end, we modify
Algorithm 3.1 as follows.

Algorithm 7.22 We replace Steps (2) and (3) of Algorithm 3.1 (or its variants) by
the following:

(2') For initial value xo = x(n), given an initial guess ug () € UV we iteratively
compute u;,(-) € UV by an iterative optimization algorithm such that

In (%0, 4T ) < I (0, wh ().

We terminate this iteration after j* € N iterations, set u,(-) := u,’1 (-) and
Vn(n) = Jn(xo, un(-)).

ZFor more information on these algorithms see Chap. 10 and for numerical aspects of the theory in
this chapter in particular Sect. 10.6.
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(3’) Define the NMPC-feedback value wy (x(n)) := u, (0) € U and use this control
value in the next sampling period.

One way to ensure proper operation of such an algorithm is by assuming that the
sampling period is so small such that the optimal control from sampling instant n — 1
is still “almost optimal” at time n. In this case, one iteration starting from ug =uUy_1,
i.e., j* =1, may be enough in order to be sufficiently close to an optimal control,
i.e., to ensure Jy(x(n), u,]1) ~ Vy(x(n)). This procedure is, e.g., investigated by
Diehl, Findeisen, Allgéwer, Bock and Schldder in [8].

An alternative but conceptually similar idea is presented in work of Graichen and
Kugi [11]. In this reference a sufficiently large number of iterations j* is fixed and

h
conditions are given under which the control sequences u;, become more and more

optimal as n increases, i.e., they satisfy Jy(x(n), u,’z*) ~ Vy(u*) for sufficiently
large n. Using suitable bounds during the transient phase in which this approximate
optimality does not yet hold then allows the authors to conclude stability estimates.

While these results use that u,,* is close to u* in an appropriate sense, here we
investigate the case in which u;, may be far away from the optimal solution. As we
will see, asymptotic stability in the sense of Definition 2.14 is in general difficult to
establish in this case. However, it will still be possible to prove the following weaker

property.

Definition 7.23 Given a set S C X, we say that the NMPC closed loop (2.5) is
attractive on S if for each x € § the convergence

lim x,, (k, x) = x4
k— 00

holds.

Contrary to asymptotic stability, a merely attractive solution x,,, which starts
close to the equilibrium x, may deviate far from it before it eventually converges
to x,. In order to exclude this undesirable behavior, one may wish to require the
following stability property in addition to attraction.

Definition 7.24 Given a set S C X, we say that the NMPC closed loop (2.5) is
stable on S if there exists g € KC such that the inequality

|xp.N (kvx)ix* = O[S(|X|X*)

holds forall x e Sandall k =0,1,2,....

It is well known that under suitable regularity conditions attractivity and stability
imply asymptotic stability; see, e.g., the book of Khalil [23, Chap. 4]. Since this is
not the topic of this book, we will not go into technical details here and rather work
with the separate properties attractivity and stability in the remainder of this section.

The following variant of Proposition 7.6 will be used in order to ensure attractiv-
ity and stability.



200 7 Variants and Extensions
Proposition 7.25 Consider the solution x(n) = x,, (n, xo) of the NMPC closed
loop (2.5), a set S C X, avalue a € (0, 1]. Assume that € satisfies

() = as(Ixl,) (7.21)

Jfor some a3 € Ko and all x € S and that for each xo € S there exists a function
Vv :Ng — Rg which for all n € Ny satisfies

V() = Vn(n+ 1) +al(x(n), un (x(n))). (7.22)
Then the closed loop (2.5) is attractive on S and the inequality
Joo(x0, i) < Vv (0) (7.23)

holds for Joso(x0, L) from Definition 4.10. ~
If, in addition, there exists & € K independent of xo such that the functions Vy

satisfy
Vn (0) <@ (|x )], ), (7.24)
then the closed loop (2.5) is stable on S.

Proof Tterating Inequality (7.22) forn =0, ..., k and using VN (n) > 0 yields

k
Y e(xm), py (x(n)) < Vi (0) = Viy(k + 1) < Vy (0).
n=0

Letting k — oo we obtain

k
Joolx, pey) = lim 3 € (x(m), oy (x(m))) < Vi (0),
n=0

i.e., (7.23). Now nonnegativity of £ implies lim,_,  £(x(n), uy(x(n))) = 0 and
thus (7.21) implies x(n) — 0, i.e., attractivity.

In order to prove stability under the additional assumption (7.24), observe that
(7.22) together with the nonnegativity of Vy and (7.21) implies

VN(n) > aé(x(n), MN(x(n))) > otog(}x(n)’x*) =: &1(}x(n)’x*).

Furthermore, (7.22) implies that \7N (n) is decreasing in n. Using these properties,
stability immediately follows from

x|, <@ (Vwm) <& (V) <@ " (@(Ixoly,)) = as(1xolx,)-

The precise conditions on u;, and u,, in Algorithm 7.22 which ensure attractiv-
ity, stability and suboptimality estimates now depend on whether stabilizing termi-
nal constraints are used or not. We first consider the case of stabilizing terminal
constraints which was investigated, e.g., by Michalska and Mayne [25], Scokaert,
Mayne and Rawlings [32] and Rawlings and Mayne [31, Sect. 2.8] which all use
conceptually similar ideas. Here, we follow the latter reference.

The approach in [31, Sect. 2.8] can be written as a variant of Theorem 5.13. In
particular, we assume that Assumption 5.9 is satisfied. In order to obtain a more
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convenient notation, on the terminal constraint set Xo we define a map « : Xg — U
which assigns to each x € X the control value u, € U(x) from Assumption 5.9(ii).
With this notation, the corresponding theorem reads as follows.

Theorem 7.26 Assume that the conditions of Theorem 5.13 are satisfied. Consider
Algorithm 3.10 with Steps (2) and (3) replaced by Steps (2') and (3') of Algo-
rithm 7.22 under the following assumptions for a set S C Xy.

(i) For n =0, we are able to find an admissible initial guess u8(~) € Ugo (xq) for
each initial value xo = x(0) € S.

(i) For n =1,2,..., the initial guess u2(~) is chosen as ug(k) =u,—1(k+ 1),
k=0,...,N—2and ud(N — 1) = K (x,0(N = 1, x0)).
(iii) For all n =0,1,2, ... the control sequences u,(-) = u{;*(~) satisfy u{;*(-) €

Ugo (x0), i.e., they are admissible.
Then the NMPC closed loop (2.5) is attractive on S and the inequality
Joo (x, 11x) < Vi (0)

holds. If, in addition, there exists &3 € Ko, such that the inequality Jy (xo, u8(~)) <
as(|xlx,) holds for ug(-)from (1), then (2.5) is also stable on S.

Proof First note that (i) ensures that u8 is admissible at time n = 0 and that (iii)
ensures that ug in (ii) is admissible forn =1, 2, ..., cf. also Lemma 5.10(i).

We abbreviate x (1) = x,,,, (n). Then, (ii) and the same computation as in the proof
of Lemma 5.12 yield the inequality Jy (x(n + 1), u2+1 ) <JInv_1x(n+ 1D, u,(-+
1)) for each n > 0. On the other hand, the definition of Jy in Algorithm 3.10 implies

Vi () = Iy (x(n), 1y () = €(x (1), un(0)) + Iy -1 (f (x(n), 4y (), un (- + 1)).

Ihe identities f(x(n), u,(x)) = x(n + 1), u,(0) = uy(x(n)) and the inequality
Vn(n+1) < Iy(x(n+1),u%, () then lead to

Vv (1) = £(x(n), 15 (0)) + Iy (x0. 45 () = £(x(n). un (x(m))) + Vv (n + 1),

i.e., (7.22). Now all properties follow directly from Proposition 7.25. d

Remark 7.27

(1) If the assumptions of Proposition 5.14(ii) hold, then for x¢ € Xy, the additional
stability condition Jy (xq, ug(-)) < a@3(|x|x,) can be guaranteed if we define
ud(-) by ud(k) := k(x,0 (k. x0)), k=0..... N — 1. From Assumption 5.9(ii) it

follows that this choice implies Jy (xo, ug(-)) < F(x0) < a2(]x|x,) and thus the
desired inequality follows with &3 = &;. Hence, this choice guarantees stability
locally around x,.

One may also apply this definition to u2 in (ii) for those n in which
x(n) € Xp holds. This way, stability is ensured at least for the tail of the result-
ing closed-loop trajectory. If we use this choice of ug and do not perform the
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iterative optimization in Step (2") of Algorithm 7.22, i.e., if we choose j* =0,
then we obtain an algorithm similar to the so-called dual mode strategy from
[25].

(ii) Iterative optimizations algorithms are usually designed such that the intermedi-
ate results satisfy the desired constraints as soon as the algorithm has succeeded
in finding an admissible solution; see Sect. 10.6 for details. Since condition (ii)
in Theorem 7.26 ensures that we already initialize the iterative optimization
with an admissible solution, most common optimization algorithms will yield
solutions u{,*(‘) satisfying condition (iii) of Theorem 7.26 regardless of how
Jj* is chosen.

(iii) Theorem 7.26 yields attractivity for arbitrary j* € Ny. In particular, it applies
to j* =0, i.e., to the case in which we do not optimize at all. This means
that attractivity follows readily from the stabilizing terminal constraints and
the particular construction of the initial guesses. An important consequence of
this property is that we can fix j* a priori, e.g., determined by the available
computation time, which makes this approach suitable for real-time NMPC
schemes.

Without stabilizing terminal constraints, stability is inherited from optimality and
we can no longer expect attractivity or stability for arbitrary j*. Instead, we need to

make sure that ufl* is at least “good enough” to ensure (7.22). This is the idea of the
following algorithm for determining j* taken from Griine and Pannek [16].

Algorithm 7.28 Given a € (0, 1), in Step (2) of Algorithm 7.22 we iterate over
u(-) e UN(x(n)) for j = 1,2, ... until the termination criterion

In(x.uh () < Ve — 1) — b (x(n = 1), uy—1(0)) (7.25)

is satisfied.

The following theorem shows attractivity, suboptimality and stability for this al-
gorithm.

Theorem 7.29 Consider a set S C Xy, a € (0, 1] and Algorithm 3.1 with Steps (2)
and (3) replaced by Steps (2') and (3") of Algorithm 7.22. Assume that Algo-
rithm 7.28 is used in Step (2) of Algorithm 7. 22 and that (7.25) is feasible for each
n €N, i.e., that for each n € N there exists u{, € UM (x(n)) such that (1.25) holds.
Assume furthermore that (71.21) holds for the running cost £.

Then the NMPC closed loop (2.5) is attractive on S and the inequality

Joo(x, 1in) < Vi (0)

holds. If, in addition, there exists &3 € Koo such that the inequality Jy (xo, u8(-)) <
as(|xly,) holds for the initial guess ug(-) in Step (2) of Algorithm 7.22 for each
x(0) € S, then (2.5) is also stable on S.
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Proof Under the stated assumptions, all properties follow directly from Proposi-
tion 7.25. |

Remark 7.30 In contrast to what was observed in Remark 7.27(iii) for the terminal
constrained scheme, here we cannot in general fix j* a priori. Indeed, the number
of iterations of the optimization algorithm which are needed until (7.25) is satisfied
depends on various factors—particularly on the choice of u,_; and ug—and is in
general unknown before the optimization is started. We assume that for sufficiently
small sampling periods similar techniques as developed by Diehl, Findeisen, All-
gower, Bock and Schloder [8] or Graichen and Kugi [11] can be used in order to
bound the number of needed iterations when setting ug =u,_1, but this has not yet
been investigated rigorously.

In the general case, the feasibility assumption for (7.25) in Theorem 7.29 may
not even be satisfied. Before we investigate this issue, we illustrate the performance
of this algorithm by a numerical example.

Example 7.31 We consider the nonlinear pendulum from Example 2.10, where the
task is now to stabilize the downward equilibrium x, = (0, 0, 0, O)T. Figures 7.16
and 7.17 below show parts of the closed-loop trajectories of x| and x3 using Algo-
rithm 7.22 and Algorithm 7.28 in Step (2') for varying «. The running cost is of type
(3.4) with

L(x,u) = 100sin%(0.5x) +x% + 10.0x32 +x§ +u?,

and sampling period T = 0.15 and the NMPC algorithm was run with optimization
horizon N = 17 and input constraints U = [—1, 1] using a recursive discretization
and a line-search (SQP) method to solve the resulting optimization problem; see
Chap. 10 for details on such methods.

One can see clearly from Figs. 7.16 and 7.17 that the closed-loop system is sta-
ble for all values of «. Moreover, one can nicely observe the improvement of the
closed-loop behavior visible in the decreasing time until the system comes to rest
for increasing values of «.

This is also reflected in the total closed-loop costs: While for ¢ = 0.1 the costs
sum up to VLY (xo) & 2512.74, we obtain a total cost of V25" (xo) A 2485.83 fora =
0.95. Note that the majority of the costs, i.e., approximately 2435, is accumulated on
the interval [0, 5] on which the trajectories for different « are almost identical and
which is therefore not displayed in Figs. 7.16 and 7.17. However, the choice of « has
a visible impact on the closed-loop performance in the remaining part of the interval.

Regarding the computational cost, the total number of (SQP) steps which are
executed during the run of the NMPC procedure reduces from 455 for o = 0.95
and 407 for « = 0.9, to 267 and 246 for « = 0.5 and @ = 0.1, respectively. Hence,
we obtain an average of approximately 2.5-4.5 optimization iterations per MPC
step over the entire interval [0, 15], while using standard termination criteria 9.5
optimization iterations per NMPC step are required.

A closer look at the numerical simulation in this example reveals that for each
o there were some sampling instants n at which it was not possible to satisfy the
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Fig. 7.16 Angle of the 015
pendulum x; for varying o

Fig. 7.17 Position of the cart 0.5
x3 for varying o

suboptimality based termination criterion (7.25). In this case we simply iterated the
SQP optimization routine until convergence.

While this fact is not visible in Figs. 7.16 and 7.17 and obviously does not af-
fect stability and performance in our example, this observation raises the question

Whether (7.25) is feasible, i.e., whether at time n we can ensure the existence of

uﬁ such that (7.25) is satisfied regardless of how u;,_; was chosen, before. In order

to analyze this question, let us suppose that Assumption 6.4 holds. Then, observing
that for optimal controls (7.25) coincides with (5.1), Theorem 6.14 yields that (7.25)
is feasible if u,_1 is an optimal control sequence and « in (7.25) is smaller than «
from (6.14). However, even with this choice of « in (7.25), condition (7.25) may not
be feasible for nonoptimal control sequences u,_1.

In order to understand why this is the case we investigate how Proposition 6.12—
which provides the crucial ingredient for deriving (6.14)—changes if the optimal
control sequence u* in this proposition is replaced by a nonoptimal control sequence
u,—1. Tothisend, we fix n € Nand set x = x,, (n) and u = u,_1. Now, first observe
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that the inequalities in (6.12) remain valid regardless of the optimality of u*. All
inequalities in (6.11), however, require optimality of the control sequence u* gener-
ating the A,,. In order to maintain at least some of these inequalities we can pick an
optimal control sequence u* for initial value x, (1, x) and horizon length N — 1 and
define a control sequence # via #(0) =u(0), u(n) =u*(n —1),n=1,...,N — 1.
Then, abbreviating

An = L(xz(n,x),@(n)), n=0,...,N—1 and

- (7.26)
b= Vi (xu(1, ) = Vy (xz (1, %)),
we arrive at the following version of Proposition 6.12.
Proposition 7.32 Let Assumption 6.4 hold. Then the inequalities
N—1 j—1
Jn By k() and ©=Y Ry + By_j0j1) (7.27)
n=k n=0
hold fork=1,...,N —2and j=0,...,N —2.
Proof Analogous to the proof of Proposition 6.12. O

The subtle but crucial difference of (7.27) to (6.11), (6. 12) is that the left in-
equality in (7.27) is not valid for k = 0. As a consequence, Lo does not appear
in any of the inequalities, thus for any Al...., A, and D satisfying (7.27) and any
6 > 0 the values 8X1, .. SA and 8V satisfy (7 27), too. Hence, unless (7.27) im-
plies v < Zn —0 A —Wthh is a very particular case—replacing (6.11), (6.12) in
(6.14) by (7.27) will lead to the optimal value « = —oo. Consequently, feasibility
of (7.25) cannot be concluded for any positive «.

The following example shows that this undesirable result is not simply due to an
insufficient estimate for o but that infeasibility of (7.25) can indeed happen.

Example 7.33 Consider the 1d system
t=x/2+u (7.28)

with £(x, u) = |x|, input constraint # > 0 and optimization horizon N = 3. A simple
computation using u, = 0 shows that for this system Assumption 6.4 is satisfied
with B(r, k) = Co*r with C = 1 and o = 1/2. Hence, Corollary 6.19 applies and
we can use (6.19) in order to compute that for N = 3 Inequality (5.1) holds for
o =7/8. If u,_1 in the termination criterion (7.25) is chosen as the optimal control
u*, then (7.25) implies that (5.1) is feasible for this .

For x(n — 1) = 0, it is obvious that the control u* = 0 is optimal. Using the
nonoptimal control given by u,_1(0) =& > 0 and u,_1(1) = uy—1(2) = 0 yields
the trajectory x,, ,(0) =x(n —1) =0, x,,_, (k) = e2~%+1 k=1, 2, which implies
x(n) =¢ and

1
‘13(x(n =D, un—l) = Zngk =3¢/2.
k=0
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On the other hand, for the initial value x (n) = ¢ it is easily seen that for each control
u, the inequality

2

J3(x(n), up) > 2827]( =Te/4>3e/2=Jy(x(n—1),up_1)
k=0

holds. Hence, for this choice of u,_; the Inequality (7.25) is not feasible for any
o> 0.

Clearly, in order to rigorously ensure attraction and guaranteed performance one
should derive conditions which exclude these situations and we briefly discuss two
possible approaches for this purpose.

One way to guarantee feasibility of (7.25) is to add the missing inequality in
(7.27) (i.e., the left inequality for kK = 0) as an additional constraint in the optimiza-
tion. This guarantees feasibility of (7.25) for any o smaller than the value from
(6.19). One drawback of this approach is that—similar to the terminal constraint
case—an additional constraint in the optimization is needed which needs to be en-
sured for all j > 1 or at least for j*. This makes the optimization more demanding,
since in contrast to Remark 7.27(ii) here we do not have a canonical candidate for
an admissible solution which can be used for initializing the iterative optimization.
Another drawback is that the value By (ko) depends on the in general unknown
function B from Assumption 6.4 and thus needs to be determined either by an a
priori analysis or by a try-and-error procedure.

Another way to guarantee feasibility is to choose £ in such a way that there exists
y > 0 for which

ye(x,u) > 5(f(x, u)) (7.29)

holds for all x € X and all u# € U. Then from (7.29) and the controllability Assump-
tion 6.4 for x = f(x(n — 1), it,—1(0)) we get

N—-1
Dk <ho+ Byo1(€(f(x(n—1),i,-1(0)))) < ko + Bn-1(y ).
k=0

Replacing B(r, 0) by max{B(r, t), B(r, 1)} with B(r, 0) = B(yr, 0) +r and B(r, k) =
B(yr, k) for k > 1, this right hand side is < By (Ao) which again yields the left
inequality in (7.27) for k = 0 and thus feasibility of (7.25). Note that (7.29) holds
for our example (7.28) if we change £(x, u) = |x| to £(x, u) = |x| + |u|/y. For this
£ and the points and control sequences considered in the example, we obtain

B(x(n—1),up_1) =3¢/2+¢&=>5¢/2

from which one computes that (7.25) is now feasible.

The advantage of this method is that no additional constraints have to be imposed
in the optimization. Its disadvantages are that constructing £ satisfying (7.29) may
be complicated for more involved dynamics and that the overshoot encoded in 8 will
in general increase for the re-designed £. As outlined in Sect. 6.6, this may lower the
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NMPC closed-loop performance and cause the need for larger optimization horizons
N in order to obtain stability.

An in depth study of these approaches and in particular their algorithmic imple-
mentation and numerical evaluation will be the topic of further research.

7.10 Beyond Stabilization and Tracking

All NMPC variants discussed so far have in common that the cost function £ penal-
izes the distance to some desired reference, either to an equilibrium x, or to a time
varying reference x™'. These variants may hence be called stabilizing NMPC. There
is, however, a large variety of optimal control problems where this is not the case.
For instance, in economic applications one typically uses a running cost £, which
reflects an economic cost rather than a distance to some reference, cf., e.g., Seier-
stad and Sydseter [33]. In what follows we will refer to £, as the economic cost. In
such problems, the desired limit behavior of the optimal trajectories is not given a
priori in terms of a reference x, or x™ but is rather an outcome of the optimization
itself. Even for rather simple nonlinear models, this limit behavior can be surpris-
ingly complex, as, e.g., the examples in the book of Grass, Caulkins, Feichtinger,
Tragler and Behrens [12]—for optimal control problems mainly motivated by social
sciences—show.

One way to use stabilizing NMPC for such problems is as follows. In a first step,
the optimal limit behavior for the economic running cost £, is identified. Assuming
that this problem can be solved analytically or numerically we obtain an optimal
reference solution x™ which, however, does not need to be asymptotically stable.
Hence, a stabilizing controller needs to be designed in order to stabilize the optimal
reference. To this end, in a second step a cost function £—which we will refer to
as stabilizing cost—penalizing the distance to x™f is designed which is suitable for
running a stabilizing NMPC scheme in order to obtain a stable closed loop.

Proceeding this way guarantees asymptotic stability of the optimal equilibrium
(e.g., under the various conditions on f, ¢ and the particular NMPC scheme dis-
cussed in this book) but the resulting closed-loop trajectories based on the optimiza-
tion of the stabilizing cost £ may be very different from the optimal trajectories using
the economic cost £,. In particular, they may be far from optimal when performance
is measured via the economic cost function ..

Due to the fact that for running the NMPC Algorithms 3.1 and its variants no par-
ticular conditions on £ are needed, it is a natural idea to try to run these algorithms
using the economic cost £, in (OCPy) and its variants instead of taking the detour
via the stabilizing cost function £. Formally, most usual NMPC algorithms (in par-
ticular those discussed in this book) are perfectly suited for doing so, however, the
theoretical results ensuring stability and performance are in general not applicable,
because the economic cost £, will not satisfy the conditions needed for these results.
Hence, new conditions for ensuring stability and performance are needed.

Here we summarize some recent results in this direction. In [3] (see also the ref-
erences in this paper for earlier research on this subject), Angeli, Amrit and Rawl-
ings observe that if one adds the optimal limit behavior as a terminal constraint
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to the NMPC scheme, then performance estimates for the NMPC closed loop can
be given. More precisely, assume that the optimal control problem exhibits an op-
timal equilibrium x, with related control value u,, i.e., f(xx, x) = x4 holds and
Lo (x4, uy) is minimal among all possible equilibria. Then, using the NMPC scheme
from Sect. 5.2 with £ = £, and Xy = {x,}, for each x € Xy one obtains the perfor-
mance estimate

Too(X, 1N < Le(xy, uy), (7.30)
where J », denotes the averaged infinite horizon cost functional

K

_ 1
Too(xo, iy i= lim 3 7 ey (k: 0. 10y (6)))- (7.31)
k=0

Observe that J oo (x0, W) is not simply Jo (X0, 1) from (4.10) with £ replaced by
£,. The important difference between J, and J oo is that J o contains the additional
averaging term 1/K. This term is necessary since in general for economic running
costs £, we cannot expect the infinite sum in (4.10) to converge. This approach
can be extended to periodic optimal trajectories x™ instead of equilibria by using
suitable periodic terminal constraint sets; for details see [3].

It is interesting to note that—at least in the case of an optimal equilibrium x,
with control value u,—the estimate (7.30) may also hold for controllers py from
stabilizing NMPC schemes. To this end, we use a stabilizing running cost ¢ satisfy-
ing

e, u) = o (|x]y, + ula, ) (7.32)

for some «] € K and assume that Jo, (xg, ;) is finite and that the economic cost
£, is continuous. Then, since Joo (xo, ) is finite, £e(xyy (1), Uy (X (1)) con-
verges to 0 as n — oo and hence the lower bound (7.32) implies x,,, (n) — x4 and
MmN (X (1)) — uy as n — oo. This, in turn, implies £, (x,y (1), uy (X, (1)) —
Le(xy, uy) as n — oo from which (7.30) follows. Hence, although it seems reason-
able to expect that for NMPC with economic running cost £, one obtains a better
performance of the closed-loop trajectories in terms of the economic objective €.,
this is not reflected in the asymptotic estimate (7.30).

In the usual NMPC setting, a finite value of Juo(x0, ) from (4.10) together
with positive definiteness of £ allows one to conclude that the closed-loop trajectory
must converge to x,, because otherwise J, (X0, n) would be unbounded. This is
not the case for the averaged functional J oo (x0, u) from (7.31) and, indeed, one
needs additional conditions in order to ensure that the closed-loop solution satisfy-
ing (7.30) does converge to x,. Such a condition has been presented in Diehl, Amrit
and Rawlings [7] for the case of an optimal steady state and finite-dimensional state
space X = R?. The condition, called strong duality, demands the existence of a
value A, € RY such that x, and u, minimize the expression

Lo(x,u) + [x — f(x, u)]Tk*
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over all admissible states x € X and control values u € U(x). Furthermore, the exis-
tence of o] € Koo with

o) + [x = £ W] M = Lol ) = a1 (Ixx,)

is required. Under these conditions, a Lyapunov function can be constructed by
adding suitable correction terms to the finite horizon optimal value function Vy (cor-
responding to the economic running cost £,). In [2], Angeli and Rawlings further
observed that strong duality can be interpreted as a dissipativity condition, which
links this condition to more classical concepts used in the stability analysis of con-
trol systems.

Summarizing, the results sketched in this section show that NMPC can be used
for obtaining optimal feedback controllers also for optimal control problems differ-
ent from the classical NMPC objectives stabilization and tracking. We conjecture
that NMPC will prove valuable also for other types of optimization criteria, how-
ever, we are also convinced that there are problems which are not solvable using the
receding horizon NMPC paradigm. An in depth analysis of the structural properties
an optimal control problem needs to exhibit in order to be tractable with NMPC
techniques would certainly be an interesting research project.
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Chapter 8
Feasibility and Robustness

In this chapter we consider two different but related issues. In the first part we dis-
cuss the feasibility problem, i.e., that the nominal NMPC closed loop solutions re-
main inside a set on which the finite horizon optimal control problems defining the
NMPC feedback law are feasible. We formally define the property of recursive fea-
sibility and explain why the assumptions of the previous chapters, i.e., viability of
the state constraint set or of the terminal constraint set ensure this property. Then
we present two ways to relax the viability assumption on the state constraint set
in the case that no terminal constraints are used. After a comparative discussion
on NMPC schemes with and without stabilizing terminal constraints, we start with
the second part of the chapter in which robustness of the closed loop under addi-
tive perturbations and measurement errors is investigated. Here robustness concerns
both feasibility and admissibility as well as stability of the closed loop. We provide
different assumptions and resulting NMPC schemes for which we can rigorously
prove such robustness results and also discuss examples which show that in general
robustness may fail to hold.

8.1 The Feasibility Problem

We start by introducing the feasibility problem for the NMPC Algorithm 3.1, i.e.,
for the NMPC formulation without terminal constraints.

Recall from Definition 3.2 that for each x € X the set of admissible control se-
quences UV (x¢) is nonempty if and only if there exists a control sequence u € UY
for which the two conditions

uk) U(xu(k,xo)) and x,(k+1,x0) eX

are satisfied for all k =0, ..., N — 1. Moreover, recall from the discussion after
Assumption 3.3 that the optimization problem (OCPy) in the NMPC Algorithm 3.1
is called feasible for the initial value xg if UN (x0) # ) holds. Since only feasible
optimal control problems allow for an admissible solution, the points xp € X satis-
fying UV (x() # @ are exactly the points for which the NMPC-feedback law py is

L. Griine, J. Pannek, Nonlinear Model Predictive Control, 211
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Fig. 8.1 Infeasible trajectory
for Example 8.1 with initial

value xo = (—1, 1) T and 0.87 1
optimization horizon N =2 0.6 i

-0.61 1

well defined. The feasibility problem in NMPC now lies in the fact that even though
the constraints x, (n, xo) € X imply x,+(1, x0) = x;,,, (1, x0) = f (x0, un (x0)) € X,
it may happen that

UM (f (x0, v (x0))) =4,

i.e., that the optimization problem (OCPy) for initial value f(xo, 1y (xo)) to be
solved at next time instant is infeasible. This means that wy and thus also the closed-
loop system (2.5) is not defined for x = f(xo, 1y (x0)) and the NMPC closed loop
runs into a “dead end”.

Example 8.1 We illustrate this fact by Example 3.4, i.e.,

x1+x2+u/2
X2 +u ’

x+:f(x,u):(

We use the state constraints X = [—1, 1]? and the control constraints U(x) = U =
[—1/4, 1/4]. With the same computation as in Example 3.4 one sees that X is not
viable, since, for instance, for the point x = (1, T e X we obtain f(x,u) ¢ X for
allu e U.

As we have seen in Example 7.2, the system can be stabilized respecting the state
and control constraints starting from the initial value x = (—1, 1)T. Running the
NMPC Algorithm 3.1 with N =2 and £(x, u) = ||x||* + 5u? with this initial value,
however, results in the trajectory shown in Fig. 8.1. Here we have not stopped the
simulation upon infeasibility but rather continued the computation with the infeasi-
ble solution returned by the optimization algorithm.

Although asymptotically stable, at time n = 3 and 4 this trajectory violates the
state constraints, which are indicated by the black box. Moreover, while the opti-
mization algorithm reported infeasibility for n = 1, 2, 3, 4, it terminated success-
fully at time n =0, i.e., the infeasibility at later time instants was not detected upon
initialization and is not due to a failure of the optimization algorithm at time n = 0.
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In order to formally analyze this problem we introduce the following notions.

Definition 8.2 Let a constraint set X and an optimization horizon N € N, for the
NMPC Algorithm 3.1 be given.

(i) A point x € X is called feasible for X and N if U (x) # 0.
(ii) The feasible set for X and N is defined as

Fn :={x € X | x is feasible for X and N}.

The set F is also called viability kernel.

(iii) A set A C X is called recursively feasible for optimization horizon N € N if
A C Fy and it is forward invariant for the NMPC-feedback law uy, i.e., if
f(x, un(x)) € A holds for all x € A.

The recursive feasibility property from Definition 8.2(iii) guarantees that for any
initial value x € A the NMPC closed loop will generate a solution which is admis-
sible for all future times. Formally, this is stated in the following lemma.

Lemma 8.3 Let A C X be recursively feasible for the NMPC Algorithm 3.1 with op-
timization horizon N € N. Then for each x € A the closed-loop solution x,, (n, x)
generated by (2.5) is well defined for all n € Ny and satisfies x,(n,x) € A and
thus also x,,, (n, x) € X for all n € Ny.

Proof The result follows by a straightforward induction using (2.5) and the relation
fx,un(x)) € Aforall x € A. O

Thus, in addition to stability, for proper operation of the NMPC scheme we also
need to ensure that the desired operating range of our controller lies in a recur-
sively feasible set. Note that x,,, (n, x) € X for all n € N immediately implies the
inclusion A C F,. For this reason, the viability kernel F, is the maximal possible
recursively feasible subset of X. In particular, it is the maximal set on which an ad-
missible feedback can be defined, independent of how this feedback is constructed.

The reason why we did not address the feasibility problem in the previous chap-
ters lies in the fact that the assumptions imposed so far always implied feasibility. In
fact, in Chap. 6 we always assumed that the constraint set X is viable in the sense of
Assumption 3.3. Under this assumption Theorem 3.5 ensures that A = X is recur-
sively feasible, as already remarked after this theorem. However, arbitrary constraint
sets are in general not viable. Moreover, while in simple examples the construction
of a viable subset of X may be possible, cf. Example 3.4, for complicated dynamics
this can be a difficult if not impossible task.

The terminal constrained scheme discussed in Chap. 5 provides a remedy to
this problem. For this scheme, recursive feasibility of Xy is always ensured by
Lemma 5.3. However, the price that we pay for this nice property is that the op-
erating range is a priori restricted to X, which may be considerably smaller than
the operating range of the unconstrained scheme, cf. Example 6.2. Furthermore, we
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either need to impose equilibrium constraints Xg = {x,}—which may be too re-
strictive for some systems and may cause problems in the numerical optimization
routine—or we need to find a viable terminal constraint set X along with a terminal
cost F defined on Xo which satisfies Assumption 5.9. While the design of F can
be avoided by using the mixed scheme from the first part of Sect. 7.1, in any case
we need to find a viable terminal constraint set X¢. Note that finding this “small”
set is in general easier than finding a “big” viable state constraint set X. However,
both in terms of the operating range of the scheme and in terms of implementa-
tional simplicity, it would be desirable if we could use the unconstrained scheme
without having to worry about the feasibility problem and without having to con-
struct a viable terminal constraint set Xg. In the following sections we will show
two approaches in this direction.

8.2 Feasibility of Unconstrained NMPC Using Exit Sets

In this and in the subsequent section we present two results which ensure feasibility
for the unconstrained NMPC Algorithm 3.1 under two different assumptions. While
the first result uses properties of the interplay between the dynamics f and the
constraint set X and is independent of any stability properties, the second approach
uses asymptotic stability of the closed loop in order to ensure feasibility of subsets
of the state space.

In order to introduce our first approach we need the following objects.

Definition 8.4 Consider a control system (2.1) with state constraint set X C X and
control constraint set U(x) C U, x € X. We recursively define the exif sets Ey C X,
k € Ng as

Eyp:=X\X,
k—1

Ey = {xeX‘f(x,u)GUE,’ fOI‘aHuEU(X)}, k=1,2,....
i=0

Remark 8.5

(i) This definition immediately implies Ey C Ej for all k > k' > 1.
(i) If X is viable then the definition of E( implies E; = ¥ and thus by induction
Ey=0forallk >1.

In words, for k > 1 the exit set Ej consists of all points xog € X for which it is
unavoidable that the trajectory x, (k, xo) leaves X after at most k steps regardless of
how u € U¥(xp) is chosen. This is made precise in the following lemma.
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Lemma 8.6 A point x € X satisfies x € Ey if and only if the following property
holds:

for eachu € UK there exists k, €10, ..., k} such that either

8.1
u(n) ¢ U(xu(n, x))for somen €{0,...,k, — 1} or x, (ky, x) ¢ X. &b
Proof We show the property by induction over k. For k = 0 the assertion follows
immediately from Eg = X \ X and x,, (0, x) = x. For the induction step k — k + 1
assume that the assertion holds for k. We then need to show that x € Ej; holds if
and only if (8.1) holds for k + 1.

We first show that (8.1) holds for x € Ej,1. Let x € Ex;1 and pick u € U**1,
If u(0) ¢ U(x), then (8.1) holds with k, = 1. Hence, assume u#(0) € U(x). Then
we get x' = x,(1,x) € E; for some i € {0,...,k}. Now, by induction assumption
for the shifted control u’ = u(- + 1) € U there exists k, € {0, ...,k} such that
either u’(n) ¢ U(x, (n, x")) for some n € {0, ..., k, — 1} or x,/(k,/, x") ¢ X. Since
w(m)=um+1) and x, (ky, x") = x,(ky, x) for k, =k, + 1 <k + 1, this shows
that (8.1) holds for k, =k, + 1.

Conversely, given x € X for which (8.1) holds for k 4+ 1, we need to show x €
Er+1. Let u, € U(x) be given and denote x’ = f(x,u,). We have to show that
x" € E; for some i <k.If x’ ¢ X then x’ € Ey and we are done. Otherwise, we pick
an arbitrary control sequence u’ € U* for x’ and define a control sequence u € U**!
by setting #(0) = u, and u(j) =u’(j — 1) for j € {1, ..., k}. Then by (8.1) there
exists k, < k + 1 such that either u(n) ¢ U(x,(n, x)) for some n € {0, ..., k, — 1}
or x, (ky, x) ¢ X and since x, (1, x) = x” € X we know that k, > 1. By construction
of u this implies that (8.1) holds for x” and «’ with k,, = k,, — 1 < k. Hence, by the
induction assumption x’ € Ej and consequently by definition of the E; we obtain
x € Egq1. O

Our next lemma shows the relation between the exit sets E; and the feasible sets
Fn from Definition 8.2(ii).

Lemma 8.7 Consider a control system (2.1) with state constraint set X C X and
control constraint set U(x), x € X. Then the identity

N
Fy=X\Ey =X\<U Ek> (8.2)
k=1
holds for all N € N.

Proof The second equality follows immediately from Remark 8.5(i). It remains to
show Fy =X\ En, which we will do by proving “C” and “2”.

“C”: Consider x € Fy. Then UV (x) is nonempty, hence we can pick u € UV (x).
By definition of UV (x) this implies u (k) € U(x, (k, x)) forallk =0,..., N — 1 and
Xxy(k,x) e Xfor k=0,...,N. Thus, (8.1) does not hold and Lemma 8.6 implies
x ¢ En and thus x € X\ Ey.
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“D”: Letx € X\ En,ie.,x € Xand x ¢ Ey. Then Lemma 8.6 implies that (8.1)
does not hold, i.e., there exists u € UV with u(n) € U(x,(n, x)) forn =0, ..., N—1
and x,(n,x) € X for n =0, ..., N. This means that u € UV (x), hence U (x) # @
and consequently x € Fy. 0

Remark 8.8 1f f is continuous then one can also show Foo =X\ (g2 Ex)-
Now we introduce the assumption we will use in order to guarantee feasibility.
Assumption 8.9 There exists No € Ng such that E; C Ey, for all £k > Ny.

By Remark 8.5(ii) this assumption is satisfied for Ny = 0 if X is viable. Thus,
Assumption 8.9 can be seen as a relaxation of Assumption 3.3. In Example 8.12,
below, we will see that this condition is satisfied for the system from Example 8.1.
However, before we look at this example we show that under this assumption the
feasible set F, becomes recursively feasible for optimization horizon N > No + 1.
To this end we need another preparatory lemma.

Lemma 8.10 Under Assumption 8.9 the identity
holds for all N > Ny.

Proof First observe that Assumption 8.9 together with Lemma 8.7 immediately im-
plies Fy = Fp, for all N > Ny. Thus, it is sufficient to show the assertion for
N = Nj.

Since the inclusion Fo, € Fy follows directly from the definition, it remains
to show the converse inclusion. Thus, we need to prove that U (x) £ @ for all
x € Fn,. We do this by constructing u € U*(x). To this end, since Fy, = Fny+1,
we can pick ug € UNot1(x) and set u(0) := uo(0). Then the definition of UM (x)
implies ug(- + 1) € UM (xy) for x; =Xy, (1, x) =x, (1, x). Thus x1 € Fny = Fng+1
and we can find u; € UNot1 (x)). Setting u(1) := u1(0) with the same arguments we
obtain u (- +1) € UNo(xy) for x, = xyu, (1, x1) = x,(2, x). Proceeding iteratively we
obtain a control sequence u € U which satisfies x; = x, (k, x) = x,, (1, x4—1) €
Fno+1 € X and u(k) = ug(0) € U(xg) = U(x,(k, x)) for all k € Ng. Thus u €
U (x). O

Using Lemma 8.10 we can now prove our first recursive feasibility result.

Theorem 8.11 Consider the NMPC Algorithm 3.1 and let Assumption 8.9 hold.
Then the feasible set Fn, = Fo is recursively feasible for all optimization horizons
N> Ng—+1.

Proof Consider x € Fy,. Since by Lemma 8.10 the identity Fp, = Fy holds, in
particular we obtain Fy, € Fy. Hence, problem (OCPy) in Algorithm (3.1) is fea-
sible. Let u* be the corresponding optimal control which implies uy (x) = u*(0).
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Since u* € U (x) the definition of UV (x) implies u*(- + 1) € UN "1 (x,+(1, x)) =
UN=H(f (e, v (x))). Thus, UNTH(f (x, un(x))) # @ and hence f(x, juy(x)) €
Fn-1. Since N — 1 > Ny, Lemma 8.10 yields Fy_1 = Fp,. This shows
S, un(x)) € Fa,, ie., Fi, is recursively feasible. U

Example 8.12 We illustrate Assumption 8.9 and Theorem 8.11 by means of Exam-
ple 3.4 and 8.1, i.e.,

x+=f(x u):(xl+x2+u/2>.

X2+ u

As in the previous examples we use the state constraints X = [—1, 1]2. The control
constraints are chosen more generally as U(x) =U = [—u, u] with u > 0.

A straightforward but tedious computation shows that the exit sets Ej are given
by

k
Ex=|J{xel-1.10% |x1 > —jxa+ 1+ j2i/2 o xy < jxp — 1 — j%ii/2}.
j=1

In Example 3.4 we chose # = 1. With this parameter one sees that Ex = E for
all k > 1 because the inequalities for j > 2 are never satisfied for x € [—1, 1]2.
Hence, Assumption 8.9 is satisfied with Ny = 1 and Theorem 8.11 yields that the
set F| = Foo = X\ E1 from Lemma 8.7 is recursively feasible for all N > 2. This
set is exactly the set defined in (3.6).

In Example 8.1 we have u = 1/4. In this case one sees that E4 # E3 because
(—0.99, 1)T € E4 but (—=0.99,1)T ¢ E3. On the other hand, Ey = E4 for all k > 4
because for xp € [—1, 1] and j > 5 the inequality

—jxo 41+ j2i/2 > —4xs + 1 + 4% /2

holds. Hence, the inequality for j = 4 is always satisfied whenever the inequality
for some j > 5 is satisfied, thus x € E; for j > 5 implies x € E4. Consequently,
Assumption 8.9 holds with Ny = 4 and according to Theorem 8.11 for Example 8.1
the closed-loop solution satisfies the state constraints for N > 5 and all x € X'\ Ejy.
In particular, since the point (—1, )T is not contained in Ea, the infeasibility from
Fig. 8.1 should disappear. Figure 8.2 shows that this is exactly what happens.!

8.3 Feasibility of Unconstrained NMPC Using Stability

A main advantage of the feasibility analysis in the previous section is that it is com-
pletely independent of any stability properties of the closed loop. Thus, feasibility
and stability can be analyzed independently of each other. Unfortunately, Theo-
rem 8.11 crucially relies on Assumption 8.9 which may not be satisfied for many

UIn fact, the infeasibility already disappears for N =3 and N = 4 but this is not covered by our
theorem.
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Fig. 8.2 Feasible trajectory
for Example 8.1 with initial
value xg = (—1,1)T and 0.8r 1
optimization horizon N =5 0.6 1

0.4f 1
0.2 1

-0.21 1
-0.4¢ 1
-0.61 1
-0.8¢ 1

practical problems and, even if it is satisfied, may be difficult to verify for complex
dynamics.

Thus, in this section we present an alternative result which shows that feasibility
may be inherited from the optimality properties of the solution and from the stability
of the closed loop. In order to derive this result we first need three basic assumptions
and a couple of preparatory lemmas.

Our stability results rely on the controllability Assumption 6.4, which is only
meaningful if the state constraint set X is viable. If this is not the case, then asymp-
totic controllability for arbitrary horizons N only makes sense for initial values
X € Foo. This is what our first assumption demands.

Assumption 8.13 Consider the optimal control problem (OCPy) with a not nec-
essarily viable state constraint set X. We assume that on the viability kernel F
the system is asymptotically controllable with respect to ¢ with rate 8 € KL,
i.e., for each x € F and each N € N there exists an admissible control sequence
u, € UN(x) satisfying x,, (n,x) € Foo foralln=1,..., N and

(2, (n, %), ux () < B(£*(x), n)
foralln €{0,..., N — 1} and £* from (6.2).

Under this assumption the results from the stability analysis in Chap. 6 remain
valid if we replace the state constraints x,(k,x) € X for k =0, ..., N (which in
(OCPy) is implicitly expressed by the requirement u € UV (x)) by the state con-
straints

xy(k,x) € Foo fork=0,...,N. (8.3)

Indeed, since F is viable the standing assumption from Chap. 6, cf. Remark 6.22,
is satisfied for these stricter state constraints, i.e., if we replace X by Fo,. Further-
more, from the observation in Remark 6.11 it follows that the results from Chap. 6
remain valid if we replace the constraint for k = N in (8.3) by a weaker constraint.
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In particular, Theorem 6.14 remains valid for 8 from Assumption 8.13 and F, in
place of X if we weaken (8.3) to

xy(tk,x) e Foo fork=0,...,N—1, Xy (N, x) eX. (8.4)

In the remainder of this section, the reference (OCPy) will always refer to the prob-
lem with the original state constraints x, (k, x) € X, k =0, ..., N, while we will al-
ways explicitly refer to (8.4) if we consider (OCPy) with the additional constraints
(8.4).

In order to apply our stability results from Chap. 6, we need further assump-
tions on £ and Vy. For this assumption recall once again the definition £*(x) :=
inf,cy £(x, u) from (6.2).

Assumption 8.14 There exist «, oy, @3, ¢4 € Koo and Ng > 2 such that the in-
equalities

ai(lxly,) < Vv (x) <aa(lxly,)

and

@3(Ixlx,) <€) < aa(lxlx, )

hold for all N > Nj.

Note that the assumptions of Theorem 6.21 imply Assumption 8.14 with o] = a3
and ar (r) = Z,fio B(aa(r), k). Here the linearity and summability of 8 ensure that
o is indeed a Koo -function.

Finally, we want to ensure that the feedback stabilization problem under the given
state constraints X is solvable locally around x.. A prerequisite for this is that there
exists a neighborhood of x, whose intersection with X consists of points which are
feasible for N = oo. This is our last assumption.

Assumption 8.15 There exists a ball Bs(x,) such that Bs(x,) N X C Fo.

Observe that we only require the inclusion Bs(xs) N X € F, (as opposed to
Bs(x4) € Fso), which allows for the situation that x, is on the boundary of X.

The following two lemmas show properties of optimal trajectories which are
crucial for our feasibility analysis.

Lemma 8.16 Assume that Assumptions 8.13-8.15 hold. Let ¢ = a{l owz(8) >0
with ap, a3 € Koo from Assumption 8.14 and § > 0 from Assumption 8.15. Then
for each N =2 and each x € B¢ (x4) N X the optimal trajectory for OCPy satisfies
Xux(n, x) € Bs(xx) NX foralln €{0,..., N — 1}.

Proof The relation x,»(n, x) € X follows immediately from u* € UV (x). It remains
to show x,x(n, x) € Bs(x,). From the inequality for £* in Assumption 8.14 we ob-
tain

C(y,u) >az(8) forall y ¢ Bs(x,). (8.5)
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On the other hand, the inequality for Vy in Assumption 8.14 and the definition of &
imply
Vn(x) <ap(e) =ap (az_l o a3(8)) =w3(8) forall x € By(xy). (8.6)

Now assuming x,+ (n, x) ¢ Bs(xy) for some x € B;(x,) and some n € {0,..., N —
1}, and using (8.5) with y = x,»(n, x) implies

N-—1
VN () = Y (e (ke x), u* () = £(xue (1, %), u*(n)) = 03(5),
k=0
which contradicts (8.6). O

Lemma 8.17 Assume that Assumptions 8.13-8.15 hold and consider some ¢ > 0.
Let N > 2 and x € Fy with Vy (x) < Naz(e). Then the optimal trajectory x,~(n, x)
for (OCPy) satisfies x,x(n, x) € Be(x) N X for somen € {0, ..., N — 1}.

Proof Again, x,+(n, x) € X follows immediately from u* € UV (x) and it remains
to show x,x(n, x) € Be(x,). To this end, assume x,x(n,x) ¢ Be(x,) for all n €
{0, ..., N — 1}. Then Assumption 8.14 implies

N-1 N—1
V@) =D e(xe (k, x), w0t (0) = ) as(|xus kx|, ) = Nas(e),
k=0 k=0
which contradicts Vy (x) < Nas(e). U

The next lemma shows a property of arbitrary admissible trajectories.

Lemma 8.18 Ler N € N, x € Fy and u € UN(x) be such that the correspond-
ing trajectory satisfies x,(N — 1,x) € Foo. Then x,(k,x) € F for all k =
0,...,N—1.

Proof Fix an arbitrary k € {0, ..., N — 2} and abbreviate x; = x,(k, x). Since y =
xu (N — 1, x) € Foo there exists a control sequence u, € U*(y), i.e.,

uy(n) € U(xuy (n, y)) and x, (n,y)€X
for all n € Np. Then the concatenated control sequence
un+k), n=0,....,.N—k—2,
uyn—N+k+1), n>N—-k—-1
and the initial value x; yield a trajectory satisfying
xu(n+k, x), n=0,....,.N—k—1,
Xy,(n—N+k+1,y), n>N—-k—1

ﬁ(n):{

xz(n, xi) ={

This trajectory remains in X for all n > 0 and the corresponding control sequence u
is admissible for all times. Thus u € U* (x;), hence U (x;) # ¥ and consequently
Xk € .7:00. O

Combining the three previous lemmas we arrive at the following proposition.
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Proposition 8.19 Assume that Assumptions 8.13-8.15 hold and let N > 2 and x €
Fn with Vy(x) < Naz o az_l o a3 (8) with ay, a3 € Koo from Assumption 8.14 and
8 > 0 from Assumption 8.15. Then the optimal trajectory x,+(n, x) for (OCPN) with
horizon N satisfies x,~(n,x) € Foo foralln € {0, ..., N — 1}.

In particular, for these x the optimal values and the optimal trajectories do not
change if we add the constraints (8.4) to the optimal control problem (OCPN).

Proof Applying Lemma 8.17 with ¢ = a;l o w3(8) yields x,x(n, x) € B (x,) for
some n € {0,..., N — 1}. Since by Corollary 3.16 the trajectory x,(n + -, x) is
optimal for horizon N —n and initial value x,« (n, x), Lemma 8.16 yields x,* (k, x) €
Bs(xx)NXfork =n, ..., N—1.In particular, this implies x,* (N — 1, x) € Bs(x,) N
X € Foo- Now Lemma 8.18 yields the assertion. |

Now we are ready to formulate our feasibility theorem.

Theorem 8.20 Let Assumptions 8.13-8.15 hold, let N > 2 and assume that o from
Theorem 6.14 with B from Assumption 8.13 satisfies a € (0, 1]. Then the set

A={xeFy|Vn(&x) <Nazoa;' oas(8)}

with oy, a3 € Koo from Assumption 8.14 and § > 0 from Assumption 8.15 is recur-
sively feasible for the NMPC feedback jy from Algorithm 3.1. Furthermore, the
NMPC closed loop (2.5) is asymptotically stable on A.

Proof From the discussion after Assumption 8.13 it follows that Theorem 6.14 is
applicable for Algorithm 3.1 with the additional constraints (8.4) in (OCPy) with
B from Assumption 8.13. Thus, (5.1) holds for puy from Algorithm 3.1 and the
corresponding optimal value function Vy for all x € F if we add the constraints
(8.4).

By Proposition 8.19, for x € A the optimal trajectories do not change if we add
the constraints (8.4) to the optimal control (OCPy) in Algorithm 3.1. In particu-
lar, this implies that the resulting NMPC feedback uy does not change if we add
the state constraints (8.4). Since, furthermore, for x € A the optimal trajectories of
(OCPy) lie in F, we get x € F and f(x, un(x)) € Foo, thus Vi is defined in x
and f(x, un(x)). Hence, for each x € A (5.1) also holds for t from Algorithm 3.1
and the corresponding optimal value function Vy without the constraints (8.4). For
x € A this implies

Vi (f (x, kv (0))) < Vv (x) — al(x, uny(x)) < Vv(x) < Naz o ' o a3(8)
and thus f(x, uy(x)) € A. This shows the recursive feasibility of A. U

Corollary 8.21 Let Assumptions 8.13-8.15 hold, let No > 2 and assume that o
from Theorem 6.14 with B from Assumption 8.13 satisfies o € (0, 1] for all N >
No. Then for each bounded set K C Fo there exists Nx > No such that for each
N > Nk there exists a recursively feasible set Ay for the NMPC feedback 1y
from Algorithm 3.1 with K C Ay. Furthermore, the NMPC closed loop (2.5) is
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asymptotically stable on Ay . In particular, if X is bounded, then Fo is recursively
feasible for all sufficiently large optimization horizons N.

Proof Using the upper bound a» on Vy from Assumption 8.14 and the inclusion
Foo C Fy it follows that the set A from Theorem 8.20 contains the set 3, (x4) N Foo
with

v :Ol;l(NOtg, oagl oa3(8)).

Since v /" oo for N — o0, for each bounded set K C F,, we can choose
Nk > Ny such that K C B, (x,) N Foo holds for all N > Ng. This shows the claim
for Ay = A. O

8.4 Comparing Terminal Constrained vs. Unconstrained NMPC

Now that we have developed the main stability and feasibility results we will discuss
the main advantages and disadvantages of NMPC schemes with and without termi-
nal constraints and/or costs. More precisely we distinguish between the following
schemes.

(a) NMPC with equilibrium (or time varying reference) endpoint constraint from
Sect. 5.2

(b) NMPC with Lyapunov function terminal cost from Sect. 5.3

(c) NMPC without terminal cost and constraints from Chap. 6

We compare the main features of these NMPC variants in terms of

(i) design, i.e., the choice of the necessary ingredients of the respective algorithms
(ii) stability, i.e., the asymptotic stability properties of the closed loop and the as-
sumptions needed in order to guarantee them
(iii) performance, i.e., the suboptimality compared with the infinite horizon optimal
value
(iv) feasibility, i.e., the guarantee that the optimal control problem in the NMPC
closed loop is solvable for the given constraints
(v) numerical effort, i.e., the time needed for the online optimization

(i) Regarding the design, clearly the schemes (a) and (c) are preferable. In both
cases all that needs to be designed is a desired equilibrium (or reference in the time
varying case) and a running cost £ which is positive definite with respect to this
reference, which in the simplest case could be of the form (3.3).

In contrast to this, the additional construction of a viable terminal constraint set
Xp and a terminal cost F meeting Assumptions 5.1(i) and (ii) necessary for (b)
poses a considerable additional difficulty in the design of the scheme, notably (but
not exclusively) for time varying references.

This is probably the main reason for the fact that in our discussion with prac-
titioners the formulations (a) and (c) turned out to be the by far preferred NMPC
variants in industrial applications.
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(ii) The main difference of the stability properties for the different schemes lies
in the fact that for (a) and (b) the operating range, i.e., the region on which the
stabilizing feedback is defined or, equivalently, the domain of attraction of the ref-
erence solution for the closed-loop solution, is a priori confined to the feasible set
Xy . In contrast to this, the unconstrained scheme (c) can yield larger and even un-
bounded stability regions for fixed N, cf. Example 6.2. On the other hand, for small
optimization horizons N in (a) and (b) only the domain of attraction shrinks while
for (c) asymptotic stability may be lost completely. Which of the two advantages is
dominant can only be assessed on a case by case basis for each particular system to
be controlled, usually performed with the support of numerical simulations and/or
experimental results.

Regarding the conditions for stability, (a) requires the system to be controllable
to the desired reference point or trajectory in finite time, while (b) requires the via-
bility of the terminal constraint set X and the compatibility of F' and £ in the sense
of Assumption 5.1(ii). The unconstrained scheme, in turn, requires the asymptotic
controllability from Assumption 6.4 or the bound from Assumption 6.30 and a pos-
itive value « in Theorem 6.14 or a sufficiently large optimization horizon N, cf.
Theorem 6.33. The conditions for the existence of suitable F and £ for (b) and £ for
(c), respectively, can roughly be regarded as comparably strong as they both essen-
tially require asymptotic controllability with suitable uniformity. In contrast to this,
the finite time controllability condition for (a) is stronger.

Concerning the verification of these conditions, the assumptions for (a) and (b)
are in typically considerably easier to check than the asymptotic controllability con-
dition for (c). However, a considerable difference between the conditions for (b)
and (c) is that F in (b) must be constructed in order to run the scheme while § in
Assumption 6.4 is only needed for the analysis of the scheme but not at runtime.

(iii) Regarding performance, the respective Theorems 5.21 and 6.21 show that
for all schemes (a)—(c) the infinite horizon performance J,(x, i) from Defini-
tion 4.10 approaches the optimal value Vi (x) if the optimization horizon N tends
to infinity. The conditions for these theorems to hold are essentially equivalent to
conditions needed for asymptotic stability. For scheme (b), Theorem 5.22 gives an
alternative estimate under an assumption on the terminal cost F.

For fixed N, however, not only the operating range (cf. Example 6.2 and the
discussion in (ii), above) but also the performance may differ, at times considerably,
even if Xy = X holds. We illustrate this effect by two examples.

Example 8.22 We reconsider Examples 5.18 and 6.1, i.e.,

xt=x+u, Z(x,u):)c2+u2

with X = X =U = U = R. In Example 5.18 we computed that scheme (a) for N =2
yields the controller wy(x) = 2x /3 satisfying Joo(x, 12) = 1.625x2.
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In Example 6.1 it turned out that for the same example from scheme (c) we obtain
the controller p2 (x) = —x /2. This yields the closed-loop solution x,,, (k, x) = x/ 2k
and £(x, 12(x)) = x2 + (x/2)? = 5x? /4. This implies

> —5x2 5, )
Joo (. 112) = (xpy (k, %), 12 (3,0, (k1)) = J 3% = 3%~ 1.666x
k=0 k=0
(note that this value coincides with the upper bound V;(x)/« from Theorem 6.18
since in Example 6.1 we computed V> (x) = 3x2/2 and o = 0.9, hence V> (x)/a =
(3x%/2)(10/9) = 5x2/3). Hence, for this example scheme (a) yields a better perfor-
mance than scheme (c).

Example 8.23 Consider again Example 5.19, i.e.,

xtT=x+u, Z(x,u)zxz~|—u4

with X=X =TU = U =R. In this example we showed that scheme (a) yields
Joo (20, p2) ~ 11240.39.

On the other hand, the controller i given in Example 5.19 is nothing but the con-
troller wy for scheme (c), which we again computed by MAPLE. This controller
yields

Joo (20, p2) &~ 1725.33,

i.e., a considerably better value.

Roughly speaking, the terminal constraints employed in (a) and (b) cause the
NMPC-feedback law to steer the system to the equilibrium or reference more rapidly
at the cost of larger control effort, while the unconstrained scheme (c) typically acts
more cautiously. This is why in Example 8.22, in which the control is only moder-
ately penalized, scheme (a) performs better while in Example 8.23, in which large
control values are penalized much more heavily, scheme (c) yields the better re-
sult. In general, it appears that for a stronger penalization of the control effort the
unconstrained scheme (c) provides better performance. It should, however, also be
mentioned that a stronger penalization of u typically yields a larger 8 in Assump-
tion 6.4, which in turn may affect the stability of scheme (c).

(iv) Our discussion on feasibility from the last sections shows that for the ter-
minal constrained schemes (a) and (b) the sets X are “automatically” recursively
feasible. This property is inherited from the viability of the terminal constraint set
Xp. For the unconstrained scheme recursive feasibility can be expected on (a sub-
set of) the viability kernel, as Theorems 8.11 and 8.20 as well as Corollary 8.21
show. However, in contrast to (a) and (b) here we need additional assumptions and
a sufficiently large optimization horizon N if the state constraint set X itself is not
viable.

Regarding the detection of infeasibility, the schemes (a) and (b) have the advan-
tage that feasibility of the nominal closed loop is guaranteed once the optimization
algorithm reports that (OCPy ) has a feasible solution for the initial value xo. In
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contrast to this, in scheme (c) infeasibility may occur even if (OCPy) has a feasi-
ble solution for the initial value, cf. Example 8.1. Thus, in schemes (a) and (b) the
infeasibility is usually detected earlier than in scheme (c).

(v) The numerical effort depends on many different parameters, most notably
on the dimension of the problem, on the optimization horizon, on the structure of
the dynamics f and the running cost £ and on the number and type of constraints.
Generally, one has to take into account that in a nonlinear and nonconvex setting
it can often not be expected that the optimization algorithm is able to find a global
optimum. The reason for this will become apparent in the discussion of nonlinear
optimization algorithms in Chap. 10. Hence, in general it is difficult to assess which
of the schemes is preferable from the numerical point of view.

However, regarding the constraints it is clear that the schemes (a) and (b) are
more demanding than (c). In particular, the endpoint constraint of scheme (a) may
cause severe problems in the numerical optimization routine for nonlinear and non-
convex problems. From this point of view the regional constraint in scheme (b) is
typically preferable to (a) and scheme (c) without terminal constraints is certainly
the best of all. However, if the terminal constraint helps to significantly reduce the
optimization horizon N in scheme (a) or (b) compared to scheme (c), e.g. when
no good running cost in the sense of Sect. 6.6 can be found for (c), then this effect
may easily override the advantage of having fewer constraints in scheme (c). Hence,
similar to what was said in the discussion in the first paragraph of (ii), again an as-
sessment on a case by case basis must be made in order to decide which scheme is
more appropriate for a given system and control task.

Summarizing the discussion in this section, one sees that both terminal con-
strained and unconstrained schemes have their specific advantages and disadvan-
tages. In practice, it is presumably a good choice to start with an unconstrained
scheme which is easier to design and assess its performance via numerical sim-
ulations and practical experiments. If the desired performance—be it in terms of
stability, suboptimality or feasibility—is not achieved for reasonable choices of N
and simple modifications like, e.g., the terminal weights from Sect. 7.2 do not yield
a solution, then one of the more sophisticated methods like adding appropriate ter-
minal constraints and costs, a redesign of the running cost functions in the spirit of
Sect. 6.6 or one of the mixed schemes from Sect. 7.1 should be considered.

8.5 Robustness: Basic Definition and Concepts

Real systems do never exactly coincide with their mathematical models. This means
that in practice the behavior of the real system will deviate from the mathematically
idealized model (2.1). In this and in the following sections we will analyze the im-
pact of these deviations on the NMPC closed loop and discuss NMPC variants which
provide robustness against such errors. In order to simplify the setting we will con-
sider the case of time invariant reference x™f = Xxx. All result do, however, carry
over to the time varying case provided the necessary assumptions hold uniformly
with respect to time; we will comment on this in remarks after our main results.
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Sources for errors are, for instance, modeling errors, uncertain parameters, exter-
nal disturbances acting on the system and measurement errors. A further source are
numerical errors, which are almost inevitable in NMPC schemes because we need a
numerical integration scheme for the solution of (OCPY ) or its variants. This topic
will be treated in detail in Chap. 9, see in particular Sect. 9.5.

As a consequence, the predicted trajectories x (k, x) used in (OCPY, ) and its
variants do not exactly coincide with the future behavior of the real system.

Formally, we have already taken this fact into account by referring to the closed-
loop systems (2.5) and (3.5) as nominal closed-loop system. Recall that the nominal
NMPC closed loop (3.5) whose behavior we analyzed in the preceding chapters and
sections is given by

X+ = f(x’ H’N(x))

Here f exactly coincides with f in (2.1), which is used in (OCP{{LC) or its variants
to compute the NMPC controller pp.

In order to analyze the influence of the various error sources, for simplicity of
exposition we assume that our state space X is a normed vector space such that we
can add elements of X and measure the size of elements x € X by their norm | x||.
Then we can introduce the perturbed closed-loop model

t=f(F unGE+e)+d. 8.7

Here d € X is an additive perturbation which covers all kinds of errors causing f to
deviate from the evolution of the real system, like modeling and numerical errors,
external disturbances, uncertain parameters etc. In addition, we consider the error
term e € X, which models measurement errors. Note that when both f and uy are
continuous then one could express the effects of d and e on the system via one
additive perturbation d. However, while all of our robustness results will rely on
the continuity of f we will not assume continuity of py because optimal feedback
controls and thus NMPC-feedback laws are, in general, discontinuous.

In order to distinguish between the nominal and the perturbed system, we denote
the states of the perturbed system by x and the states of the nominal model by x. For
initial value xo € X and sequences of perturbation values d(-), e(-) € X"V we obtain
solutions X, (k, xo) of (8.7) from the iteration

Xy (0, x0) = xo,
Tuy k+1,x0) = f(Zuy (k, x0), un (Fuy (k, x0) +e(k)) +dk), k=0,1,....

Although this solution depends on the particular sequences d(-) and e(-), we will not
explicitly include this dependence in our notation. Instead, given a tuple of bounds
(d,é) e R x R} and an initial value xo we will define the following set Sid.z)(x0)
of solutions

Si.e)@0) == {Fuy ¢ x0) | [[d0)]| <d,

The desired robust stability property is now given by the following definition.

le(k)| <é forall k € No}.
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Definition 8.24 Given a set A € X such that the optimal control problem defining
un is feasible for all xo € A, we say that x, is semiglobally practically asymptoti-
cally stable on A with respect to the perturbations d and e if there exists B € KL
such that the following property holds: for each § > 0 and A > § there existd, ¢ > 0,
such that each solution X, (-, Xo) € S(a.z)(x0) with xg € A and |xg|x, < A satisfies
Xy (k, x0) € A and

| (k, x0)| < max{B(|xolx,, k), 8}

for all k € Ny, provided the initial measurement error e(0) satisfies xo + e(0) € A.

Observe that this definition resembles Definition 6.28(ii) except that now the size
of the perturbation plays the role of the optimization horizon N. Furthermore, we
have explicitly included admissibility and feasibility into the definition in order to
exclude the case that the perturbations drive the closed-loop trajectory out of the
feasible or admissible set. The precise meaning of “the optimal control problem
defining uy is feasible for all xo € A” depends on the NMPC setting under consid-
eration: if terminal constraints X are used we require A C Xy, otherwise A C Fy.
The additional set A € X is needed if the feasible set is strictly smaller than X.
Observe that the definition in particular implies recursive feasibility of A.

In words, this definition requires that for all initial values x¢ which are both
in the ball Ba(xy) and in A the perturbed solutions of (8.7) stay within the state
constraint set X and behave like asymptotically stable solutions until they reach
the ball Bs(x,). The condition xo + e(0) € A is a technical requirement needed to
ensure that the optimization problem for obtaining ©y—which we do not assume
to be feasible outside A—is feasible at initial time n = 0. In what follows, we will
often use the simpler term robust stability instead of semiglobal practical asymptotic
stability.

It should be noted that this robust stability property is closely related to a re-
gional version of the input-to-state stability (ISS) property. Indeed, the assumption
in Definition 8.24 implies that for fixed A > 0 we can find a K -function p such
that for each 6 € (0, A] the stability property in Definition 8.24 is satisfied whenever
d< p(8) and e < p(8) holds, i.e., the term “sufficiently small” in Definition 8.24
may be quantified by a function p € Ks. Then, defining y = p~!, for all x¢ €
Ba (x+) and all perturbation sequences d, e with [|d||le = supep, ld(K) || < p(A)
and |le|loo := Supyen, lle(k) || < p(A), Definition 8.24 and the definition of y imply

[Fuy (ks x0) | < max{B(Ixolx, . k). ¥ (Idllsc), ¥ (llelloo) }

i.e., the system is input-to-state stable for inputs d and e.

8.6 Robustness Without State Constraints

In this section we will show that the robust stability property from Definition 8.24
is always satisfied under mild conditions if we do not impose state constraints. State
constraints affect the robustness analysis of the stability of (8.7) in two ways: on the
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one hand, even if the nominal closed loop is admissible on the whole state constraint
set X, i.e., if f(x, uny(x)) € X holds for all x € X, arbitrary small perturbations d, e
may lead to a violation of the state constraints, i.e., to f(x, uny(x +e)) +d ¢ X,
if f(x, un(x)) is near the boundary of X. Likewise, the perturbations may destroy
the recursive feasibility of a nominally recursively feasible set. On the other hand,
state constraints may introduce instability even if we only consider perturbations
satisfying f(x, uny(x + e)) + d € X. The latter is a more subtle issue, which we
will illustrate in the next section. Solutions to both problems will be discussed in
Sects. 8.8 and 8.9.

Without state constraints, i.e., with X = X, the problem considerably simplifies.
As introduced in the last section we assume that X is a normed vector space with
norm [x||. This implies x +d € X and x + e € X for all x,d,e € X. We allow
for input constraints but we assume U(x) = U, i.e., that the input constraint set
is independent of x. This ensures uy(x + ¢) € U for all x,e € X while for state
dependent input constraints and measurement errors we will never be able to exactly
satisfy state dependent input constraints, because the control value u y (x +¢) will be
selected from U(x + ) instead of U(x). One could, however, extend the subsequent
proofs to input constraint sets U(x) which depend continuously on the state x in
a suitable set theoretic sense. Still, in order not to overload the presentation with
technicalities we decided not to include this extension.

For our analysis we need the following definition.

Definition 8.25 Consider vector spaces X and Y, a set A C X and an arbitrary
set U.

(i) A function W : X — Y is called uniformly continuous on A if there exists a
function w € K such that for all x, y € A the inequality

W) =W <w(lx—yl) (8.8)

holds.

(ii) A function W : X x U — Y is called uniformly continuous on A uniformly in
u € U if there exists a function w € K such that forall x,y € A andallu € U
the inequality

[W e, u) = Wy, )] < o(llx = yll) (8.9)

holds. In both cases, the function w is called modulus of continuity.

Note that continuity of W : X — Y implies uniform continuity on any compact
set A C X. This observation will be used, e.g., in Corollary 8.29, below, exploiting
the fact that closed balls in the state space X = R? are always compact.

Before, however, we formulate our main result for arbitrary vector spaces X. The
following theorem is formulated for Algorithm 3.1 without terminal constraints and
we will comment on the case with terminal constraints afterwards. For simplicity,
we will directly work with the assumptions of Theorem 4.11, which are ensured,
e.g., by Theorems 6.18, 6.21 or by Corollary 6.19. Alternatively, one could work
with the weaker assumptions of Theorem 4.14 as in Theorem 6.33 but since this
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would cause further technicalities in the statement and the proof of the following
theorem, we prefer to use the simpler setting of Theorem 4.11.

Theorem 8.26 Consider the NMPC Algorithm 3.1 without state constraints, i.e.,
X = X for some vector space X and with input constraints satisfying U(x) = U
for all x € X. Assume that V = Vy satisfies the assumptions of Theorem 4.11 with
constant reference x™" = x, on S = X. Assume furthermore that Vy and f are
uniformly continuous, uniformly in u in case of f, on the closed balls Ep (x4) for all
p > 0, with functions wy and wy in (8.8) and (8.9), respectively.

Then the perturbed closed-loop system (8.7) is semiglobally practically asymp-
totically stable in the sense of Definition 8.24 on A = X.

Proof Fix A > 3§ > 0. For all v > 0 the bounds a1, a; € Koo on V = Vy from
Theorem 4.11 imply

B 10y ) S Vi (10.v]) € B 1, ().

Thus, defining o = o, ' (@1(8)/2), ¥ = @) '(@2(A)) and p = a (e2(y +0)) yields
the inclusions

Bo(x) SV ([0.1®)/2]). Vi ([0, 1(®)]) € Bs(x),
Ba(xs) € Vy ' ([0, 22(A)]) € By (x5)

and

By (Vi ' ([0, 02(A)]) € Byt () € Vi ' ([0, ey +0)]) € Bp ().
Note that (4.14) yields the implication

xeVi'([0,ex(y +0)]) = flx uv@®) e Vy' ([0, ey +)]). (8.10)

Let wy and w ¢ be the functions from Definition 8.25 for Vy and f (-, u), respec-
tively, for A = Ep (xx). This implies that (8.8) and (8.9), respectively, hold for Vy
and f(-,u) forallx,y e Vil ([0, o2 (y 4 o)]). Furthermore, since the lower bound
a3 € K on £ from Theorem 4.11 is continuous, it is uniformly continuous on the
compact set [0, A + o]. We denote the respective function w from (8.8) by wy.

Now we define the function

Vix):= { Yo, x € Vg (10, ea(y + o)D),
ar(y +0), otherwise.

By construction, this function is continuous, coincides with Vy on Vy; ! (10, ax (y +
0)]) and is constant outside this set. Hence, (8.8) holds for W = V with 0 = wy
for all x, y € X. Furthermore, (8.10) implies that (4.14) holds for V = V for all
x € Vi ' ([0, az(y + o).

Now consider arbitrary d,e € X with ||d|| < o and |e| < o and a point x €
V' ([0, @2(A)]). This choice implies

x+eeB,(Vy' ([0.2(a)])) € Vi ' ([0. 2y +0)])
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and thus (4.14) holds for V in the point x + e. Using (8.8) and (4.14) we obtain

V(f(X, pn(x+e)+d)

V(f(x, un(x +e)) +ov(ldll)
f(x+e nun@x+e))+ov(ldl) +ov(ws(lel))
(r+e) —al(x +e u@ +e) +wv(ld]) +ov(w(lel))
@) — aas(|x +ely,) + v (Id]) + ov (@ (llel)) +ov(lel)
() — a3 (Jxls,) + v (Id1) + ov (@ (lel) + ov (lell) + awa (lell)-
Now choose d, & € (0, o] so small that

wv(d) + oy (0 (@) + oy (@) + awe (@) < minfews(0)/2, a1(8)/2}

holds. For x € X with v(x) €[a1(8)/2,a2(A)] and ||d|| < d, ||| < é this implies

V(f(x, un(x +e)+d)
<V —aw3(|xly,) + v (Il4]]) + oy (o (lell)) + ov lel) + aw (lel)
< V() —aas(lxly,) +ea3(0/2)/2
< V() —aas(lxly,)/2
and for V (x) < «(8)/2 we obtain

V(f(x, un(x +e) +d)
< V(@) —aasz(lxly,) + ov(Idll) + ov (o (llel) + ov (llell) + awy (lel)
<V +ai1()/2 i),
In both cases we obtain \7(f(x, unx +e))+d) = a2(A) < ay(y + o), hence x
and f(x, un(x + e)) +d lie in the region where V and Vi coincide and thus we

can replace every occurrence of V by Vy in both chains of inequalities. The leads
to

IANIA TN IA
<

< <<t X

IA

Vi (f (%, v (x + ) +d) < Vv (x) — a3 (|x],) /2 (8.11)
if Vy(x) € [@1(8)/2, a2(A)] and
Vv (f (2, v (x + ) +d) < a1(5) (8.12)

if Vy(x) < a1(8)/2. Observing that (8.11) implies (8.12) if Vy(x) € [«1(5)/2,
«1(8)] we can conclude that (8.12) holds for all x € X with Vy(x) < a1(5).

Defining S = V' ([0, @2(A)]) and P = V' ([0, 1 (8)]), Inequalities (8.11) and
(8.12) imply that both sets are forward invariant and that (4.14) is satisfied for
£(x,u) = az(|x|y,)/2 for all x € §\ P. Indeed, forward invariance of § follows
immediately from (8.11) while forward invariance of P follows since (8.12) holds
for all x with Vi (x) € [0, 1(5)].

Thus, all assumptions of Theorem 4.14 are satisfied (observe that the theorem
remains valid in presence of the additional n-dependence of the perturbed system,
cf. Remark 4.15). Hence, we obtain the assertion from Lemma 6.29 using that by
construction we have Ba (x,) N A C S and P C Bs(x). O
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Remark 8.27

(i) Note that we did not use continuity of wy in this proof, which is important
since optimal feedback laws are in general not continuous.

(i1) For the NMPC Algorithm 3.10 with terminal constraints the result also holds
if we can ensure f(x, uny(x +e))+d eXy forall x € V1\71 ([0, a2 (A)]). This
is, for instance, guaranteed if the sublevel set V; ! ([0, a2 (y 4+ o)]) used in the
proof does not intersect the boundary of Xy, i.e., if it is contained in the interior
of Xy. However, stabilizing terminal constraints may prevent Vy from being
continuous, cf. Example 8.30, below.

(iii) The result can be straightforwardly generalized to time varying references pro-
vided W = Vy(n, -) satisfies (8.8) for all n € Ny with w independent of 7.

@iv) The function wy in (8.8) measures how sensitive Vy (x) depends on changes
in x. The proof shows that d can be chosen the larger the smaller wy is. Typi-
cally, the solutions x, (k, x) appearing in the definition of Vjy (x) depend more
sensitive on x the larger k is. Thus, one can expect that wy grows with N,
i.e., the stability becomes less robust for larger optimization horizons. This is
rather intuitive since the longer the prediction horizon the more the perturbed
solutions X, (k, x) deviate from the nominal predictions x, (k, x).

(v) The condition that the uniform continuity of f is uniform in u is quite strong
if U is unbounded. However, this can be circumvented by penalizing large u in
£ sufficiently strong such that the optimal solution will never use large u. This
technique has, for instance, been used in a sampled data context in [8] and for
continuous time systems in [2].

The following corollaries show that robustness can be expected under suitable
continuity conditions on the problem data. The first corollary is formulated for state
spaces which are arbitrary vector spaces.

Corollary 8.28 Consider the NMPC Algorithm 3.1 without state constraints, i.e.,
X = X for some vector space X, and with input constraints satisfying U(x) =U
for all x € X. Assume that V = Vy satisfies the assumptions of Theorem 4.11 with
constant reference x" = x,. on S = X, that f is bounded and uniformly continuous
in x on each closed ball Ep (xx) and that ¢ is uniformly continuous in x on each
such ball, both uniformly in u € U.

Then the perturbed closed-loop system (8.7) is semiglobally practically asymp-
totically stable in the sense of Definition 8.24 on A = X.

Proof We show that under the given conditions Vy is uniformly continuous on each
closed ball Bg(xs), R > 0. Then the assertion follows from Theorem 8.26.

To this end, observe that the boundedness assumption on f implies that there
exists p > 0 such that x,(k, x) € Ep(x*) holds for all k =0,...,N — 1, all x €
Br(xy) and all u € U.

This implies that x,, (k, x) is uniformly continuous in x € Br(xs), hence the run-
ning cost £(x, (k, x), u(k)) is uniformly continuous in x € Br(xy) and consequently



232 8 Feasibility and Robustness

Jn(x, u) is uniformly continuous in x € Br(xy), too. This uniform continuity car-
ries over to Vyy, which proves the claim. O

The second corollary shows that in finite-dimensional state space we can drop
the uniform continuity and the boundedness assumptions on the problem data.

Corollary 8.29 Consider the NMPC Algorithm 3.1 with X = R? without state con-
straints, i.e., X = X and with input constraints satisfying U(x) =U forall x € X.
Assume that V = Vy satisfies the assumptions of Theorem 4.11 with constant refer-
ence x*' = x, on S = X. Assume furthermore that £ and f are continuous and that
U is compact.

Then the perturbed closed-loop system (8.7) is semiglobally practically asymp-
totically stable in the sense of Definition 8.24 on A = X.

Proof The proof follows when we show continuity of Vy, because then in X = R¢
uniform continuity of Viy and f on each closed ball Ep (x4) and on Ep (x4) x U, re-
spectively, follows from the compactness of these sets. Note that uniform continuity
of f in (x, 1) in the sense of Definition 8.25(i) implies uniform continuity of f in
x uniformly in u in the sense of Definition 8.25(ii).

In order to prove continuity of Vy, observe that continuity of f and £ implies
continuity of Jy(x,u) on R? x UN. This continuity carries over to Vy because
minima of continuous functions are again continuous. U

For infinite-dimensional systems, Corollary 8.29 does not apply since closed
balls are not compact. Thus, even though Theorem 8.26 and Corollary 8.28 for-
mally apply to infinite-dimensional systems, their practical usefulness is somewhat
limited because the required uniform continuity properties may not be satisfied for
most practically relevant systems. In fact, it appears doubtful whether robust stabil-
ity for infinite-dimensional systems can be expected, at all, for the general class of
perturbations considered here. Rather, we conjecture that suitable structural proper-
ties of the perturbations need to be imposed, as, e.g., in the robust stability results
for linear infinite-dimensional systems by Curtain and Zwart in [3, Chap. 9].

However, as we will see in the next section, even for finite-dimensional systems
Corollary 8.29 does in general neither extend to NMPC schemes with general state
constraints nor to schemes with stabilizing terminal constraints.

8.7 Examples for Nonrobustness Under State Constraints

In this section we provide two examples, taken from Grimm, Messina, Tuna and Teel
[5], which show that both general state constraints as well as stabilizing terminal
constraints can render the stability of the NMPC closed loop nonrobust.

Our first example shows that even without additional state constraints a stabiliz-
ing terminal constraint may result in a nonrobust NMPC-feedback law.
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Example 8.30 Consider again Example 5.8, i.e., xtT=f(x,u) withxeX=X=
R%, ueU=[0,1]Cc U =R, x, =0 and

xi(1— u))
xX,u)= .
Jeow ( Il
As we have seen in Example 5.8, using the NMPC Algorithm 3.10 with (OCPy )
= (5.5) and X = {0} we obtain X; = {x € R? | x; = 0}. Hence, for x € R? with
x1 # 0 each admissible control sequence u € Ugio (x) must satisfy #(0) = 1 in order
to ensure x, (1, x) € X;. Thus, the NMPC-feedback law for N = 2 satisfies

ur(x)=1 forallx e R? with x; #0.

Now consider the perturbed closed loop (8.7) with perturbation sequences d(-) =
do=(¢,0)" and e(-) = ¢¢ = 0 for some arbitrarily small ¢ > 0. Then for any x € R?
with x ¢ X; we obtain

_ x1(1 _U«Z(x)) €
fx, m2(x +e0)) +do = ( flx 1 2 (x) ) * <0>

:<||3||>+<8>: (n)in)’

which implies X, (1, x) = f(x, u2(x +¢(0))) +d(0) ¢ X; and

[#a(Lo0)] = £ (e 12 (x + e @) +d@ ] = [ (e 1x1) | > Il
Since %, (1, x) ¢ X; we can go on inductively and obtain
[ %ur o )| > ]

for all k € N. Thus, despite the fact that u, globally asymptotically stabilizes the
nominal closed-loop system as shown in Example 5.8, for arbitrary small perturba-
tions d the perturbed closed loop (8.7) is not asymptotically stable.

Note that by Remark 8.27(ii), Theorem 8.26 would in principle be applicable
since X, = R? and thus no sublevel set of V5, intersects the boundary of X;. How-
ever, V> is discontinuous at X, because on X; we get V2 (x) < Vi(x) = ||x||2 while
outside X; the only admissible control sequence is u(0) = 1, u(1) = 0, which im-
plies Va(x) =2||x|>.

For this example the NMPC Algorithm 3.1 without terminal constraints provides
an alternative which resolves the robustness problem. Indeed, for u = 1/2 we obtain

2 2 2 2 2
2 x1/2 _ 2 2 X X1 Xy [lx I
sl = | ()| = e gy =2 24 2 < B

Thus, for £(x) = ||x||? and u, = 1/2 Assumption 6.4 is satisfied with B(r,n) =
Co"r with C =1 and o = 1/2. For N = 2, Proposition 6.17 yields & = o)y =
1 —(y» — 1)? and since y» = C 4+ Co = 3/2 we obtain = 1 — (1/2)? = 3/4. Thus,
by Corollary 6.19 the NMPC feedback p, without terminal constraints stabilizes
the system and since all assumptions of Corollary 8.29 are satisfied, the asymptotic
stability is robust.
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Fig. 8.3 Sketch of Artstein’s 1
circles
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Example 8.31 Our second example shows that state constraints may also render
NMPC without stabilizing terminal constraints to be nonrobust. The system is a
discrete time version of a system known as Artstein’s circles. For x € X = R? and
ueU=[-1,1]itis given by
7(x%+x§)u+x1
xT = flx,u)= ( 1+(X12+X§2)u2—2xm )
This is the exact zero order hold sampled data system for sampling period 7 = 1 of
the continuous time system x| = (xl2 — x%)u, X7 = 2x1xpu introduced by Artstein
in [1].
The peculiarity of the system is that a solution which starts on the circle

Srz{xeR2|x12—|—(x2—r)2=r2}

for some r € R can never leave this circle regardless of how the control u is chosen.
Figure 8.3 illustrates these circles for r = -5, —4,...,5.

For x # 0, the control can only be used in order to change the direction of rotation
on each circle S,, which for x, > 0 is clockwise for u < 0 and counterclockwise for
u > 0. For x; < 0 this orientation changes, for x; = 0 and x| # 0 the system moves
left or right on the x;-axis and x, = 0 is an equilibrium for all # € U. For the cost
function £(x) = ||x||cc = max{|x1], |x2|}, on each circle with parameter » we have
£(x) = |xa| if |x2| = r and £(x) = |x1| otherwise. Using this fact one can conclude
that there exists o € (0, 1) such that

(f @ w) <ol(x)
holds when we choose u = —1 for x; > 0 and u = 1 for x; < 0. Thus, Assump-
tion 6.4 is satisfied for B(r, n) = Co”r with C =1, which implies &, > 0in (6.19).
Hence, by Theorem 6.18 the NMPC closed loop for Algorithm 3.1 is asymptotically

stable for all horizons N > 2.
The state constraints we consider now are given by the set

X:{xeR2|x1§c}
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Fig. 8.4 Sketch of state 10
constrain set for Artstein’s

circles. Admissible states are
to the left of the vertical line 6

(= R R

for some ¢ > 0. For ¢ = 4 the complement of this set is given by the hatched region
in Fig. 8.4.

A little computation shows that for all ¢ € (0, 1), all circles S, with r > r. =
¢/v/'1—c2,i.e., circles in the upper half plane with radius r > r., and all initial val-
ues x € S, N X with xp > r it is not possible to move clockwise toward 0 without
violating the state constraints at some point. Hence, we have to take the counter-
clockwise “detour” in order to control the system to x, = 0. In the function 8 in
the Controllability Assumption 6.4 this detour shows up as an overshoot parame-
ter C > 1. However, since the stage cost along the detour is at most 2¢(x) and the
time until £ decreases exponentially again is bounded from above by a number of
steps which is independent of £(x), the function B(r, n) is still of the form Co”r
and hence we can conclude asymptotic stability for sufficiently large N by Corol-
lary 6.19.

This asymptotic stability is, however, not robust in the sense of Definition 8.24.
In order to see this, fix an arbitrary and sufficiently small ¢ > 0, consider the circle
S;, and the unique point y on this circle with y; = ¢ and y» > r, i.e., the “upper”
intersection of S, with the boundary of X. Using the control value u = —1 this
point is mapped onto the point z = f(x, —1) on S,. with z1 =c and z» <, i.e,
on the “lower” intersection of S,. with the boundary of X. On the one hand, this
implies that the control sequence u = —1 is admissible and that it controls the tra-
jectory counterclockwise in the shortest and thus also cheapest way—in the sense
of OCPN—to the orig