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Preface

The idea for this book grew out of a course given at a winter school of the In-
ternational Doctoral Program “Identification, Optimization and Control with Ap-
plications in Modern Technologies” in Schloss Thurnau in March 2009. Initially,
the main purpose of this course was to present results on stability and performance
analysis of nonlinear model predictive control algorithms, which had at that time
recently been obtained by ourselves and coauthors. However, we soon realized that
both the course and even more the book would be inevitably incomplete without
a comprehensive coverage of classical results in the area of nonlinear model pre-
dictive control and without the discussion of important topics beyond stability and
performance, like feasibility, robustness, and numerical methods.

As a result, this book has become a mixture between a research monograph and
an advanced textbook. On the one hand, the book presents original research results
obtained by ourselves and coauthors during the last five years in a comprehensive
and self contained way. On the other hand, the book also presents a number of
results—both classical and more recent—of other authors. Furthermore, we have
included a lot of background information from mathematical systems theory, op-
timal control, numerical analysis and optimization to make the book accessible to
graduate students—on PhD and Master level—from applied mathematics and con-
trol engineering alike. Finally, via our web page www.nmpc-book.com we provide
MATLAB and C++ software for all examples in this book, which enables the reader
to perform his or her own numerical experiments. For reading this book, we assume
a basic familiarity with control systems, their state space representation as well as
with concepts like feedback and stability as provided, e.g., in undergraduate courses
on control engineering or in courses on mathematical systems and control theory in
an applied mathematics curriculum. However, no particular knowledge of nonlin-
ear systems theory is assumed. Substantial parts of the systems theoretic chapters
of the book have been used by us for a lecture on nonlinear model predictive con-
trol for master students in applied mathematics and we believe that the book is well
suited for this purpose. More advanced concepts like time varying formulations or
peculiarities of sampled data systems can be easily skipped if only time invariant
problems or discrete time systems shall be treated.

vii



viii Preface

The book centers around two main topics: systems theoretic properties of nonlin-
ear model predictive control schemes on the one hand and numerical algorithms on
the other hand; for a comprehensive description of the contents we refer to Sect. 1.3.
As such, the book is somewhat more theoretical than engineering or application ori-
ented monographs on nonlinear model predictive control, which are furthermore
often focused on linear methods.

Within the nonlinear model predictive control literature, distinctive features of
this book are the comprehensive treatment of schemes without stabilizing terminal
constraints and the in depth discussion of performance issues via infinite horizon
suboptimality estimates, both with and without stabilizing terminal constraints. The
key for the analysis in the systems theoretic part of this book is a uniform way
of interpreting both classes of schemes as relaxed versions of infinite horizon op-
timal control problems. The relaxed dynamic programming framework developed
in Chap. 4 is thus a cornerstone of this book, even though we do not use dynamic
programming for actually solving nonlinear model predictive control problems; for
this task we prefer direct optimization methods as described in the last chapter of
this book, since they also allow for the numerical treatment of high dimensional
systems.

There are many people whom we have to thank for their help in one or the other
way. For pleasant and fruitful collaboration within joint research projects and on
joint papers—of which many have been used as the basis for this book—we are
grateful to Frank Allgöwer, Nils Altmüller, Rolf Findeisen, Marcus von Lossow,
Dragan Nešić, Anders Rantzer, Martin Seehafer, Paolo Varutti and Karl Worthmann.
For enlightening talks, inspiring discussions, for organizing workshops and mini-
symposia (and inviting us) and, last but not least, for pointing out valuable references
to the literature we would like to thank David Angeli, Moritz Diehl, Knut Graichen,
Peter Hokayem, Achim Ilchmann, Andreas Kugi, Daniel Limón, Jan Lunze, Lalo
Magni, Manfred Morari, Davide Raimondo, Saša Raković, Jörg Rambau, Jim Rawl-
ings, Markus Reble, Oana Serea and Andy Teel, and we apologize to everyone who
is missing in this list although he or she should have been mentioned. Without the
proof reading of Nils Altmüller, Robert Baier, Thomas Jahn, Marcus von Lossow,
Florian Müller and Karl Worthmann the book would contain even more typos and
inaccuracies than it probably does—of course, the responsibility for all remaining
errors lies entirely with us and we appreciate all comments on errors, typos, miss-
ing references and the like. Beyond proof reading, we are grateful to Thomas Jahn
for his help with writing the software supporting this book and to Karl Worthmann
for his contributions to many results in Chaps. 6 and 7, most importantly the proof
of Proposition 6.17. Finally, we would like to thank Oliver Jackson and Charlotte
Cross from Springer-Verlag for their excellent support.

Lars Grüne
Jürgen Pannek

Bayreuth, Germany
April 2011
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Chapter 1
Introduction

1.1 What Is Nonlinear Model Predictive Control?

Nonlinear model predictive control (henceforth abbreviated as NMPC) is an opti-
mization based method for the feedback control of nonlinear systems. Its primary
applications are stabilization and tracking problems, which we briefly introduce in
order to describe the basic idea of model predictive control.

Suppose we are given a controlled process whose state x(n) is measured at dis-
crete time instants tn, n = 0,1,2, . . . . “Controlled” means that at each time instant
we can select a control input u(n) which influences the future behavior of the state
of the system. In tracking control, the task is to determine the control inputs u(n)

such that x(n) follows a given reference xref(n) as good as possible. This means that
if the current state is far away from the reference then we want to control the system
towards the reference and if the current state is already close to the reference then
we want to keep it there. In order to keep this introduction technically simple, we
consider x(n) ∈ X = R

d and u(n) ∈ U = R
m, furthermore we consider a reference

which is constant and equal to x∗ = 0, i.e., xref(n) = x∗ = 0 for all n ≥ 0. With such
a constant reference the tracking problem reduces to a stabilization problem; in its
full generality the tracking problem will be considered in Sect. 3.3.

Since we want to be able to react to the current deviation of x(n) from the ref-
erence value x∗ = 0, we would like to have u(n) in feedback form, i.e., in the form
u(n) = μ(x(n)) for some map μ mapping the state x ∈ X into the set U of control
values.

The idea of model predictive control—linear or nonlinear—is now to utilize a
model of the process in order to predict and optimize the future system behavior. In
this book, we will use models of the form

x+ = f (x,u) (1.1)

where f : X × U → X is a known and in general nonlinear map which assigns to a
state x and a control value u the successor state x+ at the next time instant. Starting
from the current state x(n), for any given control sequence u(0), . . . , u(N − 1) with

L. Grüne, J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-501-9_1, © Springer-Verlag London Limited 2011
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2 1 Introduction

horizon length N ≥ 2, we can now iterate (1.1) in order to construct a prediction
trajectory xu defined by

xu(0) = x(n), xu(k + 1) = f
(
xu(k), u(k)

)
, k = 0, . . . ,N − 1. (1.2)

Proceeding this way, we obtain predictions xu(k) for the state of the system x(n+k)

at time tn+k in the future. Hence, we obtain a prediction of the behavior of the sys-
tem on the discrete interval tn, . . . , tn+N depending on the chosen control sequence
u(0), . . . , u(N − 1).

Now we use optimal control in order to determine u(0), . . . , u(N − 1) such that
xu is as close as possible to x∗ = 0. To this end, we measure the distance between
xu(k) and x∗ = 0 for k = 0, . . . ,N − 1 by a function �(xu(k), u(k)). Here, we not
only allow for penalizing the deviation of the state from the reference but also—if
desired—the distance of the control values u(k) to a reference control u∗, which
here we also choose as u∗ = 0. A common and popular choice for this purpose is
the quadratic function

�
(
xu(k), u(k)

) = ∥
∥xu(k)

∥
∥2 + λ

∥
∥u(k)

∥
∥2

,

where ‖ · ‖ denotes the usual Euclidean norm and λ ≥ 0 is a weighting parameter
for the control, which could also be chosen as 0 if no control penalization is desired.
The optimal control problem now reads

minimize J
(
x(n),u(·)) :=

N−1∑

k=0

�
(
xu(k), u(k)

)

with respect to all admissible1 control sequences u(0), . . . , u(N − 1) with xu gen-
erated by (1.2).

Let us assume that this optimal control problem has a solution which is given by
the minimizing control sequence u�(0), . . . , u�(N − 1), i.e.,

min
u(0),...,u(N−1)

J
(
x(n),u(·)) =

N−1∑

k=0

�
(
xu�(k), u�(k)

)
.

In order to get the desired feedback value μ(x(n)), we now set μ(x(n)) := u�(0),
i.e., we apply the first element of the optimal control sequence. This procedure is
sketched in Fig. 1.1.

At the following time instants tn+1, tn+2, . . . we repeat the procedure with the
new measurements x(n + 1), x(n + 2), . . . in order to derive the feedback values
μ(x(n + 1)),μ(x(n + 2)), . . . . In other words, we obtain the feedback law μ by
an iterative online optimization over the predictions generated by our model (1.1).2

This is the first key feature of model predictive control.

1The meaning of “admissible” will be defined in Sect. 3.2.
2Attentive readers may already have noticed that this description is mathematically idealized since
we neglected the computation time needed to solve the optimization problem. In practice, when the
measurement x(n) is provided to the optimizer the feedback value μ(x(n)) will only be available
after some delay. For simplicity of exposition, throughout our theoretical investigations we will
assume that this delay is negligible. We will come back to this problem in Sect. 7.6.
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Fig. 1.1 Illustration of the NMPC step at time tn

From the prediction horizon point of view, proceeding this iterative way the
trajectories xu(k), k = 0, . . . ,N provide a prediction on the discrete interval
tn, . . . , tn+N at time tn, on the interval tn+1, . . . , tn+N+1 at time tn+1, on the interval
tn+2, . . . , tn+N+2 at time tn+2, and so on. Hence, the prediction horizon is moving
and this moving horizon is the second key feature of model predictive control.

Regarding terminology, another term which is often used alternatively to model
predictive control is receding horizon control. While the former expression stresses
the use of model based predictions, the latter emphasizes the moving horizon idea.
Despite these slightly different literal meanings, we prefer and follow the common
practice to use these names synonymously. The additional term nonlinear indicates
that our model (1.1) need not be a linear map.

1.2 Where Did NMPC Come from?

Due to the vast amount of literature, the brief history of NMPC we provide in this
section is inevitably incomplete and focused on those references in the literature
from which we ourselves learned about the various NMPC techniques. Furthermore,
we focus on the systems theoretic aspects of NMPC and on the academic develop-
ment; some remarks on numerical methods specifically designed for NMPC can be
found in Sect. 10.7. Information about the use of linear and nonlinear MPC in prac-
tical applications can be found in many articles, books and proceedings volumes,
e.g., in [15, 22, 24].

Nonlinear model predictive control grew out of the theory of optimal control
which had been developed in the middle of the 20th century with seminal contri-
butions like the maximum principle of Pontryagin, Boltyanskii, Gamkrelidze and
Mishchenko [20] and the dynamic programming method developed by Bellman
[2]. The first paper we are aware of in which the central idea of model predictive
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control—for discrete time linear systems—is formulated was published by Propoı̆
[21] in the early 1960s. Interestingly enough, in this paper neither Pontryagin’s max-
imum principle nor dynamic programming is used in order to solve the optimal con-
trol problem. Rather, the paper already proposed the method which is predominant
nowadays in NMPC, in which the optimal control problem is transformed into a
static optimization problem, in this case a linear one. For nonlinear systems, the
idea of model predictive control can be found in the book by Lee and Markus [14]
from 1967 on page 423:

One technique for obtaining a feedback controller synthesis from knowl-
edge of open-loop controllers is to measure the current control process state
and then compute very rapidly for the open-loop control function. The first
portion of this function is then used during a short time interval, after which
a new measurement of the process state is made and a new open-loop con-
trol function is computed for this new measurement. The procedure is then
repeated.

Due to the fact that neither computer hardware nor software for the necessary “very
rapid” computation were available at that time, for a while this observation had little
practical impact.

In the late 1970s, due to the progress in algorithms for solving constrained linear
and quadratic optimization problems, MPC for linear systems became popular in
control engineering. Richalet, Rault, Testud and Papon [25] and Cutler and Ramaker
[6] were among the first to propose this method in the area of process control, in
which the processes to be controlled are often slow enough in order to allow for
an online optimization, even with the computer technology available at that time.
It is interesting to note that in [25] the method was described as a “new method
of digital process control” and earlier references were not mentioned; it appears
that the basic MPC principle was re-invented several times. Systematic stability
investigations appeared a little bit later; an account of early results in that direction
for linear MPC can, e.g., be found in the survey paper of García, Prett and Morari
[10] or in the monograph by Bitmead, Gevers and Wertz [3]. Many of the techniques
which later turned out to be useful for NMPC, like Lyapunov function based stability
proofs or stabilizing terminal constraints were in fact first developed for linear MPC
and later carried over to the nonlinear setting.

The earliest paper we were able to find which analyzes an NMPC algorithm sim-
ilar to the ones used today is an article by Chen and Shaw [4] from 1982. In this
paper, stability of an NMPC scheme with equilibrium terminal constraint in contin-
uous time is proved using Lyapunov function techniques, however, the whole opti-
mal control function on the optimization horizon is applied to the plant, as opposed
to only the first part as in our NMPC paradigm. For NMPC algorithms meeting this
paradigm, first comprehensive stability studies for schemes with equilibrium termi-
nal constraint were given in 1988 by Keerthi and Gilbert [13] in discrete time and
in 1990 by Mayne and Michalska [17] in continuous time. The fact that for non-
linear systems equilibrium terminal constraints may cause severe numerical diffi-
culties subsequently motivated the investigation of alternative techniques. Regional
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terminal constraints in combination with appropriate terminal costs turned out to
be a suitable tool for this purpose and in the second half of the 1990s there was
a rapid development of such techniques with contributions by De Nicolao, Magni
and Scattolini [7, 8], Magni and Sepulchre [16] or Chen and Allgöwer [5], both in
discrete and continuous time. This development eventually led to the formulation
of a widely accepted “axiomatic” stability framework for NMPC schemes with sta-
bilizing terminal constraints as formulated in discrete time in the survey article by
Mayne, Rawlings, Rao and Scokaert [18] in 2000, which is also an excellent source
for more detailed information on the history of various NMPC variants not men-
tioned here. This framework also forms the core of our stability analysis of such
schemes in Chap. 5 of this book. A continuous time version of such a framework
was given by Fontes [9] in 2001.

All stability results discussed so far add terminal constraints as additional state
constraints to the finite horizon optimization in order to ensure stability. Among the
first who provided a rigorous stability result of an NMPC scheme without such con-
straints were Parisini and Zoppoli [19] and Alamir and Bornard [1], both in 1995 and
for discrete time systems. Parisini and Zoppoli [19], however, still needed a terminal
cost with specific properties similar to the one used in [5]. Alamir and Bonnard [1]
were able to prove stability without such a terminal cost by imposing a rank con-
dition on the linearization on the system. Under less restrictive conditions, stability
results were provided in 2005 by Grimm, Messina, Tuna and Teel [11] for discrete
time systems and by Jadbabaie and Hauser [12] for continuous time systems. The
results presented in Chap. 6 of this book are qualitatively similar to these refer-
ences but use slightly different assumptions and a different proof technique which
allows for quantitatively tighter results; for more details we refer to the discussions
in Sects. 6.1 and 6.9.

After the basic systems theoretic principles of NMPC had been clarified, more
advanced topics like robustness of stability and feasibility under perturbations, per-
formance estimates and efficiency of numerical algorithms were addressed. For a
discussion of these more recent issues including a number of references we refer to
the final sections of the respective chapters of this book.

1.3 How Is This Book Organized?

The book consists of two main parts, which cover systems theoretic aspects of
NMPC in Chaps. 2–8 on the one hand and numerical and algorithmic aspects in
Chaps. 9–10 on the other hand. These parts are, however, not strictly separated; in
particular, many of the theoretical and structural properties of NMPC developed in
the first part are used when looking at the performance of numerical algorithms.

The basic theme of the first part of the book is the systems theoretic analysis of
stability, performance, feasibility and robustness of NMPC schemes. This part starts
with the introduction of the class of systems and the presentation of background
material from Lyapunov stability theory in Chap. 2 and proceeds with a detailed
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description of different NMPC algorithms as well as related background information
on dynamic programming in Chap. 3.

A distinctive feature of this book is that both schemes with stabilizing terminal
constraints as well as schemes without such constraints are considered and treated in
a uniform way. This “uniform way” consists of interpreting both classes of schemes
as relaxed versions of infinite horizon optimal control. To this end, Chap. 4 first de-
velops the theory of infinite horizon optimal control and shows by means of dynamic
programming and Lyapunov function arguments that infinite horizon optimal feed-
back laws are actually asymptotically stabilizing feedback laws. The main building
block of our subsequent analysis is the development of a relaxed dynamic program-
ming framework in Sect. 4.3. Roughly speaking, Theorems 4.11 and 4.14 in this
section extract the main structural properties of the infinite horizon optimal control
problem, which ensure

• asymptotic or practical asymptotic stability of the closed loop,
• admissibility, i.e., maintaining the imposed state constraints,
• a guaranteed bound on the infinite horizon performance of the closed loop,
• applicability to NMPC schemes with and without stabilizing terminal constraints.

The application of these theorems does not necessarily require that the feedback
law to be analyzed is close to an infinite horizon optimal feedback law in some
quantitative sense. Rather, it requires that the two feedback laws share certain prop-
erties which are sufficient in order to conclude asymptotic or practical asymptotic
stability and admissibility for the closed loop. While our approach allows for inves-
tigating the infinite horizon performance of the closed loop for most schemes under
consideration—which we regard as an important feature of the approach in this
book—we would like to emphasize that near optimal infinite horizon performance
is not needed for ensuring stability and admissibility.

The results from Sect. 4.3 are then used in the subsequent Chaps. 5 and 6 in
order to analyze stability, admissibility and infinite horizon performance properties
for NMPC schemes with and without stabilizing terminal constraints, respectively.
Here, the results for NMPC schemes with stabilizing terminal constraints in Chap. 5
can by now be considered as classical and thus mainly summarize what can be
found in the literature, although some results—like, e.g., Theorems 5.21 and 5.22—
generalize known results. In contrast to this, the results for NMPC schemes without
stabilizing terminal constraints in Chap. 6 were mainly developed by ourselves and
coauthors and have not been presented before in this way.

While most of the results in this book are formulated and proved in a mathemat-
ically rigorous way, Chap. 7 deviates from this practice and presents a couple of
variants and extensions of the basic NMPC schemes considered before in a more
survey like manner. Here, proofs are occasionally only sketched with appropriate
references to the literature.

In Chap. 8 we return to the more rigorous style and discuss feasibility and robust-
ness issues. In particular, in Sects. 8.1–8.3 we present feasibility results for NMPC
schemes without stabilizing terminal constraints and without imposing viability as-
sumptions on the state constraints which are, to the best of our knowledge, either
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entirely new or were so far only known for linear MPC. These results finish our
study of the properties of the nominal NMPC closed-loop system, which is why
it is followed by a comparative discussion of the advantages and disadvantages of
the various NMPC schemes presented in this book in Sect. 8.4. The remaining sec-
tions in Chap. 8 address the robustness of the stability of the NMPC closed loop
with respect to additive perturbations and measurement errors. Here we decided to
present a selection of results we consider representative, partially from the literature
and partially based on our own research. These considerations finish the systems
theoretic part of the book.

The numerical part of the book covers two central questions in NMPC: how
can we numerically compute the predicted trajectories needed in NMPC for finite-
dimensional sampled data systems and how is the optimization in each NMPC step
performed numerically? The first issue is treated in Chap. 9, in which we start by
giving an overview on numerical one step methods, a classical numerical technique
for solving ordinary differential equations. After having looked at the convergence
analysis and adaptive step size control techniques, we discuss some implementa-
tional issues for the use of this methods within NMPC schemes. Finally, we investi-
gate how the numerical approximation errors affect the closed-loop behavior, using
the robustness results from Chap. 8.

The last Chap. 10 is devoted to numerical algorithms for solving nonlinear fi-
nite horizon optimal control problems. We concentrate on so-called direct methods
which form the currently by far preferred class of algorithms in NMPC applications.
In these methods, the optimal control problem is transformed into a static optimiza-
tion problem which can then be solved by nonlinear programming algorithms. We
describe different ways of how to do this transformation and then give a detailed
introduction into some popular nonlinear programming algorithms for constrained
optimization. The focus of this introduction is on explaining how these algorithms
work rather than on a rigorous convergence theory and its purpose is twofold: on the
one hand, even though we do not expect our readers to implement such algorithms,
we still think that some background knowledge is helpful in order to understand the
opportunities and limitations of these numerical methods. On the other hand, we
want to highlight the key features of these algorithms in order to be able to explain
how they can be efficiently used within an NMPC scheme. This is the topic of the
final Sects. 10.4–10.6, in which several issues regarding efficient implementation,
warm start and feasibility are investigated. Like Chap. 7 and in contrast to the other
chapters in the book, Chap. 10 has in large parts a more survey like character, since
a comprehensive and rigorous treatment of these topics would easily fill an entire
book. Still, we hope that this chapter contains valuable information for those readers
who are interested not only in systems theoretic foundations but also in the practical
numerical implementation of NMPC schemes.

Last but not least, for all examples presented in this book we offer either MAT-
LAB or C++ code in order to reproduce our numerical results. This code is available
from the web page

www.nmpc-book.com
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Both our MATLAB NMPC routine—which is suitable for smaller problems—
as well as our C++ NMPC package—which can also handle larger problems with
reasonable computing time—can also be modified in order to perform simulations
for problems not treated in this book. In order to facilitate both the usage and the
modification, the Appendix contains brief descriptions of our routines.

Beyond numerical experiments, almost every chapter contains a small selection
of problems related to the more theoretical results. Solutions for these problems
are available from the authors upon request by email. Attentive readers will note
that several of these problems—as well as some of our examples—are actually lin-
ear problems. Even though all theoretical and numerical results apply to general
nonlinear systems, we have decided to include such problems and examples, be-
cause nonlinear problems hardly ever admit analytical solutions, which are needed
in order to solve problems or to work out examples without the help of numerical
algorithms.

Let us finally say a few words on the class of systems and NMPC problems
considered in this book. Most results are formulated for discrete time systems on
arbitrary metric spaces, which in particular covers finite- and infinite-dimensional
sampled data systems. The discrete time setting has been chosen because of its no-
tational and conceptual simplicity compared to a continuous time formulation. Still,
since sampled data continuous time systems form a particularly important class of
systems, we have made considerable effort in order to highlight the peculiarities
of this system class whenever appropriate. This concerns, among other topics, the
relation between sampled data systems and discrete time systems in Sect. 2.2, the
derivation of continuous time stability properties from their discrete time counter-
parts in Sect. 2.4 and Remark 4.13, the transformation of continuous time NMPC
schemes into the discrete time formulation in Sect. 3.5 and the numerical solution
of ordinary differential equations in Chap. 9. Readers or lecturers who are inter-
ested in NMPC in a pure discrete time framework may well skip these parts of the
book.

The most general NMPC problem considered in this book3 is the asymptotic
tracking problem in which the goal is to asymptotically stabilize a time varying
reference xref(n). This leads to a time varying NMPC formulation; in particular,
the optimal control problem to be solved in each step of the NMPC algorithm ex-
plicitly depends on the current time. All of the fundamental results in Chaps. 2–4
explicitly take this time dependence into account. However, in order to be able to
concentrate on concepts rather than on technical details, in the subsequent chapters
we often decided to simplify the setting. To this end, many results in Chaps. 5–8
are first formulated for time invariant problems xref ≡ x∗—i.e., for stabilizing an
x∗—and the necessary modifications for the time varying case are discussed after-
wards.

3Except for some further variants discussed in Sects. 3.5 and 7.10.
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1.4 What Is Not Covered in This Book?

The area of NMPC has grown so rapidly over the last two decades that it is virtually
impossible to cover all developments in detail. In order not to overload this book, we
have decided to omit several topics, despite the fact that they are certainly important
and useful in a variety of applications. We end this introduction by giving a brief
overview over some of these topics.

For this book, we decided to concentrate on NMPC schemes with online opti-
mization only, thus leaving out all approaches in which part of the optimization is
carried out offline. Some of these methods, which can be based on both infinite hori-
zon and finite horizon optimal control and are often termed explicit MPC, are briefly
discussed in Sects. 3.5 and 4.4. Furthermore, we will not discuss special classes of
nonlinear systems like, e.g., piecewise linear systems often considered in the explicit
MPC literature.

Regarding robustness of NMPC controllers under perturbations, we have re-
stricted our attention to schemes in which the optimization is carried out for a nom-
inal model, i.e., in which the perturbation is not explicitly taken into account in the
optimization objective, cf. Sects. 8.5–8.9. Some variants of model predictive con-
trol in which the perturbation is explicitly taken into account, like min–max MPC
schemes building on game theoretic ideas or tube based MPC schemes relying on
set oriented methods are briefly discussed in Sect. 8.10.

An emerging and currently strongly growing field are distributed NMPC schemes
in which the optimization in each NMPC step is carried out locally in a number of
subsystems instead of using a centralized optimization. Again, this is a topic which
is not covered in this book and we refer to, e.g., Rawlings and Mayne [23, Chap. 6]
and the references therein for more information.

At the very heart of each NMPC algorithm is a mathematical model of the sys-
tems dynamics, which leads to the discrete time dynamics f in (1.1). While we will
explain in detail in Sect. 2.2 and Chap. 9 how to obtain such a discrete time model
from a differential equation, we will not address the question of how to obtain a
suitable differential equation or how to identify the parameters in this model. Both
modeling and parameter identification are serious problems in their own right which
cannot be covered in this book. It should, however, be noted that optimization meth-
ods similar to those used in NMPC can also be used for parameter identification;
see, e.g., Schittkowski [26].

A somewhat related problem stems from the fact that NMPC inevitably leads to
a feedback law in which the full state x(n) needs to be measured in order to evaluate
the feedback law, i.e., a state feedback law. In most applications, this information is
not available; instead, only output information y(n) = h(x(n)) for some output map
h is at hand. This implies that the state x(n) must be reconstructed from the output
y(n) by means of a suitable observer. While there is a variety of different techniques
for this purpose, it is interesting to note that an idea which is very similar to NMPC
can be used for this purpose: in the so-called moving horizon state estimation ap-
proach the state is estimated by iteratively solving optimization problems over a
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moving time horizon, analogous to the repeated minimization of J (x(n),u(·)) de-
scribed above. However, instead of minimizing the future deviations of the pre-
dictions from the reference value, here the past deviations of the trajectory from
the measured output values are minimized. More information on this topic can be
found, e.g., in Rawlings and Mayne [23, Chap. 4] and the references therein.
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Chapter 2
Discrete Time and Sampled Data Systems

2.1 Discrete Time Systems

In this book, we investigate model predictive control for discrete time nonlinear
control systems of the form

x+ = f (x,u). (2.1)

Here, the transition map f : X × U → X assigns the state x+ ∈ X at the next time
instant to each pair of state x ∈ X and control value u ∈ U . The state space X and
the control value space U are arbitrary metric spaces, i.e., sets in which we can
measure distances between two elements x, y ∈ X or u,v ∈ U by metrics dX(x, y)

or dU (u, v), respectively. Readers less familiar with metric spaces may think of
X = R

d and U = R
m for d,m ∈ N with the Euclidean metrics dX(x, y) = ‖x − y‖

and dU (u, v) = ‖u−v‖ induced by the usual Euclidean norm ‖·‖, although some of
our examples use different spaces. While most of the systems we consider possess
continuous transition maps f , we do not require continuity in general.

The set of finite control sequences u(0), . . . , u(N − 1) for N ∈ N will be denoted
by UN and the set of infinite control sequences u(0), u(1), u(2), . . . by U∞. Note
that we may interpret the control sequences as functions u : {0, . . . ,N − 1} → U or
u : N0 → U , respectively. For either type of control sequences we will briefly write
u(·) or simply u if there is no ambiguity. With N∞ we denote the natural numbers
including ∞ and with N0 the natural numbers including 0.

A trajectory of (2.1) is obtained as follows: given an initial value x0 ∈ X and a
control sequence u(·) ∈ UK for K ∈ N∞, we define the trajectory xu(k) iteratively
via

xu(0) = x0, xu(k + 1) = f
(
xu(k), u(k)

)
, (2.2)

for all k ∈ N0 if K = ∞ and for k = 0,1, . . . ,K − 1 otherwise. Whenever we want
to emphasize the dependence on the initial value we write xu(k, x0).

An important basic property of the trajectories is the cocycle property: given an
initial value x0 ∈ X, a control u ∈ UN and time instants k1, k2 ∈ {0, . . . ,N −1} with
k1 ≤ k2 the solution trajectory satisfies

xu(k2, x0) = xu(·+k1)

(
k2 − k1, xu(k1, x0)

)
. (2.3)
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Here, the shifted control sequence u(· + k1) ∈ UN−k1 is given by

u(· + k1)(k) := u(k + k1), k ∈ {0, . . . ,N − k1 − 1}, (2.4)

i.e., if the sequence u consists of the N elements u(0), u(1), . . . , u(N − 1), then
the sequence ũ = u(· + k1) consists of the N − k1 elements ũ(0) = u(k1), ũ(1) =
u(k1 + 1), . . . , ũ(N − k1 − 1) = u(N − 1). With this definition, the identity (2.3) is
easily proved by induction using (2.2).

We illustrate our class of models by three simple examples—the first two being
in fact linear.

Example 2.1 One of the simplest examples of a control system of type (2.1) is
given by X = U = R and

x+ = x + u =: f (x,u).

This system can be interpreted as a very simple model of a vehicle on an infinite
straight road in which u ∈ R is the traveled distance in the period until the next time
instant. For u > 0 the vehicle moves right and for u < 0 it moves left.

Example 2.2 A slightly more involved version of Example 2.1 is obtained if we
consider the state x = (x1, x2)

� ∈ X = R
2, where x1 represents the position and x2

the velocity of the vehicle. With the dynamics
(

x+
1

x+
2

)
=

(
x1 + x2 + u/2

x2 + u

)
=: f (x,u)

on an appropriate time scale the control u ∈ U = R can be interpreted as the (con-
stant) acceleration in the period until the next time instant. For a formal derivation
of this model from a continuous time system, see Example 2.6, below.

Example 2.3 Another variant of Example 2.1 is obtained if we consider the vehicle
on a road which forms an ellipse, cf. Fig. 2.1, in which half of the ellipse is shown.

Here, the set of possible states is given by

X =
{
x ∈ R

2
∣∣∣∣

∥∥∥∥

(
x1

2x2

)∥∥∥∥ = 1

}
.

Fig. 2.1 Illustration of
Example 2.3
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Since X is a compact subset of R
2 (more precisely a submanifold, but we will

not need this particular geometric structure) we can use the metric induced by the
Euclidean norm on R

2, i.e., dX(x, y) = ‖x − y‖. Defining the dynamics
(

x+
1

x+
2

)
=

(
sin(ϑ(x) + u)

cos(ϑ(x) + u)/2

)
=: f (x,u)

with u ∈ U = R and

ϑ(x) =
{

arccos 2x2, x1 ≥ 0,

2π − arccos 2x2, x1 < 0

the vehicle moves on the ellipse with traveled distance u ∈ U = R in the next time
step, where the traveled distance is now expressed in terms of the angle ϑ . For u > 0
the vehicle moves clockwise and for u < 0 it moves counterclockwise.

The main purpose of these very simple examples is to provide test cases which we
will use in order to illustrate various effects in model predictive control. Due to their
simplicity we can intuitively guess what a reasonable controller should do and often
even analytically compute different optimal controllers. This enables us to compare
the behavior of the NMPC controller with our intuition and other controllers. More
sophisticated models will be introduced in the next section.

As outlined in the introduction, the model (2.1) will serve for generating the
predictions xu(k, x(n)) which we need in the optimization algorithm of our NMPC
scheme, i.e., (2.1) will play the role of the model (1.1) used in the introduction.
Clearly, in general we cannot expect that this mathematical model produces exact
predictions for the trajectories of the real process to be controlled. Nevertheless,
during Chaps. 3–7 and in Sects. 8.1–8.4 of this book we will suppose this idealized
assumption. In other words, given the NMPC-feedback law μ : X → U , we assume
that the resulting closed-loop system satisfies

x+ = f
(
x,μ(x)

)
(2.5)

with f from (2.1). We will refer to (2.5) as the nominal closed-loop system.
There are several good reasons for using this idealized assumption: First, satis-

factory behavior of the nominal NMPC closed loop is a natural necessary condition
for the correctness of our controller—if we cannot ensure proper functioning in the
absence of modeling errors we can hardly expect the method to work under real life
conditions. Second, the assumption that the prediction is based on an exact model
of the process considerably simplifies the analysis and thus allows us to derive suf-
ficient conditions under which NMPC works in a simplified setting. Last, based on
these conditions for the nominal model (2.5), we can investigate additional robust-
ness conditions which ensure satisfactory performance also for the realistic case in
which (2.5) is only an approximate model for the real closed-loop behavior. This
issue will be treated in Sects. 8.5–8.9.
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2.2 Sampled Data Systems

Most models of real life processes in technical and other applications are given as
continuous time models, usually in form of differential equations. In order to convert
these models into the discrete time form (2.1) we introduce the concept of sampling.

Let us assume that the control system under consideration is given by a finite-
dimensional ordinary differential equation

ẋ(t) = fc

(
x(t), v(t)

)
(2.6)

with vector field fc : R
d × R

m → R
d , control function v : R → R

m, and unknown
function x : R → R

d , where ẋ is the usual short notation for the derivative dx/dt

and d,m ∈ N are the dimensions of the state and the control vector. Here, we use
the slightly unusual symbol v for the control function in order to emphasize the
difference between the continuous time control function v(·) in (2.6) and the discrete
time control sequence u(·) in (2.1).

Caratheodory’s Theorem (see, e.g., [15, Theorem 54]) states conditions on fc and
v under which (2.6) has a unique solution. For its application we need the following
assumption.

Assumption 2.4 The vector field fc : R
d × R

m → R
d is continuous and Lipschitz

in its first argument in the following sense: for each r > 0 there exists a constant
L > 0 such that the inequality

∥∥fc(x, v) − fc(y, v)
∥∥ ≤ L‖x − y‖

holds for all x, y ∈ R
d and all v ∈ R

m with ‖x‖ ≤ r , ‖y‖ ≤ r and ‖v‖ ≤ r .

Under Assumption 2.4, Caratheodory’s Theorem yields that for each initial value
x0 ∈ R

d , each initial time t0 ∈ R and each locally Lebesgue integrable control func-
tion v : R → R

m equation (2.6) has a unique solution x(t) with x(t0) = x0 defined
for all times t contained in some open interval I ⊆ R with t0 ∈ I . We denote this
solution by ϕ(t, t0, x0, v).

We further denote the space of locally Lebesgue integrable control functions
mapping R into R

m by L∞(R,R
m). For a precise definition of this space see, e.g.,

[15, Sect. C.1]. Readers not familiar with Lebesgue measure theory may always
think of v being piecewise continuous, which is the approach taken in [7, Chap. 3].
Since the space of piecewise continuous functions is a subset of L∞(R,R

m), ex-
istence and uniqueness holds for these control functions as well. Note that if we
consider (2.6) only for times t from an interval [t0, t1] then it is sufficient to
specify the control function v for these times t ∈ [t0, t1], i.e., it is sufficient to
consider v ∈ L∞([t0, t1],R

m). Furthermore, note that two Caratheodory solutions
ϕ(t, t0, x0, v1) and ϕ(t, t0, x0, v2) for v1, v2 ∈ L∞(R,R

m) coincide if v1 and v2 co-
incide for almost all τ ∈ [t0, t], where almost all means that v1(τ ) 
= v2(τ ) may hold
for τ ∈ T ⊂ [t0, t] where T is a set with zero Lebesgue measure. Since, in particular,
sets T with only finitely many values have zero Lebesgue measure, this implies that
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for any v ∈ L∞(R,R
m) the solution ϕ(t, t0, x0, v) does not change if we change the

value of v(τ) for finitely many times τ ∈ [t0, t].1
The idea of sampling consists of defining a discrete time system (2.1) such that

the trajectories of this discrete time system and the continuous time system coincide
at the sampling times t0 < t1 < t2 < · · · < tN , i.e.,

ϕ(tn, t0, x0, v) = xu(n, x0), n = 0,1,2, . . . ,N, (2.7)

provided the continuous time control function v : R → R
m and the discrete time

control sequence u(·) ∈ UN are chosen appropriately. Before we investigate how
this appropriate choice can be done, cf. Theorem 2.7, below, we need to specify the
discrete time system (2.1) which allows for such a choice.

Throughout this book we use equidistant sampling times tn = nT , n ∈ N0, with
sampling period T > 0. For this choice, we claim that

x+ = f (x,u) := ϕ(T ,0, x,u) (2.8)

for x ∈ R
d and u ∈ L∞([0, T ],R

m) is the desired discrete time system (2.1) for
which (2.7) can be satisfied. Clearly, f (x,u) is only well defined if the solution
ϕ(t,0, x,u) exists for the time t = T . Unless explicitly stated otherwise, we will
tacitly assume that this is the case whenever using f (x,u) from (2.8).

Before we explain the precise relation between u in (2.8) and u(·) and ν(·) in
(2.7), cf. Theorem 2.7, below, we first look at possible choices of u in (2.8). In
general, u in (2.8) may be any function in L∞([0, T ],R

m), i.e., any measurable
continuous time control function defined on one sampling interval. This suggests
that we should use U = L∞([0, T ],R

m) in (2.1) when f is defined by (2.8). How-
ever, other—much simpler—choices of U as appropriate subsets of L∞([0, T ],R

m)

are often possible and reasonable. This is illustrated by the following examples and
discussed after Theorem 2.7 in more detail.

Example 2.5 Consider the continuous time control system

ẋ(t) = v(t)

with n = m = 1. It is easily verified that the solutions of this system are given by

ϕ(t,0, x0, v) = x0 +
∫ t

0
v(τ) dτ.

Hence, for U = L∞([0, T ],R) we obtain (2.8) as

x+ = f (x,u) = x +
∫ T

0
u(τ) dτ.

1Strictly speaking, L∞ functions are not even defined pointwise but rather via equivalence classes
which identify all functions v ∈ L∞(R,R

m) which coincide for almost all t ∈ R. However, in order
not to overload the presentation with technicalities we prefer the slightly heuristic explanation
given here.
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If we restrict ourselves to constant control functions u(t) ≡ u ∈ R (for ease of no-
tation we use the same symbol u for the function and for its constant value), which
corresponds to choosing U = R, then f simplifies to

f (x,u) = x + T u.

If we further specify T = 1, then this is exactly Example 2.1.

Example 2.6 Consider the continuous time control system
(

ẋ1(t)

ẋ2(t)

)
=

(
x2(t)

v(t)

)

with n = 2 and m = 1. In this model, if we interpret x1(t) as the position of a vehicle
at time t , then x2(t) = ẋ1(t) is its velocity and v(t) = ẋ2(t) its acceleration.

Again, one easily computes the solutions of this system with initial value x0 =
(x01, x02)

� as

ϕ(t,0, x0, v) =
(

x01 + ∫ t

0 x2(τ ) dτ

x02 + ∫ t

0 v(τ) dτ

)
=

(
x01 + ∫ t

0 (x02 + ∫ τ

0 v(s) ds) dτ

x02 + ∫ t

0 v(τ) dτ

)
.

Hence, for U = L∞([0, T ],R) and x = (x1, x2)
� we obtain (2.8) as

x+ = f (x,u) =
(

x1 + T x2 + ∫ T

0

∫ t

0 u(s) ds dt

x2 + ∫ T

0 u(t) dt

)
.

If we restrict ourselves to constant control functions u(t) ≡ u ∈ R (again using the
same symbol u for the function and for its constant value), i.e., U = R, then f

simplifies to

f (x,u) =
(

x1 + T x2 + T 2u/2
x2 + T u

)
.

If we further specify T = 1, then this is exactly Example 2.2.

In order to see how the control inputs v(·) in (2.6) and u(·) in (2.8) need to be
related such that (2.8) ensures (2.7), we use that the continuous time trajectories
satisfy the identity

ϕ(t, t0, x0, v) = ϕ
(
t − s, t0 − s, x0, v(· + s)

)
(2.9)

for all t, s ∈ R, provided, of course, the solutions exist for the respective times. Here
v(· + s) : R → R

m denotes the shifted control function, i.e., v(· + s)(t) = v(t + s),
see also (2.4). This identity is illustrated in Fig. 2.2: changing ϕ(t, t0 − s, x0, v(· +
s)) to ϕ(t − s, t0 − s, x0, v(· + s)) implies a shift of the upper graph by s to the right
after which the two graphs coincide.

Identity (2.9) follows from the fact that x(t) = ϕ(t − s, t0 − s, x0, v(· + s)) satis-
fies

ẋ(t) = d

dt
ϕ
(
t − s, t0 − s, x0, v(· + s)

)

= f
(
ϕ
(
t − s, t0 − s, x0, v(· + s)

)
, v(· + s)(t − s)

) = f
(
x(t), v(t)

)
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Fig. 2.2 Illustration of equality (2.9)

and

x(t0) = ϕ
(
t0 − s, t0 − s, x0, v(· + s)

) = x0.

Hence, both functions in (2.9) satisfy (2.6) with the same control function and fulfill
the same initial condition. Consequently, they coincide by uniqueness of the solu-
tion.

Using a similar uniqueness argument one sees that the solutions ϕ satisfy the
cocycle property

ϕ(t, t0, x0, v) = ϕ
(
t, s, ϕ(s, t0, x0, v), v

)
(2.10)

for all t, s ∈ R, again provided all solutions in this equation exist for the respective
times. This is the continuous time version of the discrete time cocycle property
(2.3). Note that in (2.3) we have combined the discrete time counterparts of (2.9)
and (2.10) into one equation since by (2.2) the discrete time trajectories always start
at time 0.

With the help of (2.9) and (2.10) we can now prove the following theorem.

Theorem 2.7 Assume that (2.6) satisfies Assumption 2.4 and let x0 ∈ R
d and v ∈

L∞([t0, tN ],R
m) be given such that ϕ(tn, t0, x0, v) exists for all sampling times tn =

nT , n = 0, . . . ,N with T > 0. Define the control sequence u(·) ∈ UN with U =
L∞([0, T ],R

m) by

u(n) = v|[tn,tn+1](· + tn), n = 0, . . . ,N − 1, (2.11)

where v|[tn,tn+1] denotes the restriction of v onto the interval [tn, tn+1]. Then

ϕ(tn, t0, x0, v) = xu(n, x0) (2.12)

holds for n = 0, . . . ,N and the trajectory of the discrete time system (2.1) defined
by (2.8).
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Conversely, given u(·) ∈ UN with U = L∞([0, T ],R
m), then (2.12) holds for

n = 0, . . . ,N for any v ∈ L∞([t0, tN ],R
m) satisfying

v(t) = u(n)(t − tn) for almost all t ∈ [tn, tn+1] and all n = 0, . . . ,N − 1,

(2.13)

provided ϕ(tn, t0, x0, v) exists for all sampling times tn = nT , n = 0, . . . ,N .

Proof We prove the assertion by induction over n. For n = 0 we can use the initial
conditions to get

xu(t0, u) = x0 = ϕ(t0, t0, x0, v).

For the induction step n → n + 1 assume (2.12) for tn as induction assumption.
Then by definition of xu we get

xu(n + 1, x0) = f
(
xu(n, x0), u(n)

) = ϕ
(
T ,0, xu(n, x0), u(n)

)

= ϕ
(
T ,0, ϕ(tn, t0, x0, v), v(· + tn)

)

= ϕ
(
tn+1, tn, ϕ(tn, t0, x0, v), v

)

= ϕ(tn+1, t0, x0, v),

where we used the induction assumption in the third equality, (2.9) in the fourth
equality and (2.10) in the last equality.

The converse statement follows by observing that applying (2.11) for any v sat-
isfying (2.13) yields a sequence of control functions u(0), . . . , u(N − 1) whose el-
ements coincide with the original ones for almost all t ∈ [0, T ]. �

Remark 2.8 At first glance it may seem that the condition on v in (2.13) is not
well defined at the sampling times tn: from (2.13) for n − 1 and t = tn we obtain
v(tn) = u(n − 1)(tn − tn−1) while (2.13) for n and t = tn yields v(tn) = u(n)(0)

and, of course, the values u(n − 1)(tn − tn−1) and u(n)(0) need not coincide. How-
ever, this does not pose a problem because the set of sampling times tn in (2.13)
is finite and thus the solutions ϕ(t, t0, x0, v) do not depend on the values v(tn),
n = 0, . . . ,N −1, cf. the discussion after Assumption 2.4. Formally, this is reflected
in the words almost all in (2.13), which in particular imply that (2.13) is satisfied
regardless of how v(tn), n = 0, . . . ,N − 1 is chosen.

Theorem 2.7 shows that we can reproduce every continuous time solution at the
sampling times if we choose U = L∞([0, T ],R

m). Although this is a nice property
for our subsequent theoretical investigations, usually this is not a good choice for
practical purposes in an NMPC context: recall from the introduction that in NMPC
we want to optimize over the sequence u(0), . . . , u(N − 1) ∈ UN in order to de-
termine the feedback value μ(x(n)) = u(0) ∈ U . Using U = L∞([0, T ],R

m), each
element of this sequence and hence also μ(x(n)) is an element from a very large
infinite-dimensional function space. In practice, such a general feedback concept
is impossible to implement. Furthermore, although theoretically it is well possible
to optimize over sequences from this space, for practical algorithms we will have
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Fig. 2.3 Illustration of zero order hold: the sequence u(n) ∈ R
m on the left corresponds to the

piecewise constant control functions with ν(t) = u(n) for almost all t ∈ [tn, tn+1] on the right

to restrict ourselves to finite-dimensional sets, i.e., to subsets U ⊂ L∞([0, T ],R
m)

whose elements can be represented by finitely many parameters.
A popular way to achieve this—which is also straightforward to implement in

technical applications—is via zero order hold, where we choose U to be the space
of constant functions, which we can identify with R

m, cf. also the Examples 2.5 and
2.6. For u(n) ∈ U , the continuous time control functions v generated by (2.13) are
then piecewise constant on the sampling intervals, i.e., v(t) = u(n) for almost all
t ∈ [tn, tn+1], as illustrated in Fig. 2.3. Recall from Remark 2.8 that the fact that the
sampling intervals overlap at the sampling instants tn does not pose a problem.

Consequently, the feedback μ(x(n)) is a single control value from R
m to be used

as a constant control signal on the sampling interval [tn, tn+1]. This is also the choice
we will use in Chap. 9 on numerical methods for solving (2.6) and which is imple-
mented in our NMPC software, cf. the Appendix. In our theoretical investigations,
we will nevertheless allow for arbitrary U ⊆ L∞([0, T ],R

m).
Other possible choices of U can be obtained, e.g., by polynomials u : [0, T ] →

R
m resulting in piecewise polynomial control functions v. Yet another choice can

be obtained by multirate sampling, in which we introduce a smaller sampling period
τ = T/K for some K ∈ N, K ≥ 2 and choose U to be the space of functions which
are constant on the intervals [jτ, (j +1)τ ), j = 0, . . . ,K −1. In all cases the time n

in the discrete time system (2.1) corresponds to the time tn = nT in the continuous
time system.

Remark 2.9 The particular choice of U affects various properties of the resulting
discrete time system. For instance, in Chap. 5 we will need the sets XN which
contain all initial values x0 for which we can find a control sequence u(·) with
xu(N,x0) ∈ X0 for some given set X0. Obviously, for sampling with zero order
hold, i.e., for U = R

m, this set XN will be smaller than for multirate sampling or for
sampling with U = L∞([0, T ],R

m). For this reason, we will formulate all assump-
tions needed in the subsequent chapters directly in terms of the discrete time system
(2.1) rather than for the continuous time system (2.6), cf. also Remark 6.7.
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Fig. 2.4 Schematical sketch
of the inverted pendulum on a
cart problem: The pendulum
(with unit mass m = 1) is
attached to a cart which can
be controlled using the
acceleration force u. Via the
joint, this force will have an
effect on the dynamics of the
pendulum

When using sampled data models, the map f from (2.8) is usually not available
in exact analytical form but only as a numerical approximation. We will discuss this
issue in detail in Chap. 9.

We end this section by three further examples we will use for illustration pur-
poses later in this book.

Example 2.10 A standard example in control theory is the inverted pendulum on a
cart problem shown in Fig. 2.4.

This problem has two types of equilibria, the stable downright position and the
unstable upright position. A typical task is to stabilize one of the unstable upright
equilibria. Normalizing the mass of the pendulum to 1, the dynamics of this system
can be expressed via the system of ordinary differential equations

ẋ1(t) = x2(t),

ẋ2(t) = −g

l
sin

(
x1(t)

) − u(t) cos
(
x1(t)

) − kL

l
x2(t)

∣∣x2(t)
∣∣ − kR sgn

(
x2(t)

)
,

ẋ3(t) = x4(t),

ẋ4(t) = u(t)

with gravitational force g, length of the pendulum l, air friction constant kL and
rotational friction constant kR . Here, x1 denotes the angle of the pendulum, x2 the
angular velocity of the pendulum, x3 the position and x4 the velocity of the cart. For
this system the upright unstable equilibria are of the form ((2k + 1)π,0,0,0)� for
k ∈ Z.

Our model thus presented deviates from other variants often found in the liter-
ature, see, e.g., [2, 9], in terms of the types of friction we included. Instead of the
linear friction model often considered, here we use a nonlinear air friction term
kL

l
x2(t)|x2(t)| and a rotational discontinuous Coulomb friction term kR sgn(x2(t)).
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The air friction term captures the fact that the force induced by the air friction grows
quadratically with the speed of the pendulum mass. The Coulomb friction term is
derived from first principles using Coulomb’s law, see, e.g., [17] for an introduction
and a description of the mathematical and numerical difficulties related to discon-
tinuous friction terms. We consider this type of modeling as more appropriate in an
NMPC context, since it describes the evolution of the dynamics more accurately,
especially around the upright equilibria which we want to stabilize. For short time
intervals, these nonlinear effect may be neglected, but within the NMPC design we
have to predict the future development of the system for rather long periods, which
may render the linear friction model inappropriate.

Unfortunately, these friction terms pose problems both theoretically and numer-
ically:

ẋ2(t) = −g

l
sin

(
x1(t)

) − u(t) cos
(
x1(t)

) − kL

l
x2(t)

∣
∣x2(t)

∣
∣

︸ ︷︷ ︸
not C2

− kR sgn
(
x2(t)

)

︸ ︷︷ ︸
discontinuous

.

The rotational Coulomb friction term is discontinuous in x2(t), hence Assump-
tion 2.4, which is needed for Caratheodory’s existence and uniqueness theorem,
is not satisfied. In addition, the air friction term is only once continuously differen-
tiable in x2(t), which poses problems when using higher order numerical methods
for solving the ODE for computing the NMPC predictions, cf. the discussion before
Theorem 9.5 in Chap. 9.

Hence, for the friction terms we use smooth approximations, which allow us to
approximate the behavior of the original equation:

ẋ1(t) = x2(t), (2.14)

ẋ2(t) = −g

l
sin

(
x1(t)

) − kL

l
arctan

(
1000x2(t)

)
x2

2(t) − u(t) cos
(
x1(t)

)

− kR

(
4ax2(t)

1 + 4(ax2(t))2
+ 2 arctan(bx2(t))

π

)
, (2.15)

ẋ3(t) = x4(t), (2.16)

ẋ4(t) = u(t). (2.17)

In some examples in this book we will also use the linear variant of this system.
To obtain it, a transformation of coordinates is applied which shifts one unstable
equilibrium to the origin and then the system is linearized. Using a simplified set of
parameters including only the gravitational constant g and a linear friction constant
k, this leads to the linear control system

ẋ(t) =
⎛

⎜
⎝

0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

⎞

⎟
⎠x(t) +

⎛

⎜
⎝

0
1
0
1

⎞

⎟
⎠u(t). (2.18)

Example 2.11 In contrast to the inverted pendulum example where our task was
to stabilize one of the upright equilibria, the control task for the arm/rotor/platform
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Fig. 2.5 Graphical
illustration of the
arm/rotor/platform (ARP)
problem, see also [1,
Sect. 7.3]: The arm (A) is
driven by a motor (R) via a
flexible joint. This motor is
mounted on a platform (P )
which is again flexibly
connected to a fixed base (B).
Moreover, we assume that
there is no vertical force and
that the rotational motion of
the platform is not present

(ARP) model illustrated in Fig. 2.5 (the meaning of the different elements A, R, P
and B in the model is indicated in the description of this figure) is a digital redesign
problem, see [4, 12].

Such problems consist of two separate steps: First, a continuous time control sig-
nal v(t) derived from a continuous time feedback law is designed which—in the
case considered here—solves a tracking problem. Since continuous time control
laws may perform poorly under sampling, in a second step, the trajectory corre-
sponding to v(t) is used as a reference function to compute a digital control using
NMPC such that the resulting sampled data closed-loop mimics the behavior of the
continuous time reference trajectory. Compared to a direct formulation of a tracking
problem, this approach is advantageous since the resulting NMPC problem is easier
to solve. Here, we describe the model and explain the derivation of continuous time
control function v(t). Numerical results for the corresponding NMPC controller are
given in Example 7.21 in Chap. 7.

Using the Lagrange formalism and a change of coordinates detailed in [1,
Sect. 7.3], the ARP model can be described by the differential equation system

ẋ1(t) = x2(t) + x6(t)x3(t), (2.19)

ẋ2(t) = − k1

M
x1(t) − b1

M
x2(t) + x6(t)x4(t) − mr

M2 b1x6(t), (2.20)

ẋ3(t) = −x6(t)x1(t) + x4(t), (2.21)

ẋ4(t) = −x6(t)x2(t) − k1

M
x3(t) − b1

M
x4(t) + mr

M2 k1, (2.22)

ẋ5(t) = x6(t), (2.23)

ẋ6(t) = −a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − p1x1(t) − p2x2(t),

(2.24)

ẋ7(t) = x8(t), (2.25)

ẋ8(t) = a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t) + 1

J
v(t) (2.26)
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where

a1 = k3M

MI − (mr)2
, a4 = k3

J
, p1 = mr

MI − (mr)2
k1,

a2 = b3M
2 − b1(mr)2

M[MI − (mr)2] , a5 = b3

J
, p2 = mr

MI − (mr)2
b1.

a3 = b3M

MI − (mr)2
, a6 = b4

J
,

Here, M represents the total mass of arm, rotor and platform and m is the mass of
arm, r denotes the distance from the A/R joint to the arm center of mass and I , J

and D are the moment of inertia of the arm about the A/R joint, of the rotor and of
the platform, respectively. Moreover, k1, k2 and k3 denote the translational spring
constant of the P/B connection as well as the rotational spring constants of the P/B
connection and the A/R joint. Last, b1, b2, b3 and b4 describe the translational fric-
tion coefficient of P/B connection as well as the rotational friction coefficients of the
P/B, A/R and R/P connection, respectively. The coordinates x1 and x2 correspond
to the (transformed) x position of P and its velocity of the platform in direction x

whereas x3 and x4 represent the (transformed) y position of P and the respective
velocity. The remaining coordinates x5 and x7 denote the angles θ and α and the
coordinates x6 and x8 the corresponding angular velocities.

Our design goal is to regulate the system such that the position of the arm relative
to the platform, i.e. the angle x5, tracks a given reference signal. Note that this task
is not simple since both connections of the rotor are flexible. Here, we assume that
the reference signal and its derivatives are known and available to the controller.
Moreover, we assume that the relative positions and velocities x5, x6, x7 and x8 are
supplied to the controller.

In order to derive the continuous time feedback, we follow the backstepping ap-
proach from [1] using the output

ζ(t) = x5(t) − a3

a1 − a2a3

[
x6(t) − a3x7(t)

]
. (2.27)

The output has relative degree 4, that is, the control v(t) appears explicitly within
the fourth derivative of ζ(t). Expressing ζ (4)(t) by the known data, we obtain the
continuous time input signal2

v(t) = J

a2
1 + a3[p] · [[ ∂F (x6(t))

∂x6(t)
] · [η(t)] + [ ∂G(x6(t))

∂x6(t)
]]

(
−(−a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)

])

(
−a2

1 + a1a2(a2 − a3) + (
a3[p] · [F (

x6(t)
) − (a1 + a2a3)[p]])

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)

] +
[
∂G(x6(t))

∂x6(t)

]]

2For details of the derivation see [13, Sect. 7.3].
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+ 2a3[p]
[
∂F (x6(t))

∂x6(t)

]
· [[F (

x6(t)
)] · [η(t)

] + [
G

(
x6(t)

)]])

− (
a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t)

)

(
a2

1 + a3

(
a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)

]

+
[
∂G(x6(t))

∂x6(t)

]]
− a1(a2 − a3)

))

− (
a3[p] · [F (

x6(t)
)] − a1[p]) · [F (

x6(t)
)] · [[F (

x6(t)
)] · [η(t)

]

+ [
G

(
x6(t)

)]]

− (−a1
(
x6(t) − x8(t)

) − [p] · [[F (
x6(t)

)] · [η(t)
] + [

G
(
x6(t)

)]])

(
−a1(a2 − a3) + a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)

] +
[
∂G(x6(t))

∂x6(t)

]])

+ (a1 − a2a3)v̂(t)

)
(2.28)

where we used the abbreviations
[
η(t)

] := (
x1(t) x2(t) x3(t) x4(t)

)T
,

[
χ(t)

] := (
x5(t) x6(t) x7(t) x8(t)

)T
,

[
F

(
x6(t)

)] :=
⎛

⎜
⎝

0 1 x6(t) 0
− k1

M
− b1

M
0 x6(t)

−x6(t) 0 0 1
0 −x6(t) − k1

M
− b1

M

⎞

⎟
⎠ ,

[
G

(
x6(t)

)] :=
⎛

⎜
⎝

0
−mrb1

M2 x6(t)

0
mrk1
M2

⎞

⎟
⎠ ,

[A] :=
⎛

⎜
⎝

0 1 0 0
−a1 −a2 a1 a3

0 0 0 1
a4 a5 −a4 −(a5 + a6)

⎞

⎟
⎠ ,

[E] :=
⎛

⎜
⎝

0 0
−p1 −p2

0 0
0 0

⎞

⎟
⎠ , [B] :=

⎛

⎜
⎝

0
0
0
1
J

⎞

⎟
⎠

as well as the row vector [p] := (p1 p2 0 0). In (2.28), we added the function v̂(t),
which we will now use as the new input. Given a desired reference ζref(·) for the
output (2.27), we can track this reference by setting v̂ in (2.28) as

v̂(t) := ζ
(4)
ref (t) − c3

(
ζ (3)(t) − ζ

(3)
ref (t)

) − c2
(
ζ̈ (t) − ζ̈ref(t)

)

− c1
(
ζ̇ (t) − ζ̇ref(t)

) − c0
(
ζ(t) − ζref(t)

)
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with design parameters ci ∈ R, ci ≥ 0. These parameters are degrees of freedom
within the design of the continuous time feedback which can be used as tuning
parameters, e.g., to reduce the transient time or the overshoot.

Example 2.12 Another class of systems fitting our framework, which actually goes
beyond the setting we used for introducing sampled data systems, are infinite-
dimensional systems induced by partial differential equations (PDEs). In this ex-
ample, we slightly change our notation in order to be consistent with the usual PDE
notation.

In the following controlled parabolic PDE (2.29) the solution y(t, x) with y :
R × 
 → R depends on time t as well as on a one-dimensional state variable x ∈

 = (0,L) for a parameter L > 0. Thus, the state of the system at each time t is
now a continuous function y(t, ·) : 
 → R and x becomes an independent variable.
The control v in this example is a so-called distributed control, i.e., a measurable
function v : R × 
 → R. The evolution of the state is defined by the equation

yt (t, x) = θyxx(t, x) − yx(t, x) + ρ
(
y(t, x) − y(t, x)3) + v(t, x) (2.29)

for x ∈ 
 and t ≥ 0 together with the initial condition y(0, x) = y0(x) and the
boundary conditions y(t,0) = y(0,L) = 0.

Here yt and yx denote the partial derivatives with respect to t and x, respectively
and yxx denotes the second partial derivative with respect to x. The parameters θ

and ρ are positive constants. Of course, in order to ensure that (2.29) is well defined,
we need to interpret this equation in an appropriate weak sense and make sure that
for the chosen class of control functions a solution to (2.29) exists in appropriate
function spaces. For details on these issues we refer to, e.g., [10] or [18]. As we
will see later in Example 6.27, for suitable values of the parameters θ and ρ the
uncontrolled equation, i.e., (2.29) with v ≡ 0, has an unstable equilibrium y∗ ≡ 0
which can be stabilized by NMPC.

Using the letter z for the state of the discrete time system associated to the sam-
pled data solution of (2.29), we can abstractly write this system as

z+ = f (z,u)

with z and z+ being continuous functions from 
 to R. The function f maps y0 = z

to the solution y(T , x) of (2.29) at the sampling time T using the measurable control
function u = v : [0, T ] × 
 → R. Thus, it maps continuous functions to continuous
functions; again we omit the exact details of the respective functions spaces.

As in the ordinary differential equation case, we can restrict ourselves to the zero
order hold situation, i.e., to control functions u(t, x) which are constant in t ∈ [0, T ].
The corresponding control functions v generated via (2.11) are again constant in t on
each sampling interval [tn, tn+1). Note, however, that in our distributed control con-
text both u and v are still arbitrary measurable—i.e., in particular non-constant—
functions in x.

For sampled data systems, the nominal closed-loop system (2.5) corresponds to
the closed-loop sampled data system

ẋ(t) = fc

(
x(t),μ

(
x(tn)

)
(t − tn)

)
, t ∈ [tn, tn+1), n = 0,1,2, . . . (2.30)
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whose solution with initial value x0 ∈ X we denote by ϕ(t, t0, x0,μ). Note that
the argument “(t − tn)” of μ(x(tn)) can be dropped in case of sampling with zero
order hold when—as usual—we interpret the control value μ(x(tn)) ∈ U = R

m as a
constant control function.

2.3 Stability of Discrete Time Systems

In the introduction, we already specified the main goal of model predictive control,
namely to control the state x(n) of the system toward a reference trajectory xref(n)

and then keep it close to this reference. In this section we formalize what we mean by
“toward” and “close to” using concepts from stability theory of nonlinear systems.

We first consider the case where xref is constant, i.e., where xref ≡ x∗ holds for
some x∗ ∈ X. We assume that the states x(n) are generated by a difference equation
of the form

x+ = g(x) (2.31)

for a not necessarily continuous map g : X → X via the usual iteration x(n + 1) =
g(x(n)). As before, we write x(n, x0) for the trajectory satisfying the initial condi-
tion x(0, x0) = x0 ∈ X. Allowing g to be discontinuous is important for our NMPC
application, because g will later represent the nominal closed-loop system (2.5) con-
trolled by the NMPC-feedback law μ, i.e., g(x) = f (x,μ(x)). Since μ is obtained
as an outcome of an optimization algorithm, in general we cannot expect μ to be
continuous and thus g will in general be discontinuous, too.

Nonlinear stability properties can be expressed conveniently via so-called com-
parison functions, which were first introduced by Hahn in 1967 [5] and popularized
in nonlinear control theory during the 1990s by Sontag, particularly in the context
of input-to-state stability [14]. Although we mainly deal with discrete time systems,
we stick to the usual continuous time definition of these functions using the notation
R

+
0 = [0,∞).

Definition 2.13 We define the following classes of comparison functions:

K := {
α : R

+
0 → R

+
0

∣∣ α is continuous & strictly increasing with α(0) = 0
}
,

K∞ := {
α : R

+
0 → R

+
0

∣∣ α ∈ K, α is unbounded
}
,

L :=
{
δ : R

+
0 → R

+
0

∣∣∣ δ is continuous & strictly decreasing with lim
t→∞ δ(t) = 0

}
,

K L := {
β : R

+
0 × R

+
0 → R

+
0

∣∣ β is continuous, β(·, t) ∈ K, β(r, ·) ∈ L
}
.

The graph of a typical function β ∈ K L is shown in Fig. 2.6.
Using this function, we can now introduce the concept of asymptotic stability.

Here, for arbitrary x1, x2 ∈ X we denote the distance from x1 to x2 by

|x1|x2 := dX(x1, x2).
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Fig. 2.6 Illustration of a typical class K L function

Furthermore, we use the ball

Bη(x∗) := {
x ∈ X

∣∣ |x|x∗ < η
}

and we say that a set Y ⊆ X is forward invariant for (2.31) if g(x) ∈ Y holds for all
x ∈ Y .

Definition 2.14 Let x∗ ∈ X be an equilibrium for (2.31), i.e., g(x∗) = x∗. Then we
say that x∗ is locally asymptotically stable if there exist η > 0 and a function β ∈ K L
such that the inequality

∣∣x(n, x0)
∣∣
x∗ ≤ β

(|x0|x∗ , n
)

(2.32)

holds for all x0 ∈ Bη(x∗) and all n ∈ N0.
We say that x∗ is asymptotically stable on a forward invariant set Y with x∗ ∈ Y

if there exists β ∈ K L such that (2.32) holds for all x0 ∈ Y and all n ∈ N0 and we
say that x∗ is globally asymptotically stable if x∗ is asymptotically stable on Y = X.

If one of these properties holds then β is called attraction rate.

Note that asymptotic stability on a forward invariant set Y implies local asymp-
totic stability if Y contains a ball Bη(x∗). However, we do not necessarily require
this property.

Asymptotic stability thus defined consists of two main ingredients.

(i) The smaller the initial distance from x0 to x∗ is, the smaller the distance from
x(n) to x∗ becomes for all future n, or formally: for each ε > 0 there exists δ > 0
such that |x(n, x0)|x∗ ≤ ε holds for all n ∈ N0 and all x0 ∈ Y (or x0 ∈ Bη(x∗))
with |x0|x∗ ≤ δ.

This fact is easily seen by choosing δ so small that β(δ,0) ≤ ε holds, which
is possible since β(·,0) ∈ K. Since β is decreasing in its second argument, for
|x0|x∗ ≤ δ from (2.32) we obtain

∣∣x(n, x0)
∣∣
x∗ ≤ β

(|x0|x∗, n
) ≤ β

(|x0|x∗,0
) ≤ β(δ,0) ≤ ε.
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Fig. 2.7 Sketch of
asymptotic stability (left) as
opposed to practical
asymptotic stability (right)

(ii) As the system evolves, the distance from x(n, x0) to x∗ becomes arbitrarily
small, or formally: for each ε > 0 and each R > 0 there exists N > 0 such
that |x(n, x0)|x∗ ≤ ε holds for all n ≥ N and all x0 ∈ Y (or x0 ∈ Bη(x∗)) with
|x0|x∗ ≤ R. This property easily follows from (2.32) by choosing N > 0 with
β(R,N) ≤ ε and exploiting the monotonicity properties of β .

These two properties are known as (i) stability (in the sense of Lyapunov) and (ii)
attraction. In the literature, asymptotic stability is often defined via these two prop-
erties. In fact, for continuous time (and continuous) systems (i) and (ii) are known to
be equivalent to the continuous time counterpart of Definition 2.14, cf. [8, Sect. 3].
We conjecture that the arguments in this reference can be modified in order to prove
that equivalence also holds for our discontinuous discrete time setting.

Asymptotic stability includes the desired properties of the NMPC closed loop
described earlier: whenever we are already close to the reference equilibrium we
want to stay close; otherwise we want to move toward the equilibrium.

Asymptotic stability also includes that eventually the distance of the closed-loop
solution to the equilibrium x∗ becomes arbitrarily small. Occasionally, this may
be too demanding. In the following chapters, this is for instance the case if the
system is subject to perturbations or modeling errors, cf. Sects. 8.5–8.9 or if in
NMPC without stabilizing terminal constraints the system cannot be controlled to
x∗ sufficiently fast, cf. Sect. 6.7. In this case, one can relax the asymptotic stability
definition to practical asymptotic stability as follows. Here we only consider the
case of asymptotic stability on a forward invariant set Y .

Definition 2.15 Let Y be a forward invariant set and let P ⊂ Y be a subset of Y .
Then we say that a point x∗ ∈ P is P -practically asymptotically stable on Y if there
exists β ∈ K L such that (2.32) holds for all x0 ∈ Y and all n ∈ N0 with x(n, x0) /∈ P .

Figure 2.7 illustrates practical asymptotic stability (on the right) as opposed to
“usual” asymptotic stability (on the left).

This definition is typically used with P contained in a small ball around the
equilibrium, i.e., P ⊆ Bδ(x∗) for some small δ > 0. In this case one obtains the
estimate

∣∣x(n, x0)
∣
∣
x∗ ≤ max

{
β
(|x0|x∗ , n

)
, δ

}
(2.33)

for all x0 ∈ Y and all n ∈ N0, i.e., the system behaves like an asymptotically stable
system until it reaches the ball Bδ(x∗). Note that x∗ does not need to be an equilib-
rium in Definition 2.15.
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For general non-constant reference functions xref : N0 → X we can easily extend
Definition 2.14 if we take into account that the objects under consideration become
time varying in two ways: (i) the distance under consideration varies with n and
(ii) the system (2.31) under consideration varies with n. While (i) is immediate, (ii)
follows from the fact that with time varying reference also the feedback law μ is
time varying, i.e., we obtain a feedback law of the type μ(n,x(n)). Consequently,
we now need to consider systems

x+ = g(n, x) (2.34)

with g of the form g(n, x) = f (x,μ(n, x)). Furthermore, we now have to take the
initial time n0 into account: while the solutions of (2.31) look the same for all initial
times n0 (which is why we only considered n0 = 0) now we need to keep track of
this value. To this end, by x(n,n0, x0) we denote the solution of (2.34) with initial
condition x(n0, n0, x0) = x0 at time n0. The appropriate modification of Defini-
tion 2.14 then looks as follows. Here we say that a time-dependent family of sets
Y(n) ⊆ X, n ∈ N0 is forward invariant if g(n, x) ∈ Y(n + 1) holds for all n ∈ N0
and all x ∈ Y(n).

Definition 2.16 Let xref : N0 → X be a trajectory for (2.31), i.e., xref(n + 1) =
g(xref(n)) for all n ∈ N0. Then we say that xref is locally uniformly asymptotically
stable if there exists η > 0 and a function β ∈ K L such that the inequality

∣∣x(n,n0, x0)
∣∣
xref(n)

≤ β
(|x0|xref(n0)

, n − n0
)

(2.35)

holds for all x0 ∈ Bη(x
ref(n0)) and all n0, n ∈ N0 with n ≥ n0.

We say that x∗ is uniformly asymptotically stable on a forward invariant family
of sets Y(n) with xref(n) ∈ Y(n) if there exists β ∈ K L such that (2.35) holds for all
n0, n ∈ N0 with n ≥ n0 and all x0 ∈ Y(n0) and we say that x∗ is globally uniformly
asymptotically stable if x∗ is asymptotically stable on Y(n) = X for all n0 ∈ N0.

If one of these properties hold then β is called (uniform) attraction rate.

The term “uniform” describes the fact that the bound β(|x0|xref(n0)
, n − n0) only

depends on the elapsed time n − n0 but not on the initial time n0. If this were the
case, i.e., if we needed different β for different initial times n0, then we would call
the asymptotic stability “nonuniform”. For a comprehensive discussion of nonuni-
form stability notions and their representation via time-dependent K L functions we
refer to [3].

As in the time-invariant case, asymptotic stability on a forward invariant fam-
ily of sets Y(n) implies local asymptotic stability if each Y(n) contains a ball

Bη(x
ref(n)). Again, we do not necessarily require this property.

The time varying counterpart of P -practical asymptotic stability is defined as
follows.

Definition 2.17 Let Y(n) be a forward invariant family of sets and let P(n) ⊂ Y(n)

be subsets of Y(n). Then we say that a reference trajectory xref with xref(n) ∈ P(n)

is P -practically uniformly asymptotically stable on Y(n) if there exists β ∈ K L such
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that (2.35) holds for all x0 ∈ Y(n0) and all n0, n ∈ N0 with n ≥ n0 and x(n,n0, x0) /∈
P(n).

Analogous to the time-invariant case, this definition is typically used with
P(n) ⊆ Bδ(x

ref(n)) for some small value δ > 0, which then yields
∣∣x(n,n0, x0)

∣∣
xref(n)

≤ max
{
β
(|x0|xref(n0)

, n − n0
)
, δ

}
. (2.36)

In order to verify that our NMPC controller achieves asymptotic stability we
will utilize the concept of Lyapunov functions. For constant reference xref ≡ x∗ ∈ X

these functions are defined as follows.

Definition 2.18 Consider a system (2.31), a point x∗ ∈ X and let S ⊆ X be a subset
of the state space. A function V : S → R

+
0 is called a Lyapunov function on S if the

following conditions are satisfied:

(i) There exist functions α1, α2 ∈ K∞ such that

α1
(|x|x∗

) ≤ V (x) ≤ α2
(|x|x∗

)
(2.37)

holds for all x ∈ S.
(ii) There exists a function αV ∈ K such that

V
(
g(x)

) ≤ V (x) − αV

(|x|x∗
)

(2.38)

holds for all x ∈ S with g(x) ∈ S.

The following theorem shows that the existence of a Lyapunov function ensures
asymptotic stability.

Theorem 2.19 Let x∗ be an equilibrium of (2.31) and assume there exists a Lya-
punov function V on S. If S contains a ball Bν(x∗) with g(x) ∈ S for all x ∈ Bν(x∗)
then x∗ is locally asymptotically stable with η = α−1

2 ◦ α1(ν). If S = Y holds for
some forward invariant set Y ⊆ X containing x∗ then x∗ is asymptotically stable on
Y . If S = X holds then x∗ is globally asymptotically stable.

Proof The idea of the proof lies in showing that by (2.38) the function V (x(n, x0))

is strictly decreasing in n and converges to 0. Then by (2.37) we can conclude that
x(n, x0) converges to x∗. The function β from Definition 2.14 will be constructed
from α1, α2 and αV . In order to simplify the notation, throughout the proof we write
|x| instead of |x|x∗ .

First, if S is not forward invariant, define the value γ := α1(ν) and the set S̃ :=
{x ∈ X |V (x) < γ }. Then from (2.37) we get

x ∈ S̃ ⇒ α1
(|x|) ≤ V (x) < γ ⇒ |x| < α−1

1 (γ ) = ν ⇒ x ∈ Bν(x∗),

observing that each α ∈ K∞ is invertible with α−1 ∈ K∞.
Hence, for each x ∈ S̃ Inequality (2.38) applies and consequently V (g(x)) ≤

V (x) < γ implying g(x) ∈ S̃. If S = Y for some forward invariant set Y ⊆ X we
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define S̃ := S. With these definitions, in both cases the set S̃ becomes forward in-
variant.

Now we define α′
V := αV ◦ α−1

2 . Note that concatenations of K-functions are
again in K, hence α′

V ∈ K. Since |x| ≥ α−1
2 (V (x)), using monotonicity of αV this

definition implies

αV

(|x|) ≥ αV ◦ α−1
2

(
V (x)

) = α′
V

(
V (x)

)
.

Hence, along a trajectory x(n, x0) with x0 ∈ S̃, from (2.38) we get the inequality

V
(
x(n + 1, x0)

) ≤ V
(
x(n, x0)

) − αV

(∣∣x(n, x0)
∣∣)

≤ V
(
x(n, x0)

) − α′
V

(
V

(
x(n, x0)

))
. (2.39)

For the construction of β we need the last expression in (2.39) to be strictly
increasing in V (x(n, x0)). To this end we define

α̃V (r) := min
s∈[0,r]

{
α′

V (s) + (r − s)/2
}
.

Straightforward computations show that this function satisfies r2 − α̃V (r2) > r1 −
α̃V (r1) ≥ 0 for all r2 > r1 ≥ 0 and min{α′

V (r/2), r/4} ≤ α̃V (r) ≤ α′
V (r) for all

r ≥ 0. In particular, (2.39) remains valid and we get the desired monotonicity when
α′

V is replaced by α̃V .
We inductively define a function β1 : R

+
0 × N0 → R

+
0 via

β1(r,0) := r, β1(r, n + 1) = β1(r, n) − α̃V

(
β1(r, n)

)
. (2.40)

By induction over n using the properties of α̃V (r) and Inequality (2.39) one easily
verifies the following inequalities:

β1(r2, n) > β1(r1, n) ≥ 0 for all r2 > r1 ≥ 0 and all n ∈ N0, (2.41)

β1(r, n1) > β1(r, n2) > 0 for all n2 > n1 ≥ 0 and all r > 0, (2.42)

V
(
x(n, x0)

) ≤ β1
(
V (x0), n

)
for all n ∈ N0 and all x0 ∈ S̃. (2.43)

From (2.42) it follows that β1(r, n) is monotone decreasing in n and by (2.41)
it is bounded from below by 0. Hence, for each r ≥ 0 the limit β∞

1 (r) =
limn→∞ β1(r, n) exists. We claim that β∞

1 (r) = 0 holds for all r . Indeed, con-
vergence implies β1(r, n) − β1(r, n + 1) → 0 as n → ∞, which together with
(2.40) yields α̃V (β1(r, n)) → 0. On the other hand, since α̃V is continuous, we
get α̃V (β1(r, n)) → α̃V (β∞

1 (r)). This implies

α̃V

(
β∞

1 (r)
) = 0,

which, because of α̃V (r) ≥ min{α′
V (r/2), r/4} and α′

V ∈ K, is only possible if
β∞

1 (r) = 0.
Consequently, β1(r, n) has all properties of a K L function except that it is only

defined for n ∈ N0. Defining the linear interpolation

β2(r, t) := (n + 1 − t)β1(r, n) + (t − n)β1(r, n + 1)
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for t ∈ [n,n + 1) and n ∈ N0, we obtain a function β2 ∈ K L which coincides with
β1 for t = n ∈ N0. Finally, setting

β(r, t) := α−1
1 ◦ β2

(
α2(r), t

)

we can use (2.43) in order to obtain
∣∣x(n, x0)

∣∣ ≤ α−1
1

(
V

(
x(n, x0)

)) ≤ α−1
1 ◦ β1

(
V (x0), n

)

= α−1
1 ◦ β2

(
V (x0), n

) ≤ α−1
1 ◦ β2

(
α2

(|x0|
)
, n

) = β
(|x0|, n

)
,

for all x0 ∈ S̃ and all n ∈ N0. This is the desired Inequality (2.32). If S̃ = S = Y

this shows the claimed asymptotic stability on Y and global asymptotic stability
if Y = X. If S̃ 
= S, then in order to satisfy the local version of Definition 2.14 it
remains to show that x ∈ Bη(x∗) implies x ∈ S̃. Since by definition of η and γ we
have η = α−1

2 (γ ), we get

x ∈ Bη(x∗) ⇒ |x| < η = α−1
2 (γ ) ⇒ V (x) ≤ α2

(|x|) < γ ⇒ x ∈ S̃.

This finishes the proof. �

Likewise, P -practical asymptotic stability can be ensured by a suitable Lyapunov
function condition provided the set P is forward invariant.

Theorem 2.20 Consider forward invariant sets Y and P ⊂ Y and a point x∗ ∈ P .
If there exists a Lyapunov function V on S = Y \ P then x∗ is P -practically asymp-
totically stable on Y .

Proof The same construction of β as in the proof of Theorem 2.19 yields
∣∣x(n, x0)

∣∣
x∗ ≤ β

(|x|x∗, n
)

(2.32)

for all n = 0, . . . , n∗ − 1, where n∗ ∈ N0 is minimal with x(n∗, x0) ∈ P . This fol-
lows with the same arguments as in the proof of Theorem 2.19 by restricting the
times considered in (2.39) and (2.43) to n = 0, . . . , n∗ − 2 and n = 0, . . . , n∗ − 1,
respectively.

Since forward invariance of P ensures x(n, x0) ∈ P for all n ≥ n∗, the times n

for which x(n, x0) /∈ P holds are exactly n = 0, . . . , n∗ − 1. Since these are exactly
the times at which (2.32) is required, this yields the desired P -practical asymptotic
stability. �

In case of a time varying reference xref we need to use the time varying asymp-
totic stability from Definition 2.16. The corresponding Lyapunov function concept
is as follows.

Definition 2.21 Consider a system (2.34), reference points xref(n), subsets of the
state space S(n) ⊆ X and define S := {(n, x) |n ∈ N0, x ∈ S(n)}. A function V :

S → R
+
0 is called a uniform time varying Lyapunov function on S(n) if the following

conditions are satisfied:
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(i) There exist functions α1, α2 ∈ K∞ such that

α1
(|x|xref(n)

) ≤ V (n, x) ≤ α2
(|x|xref(n)

)
(2.44)

holds for all n ∈ N0 and all x ∈ S(n).
(ii) There exists a function αV ∈ K such that

V
(
n + 1, g(n, x)

) ≤ V (n, x) − αV

(|x|xref(n)

)
(2.45)

holds for all n ∈ N0 and all x ∈ S(n) with g(n, x) ∈ S(n + 1).

Theorem 2.22 Let xref be a trajectory of (2.34) and assume there exists a uniform
time varying Lyapunov function V on S(n). If each S(n) contains a ball Bν(x

ref(n))

with g(n, x) ∈ S(n + 1) for all x ∈ Bν(x
ref(n)) then xref is locally asymptotically

stable with η = α−1
2 ◦ α1(ν). If the family of sets S(n) is forward invariant in the

sense stated before Definition 2.16, then xref is asymptotically stable on S(n). If
S(n) = X holds for all n ∈ N0 then xref is globally asymptotically stable.

Proof The proof is analogous to the proof of Theorem 2.19 with the obvious modi-
fications to take n ∈ N0 into account. �

Indeed, the necessary modification in the proof are straightforward because the
time varying Lyapunov function is uniform, i.e., α1, α2 and αV do not depend on n.
For the more involved nonuniform case we again refer to [3].

The P -practical version of this statement is provided by the following theorem in
which we assume forward invariance of the sets P(n). Observe that here xref does
not need to be a trajectory of the system (2.34).

Theorem 2.23 Consider forward invariant families of sets Y(n) and P(n) ⊂ Y(n),
n ∈ N0, and reference points xref(n) ∈ P(n). If there exists a uniform time varying
Lyapunov function V on S(n) = Y(n) \ P(n) then xref is P -practically asymptoti-
cally stable on Y(n).

Proof The proof is analogous to the proof of Theorem 2.20 with the obvious modi-
fications. �

2.4 Stability of Sampled Data Systems

We now investigate the special case in which (2.31) represents the nominal closed-
loop system (2.5) with f obtained from a sampled data system via (2.8). In this case,
the solutions x(n, x0) of (2.31) and the solutions ϕ(tn, t0, x0,μ) of the sampled data
closed-loop system (2.30) satisfy the identity

x(n, x0) = ϕ(tn, t0, x0,μ) (2.46)



36 2 Discrete Time and Sampled Data Systems

for all n ∈ N0. This implies that the stability criterion from Definition 2.14 (and anal-
ogous for the other stability definitions) only yields inequalities for the continuous
state of the system at the sampling times tn, i.e.,

∣∣ϕ(tn, t0, x0,μ)
∣∣
x∗ ≤ β

(|x0|x∗, n
)

for all n = 0,1,2, . . . (2.47)

for a suitable β ∈ K L. However, for a continuous time system it is in general de-
sirable to ensure the existence of β ∈ K L such that the continuous time asymptotic
stability property

∣
∣ϕ(t, t0, x0,μ)

∣
∣
x∗ ≤ β

(|x0|x∗, t
)

for all t ≥ 0 (2.48)

holds.
In the remainder of this chapter we will show that under a reasonable additional

assumption (2.47) implies the existence of β ∈ K L such that (2.48) holds. For sim-
plicity, we restrict ourselves to local asymptotic stability and to the case of time-
invariant reference xref ≡ x∗. The arguments can be modified to cover the other
cases, as well.

The necessary additional condition is the following boundedness assumption on
the solutions in between two sampling instants.

Definition 2.24 Consider a sampled data closed-loop system (2.30) with sampling
period T > 0. If there exists a function γ ∈ K and a constant η > 0 such that for all
x ∈ X with |x|x∗ ≤ η, the solutions of (2.30) exist on [0, T ] and satisfy

∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ γ

(|x|x∗
)

for all t ∈ [0, T ] then the solutions of (2.30) are called uniformly bounded over T .

Effectively, this condition demands that in between two sampling times tn and
tn+1 the continuous time solution does not deviate too much from the solution at
the sampling time tn. Sufficient conditions for this property formulated directly in
terms of the vector field fc in (2.30) can be found in [11, Lemma 3]. A sufficient
condition in our NMPC setting is discussed in Remark 4.13.

For the subsequent analysis we introduce the following class of K L functions,
which will allow us to deal with the inter sampling behavior of the continuous time
solution.

Definition 2.25 A function β ∈ K L is called uniformly incrementally bounded if
there exists P > 0 such that β(r, k) ≤ Pβ(r, k + 1) holds for all r ≥ 0 and all k ∈ N.

Uniformly incrementally bounded K L functions exhibit a nice bounding prop-
erty compared to standard K L functions which we will use the proof of Theo-
rem 2.27. Before, we show that any K L function β—like the one in (2.47)—can
be bounded from above by a uniformly incrementally bounded K L function.



2.4 Stability of Sampled Data Systems 37

Lemma 2.26 For any β ∈ K L the function

β̃(r, t) := max
τ∈[0,t]

2−τ β(r, t − τ)

is a uniformly incrementally bounded K L function with β(r, t) ≤ β̃(r, t) for all r ≥ 0
and all t ≥ 0 and P = 2.

Proof The inequality β ≤ β̃ follows immediately from the definition. Uniform in-
cremental boundedness with P = 2 follows from the inequality

β̃(r, t) = max
τ∈[0,t] 2−τ β(r, t − τ) = max

τ∈[1,t+1] 21−τ β(r, t − τ + 1)

= 2 max
τ∈[1,t+1] 2−τβ(r, t − τ + 1) ≤ 2 max

τ∈[0,t+1] 2−τ β(r, t − τ + 1)

= 2β̃(r, t + 1).

It remains to show that β̃ ∈ K L.
Since β ∈ K L it follows that β̃ is continuous and β̃(0, t) = 0 for any t ≥ 0. For

any r2 > r1 ≥ 0, β ∈ K L implies 2−τ β(r2, t − τ) > 2−τ β(r1, t − τ). This shows
that β̃(r2, t) > β̃(r1, t) and hence β̃(·, t) ∈ K.

Next we show that for any fixed r > 0 the function t �→ β̃(r, t) is strictly decreas-
ing to 0. To this end, in the following we use that for all t ≥ s ≥ q ≥ 0 and all r ≥ 0
the inequality

max
τ∈[q,s] 2−τ β(r, t − τ) ≤ 2−qβ(r, t − s)

holds. In order to show the strict decrease property for r > 0, let t2 > t1 ≥ 0. Defin-
ing d := t2 − t1 we obtain

β̃(r, t2) = max
τ∈[0,t2]

2−τ β(r, t2 − τ)

= max
{

max
τ∈[0,d/2]

2−τ β(r, t2 − τ), max
τ∈[d/2,d]

2−τ β(r, t2 − τ),

max
τ∈[d,t2]

2−τβ(r, t2 − τ)
}

≤ max
{
β(r, t2 − d/2),2−d/2β(r, t2 − d), max

τ∈[0,t1]
2−τ−dβ(r, t1 − τ)

}

= max
{
β(r, t1 + d/2),2−d/2β(r, t1),2−d β̃(r, t1)

}
.

Now the strict monotonicity β̃(r, t2) < β̃(r, t1) follows since β(r, t1 + d/2) <

β(r, t1) ≤ β̃(r, t1), 2−d/2β(r, t1) < β(r, t1) ≤ β̃(r, t1) and 2−d β̃(r, t1) < β̃(r, t1).
Finally, we prove limt→∞ β̃(r, t) = 0 for any r > 0. Since

β̃(r, t) ≤ max
{

max
τ∈[0,t/2] 2−τ β(r, t − τ), max

τ∈[t/2,t] 2−τ β(r, t − τ)
}

≤ max
{
β(r, t/2),2−t/2β(r,0)

} → 0 as t → ∞
the assertion follows. �

Now, we are ready to prove the final stability result.
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Theorem 2.27 Consider the sampled data closed-loop system (2.30) with sampling
period T > 0 and the corresponding discrete time closed-loop system (2.5) with f

from (2.8). Then (2.30) is locally asymptotically stable, i.e., there exists η > 0 and
β ∈ K L such that (2.48) holds for all x ∈ Bη(x∗), if and only if (2.5) is locally
asymptotically stable and the solutions of (2.30) are uniformly bounded over T .

Proof If (2.30) is locally asymptotically stable with some β ∈ K L, then by (2.46)
it immediately follows that the discrete time system (2.5) is asymptotically stable
with β(r, k) = β(r, kT ) and that the solutions of (2.30) are uniformly bounded with
γ (r) = β(r,0).

Conversely, assume that (2.5) is locally asymptotically stable and that the solu-
tions of (2.30) are uniformly bounded over T . Denote the values η > 0 from Defini-
tion 2.14 and Definition 2.24 by ηs and ηb , respectively. These two properties imply
that there exist β ∈ K L and γ ∈ K∞ such that

|x|x∗ ≤ ηs �⇒ ∣∣ϕ(kT ,0, x,μ)
∣∣
x∗ ≤ β

(|x|x∗, k
)

for all k ≥ 0, (2.49)

|x|x∗ ≤ ηb �⇒ ∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ γ

(|x|x∗
)

for all t ∈ [0, T ]. (2.50)

In order to show the assertion we have to construct η > 0 and β ∈ K L with

|x|x∗ ≤ η �⇒ ∣
∣ϕ(t,0, x,μ)

∣
∣
x∗ ≤ β

(|x|x∗, t
)

for all t ≥ 0. (2.51)

Define γ0(r) := β(r,0) and let η = min{ηs, γ −1
0 (ηb)}. This definition implies

β(η,0) ≤ ηb and η ≤ ηs . In what follows we consider arbitrary x ∈ X with |x|x∗ ≤
η. For these x, (2.49) and η ≤ ηs yield

∣∣ϕ(kT ,0, x,μ)
∣∣
x∗ ≤ β

(‖x‖x∗, k
) ≤ β(η,0) ≤ ηb for all k ≥ 0. (2.52)

For any k ≥ 0 and t ∈ [kT , (k + 1)T ] the definition of (2.30) implies

ϕ(t,0, x,μ) = ϕ
(
t − kT ,0, ϕ(kT ,0, x,μ),μ

)
.

Since (2.52) implies |ϕ(kT ,0, x,μ)|x∗ ≤ ηb for all k ≥ 0, (2.50) holds for x =
ϕ(kT ,0, x,μ) and from (2.50) and (2.52) we obtain

∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ γ

(∥∥ϕ(kT ,0, x,μ)
∥∥) ≤ γ

(
β
(‖x‖x∗, k

))
(2.53)

for all t ∈ [kT , (k + 1)T ] and all k ≥ 0.
Now we define β̂(r, t) := γ (β(r, t)). Clearly, β̂ ∈ K L and by Lemma 2.26 we

can assume without loss of generality that β̂ is uniformly incrementally bounded;
otherwise we replace it by β̃ from this lemma.

Hence, for k ∈ N0 and s ∈ [0,1] we obtain

β̂(r, k) ≤ P β̂(r, k + 1) ≤ P β̂(r, k + s). (2.54)

Now pick an arbitrary t ≥ 0 and let k ∈ N0 be maximal with k ≤ t/T . Then (2.53)
and (2.54) with s = t/T − k ∈ [0,1] imply

∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ β̂

(‖x‖x∗, k
) ≤ P β̂

(|x|x∗, k + (t/T − k)
) = P β̂

(|x|x∗, t/T
)
.

This shows the assertion with β(r, t) = P β̂(r, t/T ). �
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Concluding, if we can compute an asymptotically stabilizing feedback law for
the discrete time system induced by the sampled data system, then the resulting
continuous time sampled data closed loop is also asymptotically stable provided its
solutions are uniformly bounded over T .

2.5 Notes and Extensions

The general setting presented in Sect. 2.1 is more or less standard in discrete time
control theory, except maybe for the rather general choice of the state space X and
the control value space U which allows us to cover infinite-dimensional systems as
illustrated in Example 2.12 and sampled data systems without the zero order hold
assumption as discussed after Theorem 2.7.

This definition of sampled data systems is not so frequently found in the litera-
ture, where often only the special case of zero order hold is discussed. While zero
order hold is usually the method of choice in practical applications and is also used
in the numerical examples later in this book, for theoretical investigations the more
general approach given in Sect. 2.2 is appealing, too.

The discrete time stability theory presented in Sect. 2.3 has a continuous time
counterpart, which is actually more frequently found in the literature. Introductory
textbooks on this subject in a control theoretic setting are, e.g., the books by Khalil
[7] and Sontag [15]. The proofs in this section are not directly taken from the liter-
ature, but they are based on standard arguments, which appear in many books and
papers on the subject. Formulating asymptotic stability via K L-function goes back
to Hahn [5] and became popular in nonlinear control theory during the 1990s via the
input-to-state stability (ISS) property introduced by Sontag in [14]. A good survey
on this theory can be found in Sontag [16].

While here we only stated direct Lyapunov function theorems which state that the
existence of a Lyapunov function ensures asymptotic stability, there is a rather com-
plete converse theory, which shows that asymptotic stability implies the existence
of Lyapunov functions. A collection of such results—again in a control theoretic
setting—can be found in the PhD thesis of Kellett [6].

The final Sect. 2.4 on asymptotic stability of sampled data systems is based on the
Paper [11] by Nešić, Teel and Sontag, in which this topic is treated in a more general
setting. In particular, this paper also covers ISS results for perturbed systems.

2.6 Problems

1. Show that there exists no differential equation ẋ(t) = fc(x(t)) (i.e., without con-
trol input) satisfying Assumption 2.4 and fc(0) = 0 such that the difference equa-
tion x+ = f (x) with

f (x) =
{

x
2 , x ≥ 0,

−x, x < 0

is the corresponding sampled data system.
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2. (a) Show that xref(n) = ∑n
k=0

1
2n−k sin(k) is a solution of the difference equation

x(n + 1) = 1

2
x(n) + sin(n).

(b) Prove that xref from (a) is uniformly asymptotically stable and derive a com-
parison function β ∈ K L such that (2.35) holds. Here it is sufficient to derive
a formula for β(r, n) for n ∈ N0.

(c) Show that xref(n) = ∑n
k=0

k+1
n+1 sin(k) is a solution of the difference equation

x(n + 1) = n + 1

n + 2
x(n) + sin(n).

(d) Can you also prove uniform asymptotic stability for xref from (c)?
Hint for (b) and (d): One way to proceed is to derive a difference equation

for z(n) = x(n,n0, x0) − xref(n) and look at the equilibrium x∗ = 0 for this new
equation.

3. Consider the two-dimensional difference equation

x+ = (
1 − ‖x‖)

(
0 1

−1 0

)
x

with x = (x1, x2)
� ∈ R

2.
(a) Prove that V (x) = x2

1 +x2
2 is a Lyapunov function for the equilibrium x∗ = 0

on S = {x ∈ R
2 | ‖x‖ ≤ 1}.

(b) Is V also a Lyapunov function on S = R
2?

(c) Solve (a) and (b) for the difference equation

x+ = 1

1 + ‖x‖
(

0 1
−1 0

)
x.

4. Consider a globally asymptotically stable difference equation (2.31) with equi-
librium x∗ ∈ X and a Lyapunov function V on S = X with α1(r) = 2r2,
α2(r) = 3r2 and αV (r) = r2.

Compute the rate of attraction β ∈ K L such that (2.32) holds. Here it is suffi-
cient to derive a formula for β(r, n) for n ∈ N0.

Hint: Follow the construction of β from the proof of Theorem 2.19. Why can
you use α̃V = α′

V for this problem?
5. Consider a difference equation (2.31) with equilibrium x∗ ∈ X and a function

V : X → R
+
0 which satisfies (2.37) but only

V
(
g(x)

) ≤ V (x)

instead of (2.38).
(a) Prove that there exists αL ∈ K∞ such that the solutions of (2.1) satisfy the

inequality
∣∣x(n, x0)

∣∣
x∗ ≤ αL

(|x0|
)
.

(b) Conclude from (a) that the system is stable in the sense of Lyapunov, cf. the
discussion after Definition 2.14.
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11. Nešić, D., Teel, A.R., Sontag, E.D.: Formulas relating K L stability estimates of discrete-time
and sampled-data nonlinear systems. Systems Control Lett. 38(1), 49–60 (1999)
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Chapter 3
Nonlinear Model Predictive Control

In this chapter, we introduce the nonlinear model predictive control algorithm in a
rigorous way. We start by defining a basic NMPC algorithm for constant reference
and continue by formalizing state and control constraints. Viability (or weak forward
invariance) of the set of state constraints is introduced and the consequences for the
admissibility of the NMPC feedback law are discussed. After having introduced
NMPC in a special setting, we describe various extensions of the basic algorithm,
considering time varying reference solutions, terminal constraints and costs and ad-
ditional weights. Finally, we investigate the optimal control problem corresponding
to this generalized setting and prove several properties, most notably the dynamic
programming principle.

3.1 The Basic NMPC Algorithm

As already outlined in the introductory Chap. 1, the idea of the NMPC scheme is as
follows: at each sampling instant n we optimize the predicted future behavior of the
system over a finite time horizon k = 0, . . . ,N − 1 of length N ≥ 2 and use the first
element of the resulting optimal control sequence as a feedback control value for the
next sampling interval. In this section we give a detailed mathematical description
of this basic idea for a constant reference xref ≡ x∗ ∈ X. The time varying case as
well as several other variants will then be presented in Sect. 3.3.

A prerequisite for being able to find a feedback law which stabilizes the sys-
tem at x∗ is that x∗ is an equilibrium of the nominal closed-loop system (2.5),
i.e., x∗ = f (x∗,μ(x∗))—this follows immediately from Definition 2.14 with g(x) =
f (x,μ(x)). A necessary condition for this is that there exists a control value u∗ ∈ U

with

x∗ = f (x∗, u∗), (3.1)

which we will assume in the sequel. The cost function to be used in our optimization
should penalize the distance of an arbitrary state x ∈ X to x∗. In addition, it is often

L. Grüne, J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering,
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desired to penalize the control u ∈ U . This can be useful for computational reasons,
because optimal control problems may be easier to solve if the control variable is
penalized. On the other hand, penalizing u may also be desired for modeling pur-
poses, e.g., because we want to avoid the use of control values u ∈ U corresponding
to expensive high energy. For these reasons, we choose our cost function to be of
the form � : X × U → R

+
0 .

In any case, we require that if we are in the equilibrium x∗ and use the control
value u∗ in order to stay in the equilibrium, then the cost should be 0. Outside the
equilibrium, however, the cost should be positive, i.e.,

�(x∗, u∗) = 0 and �(x,u) > 0 for all x ∈ X, u ∈ U with x �= x∗. (3.2)

If our system is defined on Euclidean space, i.e., X = R
d and U = R

m, then we may
always assume x∗ = 0 and u∗ = 0 without loss of generality: if this is not the case
we can replace f (x,u) by f (x + x∗, u + u∗) − x∗ which corresponds to a simple
linear coordinate transformation on X and U . Indeed, this transformation is always
possible if X and U are vector spaces, even if they are not Euclidean spaces. In this
case, a popular choice for � meeting condition (3.2) is the quadratic function

�(x,u) = ‖x‖2 + λ‖u‖2,

with the usual Euclidean norms and a parameter λ ≥ 0. In our general setting on
metric spaces with metrics dX and dU on X and U , the analogous choice of � is

�(x,u) = dX(x, x∗)2 + λdU(u,u∗)2. (3.3)

Note, however, that in both settings many other choices are possible and often rea-
sonable, as we will see in the subsequent chapters. Moreover, we will introduce
additional conditions on � later, which we require for a rigorous stability proof of
the NMPC closed loop.

In the case of sampled data systems we can take the continuous time nature of
the underlying model into account by defining � as an integral over a continuous
time cost function L : X × U → R

+
0 on a sampling interval. Using the continuous

time solution ϕ from (2.8), we can define

�(x,u) :=
∫ T

0
L

(
ϕ(t,0, x,u),u(t)

)
dt. (3.4)

Defining � this way, we can incorporate the intersampling behavior of the sampled
data system explicitly into our optimal control problem. As we will see later in Re-
mark 4.13, this enables us to derive rigorous stability properties not only for the
sampled data closed-loop system (2.30). The numerical computation of the inte-
gral in (3.4) can be efficiently integrated into the numerical solution of the ordinary
differential equation (2.6), see Sect. 9.4 for details.

Given such a cost function � and a prediction horizon length N ≥ 2, we can now
formulate the basic NMPC scheme as an algorithm. In the optimal control problem
(OCPN) within this algorithm we introduce a set of control sequences U

N(x0) ⊆ UN

over which we optimize. This set may include constraints depending on the initial
value x0. Details about how this set should be chosen will be discussed in Sect. 3.2.
For the moment we simply set U

N(x0) := UN for all x0 ∈ X.
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Algorithm 3.1 (Basic NMPC algorithm for constant reference xref ≡ x∗) At each
sampling time tn, n = 0,1,2 . . . :

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 := x(n), solve the optimal control problem

minimize JN

(
x0, u(·)) :=

N−1∑

k=0

�
(
xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(OCPN)

and denote the obtained optimal control sequence by u�(·) ∈ U
N(x0).

(3) Define the NMPC-feedback value μN(x(n)) := u�(0) ∈ U and use this control
value in the next sampling period.

Observe that in this algorithm we have assumed that an optimal control sequence
u�(·) exists. Sufficient conditions for this existence are briefly discussed after Defi-
nition 3.14, below.

The nominal closed-loop system resulting from Algorithm 3.1 is given by (2.5)
with state feedback law μ = μN , i.e.,

x+ = f
(
x,μN(x)

)
. (3.5)

The trajectories of this system will be denoted by xμN
(n) or, if we want to emphasize

the initial value x0 = xμN
(0), by xμN

(n, x0).
During our theoretical investigations we will neglect the fact that computing the

solution of (OCPN) in Step (2) of the algorithm usually needs some computation
time τc which—in the case when τc is relatively large compared to the sampling
period T —may not be negligible in a real time implementation. We will sketch a
solution to this problem in Sect. 7.6.

In our abstract formulations of the NMPC Algorithm 3.1 only the first element
u�(0) of the respective minimizing control sequence is used in each step, the re-
maining entries u�(1), . . . , u�(N −1) are discarded. In the practical implementation,
however, these entries play an important role because numerical optimization algo-
rithms for solving (OCPN) (or its variants) usually work iteratively: starting from
an initial guess u0(·) an optimization algorithm computes iterates ui(·), i = 1,2, . . .

converging to the minimizer u�(·) and a good choice of u0(·) is crucial in order to
obtain fast convergence of this iteration, or even to ensure convergence, at all. Here,
the minimizing sequence from the previous time step can be efficiently used in order
to construct such a good initial guess. Several different ways to implement this idea
are discussed in Sect. 10.4.

3.2 Constraints

One of the main reasons for the success of NMPC (and MPC in general) is its abil-
ity to explicitly take constraints into account. Here, we consider constraints both on
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the control as well as on the state. To this end, we introduce a nonempty state con-
straint set X ⊆ X and for each x ∈ X we introduce a nonempty control constraint set
U(x) ⊆ U . Of course, U may also be chosen independent of x. The idea behind in-
troducing these sets is that we want the trajectories to lie in X and the corresponding
control values to lie in U(x). This is made precise in the following definition.

Definition 3.2 Consider a control system (2.1) and the state and control constraint
sets X ⊆ X and U(x) ⊆ U .

(i) The states x ∈ X are called admissible states and the control values u ∈ U(x)

are called admissible control values for x.
(ii) For N ∈ N and an initial value x0 ∈ X we call a control sequence u ∈ UN and

the corresponding trajectory xu(k, x0) admissible for x0 up to time N , if

u(k) ∈ U
(
xu(k, x0)

)
and xu(k + 1, x0) ∈ X

hold for all k = 0, . . . ,N −1. We denote the set of admissible control sequences
for x0 up to time N by U

N(x0).
(iii) A control sequence u ∈ U∞ and the corresponding trajectory xu(k, x0) are

called admissible for x0 if they are admissible for x0 up to every time N ∈ N.
We denote the set of admissible control sequences for x0 by U

∞(x0).
(iv) A (possibly time varying) feedback law μ : N0 × X → U is called admissible

if μ(n,x) ∈ U
1(x) holds for all x ∈ X and all n ∈ N0.

Whenever the reference to x or x0 is clear from the context we will omit the
additional “for x” or “for x0”.

Since we can (and will) identify control sequences with only one element with the
respective control value, we can consider U

1(x0) as a subset of U , which we already
implicitly did in the definition of admissibility for the feedback law μ, above. How-
ever, in general U

1(x0) does not coincide with U(x0) ⊆ U because using xu(1, x) =
f (x,u) and the definition of U

N(x0) we get U
1(x) := {u ∈ U(x) | f (x,u) ∈ X}.

With this subtle difference in mind, one sees that our admissibility condition (iv) on
μ ensures both μ(n,x) ∈ U(x) and f (x,μ(n, x)) ∈ X whenever x ∈ X.

Furthermore, our definition of U
N(x) implies that even if U(x) = U is indepen-

dent of x the set U
N(x) may depend on x for some or all N ∈ N∞.

Often, in order to be suitable for optimization purposes these sets are assumed
to be compact and convex. For our theoretical investigations, however, we do not
need any regularity requirements of this type except that these sets are nonempty.
We will, however, frequently use the following assumption.

Assumption 3.3 For each x ∈ X there exists u ∈ U(x) such that f (x,u) ∈ X holds.

The property defined in this assumption is called viability or weak (or con-
trolled) forward invariance of X. It excludes the situation that there are states
x ∈ X from which the trajectory leaves the set X for all admissible control val-
ues. Hence, it ensures U

N(x0) �= ∅ for all x0 ∈ X and all N ∈ N∞. This property is
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important to ensure the feasibility of (OCPN): the optimal control problem (OCPN)
is called feasible for an initial value x0 if the set U

N(x0) over which we optimize is
nonempty. Viability of X thus implies that (OCPN) is feasible for each x0 ∈ X and
hence ensures that μN(x) is well defined for each x ∈ X. Furthermore, a straight-
forward induction shows that under Assumption 3.3 any finite admissible control
sequence u(·) ∈ U

N(x0) can be extended to an infinite admissible control sequence
ũ(·) ∈ U

∞(x0) with u(k) = ũ(k) for all k = 0, . . . ,N − 1.
In order to see that the construction of a constraint set X meeting Assumption 3.3

is usually a nontrivial task, we reconsider Example 2.2.

Example 3.4 Consider Example 2.2, i.e.,

x+ = f (x,u) =
(

x1 + x2 + u/2
x2 + u

)
.

Assume we want to constrain all variables, i.e., the position x1, the velocity x2 and
the acceleration u to the interval [−1,1]. For this purpose one could define X =
[−1,1]2 and U(x) = U = [−1,1]. Then, however, for x = (1,1)�, one immediately
obtains

x+
1 = x1 + x2 + u/2 = 2 + u/2 ≥ 3/2

for all u, hence x+ /∈ X for all u ∈ U. Thus, in order to find a viable set X we need to
either tighten or relax some of the constraints. For instance, relaxing the constraint
on u to U = [−2,2] the viability of X = [−1,1]2 is guaranteed, because then by
elementary computations one sees that for each x ∈ X the control value

u =
⎧
⎨

⎩

0, x1 + x2 ∈ [−1,1],
2 − 2x1 − 2x2, x1 + x2 > 1,

−2 − 2x1 − 2x2, x1 + x2 < −1

is in U and satisfies f (x,u) ∈ X. A way to achieve viability without changing U is
by tightening the constraint on x2 by defining

X = {
(x1, x2)

T ∈ R
2
∣∣ x1 ∈ [−1,1], x2 ∈ [−1,1] ∩ [−3/2 − x1,3/2 − x1]

}
,

(3.6)

see Fig. 3.1. Again, elementary computations show that for each x ∈ X and

u =
⎧
⎨

⎩

1, x2 < −1/2,

−2x2, x2 ∈ [−1/2,1/2],
−1, x2 > 1/2

the desired properties u ∈ U and f (x,u) ∈ X hold.

This example shows that finding viable constraint sets X (and the corresponding
U or U(x)) is a tricky task already for very simple systems. Still, Assumption 3.3
significantly simplifies the subsequent analysis, cf. Theorem 3.5, below. For this
reason we will impose this condition in our theoretical investigations for schemes
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Fig. 3.1 Illustration of the
set X from (3.6)

without stabilizing terminal constraints in Chap. 6. Ways to relax this condition will
be discussed in Sects. 8.1–8.3.

For schemes with stabilizing terminal constraints as featured in Chap. 5 we will
not need this assumption, since for these schemes the region on which the NMPC
controller is defined is by construction confined to feasible subsets XN of X, see
Definition 3.9, below. Even if X is not viable, these feasible sets XN turn out to
be viable provided the terminal constraint set is viable, cf. Lemmas 5.2 and 5.10.
For a more detailed discussion of these issues see also Part (iv) of the discussion in
Sect. 8.4.

NMPC is well suited to handle constraints because these can directly be inserted
into Algorithm 3.1. In fact, since we already formulated the corresponding optimiza-
tion problem (OCPN) with state dependent control value sets, the constraints are
readily included if we use U

N(x0) from Definition 3.2(ii) in (OCPN). The follow-
ing theorem shows that the viability assumption ensures that the NMPC closed-loop
system obtained this way indeed satisfies the desired constraints.

Theorem 3.5 Consider Algorithm 3.1 using U
N(x0) from Definition 3.2(ii) in the

optimal control problem (OCPN) for constraint sets X ⊂ X, U(x) ⊂ U , x ∈ X, sat-
isfying Assumption 3.3. Consider the nominal closed-loop system (3.5) and suppose
that xμN

(0) ∈ X. Then the constraints are satisfied along the solution of (3.5), i.e.,

xμN
(n) ∈ X and μN

(
xμN

(n)
) ∈ U

(
xμN

(n)
)

(3.7)

for all n ∈ N. Thus, the NMPC-feedback μN is admissible in the sense of Defini-
tion 3.2(iv).

Proof First, recall from the discussion after Assumption 3.3 that under this assump-
tion the optimal control problem (OCPN) is feasible for each x ∈ X, hence μN(x) is
well defined for each x ∈ X.

We now show that xμN
(n) ∈ X implies μN(xμN

(n)) ∈ U(xμN
(n)) and xμN

(n +
1) ∈ X. Then the assertion follows by induction from xμn(0) ∈ X.
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The viability of X from Assumption 3.3 ensures that whenever xμN
(n) ∈ X

holds in Algorithm 3.1, then x0 ∈ X holds for the respective optimal control prob-
lem (OCPN). Since the optimization is performed with respect to admissible con-
trol sequences only, also the optimal control sequence u�(·) is admissible for
x0 = xμN

(n). This implies μN(xμN
(n)) = u�(0) ∈ U

1(xμN
(n)) ⊆ U(xμN

(n)) and
thus also

xμN
(n + 1) = f

(
xμN

(n),μN

(
xμN

(n)
)) = f

(
x(n),u�(0)

) ∈ X,

i.e., xμN
(n + 1) ∈ X. �

Theorem 3.5 in particular implies that if a state x is feasible for (OCPN), which
under Assumption 3.3 is equivalent to x ∈ X (cf. the discussion after Assump-
tion 3.3), then its closed-loop successor state f (x,μN(x)) is again feasible. This
property is called recursive feasibility of X.

In the case of sampled data systems, the constraints are only defined for the
sampling times tn but not for the intersampling times t �= tn. That is, for the sampled
data closed-loop system (2.30) we can only guarantee

ϕ(tn, t0, x0,μ) ∈ X for n = 0,1,2, . . .

but in general not

ϕ(t, t0, x0,μ) ∈ X for t �= tn, n = 0,1,2, . . . .

Since we prefer to work within the discrete time framework, directly checking
ϕ(t, t0, x0, u) ∈ X for all t does not fit our setting. If desired, however, one could
implicitly include this condition in the definition of U(x), e.g., by defining new
control constraint sets via

Ũ(x) := {
u ∈ U(x)

∣∣ ϕ(t,0, x,u) ∈ X for all t ∈ [0, T ]}.
In practice, however, this is often not necessary because continuity of ϕ in t ensures
that the constraints are usually only “mildly” violated for t �= tn, i.e., ϕ(t, t0, x0,μ)

will still be close to X at intersampling times. Still, one should keep this fact in mind
when designing the constraint set X.

In the underlying optimization algorithms for solving (OCPN), usually the con-
straints cannot be specified via sets X and U(x). Rather, one uses so-called equality
and inequality constraints in order to specify X and U(x) according to the following
definition.

Definition 3.6 Given functions GS
i : X × U → R, i ∈ E S = {1, . . . , pg} and HS

i :
X × U → R, i ∈ I S = {pg + 1, . . . , pg + ph} with rg, rh ∈ N0, we define the con-
straint sets X and U(x) via

X := {
x ∈ X

∣∣ there exists u ∈ U with GS
i (x,u) = 0 for all i ∈ E S

and HS
i (x,u) ≥ 0 for all i ∈ I S

}

and, for x ∈ X
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U(x) := {
u ∈ U

∣∣ GS
i (x,u) = 0 for all i ∈ E S and

HS
i (x,u) ≥ 0 for all i ∈ I S

}
.

Here, the functions GS
i and HS

i do not need to depend on both arguments. The
functions GS

i , HS
i not depending on u are called pure state constraints, the functions

GS
i , HS

i not depending on x are called pure control constraints and the functions
GS

i , HS
i depending on both x and u are called mixed constraints.

Observe that if we do not have mixed constraints then U(x) is independent of x.
The reason for defining X and U(x) via these (in)equality constraints is purely

algorithmic: the plain information “xu(k, x0) /∈ X” does not yield any information
for the optimization algorithm in order to figure out how to find an admissible u(·),
i.e., a u(·) for which “xu(k, x0) ∈ X” holds. In contrast to that, an information of
the form “HS

i (xu(k, x0), u(k)) < 0” together with additional knowledge about HS
i

(provided, e.g., by the derivative of HS
i ) enables the algorithm to compute a “direc-

tion” in which u(·) needs to be modified in order to reach an admissible u(·). For
more details on this we refer to Chap. 10.

In our theoretical investigations we will use the notationally more convenient
set characterization of the constraints via X and U(x) or U

N(x). In the practical
implementation of our NMPC method, however, we will use their characterization
via the inequality constraints from Definition 3.6.

3.3 Variants of the Basic NMPC Algorithms

In this section we discuss some important variants and extensions of the basic
NMPC Algorithm 3.1; several further variants will be briefly discussed in Sect. 3.5.
We start by incorporating non-constants references xref(n) and afterwards turn to
including terminal constraints, terminal costs and weights.

If the reference xref is time varying, we need to take this fact into account in the
formulation of the NMPC algorithm. Similar to the constant case where we assumed
that x∗ is an equilibrium of (2.1) for control value u∗, we now assume that xref is a
trajectory of the system, i.e.,

xref(n) = xuref(n, x0)

for x0 = xref(0) and some suitable admissible reference control sequence uref(·) ∈
U

∞(x0). In contrast to the constant reference case of Sect. 3.1, even for X = R
d and

U = R
m we do not assume that these references are constantly equal to 0, because

this would lead to time varying coordinate transformations in X and U . For this
reason, we always need to take xref(·) and uref(·) into account when defining �. As a
consequence, � becomes time varying, too, i.e., we use a function � : N0 ×X×U →
R

+
0 . Furthermore, we need to keep track of the current sampling instant n in the

optimal control problem.
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Again, we require that the cost function � vanishes if and only if we are exactly
on the reference. In the time varying case (3.2) becomes

�
(
n,xref(n),uref(n)

) = 0 for all n ∈ N0 and

�(n, x,u) > 0 for all n ∈ N0, x ∈ X, u ∈ U with x �= xref(n).
(3.8)

For X = R
d , U = R

m with Euclidean norms, a quadratic distance function is now
of the form

�(n, x,u) = ∥
∥x − xref(n)

∥
∥2 + λ

∥
∥u − uref(n)

∥
∥2

with λ ≥ 0 and in the general case

�(n, x,u) = dX

(
x, xref(n)

)2 + λdU

(
u,uref(n)

)2

is an example for � meeting (3.8).
For sampled data systems, we can again define � via an integral over a continuous

time cost function L analogous to (3.4). Note, however, that for defining L we will
then need a continuous time reference.

For each k = 0, . . . ,N − 1, the prediction xu(k, x0) with x0 = x(n) used in the
NMPC algorithm now becomes a prediction for the closed-loop state x(n+k) which
we would like to have close to xref(n + k). Consequently, in the optimal control
problem at time n we need to penalize the distance of xu(k, x0) to xref(n + k),
i.e., we need to use the cost �(n + k, xu(k, x0), u(k)). This leads to the following
algorithm where we minimize over the set of control sequences U

N(x0) defined in
Sect. 3.2.

Algorithm 3.7 (Basic NMPC algorithm for time varying reference xref) At each
sampling time tn, n = 0,1,2 . . . :

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 = x(n), solve the optimal control problem

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)
(OCPn

N)

and denote the obtained optimal control sequence by u�(·) ∈ U
N(x0).

(3) Define the NMPC-feedback value μN(n,x(n)) := u�(0) ∈ U and use this con-
trol value in the next sampling period.

Note that Algorithm 3.7 and (OCPn
N) reduce to Algorithm 3.1 and (OCPN), re-

spectively, if � does not depend on n.
The resulting nominal closed-loop system is now given by (2.5) with μ(x) =

μN(n,x), i.e.,

x+ = f
(
x,μN(n, x)

)
. (3.9)
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As before, the trajectories of this system will be denoted by xμN
(n). Since the right

hand side is now time varying, whenever necessary we include both the initial time
and the initial value in the notation, i.e., for a given n0 ∈ N0 we write xμN

(n,n0, x0)

for the closed-loop solution satisfying xμN
(n0, n0, x0) = x0. It is straightforward to

check that Theorem 3.5 remains valid for Algorithm 3.7 when (3.7) is replaced by

xμN
(n) ∈ X and μN

(
n,xμN

(n)
) ∈ U

(
xμN

(n)
)
. (3.10)

Remark 3.8 Observe that Algorithm 3.7 can be straightforwardly extended to the
case when f and X depend on n, too. However, in order to keep the presentation
simple, we do not explicitly reflect this possibility in our notation.

More often than not one can find variations of the basic NMPC Algorithms 3.1
and 3.7 in the literature in which the optimal control problem (OCPN) or (OCPn

N)
is changed in one way or another in order to improve the closed-loop performance.
These techniques will be discussed in detail in Chap. 5 and in Sects. 7.1 and 7.2.
We now introduce generalizations (OCPN,e) and (OCPn

N,e) of (OCPN) and (OCPn
N),

respectively, which contain all the variants we will investigate in these chapters and
sections.

A typical choice for such a variant is an additional terminal constraint of the form

xu

(
N,x(n)

) ∈ X0 for a terminal constraint set X0 ⊆ X (3.11)

for the time-invariant case of (OCPN) and

xu

(
N,x(n)

) ∈ X0(n + N) for terminal constraint sets X0(n) ⊆ X, n ∈ N0

(3.12)

for the time varying problem (OCPn
N). Of course, in the practical implementation

the constraint sets X0 or X0(n) are again expressed via (in)equalities of the form
given in Definition 3.6.

When using terminal constraints, the NMPC-feedback law is only defined for
those states x0 for which the optimization problem within the NMPC algorithm is
feasible also for these additional constraints, i.e., for which there exists an admissi-
ble control sequence with corresponding trajectory starting in x0 and ending in the
terminal constraint set. Such initial values are again called feasible and the set of all
feasible initial values form the feasible set. This set along with the corresponding
admissible control sequences is formally defined as follows.

Definition 3.9

(i) For X0 from (3.11) we define the feasible set for horizon N ∈ N by

XN := {
x0 ∈ X

∣∣ there exists u(·) ∈ U
N(x0) with xu(N,x0) ∈ X0

}

and for each x0 ∈ XN we define the set of admissible control sequences by

U
N
X0

(x0) := {
u(·) ∈ U

N(x0)
∣∣ xu(N,x0) ∈ X0

}
.
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(ii) For X0(n) from (3.12) we define the feasible set for horizon N ∈ N at time
n ∈ N0 by

XN(n) := {
x0 ∈ X

∣∣ there exists u(·) ∈ U
N(x0) with xu(N,x0) ∈ X0(n + N)

}

and for each x0 ∈ XN(n) we define the set of admissible control sequences by

U
N
X0

(n, x0) := {
u(·) ∈ U

N(x0)
∣∣ xu(N,x0) ∈ X0(n + N)

}
.

Note that in (i) XN = X and U
N
X0

(x) = U
N(x) holds if X0 = X, i.e., if no ad-

ditional terminal constraints are imposed. Similarly, in case (ii) XN(n) = X and
U

N
X0

(n, x) = U
N(x) holds if X0(n) = X.

Another modification of the optimal control problems (OCPN) and (OCPn
N),

often used in conjunction with this terminal constraint is an additional termi-
nal cost of the form F(xu(N,x(n))) with F : X → R

+
0 in the optimization ob-

jective. This function may also be time depending, i.e., it may be of the form
F(n + N,xu(N,x(n))) with F : N0 × X → R

+
0 . An alternative to using ter-

minal costs is to put weights on some summands of the objective, i.e., replac-
ing �(xu(k, x0), u(k)) by ωN−k�(xu(k, x0), u(k)) for weights ω1, . . . ,ωN ≥ 0. Al-
though for NMPC schemes we will only investigate the effect of the weight ω1
in detail, cf. Sect. 7.2, here we introduce weights for all summands since this of-
fers more flexibility and does not further complicate the subsequent analysis in this
chapter. The need for the “backward” numbering of the ωN−k will become clear in
the proof of Theorem 3.15, below.

In the sequel, we will analyze schemes with terminal cost F and schemes with
weights ωN−k separately, cf. Sects. 5.3, 7.1 and 7.2. However, in order to reduce the
number of variants of NMPC algorithms in this book we include both features in the
optimization problems (OCPN,e) and (OCPn

N,e) in the following NMPC algorithms
extending the basic Algorithms 3.1 and 3.7, respectively. Note that compared to
these basic algorithms only the optimal control problems are different, i.e., the part
in the boxes in Step (2). We start by extending the time-invariant Algorithm 3.1

Algorithm 3.10 (Extended NMPC algorithm for constant reference xref ≡ x∗) At
each sampling time tn, n = 0,1,2 . . . :

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 := x(n), solve the optimal control problem

minimize JN

(
x0, u(·)) :=

N−1∑

k=0

ωN−k�
(
xu(k, x0), u(k)

)

+ F
(
xu(N,x0)

)

with respect to u(·) ∈ U
N
X0

(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(OCPN,e)

and denote the obtained optimal control sequence by u�(·) ∈ U
N
X0

(x0).
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(3) Define the NMPC-feedback value μN(x(n)) := u�(0) ∈ U and use this control
value in the next sampling period.

Similarly, we can extend the time-variant Algorithm 3.7.

Algorithm 3.11 (Extended NMPC algorithm for time varying reference xref) At
each sampling time tn, n = 0,1,2 . . . :

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 = x(n), solve the optimal control problem

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ F
(
n + N,xu(N,x0)

)

with respect to u(·) ∈ U
N
X0

(n, x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(OCPn
N,e)

and denote the obtained optimal control sequence by u�(·) ∈ U
N
X0

(n, x0).
(3) Define the NMPC-feedback value μN(n,x(n)) := u�(0) ∈ U and use this con-

trol value in the next sampling period.

Observe that the terminal constraints (3.11) and (3.12) are included via the re-
strictions u(·) ∈ U

N
X0

(x0) and u(·) ∈ U
N
X0

(n, x0), respectively.
Algorithm 3.10 is a special case of Algorithm 3.11 if �, F and X0 do not de-

pend on n. Furthermore, Algorithm 3.1 is obtained from Algorithm 3.10 for F ≡ 0,
ωNk

= 1, k = 0, . . . ,N − 1 and X0 = X. Likewise, we can derive Algorithm 3.7
from Algorithm 3.11 by setting F ≡ 0, ωNk

= 1, k = 0, . . . ,N − 1 and X0(n) = X,
n ∈ N0. Consequently, all NMPC algorithms in this book are special cases of Algo-
rithm 3.11 and all optimal control problems included in these algorithms are special
cases of (OCPn

N,e).
We end this section with two useful results on the sets of admissible control

sequences from Definition 3.9 which we formulate for the general setting of Algo-
rithm 3.11, i.e., for time varying terminal constraint set X0(n).

Lemma 3.12 Let x0 ∈ XN(n), N ∈ N and K ∈ {0, . . . ,N} be given.

(i) For each u(·) ∈ U
N
X0

(n, x0) we have xu(K,x0) ∈ XN−K(n + K).

(ii) For each u(·) ∈ U
N
X0

(n, x0) the control sequences u1 ∈ UK and u2 ∈ UN−K

uniquely defined by the relation

u(k) =
{

u1(k), k = 0, . . . ,K − 1,

u2(k − K), k = K, . . . ,N − 1
(3.13)

satisfy u1 ∈ U
K
XN−K

(n, x0) and u2 ∈ U
N−K
X0

(n + K,xu1(K,x0)).
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(iii) For each u1(·) ∈ U
K
XN−K

(n, x0) there exists u2(·) ∈ U
N−K
X0

(n + K,xu1(K,x0))

such that u(·) from (3.13) satisfies u ∈ U
N
X0

(n, x0).

Proof (i) Using (2.3) we obtain the identity

xu(K+·)
(
N − K,xu(K,x0)

) = xu(N,x0) ∈ X0(n + N),

which together with the definition of XN−K implies the assertion.
(ii) The relation (3.13) together with (2.3) implies

xu(k, x0) =
{

xu1(k, x0), k = 0, . . . ,K ,

xu2(k − K,xu1(K,x0)), k = K, . . . ,N .
(3.14)

For k = 0, . . . ,K − 1 this identity and (3.13) yield

u1(k) = u(k) ∈ U
(
xu(k, x0)

) = U
(
xu1(k, x0)

)

and for k = 0, . . . ,N − K − 1 we obtain

u2(k) = u(k + K) ∈ U
(
xu(k + K,x0)

) = U
(
xu2

(
k, xu1(K,x0)

))
,

implying u1 ∈ U
K(x0) and u2 ∈ U

N−K(xu1(K,x0)). Furthermore, (3.14) implies
the equation xu2(N − K,xu1(K,x0)) = xu(N,x0) ∈ X0(n + N) which proves u2 ∈
U

N−K
X0

(n + K,xu1(K,x0)). This, in turn, implies that U
N−K
X0

(n + K,xu1(K,x0)) is

nonempty, hence xu1(K,x0) ∈ XN−K(n+K) and consequently u1 ∈ U
K
XN−K

(n, x0)

follows.
(iii) By definition, for each x ∈ XN−K(n+K) there exists u2 ∈ U

N−K
X0

(n+K,x).
Choosing such a u2 for x = xu1(K,x0) ∈ XN−K(n + K) and defining u via (3.13),
similar arguments as in Part (ii), above, show the claim u ∈ U

N
X0

(n, x0). �

A straightforward corollary of this lemma is the following.

Corollary 3.13

(i) For each x ∈ XN the NMPC-feedback law μN obtained from Algorithm 3.10
satisfies

f
(
x,μN(x)

) ∈ XN−1.

(ii) For each n ∈ N and each x ∈ XN(n) the NMPC-feedback law μN obtained from
Algorithm 3.11 satisfies

f
(
x,μN(n, x)

) ∈ XN−1(n + 1).

Proof We show (ii) which contains (i) as a special case. Since μN(n,x) is
the first element u�(0) of the optimal control sequence u� ∈ U

N
X0

(n, x) we get
f (x,μN(n, x)) = xu�(1, x). Now Lemma 3.12(i) yields the assertion. �
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3.4 The Dynamic Programming Principle

In this section we provide one of the classical tools in optimal control, the dynamic
programming principle. We will formulate and prove the results in this section for
(OCPn

N,e), since all other optimal control problems introduced above can be ob-
tained a special cases of this problem. We will first formulate the principle for
the open-loop control sequences in (OCPn

N,e) and then derive consequences for the
NMPC-feedback law μN . The dynamic programming principle is often used as a
basis for numerical algorithms, cf. Sect. 3.5. In contrast to this, in this book we
will exclusively use the principle for analyzing the behavior of NMPC closed-loop
systems, while for the actual numerical solution of (OCPn

N,e) we use different al-
gorithms as described in Chap. 10. The reason for this is that the numerical effort
of solving (OCPn

N,e) via dynamic programming usually grows exponentially with
the dimension of the state of the system, see the discussion in Sect. 3.5. In contrast
to this, the computational effort of the methods described in Chap. 10 scales much
more moderately with the space dimension.

We start by defining some objects we need in the sequel.

Definition 3.14 Consider the optimal control problem (OCPn
N,e) with initial value

x0 ∈ X, time instant n ∈ N0 and optimization horizon N ∈ N0.

(i) The function

VN(n, x0) := inf
u(·)∈U

N
X0

(x0)

JN

(
n,x0, u(·))

is called optimal value function.
(ii) A control sequence u�(·) ∈ U

N
X0

(x0) is called optimal control sequence for x0,
if

VN(n, x0) = JN

(
n,x0, u

�(·))

holds. The corresponding trajectory xu�(·, x0) is called optimal trajectory.

In our NMPC Algorithm 3.11 and its variants we have assumed that an optimal
control sequence u�(·) exists, cf. the comment after Algorithms 3.1. In general, this
is not necessarily the case but under reasonable continuity and compactness condi-
tions the existence of u�(·) can be rigorously shown. Examples of such theorems for
a general infinite-dimensional state space can be found in Keerthi and Gilbert [10]
or Doležal [7]. While for formulating and proving the dynamic programming princi-
ple we will not need the existence of u�(·), for all subsequent results we will assume
that u�(·) exists, in particular when we derive properties of the NMPC-feedback law
μN . While we conjecture that most of the results in this book can be generalized to
the case when μN is defined via an approximately minimizing control sequence,
we decided to use the existence assumption because it considerably simplifies the
presentation of the results in this book.

The following theorem introduces the dynamic programming principle. It gives
an equation which relates the optimal value functions for different optimization hori-
zons N and for different points in space.
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Theorem 3.15 Consider the optimal control problem (OCPn
N,e) with x0 ∈ XN(n)

and n,N ∈ N0. Then for all N ∈ N and all K = 1, . . . ,N the equation

VN(n, x0) = inf
u(·)∈U

K
XN−K

(n,x0)

{
K−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ VN−K

(
n + K,xu(K,x0)

)
}

(3.15)

holds. If, in addition, an optimal control sequence u�(·) ∈ U
N
X0

(n, x0) exists for x0,
then we get the equation

VN(n, x0) =
K−1∑

k=0

ωN−k�
(
n + k, xu�(k, x0), u

�(k)
) + VN−K

(
n + K,xu�(K,x0)

)
.

(3.16)

In particular, in this case the “inf” in (3.15) is a “min”.

Proof First observe that from the definition of JN for u(·) ∈ U
N
X0

(n, x0) we imme-
diately obtain

JN

(
n,x0, u(·)) =

K−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ JN−K

(
n + K,xu(K,x0), u(· + K)

)
. (3.17)

Since u(· + K) equals u2(·) from Lemma 3.12(ii) we obtain u(· + K) ∈ U
N−K
X0

(n +
K,xu(K,x0)). Note that for (3.17) to hold we need the backward numbering of
ωN−k .

We now prove (3.15) by proving “≥” and “≤” separately. From (3.17) we obtain

JN

(
n,x0, u(·)) =

K−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ JN−K

(
n + K,xu(K,x0), u(· + K)

)

≥
K−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

) + VN−K

(
n + K,xu(K,x0)

)
.

Since this inequality holds for all u(·) ∈ U
N
X0

(n, x0), it also holds when taking the
infimum on both sides. Hence we get

VN(n, x0) = inf
u(·)∈U

N
X0

(n,x0)

JN

(
n,x0, u(·))

≥ inf
u(·)∈U

N
X0

(n,x0)

{
K−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)
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+ VN−K

(
n + K,xu(K,x0)

)
}

= inf
u1(·)∈U

K
XN−K

(n,x0)

{
K−1∑

k=0

ωN−k�
(
n + k, xu1(k, x0), u(k)

)

+ VN−K

(
n + K,xu1(K,x0)

)
}

,

i.e., (3.15) with “≥”. Here in the last step we used the fact that by Lemma 3.12(ii) the
control sequence u1 consisting of the first K elements of u(·) ∈ U

N
X0

(n, x0) lies in

U
K
XN−K

(n, x0) and, conversely, by Lemma 3.12(iii) each control sequence in u1(·) ∈
U

K
XN−K

(n, x0) can be extended to a sequence in u(·) ∈ U
N
X0

(n, x0). Thus, since the
expression in braces does not depend on u(K), . . . , u(N − 1), the infima coincide.

In order to prove “≤”, fix ε > 0 and let uε(·) be an approximately optimal control
sequence for the right hand side of (3.17), i.e.,

K−1∑

k=0

ωN−k�
(
n + k, xuε (k, x0), u

ε(k)
) + JN−K

(
n + K,xuε (K,x0), u

ε(· + K)
)

≤ inf
u(·)∈U

N
X0

(n,x0)

{
K−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ JN−K

(
n + K,xu(K,x0), u(· + K)

)
}

+ ε.

Now we use the decomposition (3.13) of u(·) into u1 ∈ U
K
XN−K

(n, x0) and u2 ∈
U

N−K
X0

(n + K,xu1(K,x0)) from Lemma 3.12(ii). This way we obtain

inf
u(·)∈U

N
X0

(n,x0)

{
K−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ JN−K

(
n + K,xu(K,x0), u(· + K)

)
}

= inf
u1(·)∈U

K
XN−K

(n,x0)

u2(·)∈U
N−K
X0

(n+K,xu1 (K,x0))

{
K−1∑

k=0

ωN−k�
(
n + k, xu1(k, x0), u1(k)

)

+ JN−K

(
n + K,xu1(K,x0), u2(·)

)
}

= inf
u1(·)∈U

K
XN−K

(n,x0)

{
K−1∑

k=0

ωN−k�
(
n + k, xu1(k, x0), u1(k)

)
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+ VN−K

(
n + K,xu1(K,x0)

)
}

.

Now (3.17) yields

VN(n, x0) ≤ JN

(
n,x0, u

ε(·))

=
K−1∑

k=0

ωN−k�
(
n + k, xuε (k, x0), u

ε(k)
)

+ JN−K

(
n + K,xuε (K,x0), u

ε(· + K)
)

≤ inf
u(·)∈U

K
XN−K

(n,x0)

{
K−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ VN−K

(
n + K,xu(K,x0)

)
}

+ ε.

Since the first and the last term in this inequality chain are independent of ε and
since ε > 0 was arbitrary, this shows (3.15) with “≤” and thus (3.15).

In order to prove (3.16) we use (3.17) with u(·) = u�(·). This yields

VN(n, x0) = JN

(
n,x0, u

�(·))

=
K−1∑

k=0

ωN−k�
(
n + k, xu�(k, x0), u

�(k)
)

+ JN−K

(
n + K,xu�(K,x0), u

�(· + K)
)

≥
K−1∑

k=0

ωN−k�
(
n + k, xu�(k, x0), u

�(k)
) + VN−K

(
n + K,xu�(K,x0)

)

≥ inf
u(·)∈U

K
XN−K

(n,x0)

{
K−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ VN−K

(
n + K,xu(K,x0)

)
}

= VN(n, x0),

where we used the (already proven) Equality (3.15) in the last step. Hence, the two
“≥” in this chain are actually “=” which implies (3.16). �

The following corollary states an immediate consequence of the dynamic pro-
gramming principle. It shows that tails of optimal control sequences are again opti-
mal control sequences for suitably adjusted optimization horizon, time instant and
initial value.
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Corollary 3.16 If u�(·) is an optimal control sequence for initial value x0 ∈ XN(n),
time instant n and optimization horizon N ≥ 2, then for each K = 1, . . . ,N − 1 the
sequence u�

K(·) = u�(· + K), i.e.,

u�
K(k) = u�(K + k), k = 0, . . . ,N − K − 1

is an optimal control sequence for initial value xu�(K,x0), time instant n + K and
optimization horizon N − K .

Proof Inserting VN(n, x0) = JN(n, x0, u
�(·)) and the definition of u�

k(·) into (3.17)
we obtain

VN(n, x0) =
K−1∑

k=0

ωN−k�
(
n + k, xu�(k, x0), u

�(k)
)

+ JN−K

(
n + K,xu�(K,x0), u

�
K(·)).

Subtracting (3.16) from this equation yields

0 = JN−K

(
n + K,xu�(K,x0), u

�
K(·)) − VN−K

(
n + K,xu�(K,x0)

)

which shows the assertion. �

The next theorem relates the NMPC-feedback law μN defined in the NMPC
Algorithm 3.11 and its variants to the dynamic programming principle. Here we use
the argmin operator in the following sense: for a map a : U → R, a nonempty subset
Ũ ⊆ U and a value u� ∈ Ũ we write

u� = argmin
u∈Ũ

a(u) (3.18)

if and only if a(u�) = infu∈Ũ a(u) holds. Whenever (3.18) holds the existence of the
minimum minu∈Ũ a(u) follows. However, we do not require uniqueness of the mini-
mizer u�. In case of uniqueness equation (3.18) can be understood as an assignment,
otherwise it is just a convenient way of writing “u� minimizes a(u)”.

Theorem 3.17 Consider the optimal control problem (OCPn
N,e) with x0 ∈ XN(n)

and n,N ∈ N0 and assume that an optimal control sequence u� exists. Then the
NMPC-feedback law μN(n,x0) = u∗(0) satisfies

μN(n,x0) = argmin
u∈U

1
XN−1

(n,x0)

{
ωN�(n, x0, u) + VN−1

(
n + 1, f (x0, u)

)}
(3.19)

and

VN(n, x0) = ωN�
(
n,x0,μN(n, x0)

) + VN−1
(
n + 1, f

(
x0,μN(n, x0)

))
(3.20)

where in (3.19) we interpret U
1
XN−1

(n, x0) as a subset of U , i.e., we identify the one
element sequence u = u(·) with its only element u = u(0).
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Proof Equation (3.20) follows by inserting u�(0) = μN(n,x0) and xu�(1, x0) =
f (x0,μN(n, x0)) into (3.16) for K = 1.

Inserting xu(1, x0) = f (x0, u) into the dynamic programming principle (3.15)
for K = 1 we further obtain

VN(n, x0) = inf
u∈U

1
XN−1

(n,x0)

{
ωN�(n, x0, u) + VN−1

(
n + 1, f (x0, u)

)}
. (3.21)

This implies that the right hand sides of (3.20) and (3.21) coincide. Thus, the defi-
nition of argmin in (3.18) with a(u) = ωN�(n, x0, u) + VN−1(n + 1, f (x0, u)) and
Ũ = U

1
XN−1

(n, x0) yields (3.19). �

Our final corollary in this section shows that we can reconstruct the whole opti-
mal control sequence u�(·) using the feedback from (3.19).

Corollary 3.18 Consider the optimal control problem (OCPn
N,e) with x0 ∈ X and

n,N ∈ N0 and consider admissible feedback laws μN−k : N0 × X → U , k =
0, . . . ,N − 1, in the sense of Definition 3.2(iv). Denote the solution of the closed-
loop system

x(0) = x0,

x(k + 1) = f
(
x(k),μN−k

(
n + k, x(k)

))
, k = 0, . . . ,N − 1 (3.22)

by xμ(·) and assume that the μN−k satisfy (3.19) with horizon N − k instead of N ,
time index n + k instead of n and initial value x0 = xμ(k) for k = 0, . . . ,N − 1.
Then

u�(k) = μN−k

(
n + k, xμ(k)

)
, k = 0, . . . ,N − 1 (3.23)

is an optimal control sequence for initial time n and initial value x0 and the solution
of the closed-loop system (3.22) is a corresponding optimal trajectory.

Proof Applying the control (3.23) to the dynamics (3.22) we immediately obtain

xu�(n, x0) = xμ(n), n = 0, . . . ,N − 1.

Hence, we need to show that

VN(n, x0) = JN

(
n,x0, u

�
) =

N−1∑

k=0

ωN−k�
(
n + k, x(k), u�(k)

) + F
(
n + N,x(N)

)
.

Using (3.23) and (3.20) for N − k instead of N we get

VN−k(n + k, x0) = ωN−k�
(
n + k, x(k), u�(k)

) + VN−k−1
(
n + k + 1, x(k + 1)

)

for k = 0, . . . ,N −1. Summing these equalities for k = 0, . . . ,N −1 and eliminating
the identical terms VN−k(n + k, x0), k = 1, . . . ,N − 1 on both sides we obtain

VN(n, x0) =
N−1∑

k=0

ωN−k�
(
n + k, x(k), u�(k)

) + V0
(
n + N,x(N)

)
.

Since by definition of J0 we have V0(n + N,x) = F(n + N,x), this shows the
assertion. �
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3.5 Notes and Extensions

The discrete time nonlinear model predictive control framework introduced in
Sects. 3.1–3.3 covers most of the settings commonly found in the literature. For
continuous time systems, one often also finds nonlinear model predictive control
frameworks in explicit continuous time form. In these frameworks, the optimiza-
tion in (OCPn

N,e) and its variants is carried out at times t0, t1, t2, . . . minimizing an
integral criterion along the continuous time solution of the form

JTopt(x0, v) =
∫ Topt

0
L

(
ϕ(t, x0, v), v(t)

)
dt + F

(
ϕ(Topt,N,x0, v)

)
.

The feedback law μTopt computed at time tn is then obtained by applying the first
portion v�|[0,tn+1−tn] of the optimal control function v� to the system, see, e.g.,
Alamir [1] or Findeisen [9]. Provided that tn+1 − tn = T holds for all n, this problem
is equivalent to our setting if the sampled data system (2.8) and the integral criterion
(3.4) is used.

Regarding notation, in NMPC it is important to distinguish between the open-
loop predictions and the NMPC closed loop. Here we have decided to denote the
open-loop predictions by xu(k) or xu(k, x0) and the NMPC closed-loop trajecto-
ries by either x(n) or—more often—by xμN

(n) or xμN
(n, x0). There are, however,

various other notations commonly found in the literature. For instance, the predic-
tion at time instant n is occasionally denoted as x(k|n) in order to emphasize the
dependence on the time instant n. In our notation, the dependence on n is implic-
itly expressed via the initial condition x0 = x(n) and the index n in (OCPn

N) or
(OCPn

N,e). Whenever necessary, the value of n under consideration will be specified
in the context. On the other hand, we decided to always explicitly indicate the de-
pendence of open-loop solutions on the control sequence u. This notation enables
us to easily distinguish between open-loop and closed-loop solutions and also for
simultaneously considering open-loop solutions for different control sequences.

In linear discrete time MPC, the optimization at each sampling instant is oc-
casionally performed over control sequences with predefined values u(K), . . . ,

u(N −1) for some K ∈ {1, . . . ,N −1}, i.e., only u(0), . . . , u(K −1) are used as op-
timization variables in (OCPN,e) and its variants. For instance, if x∗ = 0 and u∗ = 0,
cf. Sect. 3.1, then u(K), . . . , u(N − 1) = 0 is a typical choice. In this setting, K

is referred to as optimization horizon (or control horizon) and N is referred to as
prediction horizon. Since this variant is less common in nonlinear MPC, we do not
consider it in this book; in particular, we use the terms optimization horizon and
prediction horizon synonymously, while the term control horizon will receive a dif-
ferent meaning in Sect. 7.4. Still, most of the subsequent analysis could be extended
to the case in which the optimization horizon and the prediction horizon do not
coincide.

Regarding the cost function �, the setting described in Sects. 3.1 and 3.3 is easily
extended to the case in which a set instead of a single equilibrium or a time-variant
family of sets instead of a single reference shall be stabilized. Indeed, if we are given
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a family of sets Xref(n) ⊂ X such that for each x ∈ Xref(n) there is a control ux with
f (x,ux) ∈ Xref(n + 1), then we can modify (3.8) to

�(n, x,ux) = 0 for all x ∈ Xref(n) and

�(n, x,u) > 0 for all x ∈ X \ Xref(n), u ∈ U.
(3.24)

Similarly, we can modify (3.2) in the time-invariant case.
Another modification of �, again often found in the linear MPC literature,

are running cost functions which include two consecutive control values, i.e.,
�(xu(k), u(k), u(k − 1)). Typically, this is used in order to penalize large changes
in the control input by adding a term σ‖u(k) − u(k − 1)‖ (assuming U to be a
vector space with norm ‖ · ‖, for simplicity). Using the augmented state x̃u(k) =
(xu(k), u(k − 1)) this can be transformed into a cost function meeting our setting by
defining �̃(x̃u(k), u(k)) = �(xu(k), u(k), u(k − 1)).

Yet another commonly used variant are running costs in which only an output
y = h(x) instead of the whole state is taken into account. In this case, � will usually
no longer satisfy (3.2) or (3.8), i.e., � will not be positive definite, anymore. We
will discuss this case in Sect. 7.3. In this context it should be noted that even if the
running cost � depends only on an output, the NMPC-feedback μN will nevertheless
be a state feedback law. Hence, if only output data is available, suitable observers
need to be used in order to reconstruct the state of the system.

The term dynamic programming was introduced by Bellman [2] and due to his
seminal contributions to this area the dynamic programming principle is often also
called Bellman’s principle of optimality. The principle is widely used in many ap-
plication areas and a quite comprehensive account of its use in various different
settings is given in the monographs by Bertsekas [4, 5]. For K = 1, the dynamic
programming principle (3.15) simplifies to

VN(n, x) = inf
u∈U

1
XN−1

(n,x)

{
ωN�(n + k, x,u) + VN−1

(
n + 1, f (x,u)

)}
(3.25)

and in this form it can be used for recursively computing V1,V2, . . . , VN starting
from V0(n, x) = F(n,x). Once VN and VN−1 are known, the feedback law μN can
be obtained from (3.19).

Whenever VN can be expressed using simple functions this approach of comput-
ing VN can be efficiently used. For instance, when the dynamics are linear and finite
dimensional, the running cost is quadratic and there are no constraints, then VN can
be expressed as VN(x) = x�PNx for a matrix PN ∈ R

d×d and (3.25) reduces to the
Riccati difference equation, see, e.g., Dorato and Levis [8].

For nonlinear systems with low-dimensional state space it is also possible to
approximate VN numerically using the backward recursion induced by (3.25) with
approximations Ṽ1 ≈ V1, . . . , ṼN ≈ VN . These approximations can then, in turn, be
used in order to compute a numerical approximation of the NMPC-feedback law
μN . This is, roughly speaking, the idea behind the so-called explicit MPC methods,
see, e.g., Borrelli, Baotic, Bemporad and Morari [6], Bemporad and Filippi [3],
Tøndel, Johansen and Bemporad [11], to mention but a few papers from this area
in which often special problem structures like piecewise linear dynamics instead of
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general nonlinear models are considered. The main advantage of this approach is
that ṼN and the approximation of μN can be computed offline and thus the online
computational effort of evaluating μN is very low. Hence, in contrast to conventional
NMPC in which (OCPn

N,e) is entirely solved online, this method is also applicable
to very fast systems which require fast sampling.

Unfortunately, for high-dimensional systems, the numerical effort of this ap-
proach becomes prohibitive since the computational complexity of computing ṼN

grows exponentially in the state dimension, unless one can exploit very specific
problem structure. This fact—the so-called curse of dimensionality—arises because
the approximation of VN requires a global solution to (OCPn

N,e) or its variants for all
initial values x0 ∈ X or at least in the set of interest, which is typically a set of full
dimension in state space. Consequently, the dynamic programming method cannot
be applied to high-dimensional systems. In contrast to this, the methods we will dis-
cuss in Chap. 10 solve (OCPn

N,e) for a single initial value x0 only at each sampling
instant, i.e. locally in space. Since this needs to be done online, these methods are in
principle slower, but since the numerical effort scales much more moderate with the
state dimension they are nevertheless applicable to systems with much higher state
dimension.

3.6 Problems

1. Consider the control system

x+ = f (x,u) = ax + bu

with x ∈ X = R, u ∈ U = R, constraints X = [−1,1] and U = [−100,100] and
real parameters a, b ∈ R.
(a) For which parameters a, b ∈ R is the state constraint set X viable?
(b) For those parameters for which X is not viable, determine a viable state

constraint set contained in X.
2. Compute an optimal trajectory for the optimal control problem (OCPN,e)

minimize
N−1∑

k=0

u(k)2,

subject to x1(k + 1) = x1(k) + 2x2(k),

x2(k + 1) = 2u(k) − x2(k),

x1(0) = 0, x2(0) = 0,

x1(N) = 4, x2(N) = 0

with N = 4 via dynamic programming.
3. Consider the NMPC problem defined by the dynamics

x+ = f (x,u) = x + u
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with x ∈ X = R, u ∈ U = R and running costs

�(x,u) = x2 + u2.

(a) Compute the optimal value function V2 and the NMPC-feedback law μ2 by
dynamic programming.

(b) Show that V2 is a Lyapunov function for the closed loop and compute the
functions α1, α2 and αV in (2.37) and (2.38).

(c) Show that the NMPC closed loop is globally asymptotically stable without
using the Lyapunov function V2.

4. Consider an optimal trajectory xu�(·, x0) for the optimal control problem (OCPN)
with initial value x0 and optimization horizon N ≥ 2. Prove that for any K ∈
{1, . . . ,N − 1} the tail

xu�(K,x0), . . . , xu�(N − 1, x0)

of the optimal trajectory along with the tail

u�(K), . . . , u�(N − 1)

of the optimal control sequence are optimal for (OCPN) with new initial value
xu�(K,x0) and optimization horizon N − K , i.e., that

N−1∑

k=K

�
(
xu�(k, x0), u

�(k)
) = VN−K

(
xu�(K,x0)

)

holds.
5. After a lecture in which you presented the basic NMPC Algorithm 3.1, a student

asks the following question:
“If I ride my bicycle and want to make a turn to the left, I first steer a little

bit to the right to make my bicycle tilt to the left. Let us assume that this way
of making a turn is optimal for a suitable problem of type (OCPN). This would
mean that the optimal control sequence will initially steer to the right and later
steer to the left. If we use this optimal control sequence in an NMPC algorithm,
only the first control action will be implemented. As a consequence, we will
always steer to the right, and we will make a turn to the right instead of a turn to
the left. Does this mean that NMPC does not work for controlling my bicycle?”

What do you respond?
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Chapter 4
Infinite Horizon Optimal Control

In this chapter we give an introduction to nonlinear infinite horizon optimal control.
The dynamic programming principle as well as several consequences of this prin-
ciple are proved. One of the main results of this chapter is that the infinite horizon
optimal feedback law asymptotically stabilizes the system and that the infinite hori-
zon optimal value function is a Lyapunov function for the closed loop system. Moti-
vated by this property we formulate a relaxed version of the dynamic programming
principle, which allows to prove stability and suboptimality results for nonoptimal
feedback laws and without using the optimal value function. A practical version of
this principle is provided, too. These results will be central in the following chapters
for the stability and performance analysis of NMPC algorithms. For the special case
of sampled-data systems we finally show that for suitable integral costs asymptotic
stability of the continuous time sampled data closed loop system follows from the
asymptotic stability of the associated discrete time system.

4.1 Definition and Well Posedness of the Problem

For the finite horizon optimal control problems from the previous chapter we can
define infinite horizon counterparts by replacing the upper limits N − 1 in the re-
spective sums by ∞. Since for this infinite horizon formulation the terminal state
xu(N) vanishes from the problem, it is not reasonable to consider terminal con-
straints. Furthermore, we will not consider any weights in the infinite horizon case.
Hence, the most general infinite horizon problem we consider is the following:

minimize J∞
(
n,x0, u(·)) :=

∞∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
∞(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)
.

(OCPn∞)

Here, the function � is as in (3.8), i.e., it penalizes the distance to a (possibly time
varying) reference trajectory xref. We optimize over the set of admissible control se-
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quences U
∞(x0) defined in Definition 3.2 and assume that this set is nonempty for

all x0 ∈ X, which is equivalent to the viability of X according to Assumption 3.3. In
order to keep the presentation self-contained all subsequent statements are formu-
lated for general time varying reference xref. In the special case of constant reference
xref ≡ x∗ the running cost � and the functional J∞ in (OCPn∞) do not depend on the
time n.

Similar to Definition 3.14 we define the optimal value function and optimal tra-
jectories.

Definition 4.1 Consider the optimal control problem (OCPn∞) with initial value
x0 ∈ X and time instant n ∈ N0.

(i) The function

V∞(n, x0) := inf
u(·)∈U∞(x0)

J∞
(
n,x0, u(·))

is called optimal value function.
(ii) A control sequence u�(·) ∈ U

∞(x0) is called optimal control sequence for x0 if

V∞(n, x0) = J∞
(
n,x0, u

�(·))

holds. The corresponding trajectory xu�(·, x0) is called optimal trajectory.

Since now—in contrast to the finite horizon problem—an infinite sum appears
in the definition of J∞, it is no longer straightforward that V∞ is finite. In order to
ensure that this is the case the following definition is helpful.

Definition 4.2 Consider the control system (2.1) and a reference trajectory xref :
N0 → X with reference control sequence uref ∈ U

∞(xref(0)). We say that the system
is (uniformly) asymptotically controllable to xref if there exists a function β ∈ K L
such that for each initial time n0 ∈ N0 and each admissible initial value x0 ∈ X there
exists an admissible control sequence u ∈ U

∞(x0) such that the inequality
∣∣xu(n, x0)

∣∣
xref(n+n0)

≤ β
(|x0|xref(n0)

, n
)

(4.1)

holds for all n ∈ N0. We say that this asymptotic controllability has the small control
property if u ∈ U

∞(x0) can be chosen such that the inequality
∣∣xu(n, x0)

∣∣
xref(n+n0)

+ ∣∣u(n)
∣∣
uref(n+n0)

≤ β
(|x0|xref(n0)

, n
)

(4.2)

holds for all n ∈ N0. Here, as in Sect. 2.3 we write |x1|x2 = dX(x1, x2) and |u1|u2 =
dU(u1, u2).

Observe that uniform asymptotic controllability is a necessary condition for uni-
form feedback stabilization. Indeed, if we assume asymptotic stability of the closed-
loop system x+ = g(n, x) = f (x,μ(n, x)), then we immediately get asymptotic
controllability with control u(n) = μ(n + n0, x(n + n0, n0, x0)). The small control
property, however, is not satisfied in general.
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In order to use Definition 4.2 for deriving bounds on the optimal value function,
we need a result known as Sontag’s K L-Lemma [24, Proposition 7]. This proposi-
tion states that for each K L-function β there exist functions γ1, γ2 ∈ K∞ such that
the inequality

β(r, n) ≤ γ1
(
e−nγ2(r)

)

holds for all r, n ≥ 0 (in fact, the result holds for real n ≥ 0 but we only need it for
integers here). Using the functions γ1 and γ2 we can define running cost functions

�(n, x,u) := γ −1
1

(|x|xref(n)

) + λγ −1
1

(|u|uref(n)

)
(4.3)

for λ ≥ 0. The following theorem states that under Definition 4.2 this running cost
ensures (uniformly) finite upper and positive lower bounds on V∞.

Theorem 4.3 Consider the control system (2.1) and a reference trajectory xref :
N0 → X with reference control sequence uref ∈ U

∞(xref(0)). If the system is asymp-
totically controllable to xref, then there exist α1, α2 ∈ K∞ such that the optimal
value function V∞ corresponding to the cost function � : N0 × X × U → R

+
0 from

(4.3) with λ = 0 satisfies

α1
(|x0|xref(n0)

) ≤ V∞(n0, x0) ≤ α2
(|x0|xref(n0)

)
(4.4)

for all n0 ∈ N0 and all x0 ∈ X.
If, in addition, the asymptotic controllability has the small control property then

the statement also holds for � from (4.3) with arbitrary λ ≥ 0.

Proof For each x0, n0 and u ∈ U
∞(x0) we get

J∞(n0, x0, u) =
∞∑

k=0

�
(
n0 + k, xu(k, x0), u(k)

) ≥ �
(
n,xu(0, x0), u(0)

)

≥ γ −1
1

(|x0|xref(n0)

)

for each λ ≥ 0. Hence, from the definition of V∞ we get

V∞(n0, x0) = inf
u(·)∈U∞(x0)

J∞
(
n0, x0, u(·)) ≥ γ −1

1

(|x0|xref(n0)

)
.

This proves the lower bound in (4.4) for α1 = γ −1
1 .

For proving the upper bound, we first consider the case λ = 0. For all n0 and x0

the control u ∈ U
∞(x0) from Definition 4.2 yields

V∞(n0, x0) ≤ J∞(n0, x0, u)

=
∞∑

k=0

�
(
n0 + k, xu(k, x0), u(k)

)

=
∞∑

k=0

γ −1
1

(∣∣xu(k, x0)
∣∣
xref(n0+k)

)
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≤
∞∑

k=0

γ −1
1

(
β
(|x0|xref(n0)

, k
)) ≤

∞∑

k=0

e−kγ2
(|x0|xref(n0)

)

= e

e − 1
γ2

(|x0|xref(n0)

)
,

i.e., the upper inequality from (4.4) with α2(r) = eγ2(r)/(e − 1). If the small
control property holds, then the upper bound for λ > 0 follows similarly with
α2(r) = (1 + λ)eγ2(r)/(e − 1). �

In fact, the specific form (4.3) is just one possible choice of � for which this
theorem holds. It is rather easy to extend the result to any � which is bounded from
below by some K∞-function in x (uniformly for all u and n) and bounded from
above by � from (4.3) in balls Bε(x

ref(n)). Since, however, the choice of appropriate
cost functions � for infinite horizon optimal control problems is not a central topic
of this book, we leave this extension to the interested reader.

4.2 The Dynamic Programming Principle

In this section we essentially restate and reprove the results from Sect. 3.4 for the
infinite horizon case. We begin with the dynamic programming principle for the
infinite horizon problem (OCPn∞). Throughout this section we assume that V∞(x)

is finite for all x ∈ X as ensured, e.g., by Theorem 4.3.

Theorem 4.4 Consider the optimal control problem (OCPn∞) with x0 ∈ X and n ∈
N0. Then for all K ∈ N the equation

V∞(n, x0) = inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

+ V∞
(
n + K,xu(K,x0)

)
}

(4.5)

holds. If, in addition, an optimal control sequence u�(·) exists for x0, then we get
the equation

V∞(n, x0) =
K−1∑

k=0

�
(
n + k, xu�(k, x0), u

�(k)
) + V∞

(
n + K,xu�(K,x0)

)
. (4.6)

In particular, in this case the “inf” in (4.5) is a “min”.

Proof From the definition of J∞ for u(·) ∈ U
∞(x0) we immediately obtain

J∞
(
n,x0, u(·))

=
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + J∞
(
n + K,xu(K,x0), u(· + K)

)
, (4.7)
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where u(· + K) denotes the shifted control sequence defined by u(· + K)(k) =
u(k + K), which is admissible for xu(K,x0).

We now prove (4.5) by showing “≥” and “≤” separately: From (4.7) we obtain

J∞
(
n,x0, u(·)) =

K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + J∞
(
n + K,xu(K,x0), u(· + K)

)

≥
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + V∞
(
n + K,xu(K,x0)

)
.

Since this inequality holds for all u(·) ∈ U
∞, it also holds when taking the infimum

on both sides. Hence we get

V∞(n, x0) = inf
u(·)∈U∞(x0)

J∞
(
n,x0, u(·))

≥ inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + V∞
(
n + K,xu(K,x0)

)
}

,

i.e., (4.5) with “≥”.
In order to prove “≤”, fix ε > 0 and let uε(·) be an approximately optimal control

sequence for the right hand side of (4.7), i.e.,

K−1∑

k=0

�
(
n + k, xuε (k, x0), u

ε(k)
) + J∞

(
n + K,xuε (K,x0), u

ε(· + K)
)

≤ inf
u(·)∈U∞(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

+ J∞
(
n + K,xu(K,x0), u(· + K)

)
}

+ ε.

Now we decompose u(·) ∈ U
∞(x0) analogously to Lemma 3.12(ii) and (iii) into

u1 ∈ U
K(x0) and u2 ∈ U

∞(xu1(K,x0)) via

u(k) =
{

u1(k), k = 0, . . . ,K − 1,

u2(k − K), k ≥ K .

This implies

inf
u(·)∈U∞(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + J∞
(
n + K,xu(K,x0), u(· + K)

)
}

= inf
u1(·)∈U

K(x0)
u2(·)∈U

∞(xu1 (K,x0))

{
K−1∑

k=0

�
(
n + k, xu1(k, x0), u1(k)

)

+ J∞
(
n + K,xu1(K,x0), u2(·)

)
}
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= inf
u1(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu1(k, x0), u1(k)

) + V∞
(
n + K,xu1(K,x0)

)
}

.

Now (4.7) yields

V∞(n, x0) ≤ J∞
(
n,x0, u

ε(·))

=
K−1∑

k=0

�
(
n + k, xuε (k, x0), u

ε(k)
)

+ J∞
(
n + K,xuε(K,x0), u

ε(· + K)
)

≤ inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

+ V∞
(
n + K,xu(K,x0)

)
}

+ ε,

i.e.,

V∞(n, x0) ≤ inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

+ V∞
(
n + K,xu(K,x0)

)
}

+ ε.

Since ε > 0 was arbitrary and the expressions in this inequality are independent of
ε, this inequality also holds for ε = 0, which shows (4.5) with “≤” and thus (4.5).

In order to prove (4.6) we use (4.7) with u(·) = u�(·). This yields

V∞(n, x0) = J∞
(
n,x0, u

�(·))

=
K−1∑

k=0

�
(
n + k, xu�(k, x0), u

�(k)
) + J∞

(
n + K,xu�(K,x0), u

�(· + K)
)

≥
K−1∑

k=0

�
(
n + k, xu�(k, x0), u

�(k)
) + V∞

(
n + K,xu�(K,x0)

)

≥ inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + V∞
(
n + K,xu(K,x0)

)
}

= V∞(n, x0),

where we used the (already proved) Equality (4.5) in the last step. Hence, the two
“≥” in this chain are actually “=” which implies (4.6). �

The following corollary states an immediate consequence from the dynamic pro-
gramming principle. It shows that tails of optimal control sequences are again opti-
mal control sequences for suitably adjusted initial value and time.
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Corollary 4.5 If u�(·) is an optimal control sequence for (OCPn∞) with initial value
x0 and initial time n, then for each K ∈ N the sequence u�

K(·) = u�(· + K), i.e.,

u�
K(k) = u�(K + k), k = 0,1, . . .

is an optimal control sequence for initial value xu�(K,x0) and initial time n + K .

Proof Inserting V∞(n, x0) = J∞(n, x0, u
�(·)) and the definition of u�

K(·) into (4.7)
we obtain

V∞(n, x0) =
K−1∑

k=0

�
(
n + k, xu�(k, x0), u

�(k)
) + J∞

(
n + K,xu�(K,x0), u

�
K(·)).

Subtracting (4.6) from this equation yields

0 = J∞
(
n + K,xu�(K,x0), u

�
K(·)) − V∞

(
n + K,xu�(K,x0)

)

which shows the assertion. �

The next two results are the analogs of Theorem 3.17 and Corollary 3.18 in the
infinite horizon setting.

Theorem 4.6 Consider the optimal control problem (OCPn∞) with x0 ∈ X and n ∈
N0 and assume that an optimal control sequence u�(·) exists. Then the feedback law
μ∞(n, x0) = u∗(0) satisfies

μ∞(n, x0) = argminu∈U1(x0)

{
�(n, x0, u) + V∞

(
n + 1, f (x0, u)

)}
(4.8)

and

V∞(n, x0) = �
(
n,x0,μ∞(n, x0)

) + V∞
(
n + 1, f

(
x0,μ∞(n, x0)

))
(4.9)

where in (4.8)—as usual—we interpret U
1(x0) as a subset of U , i.e., we identify the

one element sequence u = u(·) with its only element u = u(0).

Proof The proof is identical to the finite horizon counterpart Theorem 3.17. �

As in the finite horizon case, the following corollary shows that the feedback law
(4.8) can be used in order to construct the optimal control sequence.

Corollary 4.7 Consider the optimal control problem (OCPn∞) with x0 ∈ X and n ∈
N0 and consider an admissible feedback law μ∞ : N0 × X → U in the sense of
Definition 3.2(iv). Denote the solution of the closed-loop system

x(0) = x0, x(k + 1) = f
(
x(k),μ∞

(
n + k, x(k)

))
, k = 0,1, . . . (4.10)

by xμ∞ and assume that μ∞ satisfies (4.8) for initial values x0 = xμ∞(k) for all
k = 0,1, . . . . Then

u�(k) = μ∞
(
n + k, xu�(k, x0)

)
, k = 0,1, . . . (4.11)

is an optimal control sequence for initial time n and initial value x0 and the solution
of the closed-loop system (4.10) is a corresponding optimal trajectory.
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Proof From (4.11) for x(n) from (4.10) we immediately obtain

xu�(n, x0) = x(n), n = 0,1, . . . .

Hence we need to show that

V∞(n, x0) = J∞
(
n,x0, u

�
)
,

where it is enough to show “≥” because the opposite inequality follows by definition
of V∞. Using (4.11) and (4.9) we get

V∞(n + k, x0) = �
(
n + k, x(k), u�(k)

) + V∞
(
n + k + 1, x(k + 1)

)

for k = 0,1, . . . . Summing these equalities for k = 0, . . . ,K −1 for arbitrary K ∈ N

and eliminating the identical terms V∞(n + k, x0), k = 1, . . . ,K − 1 on the left and
on the right we obtain

V∞(n, x0) =
K−1∑

k=0

�
(
n + k, x(k), u�(k)

) + V∞
(
n + K,x(K)

)

≥
K−1∑

k=0

�
(
n + k, x(k), u�(k)

)
.

Since the sum is monotone increasing in K and bounded from above, for K → ∞
the right hand side converges to J∞(n, x0, u

�) showing the assertion. �

Corollary 4.7 implies that infinite horizon optimal control is nothing but NMPC
with N = ∞: Formula (4.11) for k = 0 yields that if we replace the optimization
problem (OCPn

N) in Algorithm 3.7 by (OCPn∞), then the feedback law resulting from
this algorithm equals μ∞. The following theorem shows that this infinite horizon
NMPC-feedback law yields an asymptotically stable closed loop and thus solves
the stabilization and tracking problem.

Theorem 4.8 Consider the optimal control problem (OCPn∞) for the control system
(2.1) and a reference trajectory xref : N0 → X with reference control sequence uref ∈
U

∞(xref(0)). Assume that there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1
(|x|xref(n)

) ≤ V∞(n, x) ≤ α2
(|x|xref(n)

)
and �(n, x,u) ≥ α3

(|x|xref(n)

)

(4.12)

hold for all x ∈ X, n ∈ N0 and u ∈ U . Assume furthermore that an optimal feedback
μ∞ exists, i.e., an admissible feedback law μ∞ : N0 × X → U satisfying (4.8) for
all n ∈ N0 and all x ∈ X. Then this optimal feedback asymptotically stabilizes the
closed-loop system

x+ = g(n, x) = f
(
x,μ∞(n, x)

)

on X in the sense of Definition 2.16.
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Proof For the closed-loop system, (4.9) and the last inequality in (4.12) yield

V∞(n, x) = �
(
n,x,μ∞(n, x)

) + V∞
(
n + 1, f

(
x,μ∞(n, x)

))

≥ α3
(|x|xref(n)

) + V∞
(
n + 1, f

(
x,μ∞(n, x)

))
.

Together with the first two inequalities in (4.12) this shows that V∞ is a Lyapunov
function on X in the sense of Definition 2.21 with αV = α3. Thus, Theorem 2.22
yields asymptotic stability on X. �

By Theorem 4.3 we can replace (4.12) by the asymptotic controllability condition
from Definition 4.2 if � is of the form (4.3). This is used in the following corollary
in order to give a stability result without explicitly assuming (4.12).

Corollary 4.9 Consider the optimal control problem (OCPn∞) for the control sys-
tem (2.1) and a reference trajectory xref : N0 → X with reference control sequence
uref ∈ U

∞(xref(0)). Assume that the system is asymptotically controllable to xref

and that an optimal feedback μ∞, i.e., a feedback satisfying (4.8), exists for the cost
function � : N0 × X × U → R

+
0 from (4.3) with λ = 0. Then this optimal feedback

asymptotically stabilizes the closed-loop system

x+ = g(n, x) = f
(
x,μ∞(n, x)

)

on X in the sense of Definition 2.16.
If, in addition, the asymptotic controllability has the small control property then

the statement also holds for � from (4.3) with arbitrary λ ≥ 0.

Proof Theorem 4.3 yields

α1
(|x0|xref(n0)

) ≤ V∞(n0, x0) ≤ α2
(|x0|xref(n0)

)

for suitable α1, α2 ∈ K∞. Furthermore, by (4.3) the third inequality in (4.12) holds
with α3 = γ −1

1 . Hence, (4.12) holds and Theorem 4.8 yields asymptotic stability
on X. �

4.3 Relaxed Dynamic Programming

The last results of the previous section show that infinite horizon optimal control can
be used in order to derive a stabilizing feedback law. Unfortunately, a direct solution
of infinite horizon optimal control problems is in general impossible, both analyti-
cally and numerically. Still, infinite horizon optimal control plays an important role
in our analysis since we will interpret the model predictive control algorithm as an
approximation of the infinite horizon optimal control problem. Here the term “ap-
proximation” is not necessarily to be understood in the sense of “being close to”
(although this aspect is not excluded) but rather in the sense of “sharing the impor-
tant structural properties”.

Looking at the proof of Theorem 4.8 we see that the important property for sta-
bility is the inequality
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V∞(n, x) ≥ �
(
n,x,μ∞(n, x)

) + V∞
(
n + 1, f

(
x,μ∞(n, x)

))

which follows from the feedback version (4.9) of the dynamic programming princi-
ple. Observe that although (4.9) yields equality, only this inequality is needed in the
proof of Theorem 4.8.

This observation motivates a relaxed version of this dynamic programming in-
equality which on the one hand yields asymptotic stability and on the other hand
provides a quantitative measure of the closed-loop performance of the system. This
relaxed version will be formulated in Theorem 4.11, below. In order to quantitatively
measure the closed-loop performance, we use the infinite horizon cost functional
evaluated along the closed-loop trajectory which we define as follows.

Definition 4.10 Let μ : N0 × X → U be an admissible feedback law. For the tra-
jectories xμ(n) of the closed-loop system x+ = f (x,μ(n, x)) with initial value
xμ(n0) = x0 ∈ X we define the infinite horizon cost as

J∞(n0, x0,μ) :=
∞∑

k=0

�
(
n0 + k, xμ(n0 + k),μ

(
n0 + k, xμ(n0 + k)

))
.

Since by (3.8) our running cost � is always nonnegative, either the infinite sum
has a well defined finite value or it diverges to infinity, in which case we write
J∞(n0, x0,μ) = ∞.

By Corollary 4.7 for the infinite horizon optimal feedback law μ∞ we obtain

J∞(n0, x0,μ∞) = V∞(n0, x0)

while for all other admissible feedback laws μ we get

J∞(n0, x0,μ) ≥ V∞(n0, x0).

In other words, V∞ is a strict lower bound for J∞(n0, x0,μ).
The following theorem now gives a relaxed dynamic programming condition

from which we can derive both asymptotic stability and an upper bound on the
infinite horizon cost J∞(n0, x0,μ) for an arbitrary admissible feedback law μ.

Theorem 4.11 Consider a running cost � : N0 × X × U → R
+
0 and a function

V : N0 × X → R
+
0 . Let μ : N0 × X → U be an admissible feedback law and let

S(n) ⊆ X, n ∈ N0 be a family of forward invariant sets for the closed-loop system

x+ = g(n, x) = f
(
x,μ(n, x)

)
. (4.13)

Assume there exists α ∈ (0,1] such that the relaxed dynamic programming inequal-
ity

V (n,x) ≥ α�
(
n,x,μ(n, x)

) + V
(
n + 1, f

(
x,μ(n, x)

))
(4.14)

holds for all n ∈ N0 and all x ∈ S(n). Then the suboptimality estimate

J∞(n, x,μ) ≤ V (n,x)/α (4.15)

holds for all n ∈ N0 and all x ∈ S(n).
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If, in addition, there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1
(|x|xref(n)

) ≤ V (n,x) ≤ α2
(|x|xref(n)

)
and �(n, x,u) ≥ α3

(|x|xref(n)

)

hold for all x ∈ X, n ∈ N0, u ∈ U and a reference trajectory xref : N0 → X, then
the closed-loop system (4.13) is asymptotically stable on S(n) in the sense of Defi-
nition 2.16.

Proof In order to prove (4.15) consider n ∈ N0, x ∈ S(n) and the trajectory xμ(·) of
(4.13) with xμ(n) = x. By forward invariance of the sets S(n) this trajectory satisfies
xμ(n + k) ∈ S(n + k). Hence from (4.14) for all k ∈ N0 we obtain

α�
(
n + k, xμ(n + k),μ

(
n + k, xμ(n + k)

))

≤ V
(
n + k, xμ(n + k)

) − V
(
n + k + 1, xμ(n + k + 1)

)
.

Summing over k yields for all K ∈ N

α

K−1∑

k=0

�
(
n + k, xμ(n + k),μ

(
n + k, xμ(n + k)

))

≤ V
(
n,xμ(n)

) − V
(
n + K,xμ(n + K)

)

≤ V (n,x)

since V (n+K,xμ(n+K)) ≥ 0 and xμ(n) = x. Since the running cost � is nonneg-
ative, the term on the left is monotone increasing and bounded, hence for K → ∞
it converges to αJ∞(n, x,μ). Since the right hand side is independent of K , this
yields (4.15).

The stability assertion now immediately follows by observing that V satisfies all
assumptions of Theorem 2.22 with αV = αα3. �

Remark 4.12 An inspection of the proof of Theorems 2.19 and 2.22 reveals that
for fixed α1, α2 ∈ K∞ and αV = α α3 with fixed α3 ∈ K∞ and varying α ∈ (0,1]
the attraction rate β ∈ K L constructed in this proof depends on α in the following
way: if βα and βα′ are the attraction rates from Theorem 2.22 for αV = α α3 and
αV = α′α3, respectively, with α′ ≥ α, then βα′(r, t) ≤ βα(r, t) holds for all r, t ≥ 0.
This in particular implies that for every ᾱ ∈ (0,1) the attraction rate βᾱ is also an
attraction rate for all α ∈ [ᾱ,1], i.e., we can find an attraction rate β ∈ K L which is
independent of α ∈ [ᾱ,1].

Remark 4.13 Theorem 4.11 proves asymptotic stability of the discrete time closed-
loop system (4.13) or (2.5). For a sampled data system (2.8) with sampling period
T > 0 this implies the discrete time stability estimate (2.47) for the sampled data
closed-loop system (2.30). For sampled data systems we may define the running
cost � as an integral over a function L according to (3.4), i.e.,

�(x,u) :=
∫ T

0
L

(
ϕ(t,0, x,u),u(t)

)
dt.
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We show that for this choice of � a mild condition on L ensures that the sampled
data closed-loop system (2.30) is also asymptotically stable in the continuous time
sense, i.e., that (2.48) holds. For simplicity, we restrict ourselves to a time invariant
reference xref ≡ x∗.

The condition we use is that there exists δ ∈ K∞ such that the vector field fc in
(2.6) satisfies

∥∥fc(x,u)
∥∥ ≤ max

{
ε, δ(1/ε)L(x,u)

}
(4.16)

for all x ∈ X, all u ∈ U and all ε > 0. For instance, in a linear–quadratic problem
with X = R

d , U = R
m and x∗ = 0 we have ‖fc(x,u)‖ = ‖Ax + Bu‖ ≤ C1(‖x‖ +

‖u‖) and L(x,u) = x�Qx + u�Ru ≥ C2(‖x‖ + ‖u‖)2 for suitable constants C1,
C2 > 0 provided Q and R are positive definite. In this case, (4.16) holds with δ(r) =
C2

1/C2r , since ‖fc(x,u)‖ > ε implies C1(‖x‖ + ‖u‖) > ε and thus

C1
(‖x‖ + ‖u‖) ≤ C2

1

ε

(‖x‖ + ‖u‖)2 ≤ C2
1

C2ε
C2

(‖x‖ + ‖u‖)2 = δ(1/ε)L(x,u).

In the general nonlinear case, (4.16) holds if fc is continuous with fc(x∗, u∗) = 0,
L(x,u) is positive definite and the inequality ‖fc(x,u)‖ ≤ CL(x,u) holds for some
constant C > 0 whenever ‖fc(x,u)‖ is sufficiently large.

We now show that (4.16) together with Theorem 4.11 implies the continuous
time stability estimate (2.48). If the assumptions of Theorem 4.11 hold, then (4.15)
implies �(x,μ(x)) ≤ V (x)/α ≤ α2(|x|x∗)/α. Thus, for t ∈ [0, T ] Inequality (4.16)
yields

∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ |x|x∗ +

∫ t

0

∥∥fc

(
ϕ(τ,0, x,μ),μ(x)(τ )

)∥∥dτ

≤ |x|x∗ + max

{

tε, δ(1/ε)

∫ t

0
L

(
ϕ(τ,0, x,μ),μ(x)(τ )

)
dτ

}

≤ |x|x∗ + max
{
T ε, δ(1/ε)�(x,u)

}

≤ |x|x∗ + max
{
T ε, δ(1/ε)α2

(|x|x∗
)
/α

}
.

Setting ε = γ̃ (|x|x∗) with

γ̃ (r) = 1

δ−1( 1√
α2(r)

)

for r > 0 and γ̃ (0) = 0 yields γ̃ ∈ K∞ and

δ(1/ε)α2
(|x|x∗

) =
√

α2
(|x|x∗

)
.

Hence, defining

γ (r) = r + max
{
T γ̃ (r),

√
α2(r)/α

}

we finally obtain
∣
∣ϕ(t,0, x,μ)

∣
∣
x∗ ≤ γ

(|x|x∗
)

for all t ∈ [0, T ] with γ ∈ K∞.



4.3 Relaxed Dynamic Programming 79

Hence, if (4.16) and the assumptions of Theorem 4.11 hold, then the sampled
data closed-loop system (2.30) fulfills the uniform boundedness over T property
from Definition 2.24 and consequently by Theorem 2.27 the sampled data closed-
loop system (2.30) is asymptotically stable.

We now turn to investigating practical stability. Recalling Definitions 2.15
and 2.17 of P -practical asymptotic stability and their Lyapunov function characteri-
zations in Theorems 2.20 and 2.23 we can formulate the following practical version
of Theorem 4.11.

Theorem 4.14 Consider a running cost � : N0 × X × U → R
+
0 and a function

V : N0 × X → R
+
0 . Let μ : N0 × X → U be an admissible feedback law and let

S(n) ⊆ X, and P(n) ⊂ S(n), n ∈ N0 be families of forward invariant sets for the
closed-loop system (4.13).

Assume there exists α ∈ (0,1] such that the relaxed dynamic programming in-
equality (4.14) holds for all n ∈ N0 and all x ∈ S(n) \ P(n). Then the suboptimality
estimate

Jk∗(n, x,μ) ≤ V (n,x)/α (4.17)

holds for all n ∈ N0 and all x ∈ S(n), where k∗ ∈ N0 is the minimal time with
xμ(k∗ + n,n, x) ∈ P(k∗ + n) and

Jk∗(n, x,μ) :=
k∗−1∑

k=0

�
(
n + k, xμ(n + k,n, x),μ

(
n + k, xμ(n + k,n, x)

))

is the truncated closed-loop performance functional from Definition 4.10.
If, in addition, there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1
(|x|xref(n)

) ≤ V (n,x) ≤ α2
(|x|xref(n)

)
and �(n, x,u) ≥ α3

(|x|xref(n)

)

hold for all x ∈ X, n ∈ N0 and u ∈ U and a reference xref : N0 → X, then the closed-
loop system (4.13) is P -asymptotically stable on S(n) in the sense of Definition 2.17.

Proof The proof follows with analogous arguments as the proof of Theorem 4.11 by
only considering k < k∗ in the first part and using Theorem 2.23 with Y(n) = S(n)

instead of Theorem 2.22 in the second part. �

Remark 4.15

(i) Note that Remark 4.12 holds accordingly for Theorem 4.14. Furthermore, it
is easily seen that both Theorem 4.11 and Theorem 4.14 remain valid if f in
(4.13) depends on n.

(ii) The suboptimality estimate (4.17) states that the closed-loop trajectories
xμ(·, x) from (4.13) behave like suboptimal trajectories until they reach the
sets P(·).

As a consequence of Theorem 4.11, we can show the existence of a stabilizing
almost optimal infinite horizon optimal feedback even if no infinite horizon optimal
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feedback exists. The assumptions of the following Theorem 4.16 are identical with
the assumptions of Theorem 4.8 except that we do not assume the existence of an
infinite horizon optimal feedback law μ∞.

Theorem 4.16 Consider the optimal control problem (OCPn∞) with running cost
� of the form (3.8) for the control system (2.1) and a reference trajectory xref :
N0 → X with reference control sequence uref ∈ U

∞(xref(0)). Assume that there exist
α1, α2, α3 ∈ K∞ such that the Inequalities (4.12) hold for all x ∈ X, n ∈ N0 and
u ∈ U .

Then for each α ∈ (0,1) there exists an admissible feedback μα : N0 × X → U

which asymptotically stabilizes the closed-loop system

x+ = g(n, x) = f
(
x,μα(n, x)

)

on X in the sense of Definition 2.16 and satisfies

J∞(n, x,μα) ≤ V∞(n, x)/α

for all x ∈ X and n ∈ N0.

Proof Fix α ∈ (0,1) and pick an arbitrary x ∈ X. From (4.5) for K = 1 for each
x ∈ X and each ε > 0 there exists uε

x ∈ U
1(x) with

V∞(n, x) ≥ �
(
n,x,uε

x

) + V∞
(
n + 1, f

(
x,uε

x

)) − ε.

If V∞(n, x) > 0, then (4.12) implies x �= xref(n) and thus again (4.12) yields the
inequality infu∈U �(n, x,u) > 0. Hence, choosing ε = (1 − α) infu∈U �(n, x,u) and
setting μα(n, x) = uε

x yields

V∞(n, x) ≥ α�
(
n,x,μα(n, x)

) + V∞
(
n + 1, f

(
x,μα(n, x)

))
. (4.18)

If V∞(n, x) = 0, then (4.12) implies x = xref(n) and thus from the definition
of uref we get f (x,uref(n)) = xref(n + 1). Using (4.12) once again gives us
V∞(n + 1, f (x,uref(n))) = 0 and from (3.8) we get �(n, x,uref(n)) = 0. Thus,
μα(n, x) = uref(n) satisfies (4.18). Hence, we obtain (4.14) with V = V∞ for all
x ∈ X. In conjunction with (4.12) this implies that all assumptions of Theorem 4.11
are satisfied for V = V∞ with S(n) = X. Thus, the assertion follows. �

Again we can replace (4.12) by the asymptotic controllability condition from
Definition 4.2.

Corollary 4.17 Consider the optimal control problem (OCPn∞) for the control sys-
tem (2.1) and a reference trajectory xref : N0 → X with reference control sequence
uref ∈ U

∞(xref(0)). Assume that the system is asymptotically controllable to xref and
that the cost function � : N0 × X × U → R

+
0 is of the form (4.3) with λ = 0. Then

for each α ∈ (0,1) there exists an admissible feedback μα : N0 × X → U which
asymptotically stabilizes the closed-loop system

x+ = g(n, x) = f
(
x,μα(n, x)

)
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on X in the sense of Definition 2.16 and satisfies

J∞(n, x,μα) ≤ V∞(n, x)/α

for all x ∈ X and n ∈ N0.
If, in addition, the asymptotic controllability has the small control property then

the statement also holds for � from (4.3) with arbitrary λ ≥ 0.

Proof Theorem 4.3 yields

α1
(|x0|xref(n0)

) ≤ V∞(n0, x0) ≤ α2
(|x0|xref(n0)

)

for suitable α1, α2 ∈ K∞. Furthermore, by (4.3) the third inequality in (4.12) holds
with α3 = γ −1

1 . Hence, (4.12) holds and Theorem 4.16 yields the assertion. �

While Theorem 4.16 and Corollary 4.17 are already nicer than Theorem 4.8 and
Corollary 4.9, respectively, in the sense that no existence of an optimal feedback law
is needed, for practical applications both theorems require the (at least approximate)
solution of an infinite horizon optimal control problem, which is in general a hard,
often infeasible computational task, see also the discussion in Sect. 4.4, below.

Hence, in the following chapters we are going to use Theorem 4.11 and Theo-
rem 4.14 in a different way: we will derive conditions under which (4.14) is satisfied
by the finite horizon optimal value function V = VN and the corresponding NMPC-
feedback law μ = μN . The advantage of this approach lies in the fact that in order
to compute μN(n0, x0) it is sufficient to know the finite horizon optimal control se-
quence u� for initial value x0. This is a much easier computing task, at least if the
optimization horizon N is not too large.

4.4 Notes and Extensions

Infinite horizon optimal control is a classical topic in control theory. The version
presented in Sect. 4.1 can be seen as a nonlinear generalization of the classical (dis-
crete time) linear–quadratic regulator (LQR) problem, see, e.g., Dorato and Levis
[6]. A rather general existence result for optimal control sequences and trajecto-
ries in the metric space setting considered here was given by Keerthi and Gilbert
[15]. Note, however, that by Theorem 4.16 we do not need the existence of optimal
controls for the existence of almost optimal stabilizing feedback controls.

Dynamic programming as introduced in Sect. 4.2 is a very common approach
also for infinite horizon optimal control and we refer to the discussion in Sect. 3.5
for some background information. As in the finite horizon case, the monographs of
Bertsekas [2, 3] provide a good source for more information on this method.

The connection between infinite horizon optimal control and stabilization prob-
lems for nonlinear systems has been recognized for quite a while. Indeed, the well
known construction of control Lyapunov functions in continuous time by Sontag
[23] is based on techniques from infinite horizon optimal control. As already ob-
served after Corollary 4.7, discrete time infinite horizon optimal control is nothing
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but NMPC with N = ∞. This has lead to the investigation of infinite horizon NMPC
algorithms, e.g., by Keerthi and Gilbert [16], Meadows and Rawlings [19], Alamir
and Bornard [1]. For linear systems, this approach was also considered in the mono-
graph of Bitmead, Gevers and Wertz [4].

The stability results in this chapter are easily generalized to the stability of sets
Xref(n) ⊂ X when � is of the form (3.24). In this case, it suffices to replace the
bounds αj (|x|xref(n)), j = 1,2,3, in, e.g., Theorem 4.11 by bounds of the form

αj

(
min

y∈Xref(n)
|x|y

)
. (4.19)

Alternatively, one could formulate these bounds via so-called proper indicator func-
tions as used, e.g., by Grimm et al. in [8].

By Formula (4.8) the optimal—and stabilizing—feedback law μ∞ can be com-
puted by solving a rather simple optimization problem once the optimal value func-
tion V∞ is known. This has motivated a variety of approaches for solving the dy-
namic programming equation (4.5) (usually for K = 1) numerically in order to ob-
tain an approximation of μ∞ from a numerical approximation of V∞. Approxi-
mation techniques like linear and multilinear approximations are proposed, e.g.,
in Kreisselmeier and Birkhölzer [17], Camilli, Grüne and Wirth [5] or by Falcone
[7]. A set oriented approach was developed in Junge and Osinga [14] and used for
computing stabilizing feedback laws in Grüne and Junge [10] (see also [11, 12] for
further improvements of this method). All such methods, however, suffer from the
so-called curse of dimensionality which means that the numerical effort grows expo-
nentially with the dimension of the state space X. In practice, this means that these
approaches can only be applied for low-dimensional systems, typically not higher
than 4–5. For homogeneous systems, Tuna [25] (see also Grüne [9]) observed that it
is sufficient to compute V∞ on a sphere, which reduces the dimension of the prob-
lem by one. Still, this only slightly reduces the computational burden. In contrast to
this, a numerical approximation of the optimal control sequence u� for finite hori-
zon optimal control problems like (OCPN) and its variants is possible also in rather
high space dimensions, at least when the optimization horizon N is not too large.
This makes the NMPC approach computationally attractive.

Relaxed dynamic programming in the form introduced in Sect. 4.3 was origi-
nally developed by Lincoln and Rantzer [18] and Rantzer [20] in order to lower
the computational complexity of numerical dynamic programming approaches. In-
stead of trying to solve the dynamic programming equation (4.5) exactly, it is only
solved approximately using numerical approximations for V∞ from a suitable class
of functions, e.g., polynomials. The idea of using such relaxations is classical and
can be realized in various other ways, too; see, e.g., [2, Chap. 6]. Here we use re-
laxed dynamic programming not for solving (4.5) but rather for proving properties
of closed-loop solutions, cf. Theorems 4.11 and 4.14. While the specific form of
the assumptions in these theorems were first used in an NMPC context in Grüne
and Rantzer [13], the conceptual idea is actually older and can be found, e.g., in
Shamma and Xiong [22] or in Scokaert, Mayne and Rawlings [21]. The fact that
stability of the sampled data closed loop can be derived from the stability of the
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associated discrete time system for integral costs (3.4), cf. Remark 4.13, was, to the
best of our knowledge, not observed before.

4.5 Problems

1. Consider the problem (OCPn∞) with finite optimal value function V∞ : N0 ×
X → R

+
0 and asymptotically stabilizing admissible optimal feedback law μ∞ :

N0 × X → U . Let V : N0 × X → R
+
0 be a function which satisfies

V (n,x0) = min
u∈U1(x0)

{
�(n, x0, u) + V

(
n + 1, f (x0, u)

)}
(4.20)

for all n ∈ N0 and all x0 ∈ X.
(a) Prove that V (n,x) ≥ V∞(n, x) holds for all n ∈ N0 and all x ∈ X.
(b) Prove that for the optimal feedback law the inequality

V (n,x) − V∞(n, x) ≤ V
(
n + 1, f

(
x,μ∞(n, x)

))

− V∞
(
n + 1, f

(
x,μ∞(n, x)

))

holds for all n ∈ N0 and all x ∈ X.
(c) Assume that in addition there exist α2 ∈ K∞ such that the inequality

V (n,x) ≤ α2
(|x|xref(n)

)

holds for all n ∈ N0, x ∈ X and a reference trajectory xref : N0 → X. Prove
that under this condition V (n,x) = V∞(n, x) holds for all n ∈ N0 and all
x ∈ X.

(d) Find a function V : N0 ×X → R
+
0 satisfying (4.20) but for which V (n,x) =

V∞(n, x) does not hold. Of course, for this function the additional condition
on V from (c) must be violated.

Hint for (a): Define a feedback μ which assigns to each pair (n, x) a minimizer
of the right hand side of (4.20), check that Theorem 4.11 is applicable for S(n) =
X (for which α ∈ (0,1]?) and conclude the desired inequality from (4.15).

Hint for (c): Perform an induction over the inequality from (b) along the opti-
mal closed-loop trajectory.

2. Consider the unconstrained linear control system

x+ = Ax + Bu

with matrices A ∈ R
d×d , B ∈ R

d×m. Consider problem (OCPn∞) with

�(x,u) = x�Qx + u�Ru

with symmetric positive definite matrices Q,R of appropriate dimension (this
setting is called the linear–quadratic regulator (LQR) problem). If the pair (A,B)

is stabilizable, then it is known that the discrete time algebraic Riccati equation

P = Q + A�(
P − PB

(
B�PB + R

)−1
B�P

)
A

has a unique symmetric and positive definite solution P ∈ R
d×d .
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(a) Show that the function V (x) = x�Px satisfies (4.20). Note that since the
problem here is time invariant we do not need the argument n.

(b) Use the results from Problem 1 to conclude that V∞(x) = x�Px holds. You
may assume without proof that an optimal feedback μ∞ exists.

(c) Prove that the corresponding optimal feedback law asymptotically stabilizes
the equilibrium x∗ = 0.

Hint for (a): For matrices C,D,E of appropriate dimensions with C,D symmet-
ric and D positive definite the formula

min
u∈Rm

{
x�Cx + u�Du + u�E�x + x�Eu

} = x�(
C − ED−1E�)

x

holds. This formula is proved by computing the zero of the derivative of the
expression in the “min” with respect to u (which is also a nice exercise).

Hint for (b) and (c): For any symmetric and positive definite matrix M ∈ R
d×d

there exist constants C2 ≥ C1 > 0 such that the inequality C1‖x‖2 ≤ x�Mx ≤
C2‖x‖2 holds for all x ∈ R

d .
3. Consider the finite horizon counterpart (OCPN) of Problem 2. For this setting

one can show that the optimal value function is of the form VN(x) = x�PNx

and that the matrix PN converges to the matrix P from Problem 2 as N → ∞.
This convergence implies that for each ε > 0 there exists Nε > 0 such that the
inequality

∣∣x�PNx − x�Px
∣∣ ≤ ε‖x‖2

holds for all N ≥ Nε . Use this property and Theorem 4.11 in order to prove that
the NMPC-feedback law from Algorithm 3.1 is asymptotically stabilizing for
sufficiently large optimization horizon N > 0.

Hint: Look at the hint for Problem 2(b) and (c).
4. Consider the scalar control system

x+ = x + u

with x ∈ X = R, u ∈ U = R which shall be controlled via the NMPC Algo-
rithm 3.1 using the quadratic running cost function

�(x,u) = x2 + u2.

Compute VN(x0) and J∞(x0,μN(·)) for N = 2 (cf. Chap. 3, Problem 3). Using
these values, derive the degree of suboptimality α from the relaxed dynamic
programming inequality (4.14) and from the suboptimality estimate (4.15).
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Chapter 5
Stability and Suboptimality Using Stabilizing
Constraints

In this chapter we present a comprehensive stability and suboptimality analysis for
NMPC schemes with stabilizing terminal constraints. Both endpoint constraints as
well as regional constraints plus Lyapunov function terminal cost are covered. We
show that viability of the state constraint set can be replaced by viability of the termi-
nal constraint set in order to ensure feasibility of the NMPC optimal control problem
along the closed loop trajectories. The “reversing of monotonicity” of the finite time
optimal value functions is proved and used in order to apply the relaxed dynamic
programming framework introduced in the previous chapter. Using this framework,
stability, suboptimality (i.e., estimates about the infinite horizon performance of the
NMPC closed loop system) and inverse optimality results are proved.

5.1 The Relaxed Dynamic Programming Approach

In this chapter we investigate stability and performance of NMPC schemes with
stabilizing terminal constraints. Before we turn to the precise definition of these
constraints, we outline the main arguments we will use in our analysis. The central
idea is to apply the relaxed dynamic programming result from Theorem 4.11 to
μ = μN and V = VN from Algorithm 3.11 and its variants and Definition 3.14,
respectively.

According to the assumptions of Theorem 4.11, in order to obtain the subopti-
mality estimate J∞(n, x,μN) ≤ VN(n, x)/α we have to ensure the inequality

VN(n, x) ≥ α�
(
n,x,μN(n, x)

) + VN

(
n + 1, f

(
x,μN(n, x)

))
(5.1)

to hold for all x ∈ X, n ∈ N0 and some α ∈ (0,1], preferably as close to one as
possible.

For asymptotic stability, in addition we have to ensure the existence of α1, α2,
α3 ∈ K∞ such that the inequalities

α1
(|x|xref(n)

) ≤ VN(n, x) ≤ α2
(|x|xref(n)

)
and �(n, x,u) ≥ α3

(|x|xref(n)

)
(5.2)

hold for all x ∈ X, n ∈ N0 and u ∈ U .
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In order to motivate why stabilizing terminal constraints can be helpful when
verifying (5.1), let us consider the problem of verifying (5.1) for the optimal control
problem (OCPn

N). Looking at Equality (3.20) from Theorem 3.17 and noting that
ωN = 1 holds if we specialize (OCPn

N,e) to (OCPn
N) we see that μN and VN satisfy

VN(n, x0) ≥ �
(
n,x0,μN(n, x0)

) + VN−1
(
n + 1, f

(
x0,μN(n, x0)

))
. (5.3)

This is “almost” (5.1), even with α = 1, except that (5.3) contains the function VN−1
at the place where we would like to have VN .

The trouble now is that VN is obtained by optimizing over N steps while VN−1
is obtained by optimizing over only N − 1 steps. Hence, for each admissible control
sequence u ∈ U

N(x0) we get

JN(n, x0, u) ≥ JN−1(n, x0, u).

This inequality immediately carries over to the corresponding optimal value func-
tions, i.e., we obtain

VN(n, x0) ≥ VN−1(n, x0). (5.4)

Unfortunately, this is exactly the opposite of what we would need in order to con-
clude (5.1) from (5.3).

This is the point where suitable terminal constraints provide a way out. In the
following sections we discuss terminal constrained variants (OCPN,e) and (OCPn

N,e)
of the optimal control problems (OCPN) and (OCPn

N), respectively, under which
Inequality (5.4) is reversed. Throughout this chapter we will not need viability of
the state constraint set X, i.e., Assumption 3.3 will not be needed. As we will see,
viability of the terminal constraint set X0 is sufficient in order to prove that the
resulting NMPC-feedback law maintains the imposed state constraints; see also the
comments after Lemma 5.2 and before Assumption 5.9, below.

5.2 Equilibrium Endpoint Constraint

A simple way of constructing stabilizing terminal constraints consists of explicitly
including the desired reference solution in the optimization constraints. We intro-
duce this variant for the case of a constant reference xref = x∗ and the corresponding
Algorithm 3.10 and discuss the general case of a time varying reference at the end
of this section, cf. Problem (5.14). Within Algorithm 3.10 we use the optimization
problem (OCPN,e) with X0 = {x∗}, F ≡ 0 and ωk = 1 for k = 0, . . . ,N − 1. This
means that we specialize (OCPN,e) to

minimize JN

(
x0, u(·)) :=

N−1∑

k=0

�
(
xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N
X0

(x0) with X0 = {x∗}
subject to xu(0, x0) = x0, xu(k + 1, x0) = f

(
xu(k, x0), u(k)

)
.

(5.5)
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Recall from Definition 3.9 that each trajectory xu(·, x0) with u(·) ∈ U
N
X0

(x0) sat-
isfies xu(N,x0) ∈ X0, i.e., xu(N,x0) = x∗. Thus, in (5.5) we only optimize over
trajectories satisfying this equilibrium endpoint constraint. Note that (5.5) is only
well defined if x0 is an element of the feasible set XN from Definition 3.9.

The idea behind the equilibrium endpoint constraint xu(N,x0) = x∗ is intuitive:
since we want our closed-loop system to converge to x∗ we simply add this re-
quirement as a constraint to the optimal control problem. And since “convergence”
is difficult to formalize for the finite horizon predictions it appears reasonable to
require the predictions to end exactly at the desired equilibrium.

For the analysis of this problem we will use the following assumptions.

Assumption 5.1

(i) The point x∗ ∈ X is an equilibrium for an admissible control value u∗, i.e., there
exists a control value u∗ ∈ U(x∗) with f (x∗, u∗) = x∗.

(ii) The running cost � : X × U → R
+
0 satisfies �(x∗, u∗) = 0 for u∗ from (i).

Observe that Assumption 5.1(i) is nothing else but a viability assumption for
X0 = {x∗}, cf. Assumption 3.3. In order to show that Inequality (5.4) is indeed re-
versed for Problem (5.5) satisfying Assumption 5.1, we first need an auxiliary re-
sult for the feasible sets XN and the corresponding admissible control sequences
U

N
X0

(x0) from Definition 3.9. For the specific constraint xu(N,x0) = x∗ in (5.5), the
following lemma states that each admissible control sequence on the horizon N − 1
can be extended to an admissible control sequence on the horizon N .

Lemma 5.2 If Assumption 5.1(i) holds for the terminal constraint set X0 = {x∗},
then for each N ≥ 2 the following properties hold.

(i) For each x0 ∈ XN−1 and each uN−1(·) ∈ U
N−1
X0

(x0) the control sequence

uN(k) := uN−1(k), k = 0, . . . ,N − 2, uN(N − 1) := u∗ (5.6)

satisfies uN ∈ U
N
X0

(x0).
(ii) The inclusion XN−1 ⊆ XN holds.

Proof (i) The idea of the proof is simple: since the trajectory related to uN−1(·) ∈
U

N−1
X0

(x0) ends up in x∗, the trajectory corresponding to the prolonged control se-
quence uN from (5.6) satisfies xuN

(N,x0) = x∗.
In order to verify uN ∈ U

N
X0

(x0) we need to show that xuN
(k, x0) ∈ X for k =

0, . . . ,N , uN(k) ∈ U(xuN
(k, x0)) for k = 0, . . . ,N − 1 and xuN

(N,x0) = x∗.
From uN−1 ∈ U

N−1
X0

(x0) and Lemma 3.12 we obtain

xuN−1(k, x0) ∈ XN−1−k ⊆ X,

uN−1(k) ∈ U
(
xuN−1(k, x0)

)
, k = 0, . . . ,N − 2 (5.7)

and

xuN−1(N − 1, x0) = x∗ ∈ X0 ⊆ X (5.8)
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and from (5.8) and the definition of uN we get

xuN
(k, x0) = xuN−1(k, x0), k = 0, . . . ,N − 1, xuN

(N,x0) = x∗. (5.9)

Hence (5.7) and (5.8) are also valid for xuN
. In addition, we get uN(N − 1) = u∗ ∈

U(x∗) = U(xuN
(N − 1, x0)) and xuN

(N,x0) = f (xuN
(N − 1, x0), uN(N − 1)) =

f (x∗, u∗) = x∗. Thus, uN ∈ U
N
X0

(x0).

(ii) Let x0 ∈ XN−1. Then there exists uN−1 ∈ U
N−1
X0

(x0) and by (i) we can con-

clude that there exists uN ∈ U
N
X0

(x0). Thus, U
N
X0

(x0) 
= ∅, from which x0 ∈ XN

follows. �

Observe that we did not need to impose viability of the constraint set X in this
proof. In fact, we implicitly used that under Assumption 5.1(i) the set XN is forward
invariant for all admissible control sequences U

N
X0

(x). We explicitly formulate a
consequence of this property for the NMPC closed-loop system in the following
lemma.

Lemma 5.3 Under Assumption 5.1(i) for each N ∈ N the NMPC-feedback law μN

obtained from Algorithm 3.10 with (OCPN,e) = (5.5) renders the set XN forward
invariant, i.e., f (x,μN(x)) ∈ XN for all x ∈ XN .

Proof Follows immediately from Corollary 3.13 and Lemma 5.2(ii). �

This lemma shows that if a state x is feasible, i.e., contained in the feasible set
XN then its closed-loop successor state f (x,μN(x)) is again feasible. Thus, XN is
recursively feasible in the sense defined after Theorem 3.5. Using Lemma 5.2 it is
now easy to establish that Inequality (5.4) is reversed for (5.5).

Lemma 5.4 If Assumptions 5.1(i) and (ii) hold, then for each N ≥ 2 and each
x0 ∈ XN−1 the optimal value functions of Problem (5.5) satisfy

VN(x0) ≤ VN−1(x0). (5.10)

Proof We first show that for each uN−1 ∈ U
N−1
X0

(x0) the control sequence uN ∈
U

N
X0

(x0) from (5.6) satisfies

JN(x0, uN) ≤ JN−1(x0, uN−1). (5.11)

To this end, recall from the proof of Lemma 5.2 that the trajectories xuN
(·, x0) and

xuN−1(·, x0) satisfy

xuN
(k, x0) = xuN−1(k, x0), k = 0, . . . ,N − 1, xuN

(N,x0) = x∗.

Together with (5.6) this yields

JN(x0, uN) =
N−1∑

k=0

�
(
xuN

(k, x0), uN(k)
)
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=
N−2∑

k=0

�
(
xuN

(k, x0), uN(k)
) + �

(
xuN

(N − 1, x0), uN(N − 1)
)

=
N−2∑

k=0

�
(
xuN−1(k, x0), uN−1(k)

)

︸ ︷︷ ︸
=JN−1(x0,uN−1)

+�(x∗, u∗)︸ ︷︷ ︸
=0

= JN−1(x0, uN−1).

This shows (5.11). In fact, we even proved “=” but we will only need “≤” for
proving (5.10). In order to prove (5.10), let uk

N−1 ∈ U
N−1
X0

(x0), k ∈ N, be a sequence
of control sequences such that

VN−1(x0) = inf
u∈U

N−1
X0

(x0)

JN−1(x0, u) = inf
k∈N

JN−1
(
x0, u

k
N−1

)

holds. Then, we can find uk
N ∈ U

N
X0

(x0) such that (5.11) holds for uN = uk
N and

uN−1 = uk
N−1. This implies

VN(x0) = inf
u∈U

N
X0

(x0)

JN(x0, u) ≤ inf
k∈N

JN

(
x0, u

k
N

) ≤ inf
k∈N

JN−1
(
x0, u

k
N−1

)

= VN−1(x0)

and thus (5.10). �

Note that for Problem (5.5) in general (5.4) does no longer hold, because the
terminal constraint is more restrictive for smaller horizon than for larger ones. Thus,
with the terminal constraint we do not get (5.10) on top of (5.4). Rather, we replaced
(5.4) by (5.10).

Lemma 5.4 in conjunction with (5.3) enables us to conclude that the optimal
value function VN satisfies Inequality (5.1). This will be used in the proof of our
following first stability theorem for an NMPC scheme in which we simply assume
(5.2). Sufficient conditions for these inequalities will be discussed after the theorem.

Theorem 5.5 Consider the NMPC Algorithm 3.10 with (OCPN,e) = (5.5) and opti-
mization horizon N ∈ N. Let Assumptions 5.1(i) and (ii) hold and assume that (5.2)
holds for suitable α1, α2, α3 ∈ K∞. Then the nominal NMPC closed-loop system
(3.5) with NMPC-feedback law μN is asymptotically stable on XN .

In addition, for J∞(x,μN) from Definition 4.10 the inequality

J∞(x,μN) ≤ VN(x)

holds for each x ∈ XN .

Proof Combining Equality (3.20) from Theorem 3.17 with Inequality (5.10) from
Lemma 5.4 with x0 = f (x,μN(x)), for each x ∈ XN we obtain

VN(x) ≥ �
(
x,μN(x)

) + VN−1
(
f

(
x,μN(x)

)) ≥ �
(
x,μN(x)

) + VN

(
f

(
x,μN(x)

))
.
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Thus, the assumptions of Theorem 4.11 are satisfied with V = VN , μ = μN ,
S(n) = XN (which is forward invariant by Lemma 5.3) and α = 1 which yields
the assertion. �

The fact that each predicted trajectory xu in (5.5) satisfies xu(N,x0) = x∗ does
by no means imply that the NMPC closed-loop trajectory satisfies xμN

(N) = x∗.
The following example illustrates this fact.

Example 5.6 Consider again Example 2.1, i.e.,

x+ = x + u =: f (x,u)

with X = X = U = U = R and x∗ = 0. We use the running cost �(x,u) = x2 + u2

and the terminal constraints X0 = {x∗}.
Observing that every u(·) ∈ U

1
X0

(x) must satisfy f (x,u(0)) = 0 we get u(0) =
−x. Hence, (3.19) yields

V1(x) = inf
u∈U

1
X0

(x)

�
(
x,u(0)

) = x2 + (−x)2 = 2x2

and μ1(x) = −x. Now, using (3.19) for (5.5) with N = 2 we get

μ2(x) = argmin
u∈R

{
�(x,u) + V1

(
f (x,u)

)}

= argmin
u∈R

{
x2 + u2 + 2(x + u)2} = −2

3
x,

which is easily computed by setting the first derivative w.r.t. u of the term in braces
to 0, observing that the second derivative is strictly positive. Thus, the NMPC closed
loop for N = 2 becomes

x+ = f
(
x,μ2(x)

) = x − μ2(x) = x − 2

3
x = 1

3
x

with solutions

xμ2(n, x0) = 1

3n
x0.

Hence, the closed-loop solution asymptotically converges to x∗ = 0 but never
reaches 0 in finite time.

In Theorem 5.5 we have made the assumption that VN satisfies the inequalities
in (5.2). In terms of the problem data f and � this is an implicit condition which
may be difficult to check. For this reason, in the following proposition we give a
sufficient condition on f and � for these inequalities to hold true.

Proposition 5.7 Let VN denote the optimal value function of Problem (5.5) for
optimization horizon N ∈ N.
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(i) Assume there exists a function α3 ∈ K∞ such that the inequality

�(x,u) ≥ α3
(|x|x∗

)

holds for all x ∈ X and all u ∈ U . Then

VN(x) ≥ α3
(|x|x∗

)

holds for all x ∈ XN .
(ii) Assume that f and � are continuous in X × U , U is compact and there exists

a ball Bν(x∗) ⊂ X, ν > 0, and a function α̃2 ∈ K∞ with the following property:
For each x ∈ Bν(x∗) ∩ X there is ux ∈ U(x) with f (x,ux) = x∗ and

�(x,ux) ≤ α̃2
(|x|x∗

)
. (5.12)

Then there exists α2 ∈ K∞ such that

VN(x) ≤ α2
(|x|x∗

)
(5.13)

holds for all x ∈ XN .

Proof (i) is immediate from the definition of VN .
In order to prove (ii), first observe that for x ∈ Bν(x∗) ∩ X the existence of ux

with f (x,ux) = x∗ immediately implies x ∈ X1 and

V1(x) = inf
u∈U

1
X0

(x)

�
(
x,u(0)

) ≤ �(x,ux) ≤ α̃2
(|x|x∗

)
,

because the control sequence u(·) ∈ U1 defined by u(0) = ux lies in U
1
X0

(x) since
by assumption f (x,ux) = x∗. Now by Lemma 5.4 the inequality

VN(x) ≤ α̃2
(|x|x∗

)

follows for each N ∈ N and each x ∈ Bν(x∗) ∩ X.
For x ∈ XN outside this ball consider an arbitrary closed ball Br (x∗) for r > 0

and an arbitrary N ∈ N. Since f and � are assumed to be continuous, the functional
JN : X × UN → R

+
0 is continuous, too, and since U is assumed to be compact the

set Br (x∗) × UN is also compact (both continuity and compactness hold with the
usual product topology on X × UN ). Thus the value

α̂2(r) := max
{
JN(x,u)

∣∣ x ∈ Br (x∗), u ∈ UN
}

exists and is finite and the resulting function α̂2 is continuous and monotone increas-
ing in r . By this definition, for each x ∈ XN we get

VN(x) ≤ α̂2
(|x|x∗

)
.

Now define a function α2 : R
+
0 → R

+
0 by

α2(r) := r +
{

α̃2(ν) + α̂2(r), r ≥ ν,

α̃2(r) + rα̂2(ν)/ν, r ∈ [0, ν).

This function is continuous since both expressions are equal for r = ν, equal to
0 at r = 0 and strictly increasing and unbounded due to the addition of r . Hence,



94 5 Stability and Suboptimality Using Stabilizing Constraints

α2 ∈ K∞. Furthermore, it satisfies α2(r) ≥ α̃2(r) for r ∈ [0, ν] and α2(r) ≥ α̂2(r)

for r ≥ ν. Thus, it is the desired upper bound for VN . �

The specific upper bound α2 constructed in this proof depends on N and will
in general grow unboundedly as N → ∞. However, since by Inequality (5.10) we
know that the functions VN are decreasing in N we can actually conclude the ex-
istence of an upper bound in K∞ which is independent of N . However, since we
did not (and do not want to) assume continuity of the VN the construction of this

K∞-function is somewhat technically involved which is why we skip the details.
If we want to deduce local asymptotic controllability from the asymptotic stabil-

ity on XN we need that XN contains a ball Bν(x∗) around the equilibrium x∗, cf.
the comment after Definition 2.14. The following example shows that this does not
necessarily mean that Xk for k ≤ N − 1 must contain such a ball, too.

Example 5.8 Consider the system x+ = f (x,u) with x ∈ X = X = R
2, u ∈ U =

[0,1] ⊂ U = R, x∗ = 0 and

f (x,u) =
(

x1(1 − u)

‖x‖u
)

.

We use the NMPC Algorithm 3.10 with (OCPN,e) = (5.5). For x 
= 0 the system is
controllable to X0 = {0} in one step if and only if x1 = 0. Thus X1 = {x ∈ R

2 | x1 =
0} which obviously does not contain a neighborhood of x∗ = 0.

On the other hand, using the control sequence u(0) = 1, u(1) = 0 for each initial
value x ∈ R

2 one obtains

xu(0, x) = x, xu(1, x) = (
0,‖x‖)�

, xu(2, x) = 0,

which implies X2 = R = X and thus XN = R = X for all N ≥ 2.
Furthermore, using the running cost �(x,u) = ‖x‖2 we obtain the upper bound

V2(x) ≤ ‖x‖2 + ∥∥(
0,‖x‖)�∥∥2 = 2‖x‖2

and the lower bound ‖x‖2 ≤ VN(x) for all N ≥ 2. Hence, Theorem 5.5 implies that
the NMPC-feedback law μN stabilizes the system on XN = R

2 for each N ≥ 2.

The method described in this section is easily extended to time varying reference
trajectories xref(·) replacing (5.5) by

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N
X0

(n, x0) with X0(n) = {
xref(n)

}

subject to xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(5.14)

and choosing (OCPn
N,e) = (5.14) in Algorithm 3.11. Since xref(·) is known, the

constraint xu(n + N,x0) = xref(n + N) is as easy to implement as its time invariant
counterpart in (5.5). All proofs in this section are easily extended to the time varying
case by including the appropriate time instants in �, JN , VN and μN .
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5.3 Lyapunov Function Terminal Cost

The equilibrium terminal constraint described in the previous section provides a
way to guarantee stability which is intuitive and easy to implement. Still, it has the
obvious drawback that the system under consideration must be exactly controllable
to x∗ in finite time in order to ensure that the feasible sets XN of (5.5) or (5.14)
indeed contain a neighborhood of x∗ or xref(n) in the time varying case. Thus, it
cannot be applied to systems which are merely stabilizable but not controllable to
x∗. As a simple system where this is the case consider, e.g., the system with two-
dimensional state x = (x1, x2)

� and one-dimensional control u given by

x+ = f (x,u) =
(

x1 + u

x2/2

)
.

This system is obviously stabilizable at x∗ = 0, e.g., by the feedback law μ(x) =
−x1/2. However, it is not controllable to x∗ = 0 in finite time since for any ini-
tial value x0 = (x0 1, x0 2)

� with x0 2 
= 0 the second component of the solution
xu(k, x0) = (xu(k, x0)1, xu(k, x0)2)

� satisfies xu(k, x0)2 = 2−kx0 2 
= 0 for all k ≥ 0
regardless of the choice of u(·).

Furthermore, for nonlinear and nonconvex optimal control problems the strict
point constraint xn(N,x0) = x∗ may cause numerical difficulties in the optimization
algorithm, such that the algorithm may not be able to find a feasible solution even if
such a solution exists.

In this section we are going to present a method in which the terminal constraint
is relaxed by choosing X0 as a larger set containing x∗. In order to guarantee stability
for this relaxed terminal constraint we make use of the terminal cost function F in
(OCPN,e). Again, we introduce the method for constant reference xref = x∗ and
explain the necessary modifications for the general case at the end of this section.

We choose the optimal control problem (OCPN,e) in Algorithm 3.10 as

minimize JN

(
x0, u(·)) :=

N−1∑

k=0

�
(
xu(k, x0), u(k)

) + F
(
xu(N,x0)

)

with respect to u(·) ∈ U
N
X0

(x0) with x∗ ∈ X0

subject to xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)
.

(5.15)

Recall again that by Definition 3.9 the choice u(·) ∈ U
N
X0

(x0) guarantees xu(N,x0) ∈
X0 and that (5.15) is only well defined for x0 in the feasible set XN from Defini-
tion 3.9.

We are now going to specify the properties of the terminal constraint set X0 ⊆ X

and the terminal cost F : X0 → R
+
0 . As in the last section we do not need to impose

Assumption 3.3, i.e., viability for the state constraint set X. However, in order to
compensate for this we need viability of X0.

Assumption 5.9 For the closed terminal constraint set X0 ⊆ X defining U
N
X0

(x0) in

(5.15) via Definition 3.9 and the terminal cost F : X0 → R
+
0 in (5.15) we assume:
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(i) X0 is viable, i.e., for each x ∈ X0 there exists an admissible control value ux ∈
U(x) such that

f (x,ux) ∈ X0 (5.16)

holds.
(ii) The terminal cost F : X0 → R

+
0 in (5.15) is such that for each x ∈ X0 there

exists an admissible control value ux ∈ U(x) for which (5.16) and

F
(
f (x,ux)

) + �(x,ux) ≤ F(x)

hold.

Assumption 5.9(ii) implies that F is a local control Lyapunov function of our
control system. The approach of adding F is often referred to as quasi-infinite hori-
zon NMPC. The reason for this denomination is that if the terminal cost F is an
approximation of the infinite horizon optimal value function V∞, then the finite
horizon dynamic programming principle (3.15) is an approximation of the infinite
horizon dynamic programming principle (4.5) and consequently (5.15) can be in-
terpreted as an approximation to the infinite horizon problem (OCPn∞). While a
function F satisfying Assumption 5.9(ii) exists under mild conditions on the system
provided it is asymptotically controllable, cf. the discussion on control Lyapunov
functions in Sect. 2.5, it is not always easy to find—we will sketch a linearization
based approach to find F and X0 in Remark 5.15, below. Note that the equilib-
rium terminal constraint problem (5.5) can be seen as a special case of (5.15) with
X0 = {x∗} and F ≡ 0, in which case Assumption 5.9 implies Assumption 5.1. The
more interesting case, however, is obtained when X0 contains a whole ball around
x∗, because in this case the terminal constraint is considerably weaker than in the
case X0 = {x∗} and consequently more easy to achieve for the optimization algo-
rithm.

The subsequent analysis is analogous to the respective results in Sect. 5.2 with
the goal to establish that Inequality (5.4) is reversed.

Lemma 5.10 If Assumption 5.9(i) holds for the terminal constraint set X0 ⊆ X,
then for each N ≥ 2 the following properties hold.

(i) For each x0 ∈ XN−1 and each uN−1(·) ∈ U
N−1
X0

(x0) the control sequence

uN(k) := uN−1(k), k = 0, . . . ,N − 2, uN(N − 1) := ux (5.17)

with ux from Assumption 5.9(i) for x = xu(N − 1, x0) satisfies uN ∈ U
N
X0

(x0).
(ii) The inclusion XN−1 ⊆ XN holds.

Proof The proof is completely analogous to the proof of Lemma 5.2, replacing
f (x∗, u∗) = x∗ by f (x,ux) ∈ X0 for x ∈ X0. �

As in the equilibrium constraint case from the previous section the set XN is
invariant under the MPC feedback law μN as shown in the following lemma.
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Lemma 5.11 Under Assumption 5.9(i) for each N ∈ N the NMPC-feedback law μN

obtained from Algorithm 3.10 with (OCPN,e) = (5.15) renders the set XN forward
invariant, i.e., f (x,μN(x)) ∈ XN for all x ∈ XN .

Proof This follows immediately from Corollary 3.13 and Lemma 5.10(ii). �

Using Lemma 5.10 we can now prove that Inequality (5.4) is reversed for (5.15).

Lemma 5.12 If Assumptions 5.9(i) and (ii) hold, then for each N ≥ 2 and each
x0 ∈ XN−1 the optimal value functions of Problem (5.15) satisfy

VN(x0) ≤ VN−1(x0). (5.18)

Proof We first show that for each uN−1 ∈ U
N−1
X0

(x0) the control sequence uN ∈
U

N
X0

(x0) from (5.17) satisfies

JN(x0, uN) ≤ JN−1(x0, uN−1). (5.19)

To this end, observe that by construction of uN the trajectories xuN
(·, x0) and

xuN−1(·, x0) satisfy

xuN
(k, x0) = xuN−1(k, x0), k = 0, . . . ,N − 1, xuN

(N,x0) ∈ X0.

We abbreviate x̃ = xuN
(N − 1, x0) ∈ X0 and ux̃ = uN(N − 1), noting that by (5.17)

ux̃ coincides with ux from Assumption 5.9(ii) for x = x̃. Thus (5.17) and Assump-
tion 5.9(ii) yield

JN(x0, uN) =
N−1∑

k=0

�
(
xuN

(k, x0), uN(k)
) + F

(
xuN

(N,x0)
)

=
N−2∑

k=0

�
(
xuN

(k, x0), uN(k)
) + �

(
xuN

(N − 1, x0), uN(N − 1)
)

+ F
(
xuN

(N,x0)
)

=
N−2∑

k=0

�
(
xuN−1(k, x0), uN−1(k)

)

︸ ︷︷ ︸
=JN−1(x0,uN−1)−F(x̃)

+�(x̃, ux̃) + F
(
f (x̃, ux̃)

)

= JN−1(x0, uN−1)−F(x̃) + �(x̃, ux̃) + F
(
f (x̃, ux̃)

)

︸ ︷︷ ︸
≤0

≤ JN−1(x0, uN−1).

Now we can conclude (5.18) from (5.19) as in the proof of Lemma 5.4. �

As in the last section we want to emphasize that for Problem (5.15) in general
(5.4) does no longer hold.
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We can obtain a similar inequality to (5.18) also for N = 1. Indeed, given x ∈ X0
and using the one element control sequence u(0) = ux with ux from Assump-
tion 5.9(ii), we obtain

V1(x) ≤ J1(x,u) = �
(
xu(0, x), u(0)

) + F
(
xu(1, x)

)

= �(x,ux) + F
(
f (x,ux)

) ≤ F(x)

which together with (5.18) proves

VN(x) ≤ F(x) for all x ∈ X0, N ∈ N. (5.20)

Lemma 5.12 in conjunction with (5.3) enables us to conclude that the optimal
value function VN satisfies Inequality (5.1). This will be used in the proof of our
following second stability theorem for NMPC schemes. Again, we simply assume
(5.2) and discuss sufficient conditions afterwards.

Theorem 5.13 Consider the NMPC Algorithm 3.10 with (OCPN,e) = (5.15) and
optimization horizon N ∈ N. Let Assumptions 5.9(i) and (ii) hold and assume that
(5.2) holds for suitable α1, α2, α3 ∈ K∞. Then the nominal NMPC closed-loop sys-
tem (3.5) with NMPC-feedback law μN is asymptotically stable on XN .

In addition, for J∞(x,μN) from Definition 4.10 the inequality

J∞(x,μN) ≤ VN(x)

holds for each x ∈ XN .

Proof Combining Equality (3.20) from Theorem 3.17 with Inequality (5.18) from
Lemma 5.12 with x0 = f (x,μN(x)), for each x ∈ XN we obtain

VN(x) ≥ �
(
x,μN(x)

) + VN−1
(
f

(
x,μN(x)

)) ≥ �
(
x,μN(x)

) + VN

(
f

(
x,μN(x)

))
.

Thus, the assumptions of Theorem 4.11 are satisfied with V = VN , μ = μN ,
S(n) = XN (which is forward invariant by Lemma 5.11) and α = 1 which yields
the assertion. �

So far the results in this section were very much in parallel to the respective
results for equilibrium terminal constraints in Sect. 5.2. The difference between the
two approaches becomes apparent in the following proposition, where we look at
sufficient conditions on the problem data under which (5.2) holds. In contrast to
Proposition 5.7(ii) in which we needed a condition on f and �, in Part (ii) of the
following proposition we can give a sufficient condition in terms of F .

Proposition 5.14 Let VN denote the optimal value function of Problem (5.15) for
some N ∈ N.

(i) Assume there exists a function α3 ∈ K∞ such that the inequality

�(x,u) ≥ α3
(|x|x∗

)

holds for all x ∈ X and all u ∈ U . Then

VN(x) ≥ α3
(|x|x∗

)

holds for all x ∈ XN .
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(ii) Assume that f , � and F are continuous in X × U or X0, respectively, that U

is compact and that Assumption 5.9 is satisfied. Assume furthermore that X0
contains a ball Bν(x∗), ν > 0, and that there exists a function α̃2 ∈ K∞ such
that

F(x) ≤ α̃2
(|x|x∗

)

holds for all x ∈ X0 ∩ Bν(x∗). Then there exists α2 ∈ K∞ such that

VN(x) ≤ α2
(|x|x∗

)
(5.21)

holds for all x ∈ XN .

Proof (i) is immediate from the definition of VN .
In order to prove (ii), observe that for x ∈ Bν(x∗) the bound on F together with

(5.20) implies

VN(x) ≤ F(x) ≤ α̃2
(|x|x∗

)
.

Now we can proceed as in the proof of Proposition 5.7 in order to construct the
desired α2 ∈ K∞. �

Remark 5.15 For nonlinear systems with X = R
d and U = R

m whose linearization
at x∗ is stabilizable, F and X0 satisfying Assumption 5.9 can be constructed by a
linear–quadratic approach (LQR) via the corresponding Riccati equation, provided
X and U contain neighborhoods of x∗ and u∗, respectively. We briefly sketch this
approach considering for simplicity of notation x∗ = 0 and u∗ = 0: Assume that the
dynamics f satisfies

f (x,u) = Ax + Bu + f̃ (x, u) (5.22)

with A ∈ R
d×d , B ∈ R

d×m and f̃ : R
d × R

m → R
d . Assume furthermore that

the pair (A,B) is stabilizable and that the map f̃ satisfies ‖f̃ (x, u)‖ ≤ C(‖x‖2 +
‖x‖‖u‖ + ‖u‖2) for some constant C > 0 and all x,u with ‖x‖,‖u‖ ≤ δ for some
δ > 0.

Under these assumptions, given symmetric and positive definite matrices Q ∈
R

d×d , R ∈ R
m×m, we can solve the infinite horizon linear–quadratic optimal control

problem

minimize J̃∞(y,u) =
∞∑

k=0

yu(k, y)�Qyu(k, y) + u(k)�Ru(k)

over u(·) ∈ U∞, where yu(k, y) solves y+ = Ay + Bu.
More precisely, the optimal value function of this problem is given by Ṽ∞(y) =

y�Py, where P ∈ R
d×d is the unique symmetric and positive definite solution of

the discrete time algebraic Riccati equation

P = A�PA − (
A�PB

)(
R + B�PB

)−1(
B�PA

) + Q. (5.23)

Once P is computed, the optimal control for J̃∞ is available in feedback form

u�(y) = −(
R + B�PB

)−1
B�PAy. (5.24)
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The infinite horizon dynamic programming principle (4.6) for this problem for
K = 1 reads

Ṽ∞(y) = y�Qy + (
u�(y)

)�
Ru�(y) + Ṽ∞

(
Ay + Bu�(y)

)
. (5.25)

We now show how Ṽ∞, which is readily computable e.g. by solving the algebraic
Riccati equation (5.23) numerically, can be used in order to construct X0 and F in
Assumption 5.9. To this end, we choose � satisfying

�(x,u) = x�Qx + u�Ru + �̃(x, u) (5.26)

with |�̃(x, u)| ≤ D(‖x‖3 + ‖x‖2‖u‖ + ‖x‖‖u‖2 + ‖u‖3) for some constant D > 0
and all ‖x‖,‖u‖ ≤ δ. For this choice, for u = u�(x) from (5.24) with y = x and
using (5.25) we can compute

Ṽ∞
(
f (x,u)

) = (
Ax + Bu + f̃ (x,u)

)�
P

(
Ax + Bu + f̃ (x,u)

)

= (Ax + Bu)�P(Ax + Bu)

+ 2(Ax + Bu)�P f̃ (x,u) + f̃ (x, u)�P f̃ (x,u)
︸ ︷︷ ︸

=:r(x,u)

= Ṽ∞(x) − x�Qx − u�Ru + r(x,u)

= Ṽ∞(x) − �(x,u) + �̃(x, u) + r(x,u).

Now the structure of r(x,u) and �(x,u) together with the fact that u = u�(y) in
(5.24) depends linearly on y = x implies the existence of a constant E > 0 with
|r(x,u)|+ |�̃(x, u)| ≤ E‖x‖3, cf. Problem 2(a) in this chapter. Thus, for each σ > 1
we find δ > 0 such that ‖x‖ ≤ δ implies

−�(x,u) + �̃(x, u) + r(x,u) ≤ −�(x,u)/σ

for u = u�, cf. Problem 2(b). From this inequality we obtain

Ṽ∞
(
f (x,u)

) ≤ Ṽ∞(x) − �(x,u)/σ (5.27)

whenever ‖x‖ ≤ δ. Fixing some σ > 1 and the corresponding δ > 0 we now pick
ν > 0 such that for all x ∈ R

d the inequality Ṽ∞(x) ≤ ν implies

‖x‖ ≤ δ, x ∈ X and u�(x) ∈ U,

which exists since P is positive definite. We claim that X0 := {x ∈ R
d | Ṽ∞(x) ≤ ν}

and F(x) := σ Ṽ∞(x) satisfy Assumption 5.9.
Indeed, picking x ∈ X0 and using the control value u = u�(x) Inequality (5.27)

implies Ṽ∞(f (x,u)) ≤ Ṽ∞(x) ≤ ν and thus Assumption 5.9(i) and

F
(
f (x,u)

) ≤ σ Ṽ∞
(
f (x,u)

) ≤ σ Ṽ∞(x) − �(x,u) = F(x) − �(x,u)

which is exactly Assumption 5.9(ii). Note that in this construction the set X0 will
become the smaller the smaller σ > 1 becomes.

The following example illustrates this construction.
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Example 5.16 Consider the one-dimensional bilinear system

x+ = x + u + xu

which is of the form (5.22) with A = B = 1 and f̃ (x, u) = xu. For simplicity, we
do not consider state and control constraints, i.e., we set X = X = R and U(x) =
U = R. We consider the running cost

�(x,u) = x2 + u2 + u4

which is of the form (5.26) with Q = R = 1 and �̃(x, u) = u4. The Riccati equation
for the linearization reads

P = P − P(1 + P)−1P + 1

and its solution is P = 1
2 (1 + √

5). Thus, the optimal value function of the linear–
quadratic problem becomes

Ṽ∞(y) = 1

2
(1 + √

5)y2 ≈ 1.618y2

and the corresponding optimal feedback control reads

u�(y) = −1 + √
5

3 + √
5
y ≈ −0.618y.

Numerical evaluation then yields that Assumption 5.9(ii) holds for F(x) = σ Ṽ∞(x)

and ux = u�(x), e.g., for σ = 0.9 and all x ∈ R with Ṽ∞(x) ≤ ν = 0.1.

Remark 5.17 All results in this section can be easily generalized to tracking time
varying references xref replacing X0 by X0(n) and generalizing the two conditions
in Assumption 5.9 by

f (x,ux) ∈ X0(n + 1)

and

F
(
n + 1, f (x,ux)

) + �(n, x,ux) ≤ F(n,x),

both for x ∈ X0(n).
However, constructing F in the time varying case is considerably more compli-

cated than in the time invariant case, because in the time varying case linearization
and linear–quadratic control does not lead to an algebraic Riccati equation which
can be easily solved.

5.4 Suboptimality and Inverse Optimality

Having established the stability of the NMPC closed loop, another important ques-
tion which naturally arises in the context of NMPC schemes is the performance of
the NMPC-feedback law. Here and in what follows we again consider the simpler
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case of time invariant problems noting that the extension to time varying problems
is straightforward.

While performance of general stabilizing feedback laws can be measured in
many different ways, in NMPC it is natural to compare the NMPC controller with
the infinite horizon optimal controller. To this end, for linear MPC controllers var-
ious characteristic values like gains and poles can be compared, see, e.g., [17,
Sect. 6.5]. In the nonlinear setting considered in this book, a convenient and mean-
ingful performance measure for the optimization based NMPC-feedback law μN

is the infinite horizon cost along the closed-loop trajectory as defined in Defini-
tion 4.10. In the time invariant setting it is given by

J∞(x0,μN) :=
∞∑

k=0

�
(
xμN

(k, x0),μN

(
xμN

(k, x0)
))

.

In general, it is too optimistic to assume that the NMPC feedback μN yields the
optimal value J∞(x0,μN) = V∞(x0). The following two examples illustrate this
point.

Example 5.18 Consider again Example 5.6, i.e.,

x+ = x + u, �(x,u) = x2 + u2

with X = X = U = U = R. Using the terminal constraints X0 = {0}, in Example 5.6
we have seen that the NMPC-feedback law for N = 2 is μ2 = − 2

3x.
By solving the associated discrete time algebraic Riccati equation

P = P − P(1 + P)−1P + 1

we can obtain the infinite horizon optimal solution. The positive solution of this
equation is P = 1

2(1 + √
5) and thus the infinite horizon optimal value function

reads

V∞(x) = 1

2
(1 + √

5)x2 ≈ 1.618x2,

cf. also Example 5.16. Evaluating J∞(x,μ2) for the NMPC-feedback law μ2(x) =
− 2

3x with trajectory xμ2(n, x) = 1
3n x yields

J∞(x,μ2) =
∞∑

k=0

xμ2(k, x)2 + μ2
(
xμ2(k, x)

)2

=
∞∑

k=0

(
1 + 4

9

)
1

9k
x2 = 13

8
x2 = 1.625x2.

Although this value is quite close to V∞(x), it is not optimal.

Example 5.19 Consider again Example 5.6 but now with a nonquadratic cost, i.e.,

x+ = x + u, �(x,u) = x2 + u4
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in which large u are penalized more heavily. As in Example 5.6 we use the equilib-
rium terminal constraint X0 = {0}. Repeating the computations of Example 5.6 we
obtain

V1(x) = x2 + x4

and

μ2(x) = argmin
u∈R

{
x2 + u4 + (x + u)2 + (x + u)4}.

Solving this minimization problem (e.g., with MAPLE, cf. Sect. A.2) yields the
nonlinear feedback law

μ2(x) = 1

12

(−108x + 12
√

324x6 + 324x4 + 189x2 + 12
) 1

3

− 3x2 + 1

(−108x + 12
√

324x6 + 324x4 + 189x2 + 12)
1
3

− 1

2
x.

Numerical evaluation of the corresponding infinite horizon cost along the closed-
loop solution for x0 = 20 yields

J∞(20,μ2) ≈ 11240.39.

Since this problem is not linear–quadratic we cannot use the Riccati equation in
order to compute the exact optimal value. However, the feedback law

μ(x) = 1

6

(−54x + 6
√

6 + 81x2
) 1

3 − 1

(−54x + 6
√

6 + 81x2)
1
3

—whose derivation we will explain in Example 8.23 in Chap. 8—yields
J∞(20,μ) ≈ 1725.33 which was again evaluated numerically. Hence, the optimal
value function satisfies V∞(20) ≤ 1725.33 which shows that μ2 is far from optimal
in this example.

An alternative to the direct evaluation of J∞(x0,μN) as performed in these ex-
amples is readily available from Theorems 5.5 and 5.13. These theorems provide
the explicit upper bound

J∞(x0,μN) ≤ VN(x0) (5.28)

for the NMPC-feedback law μN derived from Algorithm 3.10 with either (OCPN,e)
= (5.5) or (OCPN,e) = (5.15). Unfortunately, in general there is no simple formula
for the mismatch between VN and the infinite horizon optimal value function V∞.
This is due to the fact that in both (5.5) and (5.15) the optimization is restricted
to the controls u(·) ∈ U

N
X0

(x0) whose corresponding trajectories enter the terminal
constraint set X0 after at most N steps. The following proposition shows that this
inevitably leads to the inequality VN(x) ≥ V∞(x) for all x ∈ XN .

Proposition 5.20 Consider the optimal control problem (5.5) or (5.15) and the in-
finite horizon optimal control problem (OCPn∞) with same running cost � and con-
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straints X and U(x). Let the assumptions of the respective Theorem 5.5 or 5.13 be
satisfied. Then the inequality

VN(x) ≥ V∞(x)

holds for all x ∈ XN .

Proof Given x ∈ XN we define a control sequence u(·) ∈ U
N(x) by evaluating

μN(x) along the NMPC closed-loop trajectory, i.e.,

u(k) := μN

(
xμN

(k, x)
)
.

Then we get

V∞(x) ≤ J∞(x,u) = J∞(x,μN) ≤ VN(x),

where the last inequality is obtained from Theorem 5.5 and 5.13, respectively. This
shows the assertion. �

Unfortunately, the quantitative effect of the stabilizing constraints, i.e., the ques-
tion about how much larger VN is compared to V∞ is in general difficult if not
impossible to answer. Still, we can provide asymptotic results, i.e., conditions under
which VN converges to V∞ on arbitrary (but fixed) balls around x∗ as N → ∞.

Theorem 5.21 Consider the optimal control problem (5.5) or (5.15) and the infinite
horizon optimal control problem (OCPn∞) with same running cost � and constraints
X and U(x). Let the assumptions of Theorem 4.16 hold and assume that there is
N0 ∈ N such that the assumptions of the respective Theorem 5.5 or 5.13 hold for
N = N0. Assume, furthermore, that XN0 contains a ball Bν(x∗). Then for each R >

0 and each ε > 0 there exists NR,ε > 0 such that the inequality

VN(x) ≤ V∞(x) + ε

holds for all N ≥ NR,ε and all x ∈ XN with |x|x∗ ≤ R.

Proof For N0 from the assumption, α2 from the assumption of Theorem 5.5 or 5.13,
respectively, and from (5.10) we get

VN(x) ≤ VN0(x) ≤ α2
(|x|x∗

)

for all N ≥ N0 and all x ∈ Bν(x∗). Since the assumptions of Theorem 4.16 are
satisfied, for any α ∈ (0,1) the feedback law μα from Theorem 4.16 satisfies

J∞(x,μα) ≤ V∞(x)/α

for all x ∈ X with |x|x∗ ≤ R. Furthermore, μα asymptotically stabilizes the system,
i.e., there exists β ∈ K L such that

∣∣xμα (n, x)
∣
∣
x∗ ≤ β

(|x|x∗, n
)

holds for all x ∈ X and all k ∈ N0. Fixing some arbitrary ᾱ ∈ (0,1), by Remark 4.12
we may assume that β is independent of α ∈ [ᾱ,1).
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Now let nR,ε ∈ N be large enough such that the inequalities

β(R,nR,ε) < ν and α2
(
β(R,nR,ε)

) ≤ ε

hold and set NR,ε = N0 + nR,ε . By the monotonicity properties of α2 and β the
choice of nR,ε implies xμα(n, x) ∈ Bν(x∗) ⊂ XN0 and

VN0

(
xμα(n, x)

) ≤ α2
(
β
(|x|x∗, nR,ε

)) ≤ ε

for all n ≥ nR,ε and all x ∈ XN with |x|x∗ ≤ R.
For such an x and an N ≥ NR,ε , consider the control sequence u(·) ∈ U

N
X0

(x)

u(n) =
{

μα(xμα
(n, x)), n = 0, . . . ,N − N0 − 1,

u∗(n − N + N0), n = N − N0, . . . ,N − 1,

where u∗ is the optimal control sequence for (5.5) or (5.15) with N = N0 and
x0 = xμα (N − N0, x). The control u(·) lies in U

N
X0

(x) because it inherits u(·) ∈
U

N(x) from μα and u∗ and the corresponding trajectory ends in X0 because
u∗(·) ∈ U

N0
X0

(xμα (N − N0, x)). For this control sequence we get

VN(x) ≤ JN(x,u) =
N−1∑

n=0

�
(
xu(n, x), u(n)

) + F
(
xu(N,x)

)

=
N−N0−1∑

n=0

�
(
xu(n, x), u(n)

) +
N−1∑

n=N−N0

�
(
xu(n, x), u(n)

) + F
(
xu(N,x)

)

=
N−N0−1∑

n=0

�
(
xu(n, x), u(n)

) + JN0

(
xu(N − N0, x), u(· + N − N0)

)

=
N−N0−1∑

n=0

�
(
xμα(n, x),μα

(
xμα (n, x)

)) + JN0

(
xμα(N − N0, x), u∗(·))

≤ J∞(x,μα) + VN0

(
xμα

(N − N0, x)
) ≤ V∞(x)/α + ε

where we used N − N0 ≥ NR,ε − N0 ≥ nR,ε for estimating VN0(xμα (N − N0, x))

in the last inequality. From this inequality we obtain the assertion since α ∈ (ᾱ,1)

was arbitrary and NR,ε is independent of α ∈ (ᾱ,1). �

While in Theorem 5.21 the lower bound on the necessary optimization horizon
N depends on R and ε, we can exploit the special structure of (5.15) in order to give
a condition under which the bound on N merely depends on R and on properties
of F .

Theorem 5.22 Consider the optimal control problem (5.15) and the infinite horizon
optimal control problem (OCPn∞) with same running cost � and constraints X and
U(x). Let the assumptions of Theorem 4.16 hold and assume that there is N0 ∈ N

such that the assumptions of Theorem 5.13 hold for N = N0. Assume in addition
that X0 contains a ball Bν(x∗) and that the terminal cost F satisfies

∣
∣F(x) − V∞(x)

∣
∣ ≤ ε
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for all x ∈ Bν(x∗) and some ε > 0. Then for each R > 0 there exists NR > 0 such
that the inequality

VN(x) ≤ V∞(x) + ε

holds for all N ≥ NR and all x ∈ XN with |x|x∗ ≤ R.

Proof Using ᾱ and β as in the proof of Theorem 5.21 we choose NR ∈ N such that
the inequality

β(R,NR) < ν

holds. Given x ∈ X with |x|x∗ ≤ R and N ≥ NR and an arbitrary α ∈ [ᾱ,1) we
define the control sequence

u(n) = μα

(
xμα

(n, x)
)
, n = 0, . . . ,N − 1

with μα from Theorem 4.16, i.e., satisfying (4.18). This control sequence lies in
U

N
X0

(x0) since
∣
∣xμα(N,x)

∣
∣
x∗ ≤ β

(|x|x∗,N
) ≤ β(R,NR) < ν,

thus xu(N,x) = xμα(N,x) ∈ Bν(x∗) ⊆ X0. For this u(·) we get

VN(x) ≤ JN(x,u) =
N−1∑

n=0

�
(
xu(n, x), u(n)

) + F
(
xu(N,x)

)

=
N−1∑

n=0

�
(
xμα(n, x),μα

(
xμα(n, x)

)) + F
(
xμα(N,x)

)

≤
N−1∑

n=0

�
(
xμα(n, x),μα

(
xμα(n, x)

)) + V∞
(
xμα(N,x)

) + ε

≤
N−1∑

n=0

�
(
xμα(n, x),μα

(
xμα(n, x)

)) + V∞
(
xμα(N,x)

)
/α + ε, (5.29)

where we used V∞(xμα (N,x)) ≥ 0 and α < 1 in the last inequality. Now (4.18)
implies

�
(
xμα (n, x),μα

(
xμα(n, x)

)) ≤ V∞
(
xμα (n, x)

)
/α − V∞

(
xμα (n + 1, x)

)
/α.

Inserting this inequality into (5.29) yields

VN(x) ≤
N−1∑

n=0

�
(
xμα(n, x),μα

(
xμα(n, x)

)) + V∞
(
xμα (N,x)

)
/α + ε

≤
N−1∑

n=0

V∞
(
xμα (n, x)

)
/α − V∞

(
xμα (n + 1, x)

)
/α + V∞

(
xμα(N,x)

)
/α + ε

≤ V∞
(
xμα(0, x)

)
/α + ε = V∞(x)/α + ε

and since α ∈ [ᾱ,1) was arbitrary the assertion follows. �
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Example 5.23 We illustrate Theorem 5.21 by Example 5.6 and 5.18. Observing that
XN = R holds for N ≥ 1, the dynamic programming equation (3.15) for K = 1 and
N ≥ 2 becomes

VN(x) = inf
u∈R

{
x2 + u2 + VN−1(x + u)

}
.

Using this equation in order to iteratively compute VN starting from V1(x) = 2x2,
cf. Example 5.6, we obtain the (approximate) values

V1(x) = 2x2, V2(x) = 1.666666667x2,

V3(x) = 1.625x2, V4(x) = 1.619047619x2,

V5(x) = 1.618181818x2, V6(x) = 1.618055556x2,

V7(x) = 1.618037135x2, V8(x) = 1.618034448x2,

V9(x) = 1.618034056x2, V10(x) = 1.618033999x2,

cf. Problem 4. Since, as computed in Example 5.18, the infinite horizon optimal
value function is given by

V∞(x) = 1

2
(1 + √

5)x2 ≈ 1.618033988x2,

this shows that, e.g., for R = 1, the inequality VN(x) − V∞(x) ≤ ε holds for ε =
2.2 ·10−5 for N = 6, for ε = 4.6 ·10−7 for N = 8 and for ε = 1.1 ·10−8 for N = 10.

We end this section by investigating the inverse optimality of the NMPC-
feedback law μN . While the suboptimality estimates provided so far in this section
give bounds on the infinite horizon performance of μN , inverse optimality denotes
the fact that μN is in fact an infinite horizon optimal feedback law—not for the
running cost � but for a suitably adjusted running cost �̃. The motivation for such
a result stems from the fact that optimal feedback laws have desirable robustness
properties. This can be made precise for continuous time control affine systems

ẋ(t) = g0(x) + g1(x)u (5.30)

with x ∈ R
d , u ∈ R

m, g0 : R
d → R

d and g1 : R
d → R

d×m. For these systems it
is known that a stabilizing (continuous time) infinite horizon optimal feedback law
μ∞ has a sector margin (1/2,∞) which means that u = μ∞(x) stabilizes not only
(5.30) but also

ẋ(t) = g0(x) + g1(x)φ(u) (5.31)

for any φ : R
m → R

m satisfying ‖u‖2
2/2 ≤ u�φ(u) ≤ ∞ for all u ∈ R

m, see Magni
and Sepulchre [9] for details.

Although we are not aware of analogous discrete time results in the literature, it
seems reasonable to expect that this robustness is inherited in an approximate way
for optimal control of sampled data systems with sufficiently fast sampling. This
justifies the investigation of inverse optimality also in the discrete time setting.

For the NMPC schemes presented in this chapter we can make the following
inverse optimality statement.
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Theorem 5.24 Consider the optimal control problem (5.5) or (5.15) for some
N ∈ N with the usual constraints x ∈ X and u ∈ U(x). Let the assumptions of the
respective Theorem 5.5 or 5.13 hold for this N . Then on the set XN the feedback
μN equals the infinite horizon optimal feedback law for (OCPn∞) with running cost

�̃(x, u) := �(x,u) + VN−1
(
f (x,u)

) − VN

(
f (x,u)

)
(5.32)

and constraints x ∈ XN−1 and u ∈ U(x).

Proof First observe that the assumptions of Theorem 5.5 or 5.13 imply (5.4) and
V (x∗) = 0. Hence, (5.32) satisfies �̃ ≥ �, is of the form (3.2), and the inequality for
� in (5.2) remains valid for �̃. We denote the infinite horizon optimal value function
of (OCPn∞) with running cost �̃ by Ṽ∞ and the corresponding optimal feedback law
by μ̃N .

From the dynamic programming principle (3.15) with K = 1 and the definition
of �̃ we get

VN(x0) = inf
u∈U

1
XN−1

(x0)

{
�(x0, u) + VN−1

(
f (x0, u)

)}

= inf
u∈U

1
XN−1

(x0)

{
�̃(x0, u) + VN

(
f (x0, u)

)}
.

Similarly, (3.19) implies

VN(x0) = �̃
(
x0,μN(x0)

) + VN

(
f

(
x0,μN(x0)

))
.

From these two equations, by induction for each K ∈ N we get

VN(x0) ≤
K−1∑

k=0

�̃
(
xu(k, x0), u(k)

) + VN

(
xu(K,x0)

)
(5.33)

for every u ∈ U
∞(x0) with U

∞(x0) defined with respect to the constraint x ∈ XN−1,
and

VN(x0) =
K−1∑

k=0

�̃
(
xμN

(k, x0),μN

(
xμN

(k, x0)
)) + VN

(
xμN

(K,x0)
)
. (5.34)

Since �̃ ≥ 0, for an arbitrary u ∈ U
∞(x0) in (5.33), for K → ∞ the sum

K−1∑

k=0

�̃
(
xu(k, x0), u(k)

)

either grows unboundedly or converges to some finite value. Since �̃(x, u) ≥
α3(|x|x∗), convergence is only possible if xu(k,u) converges to x∗ as k → ∞, i.e., if
VN(xu(K,u)) → 0 as k → ∞. Thus, in either case letting K → ∞ in (5.33) we get

VN(x0) ≤
∞∑

k=0

�̃
(
xu(k, x0), u(k)

)
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for all u ∈ U
∞(x0), which implies VN(x0) ≤ Ṽ∞(x0).

On the other hand, since μN asymptotically stabilizes the system, in (5.34) we
get VN(xμN

(K,x0)) → 0 as K → ∞ and thus letting K → ∞ in (5.34) yields

VN(x0) =
∞∑

k=0

�̃
(
xμN

(k, x0),μN

(
xμN

(k, x0)
))

(5.35)

which implies VN(x0) ≥ Ṽ∞(x0). Consequently, we get VN(x0) = Ṽ∞(x0) and from
(5.35) it follows that μ̃∞ = μN is the infinite horizon optimal feedback law for
running cost �̃. �

Observe that for the inverse optimality statement to hold we need to replace the
constraints x ∈ X in (OCPn∞) by the in general tighter constraints x ∈ XN−1, where
XN−1 is the feasible set for (5.5) or (5.15) with horizon N − 1. This is because
by (3.19) the feedback μN is obtained by minimization with respect to these con-
straints. Thus, it cannot in general be optimal for the infinite horizon problem with
the usually weaker original constraints x ∈ X.

5.5 Notes and Extensions

Most of the results in this chapter are classical and can be found in several places
in the NMPC literature. In view of the huge amount of this literature, here we do
not make an attempt to give a comprehensive list of references but rather restrict
ourselves just to the literature from which we learned the results presented in this
chapter.

While the proofs in the NMPC literature are similar to the proofs given here, the
relaxed dynamic programming arguments outlined in Sect. 5.1 are usually applied
in a more ad hoc manner. The reason we have put more emphasis on this approach
and, in particular, used Theorem 4.11 in the stability proofs is because the analysis
of NMPC schemes without stabilizing terminal constraints in the following Chap. 6
will also be based on Theorem 4.11. Hence, proceeding this way we can highlight
the similarities in the analysis of these different classes of NMPC schemes.

For discrete time NMPC schemes with equilibrium terminal constraints as fea-
tured in Sect. 5.2, a version of Theorem 5.5 was published by Keerthi and Gilbert [8]
in 1988, even for the more general case in which the optimization horizon may vary
with time. Their approach was inspired by earlier results for linear systems, for more
information on these linear results we refer to the references in [8]. Even earlier, in
1982 Chen and Shaw [1] proved stability of an NMPC scheme with equilibrium
terminal constraint in continuous time, however, in their setting the whole optimal
control function on the optimization horizon is applied to the plant, as opposed to
only the first part. Continuous time and sampled data versions of Theorem 5.5 were
given by Mayne and Michalska [10] in 1990, using, however, a differentiability as-
sumption on the optimal value function which is quite restrictive in the presence of
state constraints.
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The “quasi-infinite horizon” idea of imposing regional terminal constraints X0
plus a terminal cost satisfying Assumption 5.9 as presented in Sect. 5.3 came up in
the second half of the 1990s in papers by De Nicolao, Magni and Scattolini [3, 4],
Magni and Sepulchre [9] or Chen and Allgöwer [2], both in discrete and continuous
time. Typically, these papers provide specific constructions of F and X0 satisfying
Assumption 5.9 rather than imposing this assumption in an abstract way as we did
here. The abstract formulation of these conditions given here was inspired by the
survey article by Mayne, Rawlings, Rao, and Scokaert [11], which also contains a
comparative discussion of the approaches in some of the cited papers. For a con-
tinuous time version of such abstract conditions we refer to Fontes [5]. A terminal
cost meeting Assumption 5.9 was already used before by Parisini and Zoppoli [14],
however, without terminal constraint; we will investigate this setting in Sect. 7.1.
The construction of F and X0 in Remark 5.15 is similar to the construction in [2]
and [14]. A related NMPC variant which may have motivated some of the authors
cited above was proposed by Michalska and Mayne [12]. In this so-called dual mode
NMPC the prediction horizon length is an additional optimization variable and the
prediction is stopped once the set X0 is reached. Inside this set, the control value ux

from Assumption 5.9(ii) is used.
Establishing the existence of a suitable upper bound of VN is essential for being

able to use VN as a Lyapunov function. The argument used here in the proofs of
Propositions 5.7(ii) and 5.14(ii) was adopted from Rawlings and Mayne [16, Propo-
sition 2.18]. Of course, this is not the only way to obtain an upper bound on VN .
Other sufficient conditions, like, e.g., the controllability condition “C” in Keerthi
and Gilbert [8, Definition 3.2], may be used as well.

Regarding the suboptimality results in Sect. 5.4, for the special case of equilib-
rium terminal constraints X0 = {x∗} and F ≡ 0, a version of the suboptimality result
in Theorem 5.21 was given by Keerthi and Gilbert [8]. For the case of general X0
and F we are not aware of a result similar to Theorem 5.21, although we would
not be surprised to learn that such a result exists in the huge body of NMPC litera-
ture. Theorem 5.22 is a variant of Grüne and Rantzer [6, Theorem 6.2] and extends
Theorem 2 of Hu and Linnemann [7] in which the case F = V∞ is considered.

Inverse optimality was extensively investigated already for linear MPC leading
to the famous “fake” algebraic Riccati equation introduced by Poubelle, Bitmead
and Gevers [15]. For nonlinear systems in continuous time this property was proved
by Magni and Sepulchre [9]. While the discrete time nonlinear version given in
Theorem 5.24 is used in an ad hoc manner in several papers (e.g., in Nešić and Grüne
[13]), we were not able to find it in the literature in the general form presented here.

5.6 Problems

1. Consider the scalar control system

x+ = x + u, x(0) = x0

with x ∈ X = R, u ∈ U = R which shall be controlled via NMPC using the
quadratic running cost
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�(x,u) = x2 + u2

and the stabilizing endpoint constraint xu(N,x0) = x∗ = 0. For the horizon
N = 2, compute an estimate for the closed-loop costs J∞(x,μ2(·)).

2. Consider the setting of Remark 5.15 and prove the following properties.
(a) There exists a constant E > 0 such that |r(x,u)| + |�̃(x, u)| ≤ E‖x‖3 holds

for each x ∈ R
d with ‖x‖ sufficiently small and u = u�(x).

(b) For each σ > 1 there exists δ > 0 such that ‖x‖ ≤ δ implies

−�(x,u) + �̃(x, u) + r(x,u) ≤ −�(x,u)/σ

for u = u�(x).
Hint for (b): Look at the hints for Problem 2 in Chap. 4.

3. Consider f , �, X0 and F satisfying the assumptions of Proposition 5.14(i)
and (ii). Prove the following properties.
(a) The running cost satisfies �(x,ux) ≤ α̃2(|x|x∗) for x ∈ X0, ux from Assump-

tion 5.9(ii) and α̃2 from the assumption of Proposition 5.14(ii).
(b) For the feedback law μ(x) := ux with ux from Assumption 5.9(ii) the

closed-loop system x+ = f (x,μ(x)) is asymptotically stable on X0.
4. Consider the setting from Problem 1. Prove without using Theorem 5.21 that for

all ε > 0 and R > 0 there exists Nε ∈ N such that

VN(x) ≤ V∞(x) + ε

holds for all N ≥ Nε and all x ∈ R with |x| ≤ R. Proceed as follows:
(a) Use dynamic programming in order to show VN(x) = CNx2 with C1 = 2

and

CN = 8C2
N−1 + 12CN−1 + 4

4C2
N−1 + 8CN−1 + 4

.

(b) Use the expression from (a) to conclude that CN → 1
2 (1 + √

5) holds as
N → ∞.

(c) Use the exact expression for V∞ from Example 5.23 in order to prove the
claim.

5. Consider Example 2.3, i.e.,

f (x,u) :=
(

x+
1

x+
2

)
=

(
sin(ϑ(x) + u)

cos(ϑ(x) + u)/2

)

with

ϑ(x) =
{

arccos 2x2, x1 ≥ 0,

2π − arccos 2x2, x1 < 0,

initial value (0,1/2) and running cost �(x,u) = ‖x − x∗‖2 + u2 with x∗ =
(0,−1/2). The control values are restricted to the set U = [0,0.2] which allows
the car to only move clockwise on the ellipse

X =
{
x ∈ R

2
∣∣∣
∣

∥
∥∥
∥

(
x1

2x2

)∥∥∥
∥ = 1

}
.

Perform the following numerical simulations for this problem.
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(a) Implement the NMPC closed loop for N = 8 and confirm that the closed-
loop trajectory does not converge toward x∗.

(b) Modify the NMPC problem by introducing the terminal constraint
X0 = {x∗}. Again considering the horizon length N = 8, verify that now
x(n) → x∗.

(c) Check the control constraints for each NMPC iterate from (b) more closely,
verify that they are violated at some sampling instants and explain why this
happens. Determine by simulations how large N needs to be such that these
violations vanish.

Hint: Instead of implementing the problem from scratch you may suitably modify
the MATLAB code for Example 6.26, cf. Sect. A.1.
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Chapter 6
Stability and Suboptimality Without Stabilizing
Constraints

In this chapter we present a stability and suboptimality analysis for NMPC schemes
without stabilizing terminal constraints. After defining the setting and presenting
motivating examples we introduce an asymptotic controllability assumption and
give a detailed derivation of stability and performance estimates based on this as-
sumption and the relaxed dynamic programming framework introduced before. We
show that our stability criterion is tight for the class of systems satisfying the con-
trollability assumption and give conditions under which the level of suboptimality
and a bound on the optimization horizon length needed for stability can be explicitly
computed from the parameters in the controllability condition. As a spinoff we re-
cover the well known result that—under suitable conditions—stability of the NMPC
closed loop can be expected if the optimization horizon is sufficiently large. We fur-
ther deduce qualitative properties of the running cost which lead to stability with
small optimization horizons and illustrate by means of two examples how these cri-
teria can be used even if the parameters in the controllability assumption cannot be
evaluated precisely. Finally, we give weaker conditions under which semiglobal and
semiglobal practical stability of the NMPC closed loop can be ensured.

6.1 Setting and Preliminaries

In this chapter we consider the NMPC schemes without stabilizing constraints.
Throughout this chapter we will use the basic NMPC Algorithms 3.1 and 3.7
with optimal control problems (OCPN) and (OCPn

N), respectively. Weights ωk as
in (OCPN,e) and (OCPn

N,e)—more precisely, terminal weights—will be discussed
in Sect. 7.2. We consider state and control constraints X and U(x) as introduced in
Sect. 3.2 and the respective set U

N(x) of admissible control sequences from Defi-
nition 3.2. Throughout this chapter the state constraint set X ⊂ X is supposed to be
viable in the sense of Assumption 3.3. Relaxations of this viability assumption on
X will be discussed in Sects. 8.1–8.3.

L. Grüne, J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-501-9_6, © Springer-Verlag London Limited 2011
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As in the previous chapter, our goal is to apply Theorem 4.11, for which we need
to establish the inequalities

VN(n, x) ≥ α�
(
n,x,μN(n, x)

)+ VN

(
n + 1, f

(
x,μN(n, x)

))
(5.1)

for all x ∈ X, n ∈ N0 and some α ∈ (0,1], and the existence of α1, α2, α3 ∈ K∞
such that the inequalities

α1
(|x|xref(n)

)≤ VN(n, x) ≤ α2
(|x|xref(n)

)
and

�(n, x,u) ≥ α3
(|x|xref(n)

)
(5.2)

hold for all x ∈ X, n ∈ N0 and u ∈ U , cf. Sect. 5.1. Again, the inequality

VN(n, x0) ≥ �
(
n,x0,μN(n, x0)

)+ VN−1
(
n + 1, f

(
x0,μN(n, x0)

))
, (5.3)

which follows from (3.20), plays a vital role in our analysis. In Sect. 6.7 we will
also use Theorem 4.14 in order to prove practical stability properties.

For the optimal value functions VN of (OCPN) or (OCPn
N) and V∞ of the corre-

sponding infinite horizon problems (OCPn∞) it is immediate that we get the inequal-
ities

VN−1(n, x0) ≤ VN(n, x0) ≤ V∞(n, x0) (6.1)

for all n ∈ N0, all N ∈ N and all x0 ∈ X. This inequality follows since minimization
is carried out with the same constraints for all N (including ∞) and the running cost
� is nonnegative. Hence, JN is increasing in N , which carries over to VN .

For this reason, the arguments of the last section in which we used the terminal
constraints in order to reverse the inequalities in (6.1) do not work anymore.

Nevertheless, NMPC without terminal constraints works, as the following two
simple examples show, in which α in (5.1) can be computed explicitly.

Example 6.1 Consider again Example 5.6, i.e.,

x+ = x + u, �(x,u) = x2 + u2

with X = X = U = U = R. Here we get

V1(x0) = inf
u∈R

0∑

k=0

�
(
xu(k, x0), u(k)

)= inf
u∈R

x2
0 + u2 = x2

0

and, by (3.15) for N = 2 and K = 1,

V2(x0) = inf
u(·)∈U1(x0)

{
�
(
xu(0, x0), u(0)

)+ V1
(
xu(1, x0)

)}

= inf
u∈U

{
x2

0 + u2 + (x0 + u)2}= inf
u∈U

{
2x2

0 + 2u2 + 2x0u
}
.

The minimum of this expression is attained at u = −x0/2, which by (3.19) implies
μ2(x0) = −x0/2. The resulting minimum is

V2(x0) = 3

2
x2

0 .
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Thus, (5.1) for N = 2 becomes

3

2
x2 ≥ α

(
x2 + x2/4

)+ 3

2

(
x2/4

)
,

which is satisfied for all x by α = 0.9, i.e., (5.1) is satisfied for N = 2 and this α for
all x ∈ X = R.

Note that the closed-loop system for μ2 is given by x+ = x/2, for which asymp-
totic stability at x∗ = 0 is also easily seen directly.

Example 6.2 We consider the previous Example 6.1 again, i.e.,

x+ = x + u, �(x,u) = x2 + u2

with X = X = U = R but now we impose the control constraint U(x) ≡ U =
[−1,1]. While the computation for V1 again yields V1(x0) = x2

0 , the expression
for V2 now becomes

V2(x0) = inf
u∈[−1,1]

{
2x2

0 + 2u2 + 2x0u
}
,

whose minimizer is

μ2(x0) =
{

max{−x0/2, −1}, x ≥ 0,

min{x0/2, 1}, x < 0.

Consequently, V2 becomes

V2(x0) =
{

3
2x2

0 , x0 ∈ [−2,2],
2(x2

0 − |x0| + 1), x0 /∈ [−2,2].
For |x| ≤ 2, Inequality (5.1) for N = 2 is as in the previous example and is thus
satisfied for α = 0.9. For |x| ∈ (2,3), (5.1) becomes

2
(
x2

0 − |x0| + 1
)≥ α

(
x2 + 1

)+ 3

2
(x − 1)2,

which is satisfied for all |x| ∈ (2,3) with α = 0.8. For |x| > 3 we get

2
(
x2

0 − |x0| + 1
)≥ α

(
x2 + 1

)+ 2
(
x2

0 − 3|x0| + 3
)
,

which is satisfied for α = 4(|x| − 1)/(x2 + 1).
Hence, if we restrict the state space X = R to X = [−a, a] for some a > 0 (note

that each such X is forward invariant under the closed-loop system), then we al-
ways find α ∈ (0,1) such that (5.1) holds for all x ∈ X = [−a, a]. Consequently, the
feedback μ2 asymptotically stabilizes the system at x∗ = 0 on each set of the form
X = [−a, a] and thus also globally.

The last example shows one of the advantages of NMPC without stabilizing ter-
minal constraints over the constrained approach from the previous chapter: Since in
this example |f (x,u) − x| ≤ 1 holds for each x ∈ R and each u ∈ U = [−1,1], us-
ing a terminal constraint of the form X0 = [−ε, ε] implies that the feasible sets are
given by XN = [−N − ε,N + ε]. Hence, in order to compute a controller defined
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on a large set XN , a large horizon length N is needed. In contrast to this, the NMPC
feedback μN without stabilizing terminal constraints globally asymptotically stabi-
lizes the system already for N = 2.

Further advantages of NMPC without stabilizing terminal constraints are that no
Lyapunov function terminal cost F has to be computed in advance and that no addi-
tional constraints have to be added to the optimization problem; a detailed compara-
tive discussion of schemes with and without stabilizing terminal constraints is given
in Sect. 8.4. For these reasons, stabilizing terminal constraints are often avoided in
practice.

A rigorous proof for the fact that one can obtain asymptotic stability without im-
posing stabilizing terminal constraints and terminal costs was—to the best of our
knowledge—first given by Alamir and Bornard in [1] for nonlinear discrete time
systems whose linearization with respect to u satisfies a specific rank condition and
for quadratic running costs �. Ten years later, this result was extended by Jadbabaie
and Hauser in [8] (for continuous time systems) and by Grimm et al. in [4] (for dis-
crete time systems) to systems without any rank conditions and to arbitrary positive
definite costs using an exponential controllability condition in [8] and a bound on
the finite horizon optimal value function VN in [4]. The proofs in these references
exploit that for N → ∞ the open-loop optimal trajectories converge to a region in
which � is small. This fact is either used directly as in [4] or indirectly by exploiting
that it implies the convergence VN − VN−1 → 0 for N → ∞ as in [1, 8]. This con-
vergence was also used by Grüne and Rantzer in [6] in order to estimate α in (5.1)
from suitable bounds on VN , which in turn can be guaranteed by an appropriate
controllability condition.

Even though [6] showed that the convergence VN − VN−1 → 0 for N → ∞ can
be used in order to estimate α in (5.1), in this book we present a different approach in
order to estimate α, which we consider advantageous, because it uses the available
information—either from a controllability condition or from bounds on the opti-
mal value functions—in a more efficient way; a discussion on this fact is given in
Sect. 6.9. In particular, we will not try to establish (5.1) from the fact that VN −VN−1
becomes small. Rather, we will use a direct argument based on properties of opti-
mal trajectories in order to derive an upper bound for VN(n + 1, f (x,μN(n, x)))

in (5.1). As we will see, this approach leads to a tight characterization of α in (5.1)
and—under suitable conditions—to an explicit formula relating α to the parameters
in the controllability condition, whose precise form will be introduced in the next
section.

Following the structure from the previous chapter, we will first present our con-
cepts and results for the time-invariant case of Algorithm 3.1 and then discuss the
extensions to the time varying case of Algorithm 3.7 at the end of Sect. 6.5.

6.2 Asymptotic Controllability with Respect to �

In order to introduce the controllability assumption needed for our analysis, we first
slightly enlarge the class of K L-functions introduced in Definition 2.13.
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Definition 6.3 We say that a continuous function β : R≥0 × R≥0 → R≥0 is of class
K L0 if for each r > 0 we have limt→∞ β(r, t) = 0 and for each t ≥ 0 we either have
β(·, t) ∈ K∞ or β(·, t) ≡ 0.

Compared to the class K L, here we do not assume monotonicity in the second
argument and we allow for β(·, t) being identically zero for some t . This allows for
tighter bounds for the actual controllability behavior of the system. It is, however,
easy to see that each β ∈ K L0 can be overbounded by a β̃ ∈ K L, e.g., by setting
β̃(r, t) = maxτ≥t β(r, τ ) + e−t r .

For the following assumption we define

�∗(x) := inf
u∈U

�(x,u). (6.2)

Assumption 6.4 Consider the optimal control problem (OCPN). We assume that the
system is asymptotically controllable with respect to � with rate β ∈ K L0, i.e., for
each x ∈ X and each N ∈ N there exists an admissible control sequence ux ∈ U

N(x)

satisfying

�
(
xux (n, x),ux(n)

)≤ β
(
�∗(x), n

)

for all n ∈ {0, . . . ,N − 1}.
Special cases for β ∈ K L0 are

β(r, n) = Cσnr (6.3)

for real constants C ≥ 1 and σ ∈ (0,1), i.e., exponential controllability, and

β(r, n) = cnr (6.4)

for some real sequence (cn)n∈N0 with cn ≥ 0 and cn = 0 for all n ≥ n0, i.e., finite
time controllability with linear overshoot bound.

It is easily seen that if the state trajectories themselves are exponentially control-
lable to some equilibrium x∗ then exponential controllability, i.e., Assumption 6.4
with β from (6.3), holds if � has polynomial growth. In particular, this covers the
usual linear–quadratic setting for stabilizable systems.

However, even if the system itself is not exponentially controllable, exponential
controllability in the sense of Assumption 6.4 can be achieved by proper choice of
�, as the following example shows.

Example 6.5 Consider the control system

x+ = x + ux3

with X = [−1,1] and U = [−1,1]. The system is controllable to x∗ = 0, which
can be seen by choosing u = −1. This results in the system x+ = x − x3 whose
solutions approach x∗ = 0 monotonically for x0 ∈ X.

However, the system it is not exponentially controllable to 0: exponential con-
trollability would mean that there exist constants C > 0, σ ∈ (0,1) such that for
each x ∈ X there is ux ∈ U

∞(x) with
∣
∣xux (n, x)

∣
∣≤ Cσn|x|.
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This implies that by choosing n∗ > 0 so large such that Cσn∗ ≤ 1/2 holds the in-
equality

∣∣xux

(
n∗, x

)∣∣≤ |x|/2 (6.5)

must hold for each x ∈ X. However, for each x ≥ 0 the restriction u ∈ [−1,1] im-
plies x+ ≥ x − x3 = (1 − x2)x, which by induction yields

xu

(
n∗, x

)≥ (
1 − x2)n∗

x

for all u ∈ U
∞(x), which contradicts (6.5) for x < 1 − 2−1/n∗

.
On the other hand, since |x| ≤ 1 we obtain (1 − x2)2(2x2 + 1) = 1 + 2x6 −

3x4 ≤ 1, which implies

1

(1 − x2)2
≥ 2x2 + 1 ⇒ − 1

2x2(1 − x2)2
≤ −2x2 + 1

2x2
= −1 − 1

2x2
.

Hence, choosing

�(x,u) = �(x) = e
− 1

2x2 ,

for u ≡ −1 we obtain

�
(
x+)= �

(
x − x3)= e

− 1
2x2(1−x2)2 = e

− 1
2x2(1−x2)2 ≤ e−1e

− 1
2x2 = e−1�(x).

By induction this implies Assumption 6.4 with β from (6.3) with C = 1 and σ =
e−1.

For certain results it will be useful that β in Assumption 6.4 has the property

β(r, n + m) ≤ β
(
β(r, n),m

)
for all r ≥ 0, n,m ∈ N0. (6.6)

Inequality (6.6), often referred to as submultiplicativity, ensures that any sequence
of the form bn = β(r, n), r > 0, also fulfills bn+m ≤ β(bn,m). It is, for instance,
always satisfied in case (6.3) and satisfied in case (6.4) if cn+m ≤ cncm. If needed,
this property can be assumed without loss of generality, because by Sontag’s K L-
Lemma [12, Proposition 7] (cf. also the discussion before Theorem 4.3) the function
β in Assumption 6.4 can be replaced by a β of the form β(r, t) = α1(α2(r)e

−t ) for
α1, α2 ∈ K∞. Then, (6.6) is easily verified if α2 ◦ α1(r) ≥ r , which is equivalent to
α1 ◦ α2(r) ≥ r , which in turn is a necessary condition for Assumption 6.4 to hold
for n = 0 and β(r, t) = α1(α2(r)e

−t ).

Remark 6.6 Computing β satisfying Assumption 6.4 is in general a hard task for
nonlinear systems. One way to obtain such a β is via a suitable control Lyapunov
function, similar to the procedure described in Khalil [9, Sect. 4.4] or used in Nešić
and Teel [10, Proof of Proposition 1]. However, as we will see later, the precise
knowledge of β is not necessarily needed in order to apply our results, because we
will be able to identify structural properties of β which guarantee good performance
of the NMPC closed loop, cf. Sect. 6.6.
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Remark 6.7 Note that Assumption 6.4 is an assumption in discrete time. In the case
of sampled data systems with zero order hold this implies that the discrete time sys-
tem obtained from (2.8) with constant control function u : [0, T ] → R

m needs to
satisfy this assumption. Due to the fact that this system corresponds to the continu-
ous time system (2.6) with control functions v : R → R

m which are constant on the
sampling intervals, this is in general a stronger assumption than requiring (2.6) to
be asymptotically controllable with measurable control functions v ∈ L∞(R,R

m),
cf. also Remark 2.9.

6.3 Implications of the Controllability Assumption

In this section we will use the Controllability Assumption 6.4 in order to establish
three lemmas which yield bounds for optimal value functions and functionals along
pieces of optimal trajectories. In the subsequent section, these bounds will then be
used for the calculation of α in (5.1).

A first immediate consequence of Assumption 6.4 is the following lemma.

Lemma 6.8 If Assumption 6.4 holds then for each N ≥ 1 and each x ∈ X the in-
equality

VN(x) ≤ JN(x,ux) ≤ BN

(
�∗(x)

)
(6.7)

holds for ux from Assumption 6.4 and

BN(r) :=
N−1∑

n=0

β(r, n). (6.8)

Proof The inequality follows immediately from

VN(x) ≤ JN(x,ux) =
N−1∑

n=0

�
(
x(n,ux), ux(n)

)

≤
N−1∑

n=0

β
(
�∗(x), n

)= BN

(
�∗(x)

)
. �

In the special case (6.3) the values BN , N ≥ 1, evaluate to

BN(r) = C
1 − σN

1 − σ
r

while for (6.4) we obtain

BN(r) = CNr with CN =
min{n0,N−1}∑

j=0

cj .
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In order to be able to calculate α in (5.1), we will need an upper bound for
VN(f (x,μN(x))). To this end, recall from Step (3) of Algorithm 3.1 that μN(x0)

is the first element of the optimal control sequence u	(·) for (OCPN) with initial
value x0. In particular, this implies f (x0,μN(x0)) = xu	(1, x0). Hence, if we want
to derive an upper bound for VN(f (x0,μN(x0))) then we can alternatively derive
an upper bound for VN(xu	(1, x0)). This will be done in the following lemma.

Lemma 6.9 Suppose Assumption 6.4 holds and consider x0 ∈ X and an optimal
control u∗ ∈ U

N(x0) for (OCPN). Then for each j = 0, . . . ,N − 2 the inequality

VN

(
xu	(1, x0)

)≤ Jj

(
xu∗(1, x0), u

∗(1 + ·))+ BN−j

(
�∗(xu∗(1 + j, x0)

))

holds for BN from (6.8).

Proof We define the control sequence

ũ(n) =
{

u∗(1 + n), n ∈ {0, . . . , j − 1},
ux(n − j), n ∈ {j, . . . ,N − 1}

for ux from Assumption 6.4 applied to x = xu∗(1 + j, x0) and N = N − j . By
construction, this control sequence is admissible for xu	(1, x0) and we obtain

VN

(
xu∗(1, x0)

)≤ J
(
xu∗(1, x0), ũ

)

= Jj

(
xu∗(1, x0), u

∗(1 + ·))+ JN−j

(
xu∗(1 + j, x0), ux

)

≤ Jj

(
xu∗(1, x0), u

∗(1 + ·))+ BN−j

(
�∗(xu∗(1 + j, x0)

))

where we used (6.7) in the last step. This is the desired inequality. �

In words, the idea of this proof is as follows. The upper bound for each j ∈
{0, . . . ,N − 2} is obtained from a specific trajectory. We follow the optimal trajec-
tory for initial value x0 for j steps and for the point x reached this way we use the
control sequence ux for another N − j steps.

In the next lemma we derive upper bounds for the Jk-terms along tails of the
optimal trajectory xu∗ , which will later be used on order to bound the right hand side
of the inequality from Lemma 6.9. To this end we use that these tails are optimal
trajectories themselves. While we could deduce this fact from Corollary 3.18, here
we prefer to give an elementary self contained proof.

Lemma 6.10 Suppose Assumption 6.4 holds and consider x0 ∈ X and an optimal
control u∗ ∈ U

N(x) for (OCPN). Then for each k = 0, . . . ,N − 1 the inequality

JN−k

(
xu∗(k, x0), u

∗(k + ·))≤ BN−k

(
�∗(xu∗(k, x0)

))

holds for BN from (6.8).

Proof Pick any k ∈ {0, . . . ,N − 1}. Using ux from Assumption 6.4 with x =
xu∗(k, x0) and N = N − k, from (6.7) we obtain

JN−k

(
xu∗(k, x0), ux(·)

)≤ BN−k

(
l∗
(
xu∗(k, x0)

))
. (6.9)
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Hence, for the control sequence defined by

ũ(n) =
{

u∗(n), n ∈ {0, . . . , k − 1},
ux(n − k), n ∈ {k, . . . ,N}

we obtain

VN(x0) ≤ JN(x0, ũ) = Jk

(
x0, u

∗)+ JN−k

(
xu∗(k, x0), ux(·)).

On the other hand we have

VN(x0) = JN

(
x0, u

∗)= Jk

(
x0, u

∗)+ JN−k

(
xu∗(k, x0), u

∗(k + ·)).
Subtracting the latter from the former yields

0 ≤ JN−k

(
xu∗(k, x0), ux(·))− JN−k

(
xu∗(k, x0), u

∗(k + ·)),
which using (6.9) implies

JN−k

(
xu∗(k), u∗(k + ·))≤ JN−k

(
xu∗(k, x0), ux(·))≤ BN−k

(
�∗(xu∗(k, x0)

))
,

i.e., the assertion. �

Remark 6.11 Since u∗ ∈ U
N(x0) we obtain xu∗(k, x0) ∈ X for k = 0, . . . ,N .

For k = 0, . . . ,N − 1 this property is crucial for the proofs of Lemma 6.9 and
Lemma 6.10 because this property ensures that ux from Assumption 6.4 with
x = xu∗(1 + j, x0) or x = xu∗(k, x0), respectively, exists. Note, however, that we
do not need xu∗(N,x0) ∈ X in the proofs. In fact, all results in this and the ensuing
sections remain true if we remove the state constraint on xu∗(N,x0) ∈ X from the
definition of U

N(x0) or replace it by some weaker constraint.

6.4 Computation of α

We will now use the inequalities derived in the previous section in order to compute
α for which (5.1) holds for all x ∈ X. When trying to put together these inequalities
in order to bound VN(xu	(1, x0)) from above, one notices that the functionals in
Lemma 6.8 and 6.10 are not exactly the same. Hence, in order to combine these
results into a closed form which is suitable for computing α we need to look at the
single terms of the running cost � contained in these functionals.

To this end, let u	 be an optimal control for (OCPN) with initial value x0 = x.
Then from the definition of VN and μN it follows that (5.1) is equivalent to

N−1∑

k=0

�
(
xu∗(k, x), u∗(k)

)≥ α�
(
x,u∗(0)

)+ VN

(
xu∗(1, x)

)
. (6.10)

Thus, in order to compute α for which (5.1) holds for all x ∈ X we can equivalently
compute α for which (6.10) holds for all optimal trajectories xu∗(·, x) with initial
values x ∈ X.

For this purpose we now consider arbitrary real values λ0, . . . , λN−1, ν ≥ 0
and start by deriving necessary conditions which hold if these values coincide
with the cost along an optimal trajectory �(xu∗(k, x), u∗(k)) and an optimal value
VN(xu∗(1, x)), respectively.
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Proposition 6.12 Suppose Assumption 6.4 holds and consider N ≥ 1, values λn ≥
0, n = 0, . . . ,N −1, and a value ν ≥ 0. Consider x ∈ X and assume that there exists
an optimal control sequence u∗ ∈ U

N(x) for (OCPN) such that

λk = �
(
xu∗(k, x), u∗(k)

)
, k = 0, . . . ,N − 1

holds. Then
N−1∑

n=k

λn ≤ BN−k(λk), k = 0, . . . ,N − 2 (6.11)

holds. If, furthermore,
ν = VN

(
xu∗(1, x)

)

holds then

ν ≤
j−1∑

n=0

λn+1 + BN−j (λj+1), j = 0, . . . ,N − 2 (6.12)

holds.

Proof If the stated conditions hold, then λn and ν must meet the inequalities given
in Lemmas 6.9 and 6.10, which is exactly (6.12) and (6.11). �

Using this proposition we can give a sufficient condition for (6.10) and thus for
(5.1). The idea behind the following proposition is to express the terms in Inequality
(6.10) using the values λ0, . . . , λN−1 and ν introduced above.

Proposition 6.13 Consider β ∈ K L0 and N ≥ 1 and assume that all values λn ≥ 0,
n = 0, . . . ,N − 1 and ν ≥ 0 fulfilling (6.11) and (6.12) satisfy the inequality

N−1∑

n=0

λn − ν ≥ αλ0 (6.13)

for some α ∈ (0,1]. Then for this α and each optimal control problem (OCPN)
satisfying Assumption 6.4 Inequality (5.1) holds for μN from Algorithm 3.1 and all
x ∈ X.

Proof Consider a control system satisfying Assumption 6.4 and an optimal control
sequence u∗ ∈ U

N(x) for initial value x ∈ X. Then by Proposition 6.12 the values
λk = �(xu∗(k, x), u∗(k)) and ν = VN(xu∗(1, x)) satisfy (6.11) and (6.12), hence by
assumption also (6.13). Thus, using �(x,u∗(0)) = �(xu∗(0, x), u∗(0)) = λ0 we ob-
tain

VN

(
xu∗(1, x)

)+ α�
(
x,u∗(0)

)= ν + αλ0 ≤
N−1∑

k=0

λk =
N−1∑

k=0

�
(
xu∗(k, x), u∗(k)

)
.

This proves (6.10) and thus also (5.1). �

Proposition 6.13 is the basis for computing α as specified in the following theo-
rem.
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Theorem 6.14 Consider β ∈ K L0 and N ≥ 1 and assume that the optimization
problem

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν

λ0

subject to the constraints (6.11), (6.12), and (6.14)

λ0 > 0, λ1, . . . , λN−1, ν ≥ 0

has an optimal value α ∈ (0,1]. Then for this α and each optimal control problem
(OCPN) satisfying Assumption 6.4 Inequality (5.1) holds for μN from Algorithm 3.1
and all x ∈ X.

Proof Consider arbitrary values λ0, . . . , λN−1, ν ≥ 0 satisfying (6.11) and (6.12).
If λ0 > 0 then the definition of Problem (6.14) immediately implies (6.13).
If λ0 = 0, then Inequality (6.11) for k = 0 together with BN(0) = 0 implies

λ1, . . . , λN−1 = 0. Thus, (6.12) for j = 1 yields ν = 0 and again (6.13) holds.
Hence, (6.13) holds in both cases and Proposition 6.13 yields the assertion. �

Remark 6.15

(i) Note that all we need in order to formulate the constraints (6.11) and (6.12)
in optimization problem (6.14) are the bounds BK(�∗(x)) on VK(x) and
JK(x,ux) induced by β from Assumption 6.4 via Lemma 6.8 for K =
2, . . . ,N . Thus, in Theorem 6.14 (as well as in Propositions 6.12, 6.13 and in
all subsequent statements) Assumption 6.4 can be replaced by the assumption

VK(x) ≤ BK

(
�∗(x)

)
(6.15)

for all x ∈ X and all K = 2, . . . ,N , replacing ux from Assumption 6.4 by the
optimal control sequence u	 for JK(x,u).

(ii) Theorem 6.14 shows Inequality (5.1) for all x ∈ X if Assumption 6.4 or, equiv-
alently, (6.15) holds for all x ∈ X and K = 2, . . . ,N .

If we want to establish Inequality (5.1) only for states x0 ∈ Y for a subset
Y ⊂ X, then from the proofs of the Lemmas 6.9 and 6.10 it follows that Propo-
sition 6.12 holds for all x0 ∈ Y (instead of for all x ∈ X) under the following
condition:

(6.15) holds for x = xu	(k, x0) for all k = 0, . . . ,N − 1, all x0 ∈ Y

and all K = 2, . . . ,N, where u	 is the optimal control for JN(x0, u).
(6.16)

This implies that under condition (6.16) Theorem 6.14 holds for all x0 ∈ Y and
consequently (5.1) holds for all x0 ∈ Y .

(iii) A further relaxation of the assumptions of Theorem 6.14 can be obtained by
observing that if we are interested in establish Inequality (5.1) only for states
x0 ∈ Y , then in (6.14) we only need to optimize over those λi which cor-
respond to optimal trajectories starting in Y . In particular, if we know that
infx0∈Y �∗(x0) ≥ ζ for some ζ > 0, then the constraint λ0 > 0 can be tightened
to λ0 ≥ ζ .
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The following lemma shows that the optimization problem (6.14) specializes to
a linear program if the functions BN(r) are linear in r .

Lemma 6.16 If the functions BN(r) from (6.8) in the constraints (6.11), (6.12) are
linear in r , then α from Problem (6.14) coincides with

α := min
λ0,...,λN−1,ν

N−1∑

n=0

λn − ν

subject to the (now linear) constraints (6.11), (6.12), and (6.17)

λ0 = 1, λ1, . . . , λN−1, ν ≥ 0.

In particular, this holds if β(r, t) in (6.8) is linear in r .

Proof Due to the linearity, all sequences λ̄0, . . . , λ̄N−1, ν̄ satisfying the constraints
in (6.14) can be written as γ λ0, . . . , γ λN−1, γ ν for some λ0, . . . , λN−1, ν satisfying
the constraints in (6.17), where γ = 1/λ̄0. Since

∑N−1
n=0 λ̄n − ν̄

λ̄0
=
∑N−1

n=0 γ λn − γ ν

γ λ0
=
∑N−1

n=0 λn − ν

λ0
=

N−1∑

n=0

λn − ν,

the values α in Problems (6.14) and (6.17) coincide. �

Our last result gives an explicit solution of Problem (6.17) and thus also (6.14) if
the functions BN are linear.

Proposition 6.17 If the functions BN(r) from (6.8) in the constraints (6.11), (6.12)
are linear in r , then the solution of Problems (6.14) and (6.17) satisfies the inequal-
ity

α ≥ αN (6.18)

for

αN := 1 − (γN − 1)
∏N

k=2(γk − 1)
∏N

k=2 γk −∏N
k=2(γk − 1)

with γk = Bk(r)/r, (6.19)

where γk is well defined by linearity of Bk .
If, in addition, β in (6.8) is linear in its first argument and satisfies (6.6), then

equality holds in (6.18), i.e.,
α = αN . (6.20)

Proof The rather technical proof of this proposition can be found in Sect. 6.8. �

In the special cases of exponential controllability (6.3) and finite time controlla-
bility (6.4) we get

γk = C
1 − σk

1 − σ
and γk = Ck =

min{n0,k−1}∑

j=0

cj ,

respectively. We will further investigate Formula (6.19) in Sect. 6.6.
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6.5 Main Stability and Performance Results

We are now ready to state our main result on stability and performance of the basic
NMPC Algorithm 3.1 without stabilizing terminal constraints. In this section we
deal with global asymptotic stability, i.e., asymptotic stability on the whole state
constraint set X. Further results on semiglobal and practical asymptotic stability
will be provided in Sect. 6.7.

Theorem 6.18 Consider the NMPC Algorithm 3.1 with optimization horizon N ∈ N

and running cost � satisfying α3(|x|x∗) ≤ �∗(x) ≤ α4(|x|x∗) for suitable α3, α4 ∈
K∞. Suppose that Assumption 6.4 holds and that α from Theorem 6.14 satisfies
α ∈ (0,1]. Then the nominal NMPC closed-loop system (3.5) with NMPC-feedback
law μN is asymptotically stable on X.

In addition, the inequality

J∞(x,μN) ≤ VN(x)/α ≤ V∞(x)/α

holds for each x ∈ X.

Proof The assertion follows readily from Theorem 4.11 and Inequality (6.1) if we
prove the Inequalities (5.1) and (5.2). Inequality (5.1) follows directly from Theo-
rem 6.14.

Regarding (5.2), observe that the inequality for � follows immediately from our
assumptions. From the definition of VN we get

VN(x) = inf
u∈UN(x)

JN(x,u) ≥ inf
u∈UN (x)

�
(
x,u(0)

)= �∗(x) ≥ α3
(|x|x∗

)
,

thus the lower inequality for VN follows with α1 = α3.
It remains to show the upper inequality for VN in (5.2). To this end, from

Lemma 6.8 we get

VN(x) ≤ BN

(
�∗(x)

)=
N−1∑

n=0

β
(
�∗(x), n

)≤
N−1∑

n=0

β
(
α4
(|x|x∗

)
, n
)

for β ∈ K L0 from Assumption 6.4. The definition of the class K L0 implies either
β(·, n) ∈ K∞ or β(·, n) ≡ 0. For n = 0 we obtain from Assumption 6.4 that

β
(
�∗(x),0

)≥ �
(
x,ux(0)

)≥ �∗(x) > 0

for x �= x∗. This implies β(·,0) �≡ 0 and hence β(·,0) ∈ K∞. Hence we get

α2(·) :=
N−1∑

n=0

β
(
α4(·), n

) ∈ K∞,

which shows the desired upper inequality for VN in (5.2) for this α2(r). �

The next corollary is an immediate consequence of Theorem 6.18.
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Corollary 6.19 Consider the NMPC Algorithm 3.1 with optimization horizon
N ∈ N and running cost � satisfying α3(|x|x∗) ≤ �∗(x) ≤ α4(|x|x∗) for suitable
α3, α4 ∈ K∞. Suppose that Assumption 6.4 holds for some β ∈ K L0, which is lin-
ear in its first argument and that α = αN from Formula (6.19) satisfies α ∈ (0,1].
Then the nominal NMPC closed-loop system (3.5) with NMPC-feedback law μN is
asymptotically stable on X.

In addition, the inequality

J∞(x,μN) ≤ VN(x)/α ≤ V∞(x)/α

holds for each x ∈ X.

Proof The assertion follows from Theorem 6.18 and Proposition 6.17 since linearity
of β in its first argument implies linearity of BN from (6.8). �

The main advantage of Corollary 6.19 over Theorem 6.18 lies in the fact that
α is given explicitly by Formula (6.19) rather than implicitly by the optimization
problem (6.14). The class of systems which is covered by Corollary 6.19 is still quite
large, since, e.g., exponential controllability holds on compact sets X whenever the
linearization of f in x∗ is stabilizable and � is quadratic.

The following simple example illustrates the use of Corollary 6.19 for the case
of a nonexponentially controllable system.

Example 6.20 We reconsider Example 6.5, i.e.,

x+ = x + ux3 with �(x,u) = e
− 1

2x2 .

As shown in Example 6.5, Assumption 6.4 holds with β(r, k) = Cσkr with C = 1
and σ = e−1. For this β , Corollary 6.19 is applicable and (6.6) holds, hence we
obtain α = αN with αN from Formula (6.19).

The bounds from Lemma 6.8 become

BN(r) = C
1 − σN

1 − σ
r = C

1 − e−N

1 − e−1 r

and hence the γk in Formula (6.19) are given by

γk = C
1 − e−k

1 − e−1 .

A straightforward computation reveals that for these values Formula (6.19) simpli-
fies to

1 − (γN − 1)
∏N

k=2(γk − 1)
∏N

k=2 γk −∏N
k=2(γk − 1)

= 1 − e−N.

Hence, for N = 2 we obtain α = 1 − e−2 ≈ 0.865 and for N = 3 we get α = 1 −
e−3 ≈ 0.95. Hence, Corollary 6.19 ensures asymptotic stability for all N ≥ 2 and—
since 1/0.95 ≈ 1.053—for N = 3 the performance of the NMPC controller is only
about 5.3% worse than the infinite horizon controller.
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While in this simple example the computation of α via Formula (6.19) is possible,
in many practical examples this will not be the case. However, Formula (6.19) can
still be used to obtain valuable information for the design of NMPC schemes. This
aspect will be discussed in detail in Sect. 6.6.

Although the main benefit of the approach developed in this chapter compared
to other approaches is that we can get rather precise quantitative estimates, it is
nevertheless good to know that our approach also guarantees asymptotic stability
for sufficiently large optimization horizons N under suitable assumptions. This is
the statement of our final stability result.

Theorem 6.21 Consider the NMPC Algorithm 3.1 with optimization horizon N ∈ N

and running cost � satisfying α3(|x|x∗) ≤ �∗(x) ≤ α4(|x|x∗) for suitable α3, α4 ∈
K∞. Suppose that Assumption 6.4 holds for some β ∈ K L0 which is linear in its
first argument and is summable, i.e.,

∞∑

k=0

β(r, k) < ∞ for all r > 0.

Then the nominal NMPC closed-loop system (3.5) with NMPC-feedback law μN is
asymptotically stable on X provided N is sufficiently large.

Furthermore, for each C > 1 there exists NC > 0 such that

J∞(x,μN) ≤ CVN(x) ≤ CV∞(x)

holds for each x ∈ X and each N ≥ NC .

Proof The assertion follows immediately from Corollary 6.19 if we show that
αN → 1 holds in (6.19) as N → ∞. This property holds if and only if

lim
N→∞

(γN − 1)
∏N

k=2(γk − 1)
∏N

k=2 γk −∏N
k=2(γk − 1)

= 0 (6.21)

with γk defined in (6.19). Note that γk ≥ 1 holds for all k ∈ N and γk′ ≥ γk holds for
k′ > k ≥ 1.

If γk = 1 holds for some k ≥ 2, then we immediately get the assertion since then
the expression in (6.21) equals 0 for all N ≥ j . Thus, we may assume γk > 1 for all
k ≥ 2.

In order to prove (6.21), observe that for each ε ∈ (0,1) the summability of β

implies the existence of K > 0 with
∞∑

k=K

β(1, k) ≤ ε,

which in turn implies γk ≤ γK + ε for all k ∈ N. This shows that the factor (γN − 1)

in (6.21) is uniformly bounded by γK + ε − 1 for all N ∈ N.
The remaining factor in (6.21) can be written as

∏N
k=2(γk − 1)

∏N
k=2 γk −∏N

k=2(γk − 1)
= 1

∏N
k=2 γk−∏N

k=2(γk−1)
∏N

k=2(γk−1)

= 1
∏N

k=2
γk

γk−1 − 1
.
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Now the estimates γK ≤ γk ≤ γK + ε for all k ≥ K imply for N > K

N∏

k=2

γk

γk − 1
≥

K∏

k=2

γk

γk − 1

(
γK

γK + ε − 1

)N−K

→ ∞

as N → ∞, since ε < 1 and thus γK + ε − 1 < γK . Thus,

lim
N→∞

∏N
k=2(γk − 1)

∏N
k=2 γk −∏N

k=2(γk − 1)
= lim

N→∞
1

∏N
k=2

γk

γk−1 − 1
= 0,

which shows the claim. �

This theorem justifies what is often done in practice: we set up an NMPC scheme
using a reasonable running cost � and increase N until the closed-loop system be-
comes stable. While this procedure may work in many applications, it is certainly
not the most sophisticated way to proceed and a clever design of � may signifi-
cantly improve the performance. Examples in which this is the case can be found in
Sect. 6.6.

Remark 6.22 Recall from Sect. 6.1 that throughout this chapter we use our standing
assumption that X is viable. This property is needed in order to ensure recursive
feasibility of X, cf. the discussion after Theorem 3.5. Approaches which allow us
to relax these assumptions are discussed in Sects. 8.1–8.3, cf. also the discussion in
Sect. 8.4(iv).

Theorem 6.18 and Corollary 6.19 give a sufficient condition for asymptotic sta-
bility for the nominal NMPC closed-loop system (3.5) in terms of the value α. More
precisely, if α from (6.14) or αN from (6.19), respectively, is positive, then we can
conclude asymptotic stability whenever Assumption 6.4 is satisfied for the optimiza-
tion problem (OCPN) in Algorithm 3.1.

The following theorem shows that for β ∈ K L0 satisfying (6.6)—which implies
α = αN if β is linear in its first argument—this condition is tight for the class of
systems satisfying Assumption 6.4 in the following sense: if α from (6.14) is nega-
tive, then there exists a control system (2.1) and a running cost � such that Assump-
tion 6.4 holds but the nominal NMPC closed-loop system (3.5) is not asymptotically
stable.

Theorem 6.23 Consider β ∈ K L0 satisfying (6.6), let N ≥ 1 and assume that the
optimization problem (6.14) has an optimal value α < 0.

Then there exists a control system (2.1) and a running cost � satisfying Assump-
tion 6.4 and α3(|x|x∗) ≤ �∗(x) ≤ α4(|x|x∗) for suitable α3, α4 ∈ K∞, such that the
nominal NMPC closed-loop system (3.5) is not asymptotically stable.

Proof We first show that α < 0 in (6.14) implies the following property:
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there exists λ0, . . . , λN−1, ν > 0 satisfying

(6.11) with strict inequalities, (6.12) and (6.22)
N−1∑

n=0

λn − ν < 0.

In order to prove (6.22) we use that α < 0 in (6.14) yields the existence of λ̄0 > 0,
λ̄1, . . . , λ̄N−1, ν ≥ 0 satisfying (6.11), (6.12) and

N−1∑

n=0

λ̄n − ν̄ < 0. (6.23)

These properties imply λ̄1 > 0, . . . , λ̄N−1 > 0 and ν̄ > 0: the inequality ν̄ > 0
immediately follows from (6.23) and λ̄k ≥ 0. Assuming λ̄k = 0 for some k ∈
{1, . . . ,N − 1}, the respective inequality from (6.11) together with BN−k(0) = 0
implies λ̄k+1 = · · · = λ̄N−1 = 0. Thus, in particular λ̄N−1 = 0, which using (6.12)
for j = N − 2 implies ν̄ ≤∑N−3

n=0 λ̄n+1, contradicting (6.23).
Now we pick an arbitrary ε > 0 and set

λ0 := λ̄0, . . . , λN−2 := λ̄N−2, λN−1 := λ̄N−1 − ε,

and

ν := min

{

ν̄,

N−2∑

n=0

λn+1 + B2(λN−1)

}

.

We claim that for these values (6.22) holds for all sufficiently small ε > 0. In order
to see this, first one easily checks that (6.11) and (6.12) hold. Furthermore, since
λN−1 < λ̄N−1 appears on the left hand side but not on the right hand side of each
inequality in (6.11), it follows that the inequalities in (6.11) are indeed strict. Fur-
thermore, for ε > 0 sufficiently small the inequality λN−1 > 0 holds. In order to
complete the proof of (6.22) it remains to show that for ε > 0 sufficiently small the
inequality ν > 0 and the inequality in the last line of (6.22) holds.

To this end, we use that the second term in the “min” is exactly (6.12) for j =
N − 2. Thus, by continuity of B2 the value ν converges to ν̄ > 0 as ε → 0. Hence,
for ε > 0 sufficiently small ν̄ > 0 implies ν > 0 and (6.23) implies the inequality in
the last line of (6.22), which completes the proof of (6.22).

Now we construct a control system (2.1) on the state space

X = {
(q,p) ∈ R

2
∣
∣ q ∈ {0} ∪ {

2−k
∣
∣ k ∈ N0

}
,p ∈ {(−N + 1)q, . . . ,Nq

}}
.

For the control values U = {−1,0,1} we define the dynamics

f
(
(1,p),−1

) = (
1,max{−N + 1,p − 1}), p ∈ {(−N + 1)q, . . . ,Nq

}
,

f
(
(1,p),0

) = (1/2,p/2), p ∈ {(−N + 1)q, . . . ,Nq
}
,

f
(
(1,p),1

) = (
1,min{N,p + 1}), p ∈ {(−N + 1)q, . . . ,Nq

}
,

f
(
(q,p),u

) = (q/2,p/2), (q,p) ∈ X, q ≤ 1/2, u ∈ U
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for which x∗ = (0,0) is an equilibrium for all u ∈ U . On X we use the metric
induced by the usual Euclidean norm ‖(q,p)‖ =√

q2 + p2 implying ‖x‖x∗ = ‖x‖.
We do not impose any constraints, i.e., we set X = X and U(x) = U for all x ∈ X.

Using the values λ1, . . . , λN−1 and ν from (6.22) we define the running cost � in
(OCPN) as

�
(
(1,p),1

) = λp, p ∈ {0,N − 1},
�
(
(1,p),1

) = ν, p /∈ {0,N − 1},
�
(
(1,p),−1

) = �
(
(1,−p + 1),1

)
,

�
(
(1,p),0

) = β
(
min

{
�
(
(1,p),1

)
, �
(
(1,p),−1

)}
,0
)
,

�
((

2−k,p
)
, u
) = β

(
min

{
�
((

1,2kp
)
,1
)
, �
((

1,2kp
)
,−1

)}
, k
)
, k ≥ 1, u ∈ U.

We first verify that f and � satisfy the stated assumptions.
The running cost � satisfies the inequalities from the assumption for α′

3(r) =
infx∈X,‖x‖≥r �∗(x) and α̃′

4(r) = supx∈X,‖x‖≤r �∗(x). Due to the discrete nature of the
state space α′

3 and α′
4 are discontinuous but they are easily under- and overbounded

by continuous K∞ functions α3 and α4, respectively, for which the assumed in-
equalities α3(|x|x∗) ≤ �∗(x) ≤ α4(|x|x∗) hold.

In order to see that Assumption 6.4 is satisfied for the given β , first observe that
Assumption 6.4 for n = 0 implies β(r,0) ≥ r . From this inequality and the definition
of � we obtain

�
(
(1,p),0

)≥ min
{
�
(
(1,p),1

)
, �
(
(1,p),−1

)}

and thus

�∗((1,p)
)= min

{
�
(
(1,p),1

)
, �
(
(1,p),−1

)}
.

Furthermore, for k ≥ 1 we see that �((2−k,p),u) is independent of u, which yields

�∗((2−k,p
))= �

((
2−k,p

)
,0
)
.

Now for ux ≡ 0 and initial value x = (q,p) ∈ X with q = 2−k0 the trajectory be-
comes

xux (k, x) = (
2−k−k0 ,2−kp

)
.

Thus, by construction of � and (6.6) we obtain

�
(
xux

(k, x), ux(k)
)= β

(
min

{
�
((

1,2k0p
)
,1
)
, �
((

1,2k0p
)
,−1

)}
, k + k0

)

= β
(
�∗(1,2k0p

)
, k + k0

)

≤ β
(
β
(
�∗(1,2k0p

)
, k0

)
, k
)= β

(
�
((

2−k0 ,p
)
,0
)
, k
)

= β
(
�∗((2−k0 ,p

))
, k
)= β

(
�∗(x), k

)
,

which yields Assumption 6.4.
Now we prove the existence of a closed-loop trajectory which does not converge

to x∗, which shows that asymptotic stability does not hold. To this end we abbre-
viate � = ∑N−1

n=0 λn (note that (6.22) implies ν > �) and investigate the values
JN((1,0), u) for different choices of u:
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Case 1 u(0) = 0. In this case, regardless of the values u(n), n ≥ 1, we obtain
x(n,u) = (2−n,0) and thus

JN

(
(1,0), u

)=
N−1∑

n=0

β
(
min

{
�
(
(1,0),1

)
, �
(
(1,0),−1

)}
, n
)

= BN

(
min

{
�
(
(1,0),1

)
, �
(
(1,0),−1

)})= BN

(
min{λ0, λ1}

)
.

In case that the minimum is attained in λ0, by the (strict) Inequality (6.11) for k = 0
we obtain JN((1,0), u) > �. If the minimum is attained in λ1 then by (6.12) for
j = 0 and (6.22) we obtain JN((1,0), u) ≥ ν > �. Thus, in both cases the inequality
JN((1,0), u) > � holds.

Case 2 u(n) = −1, n = 0, . . . ,N − 2. This choice yields x(n,u) = (1,−n) for
n = 0, . . . ,N − 1 and thus

JN

(
(1,0), u

)=
N−2∑

n=0

λn+1 + �
((

1,−(N − 1)
)
,−1

)≥ �
((

1,−(N − 1)
)
,−1

)

= �
(
(1,N),1

)= ν > �.

Case 3 u(n) = −1, n = 0, . . . , k − 1, and u(k) = 1 for a k ∈ {1, . . . ,N − 2}. In this
case we obtain x(n,u) = (1,−n) for n = 0, . . . , k implying

JN

(
(1,0), u

)=
k−1∑

n=0

λn+1 + �
(
(1,−k),1

)≥ �
(
(1,−k),1

)= ν > �.

Case 4 u(n) = −1, n = 0, . . . , k − 1, and u(k) = 0 for a k ∈ {1, . . . ,N − 2}.
This control sequence yields x(n,u) = (1,−n) for n = 0, . . . , k while for n =
k + 1, . . . ,N − 1 we get x(n,u) = (2−(n−k),−2−(n−k)k). Thus

JN

(
(1,0), u

)=
k−1∑

n=0

λn+1 +
N−1∑

n=k

β
(
min

{
�
(
(1,−k),1

)
, �
(
(1,−k),−1

)}
, n − k

)

=
k−1∑

n=0

λn+1 + BN−k(λk+1) ≥ ν > �,

where we have used (6.12) for j = k in the second last inequality.

Case 5 u(n) = 1, n = 0, . . . ,N − 1. This yields x(n,u) = (1, n) and thus

JN

(
(1,0), u

)=
N−1∑

n=0

λn = �.

Summarizing, we obtain that any optimal control u	
x for x = (1,0) must satisfy

u	
x(0) = 1 because for u(0) = 1 we can realize a value ≤ � while for u(0) �= 1 we
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inevitably obtain a value > �. Consequently, the NMPC-feedback law μN(x) =
u	

x(0) will steer the system from x = (1,0) to x+ := (1,1).
Now we use that by construction f and � have the symmetry properties

f
(
(q,p),u

)− (0,p) = −f
(
(q,−p + q),−u

)+ (0,−p + q),

�
(
(q,p),u

)= �
(
(q,−p + q),−u

)

for all (q,p) ∈ X, which implies J ((q,p),u) = J ((q,−p + q),−u). Observe that
x+ = (1,1) is exactly the symmetric counterpart of x = (1,0). Thus, any optimal
control u	

x+ for x+ must satisfy u	
x+(n) = −u	

x(n) for some optimal control u	
x for

initial value x. Hence, we obtain u	
x+(0) = −1, which means that the NMPC feed-

back μN(x+) = u	
x+(0) steers x+ back to x. Thus, under the NMPC-feedback law

we obtain the closed-loop trajectory (x, x+, x, x+, . . .), which clearly does not con-
verge to x∗ = (0,0). This shows that the closed-loop system is not asymptotically
stable. �

Remark 6.24 If we weaken the assumptions of Theorem 6.23 to α = 0 instead of
α < 0, then the inequalities in (6.22) will not be strict. Under this weaker assump-
tion, in Cases 1–4 in the proof of Theorem 6.23 we get JN((1,0), u) ≥ � instead
of JN((1,0), u) > �. This means that the control sequence u(n) ≡ 1 from Case 5 is
still optimal but it is no longer the unique optimal control sequence. Consequently,
the value of μN((1,0)) depends on the optimization algorithm. The algorithm may
select μN((1,0)) = 1—leading to a closed-loop system which is not asymptotically
stable—or it may select a control value which yields asymptotic stability. Thus, in-
stability may occur for α = 0 but it does not necessarily need to occur.

All results developed so far in this chapter remain valid for the time varying
case when the Controllability Assumption 6.4 holds uniformly in time, i.e., if the
following assumption holds.

Assumption 6.25 Consider the optimal control problem (OCPn
N). We assume that

the system is uniformly asymptotically controllable with respect to � with rate β ∈
K L0, i.e., for each x ∈ X, each N ∈ N and each n0 ∈ N0 there exists an admissible
control sequence ux ∈ U

N(x) satisfying

�
(
n0 + n,xux (n, x),ux(n)

)≤ β
(
�∗(n0, x), n

)

for all n ∈ {0, . . . ,N − 1}.

Under this assumption, all results in this chapter carry over to the time-dependent
setting when we replace λk and ν in Proposition 6.12 by

λk = �
(
n0 + k, xu	(k, x), u	(k)

)
and ν = VN

(
n0 + 1, xu	(1, x)

)
.

Proceeding this way, one easily sees that all results remain valid.
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Fig. 6.1 Suboptimality regions for different optimization horizons N depending on C and σ in
(6.3) for α	 = 0 (left) and α	 = 0.5 (right)

6.6 Design of Good Running Costs �

In this section we illustrate by means of several examples how our theoretical find-
ings and in particular Theorem 6.14 in conjunction with Proposition 6.17 can be
used in order to identify and design running costs � such that the NMPC feedback
law μN exhibits stability and good performance with small optimization horizons
N . To this end we first visualize Formula (6.19) for different β ∈ K L0, starting with
the case of exponential controllability (6.3). Note that in this case (6.6) and thus
(6.20) always holds.

Given a desired suboptimality level α	 ≥ 0, we use Formula (6.19) in order to
determine the regions in the (σ,C)-plane for which αN ≥ α	 holds for different
optimization horizons N . Figure 6.1 shows the resulting regions for α	 = 0 (i.e.,
“plain” stability) and α	 = 0.5.

Looking at Fig. 6.1 one sees that the parameters C and σ play a very differ-
ent role. While for both parameters the necessary optimization horizon N becomes
the smaller the smaller these parameters are, small overshoot C (i.e., values of C

close to 1) have a much stronger effect than small decay rates σ (i.e., values of σ

close to 0). Indeed, Fig. 6.1(left) shows that for sufficiently small C we can always
achieve stability for N = 2 while for C ≥ 8 even values of σ very close to 0 will
not yield stability for N ≤ 16. For the required higher suboptimality level α ≥ 0.5,
Fig. 6.1(right) indicates a qualitatively similar behavior.

For finite time control, i.e., controllability with K L0-functions satisfying (6.4),
the situation is very similar. For instance, consider functions of the form β(r,0) =
c0r , β(r,1) = c1r , c0 ≥ c1, and β(r, n) = 0 for n ≥ 2, i.e., n0 = 2. This function
again satisfies (6.6), hence (6.20) holds. For this β , Fig. 6.2 shows the analogous
graphs as in Fig. 6.1.

One immediately sees that the qualitative behavior depicted in Fig. 6.2 is very
similar to the analogous graphs in Fig. 6.1: again, reducing the overshoot c0 we can
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Fig. 6.2 Suboptimality regions for different optimization horizons N depending on c0 and c1/c0
in (6.4) with n0 = 2 for α	 = 0 (left) and α	 = 0.5 (right)

always achieve stability with N = 2 regardless of the ratio c1/c0 while reducing c1

and keeping c0 fixed, in general we need N > 2 in order to guarantee stability.
Finally, in Fig. 6.3 we compare the effect of the overshoot c0 and the time n0

in (6.4) by using β(r,0) = c0r , β(r, n) = c0r/2 for n = 1, . . . , n0 and β(r, n) = 0
for n ≥ n0. Again, it turns out that the time n0 needed to control the system to x∗
is less important than the overshoot: for all times n0 ≥ 1 we can always achieve
stability for c0 sufficiently close to 1 while for fixed c0 this can in general not be
achieved even for n0 = 1, i.e., for controllability in one step. Note that for c0 < 2
this function β does not satisfy (6.6), thus for these values of c0 Formula (6.19)
only provides a lower bound for α, cf. (6.18). Consequently, for c0 < 2 the regions
depicted in Fig. 6.3 may underestimate the true regions. Still, for all n0 the lower
bounds obtained from (6.18) ensure both asymptotic stability and the desired per-
formance bound α ≥ 0.5 for N = 2 whenever c0 is sufficiently close to 1.

Together, these examples lead to a conclusion which is as intuitive as simple:
an NMPC controller without stabilizing terminal constraints will yield stability and
good performance for small horizons N if � can be chosen such that Assumption 6.4
is satisfied with a β ∈ K L0 with small overshoot. Thus, the criterion “small over-
shoot” can be used as a design guideline for selecting a good running cost �.

For some systems, it is possible to rigorously compute β in Assumption 6.4,
which leads to a precise determination of, e.g., C and σ in (6.3). Examples where
this is possible also include infinite-dimensional systems, like the linear wave equa-
tion or certain classes of semilinear parabolic equations, cf. [3]. However, more
often than not precise estimates for β cannot be obtained due to the complexity of
the dynamics. Still, using heuristic arguments it may be possible to determine run-
ning costs � for which the overshoot is reduced. In the remainder of this section we
will illustrate this procedure for two examples.
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Fig. 6.3 Suboptimality regions for different optimization horizons N depending on c0 and n0 in
(6.4) with cn = c0/2 for n = 1, . . . , n0 − 1 for α	 = 0 (left) and α	 = 0.5 (right)

Example 6.26 We consider Example 2.3, i.e.,

f (x,u) :=
(

x+
1

x+
2

)
=
(

sin(ϑ(x) + u)

cos(ϑ(x) + u)/2

)

with

ϑ(x) =
{

arccos 2x2, x1 ≥ 0,

2π − arccos 2x2, x1 < 0

using the control values U = [0,0.2], i.e., the car can only move clockwise on the
ellipse

X =
{
x ∈ R

2
∣∣∣∣

∥∥∥∥

(
x1
2x2

)∥∥∥∥= 1

}
.

As in illustrated in Fig. 6.4, we want to stabilize the system at the equilibrium x∗ =
(0,−1/2)� starting from the initial value x0 = (0,1/2)�.

Interpreting X as a subset of R
2, we can try to achieve this goal by using NMPC

without terminal constraints with the running cost

�(x,u) = ‖x − x∗‖2 + u2. (6.24)

As the simulations in Fig. 6.5 show, asymptotic stability of x∗ = (0,−1/2) is
achieved for N = 11 but not for N = 10.

The reason for the closed loop not being asymptotically stable for N = 10 (and,
in fact, for all N ≤ 10) is the overshoot in the running cost � when moving along
the ellipse; see Fig. 6.6.

The fact that this overshoot of � appears along the NMPC closed-loop trajec-
tory does in general not imply that the overshoot is present for all possible control
sequences u controlling the system to x∗. However, in this example a look at the
geometry reveals that for � from (6.24) the overshoot is in fact not avoidable: no
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Fig. 6.4 Illustration of the
stabilization problem

matter how we control the system to x∗, before we can eventually reduce � to 0, we
need to increase � when moving along the ellipse around the curve. Thus, loosely
speaking, the loss of asymptotic stability for N ≤ 10 is caused by the fact that the
optimizer does not “see” that in the long run it is beneficial to move around the curve
and thus stays at the initial value x0 for all future times.

Looking closer at the geometry of the example, one easily sees that the overshoot
is entirely due to the x1-component of the solution: while x2 converges monotoni-
cally to the desired position x∗2 = −0.5, x1 first needs to move from 0 to 1 before
we can eventually control it to x∗1 = 0, again. From this observation it follows that
the overshoot in � can be avoided by putting more weight on the x2-component.
Indeed, if we replace �(x,u) = ‖x − x∗‖2 + u2 = (x1 − x∗1)

2 + (x2 − x∗2)
2 + u2

from (6.24) by

�(x,u) = (x1 − x∗1)
2 + 5(x2 − x∗2)

2 + u2, (6.25)

then we obtain asymptotic stability even for N = 2, cf. Fig. 6.7.
Figure 6.8 shows the running cost along the closed-loop trajectory for this ex-

ample. The figure clearly shows that the overshoot has been removed completely,
which explains why the NMPC closed loop is stable for N = 2.

We would like to emphasize that for removing the overshoot we did not use any
quantitative information, i.e., we did not attempt to estimate the function β in As-
sumption 6.4. For selecting a good cost function � it was sufficient to observe that
putting a larger weight on x2 will reduce the overshoot. On the basis of this obser-
vation, the fact that the weight “5” used in (6.25) is sufficient to achieve asymptotic
stability with N = 2 was then determined by a simple try-and-error procedure using
numerical simulations.

Example 6.27 As a second example we consider the infinite-dimensional PDE
models introduced in Example 2.12. We first consider the system with distributed
control, i.e.,

yt (t, x) = θyxx(t, x) − yx(t, x) + ρ
(
y(t, x) − y(t, x)3)+ u(t, x) (6.26)
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Fig. 6.5 NMPC closed-loop trajectories for Example 2.3 with running cost (6.24) and optimiza-
tion horizons N = 11 (left), N = 10 (right)

Fig. 6.6 Running cost (6.24)
along the NMPC closed-loop
trajectory for N = 11

with control function u ∈ L∞(R × �,R), domain � = (0,1) and real parameters
θ = 0.1, ρ = 10. Here yt and yx denote the partial derivatives with respect to t and
x, respectively, and yxx denotes the second partial derivative with respect to x.

The solution y of (6.26) is supposed to be continuous in � and to satisfy the
boundary and initial conditions

y(t,0) = 0, y(t,1) = 0 for all t ≥ 0 and
(6.27)

y(0, x) = y0(x) for all x ∈ �

for some given continuous function y0 : � → R with y0(0) = y0(1) = 0.
Observe that we have changed notation here in order to be consistent with the

usual PDE notation: x ∈ � is the independent space variable while the unknown
function y(t, ·) : � → R in (6.26) is the state now. Hence, the state is now denoted
by y (instead of x) and the state space of this PDE control system is a function
space, more precisely the Sobolev space H 1

0 (�), although the specific form of this
space is not crucial for the subsequent reasoning.
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Fig. 6.7 NMPC closed-loop
trajectories for Example 2.3
with running cost (6.25) and
optimization horizon N = 2

Fig. 6.8 Running cost (6.25)
along the NMPC closed loop
for N = 2

Figure 6.9 shows the solution of the uncontrolled system (6.26), (6.27), i.e., with
u ≡ 0. For growing t the solution approaches an asymptotically stable steady state
y∗∗ �= 0. The figure (as well as all other figures in this section) was computed nu-
merically using a finite difference scheme with 50 equidistant nodes on (0,1) (finer
resolutions did not yield significantly different results) and initial value y0 with
y0(0) = y0(1) = 0, y0|[0.02,0.3] ≡ −0.1, y0|[0.32,0.98] ≡ 0.1 and linear interpolation
in between.

By symmetry of (6.26) the function −y∗∗ must be an asymptotically stable steady
state, too. Furthermore, from (6.26) it is obvious that y∗ ≡ 0 is another steady state,
which is, however, unstable. Our goal is now to use NMPC in order to stabilize the
unstable equilibrium y∗ ≡ 0.

To this end we consider the sampled data system corresponding to (6.26) with
sampling period T = 0.025. In order to obtain a more intuitive notation for the
solution of the sampled data system, instead of introducing the abstract variable z
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Fig. 6.9 Solution y(t, x) of
(6.26), (6.27) with u ≡ 0

as in Example 2.12 here we denote the state of the sampled data system at the nth
sampling instant, i.e., at time nT by y(n, ·). For penalizing the distance of the state
y(n, ·) to y∗ ≡ 0 a popular choice in the literature is the L2 functional

�
(
y(n, ·), u(n, ·))= ∥∥y(n, ·)∥∥2

L2(�)
+ λ

∥∥u(n, ·)∥∥2
L2(�)

, (6.28)

which penalizes the mean squared distance from y(n, ·) to y∗ ≡ 0 and the control
effort with weighting parameter λ > 0. Here we choose λ = 0.1.

Another possible choice of measuring the distance to y∗ ≡ 0 is obtained by using
the H 1 norm

∥
∥y(n, ·)∥∥

H 1(�)
= ∥
∥y(n, ·)∥∥2

L2(�)
+ ∥
∥yx(n, ·)∥∥2

L2(�)
.

This leads us to define

�
(
y(n, ·), u(n, ·))= ∥∥y(n, ·)∥∥2

L2(�)
+ ∥∥yx(n, ·)∥∥2

L2(�)

+ λ
∥∥u(n, ·)∥∥2

L2(�)
, (6.29)

which in addition to the L2 distance and the control effort as in (6.28) also penal-
izes the mean squared distance from yx(n, ·) to y∗,x ≡ 0. Figs. 6.10 and 6.11 show
the respective NMPC closed-loop solutions with optimization horizons N = 3 and
N = 11.

Figure 6.10 indicates that for N = 3 the NMPC scheme with � from (6.28) does
not stabilize the system at y∗ ≡ 0, while for � from (6.29) it does. For (6.28) we need
an optimization horizon of at least N = 11 in order to obtain a stable closed-loop
solution, cf. Fig. 6.11. For � from (6.29) the right images in Figs. 6.10 and 6.11 show
that enlarging the horizon does not improve the closed-loop behavior any further.

Using our theoretical results we can explain why � from (6.29) performs much
better for small horizons N . For this example our controllability condition Assump-
tion 6.4 reads

�
(
y(n, ·), u(n, ·))≤ Cσn�∗(y(0, ·)). (6.30)
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Fig. 6.10 NMPC closed loop for (6.26) with N = 3 and � from (6.28) (left) and (6.29) (right)

Fig. 6.11 NMPC closed loop for (6.26) with N = 11 and � from (6.28) (left) and (6.29) (right)

For � from (6.28) this becomes
∥∥y(n, ·)∥∥2

L2(�)
+ λ

∥∥u(n, ·)∥∥2
L2(�)

≤ Cσn
∥∥y(0, ·)∥∥2

L2(�)
. (6.31)

Now in order to control the system to y∗ ≡ 0, in (6.26) the control needs to com-
pensate for yx and ρ(y(t, x) − y(t, x)3), i.e., any control steering y(n, ·) to 0 must
satisfy

∥∥u(n, ·)∥∥2
L2(�)

≈ ∥∥yx(n, ·)∥∥2
L2(�)

+ ∥∥ρ
(
y(n, ·) − y(n, ·)3)∥∥2

L2(�)
. (6.32)

Inserting this approximate equality into (6.31) implies—regardless of the value of
σ—that the overshoot bound C in (6.31) is large if ‖yx(n, ·)‖2

L2(�)
� ‖y(0, ·)‖2

L2(�)

holds, which is the case in our example.
For � from (6.29) Inequality (6.30) becomes

∥∥y(n, ·)∥∥2
L2(�)

+ ∥∥yx(n, ·)∥∥2
L2(�)

+ λ
∥∥u(n, ·)∥∥2

L2(�)

≤ Cσn
(∥∥y(0, ·)∥∥2

L2(�)
+ ∥∥yx(0, ·)∥∥2

L2(�)

)
. (6.33)
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Fig. 6.12 NMPC closed loop for (6.34) with N = 15 and � from (6.28) (left) and (6.29) (right)

Due to the fact that ‖yx(0, ·)‖2
L2(�)

� ‖y(0, ·)‖2
L2(�)

holds in our example, inserting
the approximate equation (6.32) into (6.33) does not imply large C, which explains
the considerable better performance for � from (6.29).

The fact that the H 1-norm penalizes the distance to y∗ ≡ 0 in a “stronger” way
than the L2-norm may lead to the conjecture that the better performance for this
norm is intuitive. Our second example shows that this is not the case. This example
is similar to equations (6.26), (6.27), except that the distributed control is changed
to Dirichlet boundary control. Thus, (6.26) becomes

yt (t, x) = θyxx(t, x) − yx(t, x) + ρ
(
y(t, x) − y(t, x)3), (6.34)

again with θ = 0.1 and ρ = 10, and (6.27) changes to

y(t,0) = u0(t), y(t,1) = u1(t) for all t ≥ 0,

y(0, x) = y0(x) for all x ∈ �

with u0, u1 ∈ L∞(R,R). The cost functions (6.28) and (6.29) change to

�
(
y(n, ·), u(n, ·))= ∥∥y(n, ·)∥∥2

L2(�)
+ λ

(
u0(n)2 + u1(n)2) (6.35)

and

�
(
y(n, ·), u(n, ·))= ∥∥y(n, ·)∥∥2

L2(�)
+ ∥∥yx(n, ·)∥∥2

L2(�)

+ λ
(
u0(n)2 + u1(n)2), (6.36)

respectively, again with λ = 0.1.
Due to the more limited possibilities to control the equation the problem obvi-

ously becomes more difficult, hence we expect to need larger optimization horizons
for stability of the NMPC closed loop. However, what is surprising at first glance is
that � from (6.35) stabilizes the system for smaller horizons than � from (6.36), as
the numerical results in Fig. 6.12 confirm.

A closer look at the dynamics reveals that we can again explain this behavior with
our theoretical results. In fact, steering the chosen initial solution to y∗ = 0 requires
u1 to be such that a rather large gradient appears close to x = 1. Thus, during the



142 6 Stability and Suboptimality Without Stabilizing Constraints

transient phase ‖yx(n, ·)‖2
L2(�)

becomes large, which in turn causes � from (6.36)
to become large and thus causes a large overshoot bound C in (6.30). In � from
(6.35), on the other hand, these large gradients are not “visible”, which is why the
overshoot in (6.30) is smaller and thus allows for stabilization with smaller N .

6.7 Semiglobal and Practical Asymptotic Stability

We have seen in Theorem 6.21 that linearity of β in Assumption 6.4 guarantees
that for sufficiently large optimization horizon N the nominal NMPC closed-loop
system (3.5) will be asymptotically stable on the whole set X. Even though the
examples in the last section show that this condition can be fulfilled, it is easy to
come up with examples in which this property is not satisfied or at least difficult
or almost impossible to check. In this section we show that also in this case one
can guarantee that NMPC without stabilizing terminal constraints has reasonable
stability properties. However, to this end we have to weaken the stability notion
according to the following definition.

Definition 6.28 Consider the NMPC Algorithm 3.1 and the resulting nominal
closed-loop system (3.5) with feedback law μN and solutions xμN

(k, x).

(i) We call the closed-loop system (3.5) semiglobally asymptotically stable with
respect to the optimization horizon N if there exists β ∈ K L such that the fol-
lowing property holds: for each � > 0 there exists N� ∈ N such that for all
N ≥ N� and all x ∈ X with |x|x∗ ≤ � the inequality

∣∣xμN
(k, x)

∣∣
x∗ ≤ β

(|x|x∗, k
)

holds for all k ∈ N0.
(ii) We call the closed-loop system (3.5) semiglobally practically asymptotically

stable with respect to the optimization horizon N if there exists β ∈ K L such
that the following property holds: for each δ > 0 and � > δ there exists Nδ,� ∈
N such that for all N ≥ Nδ,� and all x ∈ X with |x|x∗ ≤ � the inequality

∣
∣xμN

(k, x)
∣
∣
x∗ ≤ max

{
β
(|x|x∗, k

)
, δ
}

holds for all k ∈ N0.

Semiglobal asymptotic stability relaxes the asymptotic stability condition by re-
quiring asymptotic stability only for the set of initial values x ∈ X with |x|x∗ ≤ �.
Although � can be chosen arbitrarily large by suitably adjusting the optimization
horizon N , for each finite N it will in general be a finite value.

Semiglobal practical asymptotic stability additionally relaxes the requirement
that the solution exactly tends to the equilibrium x∗ by only requiring that the solu-
tion behaves like an asymptotically stable solution until it reaches a δ-neighborhood
of x∗. Similar to the value of �, the size δ of this neighborhood can be arbitrar-
ily tuned by adjusting the optimization horizon N , but for each finite N it will in
general be a positive value.
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Of course, both definitions can be straightforwardly extended to the time varying
case with reference xref(n) instead of x∗.

Semiglobal and semiglobal practical asymptotic stability can be expressed via
the stability properties already introduced in Chap. 2. This is made precise in the
following lemma.

Lemma 6.29

(i) The NMPC closed loop is semiglobally asymptotically stable with respect to the
optimization horizon N if for each � > 0 there exists N� > 0 such that for all
N ≥ N� there exists a forward invariant set Y with B�(x∗) ⊂ Y such that the
system is asymptotically stable on Y in the sense of Definition 2.14.

(ii) The NMPC closed loop is semiglobally practically asymptotically stable with
respect to the optimization horizon N if for each δ > 0 and � > δ there ex-
ists Nδ,� > 0 such that for all N ≥ Nδ,� there exist forward invariant sets Y

and P with B�(x∗) ⊂ Y and P ⊆ Bδ(x∗) such that the system is P -practically
asymptotically stable on Y in the sense of Definition 2.15.

Proof (i) follows immediately from the definition. (ii) follows from the fact that
according to Definition 2.15 for each k ∈ N0 either |xμN

(k, x)|x∗ ≤ β(|x|x∗, k) or
xμN

(k, x) ∈ P holds. Since the latter implies |xμN
(k, x)|x∗ ≤ δ we obtain the asser-

tion. �

In order to give conditions under which the NMPC closed loop shows this be-
havior, it turns out to be convenient to work directly with the bounds Bk induced by
β from Assumption 6.4 via Lemma 6.8, cf. Remark 6.15. This amounts to replace
Assumption 6.4 by the following assumption.

Assumption 6.30 Consider the optimal control problem (OCPN). We assume that
there exist functions Bk ∈ K∞, k ∈ N, such that for each x ∈ X the inequality

Vk(x) ≤ Bk

(
�∗(x)

)

holds for all k ≥ 2.

Assumption 6.4 and the linearity and summability assumption on β imposed in
Theorem 6.21 can then be replaced by Assumption 6.30 with each Bk being linear
and satisfying limk→∞ Bk(r) < ∞ for all r ≥ 0.

For obtaining semiglobal stability, it turns out that a “semiglobal” linearity as-
sumption on the Bk is sufficient. This is the statement of the following theorem.

Theorem 6.31 Consider the NMPC Algorithm 3.1 with optimization horizon N ∈ N

and running cost � satisfying α3(|x|x∗) ≤ �∗(x) ≤ α4(|x|x∗) for suitable α3, α4 ∈
K∞. Assume that Assumption 6.30 holds for functions Bk ∈ K∞ which for each
R > 0 and all r ∈ [0,R] satisfy the inequality

Bk(r) ≤ γ R
k r with constants γ R

k satisfying sup
k∈N

γ R
k < ∞.
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Then the nominal NMPC closed-loop system (3.5) with NMPC feedback law μN is
semiglobally asymptotically stable on X with respect to the optimization horizon N .

Furthermore, for each C > 1 and each � > 0 there exists NC,� > 0 such that

J∞(x,μN) ≤ CVN(x) ≤ CV∞(x)

holds for each x ∈ B�(x∗) ∩ X and each N ≥ NC,�.

Proof We first show the existence of α ∈ K∞ such that the inequality Bk(r) ≤ α(r)

holds for all r ≥ 0 and all k ∈ N. To this end, we define γ R∞ := supk∈N
γ R
k for each

R > 0. Then the inequality Bk(r) ≤ γ R∞r holds for all k ∈ N and all r ∈ [0,R]. Now
for R = 1,2, . . . we inductively define γ 1 = γ 1∞ and

γ R+1 = max
{
γ R,γ R+1∞

}
.

This definition implies γ R+1 ≥ γ R and Bk(r) ≤ γ Rr for all r ∈ [0,R], R ∈ N.
Setting

α(r) := (R − r)γ Rr + (r − R + 1)γ R+1r, r ∈ [R − 1,R], R ∈ N

we obtain a continuous, strictly increasing and unbounded function with α(0) = 0,
hence α ∈ K∞. For r ∈ [R − 1,R] and R ∈ N we obtain

Bk(r) ≤ γ Rr = (R − r)γ Rr + (r − R + 1)γ Rr

≤ (R − r)γ Rr + (r − R + 1)γ R+1r,

which shows Bk(r) ≤ α(r) for r ∈ [R − 1,R]. Since this holds for each R ∈ N, we
get the desired inequality Bk(r) ≤ α(r) for all r ≥ 0.

Now fix � > 0 and set L := α(α̃(�)). Since for each N ∈ N we have the in-
equality VN(x) ≤ α(�∗(x)) ≤ α(α4(|x|x∗)), for x ∈ B�(x∗) we obtain VN(x) ≤ L

and thus the inclusion

B�(x∗) ⊆ V −1
N

([0,L])=: SN, (6.37)

where V −1
N denotes the sublevel set

V −1
N

([0,L]) := {
x ∈ X

∣∣ VN(x) ∈ [0,L]}.
Defining further L′ := α−1

3 (L), for all x ∈ SN and all y /∈ BL′(x∗) we obtain

VN(x) ≤ L = α3
(
L′)< α3

(|y|x∗
)≤ �∗(y).

This implies that for all N ∈ N and all x ∈ SN each optimal trajectory xu	(·, x) of
length N will remain in BL′(x∗). This holds because if there exists k′ ∈ {0, . . . ,N −
1} with y = xu	(k′, x) /∈ BL′(x∗) we obtain

JN

(
x,u	

)=
N−1∑

k=0

�
(
xu	(k, x), u	(k)

)≥ �
(
xu	

(
k′, x

)
, u	

(
k′))≥ �∗(y) > VN(x)

contradicting the optimality of u	. Setting R := α4(L
′) then implies �∗(xu	(k, x)) ≤

R for all k = 0, . . . ,N − 1 and each optimal trajectory for VN(x) with x ∈ SN and
arbitrary N ∈ N.
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Now we fix an arbitrary α0 ∈ (0,1) and note that the values γ R
k can without

loss of generality be assumed to be increasing in k; otherwise we may replace γ R
k

by maxk′≤k γ R
k′ . Then by the same arguments as in the proof of Theorem 6.21 we

find N� > 0 such that for all N ≥ N� the inequality αN ≥ α0 holds in (6.19)
with γk = γ R

k . Now for each x ∈ SN we have shown above that the optimal tra-
jectory for VN(x) satisfies �∗(xu	(k, x)) ≤ R for all k = 0, . . . ,N − 1 and thus
Bk(�

∗(xu	(k, x))) ≤ γ R
k �∗(xu	(k, x)) holds. Hence, by Remark 6.15(ii) Inequal-

ity (5.1) holds for all x ∈ SN . In particular, this implies VN(f (x,μN(x))) ≤ VN(x)

for all x ∈ SN and thus by definition of SN as a sublevel set of VN this set is for-
ward invariant. Hence, Theorem 4.11 can be applied with S(n) = SN . Together
with Lemma 6.29(i) and (6.37) this proves semiglobal asymptotic stability and with
α0 = 1/C we obtain the estimate for J∞(x,μN). �

Let us now turn to practical (and semiglobal) stability. We have seen so far that a
global linearity assumption on the Bk implies global stability while a “semiglobal”
linearity assumption, i.e., the existence of a linear upper bound for Bk on each inter-
val of the form [0,R], implies semiglobal stability. This observation naturally leads
to the conjecture that a “semiglobal practical” linearity assumption, i.e., a linear
bound on the Bk on each interval [ρ,R] with R > ρ > 0 should be sufficient for
semiglobal practical stability. As we will see, this is indeed the case, however, we
can formulate this condition in an even weaker way by simply assuming the exis-
tence of α ∈ K∞ with Bk(r) ≤ α(r) for all k ∈ N and all r ≥ 0. This is because on
each interval [ρ,R] for R > ρ > 0 any K∞-function α can be bounded from above
by the linear function r �→ γ r for γ = maxr∈[ρ,R] α(r)/r . Hence, any K∞ function
automatically satisfies a “semiglobal practical” linearity assumption.

Before we can formulate the respective Theorem 6.33, we have to provide a tech-
nical lemma which we will need in its proof. Without the linearity assumption the
functions Bk appearing in the constraints (6.11), (6.12) in (6.14) become nonlin-
ear functions. Hence, (6.14) does no longer reduce to the linear problem (6.17), for
which our Formula (6.19) is valid. In the semiglobal case in Theorem 6.31 we could
circumvent this problem in the proof by ensuring that all finite time optimal trajecto-
ries starting in SN stay in the region where Bk is linear. In the following semiglobal
practical case we have to cope with nonlinearities in the Bk(r) not only for large r

but also for small r , which correspond to small neighborhoods of x∗. Since there is
no way to exclude that the finite time optimal trajectories enter small neighborhoods
of x∗—after all, this is precisely what we want them to do when we minimize the
distance from x∗—we cannot use the same trick as in the proof of Theorem 6.31.
Instead, we show in the following lemma that changing the Bk in a region where Bk

is small does only slightly change the optimal value of (6.14), at least for trajectories
starting sufficiently far away from 0, i.e., for values λ0 in (6.14) which are bounded
from below by some sufficiently large constant ζ . This statement is made precise in
the following lemma.
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Lemma 6.32 Consider increasing functions Bi
k : R

+
0 → R

+
0 for k ∈ N and i = 1,2.

Assume that these functions satisfy Bi
k(r) ≥ r for all k ∈ N, r ≥ 0 and that there

exist constants σ,ρ > 0 with
∣∣Bi

k(r)
∣∣≤ σ for all r ≤ ρ and k ∈ N

for i = 1,2 and

B1
k (r) = B2

k (r) for all r ≥ ρ and k ∈ N.

For i = 1,2 and a constant ζ ≥ ρ consider the optimization problems

αi := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν

λ0
subject to the constraints (6.11), (6.12) with Bk = Bi

k, and

λ0 ≥ ζ,λ1, . . . , λN−1, ν ≥ 0.

(6.38)

Then the inequality |α1 − α2| ≤ σ/ζ holds.

Proof We show the inequality α1 ≤ α2 + σ/ζ . Then the assertion follows by sym-
metry of the two problems.

In order to show the assertion, fix ε > 0 and pick ε-optimal values λ2
0, . . . , λ

2
N−1,

ν2, i.e., values which satisfy the constraints in (6.38) for i = 2 and
∑N−1

n=0 λ2
n − ν2

λ2
0

≤ α2 + ε.

The proof now consists in constructing λ1
k , ν1 satisfying the constraints in (6.38) for

i = 1 and
∑N−1

n=0 λ1
n − ν1

λ1
0

≤ α2 + ε + σ/ζ.

To this end, we distinguish two cases:

Case 1 λ2
n ≥ ρ for all n ∈ {0, . . . ,N − 1}. In this case B1

k (λ2
n) and B2

k (λ2
n) coincide,

hence λ1
n := λ2

n, n = 0, . . . ,N −1, and ν1 := ν2 satisfy the constraints (6.11), (6.12)
for Bk = B1

k . This implies

α1 ≤
∑N−1

n=0 λ1
n − ν1

λ1
0

=
∑N−1

n=0 λ2
n − ν2

λ2
0

= α2 + ε.

Case 2 λ2
n < ρ for some n ∈ {0, . . . ,N − 1}. In this case, let n∗ ∈ {0, . . . ,N − 1}

be minimal with λ2
n∗ < ρ, which implies B2

N−n∗+1(λ
2
n∗) ≤ σ . Since λ2

0 ≥ ζ ≥ ρ we
obtain n∗ ≥ 1. From (6.12) with j = n∗ − 1 it follows that

ν2 ≤
n∗−1∑

n=1

λ2
n + BN−n∗+1

(
λ2

n∗
)≤

n∗−1∑

n=1

λ2
n + σ. (6.39)
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We now set λ1
n := λ2

n for n = 0, . . . , n∗ − 1, λ1
n := 0, n = n∗, . . . ,N − 1 and

ν1 := max{ν2 − σ, 0}. This definition implies

B1
N−k

(
λ1

k

)= B2
N−k

(
λ2

k

)
for k = 0, . . . , n∗ − 1,

N−1∑

n=k

λ1
k ≤

N−1∑

n=k

λ2
k for k = 0, . . . ,N − 1

and
N−1∑

n=k

λ1
k = 0 for k = n∗, . . . ,N − 1,

which implies (6.11) for Bk = B1
k . Since ν2 satisfies (6.12), for ν1 we get the in-

equality

ν1 ≤ ν2 ≤
j−1∑

n=0

λ2
n+1 + B2

N−j

(
λ2

j+1

)=
j−1∑

n=0

λ1
n+1 + B1

N−j

(
λ1

j+1

)
for j ≤ n∗ − 2.

In case ν1 = 0 we furthermore get

ν1 = 0 ≤
j−1∑

n=0

λ1
n+1 + B1

N−j

(
λ2

j+1

)
for j ≥ n∗ − 1

and in case ν1 = ν2 − σ from (6.39) and the definition of the λ1
n we obtain

ν1 = ν2 − σ ≤
n∗−2∑

n=0

λ2
n+1 ≤

j−1∑

n=0

λ1
n+1 + B1

N−j

(
λ1

j+1

)
for j ≥ n∗ − 1.

This shows (6.12) for B1 = B1
k . Thus, since λ1

0 = λ2
0 ≥ ζ , the values λ1

0, . . . , λ
1
N−1,

ν1 satisfy all constraints in (6.38) and we can conclude

α1 ≤
∑N−1

n=0 λ1
n − ν1

λ1
0

≤
∑N−1

n=0 λ2
n − ν1

λ2
0

≤
∑N−1

n=0 λ2
n − ν2 + σ

λ2
0

≤ α2 + ε + σ

ζ

where we used λ1
0 = λ2

0 and λ2
0 ≥ ζ .

Thus, in both cases we obtain

α1 ≤ α2 + ε + σ

ζ
,

which shows the assertion since ε > 0 was arbitrary. �

Now we are able to prove our main result on semiglobal practical asymptotic
stability of the NMPC closed loop.

Theorem 6.33 Consider the NMPC Algorithm 3.1 with optimization horizon N ∈ N

and running cost � satisfying α3(|x|x∗) ≤ �∗(x) ≤ α4(|x|x∗) for suitable α3, α4 ∈
K∞. Assume that Assumption 6.30 holds for functions Bk ∈ K∞ which satisfy

Bk(r) ≤ α(r)
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for some α ∈ K∞, all k ∈ N and all r ≥ 0. Then the nominal NMPC closed-loop
system (3.5) with NMPC feedback law μN is semiglobally practically asymptotically
stable on X with respect to the optimization horizon N .

Furthermore, for each C > 1 and each � > δ > 0 there exists NC,δ,� > 0 such
that

Jk∗(x,μN) ≤ CVN(x) ≤ CV∞(x)

for all x ∈ B�(x∗) ∩ X and all N ≥ NC,δ,� where k∗ ∈ N0 is minimal with
xμN

(k∗, x) ≤ δ.

Proof We first show the a priori estimate

VN

(
f
(
x,μN(x)

))≤ α
(
VN(x)

)
(6.40)

for all N ≥ 2 and all x ∈ X. Indeed, we have

VN(x) =
N−1∑

k=0

�
(
xu∗(k, x), u∗(k)

)≥ �∗(xu∗(1, x)
)= �∗(f

(
x,μN(x)

))
.

By Assumption 6.30 this implies

VN

(
f
(
x,μN(x)

))≤ BN

(
�∗(f

(
x,μN(x)

)))≤ α
(
�∗(f

(
x,μN(x)

)))≤ α
(
VN(x)

)
,

i.e., (6.40). Furthermore, we observe that with α1 = α3 and α2 = α ◦α4 the inequal-
ities

α1
(|x|x∗

)≤ VN(x) ≤ α2
(|x|x∗

)

hold for all N ≥ 2 and all x ∈ X.
Now we fix arbitrary � > δ > 0. We pick R > 0 as in the proof of Theorem 6.31

and define the values

r0 := α1(δ), r1 := α−1(r0) and ζ := α−1(r1).

These definitions yield the implications

VN(x) ≤ r0 ⇒ |x|x∗ ≤ δ, (6.41)

VN(x) ≤ r1 ⇒ VN

(
f
(
x,μN(x)

))≤ r0 (6.42)

and

VN(x) ≥ r1 ⇒ α
(
�∗(x)

)≥ r1 ⇒ �∗(x) ≥ ζ, (6.43)

where we used (6.40) for (6.42) and Assumption 6.30 together with the bound α on
the Bk for (6.43).

Now we pick α0 ∈ (0,1), set σ = (1 − α0)ζ/2 and ρ = α−1(σ ). Defining γ :=
maxr∈[ρ,R] α(r)/r we obtain

Bk(r) ≤ α(r) ≤ γ r for all r ∈ [ρ,R].
Defining further

B1
k (r) = γ r and B2

k (r) =
{

max{γ r,Bk(r)}, r ∈ [0,R],
γ r, r ≥ R
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we get B1
k (r) = B2

k (r) for r ≥ ρ and B1
k (r) ≤ B2

k (r) ≤ α(r) ≤ σ for r ∈ [0, ρ].
Hence, B1

k and B2
k satisfy the assumptions of Lemma 6.32. Since B1

k (r) is linear in
r , by the same arguments as in the proof of Theorem 6.21 we find Nδ,� > 0 such
that (6.19) for Bk = B1

k yields αN ≥ α0/2 + 1/2 for all N ≥ Nδ,�. This implies
α1 ≥ α0/2 + 1/2 in Lemma 6.32 and consequently

α2 ≥ α0/2 + 1/2 − σ/ζ = α0/2 + 1/2 − (1 − α0)/2 = α0.

Now using the set SN = V −1
N ([0,L]) ⊇ B�(x∗) defined in the proof of Theo-

rem 6.31, as in this proof we obtain that each optimal trajectory starting in x ∈ SN

satisfies �∗(xu	(k, x)) ≤ R. Setting Y = SN \V −1
N ([0, r1]), by (6.43) we furthermore

obtain �∗(x) ≥ ζ for all x ∈ Y . Hence, for this set Y the variant of the optimization
problem (6.14) obtained from Remark 6.15(ii) and (iii) coincides with the optimiza-
tion problem from Lemma 6.32 with i = 2, yielding α = α2 ≥ α0 in Theorem 6.14.
Consequently, we obtain (5.1) with α = α0 for all x ∈ Y .

We claim that this implies that the sublevel set V −1
N ([0, r0]) is forward invari-

ant for the closed-loop system, i.e., that VN(f (x,μN(x))) ≤ r0 holds whenever
VN(x) ≤ r0 holds. Indeed, if VN(x) ∈ [r1, r0], then we have x ∈ Y and thus (5.1)
holds with α = α0 > 0, which implies VN(f (x,μN(x))) ≤ VN(x) ≤ r0. On the
other hand, if VN(x) ≤ r1 then (6.42) yields VN(f (x,μN(x))) ≤ r0.

Thus, defining P = V −1
N ([0, r0]) and S = SN , all assumptions of Theorem 4.14

are satisfied and furthermore the inclusions B�(x∗) ⊆ S and P ⊆ Bδ(x∗) hold by
(6.37) and (6.41). Hence, Theorem 4.14 yields semiglobal practical stability using
Lemma 6.29(ii) and the estimate for Jk∗(x,μN) by choosing α0 = 1/C. �

We end this section by a simple example which illustrates the practical stability.

Example 6.34 Consider the control system (2.1), i.e.,

x+ = x + u,

with equilibrium x∗ = 0 and running cost

�(x,u) = x2 + |u|.
The system is controllable to 0 in finite time, which is easily seen if for initial value
x we choose ux(0) = −x and ux(n) = 0 for n ≥ 1. The resulting trajectories satisfy
xux

(n) = 0 for n ≥ 1. In particular, we obtain

VN(x) ≤
N−1∑

n=0

�
(
xux (n),ux(n)

)= �
(
x,ux(0)

)= x2 + |x|

and since �∗(x) = x2 this shows that Assumption 6.30 holds with Bk(r) = r + √
r .

In particular, the assumptions of Theorem 6.33 hold with α(r) = r + √
r , which

ensures semiglobal practical asymptotic stability of the NMPC closed loop.
On the other hand, for the given running cost Assumption 6.4 does not hold with

β linear in r . We show this property by contradiction: Suppose that Assumption 6.4
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Fig. 6.13 Closed-loop behavior for optimization horizons N = 2,3,4

holds with β linear in r , i.e., β(r, n) = ρnr with ρn → 0. Then Assumption 6.4
implies

∣∣ux(n)
∣∣≤ �

(
xux (n),ux(n)

)≤ β
(
�∗(x), n

)= ρnx
2 (6.44)

for all x ∈ R and all n ∈ N0. Denoting C := supn∈N0
ρn this implies |ux(n)| ≤ Cx2,

which in turn yields
∣∣xux

(n, x)
∣∣≥ |x| − Cnx2.

Together with (6.44) we obtain

ρnx
2 ≥ �

(
xux

(n),ux(n)
)≥ ∣∣xux

(n, x)
∣∣2 ≥ (|x| − Cnx2)2

.

Since ρn → 0 there exists n∗ ∈ N such that ρn∗ ≤ 1/2, which implies

x2/2 ≥ (|x| − Cn∗x2)2

for all x ∈ R. This, however, is not possible for |x| < 1/(Cn∗2), hence Assump-
tion 6.4 cannot hold with β(r, t) linear in r .

As a consequence, Theorem 6.21 is not applicable and we cannot expect asymp-
totic stability of the closed loop. The numerical simulations shown in Fig. 6.13
confirm this behavior. From left to right the closed-loop trajectory for N = 2,3,4
with x0 = 2 is shown. As Theorem 6.33 predicts, the solutions converge to smaller
and smaller neighborhoods of x∗ = 0 as N increases, but they do not converge to
x∗ = 0 for fixed N .

6.8 Proof of Proposition 6.17

In this section we provide the proof of Proposition 6.17. We start by observing that
Assumption 6.4 for n = 0 implies β(r,0) ≥ r from which the inequalities Bk(r) ≥ r

and γk ≥ 1 follow.
Now, the main part of the proof consists of three steps. In the first step we trans-

form (6.17) into an equivalent form more suitable for our analysis. In the second
step we show that αN from (6.19) is the explicit solution of this equivalent problem
if we remove some of the constraints. Since the solution of the minimization prob-
lem with fewer constraints is always less or equal than the solution of the problem
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with all constraints, this proves (6.18). Finally, in the third step we show that under
condition (6.6) the removed constraints are always satisfied for the optimal solution
of the problem from Step 2, which shows (6.20). Some technical equalities that we
need throughout the proof are collected in Lemma 6.36 at the end of this section.

Step 1 The optimal value α of (6.17) equals the optimal value of the following
optimization problem:

min
λ

1 − (γ2 − 1)λN−1 (6.45)

subject to the (componentwise) constraints λ = (λ1, . . . , λN−1)
� ≥ 0 and

N−2∑

n=1

λn + λN−1 ≤ γN − 1, (6.46)

N−2∑

n=j

λn − γN−jλj + λN−1 ≤ 0, j = 1, . . . ,N − 2, (6.47)

N−2∑

n=j

λn − γN−j+1λj + γ2λN−1 ≤ 0, j = 1, . . . ,N − 2. (6.48)

Proof of Step 1 We first show that for the optimal values λ0, . . . , λN−1 and ν in
(6.17) the Inequality (6.12) for j = N − 2 is an equality. To this end, assume that
Inequality (6.12) for j = N − 2 is strict, i.e., that it holds with <.

If λN−1 > 0, then we can—at least slightly—reduce λN−1 without violating the
Inequalities (6.11) and (6.12). Since this reduces the value under the minimum in
(6.17), this contradicts the optimality of λ0, . . . , λN−1 and ν.

If λN−1 = 0, then the strict inequality (6.12) for j = N − 2 and the inequal-
ity λN−2 ≤ B3(λN−2) implies that (6.12) for j = N − 3 must be strict, too. Thus,
assuming λN−2 > 0 leads to a contradiction similarly to the case λN−1 > 0, above.
Proceeding inductively yields λ1 = λ2 = · · · = λN−1 = 0 and consequently the right
hand side of (6.12) for j = N − 2 equals zero. Since ν ≥ 0 this contradicts this in-
equality being strict.

Since we have shown that equality holds in (6.12) for j = N − 2, we obtain the
expression

ν =
N−2∑

n=1

λn + B2(λN−1) =
N−2∑

n=1

λn + γ2λN−1. (6.49)

Inserting this into the expression under the minimum in (6.17) and using λ0 = 1
yields

N−1∑

n=0

λn −
N−2∑

n=1

λn − γ2λN−1 = λ0 + λN−1 − γ2λN−2 = 1 − (γ2 − 1)λN−1.
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This shows that the optimization objectives in (6.17) and (6.45) coincide. In order to
show that the optimal values coincide it hence remains to show that the constraints
(6.11), (6.12) with λ0 = 1 are equivalent to (6.46)–(6.48).

To this end, we first note that (6.11) for k = 0 becomes

N−1∑

n=0

λn ≤ γNλ0 = γN ,

which is equivalent to (6.46) since λ0 = 1.
The remaining inequalities (6.11) for k = 1, . . . ,N − 2 can be rewritten as

λN−1 ≤ γN−kλk −
N−2∑

n=k

λn, k = 1, . . . ,N − 2,

which is exactly (6.47) if we change the index from k to j .
Inserting the expression (6.49) into (6.12) and shifting the summation index by

1, the Inequalities (6.12) can be equivalently rewritten as

γ2λN−1 ≤ γN−j+1λj −
N−2∑

n=j

λn, j = 1, . . . ,N − 2,

which is (6.48). This shows the claim in Step 1. �

In the following second step we remove the constraints (6.47) from Prob-
lem (6.45) and provide an explicit solution for this relaxed problem.

Step 2 The optimization problem (6.45) with constraints (6.46), (6.48) and λ ≥ 0
has the solution

min
λ

1 − (γ2 − 1)λN−1 = αN

with αN from (6.19). Furthermore, λ	 = (λ	
1, . . . , λ

	
N−1) with

λ	
N−1−i = −

(
i−1∏

j=1

dN−1−j − 1

dN−1−j

)
γ2

dN−1−i

λ	
N−1, i = 1, . . . ,N − 2 (6.50)

with dj = 1 − γN−j+1 is a corresponding minimizer.

Proof of Step 2 First observe that γ2 = 1 implies minλ 1 − (γ2 − 1)λN−1 = 1 and
that λ1 = · · · = λN−1 = 0 is a minimizer. In this case one easily verifies the assertion
of Step 2, hence in what follows we will assume γ2 > 1, which implies γj > 1 for
all j ≥ 2.
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We can equivalently rewrite the constraints (6.46), (6.48) compactly as Aλ ≤ b

(interpreted componentwise), where

A :=

⎛

⎜⎜⎜⎜⎜
⎝

1 1 . . . 1 1
d1 1 . . . 1 γ2

0 d2
. . .

...
...

...
. . .

. . . 1 γ2
0 . . . 0 dN−2 γ2

⎞

⎟⎟⎟⎟⎟
⎠

and b :=

⎛

⎜⎜⎜⎜
⎝

γN − 1
0
...

0
0

⎞

⎟⎟⎟⎟
⎠

with dj defined as above. This equivalence follows since the first inequality in Aλ ≤
b is equivalent to (6.46) while the remaining N − 2 inequalities are equivalent to
(6.48), j = 1, . . . ,N − 2.

Now denote by λ	 ≥ 0 a minimizer of (6.45) satisfying the constraints Aλ	 ≤ b.
We show by contradiction that Aλ	 = b holds. To this end, assume that Aλ	 �= b

holds, i.e., that there exists k ∈ {1, . . . ,N − 1} such that

N−1∑

n=1

Aknλ
	
n < bk (6.51)

holds. In order to obtain the contradiction, note that γ2 > 1 implies that minimizing
(6.45) is equivalent to maximizing λN−1.

If (6.51) holds for k = 1, then we define the constants

ε := b1 −
N−1∑

n=1

A1nλ
	
n > 0, δ := − max

i=1,...,N
di > 0

and choose ε̃ > 0 such that

ε̃

(

1 + γ2

N−2∑

i=1

(1 + δ)N−2−i

δN−1−i

)

≤ ε.

We set λN−1 = λ	
N−1 + ε̃ and

λi = λ	
i + ε̃γ2

(1 + δ)N−2−i

δN−1−i
, i = 1, . . . ,N − 2.

This implies

N−1∑

n=1

A1nλn =
N−1∑

n=1

A1nλ
	
n + ε̃ +

N−2∑

n=1

ε̃γ2
(1 + δ)N−2−n

δN−1−n
≤ A1nλ

	
n + ε = b1

and, for k = 2, . . . ,N − 1,

N−1∑

n=1

Aknλn =
N−2∑

n=1

Akn

(
λ	

n + ε̃γ2
(1 + δ)N−2−n

δN−1−n

)
+ AkN−1

(
λ	

N−1 + ε̃
)

=
N−1∑

n=1

Aknλ
	
n + dk−1ε̃γ2

(1 + δ)N−1−k

δN−k
+

N−2∑

n=k

ε̃γ2
(1 + δ)N−2−n

δN−1−n
+ γ2ε̃.
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Now we can estimate

dk−1ε̃γ2
(1 + δ)N−1−k

δN−k
+

N−2∑

n=k

ε̃γ2
(1 + δ)N−2−n

δN−1−n
+ γ2ε̃

= ε̃

(

dk−1γ2
(1 + δ)N−1−k

δN−k
+

N−2∑

n=k

γ2
(1 + δ)N−2−n

δN−1−n
+ γ2

)

≤ ε̃

(

−δγ2
(1 + δ)N−1−k

δN−k
+

N−2∑

n=k

γ2
(1 + δ)N−2−n

δN−1−n
+ γ2

)

= ε̃γ2

δN−1−k

(

−(1 + δ)N−1−k +
N−2−k∑

n=0

(1 + δ)N−2−k−n + δN−1−k

)

= 0

where we used (6.58) in the last step. This shows

N−1∑

n=1

Aknλn ≤
N−1∑

n=1

Aknλ
	
n ≤ bk.

Thus, we have constructed a vector λ ≥ 0 satisfying the constraints Aλ ≤ b and
λN−1 > λ	

N−1. Since λN−1 must be maximal for the optimal solution, this contra-
dicts the optimality of λ	. Hence, (6.51) cannot hold for k = 1.

Now assume (6.51) for some k ≥ 2. Let k	 be maximal such that (6.51) holds
for k = k	. Then, since dj < 0, λ	

k	−1 is the only entry with negative sign in this
inequality and thus it must be strictly positive since bk∗ = 0. On the other hand,
λ	

k	−1 appears with positive sign in all inequalities for k ≤ k	 − 1 and it does not
appear at all in all inequalities for k ≥ k	 + 1. Thus, for ε > 0 sufficiently small the
sequence

λ = (λ1, . . . , λN−1) = (
λ	

1, . . . , λ
	
k	−2, λ

	
k	−1 − ε,λ	

k	, . . . , λ
	
N−1

)

satisfies the constraints Aλ ≤ b and yields the same optimal value in (6.45) as λ	.
Thus, λ is optimal, too. However, the inequality λk	−1 < λ	

k	−1 implies that (6.51)
holds for λ and k = 1. By the first part of the proof, this contradicts the optimality
of λ. Hence, (6.51) cannot hold for k ≥ 2.

The considerations made so far show that the optimal λ	 satisfies Aλ	 = b. We
use this linear system of equations in order to prove (6.50) by induction over i.

For i = 1, (6.50) follows immediately from the last equation in Aλ	 = b. For the
induction step i −1 → i we use the (N − i)th equation in Aλ	 = b in order to obtain

λ	
N−1−i = 1

−dN−1−i

(

γ2λ
	
N−1 +

i−1∑

k=1

λ	
N−1−k

)

.

Using the induction assumption, i.e., (6.50) for i − 1 instead of i we can continue

1

−dN−1−i

(

γ2λ
	
N−1 +

i−1∑

k=1

λ	
N−1−k

)
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= γ2λ
	
N−1

−dN−1−i

(

1 −
i−1∑

k=1

k−1∏

j=1

dN−1−j − 1

dN−1−j

1

dN−1−k

)

= γ2λ
	
N−1

−dN−1−i

(

1 +
i−1∑

k=1

k−1∏

j=1

1 − dN−1−j

−dN−1−j

1

−dN−1−k

)

= γ2λ
	
N−1∏i

j=1(−dN−1−j )

i−1∑

k=0

(
k−1∏

j=1

(1 − dN−1−j )

i−1∏

j=k+1

(−dN−1−j )

)

= γ2λ
	
N−1

∏i
j=1(−dN−1−j )

i−1∑

k=0

i−1∏

j=1

(1 − dN−1−j )

= −
(

i−1∏

j=1

dN−1−j − 1

dN−1−j

)
γ2

dN−1−i

λ	
N−1

where in the second last step we have used Lemma 6.36(i) with δj = −dj . This
shows (6.50) for i.

Finally, we use this formula in order to show that αN from (6.19) is the optimal
value for the problem defined in Step 2. To this end we rewrite the first equation

of Aλ	 = b as γN − 1 − λ	
N−1 =∑N−2

k=1 λk . Inserting (6.50) into this equation and
using the definition dj = 1 − γN−j+1 we obtain

γN − 1 − λ	
N−1 =

N−2∑

k=1

λk =
(

−
N−2∑

k=1

(
k−1∏

j=1

dN−1−j − 1

dN−1−j

)
γ2

dN−1−k

)

λ	
N−1

=
(

N−2∑

k=1

(
k−1∏

j=1

γj+2

γj+2 − 1

)
γ2

γk+2 − 1

)

λ	
N−1

=
N−2∏

j=1

1

γj+2 − 1

(
N−2∑

k=1

(
k−1∏

j=1

γj+2

N−2∏

j=k+1

(γj+2 − 1)

))

γ2λ
	
N−1

=
N∏

j=3

1

γj − 1

(
N∑

k=3

(
k−1∏

j=3

γj

N∏

j=k+1

(γj − 1)

))

γ2λ
	
N−1

=
N∏

j=3

1

γj − 1

(
N∏

j=3

γj −
N∏

j=3

(γj − 1)

)

γ2λ
	
N−1

=
(

N∏

j=3

γj

γj − 1
− 1

)

︸ ︷︷ ︸
=:ρ

γ2λ
	
N−1
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where we used (6.59) in the second last equality. Solving for λ	
N−1 yields

λ	
N−1 = γN − 1

ργ2 + 1

and inserting this into (6.45) we obtain

min 1 − (γ2 − 1)λN−1 = 1 − (γ2 − 1)λ	
N−1 = 1 − (γ2 − 1)(γN − 1)

ργ2 + 1
. (6.52)

The denominator of this fraction can be written as

ργ2 + 1 =
(

N∏

j=3

γj

γj − 1
− 1

)

γ2 + 1 =
∏N

j=3 γj
∏N

j=3(γj − 1)
γ2 − (γ2 − 1)

=
∏N

j=2 γj −∏N
j=2(γj − 1)

∏N
j=3(γj − 1)

.

Inserting this into (6.52) we finally obtain

min 1 − (γ2 − 1)λN−1 = 1 − (γ2 − 1)(γN − 1)
∏N

j=3(γj − 1)
∏N

j=2 γj −∏N
j=2(γj − 1)

,

which is exactly αN from (6.19). This finishes the proof of Step 2. �

Let us summarize what we have proved so far: In Step 1 we have shown that
Problem (6.17) can be equivalently reformulated as (6.45) subject to the constraints
λ ≥ 0, (6.46), (6.47) and (6.48). In Step 2 we have shown that the optimal value
of the Problem (6.45) subject to the constraints λ ≥ 0, (6.46) and (6.48) is exactly
αN from (6.19). Since this is the optimal value of a minimization problem which
is equivalent to (6.17) but with fewer constraints, αn must be less or equal than the
optimal value of (6.17). Hence, we have shown (6.18).

The proof of the remaining equation (6.20) provided (6.6) holds is an immediate
consequence of our final Step 3.

Step 3 If (6.6) holds, then the optimal solution λ∗ of Problem (6.45) subject to the
constraints (6.46) and (6.48) satisfies the constraints (6.47).

Proof of Step 3 We prove the assertion by showing that for λ = λ	 the Inequal-
ities (6.47) for j = 2, . . . ,N − 2 are implied by the respective inequalities (6.48).
Since (6.48) holds for λ	 by definition of the constraints in Step 2, this shows (6.47).

To this end, it is sufficient to show that

−γN−jλ
	
j + λ	

N−1 ≤ −γN−j+1λ
	
j + γ2λ

	
N−1

or, equivalently,

(γ2 − 1)λ	
N−1 ≥ (γN−j+1 − γN−j )λ

	
j (6.53)
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holds for j = 2, . . . ,N − 2. Inserting (6.50) one sees that (6.53) is equivalent to

N−j+1∏

i=2

(γi − 1) ≥ (γN−j+1 − γN−j )

N−j∏

i=2

γi . (6.54)

Now we define cn := β(r, n)/r . Note that the cn are well defined since β is linear
in r and that the identity γk =∑k−1

n=0 cn holds. Property (6.6) then implies1

cn+m ≤ cncm for all n,m ∈ N0. (6.55)

In order to prove (6.54) we prove the auxiliary inequality

N−j∏

i=2

(γi − 1)

N−j+k−1∑

n=k

cn − cN−j+k−1

N−j∏

i=2

γi ≥ 0 (6.56)

for arbitrary k ∈ N and j = 1, . . . ,N − 2 by induction over j , starting with j =
N − 2. In this case for arbitrary k ∈ N we get

N−j∏

i=2

(γi − 1)

N−j+k−1∑

n=k

cn − cN−j+k−1

N−j∏

i=2

γi = (γ2 − 1)(ck + ck+1) − ck+1γ2

= γ2ck − ck − ck+1

= c0ck + c1ck − ck − ck+1

≥ ck + ck+1 − ck − ck+1 = 0

using (6.55) for m = k and n = 0 and 1 in the ≥-estimate. For the induction step
j + 1 → j and arbitrary k ∈ N we can write the right hand side of (6.56)

N−j∏

i=2

(γi − 1)

N−j+k−1∑

n=k

cn − cN−j+k−1

N−j∏

i=2

γi

= (−1)

N−j−1∏

i=2

(γi − 1)

N−j+k−1∑

n=k

cn

+ γN−j

[
N−j−1∏

i=2

(γi − 1)

N−j+k−1∑

n=k

cn − cN−j+k−1

N−j−1∏

i=2

γi

]

=
N−j−1∏

i=2

(γi − 1)

(

ckγN−j −
N−j+k−1∑

n=k

cn

)

+ γN−j

[
N−j−1∏

i=2

(γi − 1)

N−j+k−1∑

n=k+1

cn − cN−j+k−1

N−j−1∏

i=2

γi

]

.

1In fact, (6.55) is the reason for calling (6.6) “submultiplicativity”.
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Now the induction assumption implies that the second summand is ≥ 0, since the
term in square brackets is the right hand side of (6.56) with j + 1 and k + 1 instead
of j and k. For the first summand, using (6.55) we can estimate

ckγN−j = ck

N−j−1∑

n=0

cn =
N−j−1∑

n=0

ckcn ≥
N−j−1∑

n=0

ck+n =
N−j+k−1∑

n=k

cn.

This shows that the term in brackets and thus the whole first summand is ≥ 0, which
proves (6.56).

Using the equality γk = ∑k−1
n=0 ck and c0 ≥ 1, the left hand side of the desired

inequality (6.54) can be estimated by

N−j+1∏

i=2

(γi − 1) =
N−j∏

i=2

(γi − 1)

(
N−j∑

n=0

cn − 1

)

≥
N−j∏

i=2

(γi − 1)

N−j∑

n=1

cn.

For the right hand side we obtain

(γN−j+1 − γN−j )

N−j∏

i=2

γi = cN−j

N−j∏

i=2

γi .

Hence, (6.56) for k = 1 implies (6.54) and thus (6.53). This proves Step 3. �

Step 3 implies that the optimal solution αN from (6.19) of (6.45) subject to the
constraints (6.46) and (6.48) obtained in Step 2 equals the optimal solution of (6.45)
subject to the constraints (6.46), (6.47) and (6.48). Since by Step 1 the latter prob-
lem is equivalent to (6.17), this proves (6.20) and thus finishes the proof of Propo-
sition 6.17.

Remark 6.35 In Step 3 we have shown that under the condition (6.6) the conditions
(6.47) are redundant in (6.45). Since in Step 1 we have shown that the conditions
(6.47) are equivalent to (6.11) for k = 1, . . . ,N − 2, this shows that under condition
(6.6) the optimal value of Problem (6.17) does not change if we remove the con-
straints (6.11) for k = 1, . . . ,N − 2. While this has no consequences for the results
in this book—since we get these constraints for free from the optimality of the tra-
jectory xu	(·, x0) via Lemma 6.10—this observation may be useful in other settings,
e.g., when analyzing NMPC with nonoptimal trajectories.

We end this section with a technical lemma we needed in the preceding proof.

Lemma 6.36

(i) For all δ1, . . . , δN−2 ∈ R and all i ∈ {1, . . . ,N − 1} the equation

i−1∏

j=1

(1 + δN−1−j ) =
i−1∑

k=0

(
k−1∏

j=1

(1 + δN−1−j )

i−1∏

j=k+1

δN−1−j

)

. (6.57)

holds (with the usual convention
∏j2

j=j1
= 1 if j2 < j1).
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(ii) For all δ ∈ R and k ∈ {1, . . . ,N − 1} the equation

(1 + δ)N−1−k =
N−2−k∑

n=0

(1 + δ)N−2−k−nδn + δN−1−k (6.58)

holds.
(iii) For all γ3, . . . , γN ∈ R the equation

N∏

j=3

γj =
N∏

j=3

(γj − 1) +
N∑

k=3

(
k−1∏

j=3

γj

N∏

j=k+1

(γj − 1)

)

(6.59)

holds.

Proof (i) We prove (6.57) by induction over i. For i = 1 the equality is obvious.
Under the induction assumption that (6.57) holds for i − 1 instead of i we obtain

i−1∏

j=1

(1 + δN−1−j ) =
i−2∏

j=1

(1 + δN−1−j ) + δN−1−(i−1)

(i−1)−1∏

j=1

(1 + δN−1−j )

=
i−2∏

j=1

(1 + δN−1−j )

+ δN−1−(i−1)

(i−1)−1∑

k=1

(
k−1∏

j=1

(1 + δN−1−j )

(i−1)−1∏

j=k+1

δN−1−j

)

=
i−1∑

k=0

(
k−1∏

j=1

(1 + δN−1−j )

i−1∏

j=k+1

δN−1−j

)

,

i.e., (6.57) for i.
(ii) Formula (6.58) follows immediately from (6.57) by setting δ1 = · · · =

δN−1 = δ and k = N − i.
(iii) Using (6.57) with δN−1−j = γj+2 − 1 and i = N − 1 yields

N−2∏

j=1

γj+2 =
N−2∑

k=0

(
k−1∏

j=1

γj+2

N−2∏

j=k+1

(γj+2 − 1)

)

.

Writing the summand for k = 0 on the right hand side separately and using the
summation indices j + 2 instead of j and k + 2 instead of k yields (6.59). �

6.9 Notes and Extensions

The conceptual idea of establishing stability and performance of NMPC schemes
via relaxed dynamic programming ideas as outlined in Sect. 6.1 was to our knowl-
edge first used by Shamma and Xiong [11]. However, in this reference different
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inequalities from (5.1) were used and the inequalities were verified by numerical
evaluation. In the form presented here, relaxed dynamic programming was intro-
duced for the analysis of NMPC schemes in Grüne and Rantzer [6], where also a
first controllability condition for verifying this inequality was given.

The asymptotic controllability condition with respect to � from Sect. 6.2 was in-
troduced in Grüne [5] and most of the results in Sects. 6.2–6.5 were taken from this
reference with minor modifications and extensions. Exceptions are Proposition 6.17
and Theorem 6.21 and their respective proofs, which were taken from Grüne, Pan-
nek, Seehafer and Worthmann [7]. Note that in [7] Proposition 6.17 is proved in a
more general setting (and with an even more involved proof); we will sketch this
setting in Sect. 7.4.

Section 6.6 summarizes and extends discussions from [5] and [7]. Example 6.26
in this section has not been published before while Example 6.27 was taken from
Altmüller, Grüne and Worthmann [2]. Sect. 6.7 consists of previously unpublished
material, however, the semiglobal practical stability result in Theorem 6.33 was
proved before by Grimm, Messina, Tuna and Teel in [4, Theorem 1] using a dif-
ferent proof technique and slightly different technical assumptions. Corollaries 2
and 3 in [4] provide counterparts of Theorems 6.31 and 6.21 proving semiglobal
and “real” asymptotic stability, respectively, under similar conditions as in our The-
orems. Since the results in this reference are quite similar to our approach presented
in this chapter, we will briefly discuss the main differences.

The decisive difference to our results is that in [4] bounds of the type VN(x) ≤
αV (|x|x∗) for αV ∈ K∞ independent of N together with suitable bounds on αV and
the other K∞ functions involved are used while our analysis relies on the Assump-
tions 6.4 or 6.30. The main advantage of using these assumptions instead of the
bound VN(x) ≤ αV (|x|x∗) lies in the fact that the fine structure of β(r, k) or Bk—
in particular the dependence of these functions on k—can be used. The benefit of
using this structure is nicely illustrated in the exponential controllability case (6.3):
for β(r, k) = Cσkr and �∗(x) ≤ α4(|x|x∗) we obtain the bound VN(x) ≤ αV (|x|x∗)
for αV (r) = Cα4(r)/(1 − σ). Given C1 < C2 and σ1 > σ2 with

C1

1 − σ1
= C2

1 − σ2

this will thus yield the same αV . Hence, using the upper bound αV in the stability
analysis, we cannot distinguish between large overshoot C2 and fast decay σ2 and
small overshoot C1 and slow decay σ1. However, our analysis in Sect. 6.6 based on
Assumption 6.4 shows that the pair C1, σ1 provides a much better stability behavior
than C2, σ2. Particularly, Fig. 6.1 shows that for C1 sufficiently close to 1 we always
enter the region where stability holds for N = 2, a fact which remains invisible when
looking only at αV .

Another advantage of our approach is that it automatically leads to suboptimality
estimates which are not provided in [4]. On the other hand, a major advantage of the
approach in [4] is that it allows us to handle nonpositive definite running costs � via
a suitable detectability condition. We will discuss this aspect in Sect. 7.3.

Besides the approach presented in this chapter and [4] there are various other
approaches which ensure stability of NMPC schemes without stabilizing terminal
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constraints and terminal cost. Probably the earliest reference is Alamir and Bornard
[1], another well known reference is Jadbabaie and Hauser [8]. Both have already
briefly been discussed at the end of Sect. 6.1; here we only remark that these refer-
ences do not provide bounds on the optimization horizon N .

We finally mention that inverse optimality in the sense of Theorem 5.24 does
in general not hold for problems without stabilizing terminal constraints, since the
modified running cost used in Theorem 5.24 may become negative, see Problem 6,
below.

6.10 Problems

General remark: all NMPC algorithms in the following problems are meant without
stabilizing terminal constraints.

1. Consider a control system (2.1) on X = R
d and U = R

m which is exponentially
controllable to x∗ = 0. This means that there exist constants K > 0 and η ∈ (0,1)

such that for each x ∈ R
d there is a control sequence ux ∈ U

N(x) such that
∥∥xux

(k, x)
∥∥≤ Kηn‖x‖

holds for all k ∈ N0.
(a) Show that the system satisfies the Controllability Assumption 6.4 with β ∈

K L0 of type (6.3) for any running cost of the form �(x,u) = x�Qx with
positive definite matrix Q ∈ R

d×d .
(b) Does the assertion from (a) also hold for a running cost of the form �(x,u) =

x�Qx + u�Ru for positive definite matrices Q ∈ R
d×d and R ∈ R

m×m? If
not, which additional property must be satisfied?

Hint: Look at the hints for Problem 2 in Chap. 4.
2. Consider a function β ∈ K L0 of the form (6.4).

(a) Prove that there exist C ≥ 1 and σ ∈ (0,1) such that for the function β̃ ∈ K L0

of type (6.3) with β̃(r, n) = Cσnr the inequality

β(r, n) ≤ β̃(r, n)

holds for all n ∈ N0 and all r ≥ 0.
(b) Determine C ≥ 1 and σ ∈ (0,1) (with C as small as possible) such that the

inequality from (a) holds for the values n0 = 2, c0 = 2 and c1 = 1 in (6.4).
(c) Compute α for β(r, n) and β̃(r, n) for the values from (b) and N = 3,4,5,6

using (6.20) (MAPLE or MATLAB may be helpful here). Which function
provides better values?

3. Consider the control system

x(n + 1) =
(

1 1.1
−1.1 1

)
x(n) +

(
0
1

)
u(n)

with x(n) ∈ X = R, u(n) ∈ U = R and running cost �(x,u) = max{‖x‖∞, u}.
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(a) Given the initial value x(0) = (x1, x2), use the control sequence u(0) =
21
110x1 − 2x2, u(1) = 221

110x1 + 221
100x2, u(n) = 0 for all n ≥ 2 to compute the

minimal horizon length N for which stability can be guaranteed.
(b) Try to reduce the minimal required horizon length N from (a). To this end,

change the term u in the running cost � to ηu for some η ∈ R
+
0 and analyze

the impact of this change.
Hint for (a): Construct β such that Assumption 6.4 holds and Corollary 6.19 is
applicable.

4. Consider a control system (2.1), an admissible feedback law μ : X → U and
a Lyapunov function V : X → R

+
0 for the closed-loop system x+ = g(x) :=

f (x,μ(x)). Show that the NMPC-feedback law μN for running cost �(x,u) =
V (x) stabilizes the system for N = 2.

Hint: A direct argument may be easier than trying to apply one of the theorems
from this chapter.

5. Consider the control system

x(n + 1) = 2x(n) + u(n)

with x(n) ∈ X = R, u(n) ∈ U = R.
(a) Show that for running cost �(x,u) = x2 the NMPC control law μN : X → U

is optimal for the infinite horizon problem for arbitrary N ≥ 2.
(b) For the running cost �(x,u) = x2 + u2, compute minimal horizon lengths N

such that α ≥ α holds in (5.1) for α ∈ {0.5,0.9,0.99}.
6. Consider the modified running cost function

�̃(x, u) := �(x,u) + VN−1
(
f (x,u)

)− VN

(
f (x,u)

)

which we used for the inverse optimality statement in Chap. 5, cf. (5.32). Con-
sider the NMPC problem x+ = x/2 + u2, X = X = U = U = R and �(x) = x2

without stabilizing terminal constraints and prove that for each N ≥ 2 the func-
tion �̃ is not of the form (3.2).
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Chapter 7
Variants and Extensions

The results developed so far in this book can be extended in many ways. In this
chapter we present a selection of possible variants and extensions. Some of these
introduce new combinations of techniques developed in the previous chapters, oth-
ers relax some of the previous assumptions in order to obtain more general results
or strengthen assumptions in order to derive stronger results. Several sections con-
tain algorithmic ideas which can be added on top of the basic NMPC schemes from
the previous chapters. Parts of this chapter contain results which are somewhat pre-
liminary and are thus subject to further research. Some sections have a survey like
style and, in contrast to the other chapters of this book, proofs are occasionally only
sketched with appropriate references to the literature.

7.1 Mixed Constrained–Unconstrained Schemes

The previous Chaps. 5 and 6 have featured two extreme cases, namely NMPC
schemes with terminal constraints X0 and costs F on the one hand and schemes
without both X0 and F on the other hand. However, it appears natural to consider
also intermediate or mixed cases, namely schemes in which (nonequilibrium) ter-
minal constraint sets X0 but no terminal costs F are used and schemes in which
terminal costs F but no terminal constraints sets X0 are used.

Schemes with terminal constraints X0 but without terminal costs F appear as a
special case of Algorithm 3.10 (or its time varying counterpart 3.11) with (OCPN,e)
= (5.15) and F ≡ 0. For this setting, it is not reasonable to expect that Assump-
tion 5.9(ii) holds. Consequently, the argument used in the proof of Theorem 5.13
does not apply; in fact, we are not aware of results in the literature analyzing such
schemes with the techniques from Chap. 5.

Fortunately, the stability analysis in Chap. 6 provides a remedy to this problem.
Observe that the main structural assumption on the control sequences from Assump-
tion 6.4 needed in the fundamental Lemmas 6.9 and 6.10 in Chap. 6 is that each
admissible control sequence u ∈ U

N(x) can be extended to an admissible control
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sequence û ∈ U
N+K(x) for each K ≥ 1. Since Lemma 5.2(i) ensures this property

for U
N
X0

(x) provided X0 is viable, we can incorporate the terminal constraint set X0
into the analysis from Chap. 6.

As a consequence, replacing U
N(x) by U

N
X0

(x) in Assumption 6.4 and assum-
ing Assumption 5.9(i), i.e., viability of X0, all results in Chap. 6 carry over to the
scheme with terminal constraint set. In particular, the stability results Theorem 6.18,
Corollary 6.19, Theorem 6.21 and Theorem 6.33 remain valid. However, like in The-
orem 5.13 the resulting controller μN is only defined on the feasible set XN from
Definition 3.9.

This combined scheme inherits certain advantages and disadvantages from both
schemes. From the terminal constrained scheme we inherit that the resulting con-
troller μN is only defined on the feasible set XN . On the other hand, as discussed
before Lemma 5.3, we do not need to assume viability of X but only for the termi-
nal constraint set X0 (further methods to avoid the viability assumption on X will
be discussed in Sects. 8.1–8.3).

From the unconstrained scheme we inherit the advantage that no terminal cost
satisfying Assumption 5.9(ii) needs to be constructed. On the other hand, we need
to ensure that the assumptions of one of the mentioned stability results from Chap. 6
hold whose rigorous verification may be involved, cf. also Sect. 6.6. For a more com-
prehensive discussion on advantages and disadvantages of different NMPC schemes
we refer to Sect. 8.4.

Another way of imposing terminal constraints without terminal costs which can
be found in the literature is via so-called contractive constraints. Here the termi-
nal constraint set depends on the initial value x0 of the optimal control problem
(OCPN,e) via

X0 = {
x ∈ X

∣∣ |x|x∗ ≤ γ |x0|x∗
}

for some constant γ ∈ (0,1); see, e.g., the book of Alamir [1] or the works of de
Oliveira Kothare and Morari [28] and De Nicolao, Magni and Scattolini [5]. How-
ever, for these constraints stability is only guaranteed if either the whole optimal
control sequence (as opposed to only the first element) is applied or if the optimiza-
tion horizon is treated as an optimization variable and the contractivity condition is
incorporated into the optimization objective [1, Chap. 4]. Since these approaches do
not conform with the MPC paradigm used throughout this book, we do not discuss
their analysis in detail.

Schemes with terminal cost F but without terminal constraint X0 have been in-
vestigated in several places in the literature, for instance in Grimm, Messina, Tuna
and Teel [13] and Jadbabaie and Hauser [22] (for more information on these ref-
erences see also the discussions at the end of Sect. 6.1 and in Sect. 6.9). In both
references stability results for such schemes are derived in which only positive defi-
niteness of F is assumed. Roughly speaking, these references show that the addition
of F does not destroy stability. While the authors emphasize the potential positive
effects of adding such costs, they do not rigorously analyze these positive effects.
In contrast to this, in the work of Parisini and Zoppoli [30] the specific properties of
the terminal cost described in Remark 5.15 were exploited in order to show stability.
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The proof in [30] uses that under suitable conditions and for sufficiently large opti-
mization horizon N for all initial values from a given region the open-loop optimal
trajectories end up in the terminal constraint set without actually imposing this as a
condition. The same proof idea has been generalized later by Limón, Alamo, Salas
and Camacho [24] for a more general terminal cost.

Here we outline an approach from Grüne and Rantzer [17] which we combine
with the analysis technique from Chap. 6. This approach rigorously shows the pos-
itive effect of adding a terminal cost also in the absence of stabilizing terminal con-
straints. In contrast to [30] or [24] the stability property is not restricted to sets of
initial values for which the open-loop optimal trajectories end up in a terminal con-
straint set. However, the fact that this happens for a set of initial values around the
origin will be used in our proof. We start from a terminal cost function F satisfy-
ing Assumption 5.9(ii) with a forward invariant neighborhood X0 of x∗, however,
we will not use X0 as a terminal constraint set. Instead, we assume that F ≡ c > 0
holds on the boundary ∂X0 with c ≥ supx∈X0

F(x). This is, for instance, satisfied if
F is constructed from a linearization via linear–quadratic techniques according to
Remark 5.15 and X0 is a sublevel set of F . Then we may extend F continuously to
the whole set X by setting F(x) := c for all x ∈ X \ X0.

With this setting we obtain the following theorem.

Theorem 7.1 Let the assumptions of Theorem 6.33 be satisfied for the NMPC Algo-
rithm 3.1 without terminal cost. Let F : X → R

+
0 and assume that Assumption 5.9

holds for some set X0 containing a ball Bη(x∗) for some η > 0. Assume, further-
more, that F ≡ c holds outside X0 with c ≥ supx∈X0

F(x) and that F(x) ≤ α̃2(|x|x∗)
holds for all x ∈ X0 and some α̃2 ∈ K∞. Consider the NMPC Algorithm 3.10 with
(OCPN,e) = (5.15) for this F but without terminal constraints, i.e., with X0 = X

in (5.15).
Then the nominal NMPC closed-loop system (3.5) with NMPC feedback law μN

is semiglobally asymptotically stable on X with respect to the parameter N in the
sense of Definition 6.28(i).

Proof We consider the following three optimal control problems

(a) (5.15) with X0 = X, which generates μN in this theorem
(b) (5.15) with X0 from Assumption 5.9 for F , which generates μN in Theorem 5.5
(c) (OCPN), which generates μN in Theorem 6.18

and denote the respective optimal value functions by V
(a)
N , V

(b)
N and V

(c)
N . For each

x ∈ X we obtain the inequalities V
(c)
N (x) ≤ V

(a)
N (x) ≤ V

(c)
N (x) + c and, for x ∈ XN

(where XN denotes the feasible set from Definition 3.9 for Problem (b)), we have
V

(a)
N (x) ≤ V

(b)
N (x).

In order to show semiglobal asymptotic stability, i.e., Definition 6.28(i), we fix
� > 0. For an arbitrary x ∈ X we consider the optimal control u� for Problem (a)
(which implies μN(x) = u�(0) for μN from this theorem) and distinguish two cases:
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(i) xu�(N,x) ∈ X0: This implies u� ∈ U
N
X0

(x) and hence x ∈ XN and V
(a)
N (x) =

V
(b)
N (x). Using xu�(1, x) = f (x,μN(x)) ∈ XN and V

(a)
N ≤ V

(b)
N on XN , the proof

of Theorem 5.5 yields

V
(a)
N (x) = V

(b)
N (x) ≥ �

(
x,μN(x)

) + V
(b)
N

(
f

(
x,μN(x)

))

≥ �
(
x,μN(x)

) + V
(a)
N

(
f

(
x,μN(x)

))
. (7.1)

This inequality will be used below in order to conclude asymptotic stability. Before
we turn to case (ii) we show that case (i) applies to all points x ∈ Bδ(x∗) for some
δ > 0:

Since (5.20) shows V
(b)
N (x) ≤ F(x) on X0, we obtain V

(a)
N (x) ≤ V

(b)
N (x) ≤

α̃2(|x|x∗) for x ∈ Bη(x∗) ⊆ X0. For δ = min{η, α̃−1
2 (c/2)} this implies V

(a)
N (x) ≤

c/2 for all x ∈ Bδ(x∗). On the other hand, xu�(N,x) /∈ X0 implies F(xu�(N,x)) = c

and thus V
(a)
N (x) ≥ c. Hence, case (i) occurs for all x ∈ Bδ(x∗).

(ii) xu�(N,x) /∈ X0: This implies F(xu�(N,x)) = c and thus V
(a)
N (x) = V

(c)
N (x)+

c. This implies that u� is an optimal control for V
(c)
N (x) and from the proof of The-

orem 6.33 we obtain that (5.1), i.e.,

V
(c)
N (x) ≥ α�

(
x,μN(x)

) + V
(c)
N

(
f

(
x,μN(x)

))

holds for all x ∈ Y = S \ P with S and P chosen as in the proof of Theorem 6.33.
The sets S and P are forward invariant and by choosing N ∈ N sufficiently large
we obtain α > 0, B�(x∗) ⊆ S and P ⊂ Bδ(x∗) for � fixed above and δ defined
at the end of case (i). Since V

(a)
N (x) = V

(c)
N (x) + c and V

(a)
N (f (x,μN(x))) ≤

V
(c)
N (f (x,μN(x))) + c we obtain

V
(a)
N (x) ≥ α�

(
x,μN(x)

) + V
(a)
N

(
f

(
x,μN(x)

))
(7.2)

for all y ∈ Y and some α > 0.
Now, the choice of N and P implies that for x ∈ S \ Bδ(x∗) Inequality (7.2)

holds while for x ∈ Bδ(x∗) Inequality (7.1) holds. This implies that Theorem 4.14
is applicable with S(n) = S which yields semiglobal practical stability using
Lemma 6.29(i). �

Comparing Theorem 7.1 with Theorem 6.33, one sees that the benefit of includ-
ing the terminal cost F is that here we obtain semiglobal asymptotic stability while
without F we can only guarantee semiglobal practical asymptotic stability. Loosely
speaking, the unconstrained scheme guarantees stability up to the neighborhood
Bδ(x∗), while F ensures asymptotic stability inside this neighborhood.

7.2 Unconstrained NMPC with Terminal Weights

Our next extension analyzes the effect of inclusion of terminal weights in (OCPN),
i.e., in NMPC schemes without stabilizing terminal constraints and costs. Both in
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numerical simulations and in practice one can observe that adding terminal weights
can improve the stability behavior of the NMPC closed loop. Formally, adding ter-
minal weights can be achieved by replacing the optimization criterion in (OCPN)
by

JN

(
x0, u(·)) :=

N−2∑

k=0

�
(
xu(k, x0), u(k)

) + ω�
(
xu(N − 1, x0), u(N − 1)

)
(7.3)

for some ω ≥ 1. For ω = 1 we thus obtain the original problem (OCPN). This exten-
sion is a special case of (OCPN,e) in which we specify X0 = X, F ≡ 0, ω1 = ω and
ω2 = ω3 = · · · = ωN = 1. In a similar way, such a terminal weight can be added to
the respective time variant problem (OCPn

N) leading to a special case of (OCPn
N,e).

Thus, all results developed in Chap. 3 apply to this problem. Given that the optimal
control value u(N − 1) in (7.3) will minimize �(xu(N − 1, x0), u(N − 1)), this ap-
proach is identical to choosing F(x) = ω�∗(x) and N = N − 1 in the terminal cost
approach discussed in the previous section, with �∗ from (6.2). However, the spe-
cific structure of the terminal cost allows for applying different and more powerful
analysis techniques which we explain now.

The terminal weight leads to an increased penalization of �(xu(N −1, x0), u(N −
1)) in JN and thus to an increased penalization of the distance of xu(N − 1, x0) to
x∗. Thus, for ω > 1 the optimizer selects a finite time optimal trajectory whose
terminal state xu�(N − 1, x0) has a smaller distance to x∗. Since our goal is that the
NMPC-feedback law μN steers the trajectory to x∗, this would intuitively explain
better stability behavior.

Formally, however, the analysis is not that easy because in closed loop we never
actually apply u�(1), . . . , u�(N −1) and the effect of ω on u�(0) is not that obvious.
Hence, we extend the technique developed in Chap. 6 in order to analyze the effect
of ω. To this end, we change the definition (6.8) of BN to

BN(r) :=
N−2∑

n=0

β(r, n) + ωβ(r,N − 1).

With this definition, all results in Sect. 6.3 remain valid for the extended problem.
Proposition 6.12 remains valid, too, if we change (6.11) to

N−2∑

n=k

λn + ωλN−1 ≤ BN−k(λk), k = 0, . . . ,N − 2.

If, furthermore, in the subsequent statements we replace
∑N−1

n=0 λn by
∑N−2

n=0 λn +
ωλN−1, then it can be shown that Proposition 6.17 remains valid if we replace (6.19)
by

αω
N := 1 − (γN − 1)(γ2 − ω)

∏N
i=3(γi − 1)

∏N
i=2 γi − (γ2 − ω)

∏N
i=3(γi − 1)

. (7.4)

The proof is similar to the proof of Proposition 6.17 and can be found in Grüne,
Pannek, Seehafer and Worthmann [20].
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Fig. 7.1 Suboptimality index
α depending on terminal
weight ω

With this expression, Theorem 6.18 and its corollaries remain valid, except for
the inequalities VN(x)/α ≤ V∞(x)/α and CVN(x) ≤ CV∞(x), which do in general
no longer hold because of the additional weight which is present in VN but not
in V∞.

Figure 7.1 shows the values from (7.4) for an exponential β of type (6.3)
with C = 2 and σ = 0.55, optimization horizon N = 5 and terminal weights
ω = 1,2, . . . ,20. The figure illustrates that our analysis reflects the positive effect
the terminal weight has on the stability: while for ω = 1,2 we obtain negative val-
ues for α and thus stability cannot be ensured, for ω ≥ 3 stability is guaranteed.
However, one also sees that for ω ≥ 10 the value of α is decreasing, again. For more
examples for the effect of terminal weights we refer to [20] and Example 7.14, be-
low.

7.3 Nonpositive Definite Running Cost

In many regulator problems one is not interested in driving the whole state to a
reference trajectory or point. Rather, often one is only interested in certain output
quantities. The following example illustrates such a situation.

Example 7.2 We reconsider Example 2.2, i.e.,
(

x+
1

x+
2

)
=

(
x1 + x2 + u/2

x2 + u

)
=: f (x,u)

with running cost

�(x,u) = x2
1 + u2.

In contrast to our standing assumption (3.2), no matter how we choose x∗ ∈ R
2, this

function does not satisfy �(x,u) > 0 for all x ∈ X and u ∈ U with x �= x∗. Instead,
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Fig. 7.2 MPC closed-loop
trajectory with N = 5

following the interpretation of x1 and x2 as position and velocity of a vehicle in a
plane, the running cost only penalizes the distance of the position x1 from 0 but not
the velocity.

However, the only way to put the system at rest with x1 = 0 is to set x2 = 0.
Hence, one may expect that the NMPC controller will “automatically” steer x2 to
0, too. The numerical simulation shown in Fig. 7.2 (performed with optimization
horizon N = 5 without stabilizing terminal constraints and with state constraints
X = [−1,1]2 and control constraints U = [−1/4,1/4]) confirms that this is exactly
what happens: the system is perfectly stabilized at x∗ = 0 even though the running
cost does not “tell” the optimization problem to steer x2 to 0.

How can this behavior be explained theoretically? The decisive difference of �

from this example to � used in the theorems in the previous chapters is that the
lower bound �(x,u) ≥ α3(|x|x∗) imposed in all our results is no longer valid. In
other words, the running cost is no longer positive definite.

For NMPC schemes with stabilizing terminal constraints and costs satisfying
Assumption 5.9, the notion of input/output-to-state stability (IOSS) provides a way
to deal with this setting. IOSS can be seen as a nonlinear detectability condition
which ensures that the state converges to x∗ if both the output and the input converge
to their steady state values, which can in turn be guaranteed by suitable bounds on �.
We sketch this approach for time invariant reference xref ≡ x∗ with corresponding
control value u∗ satisfying f (x∗, u∗) = x∗.

To this end, we relax the assumptions of Theorem 5.13 as follows: instead of
assuming (5.2) we consider an output function h : X → Y for another metric space
Y . In Example 7.2 we have X = R

2, Y = R and h(x) = x1.
Now we change (5.2) to

α1
(∣∣h(x)

∣∣
y∗

) ≤ VN(x) ≤ α2
(|x|x∗

)
and

�(x,u) ≥ α3
(∣∣h(x)

∣
∣
y∗

) + α3
(|u|u∗

) (7.5)
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with y∗ = h(x∗) and |h(x)|y∗ = dY (h(x), y∗), where dY (·,·) is the metric on Y . Fur-
thermore, we assume that the system with output y = h(x) is IOSS in the following
sense: There exist β ∈ K L and γ1, γ2 ∈ K∞ such that for each x ∈ X and each
admissible control u ∈ U

∞(x) the inequality
∣∣xu(n, x)

∣∣
x∗ ≤ max

{
β
(|x|x∗, n

)
, γ1

(
max

k=0,...,n−1

∣∣u(k)
∣∣
u∗

)
,

γ2

(
max

k=0,...,n−1

∣∣y(k)
∣∣
y∗

)}

holds for all n ∈ N0 with y(k) = h(xu(k, x)).
With these changed assumptions, the assertion of Theorem 5.13 remains valid.

The proof relies on the fact that the function VN still satisfies

VN(x) ≥ �
(
x,μN(x)

) + VN

(
f

(
x,μN(x)

))
.

This implies that VN(xμN
(n, x)) is monotone decreasing in n and since it is bounded

from below by 0 it converges to some value as n → ∞, although not neces-
sarily to 0. However, the convergence of VN(xμN

(n, x)) implies convergence of
�(xμN

(n, x),μN(xμN
(n, x))) → 0 which by means of the last inequality in (7.5)

yields h(xμN
(n, x)) → 0 and μN(xμN

(n, x)) → 0. Now the IOSS property can be
used to conclude asymptotic stability of the closed loop. For more details of this
approach, we refer to the book of Rawlings and Mayne [31, Sect. 2.7 and the refer-
ences therein].

While the approach just sketched relies on stabilizing terminal constraints, the
simulation in Example 7.2 shows that asymptotic stability can also be expected
without such constraints. For this setting, a stability proof was given in the work of
Grimm, Messina, Tuna and Teel [13] and the main result in this reference extends
Theorem 6.33. Again, a detectability condition is used, but this time it is formu-
lated via a suitable auxiliary function W : we assume the existence of a function
W : X → R

+
0 which satisfies the inequalities

W(x) ≤ αW

(|x|x∗
)
,

W
(
f (x,u)

) − W(x) ≤ −αW

(|x|x∗
) + γW

(
�(x,u)

) (7.6)

for all x ∈ X, u ∈ U(x) and suitable functions αW ,αW ,γW ∈ K∞. In turn, we
remove the lower bound α3(|x|x∗) ≤ �∗(x) for �∗ from (6.2) from the assumptions
of Theorem 6.33. Observe that whenever this lower bound holds, the detectability
condition is trivially satisfied with W ≡ 0, γW (r) = r and αW = α3.

Under these modified assumptions, it is shown in [13, Theorem 1] that the
semiglobal practical stability assertion of Theorem 6.33 remains valid. Furthermore,
[13, Corollary 2 and Corollary 3] provide counterparts to Theorems 6.31 and 6.21
which prove semiglobal and “real” asymptotic stability, respectively. In contrast to
the IOSS-based result for stabilizing terminal constraints, the proof of [13, Theo-
rem 1] yields a Lyapunov function constructed from the optimal value function VN

and the function W from the detectability condition. In the simplest case, which oc-
curs under suitable bounds on the involved K∞-functions, this Lyapunov function
is given by VN + W . In general, a weighted sum has to be used.
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In Example 7.2, numerical evaluation suggests that the detectability condition is
satisfied for W(x) = max{−|x1x2|+x2

2 ,0}/2 and γW (r) = r . Plots of the difference
W(x) − W(f (x,u)) + �(x,u) in MAPLE indicate that this expression is positive
definite and can hence be bounded from below by some function αW (|x|x∗); a rig-
orous proof of this property is, however, missing up to now.

As discussed in Sect. 6.9, the analysis in [13] uses a condition of the form
VN(x) ≤ αV (r) in order to show stability, which compared to our Assumptions 6.4
or 6.30 has the drawback to yield fewer information for the design of “good” run-
ning costs �. Furthermore, suboptimality estimates are not easily available. It would
hence be desirable to extend the statement and proof of Theorem 6.18 to the case
of nonpositive definite running costs. A first attempt in this direction is the follow-
ing: suppose that we are able to find a function W : X → R

+
0 satisfying (7.6) with

γW (r) = r . Then the function

�W (x,u) := W(x) − W
(
f (x,u)

) + �(x,u)

satisfies a lower bound of the form

�∗
W (x) := min

u∈U
�W (x,u) ≥ αW

(|x|x∗
)

for all x ∈ X. Let u� be an optimal control for VN(x), i.e.,

VN(x) = JN

(
x,u�

) =
N−1∑

k=0

�
(
xu�(k, x), u�(k)

)

and define

ṼN (x) :=
N−1∑

k=0

�W

(
xu�(k, x), u�(k)

)
.

The definition of �W then implies

ṼN (x) = W(x) − W
(
xu�(N,x)

) + VN(x).

Changing the inequality in Assumption 6.30 to

Vk(x) ≤ Bk

(
�∗
W (x)

) − W(x)

then implies

Ṽk(x) ≤ Bk

(
�∗
W(x)

)
.

Using this inequality, it should be possible to carry over all results in Sect. 6.3 to ṼN

using �W in place of �. A rigorous investigation of this approach as well as possible
extensions will be the topic of future research.

In this context we would like to emphasize once again that even if the running
cost � only depends on an output y, the resulting NMPC-feedback law is still a state
feedback law because the full state information is needed in order to compute the
prediction xu(·, x0) for x0 = x(n).
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7.4 Multistep NMPC-Feedback Laws

Next we investigate what happens if instead of only the first control value u�(0) we
implement the first m values u�(0), . . . , u�(m − 1) before optimizing again. For-
mally, we can write this NMPC variant as a multistep feedback law

μN(x, k) := u�(k), k = 0, . . . ,m − 1,

where u� is an optimal control sequence for problem (OCPN,e) (or one of its vari-
ants) with initial value x0 = x. The resulting generalized closed-loop system then
reads

x(n + 1) = f
(
x(n),μN

(
x
([n]m

)
, n − [n]m

))
, (7.7)

where [n]m denotes the largest product km, k ∈ N0, with km ≤ n. The value m ∈
{1, . . . ,N − 1} is called the control horizon.

When using stabilizing terminal constraints, the respective stability proofs from
Chap. 5 are easily extended to this setting which we illustrate for Theorem 5.13.
Indeed, from VN(x) ≤ VN−1(x) one immediately gets the inequality VN(x) ≤
VN−m(x) for each m ∈ {1, . . . ,N − 1} and each x ∈ XN−m. Proceeding as in the
proof of Theorem 5.13 using Equality (3.20) inductively for N,N − 1, . . . ,N −
m + 1 and VN(x) ≤ VN−m(x) one obtains

VN(x) ≥
m−1∑

k=0

�
(
xμN

(k, x),μN(k, x)
) + VN

(
xμN

(m,x)
)
.

This shows that VN is a Lyapunov function for the closed-loop system at the times
0,m,2m, . . . . Since a similar argument shows that VN(xμN

(k, x)) is bounded by
VN(x) for k = 1, . . . ,m − 1, this proves asymptotic stability of the closed loop.

Without stabilizing terminal constraints, our analysis can be adjusted to the mul-
tistep setting, too, by extending Proposition 6.17 as well as the subsequent stability
results, accordingly. The respective extension of Formulas (6.19) and (7.4) (includ-
ing both control horizons m ≥ 1 and terminal weights ω ≥ 1) is given by

αω
N,m = 1 − (γm+1−ω)

∏N
i=m+2(γi−1)

∏N
i=N−m+1(γi−1)

(
∏N

i=m+1 γi−(γm+1−ω)
∏N

i=m+2(γi−1))(
∏N

i=N−m+1 γi−∏N
i=N−m+1(γi−1))

.

Again, the proof proceeds along the lines of the proof of Proposition 6.17 but be-
comes considerably more involved, cf. the paper by Grüne, Pannek, Seehafer and
Worthmann [20].

It is worth noting that these extended stability and performance results remain
valid if m is time varying, i.e., if the control horizon is changed dynamically, e.g.,
by a network induced perturbation. This has interesting applications in NMPC for
networked control systems, cf. the work of Grüne, Pannek and Worthmann [18].

Figure 7.3 shows how α = αω
N,m depends on m for an exponential β of type

(6.3) with C = 2 and σ = 0.75, optimization horizon N = 11, terminal weight ω =
1 and control horizons m = 1, . . . ,10. Here one observes two facts: first, the α-
values are symmetric, i.e., αω

N,m = αω
N,N−m and second, the values increase until

m = (N − 1)/2 and then decrease, again. This is not a particular feature of this
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Fig. 7.3 Suboptimality index
α depending on control
horizon m

Fig. 7.4 Numerically
measured values for α for a
linear inverted pendulum and
various initial values. The
thick line represents the
minimum

example. In fact, it can be rigorously proved for a general class of β ∈ K L0; see
[20] for details.

It is interesting to compare Fig. 7.3 with α-values which have been obtained
numerically from an NMPC simulation for the linear inverted pendulum, cf. Exam-
ple 2.10 and Sect. A.2 or [18] for the precise description of the problem. Figure 7.4
shows the resulting values for a set of different initial values. These values have
been computed by Algorithm 7.8 described in Sect. 7.7, below.

While the monotonicity is—at least approximately—visible in this example, the
perfect symmetry from Fig. 7.3 is not reflected in Fig. 7.4. A qualitatively similar
behavior can be observed for the nonlinear inverted pendulum; see Example 7.14,
below. In fact, so far we have not been able to find an example for which the symme-
try could be observed in simulations. This may be due to the fact that our stability
estimate is tight not for a single system but rather for the whole class of systems
satisfying Assumption 6.4, cf. Theorem 6.23. Our numerical findings suggest that
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the conservativity induced by this “worst case approach” is higher for small m than
for large m. This is also supported by Monte Carlo simulations performed by Grüne
in [14].

7.5 Fast Sampling

Let us now turn to the special case of sampled data systems. In this case, according
to (2.12) the discrete time solution xu(n, x0) represents the continuous time solution
ϕ(t,0, x0, v) at sampling times t = nT . In this setting, it is natural to define the
optimization horizon not in terms of the discrete time variable n but in terms of the
continuous time t . Fixing an optimization horizon Topt > 0 and picking a sampling
period T > 0 where we assume for simplicity of exposition that Topt is an integer
multiple of T , the discrete time optimization horizon becomes N = Topt/T , cf. also
Sect. 3.5.

Having introduced this notation, an interesting question is what happens to sta-
bility and performance of the NMPC closed loop if we keep Topt fixed but vary the
sampling period T . In particular, it is interesting to see what happens if we sample
faster and faster, i.e., if we let T → 0. Clearly, in a practical NMPC implementation
we cannot arbitrarily reduce T because we need some time for solving the optimal
control problem (OCPN) or its variants online. Still, in particular in the case of zero
order hold it is often desirable to sample as fast as possible in order to approximate
the ideal continuous time control signal as good as possible, cf., e.g., the paper of
Nešić and Teel [26], and thus one would like to make sure that this does not have
negative effects on the stability and performance of the closed loop.

In the case of equilibrium endpoint constraint from Sect. 5.2 it is immediately
clear that the stability result itself does not depend on T , however, the feasible set
XN may change with T . In the case of zero order hold, i.e., when the continuous
time control function ν is constant on each sampling interval [nT , (n + 1)T ), cf.
the discussion after Theorem 2.7, it is easily seen that each trajectory for sampling
period T is also a trajectory for each sampling period T/k for each k ∈ N. Hence,
the feasible set XkN for sampling period T/k always contains the feasible set XN

for sampling period T , i.e., the feasible set cannot shrink for k → ∞ and hence for
sampling period T/k we obtain at least the same stability properties as for sampling
period T .

In the case of Lyapunov function terminal costs F as discussed in Sect. 5.3 either
the terminal costs or the running costs need to be adjusted to the sampling period
T in order to ensure that Assumption 5.9 remains valid. One way to achieve this
is to choose a running cost in integral form (3.4) and the terminal cost F such
that the following condition holds: for each x ∈ X0 and some T0 > 0 there exists a
continuous time control v satisfying ϕ(t,0, x, v) ∈ X0 and

V
(
ϕ(t,0, x, v)

) − V (x) ≤ −
∫ t

0
L

(
ϕ(τ,0, x, v), v(τ )

)
dτ (7.8)
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for all t ∈ [0, T ], cf. also Findeisen [9, Sect. 4.4.2]. Under this condition one easily
checks that Assumption 5.9 holds for � from (3.4) and all T ≤ T0, provided the
control function v in (7.8) is of the form v|[nT ,(n+1)T )(t) = u(n)(t) for an admissible
discrete time control sequence u(·) with u(n) ∈ U . If U = L∞([0, T ],R

m) then this
last condition is not a restriction but if we use some smaller space for U (as in the
case of zero order hold, cf. the discussion after Theorem 2.7), then this may be more
difficult to achieve; see also [9, Remark 4.7].

Since the schemes from Chap. 6 do not use stabilizing terminal constraints X0
and terminal costs F , the difficulties just discussed vanish. However, the price to
pay for this simplification is that the analysis of the effect of small sampling periods
which we present in the remainder of this section is somewhat more complicated.

Fixing Topt and letting T → 0 we obtain that N = Topt/T → ∞. Looking at
Theorem 6.21, this is obviously a good feature, because this theorem states that the
larger N becomes, the better the performance will be. However, we cannot directly
apply this theorem because we have to take into account that β in the Controllability
Assumption 6.4 will also depend on T .

In order to facilitate the analysis, let us assume that in our discrete time NMPC
formulation we use a running cost � that only takes the states ϕ(nT ,0, x0, v) at the
sampling instants and the respective control values into account.1 For the continuous
time system, the controllability assumption can be formulated in discrete time. We
denote the set of admissible continuous time control functions (in analogy to the
discrete time notation) by V

τ (x). More precisely, for the admissible discrete time
control values U(x) ⊆ U ⊆ L∞([0, T ],R

m) (recall that these “values” are actually
functions on [0, T ], cf. the discussion after Theorem 2.7) and any τ > 0 we define

V
τ (x) := {

v ∈ L∞([0, τ ],R
m
) ∣∣ there exists u ∈ U

N(x) with N ≥ τ/T + 1

such that u(n) = v|[nT ,(n+1)T ](· + nT )

holds for all n ∈ N0 with nT < τ
}
.

Then, the respective assumption reads as follows.

Assumption 7.3 We assume that the continuous time system is asymptotically con-
trollable with respect to � with rate β ∈ K L0, i.e., for each x ∈ X and each τ > 0
there exists an admissible control function vx ∈ V

τ (x) satisfying

�
(
ϕ(t,0, x, vx), vx(t)

) ≤ β
(
�∗(x), t

)

for all t ∈ [0, τ ].

For the discrete time system (2.8) satisfying (2.12) the Controllability Assump-
tion 7.3 translates to the discrete time Assumption 6.4 as

�
(
xux (n, x),ux(n)

) ≤ β
(
�∗(x), nT

)
.

1Integral costs (3.4) can be treated, too, but this is somewhat more technical, cf. Grüne, von Lossow,
Pannek and Worthmann [21, Sect. 4.2].
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Fig. 7.5 Suboptimality index
α from (6.19) for fixed Topt
and varying sampling
period T

In the special case of exponential controllability, β in Assumption 7.3 is of the form

β(r, t) = Ce−λt r (7.9)

for C ≥ 1 and λ > 0. Thus, for the discrete time system, the Controllability As-
sumption 6.4 becomes

�
(
xux

(n, x),ux(n)
) ≤ Ce−λnT �∗(x) = C

(
e−λT

)n
�∗(x)

and we obtain a K L0-function of type (6.3) with C from (7.9) and σ = e−λT .
Summarizing, if we change the sampling period T , then not only the discrete time

optimization horizon N but also the decay rate σ in the exponential controllability
property will change, more precisely we have σ → 1 as T → 0. When evaluating
(6.19) with the resulting values

γk =
k−1∑

j=0

Ce−λjT ,

it turns out that the convergence σ → 1 counteracts the positive effect of the growing
optimization horizons N → ∞. In fact, the negative effect of σ → 1 is so strong
that α diverges to −∞ as T → 0. Figure 7.5 illustrates this fact (which can also be
proven rigorously, cf. [21]) for C = 2, λ = 1 and Topt = 5.

This means that whenever we choose the sampling period T > 0 too small, then
performance may deteriorate and eventually instability may occur. This predicted
behavior is not consistent with observations in numerical examples. How can this
be explained?

The answer lies in the fact that our stability and performance estimate is only tight
for one particular system in the class of systems satisfying Assumption 6.4, cf. The-
orem 6.23 and the discussion preceding this theorem, and not for the whole class.
In particular, the subclass of sampled data systems satisfying Assumption 6.4 may
well behave better than general systems. Thus, we may try to identify the decisive
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Fig. 7.6 α for fixed Topt and varying sampling period T without Assumption 7.4 (lower graphs)
and with Assumption 7.4 (upper graphs) with L = 2 (left) and L = 10 (right)

property which makes sampled data systems behave better and try to incorporate
this property into our computation of α.

To this end, note that so far we have not imposed any continuity properties of f

in (2.1). Sampled data systems, however, are governed by differential equations (2.6)
for which we have assumed Lipschitz continuity in Assumption 2.4. Let us assume
for simplicity of exposition that the Lipschitz constant in this assumption is inde-
pendent of r . Then, for a large class of running costs � the following property for
the continuous time system can be concluded from Gronwall’s Lemma; see [21] for
details.

Assumption 7.4 There exists a constant L > 0 such that for each x ∈ X and each
τ > 0 there exists an admissible control function vx ∈ V

τ (x) satisfying

�
(
ϕ(t,0, x, vx), vx(t)

) ≤ eLt�∗(x)

for all t ∈ [0, τ ].

The estimates on � induced by this assumption can now be incorporated into the
analysis in Chap. 6. As a result, the values γk in Formula (6.19) change to

γk = min

{
k−1∑

j=0

Ce−λjT ,

k−1∑

j=0

eLjT

}

.

The effect of this change is clearly visible in Fig. 7.6. The α-values from (6.19) no
longer diverge to −∞ but rather converge to a finite—and for the chosen parameters
also positive—value as T → 0. Again, this convergence behavior can be rigorously
proved; for details we refer to [21].
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Fig. 7.7 Scheme of the NMPC closed-loop components

7.6 Compensation of Computation Times

Throughout the previous chapters we assumed that the solution of the optimal con-
trol problems (OCPN,e) and its variants in Step (2) of Algorithms 3.1, 3.7, 3.10
and 3.11 can be obtained instantaneously, i.e., with negligible computation time.
Clearly, this is not possible in general, as the algorithms for solving such problems,
cf. Chap. 10 for details, need some time to compute a solution. If this time is large
compared to the sampling period T , the computational delay caused by Step (2) is
not negligible and needs to be considered. One way for handling these delays would
be to interpret them as perturbations and use techniques similar to the robustness
analysis in Sects. 8.5–8.9. In this section we pursue another idea in which a delay
compensation mechanism is added to the NMPC scheme.

Taking a look at the structure of the NMPC algorithm from Chap. 3, we see that
Steps (1)–(3) correspond to different physical tasks: measuring, computing and ap-
plying the control. These tasks are operated by individual components as shown
schematically in Fig. 7.7. Note that in the following actuator, sensor and controller
are not required to be physically decomposed, however, this case is also not ex-
cluded.

While it is a necessity to consider different clocks in a decomposed setting, it
may not be the case if the components are physically connected. Here, we assume
that every single component possesses its own clock and, for simplicity of expo-
sition, that these clocks are synchronized (see the work of Varutti and Findeisen
[34, Sect. III.C] for a possible way to relax this assumption). To indicate that a time
instant n is considered with respect to a certain clock, we indicate this by adding
indices s for the sensor, c for the NMPC controller and a for the actuator.

The idea behind the compensation approach is to run the NMPC controller com-
ponent with a predefined time offset. This offset causes the controller to compute a
control ahead of time, such that the computed control value is readily available at
the time it is supposed to be applied, cf. Fig. 7.8. In this figure, τc denotes the actual
computational delay and τmax

c denotes the predefined offset. In order to be operable,
this offset needs to be chosen such that it is larger than the maximal computing time
required to solve the optimal control problem in Step (2) of the considered NMPC
algorithm. At time nc this optimal control problem is solved with a prediction x̃(na)

of the initial value x(na) based on the available measurement x(nc) = x(ns). This
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Fig. 7.8 Operation of time
decoupled NMPC scheme

Fig. 7.9 Scheme of the time decoupled NMPC closed-loop components

prediction is performed using the same model which is used for the NMPC predic-
tion in (OCPN,e) or its variants, i.e., using (2.1).

In order to perform this prediction, the control values μN(n,x(n)), n ∈
{ns, . . . , na} which are to be applied at the plant during the time interval [ns, na]
and which have been computed before by the NMPC controller are needed and are
therefore buffered. Thus, we extend the scheme given in Fig. 7.7 by adding the re-
quired predictor to the controller. The structure of the resulting scheme is shown in
Fig. 7.9.

Observe that in this scheme we buffer the control values twice: within the predic-
tor, but also at the actuator since the computation of μ(na, x(na)) will be finished
ahead of time if τc < τmax

c , which is the typical case. Alternatively, one could use
only one buffer at the controller and send each control value “just in time”. Using
two buffers has the advantage that further delays induced, e.g., by network delays
between the controller and the actuator can be compensated; see also the discussion
at the end of this section.

The corresponding algorithm has the following form. Since all NMPC algorithms
stated in Chap. 3 can be modified in a similar manner, we only show the algorithm
for the most general form given in Algorithm 3.11:

Algorithm 7.5 (Time decoupled NMPC algorithm for time varying reference) At
each sampling time tn, n = 0,1,2, . . .:

(1) Measure the state x(ns) := x(n) ∈ X of the system and send pair (ns, x(ns))

to controller.
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(2a) Delete pair (nc − 1,μN(nc − 1, x(nc − 1))) from buffer Bc and compute the
predicted state x̃(nc + τmax

c ) from the measured state x(nc).
(2b) Set ñ := nc + τmax

c , x0 = x̃(ñ) and solve the optimal control problem

minimize JN

(
ñ, x0, u(·)) :=

N−1∑

k=0

ωN−k�
(
ñ+k, xu(k, x0), u(k)

)

+ F
(
ñ + N,xu(N,x0)

)

with respect to u(·) ∈ U
N
X0

(ñ, x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(OCPn
N,e)

and denote the obtained optimal control sequence by u�(·) ∈ U
N
X0

(ñ, x0).
(2c) Add pair (ñ,μN(ñ, x̃(ñ))) := (ñ, u�(0)) to Buffer Bc and send it to actuator.
(3a) Delete pair (na − τmax

c − 1,μN(na − τmax
c − 1, x̃(na − τmax

c − 1))) and add
received pair (na,μN(na, x̃(na))) to buffer Ba .

(3b) Use μN(na − τmax
c , x̃(na − τmax

c )) in the next sampling period.

At a first glance, writing this algorithm using three different clocks and sending
time stamped information in Steps (1) and (2c) may be considered as overly compli-
cated, given that ns in Step (1) is always equal to nc in Step (2a) and nc in Step (2c)
always equals na in Step (3a). However, this way of writing the algorithm allows us
to easily separate the components—sensor, predictor/controller and actuator—of the
NMPC scheme and to assume that the “sending” in Steps (1) and (2c) is performed
via a digital network. Then, we can assign Step (1) to the sensor, Steps (2a)–(2c) to
the controller and Steps (3a) and (3b) to the actuator. Assuming that all transmis-
sions between the components can be done with negligible delay, we can run these
three steps as separate algorithms in parallel. Denoting the real time by n, the re-
sulting scheduling structure is sketched in Fig. 7.10 for τmax

c = 2. For comparison,
the structure of the NMPC Algorithm 3.11 without prediction is indicated by the
dashed lines.

Since the algorithm is already applicable to work in parallel, it can be extended to
a more complex networked control context in which transmission delays and packet
loss may occur. To this end, such delays have to be considered in the prediction
and an appropriate error handling must be added for handling dropouts; see, e.g.,
the paper by Grüne, Pannek and Worthmann [19]. In the presence of transmission
delays and dropouts, we cannot expect that all control values are actually available
at the actuator when they are supposed to be applied. Using NMPC, this can be
compensated easily using the multistep feedback concept and the respective stability
results from Sect. 7.4 as presented by Grüne et al. in [18].

Besides [19], which forms the basis for the presentation in this section, model
based prediction for compensating computational delay in NMPC schemes has been
considered earlier, e.g., in the works of Chen, Ballance and O’Reilly [4] and Find-
eisen and Allgöwer [10]. Note that the use of the nominal model (2.1) for predicting
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Fig. 7.10 Comparison of scheduling structure between NMPC Algorithms 3.11 (dashed lines)
and 7.5 (solid lines) with τmax

c = 2T

future states may lead to wrong predictions in case of model uncertainties, distur-
bances etc. In this case, the predicted state x̃(ñ) may differ from the actual state
x(na) at time na = ñ and hence (OCPN,e) is solved with a wrong initial value. In
the paper of Zavala and Biegler [35] a method for correcting this mismatch based
on NLP sensitivity techniques is presented, cf. also Sect. 10.5.

7.7 Online Measurement of α

In the analysis of NMPC schemes without stabilizing terminal constraints in
Chap. 6, one of the central aims was to establish conditions to rigorously guarantee
the existence of α ∈ (0,1] such that the inequality

VN(n, x) ≥ α�
(
n,x,μN(n, x)

) + VN

(
n + 1, f

(
x,μN(n, x)

))
(5.1)

holds for all x ∈ X and n ∈ N0. While Theorem 6.14 and Proposition 6.17 provide
computational methods for estimating α from the problem data, the assumptions
needed for these computations—in particular Assumption 6.4—may be difficult to
check.

In this section we present methods from Grüne and Pannek [15] and Pannek [29]
which allow for the online computation or estimation of α along simulated NMPC
closed-loop trajectories. There are several motivations for proceeding this way. First,
as already mentioned, it may be difficult to check the assumptions needed for the
computation of α using Theorem 6.14 or Proposition 6.17. Although a simulation
based computation of α for a selection of closed-loop trajectories cannot rigorously
guarantee stability and performance for all possible closed-loop trajectories, it may
still give valuable insight into the performance of the controller. In particular, the
information obtained from such simulations may be very useful in order to tune
the controller parameters, in particular the optimization horizon N and the running
cost �.

Second, requiring (5.1) to hold for all x ∈ X may result in a rather conservative
estimate for α. As we will see in Proposition 7.6, below, for assessing the perfor-
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mance of the controller along one closed-loop trajectory it is sufficient that (5.1)
holds only for those points x ∈ X which are actually visited by this trajectory.

Finally, the knowledge of α may be used for an online adaptation of the opti-
mization horizon N ; some ideas in this direction are described in the subsequent
Sect. 7.8.

Our first result shows that for assessing stability and performance of the NMPC
controller along one specific closed-loop trajectory it is sufficient to find α such that
(5.1) holds for the points actually visited by this trajectory.

Proposition 7.6 Consider the feedback law μN : N0 × X → U computed from
Algorithm 3.7 and the closed-loop trajectory x(·) = xμN

(·) of (3.9) with initial value
x(0) ∈ X at initial time 0. If the optimal value function VN : N0 × X → R

+
0 satisfies

VN

(
n,x(n)

) ≥ VN

(
n + 1, x(n + 1)

) + α�
(
n,x(n),μN

(
n,x(n)

))
(7.10)

for some α ∈ (0,1] and all n ∈ N0, then

αV∞
(
n,x(n)

) ≤ αJ∞
(
n,x(n),μN

) ≤ VN

(
n,x(n)

) ≤ V∞
(
n,x(n)

)
(7.11)

holds for all n ∈ N0.
If, in addition, there exist α1, α2, α3 ∈ K∞ such that (5.2) holds for all (n, x) ∈

N0 × X with n ∈ N0 and x = x(n), then there exists β ∈ K L which only depends on
α1, α2, α3 and α such that the inequality

∣∣x(n)
∣∣
xref(n)

≤ β
(∣∣x(0)

∣∣
xref(0)

, n
)

holds for all n ∈ N0, i.e., x behaves like a trajectory of an asymptotically stable
system.

Proof The proof of (7.11) is similar to the proof of Theorem 4.11.
The existence of β follows with the same construction as in the proof of Theo-

rem 2.19, observing that the definition of β in this proof only depends on α1, α2 and
αV = αα3 and not on the specific form of V = VN . �

Proposition 7.6 gives us a way to compute α from the data available at runtime
and guarantees the performance estimate (7.11) as well as—under the additional
assumption that (5.2) holds—asymptotic stability-like behavior for the considered
closed-loop trajectory if α > 0. Moreover, under this additional assumption (7.10)
immediately implies that VN strictly decreases along the trajectory, i.e., it behaves
like a Lyapunov function.

Since the values of α for which (5.1) holds for all x ∈ X and for which (7.10)
holds along a specific trajectory xμN

will be different in general, we introduce the
following definition.

Definition 7.7

(1) We call α := max{α | (5.1) holds for all x ∈ X} the global suboptimality degree.
(2) For fixed x ∈ X the maximal value of α satisfying (5.1) for this x is called local

suboptimality degree in x.
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(3) Given a closed-loop trajectory xμN
(·) of (3.9) with initial time 0 we call

α := max{α | (7.10) holds for all n ∈ N0 with x(·) = xμN
(·)} the closed-loop

suboptimality degree along xμN
(·).

An algorithm to evaluate α from (7.10) can easily be obtained and integrated into
Algorithm 3.7:

Algorithm 7.8 (NMPC algorithm for time varying reference xref with a posteriori
suboptimality estimate) Set α = 1. At each sampling time tn, n = 0,1,2, . . . :

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 = x(n) and solve the optimal control problem

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

�
(
n+k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(OCPn
N)

and denote the obtained optimal control sequence by u�(·) ∈ U
N(x0).

(3) Define the NMPC-feedback value μN(n,x(n)) := u�(0) ∈ U and use this con-
trol value in the next sampling period.

(4) If n ≥ 1 compute α via

αl = VN(n − 1, x(n − 1)) − VN(n, x(n))

�(n − 1, x(n − 1),μN(n − 1, x(n − 1)))
,

α = min{α,αl}.

Proposition 7.6 and Algorithm 7.8 are easily extended to the multistep NMPC
case described in Sect. 7.4. In this case, (7.10) is replaced by

VN

(
n,x(n)

) ≥ VN

(
n + m + 1, x(n + m + 1)

)

+ α

m∑

k=0

�
(
n + k, xu

(
k, x(n)

)
, u�

(
k, x(n)

))

and the definition of αl in Step (4) is changed, accordingly.
Note that in Step (4) of Algorithm 7.8, the computation of αl does not provide

the value of α in (7.10) for the current time instant n but for n − 1. This is why
we call α from Algorithm 7.8 an a posteriori estimate. The distinction between
the current value of αl and α in Step (4) is required in order to be consistent with
Proposition 7.6 since αl corresponds to the local suboptimality degree in x(n − 1)

while the suboptimality degree according to Proposition 7.6 is the minimum over
all αl along the closed loop.

While Algorithm 7.8 is perfectly suited in order to evaluate the performance of
an NMPC controller via numerical simulations, its a posteriori nature is not suitable
if we want to use the estimated α in order to adjust the optimization horizon N . For
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instance, if we detect that at some time n the value of α in (7.10) is too small—or
even negative—then we may want to increase N in order to increase α (see Sect. 7.8
for more details on such procedures). However, in Algorithm 7.8 the value of α in
(7.10) only becomes available at time n + 1, which is too late in order to adjust N .

A simple remedy for this problem is to solve at time n a second optimal control
problem (OCPn

N) with initial value xu(1, x(n)) and initial time n := n+1. However,
since solving the problem (OCPn

N) is the computationally most expensive part of the
NMPC algorithm, this solution would be rather inefficient.

In order to obtain an a priori estimate with reduced additional computing costs,
a few more insights into the local NMPC problem structure are required. The main
tool we are going to use is the following lemma.

Lemma 7.9 Consider the feedback law μN : N0 × X → U computed from Algo-
rithm 3.7 and the closed-loop trajectory x(·) = xμN

(·) of (3.9) with initial value
x(0) = x0 ∈ X at initial time 0. If

VN

(
n + 1, x(n + 1)

) − VN−1
(
n + 1, x(n + 1)

)

≤ (1 − α)�
(
n,x(n),μN

(
n,x(n)

))
(7.12)

holds for some α ∈ [0,1] and some n ∈ N0, then (7.11) holds for this n.

Proof Using the dynamic programming principle (3.16) with K = 1 we obtain

VN

(
n,x(n)

) = �
(
n,x(n),μN

(
n,x(n)

)) + VN−1
(
n + 1, x(n + 1)

)

≥ �
(
n,x(n),μN

(
n,x(n)

)) + VN

(
n + 1, x(n + 1)

)

− (1 − α)�
(
n,x(n),μN

(
n,x(n)

))

= VN

(
n + 1, x(n + 1)

) + α�
(
n,x(n),μN

(
n,x(n)

))
.

Hence, (7.10) holds and Proposition 7.6 guarantees the assertion. �

Now, we would not gain much if we tried to compute α using (7.12) directly,
since we would again need the future information VN(n + 1, x(n + 1)), i.e., the
solution of another optimal control problem (in contrast to that VN−1(n + 1, x(n +
1)) is readily available at time n since by the dynamic programming principle it can
be computed from VN(n, x(n)) and �(x(n),μN(x(n)))). There is, however, a way
to reduce the size of the additional optimal control problem that needs to be solved.
To this end, we introduce the following assumption which will later be checked
numerically in our algorithm.

Assumption 7.10 For given N , N0 ∈ N, N ≥ N0 ≥ 2, there exists a constant γ > 0
such that for the optimal open-loop solution xu�(·, x(n)) of (OCPn

N) in Algorithm 3.7
the inequalities

VN0(n + N − N0, xu�(N − N0, x(n)))

γ + 1
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≤ max
j=N−N0,...,N−2

�
(
n + j, xu

(
n + j, x(n)

)
,μN−j−1

(
n + j, xu�

(
j, x(n)

)))
,

Vk(n + N − k, xu�(N − k, x(n)))

γ + 1

≤ �
(
n + N − k, xu�

(
N − k, x(n)

)
,μk

(
n + N − k, xu�

(
N − k, x(n)

)))

hold for all k ∈ {N0 + 1, . . . ,N} and all n ∈ N0.

Note that computing γ for which this assumption holds requires only the com-
putation of μj for j = 1, . . . ,N0 − 1 in the first inequality, since μk in the second
inequality can be obtained from u� via (3.23). This corresponds to solving N0 − 2
additional optimal control problems which may look like a step backward, but since
these optimal control problems are defined on a significantly smaller horizon, the
computing costs are actually reduced. In fact, in the special case that � does not
depend on u, no additional computations have to be performed, at all. In this as-
sumption, the value N0 is a design parameter which affects the computational effort
for checking Assumption 7.10 as well as the accuracy of the estimate for α obtained
from this assumption.

Under Assumption 7.10 we can relate the minimal values of two optimal control
problems with different horizon lengths.

Proposition 7.11 Suppose that Assumption 7.10 holds for N ≥ N0 ≥ 2. Then

(γ + 1)N−N0

(γ + 1)N−N0 + γ N−N0+1
VN

(
n,x(n)

) ≤ VN−1
(
n,x(n)

)

holds for all n ∈ N0.

Proof In the following we use the abbreviation xu(j) := xu(j, x(n)), j = 0, . . . ,N ,
since all our calculations use the open-loop trajectory with fixed initial value x(n).

Set ñ := N −k. Using the principle of optimality and Assumption 7.10 we obtain

Vk−1
(
n + ñ + 1, f

(
xu(ñ),μk

(
n + ñ, xu(ñ)

)))

≤ γ �
(
n + ñ, xu(ñ),μk

(
n + ñ, xu(ñ)

))
(7.13)

for all k ∈ {N0 + 1, . . . ,N} and all n ∈ N0.

We abbreviate ηk = (γ+1)k−N0

(γ+1)k−N0+γ k−N0+1 and prove the main assertion

ηkVk(n + ñ, xu(ñ)) ≤ Vk−1(n + ñ, xu(ñ)) by induction over k = N0, . . . ,N . By
choosing
xu(0) = x(n) with n being arbitrary but fixed we obtain

VN0

(
n + N − N0, xu(N − N0)

)

≤ (γ + 1) max
j=2,...,N0

�
(
n + N − j, xu(N − j),μj−1

(
n + N − j, xu(N − j)

))

≤ (γ + 1)

N0∑

j=2

�
(
n + N − j, xu(N − j),μj−1

(
n + N − j, xu(N − j)

))
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= 1

ηN0

VN0−1
(
n + N − N0, xu(N − N0)

)
.

For the induction step k → k +1 the following holds, using (7.13) and the induction
assumption:

Vk

(
n + ñ, xu(ñ)

)

= Vk−1
(
n + ñ + 1, f

(
xu(ñ),μk

(
n + ñ, xu(ñ)

)))

+ �
(
n + ñ, xu(ñ),μk

(
n + ñ, xu(ñ)

))

≥ ηk

(
1 + 1 − ηk

γ + ηk

)
Vk

(
n + ñ + 1, f

(
xu(ñ),μk

(
n + ñ, xu(ñ)

)))

+
(

1 − γ
1 − ηk

γ + ηk

)
�
(
n + ñ, xu(ñ),μk

(
n + ñ, xu(ñ)

))

= ηk

γ + 1

γ + ηk

(
Vk

(
n + ñ + 1, f

(
xu(ñ),μk

(
n + ñ, xu(ñ)

)))

+ �
(
n + ñ, xu(ñ),μk

(
n + ñ, xu(ñ)

)))

using the dynamic programming principle (3.16) with K = 1 in the last step. Hence,
we obtain Vk(n + ñ, xu(ñ)) ≥ ηk

γ+1
γ+ηk

Vk+1(n + ñ, xu(ñ)) with

ηk

γ + 1

γ + ηk

= (γ + 1)k−2

(γ + 1)k−2 + γ k−1

γ + 1

γ + (γ+1)k−2

(γ+1)k−2+γ k−1

= (γ + 1)k−1

(γ + 1)k−1 + γ k
= ηk+1.

If we choose k = N then we get ñ = 0. Inserting this into our induction result we
can use xu(0) = xu(0, x(n)) = x(n) and the assertion holds. �

Finally, we can now use Proposition 7.11 within the NMPC closed loop. This al-
lows us to verify Condition (7.12) and to estimate α directly from Assumption 7.10.

Theorem 7.12 Consider γ > 0 and N , N0 ∈ N, N ≥ N0 such that (γ + 1)N−N0 >

γ N−N0+2 holds. If Assumption 7.10 is fulfilled for these γ , N and N0, then the
estimate (7.11) holds for all n ∈ N0 where

α := (γ + 1)N−N0 − γ N−N0+2

(γ + 1)N−N0
. (7.14)

Proof From Proposition 7.11 we know

VN

(
n,x(n)

) − VN−1
(
n,x(n)

) ≤ γ N−N0+1

(γ + 1)N−N0
VN−1

(
n,x(n)

)
.

Setting j = n − 1, we can reformulate this and obtain

VN

(
j + 1, x(j + 1)

) − VN−1
(
j + 1, x(j + 1)

)

≤ γ N−N0+1

(γ + 1)N−N0
VN−1

(
j + 1, f

(
xu

(
0, x(j)

)
,μN

(
j, xu

(
0, x(j)

))))
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using the dynamics of the optimal open-loop solution. Now, we can use (7.13) with
k = N and get

VN

(
j + 1, x(j + 1)

) − VN−1
(
j + 1, x(j + 1)

)

≤ γ N−N0+2

(γ + 1)N−N0
�
(
j, x(j),μN

(
j, x(j)

))
.

Hence, the assumptions of Lemma 7.9 are fulfilled with

α = 1 − γ N−N0+2

(γ + 1)N−N0
= (γ + 1)N−N0 − γ N−N0+2

(γ + 1)N−N0

and the assertion follows. �

Similar to Proposition 7.6, the required values of γ and α are easily computable
and allow us to extend Algorithm 3.7 in a similar manner as we did in Algorithm 7.8.

Algorithm 7.13 (NMPC algorithm for time varying reference xref with a priori sub-
optimality estimate) Set α = 1. At each sampling time tn, n = 0,1,2, . . . :

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 = x(n) and solve the optimal control problem

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

�
(
n+k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(OCPn
N)

and denote the obtained optimal control sequence by u�(·) ∈ U
N(x0).

(3) Define the NMPC-feedback value μN(n,x(n)) := u�(0) ∈ U and use this con-
trol value in the next sampling period.

(4) Compute α via

Find the minimal γ which satisfies the inequalities

in Assumption 7.10 for the current n and set

α = min

{
α,

(γ + 1)N−N0 − γ N−N0+2

(γ + 1)N−N0

}
.

Note that checking the additional condition (γ + 1)N−N0 > γ N−N0+2 from The-
orem 7.12 is unnecessary, since a violation would lead to a negative α in which case
asymptotic stability cannot be guaranteed by means of Theorem 7.12, anyway.

Similar to Proposition 7.6, the results from Theorem 7.12 are easily carried over
to the multistep NMPC case described in Sect. 7.4 by extending Assumption 7.10.

Example 7.14 To illustrate these results, we consider the inverted pendulum on a
cart problem from Example 2.10 with parameters g = 9.81, l = 10 and kR = kL =
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Fig. 7.11 Vector field and cost function

0.01 and control constraint set U = [−15,15]. Our aim is to stabilize one of the
upright positions x ∈ S := {((k + 1)π,0,0,0)� | k ∈ 2Z}. For this example we will
provide online measurements of α using Algorithm 7.8 for one fixed initial value
and varying terminal weights ω, cf. Sect. 7.2, and control horizons, cf. Sect. 7.4. For
a comparison of Algorithms 7.8 and 7.13 we refer to [15] and [29].

In order to obtain a suitable cost function, we follow the guidelines from Sect. 6.6
and construct a cost function for which—at least in the first two components—
the overshoot of � along a typical stable trajectory becomes small. To this end, we
have used the geometry of the vector field of the first two differential equations
representing the pendulum, see Fig. 7.11(a), and shaped the cost function such that
it exhibits local maxima at the downward equilibria and “valleys” along the stable
manifolds of the upright equilibria to be stabilized. The resulting cost function � is
of the integral type (3.4) with

L(x,u) := 10−4u2 + (
3.51 sin(x1 − π)2 + 4.82 sin(x1 − π)x2

+ 2.31x2
2 + 0.1

((
1 − cos(x1 − π)

) · (1 + cos(x2)
2))2

+ 0.01x2
3 + 0.1x2

4

)2
,

cf. Fig. 7.11(b). Using the terminal weights from Sect. 7.2, the cost functional be-
comes

JN(x0, u) =
N−2∑

i=0

�
(
x(i), u(i)

) + ω�
(
x(N − 1), u(N − 1)

)
.

This way of adjusting the cost function to the dynamics allows us to considerably
reduce the length of the optimization horizon for obtaining stability in the NMPC
scheme without stabilizing terminal constraints compared to simpler choices of �.
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Fig. 7.12 Computed value for αω
70,m for the nonlinear inverted pendulum example 2.10 with con-

trol horizons m ∈ {1, . . . ,20} and terminal weights ω ∈ {1, . . . ,10}

However, for the initial value x0 = (2π +1.5,0,0,0) and sampling period T = 0.05,
which have been used in the subsequent computations, we still need a rather large
optimization horizon of N = 70 to obtain stability of the closed loop.

Since the cost function is 2π -periodic it does not penalize the distance to a spe-
cific equilibrium in S ; rather, it penalizes the distance to the whole set. For a better
comparison of the solutions for different parameters we want to force the algorithm
to stabilize one specific upright position in S . To this end, we add box-constraints
to X limiting the x1-component to the interval [−π + 0.01,3π − 0.01]. The toler-
ances of the optimization routine and the differential equation solver are set to 10−6

and 10−7, respectively. The NMPC closed-loop trajectories displayed in Fig. 7.12
are simulated for terminal weights ω = 1, . . . ,10, cf. Sect. 7.2, and control horizons
m = 1, . . . ,10, cf. Sect. 7.4. The resulting α-values from Algorithm 7.8, denoted by
αω

N,m, are shown in Fig. 7.12.
Note that for ω = 1 the α values are negative for control horizons m = 1, . . . ,4.

Still, larger control horizons exhibit a positive α value such that stability is guaran-
teed. This is in accordance with the theoretical results from Sect. 7.4, even though
these simulation based results do not share the monotonicity of the theoretical
bounds from Fig. 7.3. Additionally, an increase of α can be observed for all con-
trol horizons m if ω is increased. This confirms the stabilizing effect of terminal
costs shown theoretically in Sect. 7.2; cf. Fig. 7.1.

Summarizing, these results show that the online measurement of α yields valu-
able insights into the performance analysis of NMPC schemes without terminal
constraints and thus nicely complements the theoretical results from Chap. 6 and
Sects. 7.2 and 7.4.

7.8 Adaptive Optimization Horizon

In the previous Sect. 7.7 we have shown how the suboptimality degree α can be
computed at runtime of the NMPC scheme without stabilizing terminal constraints.
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If the horizon length N is not chosen adequately, then it is likely that during runtime
a value α < 0 is obtained. In this case, stability of the closed loop cannot be guaran-
teed by Proposition 7.6 or Theorem 7.12. However, the ability to compute α for each
point x(n) on the closed-loop trajectory using the techniques from Sect. 7.7 natu-
rally leads to the idea of adapting the optimization horizon N at each time n such
that stability and desired performance can be guaranteed. In this section, we will
show some algorithms for this purpose, taken from Pannek [29]. Here we restrict
ourselves to the basic idea and refer to [29] for more sophisticated approaches.

The fundamental idea of such an adaptive algorithm is rather simple: introducing
a stability and suboptimality threshold α > 0, at each sampling instant n we prolong
the optimization horizon if α for the current horizon is smaller than α. If α > α

holds, then we may reduce N in order to save computational time. This leads to the
following algorithm.

Algorithm 7.15 (Adaptive horizon NMPC algorithm for time varying reference)
Set N0 > 0 and α > 0. At each sampling time tn, n = 0,1,2, . . . :

(1) Measure the state x(n) ∈ X of the system and set α = 0.
(2) While α > α

(a) Set x0 = x(n), N = Nn and solve the optimal control problem

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

�
(
n+k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)
.

(OCPn
N)

Denote the obtained optimal control sequence by u�(·) ∈ U
N(x0).

(b) Compute α via Proposition 7.6 or Theorem 7.12.
(c) If α > α call reducing strategy for Nn, else call increasing strategy for Nn;

obtain u�(·) for the new N = Nn and an initial guess for Nn+1.
(3) Define the NMPC-feedback value μN(n,x(n)) := u�(0) ∈ U and use this con-

trol value in the next sampling period.

Here, the initial guess Nn+1 in Step (2c) will typically be Nn+1 = Nn, however,
as we will see below, in the case of reducing Nn the choice Nn+1 = Nn − 1 is more
efficient, cf. the discussion after Proposition 7.18.

If this algorithm is successful in ensuring α ≥ α for each n, then the assumptions
of Proposition 7.6 or Theorem 7.12 are satisfied. However, these results require the
optimization horizon N to be fixed and hence do not apply to Algorithm 7.15 in
which Nn changes with time.

To cope with this issue, we generalize Proposition 7.6 to varying optimization
horizons. To this end, for each x ∈ X and N ∈ N we denote the maximal α from
(7.10) by α(N). We then introduce the following assumption, which guarantees that
for any horizon N satisfying α(N) ≥ α the controller shows a bounded guaranteed
performance if the horizon length is increased.
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Assumption 7.16 Given n ∈ N0, x ∈ X, N < ∞ and a value α ∈ (0,1) with
α(N) ≥ α, we assume that there exist constants Cl,Cα > 0 such that the inequalities

Cl�
(
n,x,μN(n, x)

)

≤ �
(
n,x,μÑ (n, x)

)VÑ (n, x) − VÑ (n + 1, f (x,μN(n, x)))

VÑ (n, x) − VÑ (n + 1, f (x,μÑ (n, x)))
, (7.15)

Cαα(N) ≤ α(Ñ) (7.16)

hold for all Ñ ≥ N .

The reason for Assumption 7.16 is that it is possible that the performance of the
controller μN may not improve monotonically as N increases; see Di Palma and
Magni [6]. Consequently, we cannot expect α(Ñ) ≥ α(N) for Ñ > N . Still, we need
to ensure that α(Ñ) does not become too small compared to α(N), in particular,
α(Ñ) should not drop below zero if the horizon length is increased; this is ensured
by (7.16). Furthermore, we need an estimate for the dependence of �(n, x,μN(n, x))

on N which is given by (7.15). Unfortunately, for both inequalities so far we were
not able to provide sufficient conditions in terms of the problem data, like, e.g., a
controllability condition similar to Assumption 6.4. Still, numerical evaluation for
several examples showed that these inequalities are satisfied and that Cl and Cα

attain reasonable values.
Using Assumption 7.16, we obtain a stability and performance estimate of the

closed loop in the context of changing horizon lengths similar to Proposition 7.6.
Since the closed-loop control resulting from Algorithm 7.15 now depends on a se-
quence of horizons (Nn)n∈N0 we obtain a sequence of control laws (μNn

)n∈N0 . The
closed-loop trajectory generated by this algorithm is then given by

x(n + 1) = f
(
x(n),μNn

(
n,x(n)

))
. (7.17)

Theorem 7.17 Consider the sequence of feedback laws (μNn) computed from Al-
gorithm 7.15 and the corresponding closed-loop trajectory x(·) from (7.17). Assume
that for optimal value functions VNn : N0 × X → R

+
0 of (OCPn

N) with N = Nn the
inequality

VNn

(
n,x(n)

) ≥ VNn

(
n + 1, x(n + 1)

) + α�
(
n,x(n),μNn

(
n,x(n)

))
(7.18)

holds for all n ∈ N0 and that Assumption 7.16 is satisfied for all triplets (n, x,N) =
(n, x(n),Nn), n ∈ N0, with constants C

(n)
l , C

(n)
α . Then

αCV∞
(
n,x(n)

) ≤ αCJ∞
(
n,x(n),μ(Nn)

) ≤ VN�

(
n,x(n)

) ≤ V∞
(
n,x(n)

)
(7.19)

holds for all n ∈ N0 where αC := mini∈N≥n
C

(i)
α C

(i)
l α.

Proof Given (i, x(i),Ni) for some i ∈ N0, Assumption 7.16 for (n, x,N) =
(i, x(i),Ni) guarantees α(Ni) ≤ α(Ñ)/C

(i)
α for Ñ ≥ Ni . Choosing Ñ = N�, we ob-

tain α ≤ α(Ni) ≤ α(N�)/C
(i)
α using the relaxed Lyapunov Inequality (7.18). Multi-

plying by the stage cost �(i, x(i),μNi
(i, x(i))), we can conclude
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α�
(
i, x(i),μNi

(
i, x(i)

))

≤ α(N�)

C
(i)
α

�
(
i, x(i),μNi

(
i, x(i)

))

= VN�(i, x(i)) − VN�(i + 1, f (x(i),μN�(i, x(i))))

C
(i)
α �(i, x(i),μN�(i, x(i)))

�
(
i, x(i),μNi

(
i, x(i)

))

≤ VN�(i, x(i)) − VN�(i + 1, f (x(i),μNi
(i, x(i))))

C
(i)
α C

(i)
l

using (7.18) and (7.15). In particular, the latter condition allows us to use an identical
telescope sum argument as in the proof of Proposition 7.6 since it relates the closed-
loop varying optimization horizon to a fixed one. Hence, summing the running costs
along the closed-loop trajectory reveals

αC

K∑

i=n

�
(
i, x(i),μNi

(
i, x(i)

)) ≤ VN�

(
n,x(n)

) − VN�

(
K + 1, x(K + 1)

)

where we defined αC := mini∈[n,...,K] C(i)
α C

(i)
l α. Since VN�(K + 1, x(K + 1)) ≥ 0

holds, we can neglect it in the last inequality. Taking K to infinity yields

αCV
μ(Ni )∞

(
n,x(n)

) = αC lim
K→∞

K∑

i=n

�
(
i, x(i),μNi

(
i, x(i)

)) ≤ VN�

(
n,x(n)

)
.

Since the first and the last inequality of (7.19) hold by definition of VN and V∞, the
assertion follows. �

If the conditions of this theorem hold, then stability-like behavior of the closed
loop can be obtained analogously to Proposition 7.6.

Having shown the analytical background, we now present adaptation strategies
which can be used for increasing or reducing the optimization horizon N in Step (2c)
of Algorithm 7.15. For simplicity of exposition, we restrict ourselves to two simple
strategies and consider a posteriori estimates based variants only. Despite their sim-
plicity, these methods have shown to be reliable and fast in numerical simulations.
A more detailed analysis, further methods and comparisons can be found in [29].
The following proposition yields the basis for a strategy for reducing Nn.

Proposition 7.18 Consider the optimal control problem (OCPn
N) with initial value

x0 = x(n), Nn ∈ N, and denote the optimal control sequence by u�. For fixed α ∈
(0,1), suppose there exists an integer i ∈ N0, 0 ≤ i < N such that

VNn−i

(
n + i + 1, xu�

(
i + 1, x(n)

))

+ α�
(
n + i, xu�

(
i, x(n)

)
,μNn−i

(
n + i, xu�

(
i, x(n)

)))

≤ VNn−i

(
n + i, xu�

(
i, x(n)

))
(7.20)

holds for all 0 ≤ i ≤ i. Then, setting Nn+i = Nn − i and μNn+i
(n + i, x(n + i)) =

u�(i) for 0 ≤ i ≤ i − 1, Inequality (7.18) holds for n = n, . . . , n + i − 1.
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Proof The proof follows immediately from the fact that for μNn+i
(n + i, x(n +

i)) = u�(i) the closed-loop trajectory (7.17) satisfies x(n+ i) = xu�(i, x(n)). Hence,
(7.18) follows from (7.20). �

Observe that Proposition 7.18 is quite similar to the results from Sect. 7.4, since
μNn+i

(n + i, x(n + i)) as defined in this theorem coincides with the multistep feed-
back law from Sect. 7.4. Thus, Proposition 7.18 guarantees that if i > 1, then the
multistep NMPC feedback from Sect. 7.4 can be applied with m = i steps such that
the suboptimality threshold α can be guaranteed. With the choice Nn+i = Nn − i,
due to the principle of optimality we obtain that the optimal control problems within
the next i − 1 NMPC iterations are already solved since μNn+i

(n + i, x(n + i)) can
be obtained from the optimal control sequence u�(·) ∈ U

N(x(n)) computed at time
n. This implies that the most efficient way for the reducing strategy in Step (2c) of
Algorithm 7.15 is not to reduce Nn itself but rather to reduce the horizons Nn+i by
i for the subsequent sampling instants n + 1, . . . , n + i, i.e., we choose the initial
guess in Step (2c) as Nn+1 = Nn − 1. Still, if the a posteriori estimate is used, the
evaluation of (7.20) requires the solution of an additional optimal control problem
in each step in order to compute VNn−i (n + i + 1, xu�(i + 1, x(n))).

In contrast to this efficient and simple shortening strategy, it is quite difficult
to obtain efficient methods for prolonging the optimization horizon N in Step (2c)
of Algorithm 7.15. In order to understand why this is the case, we first introduce
the basic idea behind any such prolongation strategy: at each sampling instant we
iteratively increase the horizon Nn until (7.18) is satisfied and use this horizon for
the next NMPC step. In order to ensure that iteratively increasing Nn will eventually
lead to a horizon for which (7.18) holds, we make the following assumption.

Assumption 7.19 Given α ∈ (0,1), for all x0 ∈ X and all n ∈ N0 there exists a
finite horizon length N = N(n,x0) ∈ N such that (7.18) holds with α(Nn) ≥ α for
x(n) = x0 and Nn ≥ N .

Assumption 7.19 can be seen as a performance assumption which requires the
existence of a horizon length Nn such that the predefined threshold α can be sat-
isfied. If no such horizon exists, no prolongation strategy can be designed which
can guarantee closed-loop suboptimality degree α > α. Assumption 7.19 is, for in-
stance, satisfied if the conditions of Theorem 6.21 hold.

The following proposition shows that under this assumption any iterative strategy
which increases the horizon will terminate after finitely many steps with a horizon
length N for which the desired local suboptimality degree holds.

Proposition 7.20 Consider the optimal control problem (OCPn
N) with initial value

x0 = x(n) and Nn ∈ N. For fixed α ∈ (0,1) suppose that Assumption 7.19 holds.
Then, any algorithm which iteratively increases the optimization horizon Nn and
terminates if (7.18) holds will terminate in finite time with an optimization hori-
zon Nn for which (7.18) holds. In particular, Theorem 7.17 is applicable provided
Assumption 7.16 holds.
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Proof The proof follows immediately from Assumption 7.19. �

Unfortunately, if (7.18) does not hold it is in general difficult to assess by how
much Nn should be increased such that (7.18) holds for the increased Nn. The most
simple strategy of increasing Nn by one in each iteration shows satisfactory results
in practice, however, in the worst case it requires us to check (7.18) N − Nn + 1
times at each sampling instant. In contrast to the shortening strategy, the principle
of optimality cannot be used here to establish a relation between the optimal con-
trol problems for different Nn and, moreover, these problems may exhibit different
solution structures which makes it a hard task to provide a suitable initial guess for
the optimization algorithm; see also Sect. 10.5.

In order to come up with more efficient strategies, different methods have been
developed [29] which utilize the structure of the suboptimality estimate itself to
determine by how much Nn should be increased. Compared to these methods, how-
ever, the performance of the simple strategy of increasing Nn by one is still ac-
ceptable. In the following example we illustrate the performance of this strategy for
Example 2.11.

Example 7.21 For the ARP system (2.19)–(2.26) we have already analytically de-
rived a continuous time tracking feedback in (2.28). However, this feedback law per-
forms poorly under sampling, in particular, for the sampling period T = 0.2 which
we consider here we obtain an unstable closed-loop sampled data system.

In order to obtain a sampled data feedback law which shows better performance
we use the digital redesign technique proposed by Nešić and Grüne in [27]: given
a signal v(t) to track, we numerically simulate the continuous time controlled sys-
tem in order to generate the output xref which in turn will be used as the refer-
ence trajectory for an NMPC tracking problem. The advantage of proceeding this
way compared to the direct formulation of an NMPC tracking problem lies in the
fact that—according to our numerical experience—the resulting NMPC problem is
much easier to solve and in particular requires considerably smaller optimization
horizons in order to obtain a stable NMPC closed loop.

Specifically, we consider the piecewise constant reference function

v(t) =
{

10, t ∈ [0,5) ∪ [9,10),

0, t ∈ [5,9) ∪ [10,15)

for the x5-component of the trajectory of the system. In order to obtain short tran-
sient times for the continuous time feedback, we set the design parameters ci in
(2.28) to (c0, c1, c2, c3) = (10 000,3500,500,35). Then, we incorporate the result-
ing trajectory displayed in Fig. 7.13 as reference xref(·) in the NMPC algorithm.
Since our goal is to track the reference with the x5-component of the trajectory, we
use the simple quadratic cost function

J (x0, u) =
N∑

j=0

∫ tj+1

tj

∣∣x5,u(t, x0) − x5,ref(t)
∣∣dt
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Fig. 7.13 Reference function
for the continuous time
feedback (solid) and state
trajectory using the
continuous time feedback
(dashed). The latter will be
used as reference function
within the NMPC algorithm

Fig. 7.14 Optimization
horizons computed by the
adaptive NMPC
Algorithm 7.15 for the ARP
problem using the a posteriori
estimate (solid) and the a
priori estimate (dashed)

within the adaptive horizon NMPC Algorithm 7.15. Moreover, we select the sam-
pling period T = 0.2 and fix the initial value x(0) = (0,0,0,0,10,0,0,0) for both
the continuously and the sampled-data controlled system.

Using the a posteriori and a priori estimation techniques within the adaptive
NMPC Algorithm 7.15, we obtain the evolutions of horizons Nn along the closed
loop for the suboptimality bound α = 0.1 as displayed in Fig. 7.14. Comparing the
horizons chosen by the a priori and the a posteriori estimates, one sees that the a
posteriori algorithms yields smaller optimization horizons which makes the result-
ing scheme computationally more efficient, however, at the expense that the evalua-
tion of the a posteriori criterion itself is computationally more demanding; see also
Fig. 7.15, below.

It is also interesting to compare these horizons to the standard NMPC Algo-
rithm 3.7 with fixed N which needs a horizon of N = 6 in order to guarantee α ≥ α

along the closed loop. Here, one observes that the required horizon Nn for the adap-
tive NMPC approach is typically smaller than N = 6 for both the a posteriori and
the a priori estimate based variant. One also observes that the horizon is increased
at the jump points of the reference function v(·), which is the behavior one would
expect in a “critical” situation and nicely reflects the ability of the adaptive horizon
algorithm to adapt to the new situation.

Although the algorithm chooses to modify the horizon length throughout the run
of the closed loop, one can barely see a difference between the resulting x5 trajecto-
ries and the (dashed) reference trajectory given in Fig. 7.13. For this reason, we do
not display the closed-loop solutions. Instead, we additionally plotted the computing
times of the two adaptive NMPC variants in Fig. 7.15. Again, one can immediately
see the spikes in the graph right at the points in which v(·) jumps. This figure also
illustrates the disadvantage of the algorithm of having to solve multiple additional
optimal control problems whenever N is increased, which clearly shows up in the
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Fig. 7.15 Computing times
of the adaptive NMPC
Algorithm 7.15 for the ARP
problem using the a posteriori
estimate (solid) and the a
priori estimate (dashed)

higher computation times at these points, in particular for the computationally more
expensive a posteriori estimation.

While the adaptive optimization horizon algorithm produces good results in this
example, we would like to mention that there are other examples—like, e.g., the
swing-up of the inverted pendulum—for which the algorithm performs less con-
vincing. We conjecture that a better understanding of Assumption 7.16 may provide
the insight needed in order to tell the situations in which the adaptive algorithms
provides good results from those in which it does not.

7.9 Nonoptimal NMPC

In the case of limited computational resources and/or fast sampling, the time avail-
able for solving the optimization problems (OCPN) or its variants may not be suf-
ficient to obtain an arbitrary accurate solution. Typically, the algorithms for solving
these problems, i.e., for obtaining u� and thus μN(x(n)) = u�(0), work iteratively2

and with limited computation time may we may be forced to terminate this algo-
rithm prior to convergence to the optimal control sequence u�.

It is therefore interesting to derive conditions which ensure stability and perfor-
mance estimates for the NMPC closed loop in this situation. To this end, we modify
Algorithm 3.1 as follows.

Algorithm 7.22 We replace Steps (2) and (3) of Algorithm 3.1 (or its variants) by
the following:

(2′) For initial value x0 = x(n), given an initial guess u0
n(·) ∈ UN we iteratively

compute u
j
n(·) ∈ UN by an iterative optimization algorithm such that

JN

(
x0, u

j+1
n (·)) ≤ JN

(
x0, u

j
n(·)

)
.

We terminate this iteration after j∗ ∈ N iterations, set un(·) := u
j∗
n (·) and

ṼN (n) := JN(x0, un(·)).

2For more information on these algorithms see Chap. 10 and for numerical aspects of the theory in
this chapter in particular Sect. 10.6.
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(3′) Define the NMPC-feedback value μN(x(n)) := un(0) ∈ U and use this control
value in the next sampling period.

One way to ensure proper operation of such an algorithm is by assuming that the
sampling period is so small such that the optimal control from sampling instant n−1
is still “almost optimal” at time n. In this case, one iteration starting from u0

n = un−1,
i.e., j∗ = 1, may be enough in order to be sufficiently close to an optimal control,
i.e., to ensure JN(x(n),u1

n) ≈ VN(x(n)). This procedure is, e.g., investigated by
Diehl, Findeisen, Allgöwer, Bock and Schlöder in [8].

An alternative but conceptually similar idea is presented in work of Graichen and
Kugi [11]. In this reference a sufficiently large number of iterations j∗ is fixed and

conditions are given under which the control sequences u
j∗
n become more and more

optimal as n increases, i.e., they satisfy JN(x(n),u
j∗
n ) ≈ VN(u�) for sufficiently

large n. Using suitable bounds during the transient phase in which this approximate
optimality does not yet hold then allows the authors to conclude stability estimates.

While these results use that u
j∗
n is close to u� in an appropriate sense, here we

investigate the case in which u
j∗
n may be far away from the optimal solution. As we

will see, asymptotic stability in the sense of Definition 2.14 is in general difficult to
establish in this case. However, it will still be possible to prove the following weaker
property.

Definition 7.23 Given a set S ⊆ X, we say that the NMPC closed loop (2.5) is
attractive on S if for each x ∈ S the convergence

lim
k→∞xμN

(k, x) = x∗

holds.

Contrary to asymptotic stability, a merely attractive solution xμN
which starts

close to the equilibrium x∗ may deviate far from it before it eventually converges
to x∗. In order to exclude this undesirable behavior, one may wish to require the
following stability property in addition to attraction.

Definition 7.24 Given a set S ⊆ X, we say that the NMPC closed loop (2.5) is
stable on S if there exists αS ∈ K such that the inequality

∣∣xμN
(k, x)

∣∣
x∗ ≤ αS

(|x|x∗
)

holds for all x ∈ S and all k = 0,1,2, . . . .

It is well known that under suitable regularity conditions attractivity and stability
imply asymptotic stability; see, e.g., the book of Khalil [23, Chap. 4]. Since this is
not the topic of this book, we will not go into technical details here and rather work
with the separate properties attractivity and stability in the remainder of this section.

The following variant of Proposition 7.6 will be used in order to ensure attractiv-
ity and stability.
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Proposition 7.25 Consider the solution x(n) = xμN
(n, x0) of the NMPC closed

loop (2.5), a set S ⊆ X, a value α ∈ (0,1]. Assume that � satisfies

�∗(x) ≥ α3
(|x|x∗

)
(7.21)

for some α3 ∈ K∞ and all x ∈ S and that for each x0 ∈ S there exists a function
ṼN : N0 → R

+
0 which for all n ∈ N0 satisfies

ṼN (n) ≥ ṼN (n + 1) + α�
(
x(n),μN

(
x(n)

))
. (7.22)

Then the closed loop (2.5) is attractive on S and the inequality

J∞(x0,μN) ≤ ṼN (0) (7.23)

holds for J∞(x0,μN) from Definition 4.10.
If, in addition, there exists α̃2 ∈ K∞ independent of x0 such that the functions ṼN

satisfy

ṼN (0) ≤ α̃2
(∣∣x(0)

∣
∣
x∗

)
, (7.24)

then the closed loop (2.5) is stable on S.

Proof Iterating Inequality (7.22) for n = 0, . . . , k and using ṼN (n) ≥ 0 yields

k∑

n=0

�
(
x(n),μN

(
x(n)

)) ≤ ṼN (0) − ṼN (k + 1) ≤ ṼN (0).

Letting k → ∞ we obtain

J∞(x,μN) = lim
k→∞

k∑

n=0

�
(
x(n),μN

(
x(n)

)) ≤ ṼN (0),

i.e., (7.23). Now nonnegativity of � implies limn→∞ �(x(n),μN(x(n))) = 0 and
thus (7.21) implies x(n) → 0, i.e., attractivity.

In order to prove stability under the additional assumption (7.24), observe that
(7.22) together with the nonnegativity of ṼN and (7.21) implies

ṼN (n) ≥ α�
(
x(n),μN

(
x(n)

)) ≥ α α3
(∣∣x(n)

∣∣
x∗

) =: α̃1
(∣∣x(n)

∣∣
x∗

)
.

Furthermore, (7.22) implies that ṼN (n) is decreasing in n. Using these properties,
stability immediately follows from

∣∣x(n)
∣∣
x∗ ≤ α̃−1

1

(
ṼN (n)

) ≤ α̃−1
1

(
ṼN (0)

) ≤ α̃−1
1

(
α̃2

(|x0|x∗
)) =: αS

(|x0|x∗
)
. �

The precise conditions on u
j
n and un in Algorithm 7.22 which ensure attractiv-

ity, stability and suboptimality estimates now depend on whether stabilizing termi-
nal constraints are used or not. We first consider the case of stabilizing terminal
constraints which was investigated, e.g., by Michalska and Mayne [25], Scokaert,
Mayne and Rawlings [32] and Rawlings and Mayne [31, Sect. 2.8] which all use
conceptually similar ideas. Here, we follow the latter reference.

The approach in [31, Sect. 2.8] can be written as a variant of Theorem 5.13. In
particular, we assume that Assumption 5.9 is satisfied. In order to obtain a more
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convenient notation, on the terminal constraint set X0 we define a map κ : X0 → U

which assigns to each x ∈ X0 the control value ux ∈ U(x) from Assumption 5.9(ii).
With this notation, the corresponding theorem reads as follows.

Theorem 7.26 Assume that the conditions of Theorem 5.13 are satisfied. Consider
Algorithm 3.10 with Steps (2) and (3) replaced by Steps (2′) and (3′) of Algo-
rithm 7.22 under the following assumptions for a set S ⊆ XN .

(i) For n = 0, we are able to find an admissible initial guess u0
0(·) ∈ U

N
X0

(x0) for
each initial value x0 = x(0) ∈ S.

(ii) For n = 1,2, . . . , the initial guess u0
n(·) is chosen as u0

n(k) = un−1(k + 1),
k = 0, . . . ,N − 2 and u0

n(N − 1) = κ(xu0
n
(N − 1, x0)).

(iii) For all n = 0,1,2, . . . the control sequences un(·) = u
j∗
n (·) satisfy u

j∗
n (·) ∈

U
N
X0

(x0), i.e., they are admissible.

Then the NMPC closed loop (2.5) is attractive on S and the inequality

J∞(x,μN) ≤ ṼN (0)

holds. If, in addition, there exists α̃3 ∈ K∞ such that the inequality JN(x0, u
0
0(·)) ≤

α̃3(|x|x∗) holds for u0
0(·) from (i), then (2.5) is also stable on S.

Proof First note that (i) ensures that u0
0 is admissible at time n = 0 and that (iii)

ensures that u0
n in (ii) is admissible for n = 1,2, . . . , cf. also Lemma 5.10(i).

We abbreviate x(n) = xμn
(n). Then, (ii) and the same computation as in the proof

of Lemma 5.12 yield the inequality JN(x(n+1), u0
n+1(·)) ≤ JN−1(x(n+1), un(·+

1)) for each n ≥ 0. On the other hand, the definition of JN in Algorithm 3.10 implies

ṼN (n) = JN

(
x(n),un(·)

) = �
(
x(n),un(0)

) + JN−1
(
f

(
x(n),un(x)

)
, un(· + 1)

)
.

The identities f (x(n),un(x)) = x(n + 1), un(0) = μN(x(n)) and the inequality
ṼN (n + 1) ≤ JN(x(n + 1), u0

n+1(·)) then lead to

ṼN (n) ≥ �
(
x(n),un(0)

) + JN

(
x0, u

0
n(·)

) ≥ �
(
x(n),μN

(
x(n)

)) + ṼN (n + 1),

i.e., (7.22). Now all properties follow directly from Proposition 7.25. �

Remark 7.27

(i) If the assumptions of Proposition 5.14(ii) hold, then for x0 ∈ X0, the additional
stability condition JN(x0, u

0
0(·)) ≤ α̃3(|x|x∗) can be guaranteed if we define

u0
0(·) by u0

0(k) := κ(xu0
0
(k, x0)), k = 0, . . . ,N − 1. From Assumption 5.9(ii) it

follows that this choice implies JN(x0, u
0
0(·)) ≤ F(x0) ≤ α̃2(|x|x∗) and thus the

desired inequality follows with α̃3 = α̃2. Hence, this choice guarantees stability
locally around x∗.

One may also apply this definition to u0
n in (ii) for those n in which

x(n) ∈ X0 holds. This way, stability is ensured at least for the tail of the result-
ing closed-loop trajectory. If we use this choice of u0

n and do not perform the
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iterative optimization in Step (2′) of Algorithm 7.22, i.e., if we choose j∗ = 0,
then we obtain an algorithm similar to the so-called dual mode strategy from
[25].

(ii) Iterative optimizations algorithms are usually designed such that the intermedi-
ate results satisfy the desired constraints as soon as the algorithm has succeeded
in finding an admissible solution; see Sect. 10.6 for details. Since condition (ii)
in Theorem 7.26 ensures that we already initialize the iterative optimization
with an admissible solution, most common optimization algorithms will yield

solutions u
j∗
n (·) satisfying condition (iii) of Theorem 7.26 regardless of how

j∗ is chosen.
(iii) Theorem 7.26 yields attractivity for arbitrary j∗ ∈ N0. In particular, it applies

to j∗ = 0, i.e., to the case in which we do not optimize at all. This means
that attractivity follows readily from the stabilizing terminal constraints and
the particular construction of the initial guesses. An important consequence of
this property is that we can fix j∗ a priori, e.g., determined by the available
computation time, which makes this approach suitable for real-time NMPC
schemes.

Without stabilizing terminal constraints, stability is inherited from optimality and
we can no longer expect attractivity or stability for arbitrary j∗. Instead, we need to

make sure that u
j∗
n is at least “good enough” to ensure (7.22). This is the idea of the

following algorithm for determining j∗ taken from Grüne and Pannek [16].

Algorithm 7.28 Given α ∈ (0,1), in Step (2′) of Algorithm 7.22 we iterate over
u

j
n(·) ∈ U

N(x(n)) for j = 1,2, . . . until the termination criterion

JN

(
x(n),u

j∗
n (·)) ≤ ṼN (n − 1) − α�

(
x(n − 1), un−1(0)

)
(7.25)

is satisfied.

The following theorem shows attractivity, suboptimality and stability for this al-
gorithm.

Theorem 7.29 Consider a set S ⊆ XN , α ∈ (0,1] and Algorithm 3.1 with Steps (2)

and (3) replaced by Steps (2′) and (3′) of Algorithm 7.22. Assume that Algo-
rithm 7.28 is used in Step (2′) of Algorithm 7.22 and that (7.25) is feasible for each

n ∈ N, i.e., that for each n ∈ N there exists u
j∗
n ∈ U

N(x(n)) such that (7.25) holds.
Assume furthermore that (7.21) holds for the running cost �.

Then the NMPC closed loop (2.5) is attractive on S and the inequality

J∞(x,μN) ≤ ṼN (0)

holds. If, in addition, there exists α̃3 ∈ K∞ such that the inequality JN(x0, u
0
0(·)) ≤

α̃3(|x|x∗) holds for the initial guess u0
0(·) in Step (2′) of Algorithm 7.22 for each

x(0) ∈ S, then (2.5) is also stable on S.
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Proof Under the stated assumptions, all properties follow directly from Proposi-
tion 7.25. �

Remark 7.30 In contrast to what was observed in Remark 7.27(iii) for the terminal
constrained scheme, here we cannot in general fix j∗ a priori. Indeed, the number
of iterations of the optimization algorithm which are needed until (7.25) is satisfied
depends on various factors—particularly on the choice of un−1 and u0

n—and is in
general unknown before the optimization is started. We assume that for sufficiently
small sampling periods similar techniques as developed by Diehl, Findeisen, All-
göwer, Bock and Schlöder [8] or Graichen and Kugi [11] can be used in order to
bound the number of needed iterations when setting u0

n = un−1, but this has not yet
been investigated rigorously.

In the general case, the feasibility assumption for (7.25) in Theorem 7.29 may
not even be satisfied. Before we investigate this issue, we illustrate the performance
of this algorithm by a numerical example.

Example 7.31 We consider the nonlinear pendulum from Example 2.10, where the
task is now to stabilize the downward equilibrium x∗ = (0,0,0,0)T . Figures 7.16
and 7.17 below show parts of the closed-loop trajectories of x1 and x3 using Algo-
rithm 7.22 and Algorithm 7.28 in Step (2′) for varying α. The running cost is of type
(3.4) with

L(x,u) = 100 sin2(0.5x1) + x2
2 + 10.0x2

3 + x2
4 + u2,

and sampling period T = 0.15 and the NMPC algorithm was run with optimization
horizon N = 17 and input constraints U = [−1,1] using a recursive discretization
and a line-search (SQP) method to solve the resulting optimization problem; see
Chap. 10 for details on such methods.

One can see clearly from Figs. 7.16 and 7.17 that the closed-loop system is sta-
ble for all values of α. Moreover, one can nicely observe the improvement of the
closed-loop behavior visible in the decreasing time until the system comes to rest
for increasing values of α.

This is also reflected in the total closed-loop costs: While for α = 0.1 the costs
sum up to V

μ̃N∞ (x0) ≈ 2512.74, we obtain a total cost of V
μ̃N∞ (x0) ≈ 2485.83 for α =

0.95. Note that the majority of the costs, i.e., approximately 2435, is accumulated on
the interval [0,5] on which the trajectories for different α are almost identical and
which is therefore not displayed in Figs. 7.16 and 7.17. However, the choice of α has
a visible impact on the closed-loop performance in the remaining part of the interval.

Regarding the computational cost, the total number of (SQP) steps which are
executed during the run of the NMPC procedure reduces from 455 for α = 0.95
and 407 for α = 0.9, to 267 and 246 for α = 0.5 and α = 0.1, respectively. Hence,
we obtain an average of approximately 2.5–4.5 optimization iterations per MPC
step over the entire interval [0,15], while using standard termination criteria 9.5
optimization iterations per NMPC step are required.

A closer look at the numerical simulation in this example reveals that for each
α there were some sampling instants n at which it was not possible to satisfy the
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Fig. 7.16 Angle of the
pendulum x1 for varying α

Fig. 7.17 Position of the cart
x3 for varying α

suboptimality based termination criterion (7.25). In this case we simply iterated the
SQP optimization routine until convergence.

While this fact is not visible in Figs. 7.16 and 7.17 and obviously does not af-
fect stability and performance in our example, this observation raises the question
whether (7.25) is feasible, i.e., whether at time n we can ensure the existence of
u

j∗
n such that (7.25) is satisfied regardless of how un−1 was chosen, before. In order

to analyze this question, let us suppose that Assumption 6.4 holds. Then, observing
that for optimal controls (7.25) coincides with (5.1), Theorem 6.14 yields that (7.25)
is feasible if un−1 is an optimal control sequence and α in (7.25) is smaller than α

from (6.14). However, even with this choice of α in (7.25), condition (7.25) may not
be feasible for nonoptimal control sequences un−1.

In order to understand why this is the case we investigate how Proposition 6.12—
which provides the crucial ingredient for deriving (6.14)—changes if the optimal
control sequence u� in this proposition is replaced by a nonoptimal control sequence
un−1. To this end, we fix n ∈ N and set x = xμN

(n) and u = un−1. Now, first observe
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that the inequalities in (6.12) remain valid regardless of the optimality of u�. All
inequalities in (6.11), however, require optimality of the control sequence u� gener-
ating the λn. In order to maintain at least some of these inequalities we can pick an
optimal control sequence u� for initial value xu(1, x) and horizon length N − 1 and
define a control sequence ũ via ũ(0) = u(0), ũ(n) = u�(n − 1), n = 1, . . . ,N − 1.
Then, abbreviating

λ̃n = �
(
xũ(n, x), ũ(n)

)
, n = 0, . . . ,N − 1 and

ν̃ = VN

(
xu(1, x)

) = VN

(
xũ(1, x)

)
,

(7.26)

we arrive at the following version of Proposition 6.12.

Proposition 7.32 Let Assumption 6.4 hold. Then the inequalities

N−1∑

n=k

λ̃n ≤ BN−k(λ̃k) and ν̃ ≤
j−1∑

n=0

λ̃n+1 + BN−j (λ̃j+1) (7.27)

hold for k = 1, . . . ,N − 2 and j = 0, . . . ,N − 2.

Proof Analogous to the proof of Proposition 6.12. �

The subtle but crucial difference of (7.27) to (6.11), (6.12) is that the left in-
equality in (7.27) is not valid for k = 0. As a consequence, λ̃0 does not appear
in any of the inequalities, thus for any λ̃1, . . . , λ̃n and ν̃ satisfying (7.27) and any
δ > 0 the values δλ̃1, . . . , δλ̃n and δν̃ satisfy (7.27), too. Hence, unless (7.27) im-
plies ν̃ ≤ ∑N−1

n=0 λ̃n—which is a very particular case—replacing (6.11), (6.12) in
(6.14) by (7.27) will lead to the optimal value α = −∞. Consequently, feasibility
of (7.25) cannot be concluded for any positive α.

The following example shows that this undesirable result is not simply due to an
insufficient estimate for α but that infeasibility of (7.25) can indeed happen.

Example 7.33 Consider the 1d system

x+ = x/2 + u (7.28)

with �(x,u) = |x|, input constraint u ≥ 0 and optimization horizon N = 3. A simple
computation using ux ≡ 0 shows that for this system Assumption 6.4 is satisfied
with β(r, k) = Cσkr with C = 1 and σ = 1/2. Hence, Corollary 6.19 applies and
we can use (6.19) in order to compute that for N = 3 Inequality (5.1) holds for
α = 7/8. If un−1 in the termination criterion (7.25) is chosen as the optimal control
u�, then (7.25) implies that (5.1) is feasible for this α.

For x(n − 1) = 0, it is obvious that the control u� ≡ 0 is optimal. Using the
nonoptimal control given by un−1(0) = ε > 0 and un−1(1) = un−1(2) = 0 yields
the trajectory xun−1(0) = x(n − 1) = 0, xun−1(k) = ε2−k+1, k = 1,2, which implies
x(n) = ε and

J3
(
x(n − 1), un−1

) =
1∑

k=0

ε2−k = 3ε/2.
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On the other hand, for the initial value x(n) = ε it is easily seen that for each control
un the inequality

J3
(
x(n),un

) ≥
2∑

k=0

ε2−k = 7ε/4 > 3ε/2 = JN

(
x(n − 1), un−1

)

holds. Hence, for this choice of un−1 the Inequality (7.25) is not feasible for any
α > 0.

Clearly, in order to rigorously ensure attraction and guaranteed performance one
should derive conditions which exclude these situations and we briefly discuss two
possible approaches for this purpose.

One way to guarantee feasibility of (7.25) is to add the missing inequality in
(7.27) (i.e., the left inequality for k = 0) as an additional constraint in the optimiza-
tion. This guarantees feasibility of (7.25) for any α smaller than the value from
(6.19). One drawback of this approach is that—similar to the terminal constraint
case—an additional constraint in the optimization is needed which needs to be en-
sured for all j ≥ 1 or at least for j∗. This makes the optimization more demanding,
since in contrast to Remark 7.27(ii) here we do not have a canonical candidate for
an admissible solution which can be used for initializing the iterative optimization.
Another drawback is that the value BN(λ̃0) depends on the in general unknown
function β from Assumption 6.4 and thus needs to be determined either by an a
priori analysis or by a try-and-error procedure.

Another way to guarantee feasibility is to choose � in such a way that there exists
γ > 0 for which

γ �(x,u) ≥ �∗(f (x,u)
)

(7.29)

holds for all x ∈ X and all u ∈ U . Then from (7.29) and the controllability Assump-
tion 6.4 for x = f (x(n − 1), ũn−1(0)) we get

N−1∑

k=0

λ̃k ≤ λ̃0 + BN−1
(
�∗(f

(
x(n − 1), ũn−1(0)

))) ≤ λ̃0 + BN−1(γ λ̃0).

Replacing β(r,0) by max{β(r, t), β̃(r, t)} with β̃(r,0) = β(γ r,0)+ r and β̃(r, k) =
β(γ r, k) for k ≥ 1, this right hand side is ≤ BN(λ̃0) which again yields the left
inequality in (7.27) for k = 0 and thus feasibility of (7.25). Note that (7.29) holds
for our example (7.28) if we change �(x,u) = |x| to �(x,u) = |x| + |u|/γ . For this
� and the points and control sequences considered in the example, we obtain

J3
(
x(n − 1), un−1

) = 3ε/2 + ε = 5ε/2

from which one computes that (7.25) is now feasible.
The advantage of this method is that no additional constraints have to be imposed

in the optimization. Its disadvantages are that constructing � satisfying (7.29) may
be complicated for more involved dynamics and that the overshoot encoded in β will
in general increase for the re-designed �. As outlined in Sect. 6.6, this may lower the
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NMPC closed-loop performance and cause the need for larger optimization horizons
N in order to obtain stability.

An in depth study of these approaches and in particular their algorithmic imple-
mentation and numerical evaluation will be the topic of further research.

7.10 Beyond Stabilization and Tracking

All NMPC variants discussed so far have in common that the cost function � penal-
izes the distance to some desired reference, either to an equilibrium x∗ or to a time
varying reference xref. These variants may hence be called stabilizing NMPC. There
is, however, a large variety of optimal control problems where this is not the case.
For instance, in economic applications one typically uses a running cost �e which
reflects an economic cost rather than a distance to some reference, cf., e.g., Seier-
stad and Sydsæter [33]. In what follows we will refer to �e as the economic cost. In
such problems, the desired limit behavior of the optimal trajectories is not given a
priori in terms of a reference x∗ or xref but is rather an outcome of the optimization
itself. Even for rather simple nonlinear models, this limit behavior can be surpris-
ingly complex, as, e.g., the examples in the book of Grass, Caulkins, Feichtinger,
Tragler and Behrens [12]—for optimal control problems mainly motivated by social
sciences—show.

One way to use stabilizing NMPC for such problems is as follows. In a first step,
the optimal limit behavior for the economic running cost �e is identified. Assuming
that this problem can be solved analytically or numerically we obtain an optimal
reference solution xref which, however, does not need to be asymptotically stable.
Hence, a stabilizing controller needs to be designed in order to stabilize the optimal
reference. To this end, in a second step a cost function �—which we will refer to
as stabilizing cost—penalizing the distance to xref is designed which is suitable for
running a stabilizing NMPC scheme in order to obtain a stable closed loop.

Proceeding this way guarantees asymptotic stability of the optimal equilibrium
(e.g., under the various conditions on f , � and the particular NMPC scheme dis-
cussed in this book) but the resulting closed-loop trajectories based on the optimiza-
tion of the stabilizing cost � may be very different from the optimal trajectories using
the economic cost �e. In particular, they may be far from optimal when performance
is measured via the economic cost function �e.

Due to the fact that for running the NMPC Algorithms 3.1 and its variants no par-
ticular conditions on � are needed, it is a natural idea to try to run these algorithms
using the economic cost �e in (OCPN) and its variants instead of taking the detour
via the stabilizing cost function �. Formally, most usual NMPC algorithms (in par-
ticular those discussed in this book) are perfectly suited for doing so, however, the
theoretical results ensuring stability and performance are in general not applicable,
because the economic cost �e will not satisfy the conditions needed for these results.
Hence, new conditions for ensuring stability and performance are needed.

Here we summarize some recent results in this direction. In [3] (see also the ref-
erences in this paper for earlier research on this subject), Angeli, Amrit and Rawl-
ings observe that if one adds the optimal limit behavior as a terminal constraint
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to the NMPC scheme, then performance estimates for the NMPC closed loop can
be given. More precisely, assume that the optimal control problem exhibits an op-
timal equilibrium x∗ with related control value u∗, i.e., f (x∗, u∗) = x∗ holds and
�e(x∗, u∗) is minimal among all possible equilibria. Then, using the NMPC scheme
from Sect. 5.2 with � = �e and X0 = {x∗}, for each x ∈ XN one obtains the perfor-
mance estimate

J∞(x,μN) ≤ �e(x∗, u∗), (7.30)

where J∞ denotes the averaged infinite horizon cost functional

J∞(x0,μN) := lim
K→∞

1

K

K∑

k=0

�e

(
xμN

(k, x0),μ
(
xμN

(k)
))

. (7.31)

Observe that J∞(x0,μN) is not simply J∞(x0,μN) from (4.10) with � replaced by
�e . The important difference between J∞ and J∞ is that J∞ contains the additional
averaging term 1/K . This term is necessary since in general for economic running
costs �e we cannot expect the infinite sum in (4.10) to converge. This approach
can be extended to periodic optimal trajectories xref instead of equilibria by using
suitable periodic terminal constraint sets; for details see [3].

It is interesting to note that—at least in the case of an optimal equilibrium x∗
with control value u∗—the estimate (7.30) may also hold for controllers μN from
stabilizing NMPC schemes. To this end, we use a stabilizing running cost � satisfy-
ing

�(x,u) ≥ α1
(|x|x∗ + |u|u∗

)
(7.32)

for some α1 ∈ K∞ and assume that J∞(x0,μN) is finite and that the economic cost
�e is continuous. Then, since J∞(x0,μN) is finite, �e(xμN

(n),μN(xμN
(n))) con-

verges to 0 as n → ∞ and hence the lower bound (7.32) implies xμN
(n) → x∗ and

μN(xμN
(n)) → u∗ as n → ∞. This, in turn, implies �e(xμN

(n),μN(xμN
(n))) →

�e(x∗, u∗) as n → ∞ from which (7.30) follows. Hence, although it seems reason-
able to expect that for NMPC with economic running cost �e one obtains a better
performance of the closed-loop trajectories in terms of the economic objective �e ,
this is not reflected in the asymptotic estimate (7.30).

In the usual NMPC setting, a finite value of J∞(x0,μN) from (4.10) together
with positive definiteness of � allows one to conclude that the closed-loop trajectory
must converge to x∗, because otherwise J∞(x0,μN) would be unbounded. This is
not the case for the averaged functional J∞(x0,μ) from (7.31) and, indeed, one
needs additional conditions in order to ensure that the closed-loop solution satisfy-
ing (7.30) does converge to x∗. Such a condition has been presented in Diehl, Amrit
and Rawlings [7] for the case of an optimal steady state and finite-dimensional state
space X = R

d . The condition, called strong duality, demands the existence of a
value λ∗ ∈ R

d such that x∗ and u∗ minimize the expression

�e(x,u) + [
x − f (x,u)

]T
λ∗
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over all admissible states x ∈ X and control values u ∈ U(x). Furthermore, the exis-
tence of α1 ∈ K∞ with

�e(x,u) + [
x − f (x,u)

]T
λ∗ − �e(x∗, u∗) ≥ α1

(|x|x∗
)

is required. Under these conditions, a Lyapunov function can be constructed by
adding suitable correction terms to the finite horizon optimal value function VN (cor-
responding to the economic running cost �e). In [2], Angeli and Rawlings further
observed that strong duality can be interpreted as a dissipativity condition, which
links this condition to more classical concepts used in the stability analysis of con-
trol systems.

Summarizing, the results sketched in this section show that NMPC can be used
for obtaining optimal feedback controllers also for optimal control problems differ-
ent from the classical NMPC objectives stabilization and tracking. We conjecture
that NMPC will prove valuable also for other types of optimization criteria, how-
ever, we are also convinced that there are problems which are not solvable using the
receding horizon NMPC paradigm. An in depth analysis of the structural properties
an optimal control problem needs to exhibit in order to be tractable with NMPC
techniques would certainly be an interesting research project.
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Chapter 8
Feasibility and Robustness

In this chapter we consider two different but related issues. In the first part we dis-
cuss the feasibility problem, i.e., that the nominal NMPC closed loop solutions re-
main inside a set on which the finite horizon optimal control problems defining the
NMPC feedback law are feasible. We formally define the property of recursive fea-
sibility and explain why the assumptions of the previous chapters, i.e., viability of
the state constraint set or of the terminal constraint set ensure this property. Then
we present two ways to relax the viability assumption on the state constraint set
in the case that no terminal constraints are used. After a comparative discussion
on NMPC schemes with and without stabilizing terminal constraints, we start with
the second part of the chapter in which robustness of the closed loop under addi-
tive perturbations and measurement errors is investigated. Here robustness concerns
both feasibility and admissibility as well as stability of the closed loop. We provide
different assumptions and resulting NMPC schemes for which we can rigorously
prove such robustness results and also discuss examples which show that in general
robustness may fail to hold.

8.1 The Feasibility Problem

We start by introducing the feasibility problem for the NMPC Algorithm 3.1, i.e.,
for the NMPC formulation without terminal constraints.

Recall from Definition 3.2 that for each x ∈ X the set of admissible control se-
quences U

N(x0) is nonempty if and only if there exists a control sequence u ∈ U
N

for which the two conditions

u(k) ∈ U
(
xu(k, x0)

)
and xu(k + 1, x0) ∈ X

are satisfied for all k = 0, . . . ,N − 1. Moreover, recall from the discussion after
Assumption 3.3 that the optimization problem (OCPN) in the NMPC Algorithm 3.1
is called feasible for the initial value x0 if U

N(x0) �= ∅ holds. Since only feasible
optimal control problems allow for an admissible solution, the points x0 ∈ X satis-
fying U

N(x0) �= ∅ are exactly the points for which the NMPC-feedback law μN is

L. Grüne, J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-501-9_8, © Springer-Verlag London Limited 2011
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Fig. 8.1 Infeasible trajectory
for Example 8.1 with initial
value x0 = (−1,1)� and
optimization horizon N = 2

well defined. The feasibility problem in NMPC now lies in the fact that even though
the constraints xu(n, x0) ∈ X imply xu�(1, x0) = xμN

(1, x0) = f (x0,μN(x0)) ∈ X,
it may happen that

U
N

(
f

(
x0,μN(x0)

)) = ∅,

i.e., that the optimization problem (OCPN) for initial value f (x0,μN(x0)) to be
solved at next time instant is infeasible. This means that μN and thus also the closed-
loop system (2.5) is not defined for x = f (x0,μN(x0)) and the NMPC closed loop
runs into a “dead end”.

Example 8.1 We illustrate this fact by Example 3.4, i.e.,

x+ = f (x,u) =
(

x1 + x2 + u/2
x2 + u

)
.

We use the state constraints X = [−1,1]2 and the control constraints U(x) = U =
[−1/4,1/4]. With the same computation as in Example 3.4 one sees that X is not
viable, since, for instance, for the point x = (1,1)� ∈ X we obtain f (x,u) /∈ X for
all u ∈ U.

As we have seen in Example 7.2, the system can be stabilized respecting the state
and control constraints starting from the initial value x = (−1,1)�. Running the
NMPC Algorithm 3.1 with N = 2 and �(x,u) = ‖x‖2 + 5u2 with this initial value,
however, results in the trajectory shown in Fig. 8.1. Here we have not stopped the
simulation upon infeasibility but rather continued the computation with the infeasi-
ble solution returned by the optimization algorithm.

Although asymptotically stable, at time n = 3 and 4 this trajectory violates the
state constraints, which are indicated by the black box. Moreover, while the opti-
mization algorithm reported infeasibility for n = 1,2,3,4, it terminated success-
fully at time n = 0, i.e., the infeasibility at later time instants was not detected upon
initialization and is not due to a failure of the optimization algorithm at time n = 0.
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In order to formally analyze this problem we introduce the following notions.

Definition 8.2 Let a constraint set X and an optimization horizon N ∈ N∞ for the
NMPC Algorithm 3.1 be given.

(i) A point x ∈ X is called feasible for X and N if U
N(x) �= ∅.

(ii) The feasible set for X and N is defined as

FN := {x ∈ X | x is feasible for X and N}.
The set F∞ is also called viability kernel.

(iii) A set A ⊆ X is called recursively feasible for optimization horizon N ∈ N if
A ⊆ FN and it is forward invariant for the NMPC-feedback law μN , i.e., if
f (x,μN(x)) ∈ A holds for all x ∈ A.

The recursive feasibility property from Definition 8.2(iii) guarantees that for any
initial value x ∈ A the NMPC closed loop will generate a solution which is admis-
sible for all future times. Formally, this is stated in the following lemma.

Lemma 8.3 Let A ⊆ X be recursively feasible for the NMPC Algorithm 3.1 with op-
timization horizon N ∈ N. Then for each x ∈ A the closed-loop solution xμN

(n, x)

generated by (2.5) is well defined for all n ∈ N0 and satisfies xμN
(n, x) ∈ A and

thus also xμN
(n, x) ∈ X for all n ∈ N0.

Proof The result follows by a straightforward induction using (2.5) and the relation
f (x,μN(x)) ∈ A for all x ∈ A. �

Thus, in addition to stability, for proper operation of the NMPC scheme we also
need to ensure that the desired operating range of our controller lies in a recur-
sively feasible set. Note that xμN

(n, x) ∈ X for all n ∈ N immediately implies the
inclusion A ⊆ F∞. For this reason, the viability kernel F∞ is the maximal possible
recursively feasible subset of X. In particular, it is the maximal set on which an ad-
missible feedback can be defined, independent of how this feedback is constructed.

The reason why we did not address the feasibility problem in the previous chap-
ters lies in the fact that the assumptions imposed so far always implied feasibility. In
fact, in Chap. 6 we always assumed that the constraint set X is viable in the sense of
Assumption 3.3. Under this assumption Theorem 3.5 ensures that A = X is recur-
sively feasible, as already remarked after this theorem. However, arbitrary constraint
sets are in general not viable. Moreover, while in simple examples the construction
of a viable subset of X may be possible, cf. Example 3.4, for complicated dynamics
this can be a difficult if not impossible task.

The terminal constrained scheme discussed in Chap. 5 provides a remedy to
this problem. For this scheme, recursive feasibility of XN is always ensured by
Lemma 5.3. However, the price that we pay for this nice property is that the op-
erating range is a priori restricted to XN , which may be considerably smaller than
the operating range of the unconstrained scheme, cf. Example 6.2. Furthermore, we
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either need to impose equilibrium constraints X0 = {x∗}—which may be too re-
strictive for some systems and may cause problems in the numerical optimization
routine—or we need to find a viable terminal constraint set X0 along with a terminal
cost F defined on X0 which satisfies Assumption 5.9. While the design of F can
be avoided by using the mixed scheme from the first part of Sect. 7.1, in any case
we need to find a viable terminal constraint set X0. Note that finding this “small”
set is in general easier than finding a “big” viable state constraint set X. However,
both in terms of the operating range of the scheme and in terms of implementa-
tional simplicity, it would be desirable if we could use the unconstrained scheme
without having to worry about the feasibility problem and without having to con-
struct a viable terminal constraint set X0. In the following sections we will show
two approaches in this direction.

8.2 Feasibility of Unconstrained NMPC Using Exit Sets

In this and in the subsequent section we present two results which ensure feasibility
for the unconstrained NMPC Algorithm 3.1 under two different assumptions. While
the first result uses properties of the interplay between the dynamics f and the
constraint set X and is independent of any stability properties, the second approach
uses asymptotic stability of the closed loop in order to ensure feasibility of subsets
of the state space.

In order to introduce our first approach we need the following objects.

Definition 8.4 Consider a control system (2.1) with state constraint set X ⊂ X and
control constraint set U(x) ⊆ U , x ∈ X. We recursively define the exit sets Ek ⊆ X,
k ∈ N0 as

E0 := X \ X,

Ek :=
{

x ∈ X

∣∣∣ f (x,u) ∈
k−1⋃

i=0

Ei for all u ∈ U(x)

}

, k = 1,2, . . . .

Remark 8.5

(i) This definition immediately implies Ek′ ⊆ Ek for all k ≥ k′ ≥ 1.
(ii) If X is viable then the definition of E0 implies E1 = ∅ and thus by induction

Ek = ∅ for all k ≥ 1.

In words, for k ≥ 1 the exit set Ek consists of all points x0 ∈ X for which it is
unavoidable that the trajectory xu(k, x0) leaves X after at most k steps regardless of
how u ∈ U

k(x0) is chosen. This is made precise in the following lemma.
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Lemma 8.6 A point x ∈ X satisfies x ∈ Ek if and only if the following property
holds:

for each u ∈ Uk there exists ku ∈ {0, . . . , k} such that either

u(n) /∈ U
(
xu(n, x)

)
for some n ∈ {0, . . . , ku − 1} or xu(ku, x) /∈ X.

(8.1)

Proof We show the property by induction over k. For k = 0 the assertion follows
immediately from E0 = X \ X and xu(0, x) = x. For the induction step k → k + 1
assume that the assertion holds for k. We then need to show that x ∈ Ek+1 holds if
and only if (8.1) holds for k + 1.

We first show that (8.1) holds for x ∈ Ek+1. Let x ∈ Ek+1 and pick u ∈ Uk+1.
If u(0) /∈ U(x), then (8.1) holds with ku = 1. Hence, assume u(0) ∈ U(x). Then
we get x ′ = xu(1, x) ∈ Ei for some i ∈ {0, . . . , k}. Now, by induction assumption
for the shifted control u′ = u(· + 1) ∈ Uk there exists ku′ ∈ {0, . . . , k} such that
either u′(n) /∈ U(xu′(n, x′)) for some n ∈ {0, . . . , ku′ − 1} or xu′(ku′, x′) /∈ X. Since
u′(n) = u(n + 1) and xu′(ku′, x ′) = xu(ku, x) for ku = ku′ + 1 ≤ k + 1, this shows
that (8.1) holds for ku = ku′ + 1.

Conversely, given x ∈ X for which (8.1) holds for k + 1, we need to show x ∈
Ek+1. Let ux ∈ U(x) be given and denote x ′ = f (x,ux). We have to show that
x′ ∈ Ei for some i ≤ k. If x′ /∈ X then x′ ∈ E0 and we are done. Otherwise, we pick
an arbitrary control sequence u′ ∈ Uk for x ′ and define a control sequence u ∈ Uk+1

by setting u(0) = ux and u(j) = u′(j − 1) for j ∈ {1, . . . , k}. Then by (8.1) there
exists ku ≤ k + 1 such that either u(n) /∈ U(xu(n, x)) for some n ∈ {0, . . . , ku − 1}
or xu(ku, x) /∈ X and since xu(1, x) = x ′ ∈ X we know that ku ≥ 1. By construction
of u this implies that (8.1) holds for x′ and u′ with ku′ = ku − 1 ≤ k. Hence, by the
induction assumption x′ ∈ Ek and consequently by definition of the Ek we obtain
x ∈ Ek+1. �

Our next lemma shows the relation between the exit sets Ek and the feasible sets
FN from Definition 8.2(ii).

Lemma 8.7 Consider a control system (2.1) with state constraint set X ⊂ X and
control constraint set U(x), x ∈ X. Then the identity

FN = X \ EN = X

∖(
N⋃

k=1

Ek

)

(8.2)

holds for all N ∈ N.

Proof The second equality follows immediately from Remark 8.5(i). It remains to
show FN = X \ EN , which we will do by proving “⊆” and “⊇”.

“⊆”: Consider x ∈ FN . Then U
N(x) is nonempty, hence we can pick u ∈ U

N(x).
By definition of U

N(x) this implies u(k) ∈ U(xu(k, x)) for all k = 0, . . . ,N − 1 and
xu(k, x) ∈ X for k = 0, . . . ,N . Thus, (8.1) does not hold and Lemma 8.6 implies
x /∈ EN and thus x ∈ X \ EN .
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“⊇”: Let x ∈ X \EN , i.e., x ∈ X and x /∈ EN . Then Lemma 8.6 implies that (8.1)
does not hold, i.e., there exists u ∈ UN with u(n) ∈ U(xu(n, x)) for n = 0, . . . ,N −1
and xu(n, x) ∈ X for n = 0, . . . ,N . This means that u ∈ U

N(x), hence U
N(x) �= ∅

and consequently x ∈ FN . �

Remark 8.8 If f is continuous then one can also show F∞ = X \ (
⋃∞

k=1 Ek).

Now we introduce the assumption we will use in order to guarantee feasibility.

Assumption 8.9 There exists N0 ∈ N0 such that Ek ⊆ EN0 for all k ≥ N0.

By Remark 8.5(ii) this assumption is satisfied for N0 = 0 if X is viable. Thus,
Assumption 8.9 can be seen as a relaxation of Assumption 3.3. In Example 8.12,
below, we will see that this condition is satisfied for the system from Example 8.1.
However, before we look at this example we show that under this assumption the
feasible set FN0 becomes recursively feasible for optimization horizon N ≥ N0 + 1.
To this end we need another preparatory lemma.

Lemma 8.10 Under Assumption 8.9 the identity

F∞ = FN

holds for all N ≥ N0.

Proof First observe that Assumption 8.9 together with Lemma 8.7 immediately im-
plies FN = FN0 for all N ≥ N0. Thus, it is sufficient to show the assertion for
N = N0.

Since the inclusion F∞ ⊆ FN follows directly from the definition, it remains
to show the converse inclusion. Thus, we need to prove that U

∞(x) �= ∅ for all
x ∈ FN0 . We do this by constructing u ∈ U

∞(x). To this end, since FN0 = FN0+1,
we can pick u0 ∈ U

N0+1(x) and set u(0) := u0(0). Then the definition of U
N(x)

implies u0(· + 1) ∈ U
N0(x1) for x1 = xu0(1, x) = xu(1, x). Thus x1 ∈ FN0 = FN0+1

and we can find u1 ∈ U
N0+1(x1). Setting u(1) := u1(0) with the same arguments we

obtain u1(·+1) ∈ U
N0(x2) for x2 = xu1(1, x1) = xu(2, x). Proceeding iteratively we

obtain a control sequence u ∈ U
∞ which satisfies xk = xu(k, x) = xuk−1(1, xk−1) ∈

FN0+1 ⊆ X and u(k) = uk(0) ∈ U(xk) = U(xu(k, x)) for all k ∈ N0. Thus u ∈
U

∞(x). �

Using Lemma 8.10 we can now prove our first recursive feasibility result.

Theorem 8.11 Consider the NMPC Algorithm 3.1 and let Assumption 8.9 hold.
Then the feasible set FN0 = F∞ is recursively feasible for all optimization horizons
N ≥ N0 + 1.

Proof Consider x ∈ FN0 . Since by Lemma 8.10 the identity FN0 = FN holds, in
particular we obtain FN0 ⊆ FN . Hence, problem (OCPN) in Algorithm (3.1) is fea-
sible. Let u� be the corresponding optimal control which implies μN(x) = u�(0).
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Since u� ∈ U
N(x) the definition of U

N(x) implies u�(· + 1) ∈ U
N−1(xu�(1, x)) =

U
N−1(f (x,μN(x))). Thus, U

N−1(f (x,μN(x))) �= ∅ and hence f (x,μN(x)) ∈
FN−1. Since N − 1 ≥ N0, Lemma 8.10 yields FN−1 = FN0 . This shows
f (x,μN(x)) ∈ FN0 , i.e., FN0 is recursively feasible. �

Example 8.12 We illustrate Assumption 8.9 and Theorem 8.11 by means of Exam-
ple 3.4 and 8.1, i.e.,

x+ = f (x,u) =
(

x1 + x2 + u/2
x2 + u

)
.

As in the previous examples we use the state constraints X = [−1,1]2. The control
constraints are chosen more generally as U(x) = U = [−ū, ū] with ū > 0.

A straightforward but tedious computation shows that the exit sets Ek are given
by

Ek =
k⋃

j=1

{
x ∈ [−1,1]2

∣
∣ x1 > −jx2 + 1 + j2ū/2 or x1 < jx2 − 1 − j2ū/2

}
.

In Example 3.4 we chose ū = 1. With this parameter one sees that Ek = E1 for
all k ≥ 1 because the inequalities for j ≥ 2 are never satisfied for x ∈ [−1,1]2.
Hence, Assumption 8.9 is satisfied with N0 = 1 and Theorem 8.11 yields that the
set F1 = F∞ = X \ E1 from Lemma 8.7 is recursively feasible for all N ≥ 2. This
set is exactly the set defined in (3.6).

In Example 8.1 we have ū = 1/4. In this case one sees that E4 �= E3 because
(−0.99,1)� ∈ E4 but (−0.99,1)� /∈ E3. On the other hand, Ek = E4 for all k ≥ 4
because for x2 ∈ [−1,1] and j ≥ 5 the inequality

−jx2 + 1 + j2ū/2 > −4x2 + 1 + 42ū/2

holds. Hence, the inequality for j = 4 is always satisfied whenever the inequality
for some j ≥ 5 is satisfied, thus x ∈ Ej for j ≥ 5 implies x ∈ E4. Consequently,
Assumption 8.9 holds with N0 = 4 and according to Theorem 8.11 for Example 8.1
the closed-loop solution satisfies the state constraints for N ≥ 5 and all x ∈ X \ E4.
In particular, since the point (−1,1)� is not contained in E4, the infeasibility from
Fig. 8.1 should disappear. Figure 8.2 shows that this is exactly what happens.1

8.3 Feasibility of Unconstrained NMPC Using Stability

A main advantage of the feasibility analysis in the previous section is that it is com-
pletely independent of any stability properties of the closed loop. Thus, feasibility
and stability can be analyzed independently of each other. Unfortunately, Theo-
rem 8.11 crucially relies on Assumption 8.9 which may not be satisfied for many

1In fact, the infeasibility already disappears for N = 3 and N = 4 but this is not covered by our
theorem.
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Fig. 8.2 Feasible trajectory
for Example 8.1 with initial
value x0 = (−1,1)� and
optimization horizon N = 5

practical problems and, even if it is satisfied, may be difficult to verify for complex
dynamics.

Thus, in this section we present an alternative result which shows that feasibility
may be inherited from the optimality properties of the solution and from the stability
of the closed loop. In order to derive this result we first need three basic assumptions
and a couple of preparatory lemmas.

Our stability results rely on the controllability Assumption 6.4, which is only
meaningful if the state constraint set X is viable. If this is not the case, then asymp-
totic controllability for arbitrary horizons N only makes sense for initial values
x ∈ F∞. This is what our first assumption demands.

Assumption 8.13 Consider the optimal control problem (OCPN) with a not nec-
essarily viable state constraint set X. We assume that on the viability kernel F∞
the system is asymptotically controllable with respect to � with rate β ∈ K L0,
i.e., for each x ∈ F∞ and each N ∈ N there exists an admissible control sequence
ux ∈ U

N(x) satisfying xux (n, x) ∈ F∞ for all n = 1, . . . ,N and

�
(
xux (n, x),ux(n)

) ≤ β
(
�∗(x), n

)

for all n ∈ {0, . . . ,N − 1} and �∗ from (6.2).

Under this assumption the results from the stability analysis in Chap. 6 remain
valid if we replace the state constraints xu(k, x) ∈ X for k = 0, . . . ,N (which in
(OCPN) is implicitly expressed by the requirement u ∈ U

N(x)) by the state con-
straints

xu(k, x) ∈ F∞ for k = 0, . . . ,N. (8.3)

Indeed, since F∞ is viable the standing assumption from Chap. 6, cf. Remark 6.22,
is satisfied for these stricter state constraints, i.e., if we replace X by F∞. Further-
more, from the observation in Remark 6.11 it follows that the results from Chap. 6
remain valid if we replace the constraint for k = N in (8.3) by a weaker constraint.
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In particular, Theorem 6.14 remains valid for β from Assumption 8.13 and F∞ in
place of X if we weaken (8.3) to

xu(k, x) ∈ F∞ for k = 0, . . . ,N − 1, xu(N,x) ∈ X. (8.4)

In the remainder of this section, the reference (OCPN) will always refer to the prob-
lem with the original state constraints xu(k, x) ∈ X, k = 0, . . . ,N , while we will al-
ways explicitly refer to (8.4) if we consider (OCPN) with the additional constraints
(8.4).

In order to apply our stability results from Chap. 6, we need further assump-
tions on � and VN . For this assumption recall once again the definition �∗(x) :=
infu∈U �(x,u) from (6.2).

Assumption 8.14 There exist α1, α2, α3, α4 ∈ K∞ and N0 ≥ 2 such that the in-
equalities

α1
(|x|x∗

) ≤ VN(x) ≤ α2
(|x|x∗

)

and

α3
(|x|x∗

) ≤ �∗(x) ≤ α4
(|x|x∗

)

hold for all N ≥ N0.

Note that the assumptions of Theorem 6.21 imply Assumption 8.14 with α1 = α3
and α2(r) = ∑∞

k=0 β(α4(r), k). Here the linearity and summability of β ensure that
α2 is indeed a K∞-function.

Finally, we want to ensure that the feedback stabilization problem under the given
state constraints X is solvable locally around x∗. A prerequisite for this is that there
exists a neighborhood of x∗ whose intersection with X consists of points which are
feasible for N = ∞. This is our last assumption.

Assumption 8.15 There exists a ball Bδ(x∗) such that Bδ(x∗) ∩ X ⊆ F∞.

Observe that we only require the inclusion Bδ(x∗) ∩ X ⊆ F∞ (as opposed to
Bδ(x∗) ⊆ F∞), which allows for the situation that x∗ is on the boundary of X.

The following two lemmas show properties of optimal trajectories which are
crucial for our feasibility analysis.

Lemma 8.16 Assume that Assumptions 8.13–8.15 hold. Let ε = α−1
2 ◦ α3(δ) > 0

with α2, α3 ∈ K∞ from Assumption 8.14 and δ > 0 from Assumption 8.15. Then
for each N ≥ 2 and each x ∈ Bε(x∗) ∩ X the optimal trajectory for OCPN satisfies
xu�(n, x) ∈ Bδ(x∗) ∩ X for all n ∈ {0, . . . ,N − 1}.

Proof The relation xu�(n, x) ∈ X follows immediately from u� ∈ U
N(x). It remains

to show xu�(n, x) ∈ Bδ(x∗). From the inequality for �∗ in Assumption 8.14 we ob-
tain

�(y,u) ≥ α3(δ) for all y /∈ Bδ(x∗). (8.5)
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On the other hand, the inequality for VN in Assumption 8.14 and the definition of ε

imply

VN(x) < α2(ε) = α2
(
α−1

2 ◦ α3(δ)
) = α3(δ) for all x ∈ Bε(x∗). (8.6)

Now assuming xu�(n, x) /∈ Bδ(x∗) for some x ∈ Bε(x∗) and some n ∈ {0, . . . ,N −
1}, and using (8.5) with y = xu�(n, x) implies

VN(x) =
N−1∑

k=0

�
(
xu�(k, x), u�(k)

) ≥ �
(
xu�(n, x),u�(n)

) ≥ α3(δ),

which contradicts (8.6). �

Lemma 8.17 Assume that Assumptions 8.13–8.15 hold and consider some ε > 0.
Let N ≥ 2 and x ∈ FN with VN(x) < Nα3(ε). Then the optimal trajectory xu�(n, x)

for (OCPN) satisfies xu�(n, x) ∈ Bε(x∗) ∩ X for some n ∈ {0, . . . ,N − 1}.

Proof Again, xu�(n, x) ∈ X follows immediately from u� ∈ U
N(x) and it remains

to show xu�(n, x) ∈ Bε(x∗). To this end, assume xu�(n, x) /∈ Bε(x∗) for all n ∈
{0, . . . ,N − 1}. Then Assumption 8.14 implies

VN(x) =
N−1∑

k=0

�
(
xu�(k, x), u�(k)

) ≥
N−1∑

k=0

α3
(∣∣xu�(k, x)

∣
∣
x∗

) ≥ Nα3(ε),

which contradicts VN(x) < Nα3(ε). �

The next lemma shows a property of arbitrary admissible trajectories.

Lemma 8.18 Let N ∈ N, x ∈ FN and u ∈ U
N(x) be such that the correspond-

ing trajectory satisfies xu(N − 1, x) ∈ F∞. Then xu(k, x) ∈ F∞ for all k =
0, . . . ,N − 1.

Proof Fix an arbitrary k ∈ {0, . . . ,N − 2} and abbreviate xk = xu(k, x). Since y =
xu(N − 1, x) ∈ F∞ there exists a control sequence uy ∈ U

∞(y), i.e.,

uy(n) ∈ U
(
xuy (n, y)

)
and xuy (n, y) ∈ X

for all n ∈ N0. Then the concatenated control sequence

ū(n) =
{

u(n + k), n = 0, . . . ,N − k − 2,

uy(n − N + k + 1), n ≥ N − k − 1

and the initial value xk yield a trajectory satisfying

xū(n, xk) =
{

xu(n + k, x), n = 0, . . . ,N − k − 1,

xuy (n − N + k + 1, y), n ≥ N − k − 1.

This trajectory remains in X for all n ≥ 0 and the corresponding control sequence ū

is admissible for all times. Thus u ∈ U
∞(xk), hence U

∞(xk) �= ∅ and consequently
xk ∈ F∞. �

Combining the three previous lemmas we arrive at the following proposition.
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Proposition 8.19 Assume that Assumptions 8.13–8.15 hold and let N ≥ 2 and x ∈
FN with VN(x) < Nα3 ◦ α−1

2 ◦ α3(δ) with α2, α3 ∈ K∞ from Assumption 8.14 and
δ > 0 from Assumption 8.15. Then the optimal trajectory xu�(n, x) for (OCPN) with
horizon N satisfies xu�(n, x) ∈ F∞ for all n ∈ {0, . . . ,N − 1}.

In particular, for these x the optimal values and the optimal trajectories do not
change if we add the constraints (8.4) to the optimal control problem (OCPN).

Proof Applying Lemma 8.17 with ε = α−1
2 ◦ α3(δ) yields xu�(n, x) ∈ Bε(x∗) for

some n ∈ {0, . . . ,N − 1}. Since by Corollary 3.16 the trajectory xu�(n + ·, x) is
optimal for horizon N −n and initial value xu�(n, x), Lemma 8.16 yields xu�(k, x) ∈

Bδ(x∗)∩X for k = n, . . . ,N −1. In particular, this implies xu�(N −1, x) ∈ Bδ(x∗)∩
X ⊆ F∞. Now Lemma 8.18 yields the assertion. �

Now we are ready to formulate our feasibility theorem.

Theorem 8.20 Let Assumptions 8.13–8.15 hold, let N ≥ 2 and assume that α from
Theorem 6.14 with β from Assumption 8.13 satisfies α ∈ (0,1]. Then the set

A = {
x ∈ FN

∣∣ VN(x) < Nα3 ◦ α−1
2 ◦ α3(δ)

}

with α2, α3 ∈ K∞ from Assumption 8.14 and δ > 0 from Assumption 8.15 is recur-
sively feasible for the NMPC feedback μN from Algorithm 3.1. Furthermore, the
NMPC closed loop (2.5) is asymptotically stable on A.

Proof From the discussion after Assumption 8.13 it follows that Theorem 6.14 is
applicable for Algorithm 3.1 with the additional constraints (8.4) in (OCPN) with
β from Assumption 8.13. Thus, (5.1) holds for μN from Algorithm 3.1 and the
corresponding optimal value function VN for all x ∈ F∞ if we add the constraints
(8.4).

By Proposition 8.19, for x ∈ A the optimal trajectories do not change if we add
the constraints (8.4) to the optimal control (OCPN) in Algorithm 3.1. In particu-
lar, this implies that the resulting NMPC feedback μN does not change if we add
the state constraints (8.4). Since, furthermore, for x ∈ A the optimal trajectories of
(OCPN) lie in F∞, we get x ∈ F∞ and f (x,μN(x)) ∈ F∞, thus VN is defined in x

and f (x,μN(x)). Hence, for each x ∈ A (5.1) also holds for μN from Algorithm 3.1
and the corresponding optimal value function VN without the constraints (8.4). For
x ∈ A this implies

VN

(
f

(
x,μN(x)

)) ≤ VN(x) − α�
(
x,μN(x)

) ≤ VN(x) < Nα3 ◦ α−1
2 ◦ α3(δ)

and thus f (x,μN(x)) ∈ A. This shows the recursive feasibility of A. �

Corollary 8.21 Let Assumptions 8.13–8.15 hold, let N0 ≥ 2 and assume that α

from Theorem 6.14 with β from Assumption 8.13 satisfies α ∈ (0,1] for all N ≥
N0. Then for each bounded set K ⊆ F∞ there exists NK ≥ N0 such that for each
N ≥ NK there exists a recursively feasible set AN for the NMPC feedback μN

from Algorithm 3.1 with K ⊆ AN . Furthermore, the NMPC closed loop (2.5) is
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asymptotically stable on AN . In particular, if X is bounded, then F∞ is recursively
feasible for all sufficiently large optimization horizons N .

Proof Using the upper bound α2 on VN from Assumption 8.14 and the inclusion
F∞ ⊆ FN it follows that the set A from Theorem 8.20 contains the set Bν(x∗)∩ F∞
with

ν = α−1
2

(
Nα3 ◦ α−1

2 ◦ α3(δ)
)
.

Since ν ↗ ∞ for N → ∞, for each bounded set K ⊆ F∞ we can choose
NK ≥ N0 such that K ⊆ Bν(x∗) ∩ F∞ holds for all N ≥ NK . This shows the claim
for AN = A. �

8.4 Comparing Terminal Constrained vs. Unconstrained NMPC

Now that we have developed the main stability and feasibility results we will discuss
the main advantages and disadvantages of NMPC schemes with and without termi-
nal constraints and/or costs. More precisely we distinguish between the following
schemes.

(a) NMPC with equilibrium (or time varying reference) endpoint constraint from
Sect. 5.2

(b) NMPC with Lyapunov function terminal cost from Sect. 5.3
(c) NMPC without terminal cost and constraints from Chap. 6

We compare the main features of these NMPC variants in terms of

(i) design, i.e., the choice of the necessary ingredients of the respective algorithms
(ii) stability, i.e., the asymptotic stability properties of the closed loop and the as-

sumptions needed in order to guarantee them
(iii) performance, i.e., the suboptimality compared with the infinite horizon optimal

value
(iv) feasibility, i.e., the guarantee that the optimal control problem in the NMPC

closed loop is solvable for the given constraints
(v) numerical effort, i.e., the time needed for the online optimization

(i) Regarding the design, clearly the schemes (a) and (c) are preferable. In both
cases all that needs to be designed is a desired equilibrium (or reference in the time
varying case) and a running cost � which is positive definite with respect to this
reference, which in the simplest case could be of the form (3.3).

In contrast to this, the additional construction of a viable terminal constraint set
X0 and a terminal cost F meeting Assumptions 5.1(i) and (ii) necessary for (b)
poses a considerable additional difficulty in the design of the scheme, notably (but
not exclusively) for time varying references.

This is probably the main reason for the fact that in our discussion with prac-
titioners the formulations (a) and (c) turned out to be the by far preferred NMPC
variants in industrial applications.
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(ii) The main difference of the stability properties for the different schemes lies
in the fact that for (a) and (b) the operating range, i.e., the region on which the
stabilizing feedback is defined or, equivalently, the domain of attraction of the ref-
erence solution for the closed-loop solution, is a priori confined to the feasible set
XN . In contrast to this, the unconstrained scheme (c) can yield larger and even un-
bounded stability regions for fixed N , cf. Example 6.2. On the other hand, for small
optimization horizons N in (a) and (b) only the domain of attraction shrinks while
for (c) asymptotic stability may be lost completely. Which of the two advantages is
dominant can only be assessed on a case by case basis for each particular system to
be controlled, usually performed with the support of numerical simulations and/or
experimental results.

Regarding the conditions for stability, (a) requires the system to be controllable
to the desired reference point or trajectory in finite time, while (b) requires the via-
bility of the terminal constraint set X0 and the compatibility of F and � in the sense
of Assumption 5.1(ii). The unconstrained scheme, in turn, requires the asymptotic
controllability from Assumption 6.4 or the bound from Assumption 6.30 and a pos-
itive value α in Theorem 6.14 or a sufficiently large optimization horizon N , cf.
Theorem 6.33. The conditions for the existence of suitable F and � for (b) and � for
(c), respectively, can roughly be regarded as comparably strong as they both essen-
tially require asymptotic controllability with suitable uniformity. In contrast to this,
the finite time controllability condition for (a) is stronger.

Concerning the verification of these conditions, the assumptions for (a) and (b)
are in typically considerably easier to check than the asymptotic controllability con-
dition for (c). However, a considerable difference between the conditions for (b)
and (c) is that F in (b) must be constructed in order to run the scheme while β in
Assumption 6.4 is only needed for the analysis of the scheme but not at runtime.

(iii) Regarding performance, the respective Theorems 5.21 and 6.21 show that
for all schemes (a)–(c) the infinite horizon performance J∞(x,μN) from Defini-
tion 4.10 approaches the optimal value V∞(x) if the optimization horizon N tends
to infinity. The conditions for these theorems to hold are essentially equivalent to
conditions needed for asymptotic stability. For scheme (b), Theorem 5.22 gives an
alternative estimate under an assumption on the terminal cost F .

For fixed N , however, not only the operating range (cf. Example 6.2 and the
discussion in (ii), above) but also the performance may differ, at times considerably,
even if XN = X holds. We illustrate this effect by two examples.

Example 8.22 We reconsider Examples 5.18 and 6.1, i.e.,

x+ = x + u, �(x,u) = x2 + u2

with X = X = U = U = R. In Example 5.18 we computed that scheme (a) for N = 2
yields the controller μ2(x) = 2x/3 satisfying J∞(x,μ2) = 1.625x2.
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In Example 6.1 it turned out that for the same example from scheme (c) we obtain
the controller μ2(x) = −x/2. This yields the closed-loop solution xμ2(k, x) = x/2k

and �(x,μ2(x)) = x2 + (x/2)2 = 5x2/4. This implies

J∞(x,μ2) =
∞∑

k=0

�
(
xμ2(k, x),μ2

(
xμ2(k, x)

)) =
∞∑

k=0

5

4

x2

22k
= 5

3
x2 ≈ 1.666x2

(note that this value coincides with the upper bound V2(x)/α from Theorem 6.18
since in Example 6.1 we computed V2(x) = 3x2/2 and α = 0.9, hence V2(x)/α =
(3x2/2)(10/9) = 5x2/3). Hence, for this example scheme (a) yields a better perfor-
mance than scheme (c).

Example 8.23 Consider again Example 5.19, i.e.,

x+ = x + u, �(x,u) = x2 + u4

with X = X = U = U = R. In this example we showed that scheme (a) yields

J∞(20,μ2) ≈ 11240.39.

On the other hand, the controller μ given in Example 5.19 is nothing but the con-
troller μ2 for scheme (c), which we again computed by MAPLE. This controller
yields

J∞(20,μ2) ≈ 1725.33,

i.e., a considerably better value.

Roughly speaking, the terminal constraints employed in (a) and (b) cause the
NMPC-feedback law to steer the system to the equilibrium or reference more rapidly
at the cost of larger control effort, while the unconstrained scheme (c) typically acts
more cautiously. This is why in Example 8.22, in which the control is only moder-
ately penalized, scheme (a) performs better while in Example 8.23, in which large
control values are penalized much more heavily, scheme (c) yields the better re-
sult. In general, it appears that for a stronger penalization of the control effort the
unconstrained scheme (c) provides better performance. It should, however, also be
mentioned that a stronger penalization of u typically yields a larger β in Assump-
tion 6.4, which in turn may affect the stability of scheme (c).

(iv) Our discussion on feasibility from the last sections shows that for the ter-
minal constrained schemes (a) and (b) the sets XN are “automatically” recursively
feasible. This property is inherited from the viability of the terminal constraint set
X0. For the unconstrained scheme recursive feasibility can be expected on (a sub-
set of) the viability kernel, as Theorems 8.11 and 8.20 as well as Corollary 8.21
show. However, in contrast to (a) and (b) here we need additional assumptions and
a sufficiently large optimization horizon N if the state constraint set X itself is not
viable.

Regarding the detection of infeasibility, the schemes (a) and (b) have the advan-
tage that feasibility of the nominal closed loop is guaranteed once the optimization
algorithm reports that (OCPN,e) has a feasible solution for the initial value x0. In
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contrast to this, in scheme (c) infeasibility may occur even if (OCPN) has a feasi-
ble solution for the initial value, cf. Example 8.1. Thus, in schemes (a) and (b) the
infeasibility is usually detected earlier than in scheme (c).

(v) The numerical effort depends on many different parameters, most notably
on the dimension of the problem, on the optimization horizon, on the structure of
the dynamics f and the running cost � and on the number and type of constraints.
Generally, one has to take into account that in a nonlinear and nonconvex setting
it can often not be expected that the optimization algorithm is able to find a global
optimum. The reason for this will become apparent in the discussion of nonlinear
optimization algorithms in Chap. 10. Hence, in general it is difficult to assess which
of the schemes is preferable from the numerical point of view.

However, regarding the constraints it is clear that the schemes (a) and (b) are
more demanding than (c). In particular, the endpoint constraint of scheme (a) may
cause severe problems in the numerical optimization routine for nonlinear and non-
convex problems. From this point of view the regional constraint in scheme (b) is
typically preferable to (a) and scheme (c) without terminal constraints is certainly
the best of all. However, if the terminal constraint helps to significantly reduce the
optimization horizon N in scheme (a) or (b) compared to scheme (c), e.g. when
no good running cost in the sense of Sect. 6.6 can be found for (c), then this effect
may easily override the advantage of having fewer constraints in scheme (c). Hence,
similar to what was said in the discussion in the first paragraph of (ii), again an as-
sessment on a case by case basis must be made in order to decide which scheme is
more appropriate for a given system and control task.

Summarizing the discussion in this section, one sees that both terminal con-
strained and unconstrained schemes have their specific advantages and disadvan-
tages. In practice, it is presumably a good choice to start with an unconstrained
scheme which is easier to design and assess its performance via numerical sim-
ulations and practical experiments. If the desired performance—be it in terms of
stability, suboptimality or feasibility—is not achieved for reasonable choices of N

and simple modifications like, e.g., the terminal weights from Sect. 7.2 do not yield
a solution, then one of the more sophisticated methods like adding appropriate ter-
minal constraints and costs, a redesign of the running cost functions in the spirit of
Sect. 6.6 or one of the mixed schemes from Sect. 7.1 should be considered.

8.5 Robustness: Basic Definition and Concepts

Real systems do never exactly coincide with their mathematical models. This means
that in practice the behavior of the real system will deviate from the mathematically
idealized model (2.1). In this and in the following sections we will analyze the im-
pact of these deviations on the NMPC closed loop and discuss NMPC variants which
provide robustness against such errors. In order to simplify the setting we will con-
sider the case of time invariant reference xref = x∗. All result do, however, carry
over to the time varying case provided the necessary assumptions hold uniformly
with respect to time; we will comment on this in remarks after our main results.
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Sources for errors are, for instance, modeling errors, uncertain parameters, exter-
nal disturbances acting on the system and measurement errors. A further source are
numerical errors, which are almost inevitable in NMPC schemes because we need a
numerical integration scheme for the solution of (OCPn

N,e) or its variants. This topic
will be treated in detail in Chap. 9, see in particular Sect. 9.5.

As a consequence, the predicted trajectories xu(k, x) used in (OCPn
N,e) and its

variants do not exactly coincide with the future behavior of the real system.
Formally, we have already taken this fact into account by referring to the closed-

loop systems (2.5) and (3.5) as nominal closed-loop system. Recall that the nominal
NMPC closed loop (3.5) whose behavior we analyzed in the preceding chapters and
sections is given by

x+ = f
(
x,μN(x)

)
.

Here f exactly coincides with f in (2.1), which is used in (OCPn
N,e) or its variants

to compute the NMPC controller μN .
In order to analyze the influence of the various error sources, for simplicity of

exposition we assume that our state space X is a normed vector space such that we
can add elements of X and measure the size of elements x ∈ X by their norm ‖x‖.
Then we can introduce the perturbed closed-loop model

x̃+ = f
(
x̃,μN(x̃ + e)

) + d. (8.7)

Here d ∈ X is an additive perturbation which covers all kinds of errors causing f to
deviate from the evolution of the real system, like modeling and numerical errors,
external disturbances, uncertain parameters etc. In addition, we consider the error
term e ∈ X, which models measurement errors. Note that when both f and μN are
continuous then one could express the effects of d and e on the system via one
additive perturbation d̄ . However, while all of our robustness results will rely on
the continuity of f we will not assume continuity of μN because optimal feedback
controls and thus NMPC-feedback laws are, in general, discontinuous.

In order to distinguish between the nominal and the perturbed system, we denote
the states of the perturbed system by x̃ and the states of the nominal model by x. For
initial value x0 ∈ X and sequences of perturbation values d(·), e(·) ∈ XN we obtain
solutions x̃μN

(k, x0) of (8.7) from the iteration

x̃μN
(0, x0) = x0,

x̃μN
(k + 1, x0) = f

(
x̃μN

(k, x0),μN

(
x̃μN

(k, x0) + e(k)
)) + d(k), k = 0,1, . . . .

Although this solution depends on the particular sequences d(·) and e(·), we will not
explicitly include this dependence in our notation. Instead, given a tuple of bounds
(d̄, ē) ∈ R

+
0 × R

+
0 and an initial value x0 we will define the following set S(d̄,ē)(x0)

of solutions

S(d̄,ē)(x0) := {
x̃μN

(·, x0)
∣∣ ∥∥d(k)

∥∥ ≤ d̄,
∥∥e(k)

∥∥ ≤ ē for all k ∈ N0
}
.

The desired robust stability property is now given by the following definition.
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Definition 8.24 Given a set A ⊆ X such that the optimal control problem defining
μN is feasible for all x0 ∈ A, we say that x∗ is semiglobally practically asymptoti-
cally stable on A with respect to the perturbations d and e if there exists β ∈ K L
such that the following property holds: for each δ > 0 and 	 > δ there exist d̄, ē > 0,
such that each solution x̃μN

(·, x0) ∈ S(d̄,ē)(x0) with x0 ∈ A and |x0|x∗ ≤ 	 satisfies
x̃μN

(k, x0) ∈ A and
∣∣x̃μN

(k, x0)
∣∣
x∗ ≤ max

{
β
(|x0|x∗, k

)
, δ

}

for all k ∈ N0, provided the initial measurement error e(0) satisfies x0 + e(0) ∈ A.

Observe that this definition resembles Definition 6.28(ii) except that now the size
of the perturbation plays the role of the optimization horizon N . Furthermore, we
have explicitly included admissibility and feasibility into the definition in order to
exclude the case that the perturbations drive the closed-loop trajectory out of the
feasible or admissible set. The precise meaning of “the optimal control problem
defining μN is feasible for all x0 ∈ A” depends on the NMPC setting under consid-
eration: if terminal constraints X0 are used we require A ⊆ XN , otherwise A ⊆ FN .
The additional set A ⊆ X is needed if the feasible set is strictly smaller than X.
Observe that the definition in particular implies recursive feasibility of A.

In words, this definition requires that for all initial values x0 which are both
in the ball B	(x∗) and in A the perturbed solutions of (8.7) stay within the state
constraint set X and behave like asymptotically stable solutions until they reach
the ball Bδ(x∗). The condition x0 + e(0) ∈ A is a technical requirement needed to
ensure that the optimization problem for obtaining μN —which we do not assume
to be feasible outside A—is feasible at initial time n = 0. In what follows, we will
often use the simpler term robust stability instead of semiglobal practical asymptotic
stability.

It should be noted that this robust stability property is closely related to a re-
gional version of the input-to-state stability (ISS) property. Indeed, the assumption
in Definition 8.24 implies that for fixed 	 > 0 we can find a K∞-function ρ such
that for each δ ∈ (0,	] the stability property in Definition 8.24 is satisfied whenever
d̄ ≤ ρ(δ) and ē ≤ ρ(δ) holds, i.e., the term “sufficiently small” in Definition 8.24
may be quantified by a function ρ ∈ K∞. Then, defining γ = ρ−1, for all x0 ∈

B	(x∗) and all perturbation sequences d, e with ‖d‖∞ := supk∈N0
‖d(k)‖ ≤ ρ(	)

and ‖e‖∞ := supk∈N0
‖e(k)‖ ≤ ρ(	), Definition 8.24 and the definition of γ imply

∣∣x̃μN
(k, x0)

∣∣
x∗ ≤ max

{
β
(|x0|x∗, k

)
, γ

(‖d‖∞
)
, γ

(‖e‖∞
)}

,

i.e., the system is input-to-state stable for inputs d and e.

8.6 Robustness Without State Constraints

In this section we will show that the robust stability property from Definition 8.24
is always satisfied under mild conditions if we do not impose state constraints. State
constraints affect the robustness analysis of the stability of (8.7) in two ways: on the
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one hand, even if the nominal closed loop is admissible on the whole state constraint
set X, i.e., if f (x,μN(x)) ∈ X holds for all x ∈ X, arbitrary small perturbations d, e

may lead to a violation of the state constraints, i.e., to f (x,μN(x + e)) + d /∈ X,
if f (x,μN(x)) is near the boundary of X. Likewise, the perturbations may destroy
the recursive feasibility of a nominally recursively feasible set. On the other hand,
state constraints may introduce instability even if we only consider perturbations
satisfying f (x,μN(x + e)) + d ∈ X. The latter is a more subtle issue, which we
will illustrate in the next section. Solutions to both problems will be discussed in
Sects. 8.8 and 8.9.

Without state constraints, i.e., with X = X, the problem considerably simplifies.
As introduced in the last section we assume that X is a normed vector space with
norm ‖x‖. This implies x + d ∈ X and x + e ∈ X for all x, d, e ∈ X. We allow
for input constraints but we assume U(x) = U, i.e., that the input constraint set
is independent of x. This ensures μN(x + e) ∈ U for all x, e ∈ X while for state
dependent input constraints and measurement errors we will never be able to exactly
satisfy state dependent input constraints, because the control value μN(x+e) will be
selected from U(x + e) instead of U(x). One could, however, extend the subsequent
proofs to input constraint sets U(x) which depend continuously on the state x in
a suitable set theoretic sense. Still, in order not to overload the presentation with
technicalities we decided not to include this extension.

For our analysis we need the following definition.

Definition 8.25 Consider vector spaces X and Y , a set A ⊂ X and an arbitrary
set U.

(i) A function W : X → Y is called uniformly continuous on A if there exists a
function ω ∈ K such that for all x, y ∈ A the inequality

∥∥W(x) − W(y)
∥∥ ≤ ω

(‖x − y‖) (8.8)

holds.
(ii) A function W : X × U → Y is called uniformly continuous on A uniformly in

u ∈ U if there exists a function ω ∈ K such that for all x, y ∈ A and all u ∈ U

the inequality
∥∥W(x,u) − W(y,u)

∥∥ ≤ ω
(‖x − y‖) (8.9)

holds. In both cases, the function ω is called modulus of continuity.

Note that continuity of W : X → Y implies uniform continuity on any compact
set A ⊂ X. This observation will be used, e.g., in Corollary 8.29, below, exploiting
the fact that closed balls in the state space X = R

d are always compact.
Before, however, we formulate our main result for arbitrary vector spaces X. The

following theorem is formulated for Algorithm 3.1 without terminal constraints and
we will comment on the case with terminal constraints afterwards. For simplicity,
we will directly work with the assumptions of Theorem 4.11, which are ensured,
e.g., by Theorems 6.18, 6.21 or by Corollary 6.19. Alternatively, one could work
with the weaker assumptions of Theorem 4.14 as in Theorem 6.33 but since this
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would cause further technicalities in the statement and the proof of the following
theorem, we prefer to use the simpler setting of Theorem 4.11.

Theorem 8.26 Consider the NMPC Algorithm 3.1 without state constraints, i.e.,
X = X for some vector space X and with input constraints satisfying U(x) = U

for all x ∈ X. Assume that V = VN satisfies the assumptions of Theorem 4.11 with
constant reference xref ≡ x∗ on S = X. Assume furthermore that VN and f are
uniformly continuous, uniformly in u in case of f , on the closed balls Bρ(x∗) for all
ρ > 0, with functions ωV and ωf in (8.8) and (8.9), respectively.

Then the perturbed closed-loop system (8.7) is semiglobally practically asymp-
totically stable in the sense of Definition 8.24 on A = X.

Proof Fix 	 > δ > 0. For all ν > 0 the bounds α1, α2 ∈ K∞ on V = VN from
Theorem 4.11 imply

B
α−1

2 (ν)
(x∗) ⊆ V −1

N

([0, ν]) ⊆ B
α−1

1 (ν)
(x∗).

Thus, defining σ = α−1
2 (α1(δ)/2), γ = α−1

1 (α2(	)) and ρ = α−1
1 (α2(γ +σ)) yields

the inclusions

Bσ (x∗) ⊆ V −1
N

([
0, α1(δ)/2

])
, V −1

N

([
0, α1(δ)

]) ⊆ Bδ(x∗),
B	(x∗) ⊆ V −1

N

([
0, α2(	)

]) ⊆ Bγ (x∗)

and

Bσ

(
V −1

N

([
0, α2(	)

])) ⊆ Bγ+σ (x∗) ⊆ V −1
N

([
0, α2(γ + σ)

]) ⊆ Bρ(x∗).

Note that (4.14) yields the implication

x ∈ V −1
N

([
0, α2(γ + σ)

]) ⇒ f
(
x,μN(x)

) ∈ V −1
N

([
0, α2(γ + σ)

])
. (8.10)

Let ωV and ωf be the functions from Definition 8.25 for VN and f (·, u), respec-
tively, for A = Bρ(x∗). This implies that (8.8) and (8.9), respectively, hold for VN

and f (·, u) for all x, y ∈ V −1
N ([0, α2(γ + σ)]). Furthermore, since the lower bound

α3 ∈ K∞ on � from Theorem 4.11 is continuous, it is uniformly continuous on the
compact set [0,	 + σ ]. We denote the respective function ω from (8.8) by ωα .

Now we define the function

Ṽ (x) :=
{

VN(x), x ∈ V −1
N ([0, α2(γ + σ)]),

α2(γ + σ), otherwise.

By construction, this function is continuous, coincides with VN on V −1
N ([0, α2(γ +

σ)]) and is constant outside this set. Hence, (8.8) holds for W = Ṽ with ω = ωV

for all x, y ∈ X. Furthermore, (8.10) implies that (4.14) holds for V = Ṽ for all
x ∈ V −1

N ([0, α2(γ + σ)]).
Now consider arbitrary d, e ∈ X with ‖d‖ ≤ σ and ‖e‖ ≤ σ and a point x ∈

V −1
N ([0, α2(	)]). This choice implies

x + e ∈ Bσ

(
V −1

N

([
0, α2(	)

])) ⊆ V −1
N

([
0, α2(γ + σ)

])
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and thus (4.14) holds for Ṽ in the point x + e. Using (8.8) and (4.14) we obtain

Ṽ
(
f

(
x,μN(x + e)

) + d
)

≤ Ṽ
(
f

(
x,μN(x + e)

)) + ωV

(‖d‖)

≤ Ṽ
(
f

(
x + e,μN(x + e)

)) + ωV

(‖d‖) + ωV

(
ωf

(‖e‖))

≤ Ṽ (x + e) − α�
(
x + e,μ(x + e)

) + ωV

(‖d‖) + ωV

(
ωf

(‖e‖))

≤ Ṽ (x) − αα3
(|x + e|x∗

) + ωV

(‖d‖) + ωV

(
ωf

(‖e‖)) + ωV

(‖e‖)

≤ Ṽ (x) − αα3
(|x|x∗

) + ωV

(‖d‖) + ωV

(
ωf

(‖e‖)) + ωV

(‖e‖) + αωα

(‖e‖).
Now choose d̄, ē ∈ (0, σ ] so small that

ωV (d̄) + ωV

(
ωf (ē)

) + ωV (ē) + αωα(ē) ≤ min
{
αα3(σ )/2, α1(δ)/2

}

holds. For x ∈ X with Ṽ (x) ∈ [α1(δ)/2, α2(	)] and ‖d‖ ≤ d̄ , ‖e‖ ≤ ē this implies

Ṽ
(
f

(
x,μN(x + e)

) + d
)

≤ Ṽ (x) − αα3
(|x|x∗

) + ωV

(‖d‖) + ωV

(
ωf

(‖e‖)) + ωV (‖e‖) + αωα

(‖e‖)

≤ Ṽ (x) − αα3
(|x|x∗

) + αα3(σ/2)/2

≤ Ṽ (x) − αα3
(|x|x∗

)
/2

and for Ṽ (x) ≤ α1(δ)/2 we obtain

Ṽ
(
f

(
x,μN(x + e)

) + d
)

≤ Ṽ (x) − αα3
(|x|x∗

) + ωV

(‖d‖) + ωV

(
ωf

(‖e‖)) + ωV

(‖e‖) + αωα

(‖e‖)

≤ Ṽ (x) + α1(δ)/2 ≤ α1(δ).

In both cases we obtain Ṽ (f (x,μN(x + e)) + d) ≤ α2(	) ≤ α2(γ + σ), hence x

and f (x,μN(x + e)) + d lie in the region where Ṽ and VN coincide and thus we
can replace every occurrence of Ṽ by VN in both chains of inequalities. The leads
to

VN

(
f

(
x,μN(x + e)

) + d
) ≤ VN(x) − αα3

(|x|x∗
)
/2 (8.11)

if VN(x) ∈ [α1(δ)/2, α2(	)] and

VN

(
f

(
x,μN(x + e)

) + d
) ≤ α1(δ) (8.12)

if VN(x) ≤ α1(δ)/2. Observing that (8.11) implies (8.12) if VN(x) ∈ [α1(δ)/2,

α1(δ)] we can conclude that (8.12) holds for all x ∈ X with VN(x) ≤ α1(δ).
Defining S = V −1

N ([0, α2(	)]) and P = V −1
N ([0, α1(δ)]), Inequalities (8.11) and

(8.12) imply that both sets are forward invariant and that (4.14) is satisfied for
�(x,u) = α3(|x|x∗)/2 for all x ∈ S \ P . Indeed, forward invariance of S follows
immediately from (8.11) while forward invariance of P follows since (8.12) holds
for all x with VN(x) ∈ [0, α1(δ)].

Thus, all assumptions of Theorem 4.14 are satisfied (observe that the theorem
remains valid in presence of the additional n-dependence of the perturbed system,
cf. Remark 4.15). Hence, we obtain the assertion from Lemma 6.29 using that by
construction we have B	(x∗) ∩ A ⊆ S and P ⊆ Bδ(x∗). �
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Remark 8.27

(i) Note that we did not use continuity of μN in this proof, which is important
since optimal feedback laws are in general not continuous.

(ii) For the NMPC Algorithm 3.10 with terminal constraints the result also holds
if we can ensure f (x,μN(x + e)) + d ∈ XN for all x ∈ V −1

N ([0, α2(	)]). This
is, for instance, guaranteed if the sublevel set V −1

N ([0, α2(γ + σ)]) used in the
proof does not intersect the boundary of XN , i.e., if it is contained in the interior
of XN . However, stabilizing terminal constraints may prevent VN from being
continuous, cf. Example 8.30, below.

(iii) The result can be straightforwardly generalized to time varying references pro-
vided W = VN(n, ·) satisfies (8.8) for all n ∈ N0 with ω independent of n.

(iv) The function ωV in (8.8) measures how sensitive VN(x) depends on changes
in x. The proof shows that d̄ can be chosen the larger the smaller ωV is. Typi-
cally, the solutions xu(k, x) appearing in the definition of VN(x) depend more
sensitive on x the larger k is. Thus, one can expect that ωV grows with N ,
i.e., the stability becomes less robust for larger optimization horizons. This is
rather intuitive since the longer the prediction horizon the more the perturbed
solutions x̃μN

(k, x) deviate from the nominal predictions xu(k, x).
(v) The condition that the uniform continuity of f is uniform in u is quite strong

if U is unbounded. However, this can be circumvented by penalizing large u in
� sufficiently strong such that the optimal solution will never use large u. This
technique has, for instance, been used in a sampled data context in [8] and for
continuous time systems in [2].

The following corollaries show that robustness can be expected under suitable
continuity conditions on the problem data. The first corollary is formulated for state
spaces which are arbitrary vector spaces.

Corollary 8.28 Consider the NMPC Algorithm 3.1 without state constraints, i.e.,
X = X for some vector space X, and with input constraints satisfying U(x) = U

for all x ∈ X. Assume that V = VN satisfies the assumptions of Theorem 4.11 with
constant reference xref ≡ x∗ on S = X, that f is bounded and uniformly continuous
in x on each closed ball Bρ(x∗) and that � is uniformly continuous in x on each
such ball, both uniformly in u ∈ U.

Then the perturbed closed-loop system (8.7) is semiglobally practically asymp-
totically stable in the sense of Definition 8.24 on A = X.

Proof We show that under the given conditions VN is uniformly continuous on each
closed ball BR(x∗), R > 0. Then the assertion follows from Theorem 8.26.

To this end, observe that the boundedness assumption on f implies that there
exists ρ > 0 such that xu(k, x) ∈ Bρ(x∗) holds for all k = 0, . . . ,N − 1, all x ∈

BR(x∗) and all u ∈ U.
This implies that xu(k, x) is uniformly continuous in x ∈ BR(x∗), hence the run-

ning cost �(xu(k, x),u(k)) is uniformly continuous in x ∈ BR(x∗) and consequently
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JN(x,u) is uniformly continuous in x ∈ BR(x∗), too. This uniform continuity car-
ries over to VN , which proves the claim. �

The second corollary shows that in finite-dimensional state space we can drop
the uniform continuity and the boundedness assumptions on the problem data.

Corollary 8.29 Consider the NMPC Algorithm 3.1 with X = R
d without state con-

straints, i.e., X = X and with input constraints satisfying U(x) = U for all x ∈ X.
Assume that V = VN satisfies the assumptions of Theorem 4.11 with constant refer-
ence xref ≡ x∗ on S = X. Assume furthermore that � and f are continuous and that
U is compact.

Then the perturbed closed-loop system (8.7) is semiglobally practically asymp-
totically stable in the sense of Definition 8.24 on A = X.

Proof The proof follows when we show continuity of VN , because then in X = R
d

uniform continuity of VN and f on each closed ball Bρ(x∗) and on Bρ(x∗) × U, re-
spectively, follows from the compactness of these sets. Note that uniform continuity
of f in (x,u) in the sense of Definition 8.25(i) implies uniform continuity of f in
x uniformly in u in the sense of Definition 8.25(ii).

In order to prove continuity of VN , observe that continuity of f and � implies
continuity of JN(x,u) on R

d × U
N . This continuity carries over to VN because

minima of continuous functions are again continuous. �

For infinite-dimensional systems, Corollary 8.29 does not apply since closed
balls are not compact. Thus, even though Theorem 8.26 and Corollary 8.28 for-
mally apply to infinite-dimensional systems, their practical usefulness is somewhat
limited because the required uniform continuity properties may not be satisfied for
most practically relevant systems. In fact, it appears doubtful whether robust stabil-
ity for infinite-dimensional systems can be expected, at all, for the general class of
perturbations considered here. Rather, we conjecture that suitable structural proper-
ties of the perturbations need to be imposed, as, e.g., in the robust stability results
for linear infinite-dimensional systems by Curtain and Zwart in [3, Chap. 9].

However, as we will see in the next section, even for finite-dimensional systems
Corollary 8.29 does in general neither extend to NMPC schemes with general state
constraints nor to schemes with stabilizing terminal constraints.

8.7 Examples for Nonrobustness Under State Constraints

In this section we provide two examples, taken from Grimm, Messina, Tuna and Teel
[5], which show that both general state constraints as well as stabilizing terminal
constraints can render the stability of the NMPC closed loop nonrobust.

Our first example shows that even without additional state constraints a stabiliz-
ing terminal constraint may result in a nonrobust NMPC-feedback law.
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Example 8.30 Consider again Example 5.8, i.e., x+ = f (x,u) with x ∈ X = X =
R

2, u ∈ U = [0,1] ⊂ U = R, x∗ = 0 and

f (x,u) =
(

x1(1 − u)

‖x‖u
)

.

As we have seen in Example 5.8, using the NMPC Algorithm 3.10 with (OCPN,e)
= (5.5) and X0 = {0} we obtain X1 = {x ∈ R

2 |x1 = 0}. Hence, for x ∈ R
2 with

x1 �= 0 each admissible control sequence u ∈ U
2
X0

(x) must satisfy u(0) = 1 in order
to ensure xu(1, x) ∈ X1. Thus, the NMPC-feedback law for N = 2 satisfies

μ2(x) = 1 for all x ∈ R
2 with x1 �= 0.

Now consider the perturbed closed loop (8.7) with perturbation sequences d(·) ≡
d0 = (ε,0)� and e(·) ≡ e0 = 0 for some arbitrarily small ε > 0. Then for any x ∈ R

2

with x /∈ X1 we obtain

f
(
x,μ2(x + e0)

) + d0 =
(

x1(1 − μ2(x))

‖x‖μ2(x)

)
+

(
ε

0

)

=
(

0
‖x‖

)
+

(
ε

0

)
=

(
ε

‖x‖
)

,

which implies x̃μ2(1, x) = f (x,μ2(x + e(0))) + d(0) /∈ X1 and
∥∥x̃μ2(1, x)

∥∥ = ∥∥f
(
x,μ2

(
x + e(0)

)) + d(0)
∥∥ = ∥∥(

ε,‖x‖)�∥∥ > ‖x‖.
Since x̃μ2(1, x) /∈ X1 we can go on inductively and obtain

∥∥x̃μ2(k, x)
∥∥ > ‖x‖

for all k ∈ N. Thus, despite the fact that μ2 globally asymptotically stabilizes the
nominal closed-loop system as shown in Example 5.8, for arbitrary small perturba-
tions d the perturbed closed loop (8.7) is not asymptotically stable.

Note that by Remark 8.27(ii), Theorem 8.26 would in principle be applicable
since X2 = R

2 and thus no sublevel set of V2 intersects the boundary of X2. How-
ever, V2 is discontinuous at X1, because on X1 we get V2(x) ≤ V1(x) = ‖x‖2 while
outside X1 the only admissible control sequence is u(0) = 1, u(1) = 0, which im-
plies V2(x) = 2‖x‖2.

For this example the NMPC Algorithm 3.1 without terminal constraints provides
an alternative which resolves the robustness problem. Indeed, for u = 1/2 we obtain

∥∥f (x,u)
∥∥2 =

∥∥∥∥

(
x1/2
‖x‖/2

)∥∥∥∥

2

= (x1/2)2 + (‖x‖/2
)2 = x2

1

4
+ x2

1

4
+ x2

2

4
≤ ‖x‖2

2
.

Thus, for �(x) = ‖x‖2 and ux ≡ 1/2 Assumption 6.4 is satisfied with β(r, n) =
Cσnr with C = 1 and σ = 1/2. For N = 2, Proposition 6.17 yields α = αN =
1 − (γ2 − 1)2 and since γ2 = C +Cσ = 3/2 we obtain α = 1 − (1/2)2 = 3/4. Thus,
by Corollary 6.19 the NMPC feedback μ2 without terminal constraints stabilizes
the system and since all assumptions of Corollary 8.29 are satisfied, the asymptotic
stability is robust.
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Fig. 8.3 Sketch of Artstein’s
circles

Example 8.31 Our second example shows that state constraints may also render
NMPC without stabilizing terminal constraints to be nonrobust. The system is a
discrete time version of a system known as Artstein’s circles. For x ∈ X = R

2 and
u ∈ U = [−1,1] it is given by

x+ = f (x,u) =
( −(x2

1+x2
2 )u+x1

1+(x2
1+x2

2 )u2−2x1u
x2

1+(x2
1+x2

2 )u2−2x1u

)

.

This is the exact zero order hold sampled data system for sampling period T = 1 of
the continuous time system ẋ1 = (x2

1 − x2
2)u, ẋ2 = 2x1x2u introduced by Artstein

in [1].
The peculiarity of the system is that a solution which starts on the circle

Sr = {
x ∈ R

2
∣∣ x2

1 + (x2 − r)2 = r2}

for some r ∈ R can never leave this circle regardless of how the control u is chosen.
Figure 8.3 illustrates these circles for r = −5,−4, . . . ,5.

For x �= 0, the control can only be used in order to change the direction of rotation
on each circle Sr , which for x2 > 0 is clockwise for u < 0 and counterclockwise for
u > 0. For x2 < 0 this orientation changes, for x2 = 0 and x1 �= 0 the system moves
left or right on the x1-axis and x∗ = 0 is an equilibrium for all u ∈ U. For the cost
function �(x) = ‖x‖∞ = max{|x1|, |x2|}, on each circle with parameter r we have
�(x) = |x2| if |x2| ≥ r and �(x) = |x1| otherwise. Using this fact one can conclude
that there exists σ ∈ (0,1) such that

�
(
f (x,u)

) ≤ σ�(x)

holds when we choose u = −1 for x1 ≥ 0 and u = 1 for x1 ≤ 0. Thus, Assump-
tion 6.4 is satisfied for β(r, n) = Cσnr with C = 1, which implies αN > 0 in (6.19).
Hence, by Theorem 6.18 the NMPC closed loop for Algorithm 3.1 is asymptotically
stable for all horizons N ≥ 2.

The state constraints we consider now are given by the set

X = {
x ∈ R

2
∣
∣ x1 ≤ c

}
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Fig. 8.4 Sketch of state
constrain set for Artstein’s
circles. Admissible states are
to the left of the vertical line

for some c > 0. For c = 4 the complement of this set is given by the hatched region
in Fig. 8.4.

A little computation shows that for all c ∈ (0,1), all circles Sr with r > rc =
c/

√
1 − c2, i.e., circles in the upper half plane with radius r > rc, and all initial val-

ues x ∈ Sr ∩ X with x2 > r it is not possible to move clockwise toward 0 without
violating the state constraints at some point. Hence, we have to take the counter-
clockwise “detour” in order to control the system to x∗ = 0. In the function β in
the Controllability Assumption 6.4 this detour shows up as an overshoot parame-
ter C > 1. However, since the stage cost along the detour is at most 2�(x) and the
time until � decreases exponentially again is bounded from above by a number of
steps which is independent of �(x), the function β(r, n) is still of the form Cσnr

and hence we can conclude asymptotic stability for sufficiently large N by Corol-
lary 6.19.

This asymptotic stability is, however, not robust in the sense of Definition 8.24.
In order to see this, fix an arbitrary and sufficiently small ε > 0, consider the circle
Src and the unique point y on this circle with y1 = c and y2 > rc, i.e., the “upper”
intersection of Src with the boundary of X. Using the control value u = −1 this
point is mapped onto the point z = f (x,−1) on Src with z1 = c and z2 < r , i.e.,
on the “lower” intersection of Src with the boundary of X. On the one hand, this
implies that the control sequence u ≡ −1 is admissible and that it controls the tra-
jectory counterclockwise in the shortest and thus also cheapest way—in the sense
of OCPN—to the origin. Hence, μN(y) = −1.

On the other hand, the fact that z = f (x,−1) is on the boundary of X implies
that for ε > 0 sufficiently small all points

y′ ∈ Y ′ := Bε(y) ∩ X ∩ Src \ {y},
i.e., all points that lie above y and close to y on Src , the image z′ = f (y′,−1) will
not be contained in X. Hence, in order to construct a trajectory xu(·) with xu(0) = y′
which converges to the origin we have two possibilities: either we pick the (unique)
control value uy′ < 0 with xu(1) = f (y ′, uy ′) = y, set u(0) = uy′ and continue with
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u(1) = u(2) = · · · = −1. This will result in a clockwise movement. Alternatively,
we can choose the control sequence u ≡ 1 which will cause the trajectory to ap-
proach the origin counterclockwise. The running cost � decreases along the first
trajectory while for c < 1/2 one can compute that it increases along the second—at
least for one step before it starts to decrease, again. For this reason, the first tra-
jectory will be optimal for (OCPN) for all horizons N ≥ 2. Consequently, we get
μN(y′) = uy′ and f (y′,μN(y′)) = y.

Now we can use a similar construction as in the previous example: pick an initial
value x ∈ Y ′ and perturbation sequences e ≡ 0 and ‖d(n)‖ < ε where each d(n) is
chosen such that y + d(n) ∈ Y ′. By induction over n this implies

f
(
x̃μN

(n),μN

(
x̃μN

(n)
)) + d(n) = y + d(n) ∈ Y ′.

Thus, for arbitrarily small perturbations the solution gets stuck in Y ′ and will never
reach a neighborhood of the origin.

It is interesting to look at the Lyapunov function VN of the system on the set
Y ′ ∪ {y}. Indeed, since the first move of the optimal trajectory will map y′ ∈ Y ′ to y,
by the dynamic programming principle and since �(y′) ≥ y ′

2 > rc we can conclude
that VN(y′) > VN−1(y) + rc. Since, on the other hand, the optimal trajectory for y

approaches the origin clockwise with maximal speed for all N , the additional term
in VN(y) compared to VN−1(y) will be strictly smaller than rc − ε for some ε > 0
for all N ≥ 2. Hence we get VN(y) ≤ VN−1(y) + rc − ε ≤ VN(y′) − ε with ε > 0
independent of y. Since y lies at the (lower) boundary of the set Y ′ this immediately
implies that VN is discontinuous at y.

It should be noted that this discontinuity is not caused by the specific choice of
� or the horizon N . Instead, it is solely due to the fact that for topological reasons
the given state constraints separate the initial values into different sets whose opti-
mal trajectories approach the origin in different ways: for y it moves clockwise with
maximal speed and for each y ′ ∈ Y it moves clockwise with passing through y. Fur-
thermore, as pointed out after Fig. 8.4, for all x ∈ Sr ∩X with r > rc and x2 > r it is
not possible at all to approach the origin clockwise, hence the optimal trajectory will
move counterclockwise with maximal speed, which defines yet another different be-
havior. Since the counterclockwise movement is more expensive than the clockwise
movement and since passing through y is more expensive than approaching the ori-
gin with maximal speed, VN will be discontinuous at all boundaries where these
different sets of initial values touch—unless � is particularly tuned in order to pe-
nalize the different trajectories in exactly the same way, which is a difficult if not
impossible task and in any case an exceptional situation.

Thus, in general we will have to take discontinuities of VN into account and
cannot conclude robustness from continuity as in Theorem 8.26. Consequently, in
the next section we will look at a technique which allows us to conclude robustness
without assuming continuity of VN .
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8.8 Robustness with State Constraints via Robust-optimal
Feasibility

In order to ensure robustness in the presence of state constraints we present two
approaches. Again we assume U(x) = U in order to avoid violation of the input
constraints due to measurement errors. Like in Sect. 8.6, however, the subsequent
definitions, statements and proofs could be extended to the case of input constraint
sets U(x) depending continuously on x.

In this section we will present a first approach, which is inspired by Grimm,
Messina, Tuna and Teel [7], but we simplify the setting and use a different proof
based on the techniques from Chap. 6. This first approach has the advantage that
we do not need continuity of the optimal value function VN . The second approach,
presented in the following Sect. 8.9, uses this continuity and presents a setting in
which continuity can be proved in the presence of state constraints.

Both approaches rely on the fact that we use state constraint sets which depend
on time. To this end, we denote the state constraint sets by X

k , k = N,N − 1, . . . ,0
with X = X

N and extend Definition 3.2 as follows.

Definition 8.32 For K ∈ N and N ∈ N with K ≤ N and an initial value x0 ∈ X
K

we call a control sequence u ∈ UK and the corresponding trajectory xu(k, x0) ad-
missible for x0 and K , if

u(k) ∈ U
(
xu(k, x0)

)
and xu(k + 1, x0) ∈ X

K−(k+1)

holds for all k = 0, . . . ,K − 1. The respective set of admissible control sequences
for x0 is denoted by U

K(x0).

Note that this definition reduces to Definition 3.2 if X
k = X for all k = 0, . . . ,N .

The optimization problem (OCPN) can be used with this setting without any changes
since we use the same notation for the admissible control sequences as before in
Definition 3.2. Similarly, the Controllability Assumption (6.4) and the definition of
the feasible set in Definition 8.2(ii) immediately extend to this time varying state
constraint concept. As always, we will assume that an optimal control u� exists for
(OCPN) for each initial value.

Observe that the terminal constraints from Definition 3.9 form a special case of
this time varying constraint setting by defining X

N = X
N−1 = · · · = X

1 = X and
X

0 = X0. In this case U
K(x) from Definition 8.32 coincides with U

K
X0

(x) from
Definition 3.9 and FK from Definition 8.2(ii) equals XK from Definition 3.9.

For our first robustness result, we use the following property.

Definition 8.33 For given optimization horizon N ∈ N the NMPC Algorithm 3.1 is
said to be robust-optimal feasible, if for each closed ball Bρ(x∗) there exists η > 0
such that the following holds:

For each x ∈ Bρ(x∗) ∩ FN , each z ∈ Bη(f (x,μN(x))) and the optimal control
u� for (OCPN) with x0 = x we have

xu�(·+1)(k, z) ∈ FN−k for all k ∈ {0, . . . ,N − 1}. (8.13)
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This condition in particular requires z = xu�(·+1)(0, z) ∈ FN for z =
f (x,μN(x)), which implies that FN is recursively feasible for the NMPC closed
loop. It can be satisfied by the following construction of tightening state constraints
sets X

k whose idea goes back to Limón, Alamo, and Camacho [12].
Assume that f is uniformly continuous and bounded in x on each closed ball

uniformly in u. Then for each arbitrary but fixed horizon N and admissible control
input u ∈ U

N the trajectory xu(k, x) is uniformly continuous in x ∈ Bρ(x∗) ∩ FN

uniformly in k ∈ {1, . . . ,N −2} and u. Let ω denote the modulus of continuity from
(8.9). Now we pick δ > 0 and assume that we can choose the constraint sets X

k such
that

X
N = X, Bδ

(
X

k−1) ⊂ X
k and Fk = X

k (8.14)

holds for all k = 1, . . . ,N . Let x ∈ Bρ(x∗)∩ FN and u� ∈ U
N(x) be a corresponding

optimal control. Then for z = f (x,μN(x)) we obtain

xu�(·+1)(k, z) = xu�(·)(k + 1, x) ∈ X
N−k−1

for k = 0, . . . ,N − 1. For arbitrary z ∈ Bε(f (x,μN(x))) this implies

xu�(·+1)(k, z) ∈ Bω(ε)

(
X

N−k−1),

and if we choose ε > 0 so small that ω(ε) ≤ δ holds then we get

xu�(·+1)(k, z) ∈ Bω(ε)

(
X

N−k−1) ⊆ Bδ

(
X

N−k−1) ⊂ X
N−k

for k = 0, . . . ,N − 1. Hence, we obtain (8.13).
The main limitation of this construction is the condition Fk = X

k in (8.14), since
in general the feasible sets Fk for the tightening constraint sets X

k may be very
small or even empty. However, for some systems it is possible to prove rigorously
that this construction is possible, as the following example shows.

Example 8.34 We reconsider Artstein’s circles with the constraints from Exam-
ple 8.31 and show that X

k with (8.14) can be constructed for this example. From the
form of the dynamics it follows that for each a > 0 there exists ν ∈ (0,1) such that
for each x ∈ R

2 with x1 > a there exists u ∈ U with f (x,u)1 ≤ νx1. Hence, setting

X
k = {

x ∈ R
2
∣∣ x1 ≤ c − (N − k)ε

}
,

for ε > 0 sufficiently small (depending on c and N ) we obtain Fk = X
k . Since the

first two conditions in (8.14) are obviously satisfied for this choice of the X
k , with

these state constraint sets the NMPC-feedback law satisfies (8.13).
Effectively, the tightening constraint sets cause the NMPC controller to choose

the more expensive counterclockwise trajectories for a larger set of initial values and
thus prevent the feedback from selecting the small steps from y ′ to y which caused
the nonrobustness in Example 8.31.

In order to show robustness of the asymptotic stability, again we need a suitable
controllability condition. The following condition is slightly different from Assump-
tion 8.13 in the sense that we assume controllability on the sets FN−k rather than
on F∞, since for a finite number of state constraint sets X

N,X
N−1, . . . ,X

0 it is not
possible to define F∞.
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Assumption 8.35 Consider the optimal control problem (OCPN) with a not nec-
essarily viable state constraint set X. We assume that on the feasible sets FN−k ,
k = 0, . . . ,N − 1 the system is asymptotically controllable with respect to � with
rate β ∈ K L0, i.e., for each x ∈ FN−k there exists an admissible control sequence
ux ∈ U

N−k(x) satisfying

�
(
xux (n, x),ux(n)

) ≤ β
(
�∗(x), n

)

for all n ∈ {0, . . . ,N − k − 1}.

The following theorem now shows that Definition 8.33 and Assumption 8.35
indeed imply robustness of the asymptotic stability.

Theorem 8.36 Consider the NMPC Algorithm 3.1 with state constraint sets X and
X

N, . . . ,X
0 ⊆ X with X

N = X for some vector space X and with input constraints
satisfying U(x) = U for all x ∈ X. Assume that f is bounded and uniformly con-
tinuous in x on each closed ball Bρ(x∗) and that � is uniformly continuous in x on
each such ball, both uniformly in u ∈ U. Let the assumptions of Theorem 6.18 hold
with Assumption 6.4 replaced by Assumption 8.35 and assume that Definition 8.33
is satisfied.

Then the perturbed closed-loop system (8.7) is semiglobally practically asymp-
totically stable in the sense of Definition 8.24 on A = FN .

Proof We first show the assertion for e ≡ 0, i.e., for the case without measurement
error. To this end, fix 	 > δ > 0 in Definition 8.24. Let R > 0 be such that B	(x∗)∩

FN ⊆ V −1
N ([0,R]), let ρ > 0 be such that V −1

N ([0,R]) ⊆ Bρ(x∗) and pick η > 0
from Definition 8.33.

We show that there exists a function σ(d̄) with σ(d̄) → 0 as d̄ → 0 such that the
inequality

VN

(
f

(
x,μN(x) + d

)) ≤ VN(x) − α�
(
x,μN(x)

) + σ(d̄) (8.15)

holds for all x ∈ V −1
N ([0,R]) and all ‖d‖ ≤ d̄ with α ∈ (0,1) from the assump-

tions of Theorem 6.18. For d̄ sufficiently small this implies the Inequalities (8.11)
and (8.12) from the proof of Theorem 8.26 from which we can conclude practical
asymptotic stability as in this proof.

In order to prove (8.15), pick η corresponding to Bρ(x∗) from Definition 8.33,
x ∈ Bρ(x∗) ∩ FN and consider the trajectories xu�(·+1)(k, z) for z ∈

Bη(f (x,μN(x))). For z = f (x,μN(x)) we obtain xu�(·+1)(k, f (x,μN(x))) =
xu�(k + 1, x) and thus the values

λk := �
(
xu�(·+1)

(
k − 1, f

(
x,μN(x)

))
, u�(k)

)

satisfy (6.11). Defining

λ̃k(z) := �
(
xu�(·+1)(k − 1, z), u�(k)

)

for z ∈ Bη(f (x,μN(x))), from the uniform continuity we obtain the existence of
σ̃ (η) with σ̃ (η) → 0 as η → 0 such that

∣
∣λ̃k(z) − λk

∣
∣ ≤ σ̃ (η)
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holds for all z ∈ Bη(f (x,μN(x))). Using the same arguments as in the proof of
Lemma 6.9, from Assumption 8.35 and (8.13) we obtain

VN(z) ≤
j−1∑

n=0

λ̃n+1(z) + BN−j

(
λ̃j+1(z)

)
, j = 0, . . . ,N − 2.

Now continuity of the BK implies the existence of σ(η) with σ(η) → 0 as η → 0
such that

VN(z) ≤
j−1∑

n=0

λn+1 + BN−j (λj+1) + σ(η), j = 0, . . . ,N − 2. (8.16)

Observe that this is exactly (6.12) with VN(z) in place of ν and the additional term
σ(η). Now the assumptions of Theorem 6.18 imply that Theorem 6.14 applies,
which in turn implies that (6.13) holds for some α > 0. Hence we get that each
ν satisfying (6.12) also satisfies

ν ≤ VN(x) − α�
(
x,μN(x)

)
.

Hence, (8.16) implies

VN(z) ≤ VN(x) − α�
(
x,μN(x)

) + σ(η),

which is exactly (8.15) by setting η = d̄ and z = f (x,μN(x)) + d .
It remains to show the assertion for e �≡ 0. To this end, fix 	 > δ > 0 and denote

by d̃ > 0 the bound on ‖d‖ from the first part of the proof which ensures practical
asymptotic stability for δ̃ = δ/2, 	̃ = 	 + δ̃ > 0 and ẽ ≡ 0. Let ρ > 0 be as in the
first part of the proof for these values. Now take a trajectory x̃μN

(k, x0) of (8.7) with
|x|x∗ ≤ 	 and define x̂(k) = x̃μN

(k, x) + e(k). Then x̂ is a solution of the system

x̂(n) = f
(
x̂(n),μN

(
x̂(n)

)) + d̃(n)

with

d̃(n) = d(n) + f
(
x̃μN

(k, x),μN

(
x̂(n)

)) − f
(
x̂(n),μN

(
x̂(n)

))
.

As long as the solution stays in Bρ(x∗), by uniform continuity of f in x we find
ē > 0 such that ‖e(n)‖ ≤ ē implies

∥∥d̃(n)
∥∥ ≤ ∥∥d(n)

∥∥ + d̃/2.

Without loss of generality we can set ē ≤ δ̃ implying x̂(0) = x0 + e(0) ∈ B	̃(x∗).
Hence, setting d̄ = d̃/2 the trajectory x̂(n) can be interpreted as a solution of (8.7)
with e ≡ 0 and d̄ = d̃ starting in x̂(0) = x0 + e(0) ∈ B	̃(x∗) ∩ FN . Hence, the first
part of the proof applies to x̂, in particular, the trajectory stays in Bρ(x∗) for all n

and thus we get the practical asymptotic stability estimate
∣∣x̂(k)

∣∣
x∗ ≤ max

{
β̃
(∣∣x̂(0)

∣∣
x∗, k

)
, δ̃

}
,

which implies
∣∣x̃μN

(k, x0)
∣
∣
x∗ ≤ max

{
β̃
(|x|x∗ + ē, k

)
, δ̃

} + ē.



8.9 Robustness with State Constraints via Continuity of VN 241

It remains to convert this upper bound into the form from Definition 8.24. To this
end, set β(r, n) = 2β̃(2r, n), which is again in K L. We reduce ē further, if necessary,
in order to ensure ē ≤ δ̃ and β̃(2ē,0) ≤ δ̃. Then, for |x|x∗ ≤ ē we obtain

β̃
(|x|x∗ + ē, k

) ≤ δ̃

for all k ≥ 0, which implies
∣∣x̃μN

(k, x0)
∣∣
x∗ ≤ δ̃ + ē ≤ δ.

For |x|x∗ ≥ ē we get

β
(|x|x∗, k

) ≥ 2β̃
(|x|x∗ + ē, k

)
.

Hence, for all k ≥ 0 with β̃(|x|x∗ + ē, k) ≥ δ̃ we get β(|x|x∗ , k) ≥ β̃(|x|x∗ + ē, k)+ δ̃

and thus
∣∣x̃μN

(k, x0)
∣∣
x∗ ≤ β̃

(|x|x∗ + ē, k
) + ē ≤ β

(|x|x∗, k
)
.

Finally, for k ≥ 0 with β̃(|x|x∗ + ē, k) ≤ δ̃ we get
∣∣x̃μN

(k, x0)
∣∣
x∗ ≤ δ̃ + ē ≤ δ.

Thus, for all k ≥ 0 we have
∣∣x̃μN

(k, x0)
∣∣
x∗ ≤ max

{
β
(|x|x∗, k

)
, δ

}
,

i.e., the desired property from Definition 8.24. �

Remark 8.37

(i) As in the proof of Theorem 8.26 we did not use continuity of μN .
(ii) The proof heavily relies on the controllability based analysis for NMPC

schemes without terminal constraints. Hence, it does not apply to the case
with terminal constraints. However, analogous statements can be made also
for NMPC schemes with terminal constraints, see, e.g., [12] and [7, Sect. IV].

(iii) Like Theorem 8.26 the result can be straightforwardly generalized to time vary-
ing references provided the assumed continuity and controllability properties
for � are uniform with respect to the initial time.

(iv) In finite-dimensional state space, i.e., X = R
d , the assumed uniform continu-

ity properties on the balls Bρ(x∗) follow from mere continuity by an argument
similar to the one used in the proof of Corollary 8.29. Regarding the uniformity
of the assumed properties with respect to u, Remark 8.27(v) applies accord-
ingly.

(v) As outlined in the discussion after Corollary 8.29, for infinite-dimensional sys-
tems the required uniform continuity is a rather restrictive condition.

8.9 Robustness with State Constraints via Continuity of VN

The second approach we want to present for ensuring Definition 8.24 under state
constraints uses a modification of Theorem 8.26 which exploits the continuity of
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VN . The main problem here is not to extend Theorem 8.26—this will turn out to
be rather straightforward—but rather to design the state constraint sets X

k such
that continuity of VN can be expected under a checkable condition. The following
assumption defines a sufficient condition for this purpose.

Assumption 8.38 The state constraint sets X
k , k = N,N − 1, . . . ,0 satisfy the fol-

lowing conditions.

(i) X
N−1 = X

N−2 = · · · = X
0 and Bδ(X

0) ⊆ X
N = X for some δ > 0.

(ii) For each x ∈ X
N there exists u ∈ U(x) with f (x,u) ∈ X

0.
(iii) For each ρ > 0 there exist γ ∈ K and ε′ > 0 such that for each ε ∈ (0, ε′],

each x ∈ X
N ∩ Bρ(x∗), each u ∈ U(x) with f (x,u) ∈ X

0 and each x′ ∈ X
N ∩

Bε(x) there is u′ ∈ U(x ′) with f (x ′, u′) ∈ X
0, ‖f (x,u) − f (x′, u′)‖ ≤ γ (ε)

and |�(x,u) − �(x′, u′)| ≤ γ (ε).

The condition again requires a tightening structure of the state constraint sets,
however, in contrast to (8.14) only for X

N and X
N−1 while all other state constraint

sets equal X
N−1. In words, it demands that whenever x ∈ X

N and f (x,u) ∈ X
0,

then for all nearby points x′ ≈ x we find a control u′ with f (x′, u′) ∈ X
0 which

is “nearby” u in the sense that f (x′, u′) ≈ f (x,u) and �(x ′, u′) ≈ �(x,u). Before
showing that this condition ensures continuity of VN , let us consider an example
where this condition is satisfied.

Example 8.39 We reconsider Example 3.4 (see also Examples 2.2, 8.1 and 8.12),
i.e.,

x+ = f (x,u) =
(

x1 + x2 + u/2
x2 + u

)

with state constraints X = [−1,1]2. Even for the largest possible set U = R of con-
trol values it is not possible to satisfy Assumption 8.38 for X

N = X. This is because
the only control which maps the point x = (1,1)� into X = [−1,1]2 is u = −2:
for larger values u′ > −2 we get f (x,u′)1 = 1 + 1 + u′/2 > 2 − 1 = 1 and for
smaller values u′ < −2 we get f (x,u′)2 = 1 + u′ < 1 − 2 = −1. For u = −2, how-
ever, we get f (x,u) = (1,−1)� ∈ ∂X

N and thus we cannot reach any set X
0 with

Bδ(X
0) ⊆ X

N , regardless of how small δ > 0 is chosen.
Hence, we need to restrict X in order to satisfy Assumption 8.38. For simplicity,

we again pick the set

X
N = X = {

(x1, x2)
� ∈ R

2
∣∣ x1 ∈ [−1,1], x2 ∈ [−1,1] ∩ [−3/2 − x1,3/2 − x1]

}

derived in Example 3.4. We claim that for U = [−1 − 2η,2 + 2η] and X
N−1 =

X
N−2 = · · · = X

0 with

X
0 = {

(x1, x2)
� ∈ R

2
∣∣ x1 ∈ [−1 + η,1 − η],

x2 ∈ [−1 + η,1 − η] ∩ [−3/2 − x1 + η,3/2 − x1 − η]}

Assumption 8.38 holds if � is continuous and η > 0 is sufficiently small.
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First observe that this choice implies Assumption 8.38(i) for δ > 0 sufficiently
small compared to η (for instance, δ = η/4 will work). Assumption 8.38(ii) follows
since straightforward computations show that for each x ∈ X the relation f (x,u) ∈
X

0 holds if and only if u ∈ U satisfies the inequalities

u ≥ max

{
2

3

(
−x1 − 2x2 − 3

2
+ η

)
,−1 − x2 + η,2(−1 − x1 − x2 + η)

}
(8.17)

and

u ≤ min

{
2

3

(
−x1 − 2x2 + 3

2
− η

)
,1 − x2 − η,2(1 − x1 − x2 − η)

}
. (8.18)

Comparison of the single terms on the right hand sides of (8.17) and (8.18) yields
that for all x ∈ X

N there exists u ∈ U satisfying (8.17) and (8.18) whenever η ≤ 3/8.
Finally, Assumption 8.38(iii) follows because the bounds on u in (8.17) and

(8.18) change continuously with x. Thus, given an admissible u for some x ∈ X

which hence must satisfy the bounds (8.17) and (8.18), for x ′ ∈ X with x′ ≈ x the
bounds change only slightly and thus we find an admissible u′ ≈ u for x ′. Since f is
continuous and � was assumed to be continuous, the existence of the desired γ ∈ K
follows.

In contrast to this example, for Artstein’s circles under the state constraints X

from Example 8.31 Assumption 8.38 does not hold: no matter how the constraint
sets X

k are chosen there will always be points x and x ′ ∈ X arbitrarily close to
each other such that from x a clockwise movement is possible while from x ′ only a
counterclockwise movement is admissible, or vice versa.

The following proposition shows that under Assumption 8.38 and under addi-
tional continuity conditions on f and �, VN is uniformly continuous on closed balls.

Proposition 8.40 Consider the optimal control problem (OCPN) with state con-
straint sets X

N, . . . ,X
0 satisfying Assumption 8.38 and assume that f is bounded

and uniformly continuous in x on each closed ball Bρ(x∗) and that � is uniformly
continuous in x on each such ball, both uniformly in u ∈ U. Then VN is uniformly
continuous on BR(x∗) ∩ X for each R > 0.

Proof For each η > 0 and initial value x ∈ BR(x∗) ∩ X we pick a control sequence
ux,η ∈ U

N(x) with

JN(x,ux,η) ≤ VN(x) + η.

We show that there exists ω ∈ K such that for all sufficiently small ε0 > 0, all x ∈
BR(x∗) ∩ X, all η > 0 and all x̂ ∈ X ∩ Bε0(x∗) there exists û ∈ U

N(x′) such that the
inequality

JN(x̂, û) ≤ JN(x,ux,η) + ω(ε0) (8.19)

holds. This implies VN(x̂) ≤ VN(x) + η + ω(ε0) and since η > 0 was arbitrary we
obtain

VN(x̂) ≤ VN(x) + ω(ε0).
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Since this inequality holds for all x, x̂ ∈ BR(x∗) ∩ X with ‖x − x̂‖ ≤ ε0, we get
∣∣VN(x̂) − VN(x)

∣∣ ≤ ω(ε0)

for all such x and x̂ and thus the desired uniform continuity.
It remains to show (8.19). Since by assumption f is uniformly bounded, each

trajectory xu(k, x) with x ∈ BR(x∗) ∩ X satisfies xu(k, x0) ∈ Bρ(x∗) for some suf-
ficiently large ρ > 0, all k = 0, . . . ,N and all u ∈ U

N(x0). We pick γ ∈ K from
Assumption 8.38(iii) for this ρ > 0. Without loss of generality we may assume
γ (r) ≥ r for all r ≥ 0.

Now fix x ∈ BR(x∗) ∩ X and η > 0 and abbreviate u = ux,η. Given x̂ ∈ X ∩
Bε0(x), we inductively construct a control sequence û as follows.

For k = 0, . . . ,N − 1 we set û(k) := u′ with u′ from

Assumption 8.38(iii) for x = xu(k, x), u = u(k) and x′ = xû(k, x̂).
(8.20)

Note that we only need û(0), . . . , û(k − 1) in order to compute x′ = xû(k, x̂).
Hence, (8.20) is well defined provided ‖xû(k, x̂) − xu(k, x)‖ ≤ ε′ holds for all k =
0, . . . ,N − 1 for ε′ > 0 from Assumption 8.38(iii). In this case, the construction of
û implies û ∈ U

N(x̂) and in particular xû(k, x̂) ∈ X
0.

We will now show by induction that we can ensure this inequality for k =
0, . . . ,N −1 if we choose ε0 so small that γ N−1(ε0) ≤ ε′ holds, where γ k is defined
inductively by γ 0(r) = r and γ k+1(r) = γ ◦ γ k(r).

To this end, by induction over k = 0, . . . ,N − 1 we prove the inequality
∥∥xû(k, x̂) − xu(k, x)

∥∥ ≤ γ k(ε0) ≤ γ N−1(ε0) ≤ ε′. (8.21)

For k = 0, (8.21) immediately follows. For the induction step k → k + 1, using
the abbreviations u′ = û(k), x = xu(k, x), u = u(k) and x′ = xû(k, x̂) from (8.20),
we get

xû(k + 1, x̂) = f
(
x′, u′) and xu(k + 1, x) = f (x,u).

Now the induction assumption yields x′ ∈ Bγ k(ε0)
(x) ⊆ Bε′(x), hence u′ from As-

sumption 8.38(iii) exists and we obtain
∥
∥f

(
x,u

) − f
(
x′, u′)∥∥ ≤ γ

(
γ k(ε0)

) = γ k+1(ε0).

This proves (8.21) for k + 1. In order to prove (8.19) we now use the inequality
∣∣�(x,u) − �

(
x ′, u′)∣∣ ≤ γ

(∥∥x − x′∥∥)
,

which follows from Assumption 8.38(iii). Combining this with (8.21) yields
∣∣�

(
xu(k, x), u(k)

) − �
(
xû(k, x̂), û(k)

)∣∣ ≤ γ k+1(ε0).

Thus,

JN(x̂, û) =
N−1∑

k=0

�
(
xû(k, x̂), û(k)

) ≤
N−1∑

k=0

(
�
(
xû(k, x̂), û(k)

) + γ k+1(ε0)
)

=
N−1∑

k=0

�
(
xû(k, x̂), û(k)

) + ω(ε0)
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for

ω(r) =
N−1∑

k=0

γ k(r).

Since γ ∈ K implies γ k ∈ K and consequently ω ∈ K and since ω is independent of
x and η, this shows (8.19). �

With the help of Proposition 8.40 we can now prove our second robustness theo-
rem under state constraints. As in Sect. 8.6 we directly use the assumptions of The-
orem 4.11 for ensuring stability, which can be guaranteed by, e.g., Theorems 6.18,
6.21 or by Corollary 6.19 using, of course, the admissible control sequences related
to the state constraints from Assumption 8.38 in the Controllability Assumption 6.4.

Theorem 8.41 Consider the NMPC Algorithm 3.1 with state constraint sets X =
X

N, . . . ,X
0 ⊆ X for some vector space X and with input constraints satisfying

U(x) = U for all x ∈ X. Assume that f is bounded and uniformly continuous in
x on each closed ball Bρ(x∗) and that � is uniformly continuous in x on each such
ball, both uniformly in u ∈ U. Assume furthermore that V = VN satisfies the as-
sumptions of Theorem 4.11 with constant reference xref ≡ x∗ on S = X and that
Assumption 8.38 holds.

Then the perturbed closed-loop system (8.7) is semiglobally practically asymp-
totically stable in the sense of Definition 8.24 on A = X.

Proof The state constraints ensure f (x,μN(x)) ∈ X
N−1 for all x ∈ X and thus

Bδ(f (x,μN(x))) ⊆ X by Assumption 8.38(i). Hence, in the absence of measure-
ment errors, i.e. for ē = 0, and for d̄ ≤ δ we obtain x̃μN

(k, x) ∈ X for all x̃μN
(·, x) ∈

S(d̄,ē)(x) and all x ∈ X.
Using this property and the uniform continuity of VN guaranteed by Proposi-

tion 8.40, for ē = 0 the proof is analogous to the proof of Theorem 8.26 when all
sets in this proof are intersected by X and we use the a priori restriction d̄ ≤ δ. Prac-
tical asymptotic stability for ē > 0 then follows as in the second part of the proof of
Theorem 8.36. �

Remark 8.42

(i) As in the previous robustness results again we did not use continuity of μN .
(ii) The continuity proof of Proposition 8.40 does not immediately extend to

NMPC schemes with stabilizing terminal constraint set X0. If these are to be
used, then additional conditions on X0 need to be imposed.

(iii) Remark 8.27(v) and Remark 8.37(iii)–(v) apply accordingly to Theorem 8.41.

We end this chapter with a brief discussion of the robustness conditions intro-
duced in the last sections.

Without state constraints, Corollaries 8.28 and 8.29 show that robustness can be
expected under reasonable continuity conditions on the problem data.
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In the presence of state constraints, however, things become quite more restric-
tive: Looking at the conditions (8.13), (8.14) and Assumption 8.38(ii) one sees that
in all cases the dynamics f must be able to map each point from the feasible set
(i.e., FN in the case of (8.13) and (8.14) and X in the case of Assumption 8.38) into
the interior of the feasible set with some positive distance δ to its boundary. This
requirement is considerably stronger than the viability of the feasible set, which in
turn is already a rather restrictive assumption.

Comparing (8.13) with Assumption 8.38, (8.13) is less demanding in terms of
regularity of the value function VN , however, Assumption 8.38 allows for a sim-
pler and less restrictive choice of the constraint sets X

k compared to (8.14), which
have to shrink only from X

N to X
N−1 instead of for each pair X

k and X
k−1. This

makes the scheme easier to design and to implement; however, as the discussion
of Artstein’s circles after Example 8.39 shows, there are systems for which state
constraint sets satisfying (8.13) can be constructed but for which Assumption 8.38
cannot be satisfied. It is an open question whether there are examples for which the
converse is true.

In practice, for systems with complex dynamics it seems doubtful whether one
will ever be able to systematically construct constraint sets X

k for which either con-
dition can be satisfied. Instead, in order to cover more realistic settings it seems
desirable to relax these conditions. This, however, may lead to complicated situa-
tions. For instance, instead of requiring to be able to steer the system away from
the boundary of the state constraint set in one step, it appears more natural and less
demanding to be able to do so only after a larger number of steps. In the presence of
perturbations, however, this would mean that the system would leave the admissible
set for a couple of steps before it is able to enter this set again and it is not clear what
kind of conditions one would have to impose on the optimization problem (OCPN)
in order to guarantee that the NMPC closed loop will actually show this behavior.
A straightforward solution to this problem is to wait with the re-optimization until
the solution enters the admissible set again; this is, e.g., proposed by Michalska and
Mayne [15, Sect. V] along with suitable conditions which guarantee that this re-
entering actually happens. However, during this time the system runs in open loop
and hence the controller cannot react to further unforeseen disturbances. Currently,
we are not aware of NMPC formulations which resolve this problem.

Finally, we note that in all approaches presented here the perturbations and errors
are not explicitly taken into account in the design, i.e., in the optimization problem
(OCPN) and its variants. Alternative approaches are briefly discussed at the end of
Sect. 8.10, below.

8.10 Notes and Extensions

While recursive feasibility has long been recognized as an inherent property of the
feasible set XN of terminal constrained NMPC schemes—at least in the nominal
case—there are only few known approaches to deal with the feasibility problem for
schemes without stabilizing terminal constraints. In particular, the approach via exit
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sets in Sect. 8.2 appears to be novel as we are not aware of similar approaches in
the literature. There is, however, a close relation to the study of target problems for
differential or difference inclusions when the closure of X \ X is considered as a
target. More precisely, we conjecture that a discrete time version of the decompo-
sition of the dynamical behavior at the boundary of X analogous to Quincampoix
[18] can be used in order to decide whether Assumption 8.9 is satisfied. Still, one
can only speculate whether this relation can be useful for designing appropriate state
constraint sets X.

The approach of proving recursive feasibility for nonlinear MPC via stability in
Sect. 8.3 is an original contribution and has—to the best of our knowledge—not
been considered before. It does, however, bear similarities with the feasibility result
for linear MPC by Primbs and Nevistić [17, Theorem 3] and its proof. The essential
difference of the proof in [17] and our proof is the fact that we avoid the use of V∞
and that we do not require compactness of sublevel sets of V∞. For this reason our
proof also works for infinite-dimensional state spaces X.

The discussion in Sect. 8.4 reflects our own personal experiences based on the
results developed in this book and numerous numerical simulations.

Regarding robustness, the fact that regularity properties of Lyapunov functions—
like the continuity used in Sects. 8.6 and 8.9—imply robustness is well known in
the control literature, see, for instance, Kellett, Shim and Teel [9] for an analysis
in a sampled data context. For NMPC schemes, this has been used before, e.g., in
De Nicolao, Magni and Scattolini [4] under the assumption that VN is C2. The proof
idea of Theorem 8.26 in Sect. 8.6 using mere continuity of VN was borrowed from
the stability analysis of nonlinear sampled data systems, cf., e.g., Nešić, Teel and
Kokotović [16].

Regularity properties of optimal value functions under state constraints are fre-
quently studied in optimal control. Assumption 8.38 and the proof of Proposi-
tion 8.40 in Sect. 8.6 were inspired by a continuous time construction by Soner
[22, 23]; we are not aware of similar discrete time constructions in the literature.
It should be noted that the condition in discrete time is more demanding than the
condition in continuous time because in discrete time it is not possible to apply a
control value for an arbitrary short time interval, which is crucial in the proof in
[22, 23].

The idea of ensuring robustness not via continuity of the optimal value function
but via tighter constraint sets as in Sect. 8.8 appears to be used for the first time
by Michalska and Mayne [15] in a continuous time setting. The definition of tight-
ening constraint sets satisfying (8.14) given here for our discrete time setting was
inspired by Limón, Alamo, and Camacho [12]. A refined version of this construction
allowing for suboptimal open-loop control sequences and discontinuous dynamics
was recently studied in Lazar and Heemels [11]. A closely related variant is the
so-called tube based MPC, cf. e.g. Langson, Chryssochoos, Raković and Mayne
[10] or Sect. 5.1 in the survey article by Limón, Alamo, Raimondo, Muñoz de la
Peña, Bravo, Ferramosca and Camacho [13]. In this area, also computational meth-
ods for actually computing appropriate tightening state constraint sets have been
investigated. All these references typically use stabilizing terminal constraints and
consider only additive disturbances.
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Definition 8.33 was introduced by Grimm, Messina, Tuna and Teel [7] who also
considered measurement errors and schemes without stabilizing terminal constraints
similar to the setting we used here. The same authors also constructed the examples
in Sect. 8.7, see [5]. The condition in [7] is more general than Definition 8.33 in
the sense that—roughly speaking—(8.13) is only required for k from a subset of
{0, . . . ,N − 1}. Here we decided to present a simplified version in order to empha-
size the main idea. The stability proof in [7] uses the techniques from [6], which
were already briefly discussed at the end of Sect. 6.1 and in Sect. 6.9, and also
applies to nonpositive definite running costs under the detectability condition dis-
cussed in Sect. 7.3.

While we consider the robustness approaches presented in Sects. 8.6–8.9 as rep-
resentative for many commonly used approaches, they are by no means exhaustive;
in fact, many more variants and related ideas can be found in the literature. The
interested reader may consult, e.g., Rawlings and Mayne [20, Chap. 3] or the sur-
vey papers by Magni and Scattolini [14] or by Limón et al. [13] as well as the
references therein. Furthermore, an alternative to using tightening constraints was
recently presented by Yu, Böhm, Chen and Allgöwer in [25]. Here the error sys-
tem describing the difference between the nominal and the perturbed system is pre-
compensated by an input-to-state stabilizing controller. This, however, comes at the
expense that this controller has to be designed before the NMPC scheme can be set
up.

All approaches discussed so far incorporate the state constraints as hard con-
straints into the optimization. An alternative to this approach is by using what is
often called soft constraints. Here the state constraints are included into the NMPC
formulation by including suitable penalty terms in the cost function, which become
sufficiently large when the state constraint is violated. This approach is popular,
e.g., in robotics in which the penalty terms are closely related to potential fields;
see, e.g., Shim, Jin Kim and Sastry [21]. While this approach appears to work well
in practice, we are not aware of rigorous NMPC feasibility results in the litera-
ture, except for the case when the penalization is performed via barrier functions,
see [24].

We end this discussion by remarking that there is an ample literature on NMPC
schemes which explicitly take the effect of disturbances into account in the pre-
diction. This allows for a much more refined treatment of different perturbation
structures and one may thus expect a better performance of the closed loop under
perturbations under less demanding conditions. However, the price to pay for this
better performance is that instead of a “simple” optimal control problem a dynamic
game, i.e., a min–max problem has to be solved in each sampling instant. The com-
plexity of solving a dynamic min–max problem is considerably higher than solving
an optimal control problem; in particular, the interplay between the control and the
perturbation sequences needs to be modeled with care in order to obtain a reasonable
solution. For recent surveys on such methods we refer to, e.g., Raimondo, Limón,
Lazar, Magni and Camacho [19] (see also the discussion following this article in the
same journal) or Rawlings and Mayne [20, Chap. 3].
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8.11 Problems

1. Consider the feasible set FN for a constraint set X ⊂ X and an optimization
horizon N ∈ N according to Definition 8.2. Assume that for a point x ∈ X

and some K ∈ N there exists an admissible control sequence u ∈ U
K(x) with

xu(K,x) ∈ FN . Prove that x ∈ FN+K holds.
2. Consider a symmetric matrix Q ∈ R

n×n and a constant C > 0 such that the in-
equality |x�Qy| ≤ C‖x‖‖y‖ holds for all x, y ∈ R

n. Let ρ > 0 be given and
consider the set A = Bρ(0).
(a) Show that

ω(r) = 2Cρr

is a modulus of continuity of the function W(x) = x�Qx on A.
(b) Compute a modulus of continuity of the function W(x) = (x�Qx)2 on A.

3. Verify the following facts that have been used in Example 8.31.
(a) For x ∈ R

2 with x2 > 0 and u ∈ R with u < 0 the step x+ = f (x,u) defines
a clockwise movement.

(b) For all c ∈ (0,1), all circles Sr with r > rc = c/
√

1 − c2 and all points x ∈
Sr ∩ X with x2 > r and x1 = c the relation f (x,−1) /∈ X holds. Use this fact
to conclude that for all initial values x ∈ Sr ∩ X with x2 > r it is not possible
to move clockwise toward 0.

(c) For all c < 1/2 and y ′ ∈ Y ′ with ε > 0 sufficiently small the inequality
�(f (y ′,1)) > �(y ′) holds.
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Chapter 9
Numerical Discretization

This chapter is particularly devoted to sampled data systems, which need to be dis-
cretized in order to be able to solve the optimal control problem within the NMPC
algorithm numerically. We present suitable methods, discuss the convergence theory
for one step methods and give an introduction into step size control algorithms. Fur-
thermore, we explain how these methods can be integrated into NMPC algorithms,
investigate how the numerical errors affect the stability of the NMPC controller de-
rived from the numerical model and show which kind of robustness is needed in
order to ensure a practical kind of stability.

9.1 Basic Solution Methods

In order to define the setting, we start by summarizing the main concepts from
Sect. 2.2. As already mentioned there, in most applications the discrete time sys-
tem (2.1) is obtained from sampling a continuous time system

ẋ(t) = fc

(
x(t), v(t)

)
(2.6)

with x(t) ∈ R
d and v(t) ∈ R

m. More precisely, given a subset U ⊆ L∞([0, T ],R
m),

i.e., each u ∈ U is a continuous time control function defined on the sampling inter-
val [0, T ], we define the discrete time dynamics f in (2.1) by

x+ = f (x,u) := ϕ(T ,0, x,u) (2.8)

where ϕ(T ,0, x,u) is the solution of (2.6) with v = u satisfying the initial condition
ϕ(0,0, x,u) = x. Here we tacitly assume that for all admissible initial values x ∈
X ⊆ X = R

d and all admissible controls u ∈ U(x) ⊆ U the solution ϕ(t,0, x,u)

exists for t ∈ [0, T ]. This way we obtain a discrete time system (2.1) whose solutions
for each control sequence u(·) ∈ U

N(x) satisfy

ϕ(tn, t0, x0, v) = xu(n, x0), n = 0,1,2, . . . ,N, (2.7)

for all sampling times tn = nT , n = 0, . . . ,N , and the continuous time control func-
tion v given by
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v(t) = u(n)(t − tn) for almost all t ∈ [tn, tn+1] and all n = 0, . . . ,N − 1,

(2.13)

cf. Theorem 2.7.
Since a closed formula for f defined in (2.8) will only be available in exceptional

cases, it is in general necessary to use numerical schemes in order to compute a
numerical approximation of f . This way, instead of an analytical formula we obtain
an algorithm which can be used in order to compute the predictions needed in the
optimal control problem (OCPN) and its variants. For the exposition in this chapter
we restrict ourselves to sampling with zero order hold in which each element u(n)

of the control sequence is a constant function from [0, T ] to R
m. This amounts to

defining

U := {
u : [0, T ] → R

m
∣
∣ there exists u0 ∈ R

m with u(t) = u0 for all t ∈ [0, T ]}.
Observe that each element in U is uniquely defined by the value u0 ∈ R

m. Accord-
ingly we identify U with R

m and regard each u ∈ U as a value in R
m. Henceforth,

we will again use the symbol u (instead of u0) for this value. The resulting con-
tinuous time control function v in (2.7) is then piecewise constant on the sampling
intervals, cf. also Fig. 2.3 and the discussion after Theorem 2.7. Recall from Re-
mark 2.8 that the overlap of the sampling intervals at the sampling times tn does not
pose a problem in the definition of v in (2.13).

In the following, we give an introduction into numerical methods for ordinary dif-
ferential equations and their analysis. In particular, we give details on so-called one
step methods and show convergence results and requirements. Moreover, we sketch
the basic idea of the very useful step size control algorithms. These algorithms al-
low us to externally define an error tolerance level for the solution and produce an
adaptive time grid which is computationally much more efficient than using a suffi-
ciently fine uniform grid, a requirement that is frequently found in the sampled data
literature. For references to textbooks which cover the material presented here more
comprehensively and in more detail we refer to Sect. 9.6.

For computing f in (2.8) it is sufficient to solve (2.6) on the interval [0, T ] on
which u ∈ U in (2.8) is constant. Hence, the right hand side in (2.8) does not depend
on t and—more importantly—does not exhibit discontinuities on the interval [0, T ].
For this reason, standard numerical techniques can be applied. Still, the solution
depends on the constant control value u, which will be reflected in the subsequent
notation.

Before we can develop solution methods for ordinary differential equations, we
need to define some general concepts. As we have pointed out before, the fundamen-
tal idea of almost all numerical solution methods is to replace the analytic solution
ϕ(t,0, x,u) for t ∈ [0, T ] by an approximation. Throughout the rest of this chapter,
we denote this approximation by ϕ̃(t,0, x,u). The following definition states for
which t such an approximation is defined and what convergence of such an approx-
imation means.
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Definition 9.1

(i) A set G = {τ0, τ1, . . . , τM } of time instants with 0 = τ0 < τ1 < · · · < τM = T

is called a time grid on the interval [0, T ]. The values hi := τi+1 − τi and
h := maxi=0,...,M−1 hi are called step sizes and maximal step size, respectively.

(ii) A function ϕ̃ : G × G × R
d × U → R

d is called grid function.
(iii) Assume that the solution ϕ(t; τ0, x0, u) of (2.6) exists for t ∈ [0, T ]. Then a

family of grid functions ϕ̃j , j ∈ N, on time grids Gj on the interval [0, T ] with
maximal step sizes hj is called (discrete) approximation of ϕ(t; τ0, x0, u), if it
is convergent, i.e.,

max
τi∈Gj

∥∥ϕ̃j (τi; τ0, x0, u) − ϕ(τi; τ0, x0, u)
∥∥ → 0 as hj → 0.

The convergence of the approximation is said to be of order p > 0 if for all
compact sets K ⊂ R

d , Q ⊂ U there exists a constant M > 0 such that

max
τi∈Gj

∥∥ϕ̃j (τi; τ0, x0, u) − ϕ(τi; τ0, x0, u)
∥∥ ≤ Mh

p

j (9.1)

holds for all x0 ∈ K , all u ∈ Q and all sufficiently fine grids Gj on [0, T ].

Less technically speaking, an approximation ϕ̃(τi ,0, x,u) is a grid function de-
fined on G which approximates the values of the true solution at the grid points
and becomes the more accurate the finer the grid becomes. Moreover, the larger the
order of convergence p is, the faster the approximation will converge towards the
exact solution for h → 0.

The most simple class of numerical methods to compute a discrete approximation
satisfying Definition 9.1 are so-called one step methods. Although simple to design,
these methods are nonetheless well suited even for rather complicated problems.
One step methods compute the grid function ϕ̃ iteratively via

ϕ̃(τ0; τ0, x0, u) := x0, ϕ̃(τi+1; τ0, x0, u) := �
(
ϕ̃(τi; τ0, x0, u), u,hi

)
(9.2)

for i = 0, . . . ,M − 1 starting from the given initial value x0. Here � is a mapping

� : R
d × U × R → R

d ,

which should be easy to implement and cheap to evaluate on a computer and, of
course, provide a convergent approximation in the sense of Definition 9.1(iii).

In order to design such a map �, we use that the solution of the differential equa-
tion (2.6) for two consecutive grid points τi and τi+1 satisfies the integral equation

ϕ(τi+1; τ0, x0, u) = ϕ(τi; τ0, x0, u) +
∫ τi+1

τi

fc

(
ϕ(t; τ0, x0, u), u

)
dt.

Approximating the integral expression by the rectangle rule we obtain
∫ τi+1

τi

fc

(
ϕ(t; τ0, x0, u), u

)
dt ≈ (τi+1 − τi)fc

(
ϕ(τi; τ0, x0, u), u

)

= hifc

(
ϕ(τi; τ0, x0, u), u

)
.
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Inserting this approximation into the above integral equation then yields

ϕ(τi+1; τ0, x0, u) ≈ ϕ(τi; τ0, x0, u) + hifc

(
ϕ(τi; τ0, x0, u), u

)
.

Now we define an approximate solution ϕ̃ by requiring that it exactly solves this
approximate equation, i.e.,

ϕ̃(τi+1; τ0, x0, u) = ϕ̃(τi; τ0, x0, u) + hifc

(
ϕ̃(t;0, x0, u), u

)
. (9.3)

This is exactly the iteration in (9.2) with

�(x,u,h) := x + hfc(x,u).

This one step method is called the Euler scheme. Now, if we assume ϕ̃(τi; τ0, x0,

u) ≈ ϕ(τi; τ0, x0, u), then we see that

ϕ̃(τi+1; τ0, x0, u) ≈ ϕ(τi;0, x0, u) + hifc

(
ϕ(τi; τ0, x0, u), u

)

≈ ϕ(τi; τ0, x0, u) +
∫ τi+1

τi

fc

(
ϕ(t; τ0, x0, u), u

)
dt

= ϕ(τi+1; τ0, x0, u),

which suggests that this method yields an approximation in the sense of Defini-
tion 9.1(iii). Formally, we will prove this property for general one step methods in
Theorem 9.5 below. Before we turn to the convergence analysis, we present an im-
portant class of solution methods which follow from a generalization of the Euler
approximation idea to solve the integral equation.

The idea to generalize the Euler method is to use a higher order approximation
for the integral. For example, one can approximate the integral by the trapezoidal
rule instead of the rectangle rule, which leads to the approximation

ϕ(τi+1; τ0, x0, u) ≈ ϕ(τi; τ0, x0, u)

+ hi

2

(
fc

(
ϕ(τi; τ0, x0, u), u

) + fc

(
ϕ(τi+1; τ0, x0, u), u

))
.

When trying to use this approximation in order to define ϕ̃ analogous to (9.3), above,
we run into the problem that the unknown value ϕ̃(τi+1; τ0, x0, u) appears on the
right hand side. We can avoid this if we use the Euler scheme in order to approximate

fc

(
ϕ(τi+1; τ0, x0, u), u

) ≈ fc

(
ϕ(τi; τ0, x0, u) + hifc

(
ϕ(τi; τ0, x0, u)

))
.

Proceeding this way we end up with the so-called Heun method

�(x,u,h) := x + h

2

(
fc(x,u) + fc

(
x + hfc(x,u),u

))
.

Observe that in this formula the value fc(x,u) appears twice and that the scheme
uses nested evaluations of the vector field fc. The formalism of Runge–Kutta meth-
ods now gives a systematic way to formalize this nested structure. We first illustrate
this formalism using the Heun method, which can also be written as
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k1 := fc(x,u),

k2 := fc(x + hk1, u),

�(x,u,h) := x + h

(
1

2
k1 + 1

2
k2

)
.

The advantage of this formalism is that one can easily add new function evaluations
or modify the weighted combination. This leads to the following general form.

Definition 9.2 An s-stage (explicit) Runge–Kutta method is given by

ki := f

(

x + h

i−1∑

j=1

aij kj

)

for i = 1, . . . , s,

�(x,u,h) := x + h

s∑

i=1

biki .

The value ki = ki(x,u,h) is called the ith stage of the method.

The methods thus defined depend on the parameters aij and bi . If the vector field
explicitly depends on t—which is not the case in our setting—then additional pa-
rameters ci are used in the definition. More compactly, these parameters are written
as so-called Butcher tableaus of the form

c1
c2 a21
c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as s−1
b1 b2 · · · bs−1 bs

Table 9.1 shows Butcher tableaus corresponding to the Euler scheme (left), the
Heun scheme (middle) and the so-called classical Runge–Kutta scheme with s = 4
stages proposed by Carl Runge and Martin Kutta in 1895 (right).

Table 9.1 Butcher tableaus for the Euler, Heun and classical
Runge–Kutta method (left to right)

0

1

0

1 1
1
2

1
2

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

Remark 9.3 Models based on partial differential equations, like the one discussed
in Example 6.27, require discretization techniques different from the one discussed
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here. In particular, apart from the discretization in time also a discretization in space
has to be performed. Popular techniques for this purpose are finite difference or fi-
nite element methods and the interested reader is referred to the large amount of
textbooks on this topic, like, e.g., the books by LeVeque [9] or Braess [1], respec-
tively.

9.2 Convergence Theory

Having defined one step methods we now show that the resulting approximations
actually converge towards the solution. To this end, we define the error at time τi ∈ G
as

e(τi) := ∥∥ϕ̃(τi; τ0, x,u) − ϕ(τi; τ0, x,u)
∥∥.

The main idea to show convergence is to use the triangle inequality in order to
separate the error sources in the iteration (9.2) into the error caused by the previously
accumulated error (a) and the local error (b). Abbreviating ϕ(τi) = ϕ(τi; τ0, x0, u)

and ϕ̃(τi) = ϕ̃(τi; τ0, x0, u), this leads to the estimate

e(τi+1) = ∥∥ϕ̃(τi+1) − ϕ(τi+1)
∥∥ = ∥∥�

(
ϕ̃(τi), u,hi

) − ϕ(τi+1)
∥∥

≤ ∥∥�
(
ϕ̃(τi), u,hi

) − �
(
ϕ(τi), u,hi

)∥∥
︸ ︷︷ ︸

accumulated error (a)

+ ∥∥�
(
ϕ(τi), u,hi

) − ϕ(τi+1)
∥∥

︸ ︷︷ ︸
local error (b)

. (9.4)

The idea is sketched in Fig. 9.1 for i = 2.
In order to prove convergence we will use the following conditions, which guar-

antee that both errors (a) and (b) remain small.

Definition 9.4

(i) A one step method satisfies the Lipschitz condition if for all compact subsets
K ⊂ R

d and Q ⊂ U there exists a constant � > 0 such that for all sufficiently
small h > 0 the inequality

Fig. 9.1 Illustration of the
separation of errors
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∥∥�(x1, u,h) − �(x2, u,h)
∥∥ ≤ (1 + �h)‖x1 − x2‖ (9.5)

holds for all x1, x2 ∈ K and all u ∈ Q.
(ii) A one step method is called consistent with order of consistency p > 0 if for

all compact subsets K ⊂ R
d and Q ⊂ U there exists a constant C > 0 such that

for all sufficiently small h > 0 the inequality
∥∥�(x,u,h) − ϕ(h;0, x,u)

∥∥ ≤ Chp+1 (9.6)

holds for all x ∈ K and all u ∈ Q.

Inequality (9.5) guarantees that the propagation of previous errors within a one
step method, i.e., term (a), stays bounded. The consistency condition (9.6), on the
other hand, ensures that the local error (b) remains small.

One can easily show that the previously introduced Euler approximation as well
as all explicit Runge–Kutta methods satisfy the Lipschitz condition (9.5) if the vec-
tor field fc satisfies the Lipschitz condition from Assumption 2.4. The consistency
condition (9.6), on the other hand, cannot be checked that easily in general. In order
to verify that a method � exhibits an order of consistency p ≥ 1, one utilizes the
Taylor approximation of the method with respect to the step size h in h = 0, i.e.

�(x,u,h) = x +
p∑

i=1

hi

i!
∂i

∂hi

∣∣
∣∣
h=0

�(x,u,h) + O
(
hp+1) (9.7)

and compares it to the Taylor approximation of the exact solution ϕ(h;0, x,u) with
respect to h in h = 0. It turns out that this Taylor approximation can be computed
without actually using the—in general unknown—solution ϕ. To this end, we use
the higher order Lie derivative Li

fc
, i ∈ N0, with respect to the vector field fc which

for arbitrary smooth vector fields g : R
d × U → R

d is defined inductively by

L0
fc

g(x,u) = g(x,u), Li
fc

g(x,u) =
(

∂

∂x
Li−1

fc
g(x,u)

)
fc(x,u).

Using the Lie derivative, the Taylor approximation of ϕ reads

ϕ(h;0, x,u) = x +
p∑

i=1

hi

i! Li−1
fc

fc(x,u) + O
(
hp+1). (9.8)

Then, if the p summands in (9.7) and (9.8) coincide, the scheme is consistent with
order p. In particular, if � can be written as

�(x,u,h) = x + hψ(x,u,h)

with a continuous function ψ satisfying ψ(x,u,0) = fc(x,u), then it follows that
the order of consistency is at least p = 1.

Using this technique one can show that the order of consistency of the classical
Runge–Kutta method is p = 4. More generally, the comparison of the summands
can be used in order to derive conditions on the coefficients of arbitrary Runge–
Kutta schemes for any consistency order p ≥ 1. Unfortunately, the number of these
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condition grows exponentially with p, hence for p ≥ 10 it is almost impossible to
use them for constructing appropriate Runge–Kutta methods.

Note that in order to guarantee the order of consistency p the vector field fc needs
to be p times continuously differentiable with respect to x in order to ensure that
approximation (9.8) holds. If the vector field depends on t , then it also needs to be
p times continuously differentiable with respect to t on the interval [τi, τi+1] if we
want to apply (9.6) on this interval. This is no problem as long as [τi, τi+1] ⊆ [0, T ],
which is always the case in this section. However, if we consider sampled data
systems, i.e., (2.6) with v from (2.13) on an interval [τi, τi+1] with tn ∈ (τi, τi+1) for
some sampling time tn, this becomes a major issue since the control v and thus the
map t �→ fc(x, v(t)) is in general discontinuous and thus in particular nonsmooth at
the sampling times. We will discuss this issue in Sect. 9.4, below.

After discussing the assumptions and how these assumptions can be checked, we
are now ready to state the main result of this section.

Theorem 9.5 If a one step method � satisfies the Lipschitz condition (9.5) and the
consistency condition (9.6) with order p, then the approximation ϕ̃ from (9.2) is
convergent in the sense of Definition 9.1(iii) with order of convergence p.

Proof We will show (9.1) for each grid G on [0, T ] with h > 0 sufficiently small.
For simplicity of notation, we drop the index j in (9.1). To this end, fix two compact
sets K ⊂ R

d and Q ⊂ U . Then the set

K1 := {
ϕ(t;0, x0, u)

∣∣ t ∈ [0, T ], x0 ∈ K, u ∈ Q
}

is again compact, since ϕ is continuous in all variables and images of compact sets
under continuous maps are again compact. We choose some δ > 0 and consider the
compact set

K2 := Bδ(K1) =
⋃

x∈K1

Bδ(x),

which contains exactly those points x ∈ R
d which have a distance less or equal δ to

a point on a solution x(t;0, x0, u) with x0 ∈ K and u ∈ Q. Let � > 0 and C > 0
be the constants in the Lipschitz condition (9.5) and the consistency condition (9.6),
respectively, for K = K2 and the set Q fixed above.

We first prove (9.1) under the following condition, which we will verify after-
wards.

For all grids G with sufficiently small h > 0, all initial

values x0 ∈ K and all u ∈ Q the grid function ϕ̃ from

(9.2) satisfies ϕ(τi, τ0, x0, u) ∈ K2 for all τi ∈ G.

(9.9)

For proving (9.1) we choose x0 ∈ K and u ∈ Q and abbreviate ϕ(t) =
ϕ(t; τ0, x0, u) and ϕ̃(τi) = ϕ̃(τi; τ0, x0, u). With

e(τi) := ∥∥ϕ̃(τi) − ϕ(τi)
∥∥

we denote the error at time τi ∈ G . Then from (9.4) we obtain
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e(τi+1) ≤ ∥∥�
(
ϕ̃(τi), u,hi

) − �
(
ϕ(τi), u,hi

)∥∥ + ∥∥�
(
ϕ(τi), u,hi

) − ϕ(τi+1)
∥∥

≤ (1 + �hi−1)
∥∥ϕ̃(τi−1) − ϕ(τi−1)

∥∥ + Ch
p+1
i−1

= (1 + �hi−1)e(τi−1) + Ch
p+1
i−1 ,

using (9.5) and (9.6) for K = K2 in the second inequality. These inequalities apply
since the construction of K1 and K2 implies ϕ(τi) ∈ K1 ⊂ K2 and (9.9) ensures
ϕ̃(τi) ∈ K2.

By induction over i we now show that this inequality implies the estimate

e(τi) ≤ Ch
p 1

�

(
exp

(
�(τi − τ0)

) − 1
)
.

For i = 0 this inequality follows immediately. For i − 1 → i we use

exp(�hi) = 1 + �hi + �2h2
i

2
+ · · · ≥ 1 + �hi,

which together with the induction assumption yields

e(τi) ≤ (1 + �hi−1)e(τi−1) + Ch
p+1
i−1

≤ (1 + �hi−1)Ch
p 1

�

(
exp

(
�(τi−1 − τ0)

) − 1
) + hi−1 Ch

p

i−1︸ ︷︷ ︸
≤Ch

p

= Ch
p 1

�

(
hi−1� + (1 + �hi−1)

(
exp

(
�(τi−1 − τ0)

) − 1
))

= Ch
p 1

�

(
hi−1� + (1 + �hi−1) exp

(
�(τi−1 − τ0)

) − 1 − �hi−1
)

= Ch
p 1

�

(
(1 + �hi−1) exp

(
�(τi−1 − τ0)

) − 1
)

≤ Ch
p 1

�

(
exp(�hi−1) exp

(
�(τi−1 − τ0)

) − 1
)

= Ch
p 1

�

(
exp

(
�(τi − τ0)

) − 1
)
.

Since τ0 = 0 this implies (9.1) with M = C(exp(�T ) − 1)/�.
It remains to show that assumption (9.9) is satisfied. We show that this assump-

tion holds for all grids G whose maximal step size satisfies

Ch
p ≤ δ�

exp(�(T − τ0)) − 1
.

To this end, we consider a numerical solution ϕ̃(τi) = ϕ̃(τi , τ0, x0, u) for some x0 ∈
K and u ∈ Q and show ϕ̃(τi) ∈ K2 by induction. Since ϕ̃(τ0) = x0 ∈ K ⊂ K2 the
assertion holds for i = 0.

For the induction step i − 1 → i assume that the induction assumption ϕ̃(τk) ∈
K2 holds for k = 0,1, . . . , i − 1. We have to show ϕ̃(τi) ∈ K2. Observe that for the
inequality

e(τi) ≤ Ch
p 1

�

(
exp

(
�(T − τ0)

) − 1
)
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to hold it is sufficient that ϕ̃(τk) ∈ K2 holds for k = 0,1, . . . , i − 1. By choice of h

we thus obtain e(τi) ≤ δ, i.e.,
∥∥ϕ̃(τi) − ϕ(τi)

∥∥ ≤ δ.

Since by construction of K1 we have ϕ(τi) ∈ K1, it follows that ϕ̃(τi) ∈ Bδ(ϕ(τi)) ⊂
K2, i.e., the desired property. �

9.3 Adaptive Step Size Control

The convergence theorem from the previous section shows that the presented one
step methods are applicable to solve the underlying continuous time dynamics of the
form (2.6) of a problem (OCPn

N,e). Yet, so far we can only guarantee those methods
to exhibit small errors if each time step hi in the grid G is sufficiently small since
the error bound in (9.1) depends on h = maxhi . In the literature, it is occasionally
proposed to use the grid induced by the sampling times as computational grid, i.e.,
to choose τn = tn = nT . This, however, results in h = T and thus requires the sam-
pling period T to be small in order to obtain an accurate approximation. Apart from
the fact that it may not be desirable to use very small sampling periods, there are
subtle pitfalls regarding stability of the closed-loop system when the accuracy of the
approximate model and the sampling rate are linked, see the discussion in Sect. 9.6.

A way to avoid linking h and T is to use a constant step size hi ≡ h with
h = T/K for some K ∈ N. Adjusting h appropriately, we can make the error term
in (9.1) arbitrarily small without changing T . This, however, leads to equidistant
grids, which are known to be computationally inefficient since they do not reflect
the properties of the solution. A much more efficient way is to choose the time steps
hi adapted to the solution, i.e., we allow for large hi if the error is small and use
small hi when large errors are observed. However, we surely do not want to manu-
ally adapt the step sizes to every situation the NMPC controller may face since this
would render such an algorithm to be inapplicable.

In order to obtain an efficient way to construct an adaptive grid G , we consider
step size control algorithms. Such methods are well established in the numerics of
ordinary differential equations. In this section we explain the central idea behind
step size control algorithms. The key idea is to use two different one step methods
�1, �2 with different orders of consistency p1 < p2 in order to compute a step
length hi = τi+1 − τi at time τi for the next time step which guarantees a prede-
fined local error bound tolODE. Here, by p1 < p2 we mean that for � = �1 the
Inequality (9.6) cannot hold for p = p2, i.e., no matter how C is chosen (9.6) will
be violated for all sufficiently small h. As in the previous sections, we consider the
solution of (2.6) on one sampling interval [0, T ] on which the control u is constant.

In (9.4) we used the auxiliary term �(ϕ(τi; τ0, x,u),u,hi) in order to quantify
the local error. Since the value of ϕ(τi;0, x,u) is not available at runtime of a one
step method, we cannot use it to guarantee the local error (a) to satisfy

∥
∥�

(
ϕ(τi; τ0, x,u),u,hi

) − ϕ(τi; τ0, x,u)
∥
∥ ≤ tolODE.
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To circumvent this problem, in the triangle inequality for estimating e(τi+1) we in-
sert the term ϕ(τi+1; τi, ϕ̃(τi; τ0, x,u),u) instead of �(ϕ(τi; τ0, x,u),u,hi). Using
that by the cocycle property we have ϕ(τi+1; τ0, x,u) = ϕ(τi+1; τi, ϕ(τi; τ0, x,u),

u), this leads to the inequality
∥∥ϕ̃(τi+1; τ0, x,u) − ϕ(τi+1; τ0, x,u)

∥∥

≤ ∥∥�
(
ϕ̃(τi; τ0, x,u),u,hi

) − ϕ
(
τi+1; τi, ϕ̃(τi; τ0, x,u),u

)∥∥

+ ∥∥ϕ
(
τi+1; τi, ϕ̃(τi; τ0, x,u),u

) − ϕ
(
τi+1; τi, ϕ(τi; τ0, x,u),u

)∥∥.

In this sum the second term essentially depends on the error of the approximation
at time instant τi , which is independent of the choice of hi = τi+1 − τi . Hence,
for choosing hi we only consider the first summand. More precisely, we attempt to
choose hi such that the tolerable error bound

∥∥�
(
ϕ̃(τi; τ0, x,u),u,hi

) − ϕ
(
τi+1; ti, ϕ̃(τi; τ0, x,u),u

)∥∥ ≤ tolODE

is satisfied.
When trying to implement this method, one faces the problem that the value

ϕ(τi+1; ti , ϕ̃(τi; τ0, x,u),u) is not known. This is where the idea of using two meth-
ods �1 and �2 with different orders of consistency p2 > p1 is used. Setting � = �1
and approximating ϕ(τi+1; ti , ϕ̃(τi; τ0, x,u),u) by the more accurate method �2
one can show the following theorem.

Theorem 9.6 Consider two one step methods �1, �2 with orders of consistency
p1, p2 satisfying p2 ≥ p1 + 1. Then there exist constants k1, k2 > 0 such that for all
sufficiently small hi > 0 the computable error

ε := ∥∥�1
(
ϕ̃(τi;0, x,u),u,hi

) − �2
(
ϕ̃(τi;0, x,u),u,hi

)∥∥ (9.10)

and the local error of the one step method �1

ε := ∥∥�1
(
ϕ̃(τi;0, x,u),u,hi

) − ϕ
(
τi+1; τi, ϕ̃(τi;0, x,u),u

)∥∥

satisfy the inequality

k1ε ≤ ε ≤ k2ε.

Proof First we define the errors

ηi,j := �j

(
ϕ̃(τi;0, x,u),u,hi

) − ϕ
(
τi+1; τi, ϕ̃(τi;0, x,u),u

)

for both one step methods �j , j = 1,2. By Definition 9.4(ii) we obtain the local

error bounds εi,j := ‖ηi,j‖ ≤ Cjh
pj +1
i . Using p2 ≥ p1 + 1 and the fact that this im-

plies εi,1 ≥ Ch
p2+1
i for all C > 0 and all sufficiently small hi > 0, we can conclude

θ := εi,2/εi,1 < 1 if hi is chosen sufficiently small since θ → 0 as hi → 0. We fix
θ0 < 1, consider hi > 0 such that θ < θ0 < 1 holds and define

η := �1
(
ϕ̃(τi;0, x,u),u,hi

) − �2
(
ϕ̃(τi;0, x,u),u,hi

) = ηi,1 − ηi,2.

Then we have
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(1 − θ)εi,1 = (1 − θ)‖ηi,1‖ =
(

1 − ‖ηi,1 − η‖
‖ηi,1‖

)
‖ηi,1‖

= ‖ηi,1‖ − ‖ηi,1 − η‖ ≤ ‖η‖ = ε,

which yields the lower bound k1 = 1 − θ0 and

ε = ‖η‖ ≤ ‖ηi,1‖ + ‖ηi,1 − η‖ =
(

1 + ‖ηi,1 − η‖
‖ηi,1‖

)
‖ηi,1‖

= (1 + θ)‖ηi,1‖ = (1 + θ)εi,1

giving the upper bound k2 = 1 + θ0. �

Using Theorem 9.6 we can now compute a suitable step size hi if we additionally
assume that the local error is of the form εi,1 ≈ cih

p1+1
i for small hi . Note that for

Runge–Kutta methods this assumption is satisfied if the vector field f is p1 + 2
times continuously differentiable. In this case, ci is given by the coefficient of the
h

p1+1
i term in the Taylor approximation of the method.

For small step sizes it follows from the proof of Theorem 9.6 that k1 ≈ k2 ≈ 1,
i.e. ε ≈ εi,1 ≈ cih

p1+1
i , which gives us the estimate ci ≈ ε/h

p1+1
i for the coefficient

ci . Hence, the error tolerance tolODE is satisfied (approximately) for the step size

tolODE = cih
p1+1
i,new = ε

h
p1+1
i

h
p1+1
i,new ⇐⇒ hi,new = p1+1

√

fac
tolODE

ε
hi . (9.11)

Since all these equalities are only satisfied approximately, a security factor fac ∈
(0,1) has been introduced to compensate for these approximation errors. For this
factor, fac = 0.9 is a typical choice in many algorithms.

A schematic implementation of a one step scheme with adaptive step size is
given in Algorithm 9.7, below. This algorithm combines the iteration (9.2) with
the computation of the step size hi described above. Here we solve (2.6) on one
sampling interval [0, T ] using the length T of the sampling interval as an initial
choice for the first step size h0. For large T , one may alternatively choose h0 < T .
In each step the error ε is computed. If ε exceeds the tolerance tolODE, then the
step is rejected and repeated using the new step size from (9.11). If ε maintains the
desired tolerance, then the step is accepted and the new step size from (9.11) is used
as an initial choice for the next time step.

Algorithm 9.7 Suppose an initial value x, a control value u, a tolerance tolODE

and sampling period T are given.

(1) Set ϕ̃(0;0, x, v) = x, i = 0, τ0 = 0, h0 = T

(2) If τi = T stop; If τi + hi > T set hi = T − τi

(3) Set τi+1 = τi + hi and compute �1(ϕ̃(τi+1; tj , x, u),u,hi), �2(ϕ̃(τi+1; tj ,
x, u),u,hi)

(4) Compute ε and hi,new according to (9.10), (9.11)
(5) If ε > tolODE set hi = hi,new and goto (3)
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Table 9.2 Butcher tableau of the DoPri(4)5 method

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19 372
6561 − 25 360

2187
64 448
6561 − 212

729

1 9017
3168 − 355

33
46 732
5247

49
176 − 5103

18 656

1 35
384 0 500

1113
125
192 − 2187

6784
11
85

35
384 0 500

1113
125
192 − 2187

6784
11
84 0

5179
57 600 0 7571

16 695
393
640 − 92 097

339 200
187

2100
1
40

(6) If ε ≤ tolODE set ϕ̃(τi+1; τ0, x,u) = �2(ϕ̃(τi+1; τ0, x,u),u,hi), hi+1 = hi,new,
i = i + 1 and goto (2)

In practical implementations, this basic algorithm is often refined in various
ways. For instance, the new step size may be derived on the basis of a weighted
sum of the absolute and the relative error instead of using only the absolute error as
above. Upper and lower bounds for the time step hi as well as for the ratio between
hi and hi+1 are also frequently used in practice.

Although the evaluation of two methods �1 and �2 and their possibly repeated
evaluation in every step seems to be computationally more demanding, step size
control algorithms are usually much more efficient than the use of equidistant time
grids. This is due to two different aspects: on the one hand, there typically exist
regions which allow for larger time steps and thus allow for a faster progress of
the adaptive iteration procedure. On the other hand, the additional effort of simul-
taneously evaluating two methods can be reduced significantly by embedding these
methods into each other. This means that the less accurate Runge–Kutta method �1
uses the same stages ki , cf. Definition 9.2, as the more accurate methods �2 and
thus the stages ki only need to be evaluated once for both methods. One standard
embedded method is the Dormand–Prince method of order (4)5, also called DoPri5,
in which �1 has order p1 = 4 and �2 is of order p2 = 5. The Butcher tableau is
displayed in Table 9.2. The second last line specifies the coefficients bi for �1 and
the last line the bi for �2.

With the same induction as in the proof of Theorem 9.5, one sees that if the
local errors maintain the tolerances tolODE = εhi for some ε > 0, then the overall
error at time T can be estimated as e(T ) ≤ ε(exp(�T ) − 1)/� and thus scales
linearly with ε. It should, however, be mentioned that adaptive step size selection
schemes usually do not rigorously maintain the specified error tolerance. The reason
for this is that Theorem 9.6 and the derivation of (9.11) require hi to be sufficiently
small. Suitable upper bounds which quantify this “sufficiently small” are, however,
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difficult to obtain without an extensive a priori analysis of the individual system and
can therefore not be enforced in practice. Hence, the step size selection algorithm
may select large step sizes for which the error estimation is no longer valid and thus
the desired accuracy is no longer guaranteed. Thus, in general only equidistant grids
with sufficiently small maximal step size h provide rigorous error bounds. Still,
numerical experience shows that in the vast majority of examples error estimation
based adaptive step size algorithms like Algorithm 9.7 perform very reliably.

9.4 Using the Methods Within the NMPC Algorithms

Looking at the NMPC Algorithm 3.11 and its variants, we see that in every iteration
an optimal control problem (OCPn

N,e) has to be solved. To this end, the optimization
algorithm needs to be able to compute the solution xu and to evaluate the functional
JN . In fact, there are various ways for incorporating xu into the optimization algo-
rithm, for details see Sect. 10.1. However, no matter which method from this section
we use, we need to be able to evaluate ϕ(T ,0, x,u) in (2.8) numerically.

To this end, we replace the unknown map ϕ(T ,0, x,u) in (2.8) by its approxima-
tion ϕ̃(T ,0, x,u) from Algorithm 9.7. This way we end up with the definition

x+ = f (x,u) := ϕ̃(T ,0, x,u). (9.12)

Iterating this map according to (2.2), which amounts to calling Algorithm 9.7 N

times with initial values xu(n, x) and control values u(n), n = 0, . . . ,N − 1, we
can then obtain an approximate predicted solution trajectory. Proceeding this way,
one should keep in mind that the numerical scheme provides only an approximation
of the exact solution. The effects of the approximation errors will be discussed in
Sect. 9.5, below.

When the running cost � is defined via the integral formula (3.4), then we can
efficiently include the numerical evaluation of the integral

�(x,u) =
∫ T

0
L

(
ϕ(t,0, x,u),u

)
dt

into the computation of ϕ̃. Here we have removed the argument t from u because—
following the convention in this chapter—u is constant on the sampling interval
[0, T ]. In order to compute the integral, consider the augmented ordinary differential
equation

ẋ(t) = f
(
x(t), u

)
(9.13)

with

x(t) =
(

x(t)

y(t)

)
∈ R

d × R and f (x,u) =
(

fc(x,u)

L(x,u)

)
.

Solving (9.13) with initial condition x = (x,0) we obtain the solution

ϕ(T , x,u) =
(

ϕ(T , x,u)

�(x,u)

)
.
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Fig. 9.2 Approximation of the sampled data solution

Thus, solving (9.13) numerically yields a numerical solution whose first n com-
ponents equal ϕ̃(T , x,u) and whose (n + 1)st component approximates �(x,u).
Proceeding this way we avoid the use of a separate numerical integration formula,
in particular, we do not have to store the intermediate values ϕ̃(τi , x, u) for a sub-
sequent numerical integration of L. Furthermore, the adaptive step size algorithm
ensures that � is approximated with the same accuracy as the solution ϕ.

As we will see in detail in Sect. 10.1, one way to incorporate the dynamics of
the system into the numerical optimization algorithm is to externally compute the
whole trajectory xu(·, x0), an approach called recursive discretization. In order to
compute this trajectory, instead of defining f via (9.12) and then iterating f ac-
cording to (2.2) one could apply a numerical one step method directly on the inter-
val [0,NT ]. This way we obtain a numerical approximation of xu (and also of JN

if we include the computation of �) on [0,NT ] invoking Algorithm 9.7 only once.
However, this has to be done with care. As already mentioned, in order to guar-
antee consistency with order p of the numerical schemes, it is important that the
map (t, x) �→ fc(x, v(t)) in (2.6) is p times continuously differentiable. Formally,
this can be shown by extending Formulas (9.7) and (9.8) to time varying vector
fields fc .

However, we can also give an informal explanation of this fact: when consid-
ering the solution of (2.6) with zero order hold, then the control function v is dis-
continuous at the sampling times tn. Consequently, the solution ϕ(t,0, x, v) is not
differentiable for t = tn, as sketched in Fig. 9.2. Since we cannot approximate non-
smooth functions by a Taylor approximation, Formula (9.8) will not hold if we re-
place ϕ(h,0, x,u) by ϕ(τi +hi, τi, x, v) with tn ∈ (τi, τi +hi) = (τi, τi+1) for some
sampling time tn. Thus, we have to make sure that this situation does not happen.
Defining the set of sampling times

T := {tn ∈ R | tn = nT , n = 0, . . . ,N} (9.14)

and using the time grid

G := {
τi ∈ [0,NT ] ∣

∣ τi is a discretization time in the one step method
}
, (9.15)
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in order to exclude the existence of i and n with tn ∈ (τi, τi + hi) = (τi, τi+1) we
need to make sure that the inclusion T ⊂ G holds. This assumption is not very
restrictive, however, in order to ensure it we need to appropriately adjust Algo-
rithm 9.7.

9.5 Numerical Approximation Errors and Stability

Defining the discrete dynamics f via the numerical approximation ϕ̃, cf. (9.12),
introduces errors in the predictions xu in the optimal control problems (OCPn

N,e)
and its variants. In this section we shift our focus from analyzing the effects of these
errors on the open loop towards their effect on the closed loop. To this end, we
utilize the techniques from Sects. 8.5–8.9 and—similar to these sections—restrict
ourselves to constant reference x ref ≡ x∗ in order to simplify the exposition. For the
extension to time varying xref we refer to the remarks following the main results in
Sects. 8.5–8.9.

As a general assumption we suppose that for each ε > 0 we can compute a nu-
merical approximation ϕ̃ε which satisfies

∥∥ϕ̃ε(T ,0, x,u) − ϕ(T ,0, x,u)
∥∥ ≤ ε (9.16)

for some ε > 0, all x ∈ X and u ∈ U(x). As discussed at the end of Sect. 9.3, such an
estimate is rigorously ensured for ϕ̃ε generated by one step methods on equidistant
grids with sufficiently small h > 0 but can typically also be expected for ϕ̃ from the
adaptive step size Algorithm 9.7 by adjusting the tolerance tolODE appropriately.
Observe that since (9.1) only holds for x and u from compact sets, in the case
of equidistant grids we may have to adjust h > 0 to x and u in order to ensure
(9.16) if X or U(x) are noncompact. In case of Algorithm 9.7 the step size will be
automatically adjusted by the step size selection mechanism.

Given that ϕ̃ε is an approximation of the true solution ϕ it seems natural to con-
sider ϕ̃ε as a perturbed version of ϕ. However, since by definition the model used in
the NMPC algorithm—i.e., the numerical approximation ϕ̃ε—is the nominal model,
we need the converse interpretation in order to apply the results from Sects. 8.5–8.9.
In what follows we show that the closed loop obtained from the exact sampled data
system (2.8) can be considered as a perturbed system in the sense of Sect. 8.5. To
this end, we consider the following setting.

The NMPC algorithm is run with the numerically approximated discrete dynam-
ics

f (x,u) = f ε(x,u) := ϕ̃ε(T ,0, x,u) (9.17)

as a nominal model. The resulting NMPC-feedback law is denoted by με
N . With

xε
με

N
and x̃ε

με
N

we denote the corresponding nominal and perturbed NMPC closed-

loop trajectory from (3.5) and (8.7) with f = f ε = ϕ̃ε and μN = με
N , respectively,

i.e.,

xε
με

N
(n + 1) = f ε

(
xε
με

N
(n),με

N

(
xε
με

N
(n)

))
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and

x̃ε
με

N
(n + 1) = f ε

(
x̃ε
με

N
(n),με

N

(
x̃ε
με

N
(n) + e(n)

)) + d(n).

The closed-loop system obtained from applying the numerically computed NMPC
feedback με

N to the exact model f = ϕ from (2.8) according to (3.5), i.e.,

xex
με

N
(n + 1) = f

(
xex
με

N
(n),με

N

(
xex
με

N
(n)

))
,

will be called the exact closed-loop system. The resulting trajectories will be denoted
by xex

με
N

.

Note that the same NMPC-feedback law με
N —computed from f = f ε = ϕ̃ε—is

used in (3.5) for generating xε
με

N
and xex

με
N

. The difference between the two trajecto-

ries only lies in the map f in (3.5), which is given by f = f ε = ϕ̃ε for xε
με

N
and by

f = ϕ for xex
με

N
. Using this notation we obtain the following result.

Lemma 9.8 Consider the discrete time dynamics f = f ε from (9.17) obtained from
a numerical approximation ϕ̃ε satisfying (9.16), an NMPC-feedback law με

N with
με

N(x) ∈ U(x) and the solution xε
με

N
of the corresponding closed-loop system (3.5).

Consider, furthermore, the solution xex
με

N
of the exact closed-loop system.

Then for each x0 ∈ X there exists a perturbation sequence d(·) ∈ (Rd)∞ with
‖d(n)‖ ≤ ε such that the solution x̃ε

με
N
(n, x0) of the perturbed system (8.7) with

f = f ε and e ≡ 0 satisfies

xex
με

N
(n, x0) = x̃ε

με
N
(n, x0)

for all n ∈ N0.

Proof Define

d(n) := ϕ
(
T ,0, xex

με
N
(n, x0),μ

ε
N

(
xex
με

N
(n, x0)

))

− ϕ̃ε
(
T ,0, xex

με
N
(n, x0),μ

ε
N

(
xex
με

N
(n, x0)

))

for all n ∈ N0. Then (9.16) with x = xex
με

N
(n, x0) and u = με

N(xex
με

N
(n, x0)) implies

‖d(n)‖ ≤ ε for all n ∈ N0. We show the desired identity by induction over n. For n =
0 we obtain xex

με
N
(0, x0) = x0 = x̃ε

με
N
(0, x0). For n → n+1 assume that xex

με
N
(n, x0) =

x̃ε
με

N
(n, x0) holds. Then we get

xex
με

N
(n + 1, x0) = ϕ

(
T ,0, xex

με
N
(n, x0),μ

ε
N

(
xex
με

N
(n, x0)

))

= ϕ̃ε
(
T ,0, xex

με
N
(n, x0),μ

ε
N

(
xex
με

N
(n, x0)

)) + d(n)

= f ε
(
xex
με

N
(n, x0),μ

ε
N

(
xex
με

N
(n, x0)

)) + d(n)

= f ε
(
x̃ε
με

N
(n, x0),μ

ε
N

(
x̃ε
με

N
(n, x0)

)) + d(n)

= x̃ε
με

N
(n + 1, x0).

This shows the assertion. �
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Lemma 9.8 shows that the closed-loop solution for the discrete time model ob-
tained from the exact sampled data system (2.8) can be interpreted as a perturbed so-
lution of the discrete time model obtained from the numerical approximation (9.17).
The size of the perturbation d(·) directly corresponds to the numerical error (9.16).

This lemma enables us to use all results from Sects. 8.5–8.9 in order to con-
clude stability properties for xex

με
N

. The appropriate stability property is given by the

following definition, cf. Definition 8.24.

Definition 9.9 Consider the exact closed-loop system (2.5) with f = ϕ from (2.8)
with με

N computed from f = f ε = ϕ̃ε from (9.17) satisfying (9.16) for some ε > 0.
Given a set A ⊆ X such that the optimal control problem defining με

N is feasible
for all x0 ∈ A, we say that x∗ is semiglobally practically asymptotically stable on A

with respect to the numerical error ε if there exists β ∈ K L such that the following
property holds: for each δ > 0 and � > δ there exists ε > 0, such that for each initial
value x0 ∈ A with |x0|x∗ ≤ � and each ε ∈ (0, ε] the solution xex

με
N
(·, x0) satisfies

xex
με

N
(k, x0) ∈ A and

∣∣xex
με

N
(k, x0)

∣∣
x∗ ≤ max

{
β
(|x0|x∗, k

)
, δ

}

for all k ∈ N0.

The following theorem now gives conditions under which this stability property
holds.

Theorem 9.10 Consider the NMPC-feedback laws με
N obtained from one of the

NMPC algorithms from Theorem 8.26, 8.36 or 8.41 with f = f ε = ϕ̃ε from (9.17).
Assume that (9.16) holds and that there is ε0 > 0 such that one of the following
assumptions is satisfied for all ε ∈ (0, ε0].

(i) In case of Theorem 8.26, assume that α, α1, α2, α3 in Theorem 4.11 as well as
ωV and ωf can be chosen independently of ε > 0.

(ii) In case of Theorem 8.36, assume that α, α1, α̃ in Theorem 6.18, β from As-
sumption 8.35 and η in Definition 8.33 can be chosen independently of ε > 0.

(iii) In case of Theorem 8.41, assume that α, α1, α2, α3 in Theorem 4.11, δ, γ , ε′ in
Assumption 8.38 and the bound on f as well as the moduli of continuity of f

and � can be chosen independently of ε > 0.

Then the exact closed-loop system (2.5) with f = ϕ from (2.8) is semiglobally
practically asymptotically stable with respect to ε from (9.16) in the sense of Defi-
nition 9.9 on the set A specified in the respective theorem.

Proof The respective theorems ensure semiglobal practical asymptotic stability for
all perturbed trajectories x̃ε

με
N

with respect to d and e in the sense of Definition 8.24.

An inspection of the proofs of the respective theorems then reveals that the unifor-
mity assumptions (i)–(iii) guarantee that for given δ and � the bounds d and e and
the function β ∈ K L in Definition 8.24 are independent of ε > 0.
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Fixing δ and � we thus find d > 0 such that each perturbed solution x̃ε
με

N
with

perturbations ‖d(n)‖ ≤ d and e ≡ 0 satisfies the conditions of Definition 8.24 for all
ε ∈ (0, ε0]. Setting ε = min{d, ε0} and using that by Lemma 9.8 the exact closed-
loop trajectory xex

με
N

equals one of the trajectories x̃ε
με

N
with d = ε and e = 0, we

obtain that xex
με

N
satisfies the conditions of Definition 9.9 for the given δ and � and

all ε ∈ (0, ε]. This yields the assertion. �

Note that Theorem 9.10 only guarantees the stability of the discrete time closed-
loop system (2.5) with f from (2.8) but not for the sampled data closed loop (2.30).
In order to conclude stability properties of (2.30) the techniques from Sect. 2.4
can be used. While Theorem 2.27 and its assumptions are formulated for the case
of “real” asymptotic stability, its statement and proof can be straightforwardly ex-
tended to the semiglobal practical setting of Definition 9.9. Recall from Remark 4.13
that the assumptions of Theorem 2.27 are satisfied for suitable integral costs (3.4).
Although we have not rigorously analyzed the effect of the error induced by the
numerical approximation of such integral costs, we conjecture that the estimates in
Remark 4.13 remain valid in a suitable approximate sense if these errors are suffi-
ciently small.

Since numerical approximations are used in virtually all NMPC algorithms for
sampled data systems, Theorem 9.10 implies that all such algorithms need appro-
priate robustness—either inherently as in case (i) or by an appropriate design of
the state constraints as in cases (ii) and (iii) of Theorem 9.10—in a uniform way
with respect to ε in order to ensure semiglobal practical stability in the presence of
numerical errors. In practice, however, this is hardly ever rigorously ensured. The
reason for this is that for good numerical methods numerical errors are usually very
small compared to other error sources like model errors, external perturbations etc.
Although even very small errors may in the worst case be destabilizing, as illus-
trated by Example 8.31, it is not very likely that this indeed happens and—also
according to our experience—such phenomena are hardly ever observed in simula-
tions or practical examples. Hence, unless robustness is needed in order to cope with
error sources which are significantly larger than the numerical errors discussed in
this chapter, for most practical purposes it seems justified to neglect the robustness
issue, provided, of course, the numerical errors are indeed sufficiently small. Still,
one has to keep in mind that proceeding this way does not rigorously ensure stability
of the exact closed-loop system.

9.6 Notes and Extensions

The material contained in Sects. 9.1–9.3 can be found in many textbooks on numeri-
cal analysis for ordinary differential equations, like, e.g., the books by Deuflhard and
Bornemann [2], Hairer, Nørsett and Wanner [8] or Stoer and Bulirsch [11]. Clearly,
the presentation in this chapter cannot replace any of these textbooks and aims at
giving an introduction into the subject rather than a comprehensive treatment.
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Among the many topics we have not covered in this chapter we would in par-
ticular like to mention stiff problems and differential algebraic equations (DAEs),
often called descriptor systems in systems theory. While stiff problems “look” like
normal ordinary differential equations, they are very difficult to solve with the ex-
plicit methods presented in Sect. 9.1. For stiff equations, which often appear when
modeling technical systems, an adaptive step size algorithm like Algorithm 9.7 will
typically select very small time steps even though the solution is almost constant.
Explaining the precise mathematical reasons for this behavior goes beyond these
notes, but we would at least like to mention that so-called implicit methods perform
much better for stiff equations. DAEs are ordinary differential equations with ad-
ditional algebraic constraints, often given implicitly. DAEs appear as models, e.g.,
in mechanics and electrical engineering and NMPC is perfectly suited for handling
DAEs, however, the solution methods presented in this chapter do not apply to such
equations and specialized numerical schemes are needed, which are again often of
the implicit type. While also covered in some standard textbooks, there is a large
amount of literature particularly devoted to stiff and DAE problems, as, e.g., Hairer
and Wanner [7], and we refer the reader to such books for more details.

As Examples 2.12 and 6.27 show, NMPC is also suitable for infinite-dimensional
systems generated by controlled PDEs. NMPC for PDEs requires the solution of an
optimal control problem for PDEs in each step. The monograph by Tröltzsch [12]
provides a good introduction into such problems. A simple way to approach this
problem numerically is to proceed similar as described for the ordinary differential
equations in this chapter with an additional spatial discretization by, e.g., a finite
difference method (which is what we used in Example 6.27), see, e.g., LeVeque
[9] or a finite element method, see, e.g., Braess [1]. However, it is by no means
clear whether this is the most efficient way of approaching the problem numerically;
in fact, the development of suitable numerical schemes is currently a very active
research area. Furthermore, we are not aware of a rigorous analysis of the effects of
spatial discretization errors in NMPC controller design.

The need to use numerical approximations and the consequences for the stabil-
ity analysis discussed in Sect. 9.5 are largely ignored in the NMPC literature. An
exception to this rule are the papers by Gyurkovics and Elaiw [5, 6], which are in
the same spirit as cases (i) and (iii) of Theorem 9.10 in the sense that they exploit
uniform continuity properties, in particular of the optimal value function VN . How-
ever, these results require Lyapunov function terminal costs and do not consider
state constraints as in cases (ii) and (iii) of Theorem 9.10.

More generally, the problem considered in Sect. 9.5 can be seen as a special case
of a nonlinear controller design based on approximate models. A comprehensive
treatment of this topic in a rather general setting can be found in Nešić and Teel
[10]. An application to infinite horizon optimal control based feedback design was
given in Grüne and Nešić [4]. The idea to treat numerical errors as perturbations
is classical in numerical analysis. In a control theoretic framework this idea was
used extensively in the monograph Grüne [3]. All these approaches are similar to
our approach in the sense that the stability property of the approximate system is
required to be robust in some suitable sense, that the robustness can be quantified
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and that this quantitative measure of the robustness is independent of the numerical
accuracy. In all cases the obtained stability property is semiglobal practical stability,
just as in Theorem 9.10. State constraints are, however, again not considered in these
references.

Nešić and Teel [10] also nicely illustrate the pitfalls of feedback design based on
approximate models by means of simple examples and discuss the case in which the
numerical accuracy is linked to the sampling period T . Roughly speaking, in this
case uniform continuity of the Lyapunov function under consideration is not suffi-
cient in order to ensure stability of the exact closed-loop system. Rather, a stronger
property like Lipschitz continuity with Lipschitz constant independent of the nu-
merical accuracy ε is needed in this case.

There are numerous issues related to numerical errors we have not addressed
in this chapter. For instance, numerical errors may lead to the situation that the
inequalities in Assumption 5.9(ii) or Assumption 6.4 are only satisfied up to an
error term ε, which has to be taken into account in the results relying on these
assumptions. While we conjecture that in both cases the respective proofs can be
modified in order to obtain at least semiglobal practical asymptotic stability of xε

με
n
,

we are not aware of respective results in the literature. Hence, this area certainly
offers a number of open questions for future research.

9.7 Problems

1. Prove that the solution ϕ(t,0, x0, u) of (2.6) with t ∈ [0, T ] and constant control
function u satisfies the integral equation

ϕ(τi+1; τ0, x0, u) = ϕ(τi; τ0, x0, u) +
∫ τi+1

τi

fc

(
ϕ(t; τ0, x0, u), u

)
dt

for all τi, τi+1 ∈ [0, T ] with τi+1 > τi .
2. Prove that the Euler and the Heun scheme satisfy the Lipschitz condition (9.5) if

the vector field fc satisfies the Lipschitz condition from Assumption 2.4.
3. Given the control system ẋ(t) = x(t)+u(t) with running cost �(x,u) = x2 +u2.

(a) Consider the NMPC Algorithm 3.1 with N = 2 and f generated by the Eu-
ler method with G = T for (9.14) and (9.15). Prove that the control μN(x)

converges to zero as T → 0 for each x ∈ R.
(b) Consider the same situation as in (a) but with the grid

G := {τi = iT /k | i = 0, . . . ,Nk}
with k ∈ N. Does the control value μN(x) converge if T > 0 is fixed and k

tends to infinity?
4. Consider the differential equation

ẋ1(t) = −x2(t),

ẋ2(t) = x1(t)
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whose solution shall be used to generate a time varying reference xref for an
NMPC algorithm.
(a) Using a transformation to polar coordinates, compute the analytical solution

of the system.
(b) Show that the numerical solution of the system using Euler’s method will

deviate from the analytical solution from (a) for every step size h > 0 and
every initial value x0 �= (0,0)�.

(c) Applying the transformation to polar coordinates, show that the occurring
error from (b) can be avoided if the resulting differential equation is solved
using Euler’s method.

5. Consider the continuous time control system

ẋ1(t) = −x2(t) + v(t),

ẋ2(t) = x1(t)

where u shall be computed via NMPC to track the (exact) time varying reference
solution from Problem 4 with initial value x0 �= 0.
(a) Show that this system is (uniformly) asymptotically controllable in the sense

of Definition 4.2 for control functions which are piecewise constant on each
interval [iT , (i + 1)T ) for arbitrary sampling time T > 0 which is not an
integer multiple of π .

(b) Consider the approximate discrete time system (9.12) with ϕ̃ obtained from
applying the Euler method with step size h = T to the (nontransformed) dif-
ferential equation. Show that this approximate system is not asymptotically
controllable for any T > 0 as in (a).

Hint for (b): A necessary condition for asymptotic controllability is that the ref-
erence x ref is a solution of the system.
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4. Grüne, L., Nešić, D.: Optimization based stabilization of sampled-data nonlinear systems via
their approximate discrete-time models. SIAM J. Control Optim. 42, 98–122 (2003)

5. Gyurkovics, E., Elaiw, A.M.: Stabilization of sampled-data nonlinear systems by receding
horizon control via discrete-time approximations. Automatica 40(12), 2017–2028 (2004)

6. Gyurkovics, E., Elaiw, A.M.: Conditions for MPC based stabilization of sampled-data nonlin-
ear systems via discrete-time approximations. In: Findeisen, R., Allgöwer, F., Biegler, L.T.
(eds.) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture
Notes in Control and Information Sciences, vol. 358, pp. 35–48. Springer, Berlin (2007)



References 273

7. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, 2nd edn. Springer Series
in Computational Mathematics, vol. 14. Springer, Berlin (1996)

8. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I, 2nd edn.
Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

9. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations.
SIAM, Philadelphia (2007)
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Chapter 10
Numerical Optimal Control of Nonlinear
Systems

In this chapter, we present methods for the numerical solution of the constrained
finite horizon nonlinear optimal control problems which occurs in each iterate of the
NMPC procedure. To this end, we first discuss standard discretization techniques to
obtain a nonlinear optimization problem in standard form. Utilizing this form, we
outline basic versions of the two most common solution methods for such problems,
that is Sequential Quadratic Programming (SQP) and Interior Point Methods (IPM).
Furthermore, we investigate interactions between the differential equation solver,
the discretization technique and the optimization method and present several NMPC
specific details concerning the warm start of the optimization routine. Finally, we
discuss NMPC variants relying on inexact solutions of the finite horizon optimal
control problem.

10.1 Discretization of the NMPC Problem

The most general NMPC problem formulation is given in Algorithm 3.11 and will
be the basis for this chapter. In Step (2) of Algorithm 3.11 we need to solve the
optimal control problem

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ FJ

(
n + N,xu(N,x0)

)

with respect to u(·) ∈ U
N
X0

(n, x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)
.

(OCPn
N,e)

We will particularly emphasize the case in which the discrete time system (2.1)
is induced by a sampled data continuous time control systems

ẋ(t) = fc

(
x(t), v(t)

)
, (2.6)
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DOI 10.1007/978-0-85729-501-9_10, © Springer-Verlag London Limited 2011

275



276 10 Numerical Optimal Control of Nonlinear Systems

however, all results also apply to discrete time models not related to a sampled data
system. Throughout this chapter we assume X = R

d and U = R
m. Furthermore, we

rename the terminal cost F in (OCPn
N,e) to FJ because we will use the symbol F

with a different meaning, below.
So far, in Chap. 9 we have shown how the solution xu(k, x0) of the discrete

time system (2.1) in the last line of (OCPn
N,e) can be obtained and evaluated using

numerical methods for differential equations, but not how the minimization problem
(OCPn

N,e) can be solved.
The purpose of this chapter is to fill this gap. In particular, we first show how

problem (OCPn
N,e) can be reformulated to match the standard problem in nonlinear

optimization

minimize F(z)

with respect to z ∈ R
nz

subject to G(z) = 0 and H(z) ≥ 0

(NLP)

with maps F : R
nz → R, G : R

nz → R
rg and H : R

nz → R
rh .

Even though (OCPn
N,e) is already a discrete time problem, the process of con-

verting (OCPn
N,e) into (NLP) is called discretization. Here we will stick with this

commonly used term even though in a strict sense we only convert one discrete
problem into another.

As we will see, the (NLP) problem related to (OCPn
N,e) can be formulated in dif-

ferent ways. The first variant, called full discretization, incorporates the dynamics
(2.1) as additional constraints into (NLP). This approach is very straightforward but
causes large computing times for solving the problem (NLP) due to its dimension-
ality, unless special techniques for handling these constraints can be used on the
optimization algorithm level, cf. the paragraph on condensing in Sect. 10.4, below.
The second approach is designed to deal with this dimensionality problem. It re-
cursively computes xu(k, x0) from the dynamics (2.1) outside of the optimization
problem (NLP) and is hence called recursive discretization. Proceeding this way,
the dimension of the optimization variable z and the number of constraints p is
reduced significantly. However, in this method it is difficult to incorporate preex-
isting knowledge on optimal solutions, as derived, e.g., from the reference, to the
optimizer. Furthermore, computing xu(k, x0) on large time intervals may lead to a
rather sensitive dependence of the solution on the control u(·), which may cause nu-
merical problems in the algorithms for solving (NLP). To overcome these problems,
we introduce a third problem formulation, called shooting discretization, which is
closely related to concept of shooting methods for differential equations and can be
seen as a compromise between the two other methods.

After we have given the details of these discretization techniques, methods for
solving the optimization problem (NLP) and their applicability in the NMPC context
will be discussed in the subsequent sections. In order to illustrate certain effects, we
will repeatedly consider the following example throughout this chapter.

Example 10.1 Consider the inverted pendulum on a cart problem from Exam-
ple 2.10 with initial value x0 = (2,2,0,0), sampling period T = 0.1 and cost func-
tional
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Fig. 10.1 Closed-loop trajectories x1(·) for small optimization horizons N

JN(x0, u) :=
N−1∑

i=0

�
(
x(i), u(i)

)

where the stage costs � are of the integral type (3.4) with

L(x,u) := (
3.51 sin(x1 − π)2 + 4.82 sin(x1 − π)x2

+ 2.31x2
2 + 2

((
1 − cos(x1 − π)

) · (1 + cos(x2)
2))2

+ x2
3 + x2

4 + u2)2
.

We impose constraints on the state and the control vectors by defining

X := R × R × [−5,5] × [−10,10],
U := [−5,5]

but we do not impose stabilizing terminal constraints. All subsequent computations
have been performed with the default tolerance 10−6 in the numerical solvers in-
volved, cf. Sect. 10.4 for details on these tolerances.

As we have seen in the previous chapters, the horizon length can be a critical
component for the stability of an NMPC controlled system. In particular, the NMPC
closed loop may be unstable if the horizon length is too short as shown in Fig. 10.1.
In this and in the subsequent figures we visualize closed-loop trajectories for dif-
ferent optimization horizons as a surface in the (t,N)-plane. Looking at the figure
one sees that for very small N the trajectory simply swings around the downward
equilibrium. For N ≥ 12, the NMPC controller is able to swing up the pendulum to
one of the upright equilibria (π,0,0,0) or (−π,0,0,0) but is not able to stabilize
the system there.

As expected from Theorem 6.21, for larger optimization horizons the closed-loop
solution tends toward the upright equilibrium (−π,0,0,0) as shown in Fig. 10.2.

If we further increase the optimization horizon, then it can be observed that
the algorithm chooses to stabilize the upright equilibrium (π,0,0,0) instead of
(−π,0,0,0) as illustrated in Fig. 10.3. Moreover, for some horizon lengths N ,
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Fig. 10.2 Closed-loop trajectories x1(·) for medium size optimization horizons N

Fig. 10.3 Closed-loop trajectories x1(·) for large optimization horizons N

stability is lost. Particularly, for N between 50 and 55 the behavior is similar to
that for N ∈ {12,13,14}: the controller is able to swing up the pendulum to an up-
right position but unable to stabilize it there. As a consequence, it appears that the
NMPC algorithm cannot decide which of the upward equilibria shall be stabilized
and the trajectories repeatedly move from one to another, i.e., the x1-component of
the closed-loop trajectory remains close to one of these equilibria only for a short
time.

This behavior contradicts what we would expect from the theoretical result from
Theorem 6.21 and can hence only be explained by numerical problems in solving
(OCPn

N,e) due to the large optimization horizon. Since by now we do not have the
means to explain the reason for this behavior, we postpone this issue to Sect. 10.4.
In particular, the background of this effect will be discussed after Example 10.28
where we also outline methods to avoid this effect.

As a result, we obtain that numerically the set of optimization horizon N for
which stability can be obtained is not only bounded from below—as expected from
the theoretical result in Theorem 6.21—but also from above. Unfortunately, for a
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general example it is a priori not clear if the set of numerically stabilizing horizons
is nonempty, at all. Furthermore, as we will see in this chapter, also the minimal
optimization horizon which numerically stabilizes the closed-loop system may vary
with the used discretization technique. This is due to the fact that for N close to
the theoretical minimal stabilizing horizon and for the NMPC variant without sta-
bilizing terminal constraints considered here, the value α in (5.1) is close to 0 and
hence small numerical inaccuracies may render α negative and thus destabilize the
system. Since different discretizations lead to different numerical errors, it is not
entirely surprising that the minimal stabilizing horizon in the numerical simulation
depends on the chosen discretization technique, as Example 10.2 will show.

Full Discretization

In order to obtain an optimization problem in standard form (NLP) the full dis-
cretization technique is the most simplest and most common one. Recall that the
discrete time trajectory xu(k, x0) in (OCPn

N,e) is defined by the dynamics (2.1) via

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)
, (2.2)

where in the case of a continuous time system the map f is obtained from a numer-
ical approximation via (9.12).

Clearly, each control value u(k), k ∈ {0, . . . ,N − 1} is an optimization variable
in (OCPn

N,e) and will hence also be an optimization variable in (NLP). The idea
of the full discretization is now to treat each point on the trajectory xu(k, x0) as
an additional independent d-dimensional optimization variable. This implies that
we need additional conditions which ensure that the resulting optimal choice of the
variables xu(k, x0) obtained from solving (NLP) is a trajectory of (2.1). To this end,
we include the equations in (2.2) as equality constraints in (NLP). This amounts to
rewriting (2.2) as

xu(k + 1, x0) − f
(
xu(k, x0), u(k)

) = 0 for k ∈ {0, . . . ,N − 1}, (10.1)

xu(0, x0) − x0 = 0. (10.2)

Next, we have to reformulate the constraints u(·) ∈ U
N
X0

(x0). According to Defini-
tion 3.2 these conditions can be written explicitly as

xu(k, x0) ∈ X k ∈ {0, . . . ,N},
and u(k) ∈ U

(
xu(k, x0)

)
k ∈ {0, . . . ,N − 1}

and in the case of stabilizing terminal constraints we get the additional condition

xu(N,x0) ∈ X0.

For simplicity of exposition, we only consider the case of time invariant state con-
straints. The setting is, however, easily extended to the case of time varying con-
straints X

k as introduced in Sect. 8.8.
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Here and in the following, we assume X, U(x) and—if applicable—X0 to be
characterized by Definition 3.6, i.e., by a set of functions GS

i : R
d × R

m → R, i ∈
E S = {1, . . . , pg}, and HS

i : R
d × R

m → R, i ∈ I S = {pg + 1, . . . , pg + ph} via
equality and inequality constraints of the form

GS
i

(
xu(k, x0), u(k)

) = 0, i ∈ E S, k ∈ Ki ⊆ {0, . . . ,N}, (10.3)

HS
i

(
xu(k, x0), u(k)

) ≥ 0, i ∈ I S, k ∈ Ki ⊆ {0, . . . ,N}. (10.4)

The index sets Ki , i ∈ E S ∪ I S in these constraints formalize that some of the con-
ditions may not be required for all times k ∈ {0, . . . ,N}. For instance, the terminal
constraint condition xu(N,x0) ∈ X0 is only required for k = N , hence the sets Ki

corresponding to the respective conditions would be Ki = {N}. In order to simplify
the notation we have included u(N) into these conditions even though the functional
JN in (OCPn

N,e) does not depend on this variable. However, since the functions HS
i

and GS
i in (10.3) and (10.4) do not need to depend on u, this can be done without

loss of generality.
Summarizing, we obtain the constraint function G in (NLP) from (10.1), (10.2),

(10.3) and H in (NLP) from (10.4). The remaining component of the optimization
problem is the optimization variable which is defined as

z := (
xu(0, x0)

�, . . . , xu(N,x0)
�, u(0)�, . . . , u(N − 1)�

)� (10.5)

and the cost function F , which we obtain straightforwardly as

F(z) :=
N−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

) + FJ

(
n + N,xu(N,x0)

)
. (10.6)

Hence, the fully discretized problem (OCPn
N,e) is of the form

minimize F(z) :=
N−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ FJ

(
n + N,xu(N,x0)

)

with respect to

z := (
xu(0, x0)

�, . . . , xu(N,x0)
�, u(0)�, . . . , u(N − 1)�

)� ∈ R
nz

subject to G(z) =
⎡

⎣
[GS

i (xu(k, x0), u(k))]i∈E S ,k∈Ki[xu(k + 1, x0) − f (xu(k, x0), u(k))]k∈{0,...,N−1}
xu(0, x0) − x0

⎤

⎦ = 0

and H(z) = [
HS

i

(
xu(k, x0), u(k)

)]
i∈I S ,k∈Ki

≥ 0.

Similar to Definition 3.6 we write the equality and inequality constraints as G =
(G1, . . . ,Grg ) and H = (Hrg+1, . . . ,Hrg+rh ) with rg := (N + 2) · d + ∑

i∈E S �Ki

and rh := ∑
i∈I S �Ki where �Ki denotes the number of elements of the set Ki .

The corresponding index sets are denoted by E = {1, . . . , rg} and I = {rg + 1, . . . ,

rg + rh}.
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Fig. 10.4 Hierarchy

The advantage of the full discretization is the simplicity of the transformation
from (OCPn

N,e) to (NLP). Unfortunately, it results in a high-dimensional optimiza-
tion variable z ∈ R

(N+1)·d+N ·m and large number of both equality and inequality
constraints rg and rh. Since computing times and accuracy of solvers for problems
of type (NLP) depend massively on the size of these problems, this is highly un-
desirable. One way to solve this problem is to handle the additional constraints by
special techniques in the optimization algorithm, cf. the paragraph on condensing
in Sect. 10.4, below. Another way is to reduce the number of optimization variables
directly in the discretization procedure, which is what we describe next.

Recursive Discretization

In the previous section we have seen that the full discretization of (OCPn
N,e) leads

to a high-dimensional optimization problem (NLP). The discretization technique
which we present now avoids this problem and minimizes the number of compo-
nents within the optimization variable z as well as in the equality constraints G.

The methodology of the recursive discretization is inspired by the (hierarchical)
divide and conquer principle. According to this principle, the problem is broken
down into subproblems which can then be treated by specialized solution methods.
The fundamental idea of the recursive discretization is to decouple the dynamics of
the control system from the optimization problem (NLP).

At the control system level in the hierarchy displayed in Fig. 10.4, a specialized
solution method—for instance a numerical solver for an underlying ordinary dif-
ferential equation—can be used to evaluate the dynamics of the system for given
control sequences u(·). These control sequences correspond to values that are re-
quired by the solver for problem (NLP). Hence, the interaction between these two
components consists in sending control sequences u(·) and initial values x0 from
the (NLP) solver to the solver of the dynamics, which in turn sends computed state
sequences xu(·, x0) back to the (NLP) solver, cf. Fig. 10.5.

Formally, the optimization variable z reduces to

z := (
u(0)�, . . . , u(N − 1)�

)�
. (10.7)

The constraint functions GS
i : R

d × R
m → R, i ∈ E S , and HS

i : R
d × R

m → R,
i ∈ I S according to (10.3), (10.4) can be evaluated after computing the solution
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Fig. 10.5 Communication of data between the elements of the computing hierarchy

xu(·, x0) by the solver for the dynamics. This way we do not have to consider (10.1),
(10.2) in the constraint function G. Hence, the equality constraints in (NLP) are
given by G = [GS

i ] with GS
i from (10.3). The inequality constraints H which are

given by (10.4) and the cost function F from (10.6) remain unchanged compared to
the full discretization. In total, the recursively discretized problem (OCPn

N,e) takes
the form

minimize F(z) :=
N−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ FJ

(
n + N,xu(N,x0)

)

with respect to z := (
u(0)�, . . . , u(N − 1)�

)� ∈ R
nz

subject to G(z) = [
GS

i

(
xu(k, x0), u(k)

)]
i∈E S ,k∈Ki

= 0

and H(z) = [
HS

i

(
xu(k, x0), u(k)

)]
i∈I S ,k∈Ki

≥ 0.

Taking a look at the dimensions of the optimization variable and the equality con-
straints, we see that using the recursive discretization the optimization variable con-
sists of N · m scalar components and the number of equality constraints is reduced
to the number of conditions in (10.3), that is, rg := ∑

i∈E S �Ki . Hence, regarding
the number of optimization variables and constraints, this discretization is opti-
mal.

Still, this method has some drawbacks compared to the full discretization. As we
will see in the following sections, the algorithms for solving (NLP) proceed itera-
tively, i.e., starting from an initial guess z0 they compute a sequence zk converging
to the minimizer z�. The convergence behavior of this iteration can be significantly
improved by providing a good initial guess z0 to the algorithm. If, for instance, the
initial value x0 is close to the reference solution xref, then xref itself is likely to be
such a good initial guess. However, since in the recursive discretization the trajec-
tory xu(k, x0) is not a part of the optimization variable z, there is no easy way to use
this information.

Another drawback is that the solution xu(k, x0) may depend very sensitively on
the control sequence u(·), in particular when N is large. For instance, a small change
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in u(0) may lead to large changes in xu(k, x0) for large k and consequently in F(z),
G(z) and H(z), which may cause severe problems in the iterative optimization al-
gorithm. In the full discretization, the control value u(0) only affects xu(0, x0) and
thus those entries in F , G and H corresponding to k = 0, i.e., the functions F(z),
G(z) and H(z) depend much less sensitive on the optimization variables.

For these reasons, we now present a third method, which can be seen as a com-
promise between the full and the recursive discretization.

Multiple Shooting Discretization

The idea of the so-called multiple shooting discretization as introduced in Bock [4]
is derived from the solution of boundary value problems of differential equations,
see, e.g., Stoer and Bulirsch [36]. Within these boundary value problems one tries to
find initial values for trajectories which satisfy given terminal conditions. The term
shooting has its origins in the similarity of this problem to a cannoneers problem of
finding the correct setting for a cannon to hit a target.

The idea of this discretization is to include some components of some state vec-
tors xu(k, x0) as independent optimization variables in the problem. These variables
are treated just as in the full discretization except that we do not do this for all
k ∈ {0, . . . ,N − 1} but only for some time instants and that we do not necessar-
ily include all components of the state vector xu(k, x0) as additional optimization
variables but only some. These new variables are called the shooting nodes and the
corresponding times will be called the shooting times.

Proceeding this way, we may then provide useful information, e.g., from the
reference trajectory xref(·) as described at the end of the discussion of the recursive
discretization for obtaining a good initial guess for the iterative optimization. Much
like the cannoneer we aim at hitting the reference trajectory, the only difference is
that we do not only want to hit the target at the end of the (finite) horizon but to stay
close to it for the entire time interval which we consider within the optimization.

This motivates to set the state components at the shooting nodes to a value which
may violate the dynamics of the system (2.1) but is closer to the reference trajectory.
This situation is illustrated in Fig. 10.6 and gives a good intuition why the multiple
shooting initial guess is preferable from an optimization point of view.

Unfortunately, we have to give up the integrity of the dynamics of the system
to achieve this improvement in the initial guess, i.e., the trajectory pieces starting
in the respective shooting nodes can in general not be “glued” together to form a
continuous trajectory. In order to solve this problem, we have to include additional
equality constraints similar to (10.1), (10.2).

For the formal description of this method, we denote the vector of multiple shoot-
ing nodes by s := (s1, . . . , srs ) ∈ R

rs where si is the new optimization variable cor-
responding to the ith multiple shooting node. The shooting times ς : {1, . . . , rs} →
{0, . . . ,N} and indices ι : {1, . . . , rs} → {1, . . . , d} then define the time and the com-
ponent of the state vector corresponding to si via
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Fig. 10.6 Resulting trajectories for initial guess u using no multiple shooting nodes (solid), one
shooting node (dashed) and three shooting nodes (gray dashed)

xu

(
ς(j), x0

)
ι(j)

= sj .

This means that the components xu(k, x0)i , i = 1, . . . , d , of the state vector are
determined by the iteration

xu(k + 1, x0)i = sj

if there exists j ∈ {1, . . . , rs} with ς(j) = k + 1 and ι(j) = i and

xu(k + 1, x0)i = f
(
xu(k, x0), u(k)

)
i

with initial condition xu(0, x0)i = sj if there exists j ∈ {1, . . . , rs} with ς(j) = 0
and ι(j) = i and xu(0, x0)i = (x0)i , otherwise. The shooting nodes si now become
part of the optimization variable z, which hence reads

z := (
u(0)�, . . . , u(N − 1)�, s�)�

. (10.8)

As in the full discretization we have to ensure that the optimal solution of (NLP)
leads to values si for which the state vectors xu(k, x0) thus defined form a trajectory
of (2.1). To this end, we define the continuity condition for all shooting nodes sj ,
j ∈ {1, . . . , rs} with ς(j) ≥ 1 analogously to (10.1) as

sj − f
(
xu

(
ς(j) − 1, x0

)
, u

(
ς(j) − 1

))
ι(j)

= 0, (10.9)

and for all j ∈ {1, . . . , rs} with ς(j) = 0 analogously to (10.2) as

sj − (x0)ι(j) = 0. (10.10)

These so-called shooting constraints are included as equality constraints in (NLP).
Since the conditions (10.9) and (10.10) are already in the form of equality con-
straints which we require for our problem (NLP), we can achieve this by defining G

to consist of Equalities (10.3), (10.9) and (10.10). As for the recursive discretization,
the set of inequality constraints as well as the cost function are still identical to those
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given by the full discretization. As a result, the multiple shooting discretization of
problem (OCPn

N,e) is of the form

minimize F(z) :=
N−1∑

k=0

ωN−k�
(
n + k, xu(k, x0), u(k)

)

+ FJ

(
n + N,xu(N,x0)

)

with respect to z := (
u(0)�, . . . , u(N − 1)�, s�)� ∈ R

nz subject to

G(z) =
⎡

⎣
[GS

i (xu(k, x0), u(k))]i∈E S ,k∈Ki[sj − f (xu(ς(j) − 1, x0), u(ς(j) − 1))ι(j)]j∈{1,...,rs },ς(j)≥1
[sj − (x0)ι(j)]j∈{1,...,rs },ς(j)=0

⎤

⎦ = 0

and H(z) = [
HS

i

(
xu(k, x0), u(k)

)]
i∈I S ,k∈Ki

≥ 0.

Comparing the size of the multiple shooting discretized optimization problem to the
recursively discretized one, we see that the dimension of the optimization variable
and the number of equality constraints is increased by rs . An appropriate choice of
this number as well as for the values of the shooting nodes and times is crucial in
order to obtain an improvement of the NMPC closed loop, as the following example
shows.

Example 10.2 Consider the inverted pendulum on a cart problem from Exam-
ple 10.1. For this example, numerical experience shows that the most critical tra-
jectory component is the angle of the pendulum x1. In the following, we discuss and
illustrate the efficient use and effect of multiple shooting nodes for this variable.

(i) If we define every sampling instant in every dimension of the problem to be
a shooting node, then the shooting discretization coincides with the full dis-
cretization. Proceeding this way slows down the optimization process signifi-
cantly due to the enlarged dimension of the optimization variable. Unless the
computational burden can be reduced by exploiting the special structure of the
shooting nodes in the optimization algorithm, cf. the paragraph on condensing
on Sect. 10.4, below, this implies that the number of shooting nodes should be
chosen as small as possible. On the other hand, using shooting nodes we may
be able to significantly improve the initial guess of the control. Therefore, in
terms of the computing time, a balance between improving the initial guess and
the number of multiple shooting nodes must be found.

(ii) If the state trajectories evolve slowly, i.e., in regions where the dynamics is
slow, the use of shooting nodes may obstruct the optimization since there may
not exist a trajectory which links two consecutive shooting nodes. In this case,
the optimization routine wastes iteration steps trying to adapt the value of the
shooting nodes and may be unable to find a solution. Ideally, the shooting nodes
are chosen close to the optimal transient trajectory, which is, however, usually
not known at runtime. Using shooting nodes on the reference, instead, may be a
good substitute but only if the initial value is sufficiently close to the reference
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Fig. 10.7 Results for a varying shooting nodes for horizon length N = 14

or if the shooting times are chosen sufficiently large in order to enable the
trajectory to reach a neighborhood of the reference.

(iii) Using inappropriate shooting nodes may not only render the optimization rou-
tine slow but may lead to unstable solutions even if the problem without shoot-
ing nodes showed stable behavior. On the other hand, choosing good shooting
nodes may have a stabilizing effect.

In the following, we illustrate the effects mentioned in (iii) for the horizons
N = 14, 15 and 20. We compute the NMPC closed-loop trajectories for the in-
verted pendulum on a cart problem on the interval [0,20] where in each optimiza-
tion we use one shooting node for the first state dimension x1 at different times
ς(1) ∈ {0, . . . ,N − 1}, and the corresponding initial value to x1 = s1 = −π . In a
second test, we use two shooting nodes for the first state dimension with differ-
ent (ς(1), ς(2)) ∈ {0, . . . ,N − 1}2 again with s1 = s2 = −π . Here, the closed-loop
costs in the following figures are computed by numerically evaluating

200∑

k=0

�
(
xμN

(k, x0),μN

(
xμN

(k, x0)
))

in order to approximate J∞ from Definition 4.10. Red colors in Figs. 10.7(b),
10.8(b) and 10.9(b) indicate higher closed-loop costs.

As we can see from Fig. 10.7(a), the state trajectory is stabilized for N = 14 if we
add a shooting node for the first differential equation. Hence, using a single shooting
node, we are now able to stabilize the problem for a reduced optimization horizon
N . Yet, the stabilized equilibrium is not identical for all values ς(1), i.e. for ς(1) ∈
{t0, . . . , t2} the equilibrium (π,0,0,0) is chosen, which in our case corresponds to
larger closed-loop costs in comparison to the solutions approaching (−π,0,0,0).
Similarly, all solutions converge to an upright equilibrium if we use two shooting
nodes. Here, Fig. 10.7(b) shows the corresponding closed-loop costs which allow
us to see that for small values of ς(i), i = 1,2, the x1 trajectory converges toward
(π,0,0,0).
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Fig. 10.8 Results for a varying shooting nodes for horizon length N = 15

Fig. 10.9 Results for a varying shooting nodes for horizon length N = 20

As we see, for N = 14 the shooting nodes may change the closed-loop behavior.
A similar effect happens for the horizon N = 15. For the case without shooting
nodes, the equilibrium (−π,0,0,0) is stabilized, cf. Fig. 10.2. If shooting nodes are
considered, we obtain the results displayed in Fig. 10.8.

Here, we observe that choosing the shooting time ς(1) ∈ {0,1,3} results in sta-
bilizing (π,0,0,0) while for all other cases the x1 trajectory converges toward
(−π,0,0,0). Still, for ς(1) ∈ {5, . . . ,9} the solutions differ significantly from the
solution without shooting nodes, which also affects the closed-loop costs. As indi-
cated by Fig. 10.8(b), a similar effect can be experienced if more than one shooting
node is used. Hence, by our numerical experience, the effect of stabilizing a chosen
equilibrium by adding a shooting node can only be confirmed if ς(1) is set to a time
instant close to the end of the optimization horizon.

This is further confirmed by Fig. 10.9, which illustrates the results for N = 20.
Here, one also sees that adding shooting nodes may lead to instability of the closed
loop.

Moreover, we like to stress the fact that adding shooting nodes to a problem may
cause the optimization routine to stabilize a different equilibrium than intended.
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Although all equilibria with x1 = (2k +1)π , k ∈ Z, correspond to the same physical
upright position and yield the same value in the running cost, one may expect that
setting shooting nodes to the value x1 = −π forces the closed-loop trajectory to
approach this particular equilibrium. As we have seen in Figs. 10.7(a), 10.8(a) and
10.9(a), this is not always the case since some trajectories approach (π,0,0,0), even
though this leads to higher closed-loop costs. In particular, Fig. 10.8 shows nicely
that even though the equilibrium (−π,0,0,0) is stabilized without using shooting
nodes, fixing a shooting node x1 = −π obstructs the computation of the optimal
solution. Hence, the values of the shooting nodes have to be selected with care
since different choices may result in closed-loop trajectories with different costs
and computing times and may have both stabilizing or destabilizing effects.

10.2 Unconstrained Optimization

Now that we have discretized the optimal control problem (OCPn
N,e) and trans-

formed it into a nonlinear optimization problem (NLP) in standard form, our aim is
to compute a minimizer z, which then gives us an optimal control u for our original
problem. In this section, we discuss the foundations of all optimization techniques;
details for methods like the popular Sequential Quadratic Programming (SQP) or
Interior-Point Methods (IPM) are then given in the subsequent section. On the one
hand, this allows us to characterize the main principles of such algorithms. On the
other hand, it reveals an abstract method, exposes the computationally expensive
parts of such algorithms and allows for rearranging the ordering of these steps to
reduce the computational cost.

Although the problem (NLP) is actually a constrained optimization problem, in
this section we present solution methods for dealing with unconstrained optimiza-
tion problems since the basic principles, as we will see in Sect. 10.3, are similar to
those in constrained optimization. Since there do not exist any restrictions on the
optimization variable z, the unconstrained optimization problem is a special case of
the standard (NLP) problem and is given by

minimize F(z)

with respect to z ∈ R
nz .

Due to the sheer size of such a problem, in practice we need to solve it on a computer.
The computer, however, cannot deal with this problem in an abstract way, it can only
evaluate the given functions like the cost function F and possibly its derivative for
finitely many z. Hence, the goal in constructing a solution method for any (NLP)
problem is to find a strategy for choosing these evaluation points in order to reliably
identify a solution of (NLP). While the identification of and the search strategy for a
solution are primary goals for a solution method, one still has to keep in mind some
secondary goals like computing time, required memory storage and also the number
of required function evaluations whose detailed analysis is beyond the scope of this
chapter but can be found in the standard literature for nonlinear optimization.
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Focusing on the primary goals, we first need to characterize a solution of a prob-
lem (NLP) and how it can be checked whether a given point z ∈ R

nz is a solution.
In principle, we are interested in so-called global minimizers.

Definition 10.3 A point z� ∈ R
nz is a global minimizer of the function F : R

nz → R

if F(z�) ≤ F(z) holds for all z ∈ R
nz .

Unfortunately, for general nonlinear—and in particular nonconvex—problems
such global minimizers are hard to find in practice since we only have local knowl-
edge of the function F and its derivative d

dz
F . Due to this local knowledge and our

intention to evaluate only a small number of vectors z, we cannot cover the entire
definition space of F . As a consequence, if we construct an algorithm under these
restrictions we can never be sure if we reached a global minimizer. Nevertheless we
are often able to identify a so-called local minimizer.

Definition 10.4 A point z� ∈ R
nz is a local minimizer of the function F : R

nz → R

if there exists a neighborhood N of z� such that F(z�) ≤ F(z) holds for all z ∈ N .

In some cases not all hopes for identifying a global minimizer are lost since we
may have additional information on the function F . For example, if F is convex,
then every local minimizer is also a global minimizer. But even if we know that F is
convex, we still need to find such a minimizer. In order not to have to check all values
z in a certain area, we will assume the function F to be at least twice continuously
differentiable, which allows us to use a more practicable way of locating a minimizer
using Taylor’s theorem. Here and in the following we denote derivatives using the
following notation, which is common in nonlinear optimization. For a continuously
differentiable function g = (g1, . . . , gp) : R

nz → R
p we use the gradient notation

for the Jacobian matrix

∇zg(z) =
⎛

⎜
⎝

∂g1
∂z1

· · · ∂gp

∂z1
...

...
∂g1
∂zn

· · · ∂gp

∂zn

⎞

⎟
⎠ ,

which we abbreviate to ∇g if there is no ambiguity. For a twice continuously differ-
entiable function g : R

nz → R we write the so-called Hessian as

∇2
zzg(z) =

⎛

⎜⎜
⎝

∂2g
∂z1z1

· · · ∂2g
∂z1znz

...
...

∂2g
∂znz z1

· · · ∂2g
∂znz znz

⎞

⎟⎟
⎠ ,

which we abbreviate to ∇2g if there is no danger of confusion.

Theorem 10.5 Consider a function F : R
nz → R which is continuously differen-

tiable and a direction vector d ∈ R
nz . Then we have

F(z + d) = F(z) + ∇F(z + td)�d (10.11)
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for some t ∈ (0,1). If F is twice continuously differentiable, then we also have

F(z + d) = F(z) + ∇F(z)�d + 1

2
d�∇2F(z + td)d (10.12)

for some t ∈ (0,1).

Proof Using the fundamental theorem of calculus, we have

F(z + d) = F(z) +
∫ 1

0

d

dt
F (z + td) dt.

By the mean value theorem, there exist a t ∈ (0,1) with
∫ 1

0

d

dt
F (z + td) dt = d

dt
F (z + td) = ∇F(z + td)�d,

where we used the chain rule for the second equality. This shows (10.11). By partial
integration we further obtain

∫ 1

0

d

dt
F (z + td) dt = d

dt

∣∣∣∣
t=0

F(z + dt) +
∫ 1

0
(1 − t)

d2

dt2 F(z + td) dt

and again using the mean value theorem we get
∫ 1

0
(1 − t)

d2

dt2 F(z + td) dt = d2

dt2 F
(
z + t ′d

)∫ 1

0
(1 − t) dt = 1

2

d2

dt2 F
(
z + t ′d

)

for some t ′ ∈ (0, t). Since by the chain rule we have

d

dt

∣∣∣∣
t=0

F(z + dt) = ∇F(z)�d and
1

2

d2

dt2
F
(
z + t ′d

) = 1

2
d�∇2F

(
z + t ′d

)
d

this shows (10.12). �

The advantage of Taylor’s theorem is that it allows us to introduce knowledge on
the gradient ∇F(z�) and the Hessian ∇2F(z�) into the search for a local minimizer
z�. In particular, first-order necessary conditions are derived very easily.

Theorem 10.6 Consider a vector z� ∈ R
nz and a function F : R

nz → R where F

is continuously differentiable in an open neighborhood of z� and z� ∈ R
nz is a local

minimizer of F . Then we have ∇F(z�) = 0.

Proof Suppose ∇F(z�) �= 0 and set d := −∇F(z�). Then we get d�∇F(z�) =
−‖∇F(z�)‖2 < 0. Since ∇F is continuous in a neighborhood of z�, there exists
a scalar T > 0 such that d�∇F(z� + td) < 0 holds for all t ∈ [0, T ]. By (10.11), for
any t̄ ∈ (0, T ] we have F(z� + t̄d) = F(z�) + t̄d�∇F(z� + td) for some t ∈ (0, t̄).
This implies F(z� + t̄d) < F(z�) for all t̄ ∈ (0, T ], which contradicts the local min-
imizer property of z�. �

In a similar manner, information on the Hessian can be used to derive second-
order necessary conditions from (10.12).
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Theorem 10.7 Consider a vector z� ∈ R
nz and a function F : R

nz → R where F

is twice continuously differentiable in an open neighborhood of z� and z� ∈ R
nz

is a local minimizer of F . Then we have ∇F(z�) = 0 and the Hessian ∇2F(z�) is
positive semidefinite.

Proof From Theorem 10.6 we know that ∇F(z�) = 0. Now, suppose ∇2F(z�) is
not positive semidefinite and choose a vector d such that d�∇2F(z�)d < 0 holds.
Using continuity of ∇2F(z�) in a neighborhood of z�, we know that there exists a
scalar T > 0 such that d�∇2F(z� + td)d < 0 holds for all t ∈ [0, T ]. Hence, using
(10.12), for any t̄ ∈ (0, T ] and some t ∈ (0, t̄) we obtain

F
(
z� + t̄d

) = F
(
z�
)+ t̄∇F

(
z�
)�

d + 1

2
t̄d�∇2F

(
z� + td

)
dt̄ < F

(
z�
)
.

Similar to the proof of Theorem 10.6, F is strictly decreasing along the direction d ,
which contradicts the local minimizer property of z�. �

The results from Theorems 10.6 and 10.7 reveal guidelines to what we are look-
ing for, i.e., which properties a local minimizer must fulfill. However, these results
cannot be used to identify a local minimizer once we have found a candidate satisfy-
ing the previous conditions. In order to perform such a check, the following theorem
can be used.

Theorem 10.8 Consider a vector z� ∈ R
nz and a function F : R

nz → R where F is
twice continuously differentiable in an open neighborhood of z�. If ∇F(z�) = 0 and
∇2F(z�) is positive definite, then z� is a local minimizer of F .

Proof Due to F being twice continuously differentiable there exists a radius r > 0
such that ∇2F(z) is positive definite for all z ∈ {z | ‖z − z�‖ < r}. Now take any
vector d ∈ R

nz with ‖d‖ < r , then we have z� + d ∈ {z | ‖z − z�‖ < r} and

F
(
z� + d

) = F
(
z�
)+ d�∇F

(
z�
)+ 1

2
d�∇2F

(
z� + td

)
d

= F
(
z�
)+ 1

2
d�∇2F

(
z� + td

)
d

for some t ∈ (0,1). Since (z� + td) ∈ {z | ‖z − z�‖ < r}, we have d�∇2F(z� +
td)d > 0 and therefore F(z� + d) > F(z�) holds showing the assertion. �

Before we consider constraints we give a short description of the standard strate-
gies for nonlinear optimization, the line-search and the trust-region strategy. Both
methods have in common that they approximately compute local minimizers by it-
eratively computing values zk converging to z�. Hence, an initial guess z0 needs to
be supplied by the user for starting the iteration. A good initial guess, i.e., a vector
close to a minimizer, can usually only be obtained by utilizing knowledge on the
process. If such knowledge is not at hand, the starting point can be chosen arbi-
trarily, however, the convergence speed of the sequence zk toward a minimizer is
drastically reduced in general.
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Within the line-search strategy, the approximation method computes a direction
dk in its kth step and searches along the vector dk starting from the current iterate
zk for a new iterate zk+1 = zk + αkdk with lower cost function value F(zk+1). Here
the direction dk is typically obtained from minimizing a model function mk which
catches the local behavior of the cost function F at the current iterate zk and is easy
to minimize numerically. Often, quadratic functions of the form

mk(zk + dk) = F(zk) + d�
k ∇F(zk) + 1

2
d�
k Bkdk

are used for this purpose, where Bk is either the Hessian ∇2F(zk) or an approxi-
mation of it. The corresponding step length αk > 0 can then, e.g., be determined by
solving the one-dimensional minimization problem

min
αk>0

F(zk + αkdk). (10.13)

Once an (approximated) solution to the step length problem has been found, a new
search direction and a new step length are computed and the scheme is applied
iteratively.

In contrast to the line-search approach, the trust-region method takes the only
local approximation properties of the model function mk into account when mini-
mizing this function in order to determine dk . Since mk can only be guaranteed to be
a good approximation close to zk—i.e., it can only be “trusted” in a neighborhood of
zk—the search region for a minimizer of mk is restricted to a so-called trust-region,
which is usually given by a ball B�(zk). Hence, the problem consists in computing
a suitable next iteration candidate by solving

min
dk

mk(zk + dk) where zk + dk ∈ B�(zk). (10.14)

If the candidate zk + dk does not show a sufficient decrease in the cost function
F , then the trust-region is considered to be too large. Hence, the radius � is re-
duced and the new minimization problem (10.14) is solved again. Like in the line
search approach, the model function mk in (10.14) is often generated by quadratic
functions.

Taking an abstract look on both line-search and trust-region method, the differ-
ence between those two approaches lies in the ordering of the basic steps, i.e. finding
a search direction and a suitable step length. While the line-search method fixes the
search direction first and then computes a step length αk , the trust-region method
first defines the maximal step length � and then searches for a minimizer using the
model mk .

10.3 Constrained Optimization

So far we have dealt with unconstrained optimization problems and shown the fun-
damental results and basic algorithmic ideas which can be used to solve such prob-
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lems. In the NMPC algorithm, however, we face the constrained nonlinear optimiza-
tion problem

minimize F(z)

with respect to z ∈ R
nz

subject to Gi(z) = 0 for all i ∈ E and Hi(z) ≥ 0 for all i ∈ I
(NLP)

in every step of the NMPC iteration where the functions F , G and H are defined
by one of the discretizations of the problem (OCPn

N,e) described in Sect. 10.1. Note
that all three discretizations lead to a problem of type (NLP), hence all subsequent
results hold for either of these discretizations.

The index sets in (NLP) are given by E = {1, . . . , rg} and I = {rg + 1, . . . , rg +
rh}, respectively, and the functions Gi and Hi are called equality and inequality
constraints, respectively. These constraints induce the following feasible set, which
will be important for our upcoming analysis.

Definition 10.9 For a problem (NLP) the set

� = {
z
∣∣ Gi(z) = 0, i ∈ E ; Hi(z) ≥ 0, i ∈ I

}
(10.15)

is called the feasible set and the elements z ∈ � are called feasible points.

Since a minimizer for the problem (NLP) has to be an element of � by definition,
we have to modify the definition of a local minimizer in the context of constrained
optimization problems which we want to approximate later:

Definition 10.10 A point z� ∈ R
nz is a local minimizer of the problem (NLP) if

there exists a neighborhood N of z� such that F(z�) ≤ F(z) holds for all z ∈ N ∩�.

In a similar way as for unconstrained optimization problems, we now want to
derive necessary and sufficient conditions which will allow us to construct numeri-
cal methods to compute a local minimizer z� of a problem (NLP). As we have seen
in the previous Sect. 10.2, the mathematical background of the necessary and suf-
ficient conditions given in Theorems 10.6, 10.7 and 10.8 is Taylor’s Theorem 10.5
stating results for a linear or quadratic approximation. In constrained optimization,
the functions G and H will now also be replaced by suitable approximations. Here
we use linear approximations

G(z + d) ≈ G(z) + ∇G(z)�d and H(z + d) ≈ H(z) + ∇H(z)�d

for this purpose. This, however, only makes sense if the geometry of the feasible set
� is—at least locally—reflected properly when G and H are replaced by approxi-
mations. To this end so-called constraint qualifications are imposed, which we are
going to deal with next.

Before we state the popular linear independent constraint qualification (LICQ),
we need some definitions. We first introduce the tangent cone T�(z) to the feasible
set �.
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Definition 10.11 A vector v ∈ R
nz is called tangent vector to � at a point z ∈ �

if there exists a sequence of feasible points (zk)k∈N with zk → z, zk ∈ � and a
sequence of positive scalars (tk)k∈N with tk → 0 such that

lim
k→∞

zk − z

tk
= v (10.16)

holds. The set of all tangent vectors to � at z is called the tangent cone and is
denoted by T�(z).

Note that T� only depends on the geometry of �. The set T�(z) can be seen
as a local approximation of all feasible directions at a given feasible point z ∈ �.
The feasible directions are all vectors d ∈ R

nz for which z + αd ∈ � holds for all
sufficiently small α > 0 and the definition of T� implies that each feasible direction
is contained in T�(z). Conversely, for each element v ∈ T�(z) and each ε > 0 there
exists a feasible direction d with ‖d − v‖ < ε.

Obviously, all equality constraints Gi restrict these feasible directions but not
necessarily all inequality constraints: if Hi(z) > 0 holds, then since Hi is contin-
uous we get Hi(z + αd) > 0 for all d ∈ R

nz provided α > 0 is sufficiently small.
If, however, Hi(z) = 0 holds, then an arbitrarily small change of z in the “wrong”
direction may lead to Hi(z + αd) < 0. Hence, all inequality constraints Hi with
Hi(z) = 0 and all equality constraints Gi may restrict feasible moving directions.
These constraints are called active and their indices are characterized by the follow-
ing definition.

Definition 10.12 The active set A(z) at any feasible point z consists of the equality
constraint indices from E together with the indices of the inequality constraints i ∈ I
where Hi(z) = 0 holds, that is, A(z) := E ∪ {i ∈ I | Hi(z) = 0}.

Using the active set we can now define a set of “linearized” feasible directions
obtained from the linearizations of H .

Definition 10.13 For a feasible point z ∈ � and the active set A(z) we call the set

F (z) = {
v ∈ R

nz
∣∣ v�∇Gi(z) = 0 for all i ∈ E and

v�∇Hi(z) ≥ 0 for all i ∈ A(z) ∩ I
}

(10.17)

the set (or cone) of linearized feasible directions.

Note that in general we have T�(z) ⊆ F (z), see Fletcher [17, Lemma 9.2.1]. For
the proof of necessary optimality conditions based on the linearizations of the Gi

and Hi as well as for using the linearized Gi and Hi in our algorithms it is now
important to see that these sets coincide. The idea of constraint qualifications is to
guarantee that these sets indeed coincide, i.e., that the geometry of T� is captured
by the linearizations of Gi and Hi . Although there is quite a range of different
constraint qualifications, see, e.g., the book of Mangasarian [26], the linear inde-
pendence constraint qualification is probably the most popular one.
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Definition 10.14 Consider a feasible point z and the active set A(z). Suppose that
F , G and H are continuously differentiable. If the elements of the gradient set
{∇Gi(z) | i ∈ E } ∪ {∇Hi(z) | i ∈ A(z) ∩ I} are linearly independent then we say
that the linear independence constraint qualification (LICQ) holds.

Under this condition we obtain T�(z) = F (z), see Fletcher [17, Lemma 9.2.1].
Now we want to proceed as in the unconstrained case, i.e., give characterizations

of minimizers of the cost function F amongst the feasible points z ∈ �. Note that in
the constrained case we cannot simply use Taylor’s Theorem 10.5 to conclude that
if z� ∈ � is a local minimizer for the problem (NLP) then we have ∇F(z�) = 0.

Example 10.15 In order to see that Taylor’s Theorem 10.5 cannot be used in the
constrained case, consider the example of minimizing F(z) = z over � = [−1,1].
Obviously z = −1 is a local minimizer, yet we have ∇F(−1) = 1.

The problem with applying Theorem 10.6 in the constrained case is that no
boundaries of the constraints sets are included in the analysis in this theorem. In
constrained optimization, however, we often face the situation of a minimizer lying
on the boundary of the feasible set �, cf. Example 10.15. To deal with this matter,
the following auxiliary function L : R

nz × R
rg+rh → R, the so-called Lagrangian

is introduced. For its definition, we combine the constraints Gi and Hi into one
function C : R

nz → R
rg+rh given by

C : z �→
[

(Gi(z))i∈E
(Hi(z))i∈I

]

and define a modification of the cost function F by

L(z,λ) := F(z) − λ�C(z). (10.18)

The idea behind this definition is that the additional term −λ�C(z) penalizes viola-
tions of the state constraints. The vector λ ∈ R

rg+rh is called Lagrange multiplier.
Similar to Theorem 10.6, we can now state a first-order necessary optimal-

ity condition—usually called KKT (Karush–Kuhn–Tucker) condition—in the con-
strained case using the Lagrangian (10.18), which will serve as a guideline to find
local minimizers, see Fletcher [17, Theorem 9.1.1].

Theorem 10.16 Consider the problem (NLP) with local minimizer z� ∈ �. More-
over suppose the functions F , G and H to be continuously differentiable and the
(LICQ) to hold at z�. Then there exists a Lagrange multiplier λ� ∈ R

rg+rh such that
the following conditions hold:

∇zL
(
z�, λ�

) = 0, (10.19)

Gi

(
z�
) = 0 ∀i ∈ E , (10.20)

Hi

(
z�
) ≥ 0 ∀i ∈ I, (10.21)

λ�
i ≥ 0 ∀i ∈ I, (10.22)
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λ�
i Gi

(
z�
) = 0 ∀i ∈ E , (10.23)

λ�
i Hi

(
z�
) = 0 ∀i ∈ I. (10.24)

The identity (10.24) is a so-called complementarity condition, which says that ei-
ther λ�

i = 0 or Hi(z
�) = 0 must hold. A special case which is important for nonlinear

optimization algorithms is the following.

Definition 10.17 Consider the problem (NLP) with local minimizer z� ∈ � and
Lagrange multiplier λ� ∈ R

rg+rh satisfying (10.19)–(10.24). Then we say that the
strict complementarity condition holds if λ�

i > 0 for all i ∈ I ∩ A(z�).

We will use this condition when discussing interior-point methods, below.
Interpreting the KKT conditions we see that they connect the gradient of the cost

function to active constraints. In particular, Theorem 10.16 states that for a given
minimizer z� moving along an arbitrary vector v ∈ F (z�) either increases the value
of the first-order approximation of the cost function, i.e. v�∇F(z�) > 0, or keeps
its value at the same level in the case v�∇F(z�) = 0.

In the second case—the so-called “critical” case v�∇F(z�) = 0—it is unknown
if the cost function value is increasing or decreasing along v. Here second-order
conditions come into play and the curvature information can be used to obtain
more information about change of F along these directions, see Fletcher [17, Theo-
rem 9.3.1] for a corresponding proof.

Theorem 10.18 Consider the problem (NLP) with local minimizer z� ∈ �. Suppose
the functions F , G and H to be continuously differentiable and the (LICQ) to hold at
z�. Let λ∗ ∈ R

rg+rh be a Lagrange multiplier satisfying the KKT conditions (10.19)–
(10.24). Then the inequality

v�∇2
zzL

(
z�, λ�

)
v ≥ 0 (10.25)

holds for all

v ∈ C
(
z�, λ�

) := {
v ∈ F

(
z�
) ∣∣ v�∇Hi

(
z�
) = 0 for all

i ∈ A(z�) ∩ I with λ�
i > 0

}
. (10.26)

The set C is also called the critical cone. It contains all directions which leave
the active inequality constraints with λi > 0 as well as all equality constraints active
if one moves a sufficiently small step along these directions. This, however, does
not need to hold for those active inequality constraints with λi = 0. In particular, we
have the equivalence

v ∈ C
(
z�, λ�

) ⇐⇒

⎧
⎪⎨

⎪⎩

∇Gi(z
�)�v = 0, for all i ∈ E ,

∇Hi(z
�)�v = 0, for all i ∈ A(z�) ∩ I with λ�

i > 0,

∇Hi(z
�)�v ≥ 0, for all i ∈ A(z�) ∩ I with λ�

i = 0.

Now, we want to get a converse result, i.e. we want to check whether a given feasible
point is actually a local minimizer. As it turns out, the only differences between the
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previous necessary conditions and the sufficient conditions presented next is that
the constraint qualification is not required whereas Inequality (10.25) needs to be
strengthened to a strict inequality, cf. Fletcher [17, Theorem 9.3.2]:

Theorem 10.19 Consider a feasible point z� ∈ � and suppose a Lagrange multi-
plier λ� ∈ R

rg+rh to exist satisfying (10.19)–(10.24). If we have

v�∇2
zzL

(
z�, λ�

)
v > 0 (10.27)

for all v ∈ C(z�, λ�) with v �= 0, then z� is a strict local minimizer of problem (NLP).

We will now focus on the currently common approaches to solve nonlinear con-
strained optimization problems (NLP), these are the so-called Sequential Quadratic
Programming (SQP) based on the active set A and the Interior-Point Method (IPM).
In the remainder of this section we describe the main ideas of these strategies. This
description cannot replace a thorough treatment as provided, e.g., in the books by
Bryson and Ho [7], Fletcher [17] or Nocedal and Wright [28], which were also our
main sources for writing this section. Still, we decided to include this description be-
cause we consider it useful for the discussion of certain numerical aspects of NMPC
algorithms in the subsequent Sects. 10.4–10.6.

Active Set SQP Methods

Following the approach outlined at the end of Sect. 10.2, the basic idea of solving
(NLP) in the constrained case would be to iteratively determine search directions
dk by solving an auxiliary quadratic optimization problem which approximates F

close to zk , following either the line-search or the trust-region approach. Since we
want to use the necessary conditions from Theorem 10.16, we will also construct a
sequence λk which is supposed to converge to the Lagrange multiplier λ∗ in Theo-
rem 10.16. However, when proceeding this way, the inequality constraints in (NLP)
pose a severe problem because they are difficult to handle in a quadratic optimiza-
tion problem. There are two ways to overcome this problem. One is to transform the
inequality constraints into equality constraints via so-called slack variables; we will
use this method later in the context of interior-point methods. The drawback of this
approach is that each slack variable is an additional optimization variable and thus
the dimension of the problem may grow significantly.

The alternative which we describe now is the so-called active set method. Here
the fundamental idea is to consider a so-called working set Wk which contains some
of the inequality and all equality constraints for the current iteration point zk . All
constraints within the working set are then treated as equality constraints and the
resulting quadratic problem is solved. The working set Wk can be seen as an ap-
proximation to the active set A(zk) and is updated in each iteration step. We require
that the gradients of the constraints contained in the working set are linearly inde-
pendent, even if the full set of active constraints at that point has linearly dependent
gradients.
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In this setting, the quadratic problem to be solved in each step for determining dk

is obtained from an approximation of the nonlinear problem

minimize F(z)

with respect to z ∈ R
nz

subject to Ci(z) = 0 for all i ∈ Wk

(ECP)

around the current iterate zk . Here Ci denotes the components of the combined
constraint function C in (10.18) and we assume F and Ci (i.e., G and H ) to be twice
continuously differentiable. The linear independence requirement for the gradients
of the constraints in the working set implies that the (LICQ) condition holds for
(ECP).

Note that we do not intend to solve (ECP) but rather use it for constructing an
approximation in order to determine dk . One way to obtain such an approximation
is to apply Newton’s method to the KKT conditions for (ECP). To formulate these
conditions we use the notation λ̃Wk in order to denote a Lagrange multiplier in
R

rg+rh with λ̃
Wk

i = 0 for i /∈ Wk . This way we can use the Lagrangian (10.18) from
the original problem (NLP) for (ECP). With λWk we denote the vector consisting of
those components of λ̃Wk corresponding to indices in Wk , i.e.,

λWk = [(
λ̃

Wk

i

)
i∈Wk

]
.

Denoting the number of elements in Wk by rWk
, the vector λWk is an element of

R
rWk . Note that λWk is uniquely determined by λ̃Wk and vice versa. Furthermore,

we use the notation

CWk (z) = [(
Ci(z)

)
i∈Wk

]

in order to denote the vector of constraints corresponding to the indices in Wk . With
this notation, the KKT conditions for (ECP) read

M
(
z, λ̃Wk

) :=
(∇zL(z, λ̃Wk )

CWk (z)

)
= 0. (10.28)

If we apply Newton’s method to this problem, then a step of the resulting iteration
is given by

(
znew

λWk,new

)
=

(
z

λWk

)
− (∇z,λWk M

(
z, λ̃Wk

))−1
(∇zL(z, λ̃Wk )

CWk (z)

)
(10.29)

with

∇z,λWk M
(
z, λ̃Wk

) =
[∇zzL(z, λ̃Wk ) −∇CWk (z)�

∇CWk (z) 0

]
.

Hence, if sufficient conditions for locally quadratic convergence of the resulting
sequence are fulfilled, with this iteration we are able to numerically compute a solu-
tion of the problem (ECP). Since we assumed F , G and H to be twice continuously
differentiable, we only have to check whether the Jacobian of M(z, λ̃Wk ) given in
(10.28) is invertible. As we will see in Lemma 10.22, below, invertibility of this
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matrix follows at least locally around a minimizer z� of (ECP) from the (LICQ)
condition provided z� satisfies the sufficient conditions from Theorem 10.18 for
(ECP). Hence, under these conditions quadratic convergence can be guaranteed.

As already mentioned, we do not want to perform the iteration from Newton’s
method in order to solve (ECP). Rather, we would like to apply only one step of this
iteration and then update the working set Wk if needed. While Newton’s method is
very useful for the convergence analysis, cf. Remark 10.23, it turns out that for the
actual algorithm it is convenient to replace Newton’s iteration by a different method,
which is more closely related to the quadratic approximation idea outlined above.

To this end, let us assume that in the kth iteration of the iterative algorithm for
solving (NLP) we are given iterates zk , λk and a working set Wk . Similar to the
definition of λ̃Wk , above, we define λ̃

Wk

k to be the vector which coincides with λk

for all components i ∈ Wk and whose components are zero for all i /∈ Wk . We call
λ̃

Wk

k the full multiplier for working set Wk .
Now we replace the cost function F in (ECP) by its Lagrangian L. The reason for

using L instead of F will become clear in the discussion after Lemma 10.22, below.
Then we approximate the resulting optimization problem by a quadratic program
with linear inequality constraints. This amounts to approximating the Lagrangian L

close to zk by the quadratic function

L
(
zk + dk, λ̃

Wk

k

) ≈ L
(
zk, λ̃

Wk

k

)+ ∇zL
(
zk, λ̃

Wk

k

)�
dk + 1

2
d�

k ∇2
zzL

(
zk, λ̃

Wk

k

)
dk

and to replacing the equality constraints Ci(zk + dk) = 0 by their linearizations

Ci(zk + dk) ≈ Ci(zk) + ∇Ci(zk)dk = 0

for all i ∈ Wk . For all dk satisfying these constraints a little computation shows the
identity L(zk, λ̃

Wk

k ) + ∇L(zk, λ̃
Wk

k )dk = F(zk) + ∇F(zk)dk , which we can insert

into the approximation of L(zk + dk, λ̃
Wk

k ). This way, we arrive at the following
quadratic optimization problem:

minimize F(zk) + ∇F(zk)
�dk + 1

2
d�
k ∇2

zzL
(
zk, λ̃

Wk

k

)
dk

with respect to dk ∈ R
nz

subject to Ci(zk) + ∇Ci(zk)
�dk = 0 for all i ∈ Wk .

(EQP)

The Lagrange multiplier for the optimal solution dk of (EQP) according to Theo-
rem 10.16 will be denoted by λ

(EQP)
k . The key idea of the (SQP) algorithm is to use

these values in order to update zk and λk according to1

zk+1 = zk + dk and λk+1 = λ̃
(EQP)
k . (10.30)

Here λ̃
(EQP)
k denotes the vector in R

rg+rh whose components (λ̃
(EQP)
k )i are defined

by the relations
[(

λ̃
(EQP)
k

)
i, i∈Wk

] = λ
(EQP)
k and

(
λ̃

(EQP)
k

)
i
= 0 for i /∈ Wk, (10.31)

1Appropriate step lengths αk will be added to these updates, below.
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i.e., we extend the vector λ
(EQP)
k whose dimension equals the number of indices in

Wk to a vector in R
rg+rh by inserting zeros in the components corresponding to

constraints which are not included in Wk . A motivation for the choice of zk+1 and
λk+1 in (10.30) will be given in the discussion after Lemma 10.22, below, and the
problem of determining Wk+1 as well as suitable step lengths αk will be considered
after we have formulated the basic active set (SQP) algorithm in Algorithm 10.24.

Before we do this, we show how (EQP) can be solved by applying the necessary
and sufficient conditions from Theorems 10.16 and 10.18, respectively, to (EQP).

Lemma 10.20 If λ
(EQP)
k denotes the Lagrange multiplier corresponding to the op-

timal solution dk of (EQP), then we have

∇2
zzL

(
zk, λ̃

Wk

k

)
dk + ∇F(zk) = ∇CWk (zk)

�λ
(EQP)
k . (10.32)

Proof This is an immediate conclusion of Theorem 10.16. �

Combining (10.32) with the constraints in (EQP) we arrive at the following char-
acterization of the solution of (EQP).

Lemma 10.21 Given the iterates zk , λk , Wk and the corresponding full multiplier
λ̃

Wk

k for working set Wk , the optimal solution dk of (EQP) and the corresponding
Lagrange multiplier λ(EQP) fulfill the linear equation system

[∇2
zzL(zk, λ̃

Wk

k ) −∇CWk (zk)
�

∇CWk (zk) 0

](
dk

λ
(EQP)
k

)
+

( ∇F(zk)

CWk (zk)

)
= 0. (10.33)

Proof The stated linear equation system is a combination of the constraints of prob-
lem (EQP) and (10.32). �

For the numerical solution it would be more convenient if the matrix in (10.33)
was symmetric. Since the Hessian ∇2

zzL(zk, λ̃
Wk

k ) is symmetric, this can be easily
achieved by multiplying ∇CWk (zk) and CWk (zk) in (10.33) by −1.

The next lemma gives conditions under which (10.33) has a unique solution.

Lemma 10.22 Consider a minimizer z� with Lagrange multiplier λ̃Wk,� of (ECP)
with working set Wk . Assume that (ECP) satisfies the (LICQ) condition and that z�

satisfies the sufficient conditions from Theorem 10.18 for (ECP). Then there exist
neighborhoods Nz of z� and Nλ of λ̃Wk,� such that there exists a unique solution of
(10.33) for all zk ∈ Nz and λ̃

Wk

k ∈ Nλ.

Proof In order to prove the assertion we show that the matrix

A0 =
[∇2

zzL(z�, λ̃Wk ,�) −∇CWk (z�)�
∇CWk (z�) 0

]

is invertible. This implies the assertion because all expressions in this matrix are
continuous, hence the invertibility extends to neighborhoods of z� and λ̃Wk,�.
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In order to prove invertibility of A0 we show

A0

(
v

w

)
=

(∇2
zzL(z�, λ̃Wk,�)v − ∇CWk (z�)�w

∇CWk (z�)v

)
�= 0,

for all vectors v,w of appropriate dimension with (v�,w�) �= 0. If ∇CWk (z�)v �=
0, then we are done. Otherwise, we have ∇CWk (z�)v = 0 and thus either v = 0 or
v ∈ C(z�, λ̃Wk,�), where C is the critical cone for (ECP). If v = 0, then w �= 0 must
hold and since by (LICQ) the matrix ∇CWk (z�) has full column rank we obtain

∇2
zzL

(
z�, λ̃Wk,�

)
v − ∇CWk

(
z�
)�

w = −∇CWk
(
z�
)�

w �= 0.

If v �= 0 then v ∈ C(z�, λ̃Wk,�) must hold and by the positive definiteness (10.27) we
obtain v�∇2

zzL(z�, λ̃Wk,�)v > 0, which implies

v�(∇2
zzL

(
z�, λ̃Wk,�

)
v − ∇CWk

(
z�
)�

w
)

= v�∇2
zzL

(
z�, λ̃Wk,�

)
v

︸ ︷︷ ︸
>0

−v�∇CWk
(
z�
)�

w
︸ ︷︷ ︸
=w�∇CWk (z�)v=0

> 0,

and thus

∇2
zzL

(
z�, λ̃Wk,�

)
v − ∇CWk

(
z�
)�

w �= 0.

Hence, in all cases we get A0(v
�,w�)� �= 0, which shows the desired invertibility

of A0. �

Comparing the system of linear equations (10.33) derived from (EQP) and New-
ton’s iteration (10.29) one makes the—at the first glance surprising—observation
that both are identical if in (10.33) we set zk = z, dk = (znew − z), λ̃

Wk

k = λ̃Wk and

λ
(EQP)
k = λWk,new. However, this identity is not really a coincidence. In fact, the

particular cost function in (EQP) was chosen exactly for the purpose to obtain this
identity.

Remark 10.23 Interpreting the quadratic problem (EQP) as a Newton iteration is
very useful for the analysis of the convergence speed of the algorithms. Further-
more, it provides the motivation for the choice zk+1 = zk + dk and λk+1 = λ̃

(EQP)
k in

(10.30), as these are exactly the values znew and λ̃Wk,new from Newton’s iteration.
Convergence issues will not be treated in detail here, but we would like to men-

tion that the two properties one would like to have is that the sequences zk , λk con-
verge to a KKT point, which follows from Newton’s method provided this method
converges. Additionally, one would like to ensure that the cost function F decreases
along the search direction dk if dk �= 0. This decrease property allows to conclude
that the limit is a candidate for a local minimizer without having to check second-
order conditions.

The formulation of the iteration via (EQP) allows to obtain this decrease property
under the conditions of Lemma 10.22 for zk and λ̃

Wk

k in a neighborhood of z� and

λ̃
Wk,�
k . This is because dk �= 0 implies
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1

2
d�

k ∇2
zzL

(
zk, λ̃

Wk

k

)
dk + ∇F(zk)dk < 0 (10.34)

since otherwise dk = 0 would be the optimal solution. The positive definiteness
of ∇2

zzL(z�, λ̃
Wk,�
k ) for directions dk ∈ C(z�, λ̃Wk ,�) implies positivity of the first

summand in (10.34) for zk and λ̃
Wk

k close to these optimal values, hence we obtain
∇F(zk)dk < 0. Thus, for α > 0 sufficiently small we get

F(zk + αdk) = F(zk) + ∇F(zk)αdk + O
(
α2) < F(zk),

i.e., decrease of F along dk . This property is important because it shows that if we
restrict the step zk+1 := zk + dk in (10.30) to zk+1 := zk + αkdk then we can still
expect decrease of the cost function.

There are different ways to couple the solution of (EQP) with the update of the
working set. The approach we explain here relies on the fact that what we actually
want to solve in each iteration of the algorithms is the following inequality con-
strained quadratic program:

minimize F(zk) + ∇F(zk)
�dk + 1

2
d�
k ∇2

zzL(zk, λk)dk

with respect to dk ∈ R
nz

subject to Gi(zk) + ∇zGi(zk)
�dk = 0 for all i ∈ E

and Hi(zk) + ∇Hi(zk)
�dk ≥ 0 for all i ∈ I .

(IQP)

We will utilize the solution of this program in order to determine the search
direction dk as well as the new working set Wk+1. Before we explain the details of
this procedure, we give the basic outline of an active set (SQP) algorithm. In this
basic version we do not yet include the step length αk , which will be discussed after
Algorithm 10.25, below.

Algorithm 10.24 (Basic active set (SQP) algorithm) Suppose a pair of initial val-
ues (z0, λ0) and an initial working set W0 ⊆ A(z0) to be given and set k := 0.

While convergence test is not satisfied do

1. Compute F(zk), ∇F(zk), ∇2
zzL(zk, λk), C(zk) and ∇C(zk)

2. Solve (IQP) using (EQP) and Wk and obtain dk , λ
(EQP)
k and Wk+1

3. Set zk+1 := zk + dk , λk+1 := λ̃
(EQP)
k according to (10.31)

4. Set k := k + 1

As convergence test, here one typically checks whether the necessary conditions
from Theorem 10.16 are satisfied up to some user defined tolerance tolOPT.

Furthermore, it should be noted that usually in (SQP) methods one avoids com-
puting the Hessian ∇2

zzL(z�, λ̃
Wk

k ) of the cost function and utilizes computationally
cheaper update techniques for obtaining suitable approximations, instead. We will
not discuss this topic here and refer to, e.g., Nocedal and Wright [28] for details.
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Now we discuss the details of Step 2 of this algorithm. The solution of (IQP) is
obtained by iteratively solving problems of type (EQP) and updating the working
set Wk . This defines another iteration inside the iteration of Algorithm 10.24 whose
iteration index we denote by q . In this inner iteration, we iteratively determine vec-
tors d

q
k and working sets W q

k , q = 0,1, . . . . We start this iteration with the working
set W 0

k = Wk and initial value d0
k , which we assume to be feasible for all constraints

in (IQP). This iteration will terminate after a finite number of steps q� with the opti-

mal value dk = d
q�

k of (IQP). The corresponding working set W q�

k will be the active
set of problem (IQP) and will be used as Wk+1 in Algorithm 10.24. The Lagrange
multipliers λ

(EQP)
k needed in Algorithm 10.24 are obtained from the last solution of

(EQP) in this iteration. The resulting algorithm will be given in Algorithm 10.25,
below. Before we formulate this algorithm, we will now discuss the details of its
different steps.

For its use within this iteration, we rewrite the problem (EQP) in order to take
the previous iterate d

q
k into account:

minimize F(zk) + ∇F(zk)
�(

pq + d
q
k

)

+ 1

2

(
pq + d

q
k

)�∇2
zzL

(
zk, λ̃

Wk

k

)(
pq + d

q
k

)

with respect to pq ∈ R
nz

subject to Ci(zk) + ∇Ci(zk)
�(

pq + d
q
k

) = 0 for all i ∈ W q
k .

(EQPq )

Here, for each q we assume that d
q
k is feasible for the constraints in (IQP)

and for (EQP) with working set Wk = W q
k . This implies that the constraints in

(EQPq ) can equivalently be written as ∇Ci(zk)
�pq = 0. In order to simplify

the presentation we assume that the problem (EQPq ) is strictly convex, i.e., that
(pq)�∇2

zzL(zk, λ̃
Wk

k )pq > 0 holds for all pq �= 0 with ∇Ci(zk)
�pq = 0.

We denote the optimal solution of (EQPq ) by pq,�. From this optimal solution
we want to construct d

q+1
k and a new working set W q+1

k , such that d
q+1
k is again

feasible for (IQP) and feasible for (EQP) with Wk = W q+1
k . To this end, we need to

develop rules for adding and removing constraints from the working set W q
k such

that eventually (EQPq ) delivers an optimal solution of (IQP).
We first consider the problem of adding constraints, which is closely related to

the definition of d
q+1
k . Using the previous iterate d

q
k and the optimal solution pq,�

of (EQPq ) we define

d
q+1
k := d

q
k + αqpq,� (10.35)

and compute the maximal αq ∈ [0,1] such that d
q+1
k is feasible for all constraints in

(IQP). Note that if d
q
k satisfies the constraints contained in the working set W q

k ,

then these constraints are also satisfied for d
q+1
k for all αq ∈ [0,1]. This is be-

cause Ci(zk) + ∇Ci(zk)
�(pq,� + d

q
k ) = 0 and Ci(zk) + ∇Ci(zk)

�d
q
k = 0 imply

∇Ci(zk)
�pq,� = 0 and thus
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Ci(zk) + ∇Ci(zk)
�(

d
q
k + αqpq,�

) = Ci(zk) + ∇Ci(zk)
�d

q
k + αq∇Ci(zk)

�pq,�

= 0.

Hence, for the computation of αq we only need to consider the constraints Hi not
contained in W q

k . If ∇Hi(zk)p
q,� ≥ 0 holds for i /∈ W q

k , then we have

Hi(zk) + ∇Hi(zk)
� · (dq

k + αqpq,�
) ≥ Hi(zk) + ∇Hi(zk)

�d
q
k ≥ 0

since we assumed d
q
k to be feasible for (IQP). Hence, αq ≥ 0 can be chosen freely.

In the case ∇Hi(zk)
�pq,� < 0, we obtain Hi(zk) + ∇Hi(zk)

� · (dq
k + αqpq,�) ≥ 0

only if

αq ≤ −Hi(zk) − ∇Hi(zk)
�d

q
k

∇Hi(zk)�pq,�

holds true. In order to maximize αq we define

αq := min

{
1, min

i /∈W q
k ,∇Hi(zk)

�d
q
k <0

−Hi(zk) − ∇Hi(zk)
�d

q
k

∇Hi(zk)�pq,�

}
. (10.36)

Note that αq = 0 is possible since there might exist an active constraint which is
not an element of the working set W q

k and exhibits ∇Hi(zk)
�pq,� < 0. We call

the constraints Hi(zk) for which the minimum is achieved blocking constraints and
denote the set of blocking constraints by

Cq :=
{
j /∈ W q

k

∣∣∣∣ αq = −Hj(zk) − ∇Hj(zk)
�d

q
k

∇Hj(zk)�pq,�

}
. (10.37)

If αq can be chosen to 1, then none of the constraints not contained in W q
k is active

for d
q+1
k and we can set W q+1

k := W q
k . If αq < 1, however, then we know that at

least one constraint is active for d
q+1
k which is not contained in W q

k . Hence, we

construct W q+1
k by adding one of the blocking constraints to W q

k .
We can iterate this procedure until the resulting algorithm reaches a point d

q
k

which minimizes the quadratic objective function in (EQPq ) over its current work-
ing set W q

k . This situation can be easily identified since in the optimum we obtain
pq,� = 0. Once such a point d

q
k is reached, we can decide which of the equality con-

straints in W q
k ∩ I should be removed from W q

k because we can only obtain a better
solution by imposing the inequality constraints Hi(zk) + ∇Hi(zk)(p

q + d
q
k ) ≥ 0

instead of the equality constraint Hi(zk) + ∇Hi(zk)(p
q + d

q
k ) = 0. Looking at the

necessary conditions from Theorem 10.16, the constraints corresponding to nega-
tive components of the Lagrange multiplier λ

(EQPq )
k are natural candidates for this.

However, since a constraint is not checked anymore in the algorithm once the index
i is removed from W q+1

k , we would also like to ensure that it remains satisfied in
the next step, i.e., that it is not immediately reinserted. Fortunately, as we will show
next, the negativity of the respective component of the Lagrange multiplier λ

(EQPq )
k

guarantees that this indeed happens.
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To this end, consider the iterate d
q
k yielding pq,� = 0 in (EQPq ) for working

set W q
k and the corresponding multiplier λ

(EQPq )
k . With (λ

(EQPq )
k )ji

we denote the
component of the multiplier corresponding to the constraint index i ∈ W q

k and we

assume (λ
(EQPq )
k )ji

< 0 for some i ∈ W q
k ∩ I .

Consider then the solution pq+1,� of (EQPq+1) for working set W q+1
k = W q

k \{i}
with d

q+1
k = d

q
k and corresponding multiplier λ

(EQPq+1)
k . From Lemma 10.20 we

then obtain

∇2
zzL

(
zk, λ̃

Wk

k

)
d

q
k + ∇F(zk) = ∇CWk (zk)

�λ
(EQPq )
k

and

∇2
zzL

(
zk, λ̃

Wk

k

)(
d

q
k + pq+1,�

)+ ∇F(zk) = ∇CW q+1
k (zk)

�λ
(EQPq+1)
k .

Subtracting the first from the second equation and using Ci = Hi for i ∈ I we obtain

∇2
zzL

(
zk, λ̃

Wk

k

)
pq+1,� = ∇CW q+1

k (zk)
�(

λ
(EQPq+1)
k − [(

λ
(EQPq )
k

)
j �=ji

])

− ∇Hi(zk)
(
λ

(EQPq )
k

)
ji
.

Multiplying from the left with (pq+1,�)� then yields
(
pq+1,�

)�∇2
zzL

(
zk, λ̃

Wk

k

)
pq+1,�

= (
pq+1,�

)�∇CW q+1
k (zk)

�(
λ

(EQPq+1)
k − [(

λ
(EQPq )
k

)
j �=ji

])

− (
pq+1,�

)�∇Hi(zk)
(
λ

(EQPq )
k

)
ji
.

Since the constraints in (EQPq+1) together with the feasibility of d
q
k imply the iden-

tity (pq+1,�)�∇CW q+1
k (zk) = 0 we thus get

(
pq+1,�

)�∇Hi(zk)
(
λ

(EQPq )
k

)
ji

= −(
pq+1,�

)�∇2
zzL

(
zk, λ̃

Wk

k

)
pq+1,�.

Hence, the positive definiteness assumption on ∇2
zzL(zk, λ̃

Wk

k ) together with the

inequality (λ
(EQPq )
k )ji

< 0 yields
(
pq+1,�

)�∇Hi(zk) > 0.

Consequently, Hi grows along the search direction pq+1,� and may hence be omit-
ted in W q+1

k without violating the corresponding inequality constraint in the next
step.

In practice, not just any index i is chosen but the one corresponding to the most
negative (λ

(EQPq )
k )ji

, which is motivated by sensitivity aspects.
Combining all we have derived so far, we end up with the following algorithm

for solving (IQP) to be inserted in Step 2 of Algorithm 10.24.

Algorithm 10.25 (Active set (IQP) algorithm) Suppose a pair of values (zk, λk) as
well as the derivatives ∇F(zk), ∇2

zzL(zk, λk), ∇C(zk), the function values F(zk),
C(zk) and a working set Wk ⊆ A(zk) to be given.
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I. Set q := 0, W 0
k := Wk and find a starting point d0

k feasible for (IQP) and (EQP)
II. While not terminated

a. Solve (EQPq ) to obtain pq,� and λ
(EQPq )
k

b. If pq,� = 0

• If (λ
(EQPq )
k )ji

≥ 0 for all i ∈ W q
k ∩ I :

terminate with dk = d
q
k , λ

(EQP)
k = λ

(EQPq )
k and Wk+1 = W q

k

Else: Set i := argmini∈W q
k ∩I (λ

(EQPq )
k )ji

, d
q+1
k = d

q
k , W q+1

k := W q
k \ {j}

Else

• Compute αq from (10.36) and Cq from (10.37)
• Set d

q+1
k := d

q
k + αqpq,�

• If Cq �= ∅: choose i ∈ Cq and set W q+1
k := W q

k ∪ {i}
Else: Set W q+1

k := W q
k

c. Set k := k + 1

One can show that, apart from certain exceptional cases, this algorithm termi-
nates after a finite number of iterations if (IQP) is strictly convex, for details see
[28, Sect. 16.4]. Since the solution satisfies the first-order necessary conditions for
(IQP), under strict convexity it follows that upon termination the vector dk is the
optimal solution of (IQP). From our construction of the d

q
k it additionally follows

that this dk is the optimal solution of (EQP) with working set Wk+1. Methods for
finding the feasible starting point p0

k in Step I are discussed in [28, Sect. 16.4], too.
Since dk−1 is feasible for zk−1 and Wk and since zk is typically quite close to zk−1,
the vector d0

k = dk−1 is usually a good initial guess.
Moreover, this algorithm allows us to maintain the linear independence property

of constraints which are contained in W q
k . In particular, if the gradients of the active

constraints of the initial value are linearly dependent, then we can consider a subset
of linear independent constraints. During the iteration we have to add the blocking
constraints. Since the normals of these constraints cannot be represented by a linear
combination of the normals of the constraints contained in the working set W j

k ,
linear independence is preserved if one constraint is added. Last, the deletion of a
constraint from the working set W j

k clearly does not lead to linear dependency of
the remaining constraint normals.

As already mentioned before, in general it is not a good choice to use zk+1 :=
zk + dk in Algorithm 10.24. One reason for this is that dk is obtained from mini-
mizing a quadratic approximation of F near zk , hence F(zk + dk) may differ con-
siderably from the value of this approximation if dk is large. In unconstrained opti-
mization, one would hence determine the new zk+1 by solving the one-dimensional
minimization problem (10.13) in the line-search approach or one would restrict dk

by using the trust-region approach (10.14). In both cases, the decrease of the original
nonlinear cost function F is used in order to measure the progress of the algorithm.

In constrained optimization, one also needs to take the constraints into account
when measuring this progress. In order to achieve this, one does not use F for
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determining zk+1 but rather a function which defines a trade off between decrease
of F and the violation of the constraints, the so-called merit function. In this function
not only the constraints in the current working set Wk+1 but all constraints in (NLP)
are taken into account.

Merit functions are used in both the line-search and trust-region approach, how-
ever, the way this function is used is different in both approaches. For trust-region
methods the merit function determines if the step is accepted or rejected and if the
trust-region radius needs to be adapted. In contrast to that, in the line-search setting
the merit function is used to control the step length itself.

In the following we consider the merit function

L̃(z,μ) := F(z) + μ
∥∥A(z)

∥∥
1 (10.38)

with a positive parameter μ > 0 and A(z) defined by

Ai(z) =
{

Gi(z), i ∈ E ,

minsi≥0 Hi(z) − si , i ∈ I .

The variables si , i ∈ I are called slack variables and convert the inequality con-
straints Hi(z) ≥ 0 into equality constraints minsi≥0 Hi(z) − si = 0. Indeed, using A

the conditions Gi(z) = 0, i ∈ E and Hi(z) ≥ 0, i ∈ I are now compactly expressed
as A(z) = 0.

Note that this choice of a merit function is not necessarily the best and different
function have been considered in the literature as well, see, e.g., the papers of Han
[24], Powell [30] and Schittkowski [33, 34]. For simplicity of exposition, however,
we exclusively consider (10.38). The merit function L̃ from (10.38) has the impor-
tant property that it decays along the search direction dk from Algorithm 10.24 if
the working set Wk+1 coincides with the active set of (NLP) and the parameter μ

is sufficiently large, see [28, Lemma 18.2]. This means that as long as there are no
active constraints missing in the current working set, decrease of the merit function
is guaranteed and the algorithm will show progress. Furthermore, one can show that
even though L̃ will in general not be differentiable due to the nonsmoothness of
‖A(z)‖1, the directional derivative D(L̃(z,μ), dk) along the search direction dk in
Algorithm 10.24 does exist.

For the line-search approach, this motivates the following strategy to determine
the new iterate zk+1 = zk + αkdk in Step 3 of Algorithm 10.24: Instead of solving a
one-dimensional optimization problem, we use the information from the directional
derivative in order to obtain a computationally less expensive criterion for comput-
ing αk using a fixed parameter η ∈ (0,1/2)

3a. Determine μ > 0 such that D(L̃(z,μ), dk) < 0
3b. Find αk satisfying L̃(zk + αkdk,μ) ≤ L̃(zk,μ) + ηαkD(L̃(zk,μ);dk)

3c. Set zk+1 := zk + αkdk and update λk+1

Here, the update of λk+1 can be done by using the step width αk in order to define
λk+1 = λk + αk(λ̃

(EQP)
k − λk). Alternatively, cf. [28, Sect. 18.3], one can determine

λk+1 by solving the least squares problem
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min
λ

∥∥∇F(zk+1) − CWk+1(zk+1)λ
∥∥2

2. (10.39)

The computation of μ in Step 3a. can be done in various ways, e.g., based on a
quadratic approximation of L̃ or by using the multiplier λ

(EQP)
k .

In the trust-region approach, one solves (IQP) under the additional constraint
‖dk‖2 ≤ �k . In the solution method for (IQP) discussed after Algorithm 10.24 this
amounts to including the constraint ‖pq + d

q
k ‖2 ≤ �k in (EQPq ). Unfortunately,

due to the additional constraint the problem may arise that the constraints Ci(zk) +
∇Ci(zk)

�(pq + d
q
k ) = 0 cannot be satisfied anymore.

There exists a wide variety of trust-region approaches, for sake of simplicity,
however, we now only consider the so-called relaxation approach. In this approach,
the original constraints in problem (EQPq ) are modified by a relaxation (or residual)
vector rk , that is,

Ci(zk) + ∇Ci(zk)
�(

pq + d
q
k

) = rk,i , (10.40)

where rk can be computed from

rk := C(zk) + ∇C(zk)
�ck (10.41)

for ck being the solution of

minimize
∥∥C(zk) + ∇C(zk)ck

∥∥2
2

with respect to ck ∈ R
d subject to ‖ck‖2 ≤ 0.8�k.

(10.42)

The safeguard factor 0.8 guarantees existence of a consistent solution of the relaxed
problem. Since here we work with Euclidean norms, we modify the merit function
to

L̃(zk,μ) := F(zk) + μ
∥∥A(zk)

∥∥
2

In order to determine whether the trust-region radius �k should be reduced or not,
one compares the decrease of the merit function L̃ with the decrease of a quadratic
approximation Qμ of L̃. This defines the ratio

ρk := L̃(zk,μ) − L̃(zk + dk,μ)

Qμ(0) − Qμ(dk)
, (10.43)

which is large if the quadratic model Qμ is close to the nonlinear function L̃ and
becomes the smaller the more these functions differ. Since a large difference indi-
cates that the values of the nonlinear problem and its quadratic approximation differ
significantly at zk + dk , this will be used as a criterion for reducing the trust-region
radius �k .

Hence, implementing the trust-region idea leads to the following modification of
the Steps 2 and 3 in Algorithm 10.24, in which we use fixed parameters η ∈ (0,1/2)

and γ ∈ (0,1) and an initial estimate �0 > 0 for the trust-region radius.

2a. Solve problem (10.42) for ck and compute rk from (10.41)
2b. Solve (IQP) using the modified constraints (10.40) and ‖dk‖ ≤ �k in (EQPq )

to obtain dk , λ
(EQP)
k and Wk+1
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3a. Determine μ > 0 such that D(L̃(zk,μ), dk) < 0
3b. Compute ρk according to (10.43)
3c. If ρk > η: Set zk+1 := zk + dk , λk+1 = λ̃

(EQP)
k and choose �k+1 ≥ �k

Else: Set zk+1 := zk and choose �k+1 ≤ γ ‖dk‖
Both for the line-search and the trust-region case, the algorithms just given

mainly outline the main idea of these approaches and we refer to the optimization
literature for all implementational details.

Interior-Point Methods

In contrast to active set methods, the class of interior-point methods generate a se-
quence zk which always lies in the interior of the feasible set �. For generating
this sequence, in each iterate the entire set of inequality constraints H is used. To
this end, these inequality constraints are transformed into equality constraints using
slack variables, similar to the definition of A in the merit function (10.38). This way
the number of constraints to be considered in each iteration may become consider-
ably larger and thus the computational effort in each iteration grows. On the other
hand, one avoids the potentially time consuming identification of the working set.
Which of the two advantages is predominant crucially depends on the problem to be
solved and can only be assessed on a case by case basis.

Once the constraints are reformulated, the fundamental idea of interior point al-
gorithms is to modify the problem under consideration such that all inequality con-
straints are always active. In the literature, there are two main ways to achieve this
goal, the so-called continuation method and the barrier method. These approaches,
however, lead to very similar KKT equation systems.

In the continuation (or homotopy) method, the problem

minimize F(z)

with respect to z ∈ R
nz , s ∈ R

ns

subject to Gi(z) = 0 for all i ∈ E ,

Hi(z) − si = 0 for all i ∈ I and si ≥ 0.

(IPM)

is considered where s ∈ R
ns are slack variables filling the gap to modify inactive

constraints to be active. The Lagrangian for the problem (IPM) is given by

L(z, s, v,w) = F(z) − v�G(z) − w�(
H(z) − s

)
. (10.44)

Using that at the minimum the equality H(z) = s must hold, for this problem the
KKT conditions from Theorem 10.16 can be written as

∇F(z) − ∇G(z)�v − ∇H(z)�w = 0, (10.45)

Sw − μe = 0, (10.46)

G(z) = 0, (10.47)

H(z) − s = 0, (10.48)



310 10 Numerical Optimal Control of Nonlinear Systems

with s ≥ 0, w ≥ 0 and μ = 0, using the vector e := (1,1, . . . ,1)� and the matrices
S := diag(s) and W := diag(w) to simplify the notation.

Here the additional parameter μ is introduced as a perturbation parameter in
order to enforce the solution to stay away from the boundary of � by setting μ > 0.
More precisely, we consider a sequence of (perturbed) KKT conditions with positive
perturbation parameters μj where μj → 0 as j → ∞. The strict positivity of μj in
each iterate forces the slack variable s and the multiplier w to be positive and thus
the iterates to stay in the interior of �. Similar to the previously mentioned (SQP)
methods, the hope is that the limit of the generated sequence satisfies the KKT
conditions for problem (IPM) and, if a merit function decreases along the iterates,
that the limit is actually a minimizer.

The second, so-called barrier approach consists of a so-called self concordant
barrier function used to encode the feasible set {s ≥ 0} via

minimize F(z) − μ

ns∑

i=1

log si

with respect to z ∈ R
nz , s ∈ R

ns

subject to Gi(z) = 0 for all i ∈ E
and Hi(z) − s = 0 for all i ∈ I

again with parameter μ > 0. In contrast to the homotopy approach where we ex-
plicitly stated the constraint s ≥ 0, here it is not necessary to add this constraint to
the barrier approach problem since minimization of the barrier term −μ

∑ns

i=1 log si
prevents components of s from becoming too close to zero. As for the continuation
method, the idea of the barrier approach is to generate approximate solutions for a
sequence of positive parameters μ which converges to zero.

Applying Theorem 10.16 to the barrier problem, we obtain the conditions

∇F(z) − ∇G(z)�v − ∇H(z)�w = 0, (10.49)

−μS−1e + w = 0, (10.50)

G(z) = 0, (10.51)

H(z) − s = 0, (10.52)

which are identical to (10.45)–(10.48) except for (10.50), which is moreover non-
linear in s. However, multiplying (10.50) by S we can easily convert this condition
into (10.46).

Similar to the (SQP) problem, the ideas of line-search and the trust-region ap-
proach can be applied to the (IPM) problem as well. Before discussing these meth-
ods, we first look at the application of Newton’s method for solving (IPM). Applying
Newton’s method to (10.45)–(10.48) we obtain the system of equations

⎛

⎜
⎝

∇2
zzL(z, s, v,w) 0 −∇G(z)� −∇H(z)�

0 W 0 S

∇G(z) 0 0 0
∇H(z) − Id 0 0

⎞

⎟
⎠

⎛

⎜
⎝

dz

ds

dv

dw

⎞

⎟
⎠
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= −
⎛

⎜
⎝

∇F(z) − ∇G(z)�v − ∇H(z)�w

Sw − μe

G(z)

H(z) − s

⎞

⎟
⎠ , (10.53)

which is also called primal–dual system (the so-called primal system arises from
(10.49)–(10.52) in a similar manner). After computing the step (dz, ds, dv, dw) the
new state iterate can be obtained via

zk+1 = zk + αmax
s dz, sk+1 = sk + αmax

s ds,

vk+1 = vk + αmax
w dv, wk+1 = wk + αmax

w dw,
(10.54)

where

αmax
s = max

{
α ∈ (0,1] ∣∣ s + αds ≥ (1 − τ)s

}
,

αmax
w = max

{
α ∈ (0,1] ∣∣ w + αdw ≥ (1 − τ)w

} (10.55)

with τ ∈ (0,1), typically 0.995. The latter condition is called fraction to boundary
rule, since it prevents the state and slack variables z and s to reach their lower
bounds too fast. Note that the matrix in (10.53) is regular throughout the iteration
for zk in a neighborhood of an optimal solution which satisfies the second-order
sufficient conditions from Theorem 10.19 and the strict complementarity condition
from Definition 10.17. In particular, if the strict complementarity condition holds
at a solution z�, then for every index i we see that either zi or si remains bounded
away from zero as the iterates approach z�, which guarantees that the second block
row of the matrix in (10.53) has full row rank. Hence, the interior-point approach
itself is not ill conditioned and will not show singularities.

In a practical implementation, the matrix in (10.53) is not used. This is due to the
fact that transforming the equation system (10.53) into

⎛

⎜
⎝

∇2
zzL(z, s, v,w) 0 −∇G(z)� −∇H(z)�

0 � 0 Id
−∇G(z) 0 0 0
−∇H(z) Id 0 0

⎞

⎟
⎠

⎛

⎜
⎝

dz

ds

dv

dw

⎞

⎟
⎠

= −
⎛

⎜
⎝

∇F(z) − ∇G(z)�v − ∇H(z)�w

w − μS−1e

−G(z)

−H(z) + s

⎞

⎟
⎠ (10.56)

for � = S−1W (or � = μS−2 for the primal case), we obtain a symmetric form
which can be dealt with much more efficiently.

Moreover, the nonconvex case and the fact that the matrix in (10.56) may be
singular—if the conditions discussed after (10.55) are not satisfied—have to be
treated in order to approximate minimizers instead of mere KKT points and to ren-
der the approach applicable, i.e., the matrix to be invertible.

In order to ensure the approximation of a minimizer, as for the (SQP) algorithm
(cf. Remark 10.23) we want to ensure that the value of the merit function is decreas-
ing during the iteration. To this end, one can show that (dz, ds, dv, dw) is a descent
direction of (10.56) if
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(∇2
zzL(z, s, v,w) 0

0 �

)
is positive definite on the null space of

(−∇G(z) 0
−∇H(z) Id

)
.

Here, � is positive definite by construction, but ∇2
zzL(z, s, v,w) may be indefinite.

To compensate for this deficiency, one can replace the Hessian by ∇2
zzL(z, s, v,w)+

δ Id where δ > 0 is sufficiently large to ensure positive definiteness. The size of
this modification is a priori unknown but can be obtained by successively enlarging
δ. Additionally, a possible rank deficiency of ∇G(z) must be considered. In the
primal–dual matrix

⎛

⎜
⎝

∇2
zzL(z, s, v,w) + δ Id 0 −∇G(z)� −∇H(z)�

0 � 0 Id
−∇G(z) 0 γ Id 0
−∇H(z) Id 0 0

⎞

⎟
⎠

⎛

⎜
⎝

dz

ds

dv

dw

⎞

⎟
⎠

= −
⎛

⎜
⎝

∇F(z) − ∇G(z)�v − ∇H(z)�w

w − μS−1e

−G(z)

−H(z) + s

⎞

⎟
⎠ (10.57)

this is done by including a regularization parameter γ > 0.
Since the iteration (10.54) does not terminate in finite time, we impose the fol-

lowing error function

E(z, s, v,w;μ) = max
{∥∥∇F(z) − ∇G(z)�v − ∇H(z)�w

∥∥,

‖Sw − μe‖,∥∥G(z)
∥∥,

∥∥H(z) − s
∥∥} (10.58)

for some vector norm ‖ · ‖, which will be used for defining a termination criterion.
Then, we obtain the following algorithm.

Algorithm 10.26 (Basic interior-point algorithm) Suppose a pair of initial values
(z0, s0) to be given and set k := 0.

Compute multipliers v0 and w0, define parameters μ0 > 0, σ, τ ∈ (0,1).
While convergence test not satisfied

1. While E(zk, sk, vk,wk;μk) ≥ μk

a. Compute search direction d = (dz, ds, dv, dw) by solving (10.57)
b. Determine αmax

s , αmax
w via (10.55)

c. Obtain new iterate (zk+1, sk+1, vk+1,wk+1) from (10.54)
d. Set μk+1 := μk and k := k + 1

2. Choose μk ∈ (0, σμk)

Again, for the convergence test it is checked whether the KKT conditions from
Theorem 10.16 are satisfied up to some user defined tolerance tolOPT.

For this algorithm, we can show the following result:

Theorem 10.27 Suppose F , G and H to be continuously differentiable functions
and Algorithm 10.26 to generate a sequence (zk)k=0,...,∞ for a parameter sequence
μk → 0 as k → ∞. Then all points z� with liml→∞ zkj

= z� for some subsequence
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kl are feasible. If additionally the (LICQ) condition holds at z�, then the KKT con-
ditions from Theorem 10.16 hold at z�.

Proof Let ẑ be the limit point of the sequence zkl
from Algorithm 10.26. Since

μk → 0 holds, the error function (10.58) converges to zero, and we have Gi(zk) → 0
and Hi(zk) − sk → 0. Since G and H are continuous, it follows that G(ẑ) = 0,
H(ẑ) ≥ 0 and ŝ = H(ẑ) ≥ 0 showing the first assertion.

Since the error function (10.58) converges to zero and ŝi = Hi(ẑ) > 0 for all
i /∈ A(ẑ), we obtain [wkl

]i → 0 for all i /∈ A(ẑ). Again using that the error function
converges to 0 this implies

∇F(zkl
) −

∑

i∈E
[vkl

]i∇Gi(zkl
) −

∑

i∈A(ẑ)

[wkl
]i∇Hi(zkl

) → 0. (10.59)

Since by (LICQ) the vectors ∇Gi(ẑ), i ∈ E and ∇Hi(ẑ), i ∈ A(ẑ) are linearly in-
dependent and ∇F and ∇H are continuous, the vectors ∇Gi(zkl

) and ∇Hi(zkl
) are

linearly independent for all sufficiently large kl , too. It follows that [vkl
]i and [wkl

]i
in (10.59) are unique and depend continuously on zkl

, hence they converge to some
(v̂, ŵ) ≥ 0. Using continuity of the expressions in the error function, it follows that
the KKT conditions are satisfied for ẑ with λ̂ = (v̂�, ŵ�)� as Lagrange multiplier.
This proves the second assertion. �

Similar to the Line-Search (SQP) Algorithm, a merit function is imposed in the
(IPM) variant of a line-search which may be of the form

L̃(z, s, ν) = F(z) − μ

ns∑

i=1

log si + ν
∥∥G(z)

∥∥ + ν
∥∥H(z) − s

∥∥ (10.60)

where the penalty parameter ν needs to be updated throughout the iteration. Note
that we do not have to reprove results concerning descent of the cost function along
the computed direction since results shown for the (SQP) case carry over to the
(IPM) case. The line-search iteration is given by

zk+1 = zk + αsdz, sk+1 = sk + αsds,

vk+1 = vk + αwdv, wk+1 = wk + αwdw,
(10.61)

where the step lengths are chosen to satisfy

αs ∈ (
0, αmax

s

]
, αw ∈ (

0, αmax
w

]
(10.62)

and

L̃(zk+1, sk+1, ν) ≤ L̃(zk, sk, ν) + ηαsDL̃
(
zk, sk, ν; (dz, ds)

)
(10.63)

for some η ∈ (0,1). To incorporate the changes due to the introduction of the merit
function (10.60), we modify Algorithm 10.26 by defining the fixed parameter η ∈
(0,1) and changing Steps 1b to 1d as follows.



314 10 Numerical Optimal Control of Nonlinear Systems

1b. Compute αmax
s , αmax

w via (10.55)
1c. Determine αs , αw such that (10.62) and (10.63) hold
1d. Obtain new iterate (zk+1, sk+1, vk+1,wk+1) from (10.61)

Similar to the (SQP) method we can also formulate a trust-region version of the
(IPM) algorithm in which a trust-region ball constraint ‖(dz, d̃s)‖2 ≤ �k is added
with d̃s = S−1

k ds . This constraint ensures that the quadratic approximation is not
treated as a global model, but only in a small neighborhood of zk . The model prob-
lem itself is given by

minimize ∇F(zk)
�dz + 1

2
d�

z ∇2
zzL(zk, s, v,w)dz − μe�d̃s

+ 1

2
d̃�
s Sk�kSkd̃s

with respect to dz ∈ R
nz , ds ∈ R

ns

subject to ∇G(zk)dz + G(zk) = rGk
,

∇H(zk)dz − Skd̃s + (
H(zk) − sk

) = rHk
,

∥∥(dz, d̃s)
∥∥

2 ≤ �k and d̃s ≥ τe

where the descent direction d̃s is bounded away from zero by a parameter τ ∈ (0,1).
To compute the residuals rGk

, rHk
a subproblem similar to (10.42) is derived, but

now the variable ck = (cz, cs) is considered:

minimize
∥
∥∇G(zk)cz + G(zk)

∥
∥2

2 + ∥
∥∇H(zk)cz − Skcs + (

H(zk) − s
)∥∥2

2

with respect to ck ∈ R
nz+ns

subject to ‖ck‖2 ≤ 0.8� and cs ≥ −τ

2
e.

(10.64)

Then, the radii rG and rH are given by

rGk
= ∇G(zk)cz + G(zk), rHk

= ∇H(zk)cz − Skcs + (
H(zk) − sk

)
. (10.65)

Again similar to the (SQP) case, cf. (10.43), a step is accepted if for the direction
(dz, ds) the ratio ρ of the reduction of the merit function L̃ with respect to the
predicted reduction using a quadratic model Qν of the merit function L̃

ρ = L̃(z, s, ν) − L̃(z + dz, s + ds, ν)

Qν(0) − Qν(dz, ds)
(10.66)

is at least ρ ≥ η where ν needs to be chosen sufficiently large.
To incorporate the trust-region idea into Algorithm 10.26, we introduce the fixed

parameter η ∈ (0,1) and modify Steps (1a) to (1c):

1a. Evaluate normal step ck from (10.64) and radii rG, rH via (10.65)
1b. Compute solution dz, d̃s for quadratic model of (IPM) and retrieve ds = Sd̃s

1c. Obtain ρ from (10.66)
If ρ ≥ η: Set zk+1 = zk + dz, sk+1 = sk + ds , update multipliers vk , wk and
choose �k+1 ≥ �k

Else: Set zk+1 = zk , sk+1 = sk , vk+1 = vk , wk+1 = wk and choose �k+1 < �k
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Fig. 10.10 Architecture of NMPC solver

Here, the update of the Lagrange multipliers can be done similar to the least
squares approach outlined in (10.39).

Note that there also exist other types of solvers for the general (NLP) problem
like penalty and augmented Lagrangian methods, which we do not discuss here.
Additionally, there exists a wide variety of solvers for quadratic problems which we
did not mention here but which are of particular interest: on the one hand, quadratic
problem solvers are required within (SQP) and (IPM) algorithms. On the other hand,
many practical problems directly lead to a quadratic cost function.

Additionally, many extensions, modifications and improvements for the pre-
sented algorithms have been developed whose explanation is beyond the scope of
this section; some of these are given in a short overview in Sect. 10.7.

10.4 Implementation Issues in NMPC

So far, we discussed the numerical components which are typically part of an NMPC
algorithm and whose interplay is sketched in Fig. 10.10. Our aim now is to combine
these components, i.e., the differential equation solver from Chap. 9, the discretiza-
tion technique from Sect. 10.1 and the optimizer from Sect. 10.3, and to analyze the
interactions and effects between them.

Since the interaction heavily depends on the used implementation, one cannot
give a complete analysis. Therefore, the aim of this section is to give some guide-
lines regarding the interplay of the components with respect to certain key param-
eters such as the tolerance values for the optimization and integration, the horizon
length or the number of multiple shooting nodes.
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Structure of the Derivatives

We start by analyzing the connection between the discretization and the optimiza-
tion method. As we have seen in Sect. 10.3, both the (SQP) and the (IPM) algorithms
require derivatives of the cost function and the Jacobian of the constraints in order to
compute a search direction dk . Since for many examples algebraic expressions for
these function are not at hand, these derivatives need to be computed numerically.
To this end, in the continuous time case one may numerically solve the variational
equation (cf. Hairer and Wanner [23, Sect. I.14]). Alternatively, one may directly
approximate all derivatives by difference quotients with respect to every component
of the optimization variable z. Here we follow this second approach, which approx-
imates the directional derivative of a function g : R

nz → R
p at a point z in direction

v via

∇g(z)�v = lim
t→0

g(z + t · v) − g(z)

t
≈ g(z + t · v) − g(z)

t
(10.67)

for small t > 0. Here, the step length t should be chosen depending on the used
computer, i.e. its floating point accuracy. Using the ith unit vector v = ei , we thus
obtain an approximation of the ith row of the Jacobi matrix ∇g(z).

Note that if g involves the solution of a continuous time optimal control problem
using the methods from Chap. 9, then the computation of the difference quotient
(10.67) may depend sensitively on the time grids used to compute g(z + t · v) and
g(z). To circumvent this problem, a synchronized evaluation of f for the nominal
vector z and for the disturbed vectors z + t · v using the same grid for both compu-
tations can be used.

A similar problem arises from a possible integral type cost function (3.4), which
has to be evaluated along the trajectory. To this end, we use the technique described
in Sect. 9.4, i.e., we include the integral as an additional component in the ordi-
nary differential equation and use the same discretization for the evaluation of this
integral and the dynamics of the problem, see also the paper of Gyurkovics and
Elaiw [22] for a detailed analysis in an NMPC context.

Most if not all common optimization algorithms use an approximation B(z) of
the Hessian ∇zzL of the cost function which can be obtained, e.g., by so-called
DFP (Davidon–Fletcher–Powell) [10, 18] or BFGS (Broydon–Fletcher–Goldfarb–
Shanno) updates [6, 16, 19, 35]. For this reason, the computationally most expensive
part within each step of the optimization algorithm is the evaluation of the Jacobian
∇C(z) of the constraints. We now consider this problem in some more depth for
the shooting discretization. In the following, r = rg + rh denotes the number of
constraints and—as before—rs the number of shooting nodes. Using that the op-
timization variable z ∈ R

nz is of the form z = (u(0)�, . . . , u(N − 1)�, s�)�, this
Jacobi matrix has the structure sketched in Fig. 10.11.

This figure indicates that the number of function evaluations is growing quadrat-
ically in the horizon length N , which is therefore the dominating parameter for the
computing time of the optimization algorithm. For this reason, setting up an NMPC
scheme which is stable for small optimization horizon N—for instance by choos-
ing a good cost function in the sense of Sect. 6.6, by adding terminal weights as
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Fig. 10.11 Structure of the Jacobian of the constraints ∇zC(z)�

described in Sect. 7.2 or by using the adaptation techniques of Sect. 7.8—will in
general significantly reduce the computational effort.

Regardless of the length of the horizon, a recomputation of the Jacobian ∇C(z)

has to be performed for a large number of the iteration steps within any of the pre-
sented minimization routines. Hence, an efficient implementation to evaluate this
matrix is required. Additionally, efficient (SQP) and (IPM) implementations usually
update only a few entries of the Jacobian whereas for the other entries the lineariza-
tion is considered to be sufficiently accurate. This implies that an efficient imple-
mentation of the evaluation of the Jacobian should perform only those evaluations
of the dynamics of the system needed for the entries of the Jacobian which are ac-
tually requested by the optimization algorithm.

We now sketch such an efficient evaluation which is based on the following ob-
servation: if we look at the way the predicted states xu(k, x0) depend on the control
values u(n), one observes the triangular structure sketched in Fig. 10.12, in which
the arrows indicate increasing indices k and n.

This structure is due to that fact that changing u(n) does not affect the state
trajectory values xu(k, x0) for k ∈ {0, . . . , n}.

Our proposed efficient implementation builds upon this observation. Assume that
the columns of ∇C(z)� colored in dark gray in Fig. 10.13 have to be recomputed.
To this end, we need to evaluate the nominal function C(z) as well as the perturbed
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Fig. 10.12 Dependence of
xu(k, x0) on u(n)

values C(z + tei) for those i corresponding to the dark gray columns. Each of these
evaluations requires the computation of a trajectory following the rules described
before (10.8). Since z = (u(0)�, . . . , u(N − 1)�, s�)�, each ei either corresponds
to an entry of a control vector u(n) or to a shooting node sk . Let us first consider
those ei which correspond to entries of control vectors and denote the time index of
the corresponding control vectors by ni . Then the definition of z yields that i1 ≥ i2
implies ni1 ≥ ni2 .

The structure from Fig. 10.12 now implies that the nominal trajectory xu cor-
responding to z and the perturbed trajectory xu′ corresponding to z + tei satisfy
xu(k) = xu′(k) for k = 0, . . . , ni . This means that these values can be reused for
xu′ and do not need to be recomputed. Hence, for each perturbed trajectory to be
computed one could copy the nominal trajectory and then change only those entries
which do not coincide. While this approach is already very efficient in terms of the
number of function evaluations, it is not efficient in terms of memory access be-
cause we need to make many copies of the nominal trajectory. Since memory access
is one of the bottle necks in modern computers, this procedure will be quite time
consuming.

To solve this problem we use a second implication of Fig. 10.12: consider two
perturbed trajectories xu1 and xu2 corresponding to z+ tei1 and z+ tei2 with i1 ≥ i2.
Then the time indices of the corresponding control vectors satisfy ni1 ≥ ni2 and
consequently the triangular structure from Fig. 10.12 yields the identity xu1(k) =
xu2(k) holds for k = 0, . . . , ni . This means that when computing xu2(k), instead
of using the values of the nominal trajectory xu we may also use the values of
any perturbed trajectory xu1 with i1 ≥ i2. Thus, if we schedule the computations of
C(z + tei) such that the indices i are monotone decreasing, then we can compute
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Fig. 10.13 Efficient implementation for computing the Jacobian ∇zC(z)�

each perturbed trajectory by modifying the perturbed trajectory computed before,
i.e., we can compute all entries in the Jacobian by working on a single copy of the
nominal trajectory instead of having to make many copies.

The indices ei corresponding to shooting nodes can be treated in the same manner
observing that again the change of a shooting node only affects the solution at times
greater or equal than the shooting time.

The resulting scheduling of the computations is indicated by the arrows in
Fig. 10.13. The two thicker arrows pointing to the right correspond to the computa-
tion of the nominal trajectory for the control and the shooting values, respectively,
and the thinner arrows pointing to the left indicate the order of the computations of
the perturbed trajectories w.r.t. the indices of the corresponding ei .

An alternative to this efficient sequential scheduling is given by parallelization
of the computations of the perturbed trajectories. Except for the evaluation of the
nominal trajectory, all evaluations of the dynamics (2.1) (or (2.8) in the continuous
time case) required to compute ∇C(z) and ∇F(z) are fully decoupled and may be
executed in parallel. Hence, if the problem is large and many cores can be used to
parallelize these computations, a significant speedup can be expected.
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Condensing

As outlined in the discussion of Fig. 10.11, the computation of the Jacobian of the
constraints massively depends on the number of optimization variables of the dis-
cretized optimal control problem. Hence, according to Sect. 10.1 the minimal num-
ber of optimization variables is N · m for control values u ∈ R

m. Adding multiple
shooting nodes increases the number of optimization variables but may also improve
the numerical solutions, cf. Example 10.2. In the following, we present an approach
which allows us to reduce the additional numerical effort induced by using shooting
nodes and which has become quite popular in the NMPC community, the so-called
condensing of constraints, see, e.g., Diehl [11] or the paper by Bock and Plitt [5].

In order to simplify the exposition, here we apply the method to the full dis-
cretization technique, which can be regarded as a special case of the multiple shoot-
ing technique in which each component of the solution vector at each sampling
instant is a shooting node. To simplify notation, we now define sj to be a vector of
dimension d , which allows us to get rid of the index function ι(·), and we set the in-
dex function ς(·) to be the identity function. According to this change, the equality
constraints induced by the continuity conditions (10.1) take the form

S(z) := [[
sj+1 − f

(
sj , u(j)

)]
j∈{0,...,N−1}

] = 0.

Using a Newton like approach for the KKT conditions from Theorem 10.16, as
outlined for the active set and interior-point methods in Sect. 10.3, we obtain the
linearized continuity condition

S(z) + ∇zS(z)��s = 0 (10.68)

where �s denotes the part of the search direction d corresponding to the shooting
nodes. Within this equation, the Jacobian of S(z) takes the sparse form

∇zS(z)� =

⎛

⎜⎜⎜⎜
⎝

− ∂f (s0,u(0))
∂s0

1 0 · · · · · · 0

0 − ∂f (s1,u(1))
∂s1

1 0 · · · ...

...
. . .

. . .
. . . 1 0

0 · · · · · · 0 − ∂f (sN−1,u(N−1))

∂sN−1
1

⎞

⎟⎟⎟⎟
⎠

.

This allows us to compute �s from (10.68) via

⎛

⎝
�s1

...

�sN

⎞

⎠ =

⎛

⎜⎜⎜
⎜
⎝

∂f (s0,u(0))
∂s0

0 · · · 0

0 ∂f (s1,u(1))
∂s1

0
...

...
. . .

. . . 0
0 · · · 0 ∂f (sN−1,u(N−1))

∂sN−1

⎞

⎟⎟⎟
⎟
⎠

⎛

⎝
�s0

...

�sN−1

⎞

⎠− S(z),

i.e., �s1, . . . ,�sN can be computed from �s0, which is in the search direction for
the shooting node corresponding to the initial value. Hence, if we solve (10.68)
outside the discretized optimal control problem, then the fully discretized problem
reduces to a shooting discretization in which only the components of the initial
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value are considered to be shooting nodes, i.e. rs = d . Note that the dynamics of
the system still have to be evaluated using the initial values given by the shooting
nodes of the original problem. However, apart from this technical difference, the
condensing technique allows us to use a full multiple shooting discretization of the
optimal control problem while the complexity of the problem handed over to the
optimization algorithm is reduced to a multiple shooting discretization with only d

instead of d · (N + 1) shooting nodes.
A useful side effect of using the full discretization we would like to mention is

that all evaluations of the dynamics (2.1) (or (2.8) in the continuous time case) are
fully decoupled. Hence, computing all components of the (discretized) optimiza-
tion problem can be done in parallel, which may lead to a significant speedup in
generating the iterates of the optimization problem.

Optimality and Computing Tolerances

Let us now turn to the investigation of the interplay of the different numerical accu-
racies in the optimization method and the differential equation solver. In particular,
we analyze the impact of the user dependent choices of tolerance values for these
two components on the stability of the closed-loop system on the one hand, and on
the resulting computing time on the other hand. For the differential equations solver,
the tolerance tolODE is the parameter discussed in Sect. 9.3. For the optimization
routine, the parameter tolOPT is the accuracy up to which the sufficient KKT con-
ditions of Theorem 10.16 are satisfied. Both tolOPT and tolODE are assumed to be
small in this section. The situation in which the optimization is terminated before
the necessary conditions are approximately satisfied, which was theoretically inves-
tigated in Sect. 7.9, will be discussed in Sect. 10.6.

To illustrate effects of different choices for the tolerance levels, let us first give
the following example.

Example 10.28 Consider the inverted pendulum Example 10.1. As tolerances for
the differential equation solver and the optimization algorithm we consider the grid
of parameters

(tolOPT, tolODE) ∈ {
10−8,10−7, . . . ,10−1}2

in order to evaluate the NMPC controller μN . The resulting closed-loop trajectory
xμN

(·, x0) was computed on the interval [0,20] with sampling period T = 0.1, ini-
tial value x0 = (2,2,0,0) and numerical accuracy tolODE = 10−10. By using a much
smaller tolerance for computing xμN

(·, x0) we “emulate” the setting of Sect. 9.5 in
which the computation of μN is affected by numerical errors and the closed-loop
solution is obtained by using the numerically computed μN and the exact dynamics.

Let us first consider one of the critical cases mentioned in Example 10.1 and set
the horizon length to N = 53. In this case, the numerical results in Figs. 10.14 il-
lustrate that the parameters (tolOPT, tolODE) should be chosen carefully due to their
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Fig. 10.14 Exceptional closed-loop costs for N = 53 and various optimization and differential
equation solver tolerances

effects on the closed loop. The closed-loop costs in the following figures are com-
puted as in Example 10.2.

Here, Fig. 10.14(a) shows that for some pairs (tolOPT, tolODE) the closed-loop
costs are significantly higher. If we analyze the corresponding closed-loop trajecto-
ries, these costs correspond to solutions which are driven to the downward position
(−2π,0,0,0) for tolOPT = 10−1 and several values considered for tolODE, cf. the
dotted lines in Fig. 10.14(b). All other pairs, however, do “mainly” cause the pen-
dulum to tend toward an upright position. However, these positions vary in two
ways. For one, the x1-component of the closed-loop trajectory does not converge
to the same upright position, similar to what we observed in Example 10.2. And,
more importantly, once an upright position is reached, the trajectory may become
unstable and move to another upright position, an effect we already observed in Ex-
ample 10.1. In this case, the observed closed-loop costs increase due to the repeated
transitions between different upright positions, see again Fig. 10.14(a).

The reasons for this unpredictable behavior can be found in the implementation
and the unstable nature of the equilibrium which we want to stabilize. One source of
errors is the tolerance tolODE used in computing μN . Since the closed-loop trajec-
tory is always computed with accuracy tolODE = 10−10 and the open-loop predic-
tions are computed with different tolerance levels of the differential equation solver,
the solutions deviate slightly. Consequently, according to Theorem 9.10, we can
only expect practical asymptotic stability and the radius δ of the neighborhood to
which the solutions converge according to Definition 9.9 will grow with the toler-
ance tolODE used in the computation of μN (and most likely also with tolOPT, even
though this was not rigorously analyzed in Sect. 9.5). Once δ becomes too large,
the pendulum may leave a neighborhood of the upright equilibrium and move to
another upright position.

Another source of errors stems from the fact that the optimization algorithm does
not yield a globally optimal solution. In fact, since the problem is nonconvex we can
in general never guarantee to obtain a globally optimal solution, but the growth of
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Fig. 10.15 Comparison of closed-loop costs and computing times for N = 15 and various opti-
mization and differential equation solver tolerances

the closed-loop costs in Fig. 10.14(a) for increasing tolOPT indicates that this is more
likely for larger tolOPT. In contrast to numerical errors in the solution of the ordinary
differential equation, this problem can be dealt with in various ways.

For example, additional constraints can be added once a trajectory is close to the
equilibrium in order to exclude the open-loop trajectory from moving to other equi-
libria. Alternatively, the initial guess of the control may be changed when starting
the optimization such that the initial solution stays close to the equilibrium. A third
possibility is to add shooting nodes and set their values to the desired equilibrium,
as already discussed in the introduction to the shooting discretization in Sect. 10.1.
This is less restrictive than adding constraints and incorporates the aspect of modi-
fying the initial guess at the same time. As discussed in Example 10.2(ii), introduc-
ing shooting nodes may obstruct the optimization routine. Close to the equilibrium,
however, we have never experienced such effects during our numerical experiments.

Although too large choices of the tolerance levels may have destabilizing effects,
from a computation time point of view it is in general desirable to choose these
values as large as possible in order to speed up the computation required for each
NMPC iterate. In particular, for larger tolerance levels less steps within the differen-
tial equation solver as well as the optimization method are required to satisfy these
tolerance levels. Unfortunately, inaccuracies in the differential equation solver may
obstruct the optimization method and vice versa. Still, if we want to accelerate the
NMPC algorithm, this tuning parameters should be considered closely. To illustrate
these interactions, we continue with Example 10.28.

Example 10.29 In the following, we compare the closed-loop behavior and the
computing time for various tolerance levels. In Fig. 10.15, we show the limit case
N = 15 for the optimization horizon. Figures 10.15(a) and (b) allow us to conclude
that tolerance level tolOPT may be eased to 10−2 without increasing the closed-loop
cost significantly or affecting the stability of the closed loop while the comput-
ing times are lowered. Our default initial setting for (tolOPT, tolODE) is the pair
(10−6,10−6), but already for (tolOPT, tolODE) = (10−3,10−4) the computing time
can be reduced by approximately 35%.
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There are several guidelines which can be drawn from this example, and which
have shown to be reasonable in our numerical experiments.

First, the horizon length should always be chosen to be as small as possible be-
fore different tolerance levels are considered. The reasons for this are twofold: For
one, the additional complexity of an enlarged horizon always leads to an increase
in the computing time to solve the optimal control problem. While this may be
compensated by increasing the tolerance levels of the optimizer and the differential
equation solver, another aspect comes into play, which we have not yet discussed:
increasing the tolerance level of the differential equation solver may heavily corrupt
the numerical evaluation of the derivatives needed in the optimization algorithm.
For this reason, the optimization iteration may be unable to converge toward a point
satisfying the KKT conditions of Theorem 10.16 with accuracy less than tolOPT.

As a consequence, the tolerance levels should always satisfy tolOPT � tolODE.
Here, we use this imprecise formulation on purpose since properties of the differen-
tial equation like its rate of change or simply its scale influence the “best” relation
between these two tolerance parameters. Yet, it is usually reasonable to set the tol-
erance level of the differential equation solver to be smaller than the tolerance level
of the optimization method.

10.5 Warm Start of the NMPC Optimization

In the previous section, we concentrated on solving Step (2) of Algorithm 3.11,
which is computationally quite demanding. Although it is not obvious from the
algorithm itself, the consecutive Step (3) can be used to significantly reduce the
time required to solve the subsequent problem of type (OCPn

N,e). More precisely,
the optimal solution u� of (OCPn

N,e) at time n can be efficiently used in order to
construct an initial guess for (OCPn

N,e) at time n+ 1. In order to see how this can be
done, one needs to take a closer look to the time evolution of the NMPC problem
itself as displayed in Figs. 10.16 and 10.17 for a sampled data continuous time
system with sampling period T . For better visibility, in these figures we have plotted
the whole continuous time trajectory instead of only the discrete values of xu(·, x0).

Figure 10.16 schematically sketches the step of solving the problem (OCPn
N,e) for

a given initial value x0 for the nth iterate of the NMPC procedure. As a result, a pre-
diction of the trajectory xu(·, x0) on the considered time horizon and a minimizing
control sequence u�(·) ∈ U

N(x0) are obtained.
Now, according to Step (3) of Algorithm 3.11, the first element of the control

sequence u�(·) is used as control value in the next sampling period, see Fig. 10.17
for a schematical sketch. However, the algorithm does not say what should be done
with the remainder of the control sequence. The most simple approach is to simply
discard these values and go to the next iterate. Yet, as obvious from Fig. 10.17, the
sequence contains a lot of information on the prediction at time n + 1.

Hence, this information should be reused in the subsequent (n+1)st NMPC step.
In particular, one has to keep in mind that in most cases an iterative solver is used
to compute the optimal control u�(·) for problem (OCPn

N,e). As mentioned in the
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Fig. 10.16 Step (2) of Algorithm 3.11

Fig. 10.17 Step (3) of Algorithm 3.11

previous Sect. 10.3, one can only guarantee local convergence for such solvers, i.e.,
a good initial guess is required. Furthermore, supplying a good initial guess will
reduce the number of iterations to be performed by both the (IPM) and the (SQP)
method.

In what follows we will explain three methods to address the “good initial guess”
problem.

Initial Value Embedding

The initial value embedding technique proposed by Diehl, Bock, Schlöder, Find-
eisen, Nagy and Allgöwer [12] is used for fully discretized problems (OCPN,e)



326 10 Numerical Optimal Control of Nonlinear Systems

which are solved using (SQP) methods. The approach utilizes the fact that the sub-
sequent problem differs only in the initial value x0. In particular, taking a closer
look at the problem (NLP) using full discretization, one can see that the problem
depends linearly on the x0 in the equality constraint

xu(0, x0) − x0 = 0 (10.69)

where xu(0, x0) is the first entry of the optimization vector z as displayed in (10.5).
Now, if the (SQP) solver handling the subsequent problem (OCPN,e) with time index
n + 1 is initialized via

z0 := z� = (
xu�(0, x0)

�, . . . , xu�(N,x0)
�, u�(0)�, . . . , u�(N − 1)�

)�

where z� is the optimal solution of the nth problem (OCPN,e), then most of the data
of the previous linear problem

[∇2
zzL(z�, λ̃Wk,�) −∇CWk (z�)�
∇CWk (z�) 0

](
d�

λ̃(EQP),�

)
+

( ∇F(z�)

CWk (z�)

)
= 0 (10.70)

solved at time n, cf. Algorithm 10.25, can be reused for the first (SQP) step at time
n + 1. This is because only those very few entries in (10.70) which depend on the
new initial value xnew

0 at time n + 1 need to be updated. Hence, the approximation
in the first (SQP) step at time n + 1 is almost readily computed. Note, however,
that this advantage only holds for the full discretization, since for the recursively
discretized problem all values in (10.70) depend on x0 and thus all gradients need
to be recomputed. Furthermore, this procedure becomes less efficient in the case of
nonconstant reference xref because in this case � and thus F change with time and
the respective gradients have to be recomputed, too.

If, moreover, x0 and xnew
0 differ only slightly, as it is the case for small sampling

periods, then the remaining entries in (10.70) may still be sufficiently accurate in
order to allow for an accurate solution of (OCPN,e) for the new initial value xnew

0 .
In this case, a single (SQP) iteration is sufficient in order to deliver a sufficiently
accurate solution at time n+ 1. Furthermore, since the constraint (10.69) is linear in
x0 = xnew

0 , the infeasibility introduced by inserting xnew
0 will be removed after this

single iteration.
An interesting application of the initial value embedding technique is the so-

called real-time iteration, cf. the articles of Ferreau, Bock and Diehl [14] and Best
[3]. In this approach one updates the control sequence several times in one sampling
interval, assuming, of course, that the used hardware (sensors, actuators etc.) allows
for a faster sampling of the control variable u. The structure of the resulting scheme
does not fully comply with the theoretical analysis in the previous chapters, but
we conjecture that it can be analyzed by suitably extending the multirate sampling
approach discussed before Remark 2.9.

In the real-time iteration, one exploits the linear dependence of the fully dis-
cretized problems on x0 and uses parametric active set methods. To this end, a scalar
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Table 10.1 Multilevel NMPC control update possibilities using parametric quadratic program-
ming

Step size Required updates

A �τ ≪ 1 Linear MPC

B �τ � 1 CWk (τ + �τ, ẑ),
∇F(τ + �τ, ẑ)

Feasibility improvement

C �τ < 1 CWk (τ + �τ, ẑ),
∇F(τ + �τ, ẑ), λ̃Wk ,�

Optimality improvement

D �τ = 1 CWk (τ + �τ, ẑ),
∇F(τ + �τ, ẑ), λ̃Wk ,�,
∇CWk (τ + �τ, ẑ)

Single SQP step

∇2
zzL(τ +�τ, z�, λ̃Wk ,�)

Fig. 10.18 Example of a multilevel scheme

parameter τ ∈ [0,1] representing the time between two NMPC sampling instants is
used to introduce a linear affine homotopy into the problem (IQP) giving

minimize ∇F(τ, ẑ)�d + 1

2
d�∇2

zzL(τ, ẑ, λ)d

with respect to ẑ ∈ R
nz

subject to Gi(τ, ẑ) + ∇zGi(τ, ẑ)
�d = 0 for all i ∈ E

and Hi(τ, ẑ) + ∇Hi(τ, ẑ)
�d ≥ 0 for all i ∈ I .

Here, τ = 0 represents the discretized minimization problem of the nth problem
(OCPN,e) and τ = 1 the problem at time instant n + 1. The parametric formulation
now allows for different ways of updating the control μN in between the standard
NMPC time instants n and n + 1 by repeatedly solving (SQP) subproblems with
partially updated data. These updating strategies can ordered in terms of the relative
time τ as indicated in Table 10.1.

The different update modes A, B, C and D are then performed according to a
schedule like, e.g., the one in Fig. 10.18. The time �τ between two updates needs
to be large enough such that the required updates can be performed.

The different modes A, B, C and D can also be interpreted in terms of the kind
of improvement they induce for the optimization problem.

In Mode A, a new measurement xnew
0 is incorporated into the optimization prob-

lem but the remaining data in the discretized problem are kept entirely frozen. This
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corresponds to a linear MPC setup in which the linearization is inherited from the
last (SQP) step.

Mode B aims at improving feasibility of a solution by evaluating/approximating
local copies of the gradient of the cost function and the vector of constraints using
the new measurement xnew

0 . Note that ∇F(τ + �τ, ẑ) does not necessarily have
to be re-evaluated but can be approximated using the Hessian ∇2

zzL(0, ẑ, λ̃Wk,�).
For this setting one can show that the optimization variable converges locally to a
suboptimal but feasible point of the discretized optimal control problem.

The third Mode C introduces a new local Lagrange multiplier λ̃Wk,� of the active
constraints. Since the Lagrange multipliers can be interpreted as a penalization of
the constraints, updating the Lagrange multiplier leads to a more adequate penal-
ization and thus a repeated evaluation of (10.70) given the new measurement xnew

0
and the new λ̃Wk,� leads to an improvement in terms of optimality. Here, the gradi-
ent ∇F(τ + �τ, ẑ) and the Jacobian ∇CWk (τ + �τ, ẑ) are updated, too, in order
to incorporate the effect of the changing multiplier. This update can be computed
efficiently, e.g., via the reverse mode of the automatic differentiation, see the work
of Griewank and Walther [21]. The updated ∇CWk is, however, not inserted into
(10.70) because otherwise the matrix in (10.70) would change and would have to
be factorized causing significant computational effort. Still, it can be shown that a
sequence generated in the manner described above locally converges to a KKT point
of the discretized optimal control problem.

Last, the Mode D corresponds to a single (SQP) step which is in most cases
sufficient to generate an approximately optimal solution of the discretized optimal
control problem (OCPN,e). If, however, the linearization happens to be not accurate
enough, this deficiency can be overcome easily via refining the hierarchical scheme
shown in Fig. 10.18 by inserting more Mode D steps.

We like to point out that in Modes A, B and C it is not necessary to factorize
the matrix in (10.70) again. Hence, the solution of (10.70) requires only a single
backsolve which is orders of magnitudes faster than the factorization which needs
to be performed in Mode D.

Sensitivity Based Warm Start

The second technique applies to (IPM) and is called sensitivity based warm start,
see, e.g., the article of Zavala and Biegler [37]. Similar to the initial value embed-
ding described before, it focuses on a fast approximation for neighboring problems
around the nominal solution xu(·, x0) used for the optimization at time instant n.
Since the problem is parametric in the initial value x0, a standard sensitivity result
can be applied. This result guarantees—under suitable conditions—the existence of
Lipschitz constants Lx , LF such that

∥∥xu�(N,x0) − xũ�(N, x̃0)
∥∥ ≤ Lx‖x0 − x̃0‖,∥

∥F
(
z�
)− F

(
z̃�
)∥∥ ≤ LF ‖x0 − x̃0‖
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holds, cf. the work of Fiacco [15] for further details. In particular, this results guar-
antees the existence of a neighboring solution xũ�(·, x̃0) for x̃0 ≈ x0.

If additionally the penalty parameter μ of the (IPM) in the current NMPC step
is sufficiently small, then the KKT conditions (10.45)–(10.48) can be expressed
in a parameter dependent form by φ(z�, x0) = 0. Now we freeze the primal–dual
iteration matrix from (10.57) to

K�(x0) :=
⎛

⎜
⎝

∇2
zzL(z�, s, v,w) 0 −∇G(z�)� −∇H(z�)�

0 � 0 Id
−∇G(z�) 0 γ Id 0
−∇H(z�) Id 0 0

⎞

⎟
⎠ .

Utilizing the existence result, we compute the solution of the frozen primal–dual
system (10.53)

K�(x0)�z = −(
φ
(
z�, xnew

0

)− φ
(
z�, x0

)) = −φ
(
z�, xnew

0

)
. (10.71)

Since the primal–dual system (10.57) arose from applying Newton’s method to the
KKT conditions, solving (10.71) corresponds to a Newton step from the optimal
solution z� toward the neighboring solution z̃ for x̃0 = xnew

0 . Hence, for the new
iterate ẑ := z� + �z we have

∥∥ẑ − ẑ�
∥∥ ≤ Lz

∥∥x0 − xnew
0

∥∥2

for some constant Lz > 0 where ẑ� represents the optimal solution for the neighbor-
ing problem (OCPN,e) with initial value xnew

0 . Furthermore, since the KKT matrix
K�(x0) is already available and its factorization has been computed for the current
NMPC step n, only a single backsolve needs to be performed to determine ẑ. In fact,
this approach is similar to the technique for compensating measurement errors men-
tioned at the end of Sect. 7.6. Here, however, we use the first-order approximation ẑ

as an initial guess for the fully discretized problem (OCPN,e).
We can use even more “old” information from the previous time step if we con-

sider the problem with new initial value as a perturbation of the old problem with
perturbation (xnew

0 − x0). If the active set does not change under the perturbation
(xnew

0 − x0), then the penalty parameter μ can be fixed to a small value and the
KKT matrix K�(x0) can be reused to perform fixed-point iterations on the system

K�(x0)�zi = −φ
(
zi, x

new
0

)

with initial value z0 = z�. These iterations not only reduce the primal and dual infea-
sibility of the perturbed problem, but if the perturbation (xnew

0 − x0) is sufficiently
small, the iteration converges to the solution of the perturbed problem. For large
perturbations, however, the KKT matrix needs to be re-evaluated and re-factorized.

If the perturbation (xnew
0 − x0) leads to a change in the active set, then the

linearization of the complementarity relaxation (10.46) which is contained in the
frozen KKT matrix K�(x0) will drive the first Newton iteration outside of the fea-
sible set and the sensitivity approximation is inconsistent. To avoid this problem,
on could reuse the factorization of K�(x0) using a Schur complement scheme to
correct the active set which is equivalent to an active set (SQP) iteration.
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Shift Method

Both initial value embedding technique and sensitivity method require the optimal
control problem to be fully discretized and are restricted to problems of the form
(OCPN,e) whereas the last approach we present now, the so-called shift method, can
be combined with any discretization method and also to the time varying problem
(OCPn

N,e). The method utilizes the time similarity of two consecutive NMPC steps
instead of the state similarity of x0 and xnew

0 exploited by the other approaches. In
particular, we do not need to assume that xnew

0 is close to x0, hence the method also
works for large sampling periods.

In the shift approach, the internally computed optimal open-loop trajectory
xu�(·, x0) and the control u�(·) are shifted in time by removing the first entries
xu�(0, x0) and u�(0). The initial guess for the subsequent NMPC step is then given
by

z0 := (
xu�(1, x0), . . . , xu�(N,x0)

�, x̄�, u�(1)�, . . . , u�(N − 1)�, ū�)� (10.72)

in the case of the full discretization, or by

z0 := (
u�(1)�, . . . , u�(N − 1)�, ū�)� and x0 := xu�(1, x0) (10.73)

in case of the recursive discretization technique. Since the original optimal se-
quences contain (N + 1) state and N control vectors, we have to add one additional
element at the end of each sequence after the shift. In the sequences above, these
are denoted by x̄ ∈ R

d and ū ∈ R
m and we will discuss different ways for choosing

these values below.
Since the approach does not rely on first-order information available from the

previous step but rather on the nonlinear prediction of the model itself, its advantage
is that it is indeed a nonlinear update. Moreover, the shift operation can easily be
extended to cover the Lagrange multipliers λ� as well as the vectors of constraints
G, H , the gradient of the cost function ∇F , the Jacobian of the constraints ∇G,
∇H and the Hessian of the cost function ∇2

zzL. Similar to the state and the control
trajectories these components of the discretized optimal control problem require a
new last component.

In order to obtain values for x̄ and ū we sketch three approaches: The first ap-
proach simply copies the last entry of the trajectories and sets

x̄ := xu�(N,x0) and ū := u�(N − 1).

This choice is reasonable if the process is close to its steady state. In general, how-
ever, it will result in an infeasible initial guess z0.

The second approach computes the values x̄ and ū by solving the problem
(OCPn

N,e) with horizon N = 1 and initial value x0 = xu�(N,x0). Implicitly, the con-
straints of the additional optimal control problem will force its solution to be feasi-
ble, hence also the new initial guess z0 for the subsequent NMPC step is feasible.

The third approach can be used in the case of terminal constrained schemes if
Assumption 5.9(i) holds and a formula ux = κ(x) for the control value ux from this
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assumption is available to the NMPC algorithm. In this case, we can proceed as in
Theorem 7.26 and set ū = κ(xu0

n
(N − 1, x0)) and x̄ := f (xu�(N,x0), ū).

Here, we like to stress the fact that this update can be processed prior to obtaining
a new measurement xnew

0 . Hence, this technique can also be combined with the
initial value embedding technique and sensitivity method. To this end, first the shift
method is applied and once the new measurement is available one defines

z0 := (
xnew

0 , xu�(2, x0), . . . , xu�(N,x0)
�, x̄�, u�(1)�, . . . , u�(N − 1)�, ū�)�

or

z0 := (
u�(1)�, . . . , u�(N − 1)�, ū�)�

and x0 := xnew
0

respectively and proceeds with one of the previously mentioned strategies.

10.6 Nonoptimal NMPC

In Sect. 7.9 we introduced Algorithms 7.22 and 7.28, which use nonoptimal open-
loop predictions instead of optimal ones within the NMPC Algorithm 3.1. While
in theory it is much more convenient to use optimal controls, from a numerical
point of view we can only expect the solution computed by one of the algorithms
in Sect. 10.3 to be locally optimal with a predefined optimality tolerance. There-
fore, (almost) all numerical results are nonoptimal. While small deviations from
optimality can be considered as perturbations, cf. Examples 10.28 and 10.29, large
deviations need to be analyzed in a different way.

Common optimization routines check (at least) two termination criteria, that is,
a KKT based optimality criterion and a maximal number of allowable iterations.
The latter condition is similar to terminating the iteration after j∗ steps in Algo-
rithm 7.22. Since an optimization algorithm will not make further progress once the
optimality criterion is satisfied, setting the maximal number of iterations to j∗ can
be regarded as equivalent to Algorithm 7.22, even though the maximal number of it-
erations only affects the solution if the optimization routine has not been terminated
by the KKT criterion before. This is the algorithm we use in Example 10.30, below.

Compared to the termination criterion via decrease of the value function (7.25),
this is a much less sophisticated approach. Yet, we like to emphasize that such a
“brute force” restriction of the number of iterations might be necessary from a prac-
tical point of view in order to bound the computing times within each iterate of the
NMPC algorithm. Such bounds may, in turn, be needed in order to guarantee that
the computation is finished before the control must be implemented. Note that even
if a compensation technique for the computation times as discussed in Sect. 7.6 is
used, the optimization must be finished within an a priori fixed amount of time.

As the following numerical example will show, in the NMPC setting it is quite
likely that an optimization algorithm is able to find an optimal solution within only a
few iterations. Yet, it also shows that the number of iterations j ∗ in Algorithm 7.22
should be set carefully.
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Fig. 10.19 Closed-loop costs and computing times for various maximal numbers of iterations of
the minimization routine and horizon lengths N

Example 10.30 Consider once more the inverted pendulum on a cart problem from
Example 10.1. We analyze the impact of terminating the optimization algorithm af-
ter a maximal number of iterations j∗. The following Fig. 10.19 shows results for the
set of horizon lengths N ∈ {15, . . . ,28} and the set of maximal numbers of iterations
{1, . . . ,100}. Again, the closed-loop costs in the following figures are computed as
in Example 10.2. For this setting, we obtain that if the maximal number of itera-
tions is chosen to be small, then the closed-loop system does not converge toward
an upright position, which corresponds to the large closed-loop costs displayed in
Fig. 10.19(a). Moreover, if the horizon N is chosen large, then the maximal number
of iterations is required to be slightly larger than for small horizons. For N = 15,
the receding horizon controller using up to two optimization iterations per NMPC
iterate stabilizes the closed loop in an upright position. For N = 28, however, seven
optimization iterations per NMPC iterate are required.

As a consequence, we obtain an additional indicator why the parameter N should
be chosen as small as possible to accelerate the receding horizon control algorithm:
For one, small horizon lengths require less steps of the optimization method and
therefore the computing time is reduced, see Fig. 10.19(b). Additionally, each step
in the iterative optimization can be performed faster as discussed after Fig. 10.11,
which further reduces the computing time, again see Fig. 10.19(b).

When choosing the maximal number of iterations j∗ one has to take an algo-
rithmic detail of the optimization algorithm into account which we have not yet
discussed. Often, optimization routines allow for increases in the cost function to
compensate for the so-called Maratos effect, cf. the PhD thesis of Maratos [27] and
the article of Powell [31], which describes the possible obstruction of the optimiza-
tion algorithm by the merit function (10.38). If no measures are taken, the merit
function may slow down the convergence by rejecting steps which else make good
progress toward a solution. To avoid the Maratos effect, typically either a second-
order correction of the search direction as presented by Coleman and Conn [9] or
a nonmonotone strategy, given by Chamberlain, Powell, Lemarechal and Pedersen
[8], which allows for an increase in the merit function are used. These two ap-
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proach differ significantly: The second-order correction aims at improving the merit
function and hence the satisfaction of the constraints of the original problem. The
nonmonotone strategy tries to enhance feasibility and optimality at the same time
by allowing for temporary increases in the merit function. Allowing for an increase
in the cost function may lead to the situation that even if a number of iterations has
been performed, the currently best solution obtained so far may still be the initial
guess. Thus, the maximal number of iterations j∗ should be chosen larger than the
allowed number of trial steps used in the Maratos compensation algorithms.

As an alternative to terminating the optimization after j∗ iterations steps one
could also use a time dependent termination criterion. Such an approach, however,
may be critical since a priori it is not clear how many iterations can be executed
by the optimization routine in the given time. In particular, the resulting number of
iterations may be too small in order to cover the trial steps just discussed. Hence, a
time dependent termination criterion needs to be tuned carefully.

Regardless of whether a fixed number of iterations j∗ or a more sophisticated
termination criterion like (7.25) is used, apart from suboptimality affecting stability
of the closed loop, the feasibility of the nonoptimal open-loop solutions is an im-

portant issue. Recall that in Algorithm 7.22 we require the open-loop control u
j�

n (·)
and the corresponding trajectory x

u
j�

n
(·, x(n)) to satisfy all constraints of the op-

timal control problem and in Theorem 7.26 we assumed u0
0(·) ∈ U

N
X0

(x0) to hold,
which is a quite strong assumption. This is due to the fact that most systems are far
too complicated to intuitively come up with such an initial guess.

Example 10.31 Again consider the inverted pendulum Example 10.1 and the initial
value to be set to the stable downward position x0 = (0,0,0,0). While for small j

it is clear that uN(j, x0) = ±5 is optimal in order to swing up the pendulum with
maximal energy, at same time instant j0 a switching of the control value has to
occur in order to swing the pendulum into the opposite direction. However, both the
determination of the switching time and the values of the open-loop control after
the switching is a difficult task if feasibility of the given state constraints is to be
guaranteed. Thus, obtaining an initial guess for optimization horizons N > j0 is in
general a difficult task.

In case a heuristic derivation of u0
0 is not possible, one may generate a feasible

initial control u0
0 by using the optimization problem itself. This is due to the fact

that the nonlinear optimization methods presented in Sect. 10.3 can be started with
an infeasible initial guess z0 and still deliver a feasible solution z�. Hence, before
starting Algorithm 7.22 we can solve (OCPn

N,e) in order to determine u0
0, provided,

of course, that the optimization algorithm is able to find a feasible solution.
It may, however, happen that even when starting from a feasible initial guess z0

the optimization algorithm may compute intermediate iterates zk which are infeasi-
ble. In order to understand why this may happen, let us look once again at the merit
function

L̃(z,μ) := F(z) + μ
∥∥A(z)

∥∥
1
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defined in (10.38). By the definition of this function the violation of one or more
constraints corresponds to L̃(z,μ) > F(z) for μ > 0. Therefore, the decrease con-
dition of the merit function used in both the line-search and the trust-region algo-
rithms ensures that the search direction dk is supposed to lead to an improvement of
optimality in terms of the cost function F , but also to an improvement of feasibility.
Note, however, that it is quite possible that a search direction dk causes a reduction
of L̃(zk+1,μ) while ‖A(zk+1)‖1 ≥ ‖A(zk)‖1 holds. To prevent this, the choice of
μ, in particular its initial value μ0 becomes the critical component. Within the pre-
sented (SQP) and (IPM) algorithms of Sect. 10.3, μ is chosen such that a decrease in
L̃ can be guaranteed. As a consequence, intermediate solutions may improve opti-
mality in expense of larger violations of constraints before (eventually) tending back
to the feasible set. For this reason, even if previous iterates are feasible, the current
step may generate an infeasible iterate. This may happen for both the line-search
and the trust-region algorithms unless specialized algorithms are used, as, e.g., the
method proposed by Panier and Tits [29].

Common implementations of optimization algorithms do often not use such spe-
cialized methods. Instead, a rather simple mechanism is employed in order to solve
this infeasibility issue: during the iteration, feasibility of an iterate and the corre-
sponding cost function value are compared. If more than one feasible iterate is
found, then the one with the minimal cost function value is returned. If no feasi-
ble iterate is found, the method returns an error message, and in most cases the
iterate which causes the least constraint violation. Hence, if we terminate one such
algorithm before the KKT based optimality conditions are satisfied, then a feasible
solution is returned if a feasible iterate has been encountered during the run of the
optimization routine.

The easiest way to ensure the existence of such a solution surely is to start the
optimization using a feasible initial guess z0. As outlined before, this may be a
difficult task when starting the NMPC scheme at time n = 0; hence if no good
heuristic guess for u0

0 is available at startup then in general one has to hope that the
optimization routine is able to find a feasible solution.

For n ≥ 1, however, we can exploit the fact that the optimal control problems in
two consecutive NMPC steps are quite similar. We can use this similarity to obtain
a feasible initial guess via the shift methods presented in Sect. 10.5. In particular,
as discussed in the paragraph on shift methods in Sect. 10.5, the second and third
approach presented in this paragraph will always provide a feasible initial guess z0
if the shifted initial value xu�(1, x0) and the new measurement xnew

0 are identical.
Note that this is exactly the argument used in the proof of Theorem 7.26, in which
the third shift strategy from Sect. 10.5 was applied.

Unfortunately, for all other described restarting methods in Sect. 10.5 feasibility
of the initial guess cannot be guaranteed, in general. However, the initial value em-
bedding and the sensitivity based warm start technique only cause the d constraints
corresponding to the initial value shooting node

xu(0, x0) − x0 = 0

to be violated. Since this condition depends linearly on x0, the infeasibility prob-
lem is resolved after only one iterate provided the linearization of the discretized
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problem is accurate enough, i.e., the difference between x0 and xnew
0 is sufficiently

small. If this is not the case, then one may still expect the infeasibility problem to
be resolved in only a handful of iteration steps.

Summarizing, once a feasible initial solution is found, there are ways to imple-
ment the optimization iteration such that the two termination criteria discussed in
Sect. 7.9, i.e. terminating after j∗ iteration steps, see Algorithm 7.22, or terminating
after condition

JN

(
x(n),u

j∗
n (·)) ≤ ṼN (n − 1) − α�

(
x(n − 1), un−1(0)

)

as in Algorithm 7.28, can be expected to be reached with feasible control sequences.

10.7 Notes and Extensions

In Sect. 10.1 we have shown three discretization techniques which allow us to con-
vert an optimal control problem into a optimization problem in standard form (NLP).
These methods are more or less standard in NMPC and are well suited for the case
of zero-order hold control since the error induced by the discretization of the control
is zero due to the knowledge of the switching points of the control. If other types
of control functions are considered, one can show convergence of the discretized
optimal control toward the continuous optimal control for this Euler discretization,
cf. Malanowski, Büskens and Maurer [25]. Alternatively, higher-order discretization
techniques can be used, see, e.g., Dontchev, Hager and Veliov [13].

For the nonlinear optimization problem in standard form (NLP), we sketched the
analytical background of nonlinear optimization and presented both most common
algorithms for nonlinear optimization problems—(SQP) and (IPM)—in both the
line-search and the trust-region setting in Sects. 10.2 and 10.3. Yet, since we only
want to point out the special properties of the NMPC setting for nonlinear optimiza-
tion algorithm, we skipped all modifications which can be used to speed up the iter-
ation of such methods. Amongst the most popular modifications we mentioned the
DFP (Davidon–Fletcher–Powell) [10, 18] or BFGS (Broydon–Fletcher–Goldfarb–
Shanno) updates [6, 16, 19, 35] methods to update the Hessian in Sect. 10.4 as
well as the second-order correction method of the search direction as presented by
Coleman and Conn [9] or the nonmonotone strategy given by Chamberlain, Powell,
Lemarechal and Pedersen [8] from Sect. 10.6 to compensate for the Maratos effect,
cf. the PhD thesis of Maratos [27] and the article of Powell [31]. A good survey for
these and other methods be found in, e.g., the monograph of Nocedal and Wright
[28]. For simplicity of exposition, we also did not discuss convergence theory of
such algorithms for the more general nonconvex case, see, e.g., Gould, Orban and
Toint [20], which can be handled by common implementations as well. Since there
exists a wide range of available implementations, we only state a short and incom-
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plete list here: Considering (SQP), the methods SNOPT,2 NLPQLP3 and HQP4 are
well known whereas for (IPM) the implementations IPOPT,5 LOQO,6 KNITRO7

and WORHP8 should be mentioned.
Additionally, we like to note that apart from the first-discretize-then-optimize

(direct) approach featured in this chapter, there also exist so-called indirect meth-
ods to solve optimal control problems. These methods are based on Pontryagin’s
maximum principle and compute the optimal control from the resulting analytical
boundary value problem via shooting or collocation methods, see, e.g., Bryson and
Ho [7]. This typically requires a good initial guess for the Lagrange multipliers,
which is why these methods are rarely used for NMPC. An exception to this rule is
Bell, Limebeer and Sargent [2], in which the authors investigate such a method for
an NMPC problem governed by a differential algebraic equation (DAE).

In the remaining Sects. 10.4 to 10.6 we discussed several issues of NMPC from
both the implementational as well as the analytical side. In particular, we on the one
hand focused on the internal structure of each discretized optimal control problem,
which led us to the idea of condensing described in Diehl [11] and Bock and Plitt
[5] and the triangular structure of the Jacobian of the constraints. These observa-
tions are particularly useful if one considers parallel algorithms to evaluate these
matrices. On the other hand, we have shown how the relationship between two con-
secutive NMPC iterates can be used to generate a good initial guess. The idea of
the initial value embedding and the hierarchical NMPC approach have been taken
from Diehl, Bock, Schlöder, Findeisen, Nagy and Allgöwer [12] and Albersmeyer,
Beigel, Kirches, Wirsching, Bock and Schlöder [1] respectively, whereas a detailed
analysis of the sensitivity based warm start can be found in Zavala and Biegler [37].
Here, to the best of our knowledge, a combination of the shift method and either the
initial value embedding or the sensitivity based warm start has not been explored
so far. Considering implementations, there exist several commercial NMPC meth-
ods, see Qin and Badgwell [32] for a corresponding list, but also some academic
packages such as OptCon,9 the ACADO Toolkit,10 MUSCOD-II,11 Yane12 and the
Matlab MPC Toolbox,13 which in contrast to the other implementations is restricted
to linear control systems.

2http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm.
3http://www.ai7.uni-bayreuth.de/nlpqlp.htm.
4http://hqp.sourceforge.net.
5http://www.coin-or.org/ipopt.
6http://orfe.princeton.edu/loqo.
7http://www.ziena.com.
8http://www.worhp.de.
9http://www.ist.uni-stuttgart.de/research/projects/ControlTheory/#mpc, http://www.nmpc.de.
10http://www.acadotoolkit.org.
11http://www.iwr.uni-heidelberg.de/groups/agbock/RESEARCH/muscod.php.
12http://www.nonlinearmpc.com.
13http://www.mathworks.com/products/mpc.
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10.8 Problems

1. Consider the constraint set � = {(z1, z2, z3) | z2
3 ≥ z2

1 +z2
2}. Show that while � is

a set with nonsmooth boundary, the set itself is described by a smooth function.
2. One can trivially construct an example of a feasible set � and a feasible point z�

at which the LICQ (see Definition 10.14) is satisfied but the constraints are non-
linear. Prove whether or not the reverse situation holds, i.e. the active constraints
are linear but the LICQ is not satisfied.

3. Consider the constraints

z2 ≤ z3
1 and z2 ≥ 0.

Show that at z = (0,0) we have T�(z) � F (z).
4. Similar to the idea of Condensing in Sect. 10.4 suppose that sj is a vector of

dimension d allowing to get rid of the index function ι(·) and that the index
function ς(·) : {0, . . . , rs − 1} → {0, . . . ,N} is strictly monotonically increasing
with ς(0) = 0. Consider the corresponding linearized continuity condition

S(z) + ∇zS(z)��s = 0 (10.69)

where again �s denotes the part of the search direction d corresponding to the
shooting nodes. Show that �s1, . . . ,�srs−1 can be computed from �s0, which
is the search direction for the shooting node corresponding to the initial value.

Hint: Reformulate the continuity condition
[
sj+1 − f

(
xu

(
ς(j + 1) − 1, x0

)
, u

(
ς(j + 1) − 1

))]
j∈{0,...,rs−1} = 0, (10.9)

to get rid of all state vectors xu(k, x0) which are not shooting node vectors, i.e.
for which ς(j) �= k.

5. Formulate the optimization problem in standard form for problem (OCPn
N,e) us-

ing
(a) recursive discretization and an additional endpoint constraint X0(n) = {x∗},
(b) multiple shooting discretization with shooting vector sN ∈ R

d with initial
value sN = x∗ inducing the constraints

S(z) = [
sN − f

(
xu(N − 1, x0), u(N − 1)

)] = 0.

Using either of the presented optimization methods, show that the iterates will
not coincide in general.
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Appendix
NMPC Software Supporting This Book

The NMPC simulations in this book were computed with two different software
packages. For the computationally less demanding examples we have developed a
MATLAB routine nmpc.m, which provides a straightforward implementation of the
NMPC Algorithm 3.11. For the more complicated Examples 2.10, 2.11 and 2.12
we have used the C++ software YANE by Jürgen Pannek and Thomas Jahn, see
www.nonlinearmpc.com. This appendix provides a brief introduction into these
software packages. Moreover, we briefly explain additional MATLAB and MAPLE
code which has been used for several computations and for generating the figures
in this book. All the software described in this appendix is available from the web
page

www.nmpc-book.com

A.1 The MATLAB NMPC Routine

The MATLAB M-File nmpc.m provides a straightforward implementation of the
NMPC Algorithm 3.11. Upon call of

function [t, x, u] = nmpc(runningcosts, terminalcosts, ...
constraints, terminalconstraints, ...
linearconstraints, system, ...
mpciterations, N, T, tmeasure, xmeasure, u0, ...
varargin)

the function executes a simulation of the NMPC closed loop for a user defined num-
ber of mpciterations closed-loop steps. Internally, the steps Algorithm 3.11
and its variants are implemented in different auxiliary functions which are easily
extended to more complex settings.

(1) In function measureInitialValue, a new measurement of the initial value x0 =
x(n) is obtained by copying the value xu�(1, x(n − 1)) of the optimal predicted
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trajectory computed at time n − 1. This means that the routine simulates the
nominal closed-loop system. If measurement errors are to be simulated then
this routine can be modified accordingly.

(2) The solution of the problem (OCPn
N,e) is computed in the function solveOp-

timalControlProblem. Here, the problem (OCPn
N,e) is transformed to a static

nonlinear constrained optimization problem (NLP) via a recursive discretiza-
tion, see Sect. 10.1 for details. The transformed problem is then solved via
the MATLAB optimization method fmincon, which—depending on the chosen
options—uses one of the algorithms described in Sect. 10.3. The initial guess
of the control sequence is computed in the function shiftHorizon via the shift
technique from Sect. 10.5.

(3) Last, the NMPC feedback μN(n,x(n)) is implemented via the function apply-
Control which evaluates the dynamics of the system for the control computed
by the optimization method in Step (2). Here the same dynamics as in the com-
putation of the predictions is used. This could be changed if modeling errors or
external perturbations shall be simulated.

For all simulations in this book which were carried out with nmpc.m we provide
ready to use M-Files on our webpage whose names correspond to the number of the
example in this book, e.g., the M-File example_6_26.m contains the simulation in
Example 6.26. These M-Files may also be used as templates for building new exam-
ples by suitably adjusting the functions defining problem (OCPn

N,e). The following
table provides a list of the ingredients of problem (OCPn

N,e) and the corresponding
functions in the MATLAB implementation. Together with the length of the horizon

Ingredient in (OCPn
N,e) Function in implementation

�(n, x,u) runningcosts(t, x, u)

F(n,x) terminalcosts(t, x)

X, U(x)
linearconstraints(t, x, u)

constraints(t, x, u)

X0 terminalconstraints(t, x)

f (n, x,u) system(t, x, u, T)

N , the sampling interval T and initial values for the time t0, the (closed loop) state
x0 and the control u, the functions in the right column of this table are supplied as
arguments to nmpc. During the run of nmpc, these functions are called by the opti-
mization routine once for each summand in JN in (OCPN,e) with t containing the
current sampling time—i.e., t = (n + k)T in the notation of (OCPn

N,e)—and x, u
containing the corresponding state and control vectors xu(k) and u(k).

Observe that in the implementation the sets of admissible control sequences
U

N(x0) or U
N
X0

(x0) do not need to be provided explicitly. Rather, the state and
control constraint sets X, U(x) and—if applicable—the terminal constraints set
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X0 are provided in the implicit form of Definition 3.6. Here MATLAB’s optimiza-
tion routine fmincon distinguishes between linear and nonlinear equality and in-
equality constraints; the declaration of the respective functions linearconstraints
and constraints follows the usual MATLAB convention. For instance, for adding
an equilibrium terminal constraint of the form X0 = {x∗} one may use the function
GS

i (x) = ‖x − x∗‖2
2. For, e.g., x∗ = (1,2)� this amounts to defining the array ceq

in terminalconstraints as ceq = [norm(x-[1, 2],2)^2];. More details can
be found in the MATLAB help for fmincon.

The NMPC implementation given in nmpc.m can also be configured more specif-
ically to match the needs of a certain example. To this end, additional inputs can be
used to specify, e.g., the optimization method and its optimality tolerance or output
functions. Additionally, the core routine nmpc can also deal with continuous time
dynamics and the user may set tolerances for the differential equation solver differ-
ently for the open and the closed-loop dynamics. Last, example specific output can
be generated by suppliable output functions. For details we refer to the comments
and the help text in the file.

A.2 Additional MATLAB and MAPLE Routines

In addition to nmpc.m and the example files using this routine we provide several
other MATLAB routines which we used for computations as well as for several
figures. Most of these M-Files are related to the Optimization Problem (6.17). The
file mpcalpha_cn.m solves this problem and thus computes the suboptimality index
α for an NMPC problem satisfying the Controllability Assumption 6.4 with

β(r, n) = cnr (6.4)

for some real sequence (cn)n∈N0 with cn ≥ 0 and cn = 0 for all n ≥ n0, i.e., finite
time controllability with linear overshoot bound. The case of exponential controlla-
bility

β(r, n) = Cσnr (6.3)

for real constants C ≥ 1 and σ ∈ (0,1) can be handled via this function as well
by setting cn = Cσn. To make evaluations for the exponential case more con-
venient, the function mpcalpha_Csigma in file mpcalpha_Csigma.m automat-
ically computes the required sequence cn from the input data C and σ and calls
mpcalpha_cn to derive α.

Upon call of

function [alpha, lambda] = mpcalpha_cn(c,N,varargin)

the linear Optimization Problem (6.17) is constructed from the input data c and the
horizon length N for the case of finite time controllability. Here, c is expected to be a
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vector containing the values cn from (6.4). If the supplied vector c is shorter than the
horizon N , it is automatically filled up with zeros. In a second step, the MATLAB
routine linprog is applied to compute the desired values of α and λ0, . . . , λN−1
for the constructed linear optimization problem. For exponential controllability, the
respective call is

function [alpha, lambda] = mpcalpha_Csigma(C,sigma,N,varargin)

with C and σ from (6.3).
In both functions, as an additional argument the user may supply an integer m

denoting the number of control elements of the open loop control to be implemented,
cf. Sect. 7.4. Without defining m the case of classical MPC (m = 1) is imposed.
Similarly, an endweight different from ω = 1 as outlined in Sect. 7.2 can be defined.
Last, different levels of output of the function can be chosen. In particular, with
parameter output≥ 1 the optimal sequence λ0, . . . , λN is displayed graphically.

For creating figures, we additionally provide the files alpha_m_plot.m and al-
pha_omega_plot.m. Upon call of

function alpha_m_plot(C,sigma,N,m,varargin)

function alpha_omega_plot(C,sigma,N,m,endweight,varargin)

these functions generate plots of the suboptimality index α with respect to the num-
ber of control horizons m or with respect to the endweight ω, respectively. For
examples of how to use these functions we refer to the M-Files example_fig_7_1.m
and example_fig_7_3.m which were used in order to compute Figs. 7.1 and 7.3.

Figure 7.4 was computed for a linear inverted pendulum using Algorithm 3.1
with running cost

�(x,u) = 2‖x‖1 + 4‖u‖1,

sampling period T = 0.5, optimization horizon N = 10 and linear constraints. Such
an optimal control problem can be transformed into a static linear optimization
problem and can thus be solved with a linear optimization routine which is con-
siderably faster than a nonlinear optimization method. This is what is done in ex-
ample_fig_7_4.m, where MATLAB’s linear optimization routine linprog is used for
solving the resulting linear optimization problem. While we encourage testing this
program, we like to note that the runtime of the program may easily exceed one day
for a large number of initial values.

Finally, our webpage also provides a number of MAPLE worksheets (for
MAPLE 12 or newer), which were used for several numeric and symbolic computa-
tions throughout this book. Like our M-Files, the worksheets are named according
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to the example or figure they refer to. Each of these worksheets is comprehensively
explained by comments in the files which is why we refrain from giving further
explanation here.

A.3 The C++ NMPC Software

While the MATLAB implementation is quite nice for tutorial purposes, we solved
the more complicated Examples 2.10, 2.11 and 2.12 via the C++ NMPC software
YANE which can be downloaded from www.nonlinearmpc.com.

Unpacking any of the files via

tar -xvf "package_filename".tar.gz

will create a new folder containing the source code files. Within this folder, a new
subfolder build for compiling the source code should be generated to avoid over-
writing the CMake compilation and installation routines. Now, the configuration
file for CMake needs to be generated from within the created subfolder build. Here,
user specific options can be supplied, e.g., a local installation path:

cmake -DCMAKE_INSTALL_PREFIX="installation_path" ../

Once the configuration is complete, the package can be compiled and installed via

make
make install

Note that depending on the chosen installation_path the install command may re-
quire superuser rights. Moreover, the environment variables used by the C++ com-
piler of the system must contain the installation path which can be added via

export LD_LIBRARY_PATH="installation_path"/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH="installation_path"/lib:$LIBRARY_PATH
export PLUS_INCLUDE_PATH="installation_path"/include:

$CPLUS_INCLUDE_PATH

A tutorial of the C++ implementation as well as explanations of the classes and
methods can be found on www.nonlinearmpc.com.
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In a similar manner the example archive which can be downloaded from our
homepage www.nmpc-book.com can be unpacked and compiled but does not have
to be installed. The archive is structured as follows:
./

Examples ... Within this directory, the C++ files of the NMPC
problems are defined using the models from subdirec-
tory ./Models. Similar to the examples solved
using MATLAB and MAPLE, the examples files are
named according to the example they refer to.

Models ... This directory holds the models defined in Exam-
ples 2.10, 2.11 and 2.12 as well as the respective
NMPC problem related components such as the cost
functional or the shooting nodes.

cmake ... This directory contains auxiliary modules required by
CMake.

Apart from the C++ files, each subdirectory contains a file CMakeLists.txt which
provide information required by CMake to compile the package. If additional ex-
amples shall be implemented, these files need to be adapted accordingly, see, e.g.,
www.cmake.org for further information.

Compiling the package generates several executables which can be found in the
subdirectory build/Examples—assuming that CMake is called within the subdirec-
tory build. Upon execution, each file generates a problem specific screen output. For
additional file outputs of the computed trajectories we again refer to the documen-
tation of the YANE software.



Glossary1

Acronyms
(ECP) Equality constrained nonlinear optimization problem, page 298
(EQP) Equality constrained quadratic optimization problem, page 299
(EQPq ) Equality constrained quadratic subproblem of (IQP), page 303
IOSS Input/output-to-state stability, page 171
(IPM) Interior point method, page 288
(IQP) Inequality constrained quadratic optimization problem, page 302
ISS Input-to-state stability, page 227
LICQ Linear independent constraint qualification, page 295
LQR Linear quadratic regulator, page 99
MPC Model predictive control, page 4
(NLP) Nonlinear optimization problem, page 276
NMPC Nonlinear model predictive control, page 1
(OCPN) Finite horizon optimal control problem, page 45
(OCPn

N) Finite horizon time varying optimal control problem, page 51
(OCPn∞) Infinite horizon optimal control problem, page 67
(OCPN,e) Extended finite horizon optimal control problem, page 53
(OCPn

N,e) Extended finite horizon time varying optimal control problem, page 54
(SQP) Sequential quadratic programming, page 288

Sets and Spaces
A ⊆ X Subset of the state space in Definition 8.24, page 227

A(z) ⊆ E ∪ I Active set of constraints, page 294
Br (x) Open ball centered at x with radius r , page 29
Br (x) Closed ball centered at x with radius r , page 93

C(z�, λ�) Critical cone, page 296
Ek ⊆ X Exit set, page 214

1The following list gives an overview of the notation we used throughout this book. Note that
auxiliary notations introduced within proofs or used only within a single example are not displayed
here.
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E ⊂ N Index set of equality constraints of an optimization problem, page 280
E S ⊂ N Index set of equality constraints describing sets, page 49
FN ⊆ X Feasible set without terminal constraints for horizon N , page 213

F∞ ⊆ X Infinite horizon feasible set, also called viability kernel, page 213
F (z) ⊆ R

nz Linearized feasible directions, page 294
G ⊆ R Time grid, page 253
I ⊆ R Open interval, page 16
I ⊂ N Index set of inequality constraints of an optimization problem, page 280
I S ⊂ N Index set of inequality constraints describing sets, page 49

K Class of continuous functions α : R
+
0 → R

+
0 which are strictly increasing with

α(0) = 0, page 28
K∞ Class of functions α ∈ K which are unbounded, page 28

K L Class of continuous functions β : R
+
0 × R

+
0 → R

+
0 with β(·, t) ∈ K and

β(r, ·) ∈ L, page 28
K L0 Class of continuous functions β : R

+
0 × R

+
0 → R

+
0 with limt→∞ β(r, t) = 0

for each r > 0 and β(·, t) ∈ K∞ or β(·, t) ≡ 0, page 117
L Class of continuous functions δ : R

+
0 → R

+
0 which are strictly decreasing with

limt→∞ δ(t) = 0, page 28
L∞(R,R

m) Space of locally Lebesgue integrable functions from R to R
m, page 16

N Natural numbers, page 13
N0 Natural numbers including zero, page 13
N∞ Natural numbers including ∞, page 13
P ⊂ X Practical stability region, page 30
P(n) ⊂ X Time varying practical stability region, page 31
R Real numbers, page 13
R

+
0 Nonnegative real numbers, page 28

S ⊆ X Domain of a Lyapunov function, page 32
S(n) ⊆ X State space component of the domain of a time varying Lyapunov func-
tion, page 34

S ⊆ N0 × X Domain of a time varying Lyapunov function, page 34
S(d̄,ē)(x0) Set of all perturbed trajectories with bounded perturbation and measure-
ment errors, page 226

T
(z) ⊆ R
nz Tangent cone, page 293

U Control values space, page 13
UN Set of finite horizon control sequences, page 13
U∞ Set of infinite horizon control sequences, page 13
U(x) ⊆ U Control constraint set, page 46
U

N(x) ⊆ UN Set of admissible finite horizon control sequences, page 44
U

∞(x) ⊆ U∞ Set of admissible infinite horizon control sequences, page 46
U

N
X0

(x),U
N
X0

(n, x) ⊆ UN Set of admissible finite horizon control sequences for ter-
minal constraint set X0, page 53

V
τ (x) ⊆ L∞([0, τ ],R

m) Set of admissible continuous time control functions,
page 177

V −1
N ([0,L]) sublevel set of VN , V −1

N ([0,L]) := {x ∈ X | VN(x) ∈ [0,L]}, page 144
Wk ⊆ E ∪ I Working set of optimization algorithm, page 297
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W q
k ⊆ E ∪ I Working set of problem (EQPq ), page 303

X State space, page 13
X ⊆ X State constraint set, page 46
X0,X0(n) ⊂ X Terminal constraint set, page 52
XN,XN(n) ⊂ X Feasible set for terminal constraint set X0 and horizon N , page 52
X

k ⊆ X Time dependent state constraint set, page 237
Y ⊆ X Forward invariant subset of the state space, page 29
Y(n) ⊆ X Forward invariant family of subsets of the state space, page 31
Y Output space, page 171

 ⊂ R

nz Feasible set of an optimization problem, page 293

Variables
αk ∈ [0,1] Step length in optimization algorithm, page 292
α ∈ (0,1] Suboptimality parameter, page 76
α ∈ (0,1) Suboptimality threshold, page 192
γk ∈ R

+
0 Auxiliary values in Formula (6.19), γk = Bk(r)/r , page 124


 ∈ R
+
0 Radius of semiglobal asymptotic stability region, page 142

δ ∈ R
+
0 Radius of practical asymptotic stability region, page 142

δ ∈ R
+
0 Radius of feasible ball around x∗, page 219

λ ∈ R
+
0 Weight of control penalization in running cost, page 44

λk ∈ R
+
0 Running cost values along an optimal trajectory, page 122

λ ∈ R
rg+rh Lagrange multiplier in optimization problem, page 295

λ� ∈ R
rg+rh Optimal Lagrange multiplier in optimization problem, page 295

λWk ∈ R
rWk Lagrange multiplier for working set Wk , page 298

λ̃Wk ∈ R
rg+rh Full Lagrange multiplier for working set Wk , page 298

λ̃Wk,� ∈ R
rg+rh Full optimal Lagrange multiplier of problem (ECP), page 300

λ
(EQP)
k ∈ R

rWk Optimal Lagrange multiplier of problem (EQP), page 299

λ̃
(EQP)
k ∈ R

rg+rh Full optimal Lagrange multiplier of problem (EQP), page 299
ν ∈ R

+
0 Value of the optimal value function VN(xu∗(1, x)), page 122

σ ∈ (0,1) Decay rate in exponential controllability, page 117
τc ∈ R

+
0 Computing time required to solve an optimal control problem, page 45

τmax
c ∈ R

+
0 Maximal allowable computing time, page 180

ωN−k ∈ R
+
0 Weights in cost functional, page 53

C ∈ R
+
0 Overshoot parameter in exponential controllability, page 117

cn ∈ R
+
0 Coefficients for finite time controllability, page 117

d̄ ∈ R
+
0 Upper bound of additive perturbation sequence d : N0 → X, page 226

dk ∈ R
nz Search direction in optimization algorithm, page 292

d
q
k ∈ R

nz Iterates for computing dk via problem (EQPq ), page 303
ē ∈ R

+
0 Upper bound of measurement error sequence e : N0 → X, page 226

hi ∈ R
+ Step size for time grid and one step method, page 253

h ∈ R
+ Maximal step size for time grid and one step method, page 253

N ∈ N Optimization and prediction horizon in NMPC, page 44
Nn ∈ N Adapted optimization horizon, page 192
nz ∈ N Dimension of optimization variable of an optimization problem, page 276



350 Glossary

pq ∈ R
nz Optimization variable in problem (EQPq ), page 303

pg ∈ N0 Number of equality constraints describing a set, page 49
ph ∈ N0 Number of inequality constraints describing a set, page 49
rg ∈ N0 Number of equality constraints of an optimization problem, page 276
rh ∈ N0 Number of inequality constraints of an optimization problem, page 276
rs ∈ N0 Number of shooting nodes, page 283
rWk

∈ N0 Number of elements in the working set Wk , page 298
s ∈ R

rs Shooting node values, page 283
t0 ∈ R Initial time of a trajectory, page 16
tn ∈ R Sampling times, page 17
T ∈ R

+ Sampling period, page 17
Topt ∈ R

+ Optimization horizon in continuous time, page 62
u ∈ U Control value, page 13
u∗ ∈ U Control value in equilibrium, page 44
x ∈ X State of the system, page 13
x+ ∈ X State at the next time instant, page 13
x0 ∈ X Initial value of a trajectory, page 13
x∗ ∈ X Equilibrium, to be stabilized, page 28
z ∈ R

nz Optimization variable of the optimization problem, page 280
z� ∈ R

nz Optimal solution of optimization problem, page 282
zk ∈ R

nz Iterates of optimization variable, z0 is the initial guess, page 282

Functions
|z1|z2 Distance between z1, z2 ∈ Z, brief notation for |z1|z2 = dZ(z1, z2), page 28
‖x‖ Norm of x in a vector space, page 2
α1 ∈ K∞ Lower bound of a Lyapunov function V , page 32
α2 ∈ K∞ Upper bound of a Lyapunov function V , page 32
α3 ∈ K∞ Lower bound of the minimal running cost function �∗, page 125
α4 ∈ K∞ Upper bound of the minimal running cost function �∗, page 125
αV ∈ K∞ Bound of the decrease of a Lyapunov function V , page 32
αW ∈ K∞ Upper bound of W in detectability condition, page 172
αW ∈ K∞ Bound for the decrease of W in detectability condition, page 172
β ∈ K L Comparison function used for stability analysis, page 29
γW ∈ K∞ Bound for the increase of W in detectability condition, page 172
ι : {1, . . . , rs} → {1, . . . , d} Shooting state index function, page 283
κ : X0 → U Local feedback map on terminal constraint set X0, page 201
μ : X → U State feedback law, page 15
μ : N0 × X → U Time varying state feedback law, page 31
μN : X → U NMPC-feedback law, page 45
μN : N0 × X → U Time varying NMPC-feedback law, page 51
με

N : X → U NMPC-feedback law computed from numerical model f ε , page 266
μ∞ : N0 × X → U Infinite horizon optimal feedback law, page 73
μα : N0 × X → U Suboptimal asymptotically stabilizing feedback law, page 80
ϕ(·, t0, x0, v) : R → R

d Continuous time open-loop trajectory, page 16
ϕ̃(·, t0, x0, v) : G → R

d Numerical approximation of ϕ(·, t0, x0, v), page 252
� : R

d × U × R → R
d Numerical one step method, page 253
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ς : {1, . . . , rs} → {0, . . . ,N} Shooting time index function, page 283
ω ∈ K Modulus of continuity, page 228
BN : R

+
0 → R

+
0 Upper bound of the cost functional JN , page 119

C : R
nz → R

rg+rh Constraint function of an optimization problem, page 295
CWk : R

nz → R
rWk Constraint function for working set Wk , page 298

dZ : Z × Z → R
+
0 Metric on a metric space Z, page 13

d : N0 → X Perturbation sequence, page 226
e : N0 → X Measurement error sequence, page 226
e : G → R

+
0 Approximation error of one step method, page 256

F : X → R
+
0 , F : N0 × X → R

+
0 Terminal cost function, also denoted FJ in Chap. 10,

page 53
F : R

nz → R
+
0 Cost function of an optimization problem, page 280

f : X × U → X Transition map of a discrete time control system, page 13
f ε : X × U → X Numerically approximated transition map, page 266
fc : R

d × R
m → R

d Vector field of a continuous time control system, page 16
g : X → X Transition map of a discrete time system, page 28
g : N0 × X → X Transition map of a time varying discrete time system, page 31
GS

i : X × U → R Equality constraint function of a set, page 49
HS

i : X × U → R Inequality constraint function of an optimization problem,
page 49

h : X → Y Output function, page 171
JN : X × UN → R

+
0 Finite horizon cost functional, page 45

J∞ : N0 × X × U∞ → R
+
0 Infinite horizon cost functional, page 68

J∞(·, ·,μ) : N0 × X → R
+
0 Infinite horizon cost of closed-loop trajectory, page 76

J∞ : X × U∞ → R
+
0 Averaged infinite horizon cost function, page 208

� : X × U → R
+
0 Running cost function, page 44

� : N0 × X × U → R
+
0 Time varying running cost function, page 50

�∗ : X → R
+
0 Minimal running cost function, page 117

�∗ : N0 × X → R
+
0 Minimal time varying running cost function, page 132

�̃ : X × U → R
+
0 Running cost function for inverse optimality, page 107

�e : X × U → R
+
0 Economic running cost function, page 207

L : X × U → R
+
0 Running cost function in integral form, page 44

L : R
nz × R

rg+rh → R Lagrangian of an optimization problem, page 295
M : R

nz × R
nz → R

2nz KKT condition vector of problem (ECP), page 298
S : R

nz → R
nN Equality constraint function in multiple shooting nodes, page 320

u : {0, . . . ,N − 1} → U Finite horizon control sequence, page 13
u : N0 → U Infinite horizon control sequence, page 13
u� : {0, . . . ,N − 1} → U Finite horizon optimal control sequence, page 45
u� : N0 → U Infinite horizon optimal control sequence, page 68
uref : N0 → U Reference control sequence, page 68
ux : {0, . . . ,N − 1} → U Control sequence in controllability assumption, page 117
u

j
n : {0, . . . ,N − 1} → U Control sequence provided by iterative optimization
method, page 198

v : R → R
m Control function in continuous time, page 16
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V : S → R
+
0 Lyapunov function, page 32

V : S → R
+
0 Time varying Lyapunov function, page 34

VN : N0 × X → R
+
0 Finite horizon optimal value function, page 56

V∞ : N0 × X → R
+
0 Infinite horizon optimal value function, page 68

W : X → R
+
0 Auxiliary function in detectability condition, page 172

xu(·, x0), xu : {0, . . . ,K − 1} → X Predicted or open-loop trajectory, page 13
xμN

(·, x0), xμN
: N0 → X Nominal NMPC closed-loop trajectory, page 45

x̃μN
(·, x0), x̃μN

: N0 → X Perturbed NMPC closed-loop trajectory, page 226
xε
με

N
(·, x0), xε

με
N

: N0 → X Numerical NMPC closed-loop trajectory, page 266

x̃ε
με

N
(·, x0), x̃ε

με
N

: N0 → X Perturbed numerical NMPC closed-loop trajectory, page 266

xex
με

N
(·, x0), xex

με
N

: N0 → X Exact closed-loop trajectory with numerical NMPC-

feedback law με
N , page 267

xref : N0 → X Reference trajectory, to be stabilized, page 28
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A

Active set, 294
algorithm, see Optimization algorithm
approximation, 297
change, 329
LICQ, see Constraint qualification

Admissible
control function, 177
control sequence, 46, 53, 68, 201, 211, 237
control value, 46
feedback, 46, 48, 61, 76, 213
state, 46, 68
trajectory, 46, 220, 237

Algorithm
differential equations, see Differential

equation solver
NMPC, see NMPC algorithm
optimization, see Optimization algorithm
step size control, see Differential equation

solver
Approximation

differential equation, see Differential
equation solver

discrete time, see Transition map
error, see Error
Hessian, 292, 302, 312, 316
linear, 293, 296, 329
local, 292, 294
quadratic, 293, 297, 306, 308, 314
sensitivity, 329
value function, 63

Attraction, 30, 199, 201, 202, 206
rate, 29, 31, 77

Attractivity, see Attraction
Augmented Lagrangian, 315
Automatic differentiation, 328

B

Barrier method, 310
Bellman’s optimality principle, see Dynamic

programming
Boundedness

uniform incremental, 36
uniform over T , 36, 38, 79

C

Caratheodory’s Theorem, 16
Closed loop

cost, 68, 87, 91, 98, 102–104, 125–127,
144, 148, 184, 193, 203

nominal, see Trajectory
perturbed, see Trajectory

Cocycle property, 13, 19
Collocation, 336
Comparison function, 28
Complementarity condition, 296, 311, 329
Computing time, 45, 180, 276, 285, 288, 321,

331
Concatenation, 33, 220
Condensing, 276, 320, 336
Cone

critical, 296, 301
linearized feasible directions, 294
tangent, 294

Consistency, see Differential equation solver
Constraint

active, 294, 296, 304, 309, 328
active set, see Active set
additional, 219, 221
blocking, 304, 306
condensing, see Condensing
contractive, 166
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Constraint (cont.)
control, 46, 49, 113, 279
endpoint, 88, 176, 214, 222
equality, 49, 280, 281, 284, 293, 330
induced by dynamics, 279
induced by shooting node, 284, 320
inequality, 49, 280, 281, 284, 293, 297,

309, 330
initial value, see Initial value
Jacobian, see Jacobian
linearization, 294, 299, 317, 328, 334
number of, 276, 282, 285
set of equality constraints, 49
set of inequality constraints, 49
slack variable, see Slack variable
state, 46, 113, 125, 213, 279

time varying, 237
terminal, 50, 52, 95, 165, 200, 213, 222,

231, 237, 241, 279
limit behavior, 208
stabilizing, 48, 87, 172, 174, 232

tightening, 238
trust-region, 308, 314
violation, 295, 305, 334
working set, see Working set

Constraint qualification
LICQ, 295, 298, 299, 313

Constraints
tightening, 242

Continuity condition, 231, 245
discretization, 279, 284, 320
sufficient, 242
uniform, 241, 243

Control
constraint, see Constraint
feedback, see Feedback
function

admissible, 177
measurable, 16, 27, 119

horizon, 62, 174, 190
nonoptimal, 198, 331
optimal sequence, 45, 56, 61, 68, 73, 120,

324
existence, 56, 81

redesign, 24, 196
reference, see Reference
sequence, 13, 19, 56, 281

admissible, 44, 46, 53, 68, 202, 211,
237

admissible extension, 89, 166
suboptimal, see Suboptimality
value, 13

admissible, 46

Control system
approximation, 252, 264, 266

of the solution, 253
augmented, 264, 316
continuous time, 16, 36, 44, 116, 176, 179,

231, 251, 275
discrete time, 13, 116, 177, 275
networked, 174, 182
open loop, see Trajectory
output, 9, 63, 172

Controllability
assumption, 43, 68, 75, 80, 116, 117, 119,

132, 177, 218, 239
asymptotic, 75, 80, 94, 116, 223

uniform, 68, 241
decay rate, 117, 133
exponential, 116, 117, 124, 126, 133, 178
finite time, 95, 117, 124, 223
overshoot, 117, 133
small control property, 68, 75, 81

Convergence
differential equation solver, see Differential

equation solver
optimization, see Optimization

Cost function, 43
decrease, 292, 301, 313
discretized, 280, 282, 284
gradient, 288, 290
Hessian, 290, 292, 330
running cost, 44, 69, 89

design, 117, 133, 173, 183, 222
economic, 207
integral form, 44, 51, 62, 77, 264, 316
inverse optimality, 107
minimal, 117, 122, 123, 129, 132, 169,

219
nonpositive definite, 170, 248
numerical evaluation, 264
time varying, 50

stage cost, see running cost
terminal cost, 50, 53, 95, 165, 176, 222,

276
quasi infinite horizon, 96

weight, 50, 53, 169, 172, 316
Cost functional

bound, 119, 123, 126, 169
finite horizon, 51, 53, 54
infinite horizon, 68, 76, 102

averaged, 208

D

Delay compensation, 180
Detectability condition, 160, 171, 172, 248
Differential equation solver, 251, 281, 315
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Differential equation solver (cont.)
adaptive, 260
consistency, 257, 258

order, 257, 258
convergence, 253, 256, 258

order, 253, 258
differential algebraic equation, 270, 336
error, see Error
finite difference, 138, 270
finite element, 270
implicit, 270
local error, 260
one step method, 252, 253
partial differential equation, 270
Runge–Kutta method, 254, 257
step size, 253
step size control, 260

algorithm, 262, 264, 266
tolerance, see Tolerance
usage in NMPC, 264, 266

Direction
feasible, see Feasible
search, 292, 297, 316, 320

Directional derivative, 316
Discretization of differential equation, see

Differential equation solver
Discretization of optimal control problem

combination with shift method, 330
condensing, see Condensing
full, 279, 325
in NMPC, 315
multiple shooting, 283, 320
overview, 275
recursive, 281

Disturbance, see Perturbation
Dynamic programming, 3

principle, 56, 60, 70, 100, 236
relaxed, 75, 87

E

Equilibrium, 29, 32, 89, 117
endpoint constraint, 88, 176, 214, 222

Error
measurement, 226, 228, 237, 329

initial, 227
modeling, 15, 226
numerical, 226, 256, 260, 262, 268, 279,

323
source, 226, 256, 269, 322
tolerance, see Tolerance

Example
ARP, 23, 196
Artstein’s circles, 234, 238, 243
car, 14, 18, 47, 135, 170, 242

inverted pendulum, 22, 175, 189, 203, 276,
285, 321, 323, 332

nonlinear 1d control system, 117, 126
parabolic PDE, 27, 136
simple 1d control system, 14, 92, 149

Exit set, 214, 215, 247

F

Feasibility, 47, 52, 204, 206, 211, 213, 222,
227

assumption, 203, 216, 219
improvement, 328, 333, 334
recursive, 49, 90, 128, 213, 216, 221
robust-optimal, see Robustness
using exit sets, 214
using stability, 217

Feasible
direction, 294, 296, 303

linearized, 294
point, 213, 293–296, 328
set, see Feasible set
solution, 330, 333

Feasible set
of optimization problem, 293, 295, 309,

310
with terminal constraints, 52, 89, 115, 166,

176
without terminal constraints, 213, 215, 218

Feedback
admissible, 46, 48, 61, 76, 213
computed from numerical model, 266
finite horizon optimal, 60, 61
infinite horizon optimal, 73, 74, 107, 270
local, 201
multistep, 174, 182, 185
nonrobust, 232
performance, see Performance
robust, see Robustness
stabilization, 68, 219
stabilizing, see Stability
state, 9, 45, 173
suboptimal, see Suboptimality
zero order hold, 21

G

Growth condition, 117, 179

H

Hessian, 289, 300, 330
approximation, see Approximation
cost function, see Cost function
second order conditions, 290
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update, see Update
Horizon

adaptation, 191, 317
control, see Control
dependency on running cost, 133
impact on optimization routine, 277, 315
infinite, 67, 75, 99, 105, 270
initial guess, see Initial guess
length, 43, 52, 56, 62, 89, 101, 116, 125,

183, 187, 216, 278, 316, 324
optimization, 62
performance assumption, 195
prediction, 62
prolongation, 195
shortening, 194
sufficiently large, 127, 142, 222, 224

I

Infeasibility, 205, 212, 224, 334
initial guess, see Initial guess

Initial condition, 20, 28, 31, 45, 76, 251, 264
Initial guess

control, 45, 281, 284, 324, 325, 328, 330
admissible, 201

feasible, 306, 330, 334
infeasible, 326, 330, 333
Lagrange multiplier, see Lagrange

multiplier
optimization horizon, 195
optimization variable, see Optimization
search direction, 303
step size, 262
trust-region radius, 308

Initial state, see Initial value
Initial time, 16, 31, 52, 68, 330
Initial value, 13, 52, 68, 213, 281, 324, 330

admissible, 68
constraint, 326
embedding, 325, 331
in viability kernel, 218
shooting, 284, 321
wrong, 183

Invariance
family of sets, 31, 35, 76, 79
forward, 29, 30, 32, 34, 46, 90, 97, 143,

167, 213
IOSS, see Stability, input/output-to-state
ISS, see Stability, input-to-state

J

Jacobian
constraints, 289, 316, 330
efficient evaluation, 317

Newton’s method, 298
recomputation, see Update
structure, 316, 320

L

Lagrange multiplier, 295
initial guess, 303, 330, 336
local, 328
optimal, 297, 299
update, see Update
working set, 298, 300

Lagrangian, 295, 299, 309
LICQ, see Constraint qualification
Lie derivative, 257
Line-search, see Optimization algorithm
Linear MPC, see MPC
Linearization, 99, 101, 116, 126, 167, 294,

317, 328
Lipschitz condition, 16, 179, 256, 258, 271,

328
Lyapunov function, 32, 34, 75, 79, 172, 174,

184, 209, 236, 247
control, 81, 118
converse theorem, 39
terminal cost, 95, 176, 222
time varying, 34, 35

M

Merit function, 307–310, 313, 332
decrease, 307, 311
infeasibility, 333
Maratos effect, see Optimization
nonmonotone strategy, 332
second order correction, 332

Metric, 13, 44, 172
Metric space, 13, 44, 81, 171
Minimization

constrained problem, 276, 293, 298, 299,
302, 303, 309, 310, 314, 327

discretized problem, 280, 282, 285, 327
finite horizon problem, 45, 51, 53, 54, 89,

94, 95, 182, 185, 189, 192, 275
infinite horizon problem, 67, 99
solution, 308
suboptimality estimate, 123, 124, 128, 145
unconstrained problem, 288

Minimizer, 45, 292
approximate, 56, 302, 305, 312
candidate, 291, 292, 295, 301
convergence speed, 291, 301, 311
global, 289
local, 289–291, 293, 295, 310, 322, 331

strict, 297
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Model, see Control system
Modulus of continuity, 228, 229, 231, 238, 268
MPC

linear, 4, 63, 247, 328

N

Newton’s method, 298, 301, 310, 329
NMPC algorithm, 43, 82, 275, 323, 324

adaptive horizon, 192, 194
basic, 45

time varying, 51
decoupled, 180, 181
differential equation solver, 264
dual mode, 110, 202
explicit, 63
extended, 53

time varying, 54
min–max, 248
nonoptimal, 198, 202, 331
quasi infinite horizon, 96
real-time iteration, 326
with suboptimality estimate, 185, 189

Norm, 13, 44, 51, 63, 130, 226, 308, 312

O

One step method, see Differential equation
solver

Operating range, 213, 223
Optimal

control sequence, see Control
robust, see Robustness

Optimal control problem
finite horizon, 45, 51, 53, 54, 89, 94, 95,

182, 185, 189, 192, 275
infinite horizon, 67, 70, 75, 99, 104
linear–quadratic, 78, 81, 83, 99, 101, 117,

167
LQR, see linear–quadratic

Optimality
global, see Minimizer
improvement, 292, 301, 306, 307, 311,

328, 334
inverse, 101, 107, 161
local, see Minimizer
termination, 331
tolerance, see Tolerance

Optimization, 15, 28, 45, 49, 225
algorithm, see Optimization algorithm
barrier method, 309, 310
consistent solution, 308
constrained, 292, 297, 309
constraints, see Constraint
continuation method, 309

convex, 289, 303, 306, 335
cost function, see Cost function
fraction to boundary rule, 311
indirect method, 336
initial guess, 45, 192, 196, 202, 282, 285,

291, 306, 323–325, 328, 330, 333
(IPM), see Optimization algorithm
iteration step, 285, 298, 299, 303, 311, 326,

329
local quadratic convergence, 298, 325
Maratos effect, 332
merit function, see Merit function
necessary condition, 290, 291, 295, 296,

298, 309, 321, 329, 331
neighboring solution, 329
nonconvex, 311, 322
number of iterations, 199, 202, 325, 331,

335
one-dimensional problem, 292
penalty parameter, 313, 329
perturbed necessary condition, 310
perturbed problem, 329
quadratic model, 308, 314
quadratic problem, 297, 301, 315
residual, 308, 314
search direction, see Direction
slack variable, see Slack variable
solution, 288, 289, 298, 300, 326, 328, 329,

331
(SQP), see Optimization algorithm
step length, 292, 300, 303, 304, 307, 313
structure of derivatives, 316
sufficient condition, 291, 297, 311
termination, 303, 306, 312, 321, 334
tolerance, see Tolerance
unconstrained, 288
variable, 276, 280, 281, 284, 326

Optimization algorithm
active set, 297, 320
active set (IQP), 305
active set parametric, 326
active set (SQP), 302
interior point method (IPM), 288, 297, 309,

312, 320, 328
line-search, 292, 306, 307, 310, 313, 334
line-search (SQP), 307
sequential quadratic programming (SQP),

288, 297, 299, 320, 326
trust-region, 292, 306, 308, 310, 314, 334
trust-region (SQP), 308

Output, see Control system, output

P

Parallelization, 182, 319, 321, 336



358 Index

Penalty method, 315
Performance, 125, 133, 184, 191, 206, 207,

222
assumption, 193, 195
closed loop, 52, 76, 101, 203
estimate, see Suboptimality

Perturbation, 30, 180, 183, 226, 327, 329, 331
additive, 226
constraint, 318
parameter, 310
sequence, 226, 227, 267
trajectory, see Trajectory

Pontryagin’s maximum principle, 3, 336
Prediction, 15, 45, 51, 92, 180, 252, 264, 266,

324
for delay compensation, 181
horizon length, see Horizon
model, 44, 181, 182, 207, 225, 330

R

Reference
constant, 28, 43, 68, 88, 95, 171, 225, 229,

231, 245, 266
continuous time, 51
control sequence, 50, 68, 74, 80
cost function, 43, 44, 50, 63, 133, 207
periodic trajectory, 208
set, 62
terminal set, 95, 222
time varying, 31, 34, 50, 94, 101, 143, 181,

185, 189, 192, 231, 326
trajectory, 28, 35, 67, 68, 74, 80, 170, 282,

283, 285
Riccati equation, 63, 99, 101–103

fake, 110
Robustness, 15, 107, 225

nonrobust example, 232, 238
optimal feasible, 237
stability, see Stability, robust
w.r.t. numerical error, 269, 322
with state constraints, 237, 241
without state constraints, 227

Running cost, see Cost function

S

Sampled data system, see System
Sampling, 16

fast, 64, 107, 176, 198
instant, 43, 50, 180, 203, 285, 320
intersampling behavior, 44
interval, 21, 44, 176, 251, 260
multirate, 21, 326
period, 17, 36, 38, 45, 77, 176, 178, 180,

203, 330

time, 17, 19, 36, 49, 251, 258, 260, 265
zero order hold, 21, 38, 176, 252

Sensitivity, 305
based warm start, 183, 328, 331, 334
inconsistent approximation, 329

Shift method, 330, 334, 336
Shooting, 276, 336

boundary value problem, 283
constraint, see Constraint
dimension index, 283
discretization, see Discretization of optimal

control problem
initial guess, 286
node, 283, 320, 323, 334
time, 283

Slack variable, 307, 309, 311
Sontag’s K L-Lemma, 69, 118
Stability, 28, 30, 87, 113, 125, 199, 207, 222

asymptotic, 29, 32, 35, 74, 77, 80, 91, 98,
125, 127, 143, 172, 174, 184, 194,
201, 202, 221

continuous time, 38, 78, 79
nonuniform, 31
P -practical, 30, 34, 35, 79
P -practical uniform, 31
uniform, 31

continuous time asymptotic, 269
effect of numerical error, 266
in the sense of Lyapunov, 30
input-to-state, 28, 39, 227
input/output-to-state, 171
nonoptimal, 81, 198, 331
P -practical asymptotic, 143
robust, 227, 229, 231, 239, 245, 322
semiglobal asymptotic

w.r.t. horizon N , 142, 167
semiglobal practical asymptotic

w.r.t. horizon N , 143, 144, 148, 172
w.r.t. numerical error, 268, 269
w.r.t. perturbation, see Stability, robust

unstable, 128, 135
Stage cost, see Running cost
State

admissible, 46, 68
augmented, 63
constraint, see Constraint
feedback, see Feedback, state
forward invariant set, see Invariance
initial, see Initial value
measurement, 9, 45, 51, 53, 54, 181, 185,

189, 192
space, 13, 208, 226, 231, 232
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Step size control, see Differential equation
solver

Strong duality, 208
Submultiplicativity, 118, 124, 128, 133, 157,

158
Suboptimality, 87, 101, 113, 191, 222

estimate, 76, 79, 87, 91, 98, 103, 104, 107,
125–127, 144, 148, 173, 183, 184,
193, 203, 223, 279

a posteriori, 184, 185, 193
a priori, 188, 189

feedback, 79
formula, 121, 124, 133, 150, 174, 179
nonoptimal, 202, 331
stability condition, 126
terminal weight, 168
tightness, 128, 178

System
closed loop, see Trajectory
continuous time, see Control system
discrete time, see Control system
infinite dimensional, 27, 39, 56, 136, 232,

247, 270
sampled data, 13, 16, 19, 35, 38, 44, 49, 77,

107, 119, 176, 231, 247, 258, 266,
269, 275, 324

sampled data closed loop, see Trajectory

T

Tangent cone, see Cone
Taylor

approximation, 257, 262, 265, 299
theorem, 289, 293, 295

Terminal constraint, see Constraint
Terminal cost function, see Cost function
Time grid, 253, 258, 316

adaptive, 260, 263
equidistant, 266
grid function, 253
in NMPC algorithm, 265
step size, 253

maximal, 253, 259
sufficiently small, 260, 266

Tolerance
differential equation solver, 252, 261–263,

265, 266, 315, 321
optimization routine, 281, 302, 312, 315,

321, 331
Trajectory

admissible, 46, 220, 228, 237
closed loop

nominal, 45, 51, 76, 79, 91, 98, 102,
104, 125, 135, 167, 183, 184, 192,
207, 228, 266

perturbed, 226, 227, 229, 231, 232, 239,
245, 266

sampled data, 35, 38, 77, 79
unstable, 128, 135

continuous time, 16, 35, 44, 49, 77, 79,
251, 260

discrete time, 13, 19
infeasible, 212
nonoptimal, 158, 198, 333
numerical, 266
open loop, 89, 92, 103, 116, 120, 145, 167,

226, 231, 238, 264, 279, 282, 317,
318, 324, 328, 330

optimal, 56, 61, 68, 73, 121, 207
reference, see Reference

Transition map, 13, 28, 31
approximation, 22, 252, 253, 264, 266, 279

Trust-region, see Optimization algorithm
radius, 292, 308, 314

update, see Update

U

Update
active set, 297
Hessian of cost function, 302, 316
initial value, 326
Jacobian of cost function, 317, 328
Lagrange multiplier, 302, 307, 309, 312,

314
nonlinear, 330
optimization variable, 299, 302, 307, 309,

312, 314
real-time iteration, 326, 327
search direction, 306
trust-region radius, 309, 314
working set, 299, 302, 303, 305

V

Value function
bounds, 69, 87, 92, 98, 119, 171, 219
continuity, 237
finite horizon, 56, 88, 114, 172, 209, 221
infinite horizon, 68, 99, 103, 114
uniformly continuous, 243, 245

Vector space, 226
Viability, 46, 68, 95, 128, 166

assumption, 46, 48, 113, 246
kernel, 213, 218, 224
terminal constraint set, 223

W

Working set, 297, 303
update, see Update


	Cover
	Nonlinear Model Predictive Control
	ISBN 9780857295002
	Preface
	Contents
	Chapter 1: Introduction
	1.1 What Is Nonlinear Model Predictive Control?
	1.2 Where Did NMPC Come from?
	1.3 How Is This Book Organized?
	1.4 What Is Not Covered in This Book?
	 References

	Chapter 2: Discrete Time and Sampled Data Systems
	2.1 Discrete Time Systems
	2.2 Sampled Data Systems
	2.3 Stability of Discrete Time Systems
	2.4 Stability of Sampled Data Systems
	2.5 Notes and Extensions
	2.6 Problems
	 References

	Chapter 3: Nonlinear Model Predictive Control
	3.1 The Basic NMPC Algorithm
	3.2 Constraints
	3.3 Variants of the Basic NMPC Algorithms
	3.4 The Dynamic Programming Principle
	3.5 Notes and Extensions
	3.6 Problems
	 References

	Chapter 4: Infinite Horizon Optimal Control
	4.1 Definition and Well Posedness of the Problem
	4.2 The Dynamic Programming Principle
	4.3 Relaxed Dynamic Programming
	4.4 Notes and Extensions
	4.5 Problems
	 References

	Chapter 5: Stability and Suboptimality Using Stabilizing Constraints
	5.1 The Relaxed Dynamic Programming Approach
	5.2 Equilibrium Endpoint Constraint
	5.3 Lyapunov Function Terminal Cost
	5.4 Suboptimality and Inverse Optimality
	5.5 Notes and Extensions
	5.6 Problems
	 References

	Chapter 6: Stability and Suboptimality Without Stabilizing Constraints
	6.1 Setting and Preliminaries
	6.2 Asymptotic Controllability with Respect to l
	6.3 Implications of the Controllability Assumption
	6.4 Computation of alpha
	6.5 Main Stability and Performance Results
	6.6 Design of Good Running Costs l
	6.7 Semiglobal and Practical Asymptotic Stability
	6.8 Proof of Proposition 6.17
	6.9 Notes and Extensions
	6.10 Problems
	 References

	Chapter 7: Variants and Extensions
	7.1 Mixed Constrained-Unconstrained Schemes
	7.2 Unconstrained NMPC with Terminal Weights
	7.3 Nonpositive Definite Running Cost
	7.4 Multistep NMPC-Feedback Laws
	7.5 Fast Sampling
	7.6 Compensation of Computation Times
	7.7 Online Measurement of alpha
	7.8 Adaptive Optimization Horizon
	7.9 Nonoptimal NMPC
	7.10 Beyond Stabilization and Tracking
	 References

	Chapter 8: Feasibility and Robustness
	8.1 The Feasibility Problem
	8.2 Feasibility of Unconstrained NMPC Using Exit Sets
	8.3 Feasibility of Unconstrained NMPC Using Stability
	8.4 Comparing Terminal Constrained vs. Unconstrained NMPC
	8.5 Robustness: Basic Definition and Concepts
	8.6 Robustness Without State Constraints
	8.7 Examples for Nonrobustness Under State Constraints
	8.8 Robustness with State Constraints via Robust-optimal Feasibility
	8.9 Robustness with State Constraints via Continuity of VN
	8.10 Notes and Extensions
	8.11 Problems
	 References

	Chapter 9: Numerical Discretization
	9.1 Basic Solution Methods
	9.2 Convergence Theory
	9.3 Adaptive Step Size Control
	9.4 Using the Methods Within the NMPC Algorithms
	9.5 Numerical Approximation Errors and Stability
	9.6 Notes and Extensions
	9.7 Problems
	 References

	Chapter 10: Numerical Optimal Control of Nonlinear Systems
	10.1 Discretization of the NMPC Problem
	 Full Discretization
	 Recursive Discretization
	 Multiple Shooting Discretization

	10.2 Unconstrained Optimization
	10.3 Constrained Optimization
	 Active Set SQP Methods
	 Interior-Point Methods

	10.4 Implementation Issues in NMPC
	 Structure of the Derivatives
	 Condensing
	 Optimality and Computing Tolerances

	10.5 Warm Start of the NMPC Optimization
	 Initial Value Embedding
	 Sensitivity Based Warm Start
	 Shift Method

	10.6 Nonoptimal NMPC
	10.7 Notes and Extensions
	10.8 Problems
	 References

	Appendix  NMPC Software Supporting This Book
	 A.1 The MATLAB NMPC Routine
	 A.2 Additional MATLAB and MAPLE Routines
	 A.3 The C++ NMPC Software

	Glossary
	Index

