
Series in
i tel l igent Control and Intel l igent Automat i

Vol. 13

t ion

Network-Based
Distributed Planning

(Revolutionary

Network-Based
Distributed Planning

Using
(Revolutionary

Algorithms

SERIES IN INTELLIGENT CONTROL AND INTELLIGENT AUTOMATION

Editor-in-Charge: Fei-Yue Wang
(University of Arizona)

Vol. 1: Reliable Plan Selection by Intelligent Machines
(J E Mclnroy, J C Musto, and G N Saridis)

Vol. 2: Design of Intelligent Control Systems Based on Hierachical Stochastic
Automata (P Lima and G N Saridis)

Vol. 3: Intelligent Task Planning Using Fuzzy Petri Nets
(T Cao and A C Sanderson)

Vol. 4: Advanced Studies in Flexible Robotic Manipulators: Modeling,
Design, Control and Applications (F V Wang)

Vol. 6: Modeling, Simulation, and Control of Flexible Manufacturing
Systems: A Petri Net Approach (M Zhou and K Venkatesh)

Vol. 7: Intelligent Control: Principles, Techniques, and Applications (Z-X Cai)

Vol. 10: Autonomous Rock Excavation: Intelligent Control Techniques
and Experimentation (X Shi, PJA Lever and F Y Wang)

Vol. 11: Multisensor Fusion: A Minimal Representation Framework
{R Jos hi and A C Sanderson)

Vol. 12: Entropy in Control Engineering
(George N Saridis)

Forthcoming volumes:

Vol. 5: Computational Foundations for Intelligent Systems (S J Yakowitz)

Vol. 8: Advanced Topics in Computer Vision and Pattern Recognition
(£ Sung, D Mital, E K Teoh, H Wang, and Z Li)

Vol. 9: Petri Nets for Supervisory Control of Discrete Event Systems:
A Structural Approach (A Giua and F DiCesare)

series in
Intell igent Control and Intell igent Automation

Vol. 13

Network-Based
Distributed Planning

Using
(Revolutionary

Algorithms

Raj Subbu
General Electric Global Research, USA

Arthur C Sanderson
Rensselaer Polytechnic Institute, USA

\jjp World Scientific

i$a

&•%!,

<"0J,

,-*

f#-

* * f

t

?«?

'"^

N E W JERSEY • L O N D O N • S INGAPORE • S H A N G H A I • H O N G K O N G • TAIPEI • B A N G A L O R E

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: Suite 202, 1060 Main Street, River Edge, NJ 07661

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

NETWORK-BASED DISTRIBUTED PLANNING USING COEVOLUTIONARY
ALGORITHMS
Series in Intelligent Control and Intelligent Automation — Vol. 13

Copyright © 2004 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-238-754-4

Printed in Singapore by World Scientific Printers (S) Pte Ltd

To Roopa and my parents
for their loving support of all my projects

- Raj Subbu

This page is intentionally left blank

Foreword

Modern enterprises and organizations interested in participating in today's
global business environment are most likely to employ some form of dis­
tributed computing to assist in accomplishing their goals. Perhaps labels
such as e-commerce, B2B-commerce (business to business), C2B-commerce
(consumer to business), e-engineering, etc. are applied to the context, but
underlying the context is a core of advanced technologies and within that
core is likely to be a form of distributed computing.

Consider a consumer searching for a product over the web by placing
requests for information through a browser to a search engine. These terms
that we now use and this form of product search were nearly unheard of as
recently as a decade ago, but are relatively commonplace today and will be
even more so in the next five years.

Consider a large auto company whose suppliers are coordinated into
a common market environment where component and subsystem pricing
as well as availability are readily visible to the auto company's material
procurement staff.

Both of these examples rely on forms of distributed computing. Each
example supports a manual/user-oriented search over vast amounts of in­
formation available through linked computers and their databases. The
genesis of their respective underlying technologies goes back to perhaps a
decade ago and we see such systems in use today.

Now consider the future!
Suppose that we could automate that search process rather than being

in front of our computer terminal directing it at each step of its execution.
In the former case, we would configure a search with the product charac­
teristics (e.g. size, weight, speed, brand name) desired and then let the
computer and computing system execute our search. In the latter

vii

viii Network-Based Distributed Planning using Coevolutionary Algorithms

similar search process might apply.
The future is here!
The technologies needed to accomplish large-scale automated searches

have been developed and proved and are being migrated to commercial
applications. One part of this suite of technologies is known as intelligent
computational agents. These can be sent over a network environment to
access and evaluate information in distributed databases for the "fit" to
our constraints.

Suppose that we seek yet more in our search process. Suppose that we
would like to tell our computer system what we need and have it come
back with the results, narrowed to our specific goals. For example, the
search for the product characteristics needed (i.e. size, speed) may return
many results that "fit." If we also direct the search process to find those
products that fit but are, as well, the "least cost" or "readily available"
we can expect fewer results back from our system's search, but the results
should be very close to our desires. This means that the computer system
has accessed distributed databases, developed information of the type we
seek, evaluated perhaps millions of results and continued to search until it
found the best result or until some stopping procedure told it that we had
something close enough to our needs. Such additional search requirements
for large-scale decision problems often encounter non-linearities in meeting
our objectives where good results must be sought over multiple domains
and an ideal result in one search domain may not be so attractive when
considered in another domain. If we were to do all of this manually, we
would not likely be so thorough, not so diligent in our efforts, nor as patient
as the computer system.

It is therefore very important that this search and evaluation process be
set up to be thorough and efficient. The large-scale nature of the possible
search space over the network and the complexities of a possible indus­
trial planning problem being addressed can tax the capabilities of even fast
computers. So, we would not want to overlook possible good solutions (i.e.
we want to be thorough in the search), but also would like results back in
a reasonable period of time (i.e. we must be efficient). Many algorithms
or optimization search approaches would be considered "thorough" when
applied to a properly structured problem. One especially difficult aspect of
the need to be "efficient," however, is the delay inherent in computer net­
works due to the number of users, the sizes of user information demands,
downtime, etc. Consequently, a number of researchers undertook the task
of finding efficient algorithms for optimum seeking searches of distributed

Foreword IX

information sources on the web.
Coevolutionary algorithms, coded and imbedded in the computer sys­

tem, are an excellent means for automated coordination and re-direction
of the search based upon the intermediate results as required in the above
described process. These efficiencies are achieved by situating the search
components closer to the sources of information in delay-prone networks.
Such algorithms are therefore distinguished from evolutionary algorithms
in that the algorithm's computational work is distributed to several sites in
a network of computers in order to improve speed and efficiency of its exe­
cution with large numbers of users and databases; hence a scalable version
for commercial applications. The result of integrating these technologies
is the automated and intelligent search process that can both improve the
efficiency of decision and planning problems as well as the solution (s) itself
when we face network-based planning and decision environments.

This book's authors address these technologies focused on decentralized
search and planning systems using evolutionary algorithms. They also ex­
plore their use in large-scale commercial applications for planning problems.
Drs. Subbu and Sanderson are members of a select set of people worldwide
who are doing active research work in Coevolutionary Multi-agent Sys­
tems and in Network-based Distributed Decision-Making Systems. This is
a particularly exciting and challenging research area due to the current and
future emphasis on network-based information systems to support various
businesses and supply chain applications with tremendous potential bene­
fits in competitiveness, effectiveness, and productivity. Their work is at a
crucial core area of this field where such information technology systems
must be designed and implemented in a manner allowing for large num­
bers of users, i.e. scalable, and also be reliable and robust in a potentially
unpredictable network environment. Their initial work developed within
the Electronics Agile Manufacturing Research Institute at Rensselaer Poly­
technic Institute. Under a National Science Foundation (NSF) contract
(DMI - 9320955) and subsequent contracts on Scalable Enterprises (DMI -
0075524, DMI - 0121902), the EAMRI researchers, led by Drs. Subbu and
Sanderson developed the centralized optimization formulation and solution
approach and extended it to co-evolutionary domains. It was applied to
the electronics concurrent engineering problem described in the book, and
is currently patented with a second patent pending. Their publications
include seminal papers on the theory and practice of evolutionary and co-
evolutionary algorithms that are at the core of the patented technology and
their further research. In addition to the NSF support for their work, the

x Network-Based Distributed Planning using Coevolutionary Algorithms

EAMRI is supported with resources provided by collaborating companies
including Lucent Technologies, Cisco Systems, Pitney Bowes, Benchmark
Electronics, Vermont Circuits, Hughes, and Texas Instruments.

This book, for the technical reader, is an exciting document about ex­
citing technologies in this network distributed computing domain.

Dr. Robert J. Graves

Director,
Rensselaer's Electronics Agile Manufacturing Research Institute
Professor Emeritus, Rensselaer Polytechnic Institute
and
Krehbiel Professor of Emerging Technologies
Thayer School of Engineering
Dartmouth College

Preface

The efficient development and implementation of network-based planning
applications is increasingly dependent on the availability of generalized tools
that support scalable and efficient network-distributed search and decision­
making. In one approach to network-based planning, an objective function
guides the distributed decision-making process, and the computation of the
objective function requires efficient retrieval and interpretation of informa­
tion from logically interrelated databases distributed over an inhomegenous
network environment. The primary focus of this book is to describe fun­
damental principles of an approach to network-based search and planning
based on evolutionary algorithms.

In this approach, efficient and scalable algorithms for distributed,
network-based decision-making based on objective functions are developed
in a network-distributed environment where internode communications are
a primary factor in system performance. The decision-making algorithms
that function in this environment must demonstrate superior performance
while simultaneously economizing internode communications.

A class of distributed decision problems is developed based on the case
of integrated design, supplier, and manufacturing planning for modular
products, where suppliers and manufacturing resources are distributed. A
formal model for this class of distributed decision problems is developed
as a set of coupled nonlinear assignment problems. This model, called the
design-supplier-manufacturing planning decision problem, is an example of
a complex discrete optimization problem. The nonlinearities and coupling
inherent in the problem class complicate application of exact optimization
algorithms. Evolutionary algorithms however, are highly adaptable, place
minimal restrictions on problem structure, and provide efficient and reliable
solutions. A novel coevolutionary algorithm, based on distributed evolution-

xi

xii Network-Based Distributed Planning using Coevolutionary Algorithms

ary algorithm components and software agents, is proposed as a network-
efficient strategy for concurrent, cooperative exploration of a highly coupled
space of design, supplier, and manufacturing decisions.

A theoretical foundation for this class of coevolutionary algorithms is
developed using techniques from stochastic process theory and mathemat­
ical analysis. In this framework, the distributed computation is described
in terms of construction and evolution of sampling distributions over the
feasible space. Convergence and convergence rate analyses are pursued for
certain basic classes of objective functions, and analytical and simulation
techniques are used to evaluate the network-based performance of the al­
gorithms in this class.

As a case study in distributed, network-based decision-making, an im­
plementation and detailed evaluation of the coevolutionary decision-making
framework suited to distributed network-enabled design and manufacturing
organizations is presented. This implementation, the Coevolutionary Vir­
tual Design Environment (CVDE), utilizes distributed evolutionary agents
and mobile agents as principal entities that generate and execute queries
and transactions among distributed applications and databases to support
a global optimization of design, supplier, and manufacturing planning deci­
sions. In this framework, an electronic interchange of design, supplier, and
manufacturing information facilitates a concurrent, cooperative, network-
efficient evolutionary search for promising planning alternatives.

The methodology presented in this book can have a fundamental impact
on the principles and practice of engineering in industrial product develop­
ment in the network-based distributed environment that is emerging within
and among corporate enterprise systems. In addition, the conceptual frame­
work of the approach to distributed decision systems presented in this book
may have much wider implications for network-based systems ranging from
intelligent agent-based browser systems, to enhanced consumer and busi­
ness services, and intelligent search techniques in scientific and commercial
databases.

Acknowledgments
The authors would like to thank World Scientific publishers, series editor

Feiyue Wang, and editor Steven Patt for selecting this work as part of the
series on intelligent control and intelligent automation.

This book is based on the doctoral research by the first author during
the years 1996-2000 under the guidance of the second author, while at the
Electronics Agile Manufacturing Research Institute (EAMRI) in Rensselaer

Preface xm

Polytechnic Institute.
The authors would like to acknowledge sources of support for this work

and for the development of the manuscript. Research grants DMI - 9320955
and DMI - 0075524 from the National Science Foundation (NSF) gave valu­
able multi-year support to the first author's doctoral research. The follow-
on research grant DMI - 0121902 from the NSF towards the collaborative
project in Scalable Enterprise Systems between Rensselaer Polytechnic In­
stitute and General Electric Research has in part supported the develop­
ment of this manuscript. The authors thank Robert J. Graves and Alan
A. Desrochers for actively championing and supporting the goals of this
research, and for serving on the doctoral thesis committee. The authors
also thank Piero P. Bonissone and Badrinath Roysam for serving on the
doctoral thesis committee, and for their valuable suggestions during the
development of this work. The authors acknowledge the helpful support
of the departments of Electrical, Computer and Systems Engineering, and
Decision Sciences and Engineering Systems at Rensselaer Polytechnic In­
stitute.

The first author appreciates the helpful cooperation of his colleagues
and managers at General Electric Research for fostering an intellectually
stimulating, collaborative, and supportive environment. Finally on a per­
sonal note, the first author would like to thank his wife Roopa for her loving
support and his parents for their unfailing inspiration, which have made so
many things possible.

This page is intentionally left blank

Contents

Foreword vii

Preface xi

1. Introduction 1

1.1 Motivation 1
1.2 Approach 2
1.3 Principal Contributions 6
1.4 Book Outline 7

2. Background and Related Work 9

2.1 Collaborative Manufacturing 9
2.1.1 Concurrent Engineering , 9
2.1.2 Agile Manufacturing 11

2.2 Combinatorial Optimization 12
2.2.1 Deterministic Algorithms 14

2.2.1.1 Exact Algorithms 14
2.2.1.2 Approximate Algorithms 16

2.2.2 Stochastic Algorithms 18
2.3 Evolutionary Algorithms 18

2.3.1 Principal Techniques 20
2.3.1.1 Evolution Strategies 20
2.3.1.2 Evolutionary Programming 21
2.3.1.3 Genetic Algorithms 21

2.3.2 Theory and Applications 22
2.3.2.1 Evolutionary Operators 22

XV

xvi Network-Based Distributed Planning using Coevolutionary Algorithms

2.3.2.2 Theory 23
2.3.2.3 Applications 24

2.3.3 Techniques for Constrained Optimization 24
2.3.4 Multi-Node Algorithms 26

2.3.4.1 Parallel and Distributed Algorithms 26
2.3.4.2 Coevolutionary Algorithms 26

2.3.5 Techniques for Dynamic Environments 28
2.4 Agents 29
2.5 Distributed Problem Solving 31

3. Problem Formulation and Analysis 33

3.1 Introduction 33
3.2 General Problem Formulation 34

3.2.1 Constraints 37
3.2.2 Objectives 40
3.2.3 Optimization Problem 42
3.2.4 Complexity Analysis 42

3.3 Printed Circuit Assembly Problem 45
3.3.1 Complexity Analysis 48

3.4 Algorithm Applicability Analysis 48
3.4.1 Rationale 48
3.4.2 Problem Structure 49
3.4.3 Evaluation of Alternative Algorithms 50
3.4.4 Discussion 52

4. Theory and Analysis of Evolutionary Optimization 53

4.1 Introduction 53
4.2 Theoretical Foundation 54

4.2.1 Notation 54
4.2.2 General Algorithm 55
4.2.3 Basic Results 57

4.3 Convergence Analysis 58
4.3.1 Convergence for a Unimodal Objective 58
4.3.2 Convergence for a Bimodal Objective 61

5. Theory and Analysis of Distributed Coevolutionary Optimization 63

5.1 Introduction 63
5.2 Theory 65

Contents xvii

5.2.1 Notation 65
5.2.2 Local Convergence 65
5.2.3 Global Convergence 67

5.2.3.1 Convergence for a Unimodal Objective . . . 67
5.2.3.2 Convergence for a Coordinate Aligned Bi-

modal Objective 68
5.2.3.3 Convergence for an Arbitrarily Aligned Mul­

timodal Objective 69
5.3 Computational Delay Analysis 72

5.3.1 Centralized Computation 73
5.3.2 Distributed Coevolutionary Computation 73
5.3.3 Computational Advantage 73

6. Performance Evaluation Based on Ideal Objectives 79

6.1 Introduction 79
6.2 Gaussian Objectives 79
6.3 Planar Tile Layout Problems 83

6.3.1 Discussion 86
6.4 Design-Supplier-Manufacturing Problem 88

6.4.1 Representation 89
6.4.2 Evolutionary Operators 91
6.4.3 Test Problem Objective 91
6.4.4 Algorithm Performance 91

7. Coevolutionary Virtual Design Environment 95

7.1 Introduction 95
7.2 Application Domain 97

7.2.1 Configuration of the Networked Environment 98
7.2.2 Application-Specific Assumptions 100

7.3 Evolutionary Optimization 101
7.3.1 Representation 102
7.3.2 Evaluation and Models 103

7.3.2.1 Evaluation 103
7.3.2.2 Models 103

7.3.3 Centralized Optimization 105
7.3.3.1 Architecture 105
7.3.3.2 Algorithm 105

7.3.4 Distributed Coevolutionary Optimization 107

xviii Network-Based Distributed Planning using Coevolutionary Algorithms

7.3.4.1 Architecture 107
7.3.4.2 Algorithm 109

7.4 Simulation Environments I l l
7.4.1 CVDE Implementations I l l
7.4.2 Data Generation 113

8. Evaluation and Analysis 115

8.1 Introduction 115
8.2 Nature and Evolution of Planning Decisions 116
8.3 Strategy for Performance Evaluation 118

8.3.1 Performance Metrics 120
8.3.2 Factors of Interest 121

8.4 Performance Evaluation 121
8.4.1 Evaluation Over a Simulated Network 122

8.4.1.1 Coordination and Information Splicing . . . 122
8.4.1.2 Access Delays and Coordination Frequency . 127

8.4.2 Evaluation Over a Real Network 128
8.4.2.1 Expected Time Performance in Realistic

Settings 135
8.5 Applicability Analysis of the Frameworks 138

8.5.1 Characteristics of the Computational Environment . 138
8.5.2 Implementation Strategies 138

8.5.2.1 Proposal-A 139
8.5.2.2 Proposal-B 140
8.5.2.3 Discussion 141

9. Conclusions 143

9.1 Summary 143
9.2 Future Work 144

9.2.1 Multi-Criteria Optimization 144
9.2.2 Domain Heuristics 145
9.2.3 Distributed Convergence 145
9.2.4 Robust Optimization 146
9.2.5 Prototype and Model Development 147
9.2.6 Applications 147

9.2.6.1 IC Design and Manufacturing 147
9.2.6.2 Decentralized Air Traffic Management . . . 148

Contents xix

Appendix A Evolutionary Algorithm Theory 151

A.l Population Distribution Evolution 151
A.2 Proof of Positive Deflniteness 152

Appendix B Models for the Printed Circuit Assembly Problem 153

B.l Part 153
B.2 Design 153
B.3 Printed Circuit Board 154
B.4 Printed Circuit Board Fabrication Line 155
B.5 Printed Circuit Assembly Line 156

Bibliography 159

Index 169

Chapter 1

Introduction

1.1 Motivation

Advances in information technologies are driving fundamental changes in
the processes and organizations of global enterprises. In an increasingly
networked global marketplace, products and services are seldom created in
isolation and are instead being realized through strategic and dynamic part­
nerships between suppliers, contract manufacturers, and customers. How­
ever, as the numbers of these distinct entities increase and they get more
distributed, the complexity of forming efficient partnerships grows; it be­
comes more difficult to make ideal assignments (partnerships) with respect
to multiple criteria including cost and time. Fundamental to this complex­
ity is that each assignment has the potential to affect overall product cost,
and product realization time, and therefore assignments cannot be consid­
ered independent of one another. Due to this complexity it is increasingly
impossible to make these dynamic partnerships purely on the basis of prior
experience, and it becomes necessary to develop efficient planning systems
that can automate significant portions of the overall decision task. Such
systems access information available at multiple, logically interrelated, dis­
tributed databases in order to evaluate the consequences of the assignments.

Decision automation is achieved through efficient search of the dis­
tributed space of planning decisions, guided by an objective function whose
computation requires information efficiently gleaned from databases dis­
tributed over an inhomogeneous network environment. Generalized tools
that support scalable and efficient network-distributed search and decision­
making are therefore critical.

Efficient planning and decision-making in an inhomogeneous network
environment requires transcending technical hurdles at multiple hierarchi-

1

2 Network-Based Distributed Planning using Coevolutionary Algorithms

cal levels. At the network level a principal issue is the integration of het­
erogeneous local-area networks so data can be exchanged seamlessly and
efficiently across organizational boundaries. At a higher level, the middle­
ware level, a principal issue is the design of software systems and protocols
that facilitate efficient communication between distributed databases and
computing applications. A principal issue at the next level up, decision­
making in a heterogeneous network-distributed environment, is of particular
interest in this book. The challenge at this level is to develop computation­
ally efficient optimization and decision-making algorithms that access logi­
cally related information from distributed sites and manipulate it for some
decision-making purpose. An efficient decision-making scheme functioning
in this network-distributed environment leverages resources offered at the
middle-ware level, and the middle-ware level in turn leverages resources
available at the network level.

In a network-distributed environment internode communications are a
primary factor in system performance, and the decision-making algorithms
that function in this environment must demonstrate superior performance
while simultaneously economizing internode communications. These algo­
rithms must also scale well with the number of distributed information sites
that need to be accessed for decision-making. Development of the architec­
ture and algorithms that support efficient distributed decision-making at
an enterprise level, is the focus of this book.

1.2 Approach

The goal is a systematic development of scalable and efficient algorithms
that support distributed, network-based decision-making. First, a class of
distributed decision problems is selected. This class of decision problems
is the integrated design, supplier, and manufacturing planning for modular
products, where suppliers and manufacturing resources are distributed (see
Figure 1.1).

The mathematical structure of this planning task is given by min{tp(x) :
g(x) = 0 , i £ ^ + } , where x represents a complete decision vector, ip(-) is
a nonlinear objective function, and g(-) is an m-vector of constraint func­
tions. A complete decision vector x corresponds to a structured selection
from an available set of distributed resources. A particular decision problem
in this class is of interest throughout this book and consists of three assign­
ment problems (A\, A2, Az). The assignment problem A± is the assignment

Introduction 3

Designs

Manufacturing Resources

-n
^u

n
u

Parts Suppliers

Fig. 1.1 Structure of the integrated design, supplier, and manufacturing planning de­
cision problem. Lines with arrow heads indicate assignments. Dashed lines indicate
aggregates. Identical parts in various designs have solid lines between them.

of parts (from a parts library) to a design that satisfies a predetermined
functional specification. Multiple designs that satisfy the functional spec­
ification are possible. The assignment problem A<i is the assignment of
suppliers (from a list of available suppliers) who will supply the parts in
a design, and the assignment problem A3 is the assignment of designs to
available manufacturing resources. Each of these assignments contributes
to overall product cost and product realization time, and cannot be con­
sidered independent of one another. Therefore, the assignment problem
triple (Ai,A2,As) constitutes a set of highly coupled problems. Also, the
assignments have nonlinear (cannot be evaluated as weighted sums) effects
on product cost, and product realization time. A formal model of this
coupled nonlinear assignment problem class is developed and called the
design-supplier-manufacturing planning decision problem, and the formula­
tion reveals a complex structure with multiple variables, constraints, and
performance criteria.

An assignment problem is a discrete optimization problem. Discrete
optimization problems incur a heavy penalty due to dimensionality, since
problem sizes grow exponentially with the number of options along each di­
mension. Eventually, as the problem size grows or due to nonlinearities, it
becomes infeasible to utilize exact optimization algorithms and one is forced
to consider approximate algorithms. The design-supplier-manufacturing

4 Network-Based Distributed Planning using Coevolutionary Algorithms

planning decision problem consists of three assignment problems that are
highly coupled and nonlinear, and is an example of a hard discrete optimiza­
tion problem. The highly coupled and nonlinear characteristics inherent in
this problem class complicate application of exact optimization algorithms.

Evolutionary algorithms are capable of generating reliable solutions in
a time-efficient manner even for very large and complex discrete problems.
Moreover, they are highly adaptable and place minimal restrictions on
the nature of an optimization problem. The design-supplier-manufacturing
planning decision problem, an example of a complex discrete optimization
problem, is a good candidate for evolutionary optimization.

An integrated design, supplier, and manufacturing planner functions in
a network-distributed environment with distributed databases and applica­
tions that are accessed numerous times for decision-making. In this network
environment internode communications are a primary factor in system per­
formance, and the algorithms that function in this environment must ex­
ploit data locality to improve computational efficiency. Importantly, these
algorithms must demonstrate superior performance while simultaneously
economizing internode communications. This motivates development of a
novel class of coevolutionary algorithms based on distributed evolutionary
algorithm components and software agents as a network-efficient strategy
for concurrent, cooperative exploration of a highly coupled space of design,
supplier, and manufacturing decisions. In this computational model, the
search variables are partitioned among p nodes (see Figure 1.2). An evo­
lutionary algorithm at each of the p nodes performs a local evolutionary
search based on its own set of primary variables using local and rapidly
accessible information (from a local database) while the secondary variable
set at each node is clamped during this phase. An intercommunication be­
tween the nodes updates the secondary variables at each node. The local
search and intercommunication phases alternate, resulting in a cooperative
search by the p nodes.

To facilitate a deeper understanding of the advantages and limitations
of this class of algorithms, a theoretical foundation for these algorithms
is developed using techniques from stochastic process theory and math­
ematical analysis. First, a theoretical basis for centralized evolutionary
algorithms is specified in terms of construction and evolution of sampling
distributions over the feasible space. Next, this foundation is extended to
develop a general model of distributed coevolutionary algorithms. Conver­
gence and convergence rate analyses are pursued for certain basic classes
of objective functions, and analytical and simulation techniques are used

Introduction 5

rV

I

Networked
Computer

Local
Database

Evolutionary Agent

\ ® • © • • ® ® /
\ ^ Mobile Agents S^

1 •• • I

Primary Search Secondary Search
Variables Variables , Network

Search Variables

H 1 !<•»•. 1

Networked
Computer

~~~"% 
r. 

Local 
latabase 

Evolutionary Agent 

Mobile Agents 

Local \ 
Database \ 

Networked f^™JS \ 
Computer „ _ 1 

Evolutionary Agent 

x • ® • © ® 9 • / 
\ . Mobile Agen ts^ / 

/ I 

1 : ' ; 1 h^ 
Search Variables 

Search Variables 

Fig. 1.2 Distributed coevolutionary computation. 

to evaluate the performance of these algorithms when they execute in a 
network environment. 

As a case study in distributed, network-based decision-making, an im­
plementation and evaluation of the coevolutionary decision-making frame­
work that is particularly suited to distributed network-enabled design and 
manufacturing organizations is presented. This implementation, the Coevo­
lutionary Virtual Design Environment (CVDE), utilizes distributed evolu­
tionary agents and mobile agents as principal entities that generate and 
execute queries among distributed applications and databases to support 
a global optimization of design, supplier, and manufacturing planning de­
cisions for printed circuit assemblies. In this framework, an electronic in­
terchange of design, supplier, and manufacturing information facilitates a 
concurrent, cooperative, network-efficient evolutionary search for promising 
planning alternatives. During the course of the evolutionary optimization, 
the CVDE generates virtual designs (complete integrated planning deci­
sions) that are evaluated against an objective function based on cost and 



6 Network-Based Distributed Planning using Coevolutionary Algorithms 

time models. These computations require information collected dynami­
cally over a network. As the evolution proceeds, successive generations of 
virtual designs are created, and the population systematically converges 
towards promising integrated planning decisions. 

The methodology presented in this book can have a fundamental impact 
on the principles and practice of engineering in industrial product develop­
ment in the network-based distributed environment that is emerging within 
and among corporate enterprise systems. In addition, the conceptual frame­
work of the approach to distributed decision systems presented in this book 
may have much wider implications for network-based systems ranging from 
intelligent agent-based browser systems, to enhanced consumer and busi­
ness services, and intelligent search techniques in scientific and commercial 
databases. 

1.3 Principal Contributions 

Towards the broad goal of systematic development of scalable and efficient 
evolutionary techniques for network-distributed decision-making, the prin­
cipal contributions of this book are as follows: 

• Problem formulation and analysis 

— Formal modeling of a class of coupled nonlinear assignment 
problems applicable to a variety of assembly oriented design-
manufacturing domains, especially integrated design-supplier-
manufacturing planning. 

— An analysis of the computational complexity of this problem 
class. 

— An evaluation of the applicability of alternative optimization 
algorithms to instances of this problem class, based on an 
analysis of the problem structure. This evaluation identifies 
this problem class as a good candidate for evolutionary opti­
mization. 

• Evolutionary optimization 

— Development of a theoretical foundation for evolutionary al­
gorithms using techniques from stochastic process theory and 
mathematical analysis. 

— Extension of this framework to develop a general model of 
distributed coevolutionary algorithms applied to optimization 



Introduction 7 

problems for which the variables are partitioned among p 
nodes. 

— Convergence and convergence rate analyses for basic classes of 
objective functions, and an evaluation of the performance of 
these algorithms when they execute in a network environment. 

• Prototyping and evaluation of a network-based coevolutionary de­
cision support system 

— Development of the CVDE that functions in a network-
distributed environment and utilizes evolutionary agents and 
mobile agents as principal computational entities that facili­
tate a network-efficient global optimization in a highly coupled 
space of design, supplier, and manufacturing decisions. 

— Evaluation, and analysis of the CVDE for design-
manufacturing decision support, and demonstration of the 
CVDE for printed circuit assembly planning. 

1.4 Book Outline 

Chapter 2 presents a review of the literature on topics underlying the re­
search themes of the book. First, collaborative manufacturing is discussed. 
A description of competing deterministic and stochastic algorithms for com­
binatorial optimization is presented next. Next, an overview of evolutionary 
algorithm research is presented, followed by a discussion of certain special 
purpose evolutionary techniques useful in the distributed decision prob­
lem domain. Finally, overviews of the literature on agents and distributed 
problem solving are presented. 

Chapter 3 first presents a formal model and computational complex­
ity analysis of the problem of integrated design, supplier, manufacturing 
planning for modular products; the design-supplier-manufacturing prob­
lem. The general formulation is applicable to a variety of assembly-
oriented design-manufacturing domains. The formulation is then adapted 
to model design-supplier-manufacturing planning for printed circuit assem­
blies. Next, an evaluation of the applicability of alternative optimization 
algorithms to this problem class is presented. This evaluation, based on 
the structure of the problem, supports the application of evolutionary op­
timization techniques. 

Chapter 4 presents a theoretical foundation for a class of centralized 
evolutionary algorithms, wherein the evolution is described in terms of 



8 Network-Based Distributed Planning using Coevolutionary Algorithms 

construction and iterative progression of sampling distributions over the 
feasible space. This foundation is used to derive global convergence and 
convergence rate results for certain basic classes of objective functions. 

Chapter 5 presents an extension of the theoretical foundation presented 
in the previous chapter to develop a general model of distributed coevolu­
tionary algorithms applied to optimization problems for which the variables 
are partitioned among p nodes. Global convergence and convergence rate 
results similar to those in the previous chapter are developed for this class 
of evolutionary algorithms. 

Chapter 6 presents an evaluation of the relative generational and 
network-based time performance of the centralized and distributed algo­
rithms on several ideal objective function classes. Evolutionary techniques 
for the general design-supplier-manufacturing problem class are also pre­
sented. 

Chapter 7 describes the architecture and implementation of the coevo­
lutionary decision-making framework, CVDE, which utilizes evolutionary 
agents and mobile agents to support network-efficient global optimization 
of design, supplier, manufacturing planning decisions for printed circuit 
assemblies. 

Chapter 8 presents a detailed evaluation of the centralized and dis­
tributed coevolutionary decision-making frameworks, identifies the princi­
pal factors that affect their network-based performance, and analyzes the 
requirements for applicability of the computational models to distributed 
network-enabled design and manufacturing organizations. 

Chapter 9 presents a summary of the work, discusses topics for future 
research, and presents novel applications for the framework presented in 
this book. 



Chapter 2 

Background and Related Work 

In this chapter, background information and a review of the literature on 
topics in collaborative manufacturing, combinatorial optimization, evolu­
tionary algorithms, agents, and distributed problem solving are presented. 
Section 2.1 presents a review of the literature on collaborative manufactur­
ing. In Section 2.2, a description of competing deterministic and stochastic 
algorithms for combinatorial optimization is presented. Section 2.3 reviews 
the literature on evolutionary algorithms. Section 2.4 presents background 
information on agents, and Section 2.5 reviews the literature in the field of 
distributed problem solving. 

2.1 Collaborative Manufacturing 

2.1.1 Concurrent Engineering 

Traditionally, design and manufacturing of products are planned and exe­
cuted with little or no interaction between the two phases. These decisions 
are chosen using the experience base in an organization and are often dif­
ficult to adapt to changing needs. Concurrent engineering is based on 
an argument that most of the life cycle cost of a product is determined 
at the design stage, and design choices significantly influence a product's 
manufacturability [Poli et al., 1992]. Concurrent engineering stresses the 
importance of combining concerns of marketing, production, field service, 
and performance early in the design process, leading to multi-disciplinary 
collaborative design and manufacturing. 

The Design for Assembly (DFA), Design for Manufacture (DFM), and 
Design for Manufacture and Assembly (DFMA) strategies were introduced 
by [Boothroyd and Dewhurst, 1983; Boothroyd, 1994]. DFM focuses on use 

9 



10 Network-Based Distributed Planning using Coevolutionary Algorithms 

of selected materials and manufacturing processes for parts of an assembly, 
finding the most effective design, utilizing manufacturability as an impor­
tant criterion. DFA consists of a set of rules, application of which leads 
to designs with fewer and simpler parts that are easier to orient, assemble, 
and disassemble. DFMA tools encourage interaction between design and 
manufacturing groups and are oriented mainly towards reduction of overall 
product cost. Current DFMA techniques do not consider lead times for 
parts procurement or manufacturing. They are batch-oriented tools using 
static databases and legacy models to provide design guidance. 

It is reported by [Nevins et al, 1989] that about 70% of the life cycle 
cost of a product is determined at its design stage, and they argue for a 
systematic early integration of design and manufacturing, and for including 
concerns of marketing, field service, and performance. Also, they empha­
size advantages of achieving product variety through a combination of part 
options from product submodules. Such a combinatoric method of achiev­
ing model-mix production leads to a large number of product varieties by 
utilizing only a small number of options in each submodule. [He and Ku-
siak, 1997] consider the problem of designing low cost assembly systems 
for a family of modular products. Product varieties are achieved through 
component swapping among alternatives in a submodule, similar to the 
combinatoric approach of [Nevins et al., 1989]. Their approach is specifi­
cally intended for production of customized modular products at low cost. 
Their heuristic optimization algorithm simultaneously considers assembly 
operation requirements and manufacturing scheduling issues [Cheng and 
Sin, 1990]. 

An optimization approach for design of products in a concurrent en­
gineering framework is presented by [Dowlatshahi, 1992]. He focuses on 
design of mechanical products with parts that can be assembled. His al­
gorithm involves modular decomposition of a product, establishing its fea­
sible parts space through a combinatoric approach, reducing the number 
of feasible options, calculating utility values of design decisions, and finally 
optimization in the space of design decisions. He formulates the product 
design problem as a constrained integer linear program. 

Engineous, a novel method for multidisciplinary integration of product 
design is described in [Tong et al, 1992]. Their system utilizes genetic algo­
rithms [Holland, 1994], expert systems, domain knowledge, object-oriented 
programming, and numerical optimization methods for integrated prod­
uct design and engineering. Numerical optimization and expert systems 
are used to generate initial trial designs, and later genetic algorithms are 



Background and Related Work 11 

utilized to search the parameter space more thoroughly. Among other engi­
neering design application examples, concurrent preliminary design of air­
craft engine turbine blades is reported. 

The problem of DFMA when competing manufacturing facilities are 
globally distributed and offer alternate process technologies for building a 
product is considered by [Taylor, 1997]. He poses the decision problem as a 
constrained integer linear program based on manufacturing costs including 
design costs, production costs, inventory costs, and transportation costs. 
He assumes availability of all costs via cost models. 

2.1.2 Agile Manufacturing 

The concept of "agility" was first introduced in 1991 by an industry-led 
group which observed that traditional manufacturing organizations were 
unable to keep up with rapid changes in the business environment [ame, 
1991a; ame, 1991b]. The term agile manufacturing is used to character­
ize organizations that may frequently change to take advantage of new 
opportunities in the marketplace. Speed to market, ability to satisfy indi­
vidual consumer or commercial customer preferences, and responsiveness 
to public concerns about social and environmental impacts of manufac­
turing are listed as determining factors of competitive advantage for an 
agile manufacturing environment [ame, 1991a]. The study [ame, 1991a; 
ame, 1991b] suggests that agile manufacturing systems favor smaller-scale 
modular production facilities where enterprises collaborate to contribute to 
new capabilities. 

Recent research [Sanderson et al, 1994; Hocaoglu and Sanderson, 1996; 
Song and Nagi, 1997] has recognized the critical role of information in­
frastructure of design-manufacturing organizations in development of these 
agile capabilities, particularly in the context of more global and distributed 
organizations. [Sanderson et al., 1994] introduced the concept of multi-
path agility to improve productivity and response time using alternative 
resources and pathways accessed through improvements in information in­
frastructure. In this model of agility (Figure 2.1), improvement in through­
put is not only achieved by shortening the response of individual entities 
on a single path, but also by selecting alternative routes to maximize the 
responsiveness of the entire process. 

The Computer-Aided Manufacturing (CAMnet) project [Sobolewski 
and Erkes, 1995] presents enablers for delivering manufacturing services 
across virtual enterprises. Standards such as HTTP, HTML, and TCP/IP 



12 Network-Based Distributed Planning using Coevolutionary Algorithms 

CUSTOMERS 

( CI 1 f €3 1 FcT 
J^f^ 

SUPPLIERS 

Fig. 2.1 Multi-path agility improves access to and selection of alternative resources. 

are utilized for creating and delivering active documents to enhance collab­
oration between components of the virtual enterprise. 

2.2 Combinatorial Optimization 

Combinatorial optimization problems involve a search among a finite set of 
mutually exclusive alternatives, for those that minimize (resp. maximize) 
some desired criteria. Such problems appear very frequently in science, 
engineering, and management. 

Definition 2.1 (Combinatorial optimization problem) A combina­
torial optimization problem is a pair (X,tp), where: (1) X is a finite set of 
feasible points, (2) ij), the cost function, is a mapping ip : X — \ M., and the 
goal is to find an Xj £ X such that ip{xj) < ip(xi) Va;* € X. Such an Xj is 
called the global minimum. • 

Often, finding the global minimum for a problem instance can be ex­
tremely time consuming since most combinatorial optimization problems 
are NP-Hard [Papadimitriou and Steiglitz, 1982]. However, it is often pos­
sible to find a solution that is better than others in a limited region of 
interest. This region of interest is called a neighborhood, and the solution 
in this region that is better than others is called a local minimum. 



Background and Related Work 13 

Definition 2.2 (Neighborhood) Consider an instance (X,ip) of an op­
timization problem. A neighborhood is a mapping N : X —> 2X. • 

Definition 2.3 (Local minimum) Consider an instance (X,ip) of an 
optimization problem, a feasible point Xi € X, and a set N(xi). Xj 6 N(xi) 
is a local minimum if tp(xj) < ip(xk) Vxjt € N(xi). • 

Discrete choice problems incur a heavy penalty due to dimensionality, 
since the number of options grows explosively with the number of options 
along each dimension. This rapid and exponentially growing options space 
categorically rules out brute-force enumeration as a search technique for 
any other than problems of trivial size. Often, enumeration of only a tiny 
fraction of the options space is computationally feasible. Size of the search 
space is an issue only when algorithms use enumeration as a strategy. Un­
fortunately, for most combinatorial optimization problems, the known al­
gorithms require some form of enumeration [Parker and Rardin, 1988]. 

Combinatorial optimization problems can be formulated as integer pro­
grams. This formulation scheme provides a uniform and convenient format 
for working with them. The general integer program (IP) formulation for 
a combinatorial optimization problem is: 

min {iP(xi) | g(xi) = 0; xt £ Z^} (2.1) 
1<Z< j/^l 

where the feasible set A" is a constrained vector space of positive integers, 
and each X{ S X is an n-vector of positive integers that satisfies an m-vector 
of constraint functions g(-). 

When the function to be minimized and the constraints are linear, the 
general integer program is reduced to an integer linear program (ILP): 

min {cTXi I Axt = b; Xi € IVt (2.2) 
\<i<\X\ 

where c is an n-vector of reals, A is an m x n matrix of reals, and b is 
an m-vector of reals. 

Algorithms for integer programming can be broadly classified into two 
groups-deterministic, and stochastic. Deterministic algorithms use pre­
dictable and known search transitions, while stochastic algorithms incor­
porate probabilistic transitions. The class of deterministic algorithms can 



14 Network-Based Distributed Planning using Coevolutionary Algorithms 

be further classified into two subclasses-ercact, and approximate. Exact de­
terministic algorithms are guaranteed to find the global minimum, whereas 
in the case of approximate deterministic algorithms, there is no guarantee 
of finding the global minimum. Stochastic algorithms on the other hand 
are approximate algorithms. Eventually, as the size of a problem grows, it 
becomes computationally infeasible to employ exact algorithms, and one is 
forced to turn to approximate algorithms, either deterministic or stochastic. 
This is the basis for the following discussion. 

2.2.1 Deterministic Algorithms 

This section discusses various exact and approximate deterministic algo­
rithms applicable to integer programming problems. 

2.2.1.1 Exact Algorithms 

• Linear Programming (LP): A commonly used scheme for solving 
an ILP (2.2) using linear programming [Papadimitriou and Stei-
glitz, 1982; Goldfarb and Todd, 1989], allows the feasible set to 
assume positive real values and the solutions are rounded to the 
nearest integers. This technique is also known as solving an LP-
relaxation of an ILP. This scheme is satisfactory when the variables 
assume large values and are not so sensitive to integer rounding. 
In other cases and especially when the variables can assume only 
binary values, this method can lead to solutions very far from op­
timal. However, in special situations when the matrix A is totally 
unimodular,1 the optimal solution of the LP-relaxation is integral 
and is also the optimal solution to the ILP [Gondran and Minoux, 
1984]. When the general IP (2.1) has a nonlinear cost function, a 
strategy is to approximate the nonlinearities using piecewise lin­
ear functions, making the IP amenable to solution via linear pro­
gramming. [Papadimitriou and Steiglitz, 1982] describe various 
techniques for handling several types of nonlinearities in the cost 
function and constraint functions via mathematical reformulations 
so the IP can be solved using linear programming. Exploitation of 
the structure of the problem and intimate knowledge of the nature 
of the cost function are key components of all the schemes that uti-

1 All square submatrices extracted from A have determinants equal to 0 ,1 , or — 1, 
which implies that all entries of A are elements of the set {0,1, —1}. 



Background and Related Work 15 

lize a linear programming solver for an IP. Despite the possibility 
for various LP reformulations of an IP, exact solutions are generally 
possible only for small IPs and that too with a very heavy relative 
time penalty. 

• Cutting-Planes: A popular strategy for achieving exact integral 
solutions to an LP-relaxation of an IP when the constraint matrix 
A cannot be cast in a totally unimodular form, is via cutting-
planes [Papadimitriou and Steiglitz, 1982; Gondran and Minoux, 
1984; Nemhauser and Wolsey, 1989]. A cutting-plane algorithm 
iteratively adds linear constraints to the feasible hyper volume 
identified by the LP solver. These hyper planes iteratively "cut 
away" portions of the feasible region so that integer feasible so­
lutions are not excluded, and ultimately elements of the solution 
set from which the optimal solution is selected are all integral and 
feasible. However, a cutting-plane algorithm is efficient only in a 
limited class of IPs in which the constraint matrix A is "almost 
totally unimodular" (one or two rows of A have integral elements 
of any value). 

• Branch-And-Bound: Branch-and-bound [Parker and Rardin, 
1988; Nemhauser and Wolsey, 1989] is a classical technique for in­
teger programming. This algorithm is based on the concept of 
"intelligently" enumerating feasible points of a combinatorial op­
timization problem without utilizing "brute-force." The method 
doesn't necessarily enumerate "all" points, but selects subtrees to 
search using bounds on possible outcomes. The feasible space is 
iteratively partitioned to yield subproblems, each subproblem is 
solved to obtain bounds on its cost function, subproblems whose 
lower bounds are higher than the known smallest upper bound 
are eliminated, promising subproblems are further partitioned, and 
the process of partitioning, bounds evaluation, and elimination 
or consideration is repeated until the best known lower bound 
does not show improvement. Branch-and-bound is a recursive 
strategy that is based on a tree search, where the nodes of a 
tree represent subproblems and the branches of a node are vis­
ited only if necessary. Branch-and-bound techniques frequently 
use LP solvers in order to compute bounds for subproblems and 
are able to guarantee optimality of a solution without exhaustively 
enumerating the feasible space. However, there are practical lim­
itations to the use of this technique. Application of this tech-



16 Network-Based Distributed Planning using Coevolutionary Algorithms 

nique requires that problems be easily decomposable with mini­
mal coupling between subproblems. Also, in many instances in­
teger feasible solutions are not readily available, making elimi­
nation of subproblems cumbersome, and in this case the algo­
rithm fails as a result of explosive memory requirements [Lee and 
Mitchell, 1999]. Nevertheless, branch-and-bound remains a pop­
ular computational strategy for integer programming and the lit­
erature contains references to hybrid techniques (which improve 
on the basic technique) that utilize combinations of linear pro­
gramming, branch-and-bound, and cutting-planes [Mitchell, 1999a; 
Mitchell, 1999b]. 

• Dynamic Programming: Dynamic programming [Bellman and 
Dreyfus, 1962; Papadimitriou and Steiglitz, 1982] is related to 
branch-and-bound to the extent that an "intelligent" enumeration 
of the feasible space is performed, but differs from branch-and-
bound due to the strategy of working backwards from the final 
decision to the earlier ones. An application of this technique is lim­
ited to problems in which locally optimal decisions can be chained 
sequentially in order to generate globally optimal decisions, and to 
those problems that easily admit decomposition into well defined 
subproblems. In problems with multiple dimensions, dynamic pro­
gramming runs into time and space problems due to the need to 
store an exponentially growing number of decision tables. Branch-
and-bound has proved more effective than dynamic programming 
for many problem types and is thus more preferred. 

2.2.1.2 Approximate Algorithms 

When one is faced with optimization of an integer program with a compli­
cated structure or of a large and practical size, seeking an exact solution 
may not be computationally feasible. In these practical instances, one is 
forced to consider approximate algorithms that can generate "high-quality" 
solutions in a "time-efficient" manner. 

• All the exact optimization algorithms discussed in Section 2.2.1.1 
can be utilized to generate approximate solutions, and as discussed 
earlier, this is inevitable for practical problem sizes. 

• Heuristics: Heuristics [Pearl, 1984] are "tailored-made algo­
rithms" based on rules that exploit the structure of a special 



Background and Related Work 17 

case of a given problem, and can often generate optimal solu­
tions in polynomial time for these special cases. Moreover, these 
schemes can generate good solutions even for general problem in­
stances of practical size. Some examples of popular heuristics 
are the Lin-Kernighan heuristic [Lin and Kernighan, 1973] for a 
symmetric traveling salesman problem,2 the Kernighan-Lin heuris­
tic [Kernighan and Lin, 1970] for graph partitioning, and the 
Christofides heuristic [Papadimitriou and Steiglitz, 1982] for the 
metric traveling salesman problem.3 Some heuristics are applica­
ble more generally-the "greedy heuristic" for instance, in which at 
each stage the best alternative among the feasible alternatives is 
chosen. The greedy heuristic has been applied to numerous combi­
natorial optimization problems, and works well for certain problems 
for which the structure is especially suitable to the strategy, but 
works very poorly on others [Parker and Rardin, 1988]. 

• Tabu Search: Tabu search [Glover, 1986; Hertz et al., 1997] is 
gaining application for combinatorial optimization in spite of the 
fact that there is no known proof of its convergence, because it is an 
efficient optimization scheme for many problems. A Tabu search 
algorithm works by not only retaining information of the best solu­
tion detected, but also by systematically memorizing the itinerary 
through previous solutions. This memory helps restrict some search 
transitions in the neighborhood of a current solution, and thus dis­
courages cycling among recently visited solutions. However, re­
strictions are relaxed when a solution has some preferred charac­
teristics. The search selects the best solution from a set of feasible 
solutions that are subject to restrictions and relaxations. Later, 
the lists maintaining restriction and relaxation information are up­
dated. The search is continued until some stopping criterion is met. 
Performance of a Tabu search algorithm is influenced significantly 
by a large number of parameters, and these need to be fine tuned 
for various problem domains. Also, maintaining and updating the 
search memory lists can be quite complicated and cumbersome. 
These drawbacks restrict the elegance of Tabu search as an opti­
mization approach. 

2 A traveling salesman problem of n cities where the nxn distance matrix is symmetric. 
3 A traveling salesman problem where the arrangement of cities satisfies the triangle 

inequality. 



18 Network-Based Distributed Planning using Coevolutionary Algorithms 

2.2.2 Stochastic Algorithms 

Evolutionary algorithms and simulated annealing are two popular stochas­
tic algorithms applicable to integer programming problems. These algo­
rithms do not rely on problem structure as much as most deterministic opti­
mization schemes, and are more suitable in problem domains with cost func­
tions having one or more of the following characteristics: time-variation, 
complexity, high dimension, nonlinearity, noise, nondifferentiablity. Due 
to these favorable characteristics and because they do not make strong as­
sumptions regarding the cost function, these algorithms are easy to adapt 
to various problem domains and often obviate the development of intricate 
deterministic algorithms. 

• Evolutionary Algorithms: This discussion is presented in Sec­
tion 2.3. 

• Simulated Annealing: Simulated annealing [Kirkpatrick et al., 
1983] is based on an analogy with the physical process of anneal­
ing, whereby a lattice structure of a solid is achieved by heating 
the solid to its melting point, and then slowly cooling it until 
it solidifies to a low-energy state. From the perspective of com­
binatorial optimization, simulated annealing works by randomly 
picking feasible solutions, improving on a solution by always ac­
cepting better-cost neighbors if they are selected, and allowing for 
a stochastically guided acceptance of worse-cost neighbors. The 
probability of acceptance of worse-cost neighbors decreases gradu­
ally, consistent with the analogy of gradual cooling of the heated 
solid. Simulated annealing, similar to evolutionary algorithms, has 
guaranteed asymptotic convergence behavior. In fact, a simulated 
annealing algorithm is a special case of a single-individual-evol­
utionary-algorithm that does not employ the recombination oper­
ator and uses a mutation operation for search. The most cited 
drawback of simulated annealing in combinatorial optimization, is 
speed of convergence. [Aarts et al., 1997] present a summary of 
various speedup techniques in the literature. 

2.3 Evolutionary Algorithms 

Evolutionary Algorithms (EAs) include genetic algorithms [Goldberg, 
1989; Holland, 1994], evolutionary programming [Fogel et al., 1966; 



Background and Related Work 19 

Fogel, 1995], evolution strategies [Back, 1996], and genetic program­
ming [Koza, 1992]. The principles of these related techniques define 
a general paradigm that is based on a simulation of natural evolution. 
EAs perform their search by maintaining at any time t a population 
V(t) = {P1(t),P2(t),P3{t),--- ,Pp(t)} of individuals. "Genetic" operators 
that model simplified rules of biological evolution are applied to create 
the new and desirably more superior population V(t + 1). This process 
continues until a sufficiently good population is achieved, or some other 
termination condition is satisfied. Each Pi(t) G V(t), represents via an in­
ternal data structure, a potential solution to the original problem. Choice 
of an appropriate data structure for representing solutions is very much an 
"art" than "science" due to the plurality of data structures suitable for a 
given problem. However, choice of an appropriate representation is often 
a critical step in a successful application of EAs, and effort is required to 
select a data structure that is compact, minimally superfluous, and can 
avoid creation of infeasible individuals. For instance, if the problem do­
main requires finding an optimal integer vector from the space defined by 
dissimilarly bounded integer coordinates, it is more appropriate to choose 
as a representation an integer-set-array4 instead of a representation capable 
of generating bit strings.5 Closely linked to choice of representation of so­
lutions, is choice of a fitness function ip : V(-) —> R, that assigns credit to 
candidate solutions. Individuals in a population are assigned fitness values 
according to some evaluation criterion. Fitness values measure how well 
individuals represent solutions to the problem. Highly fit individuals are 
more likely to create offspring by recombination or mutation operations. 
Weak individuals are less likely to be picked for reproduction, and so they 
eventually die out. A mutation operator introduces genetic variations in 
the population by randomly modifying some of the building blocks of indi­
viduals. Evolutionary algorithms are essentially parallel by design, and at 
each evolutionary step a breadth search of increasingly optimal subregions 
of the options space is performed. Evolutionary search is a powerful tech­
nique of solving problems, and is applicable to a wide variety of practical 
problems that are nearly intractable with other conventional optimization 
techniques. Evolutionary search schemes do not guarantee convergence to 
the global optimum in a predetermined finite time, but they are often capa-

4An integer-set-array is an array of bounded sets of integers. 
5 A representation that generates bit strings can create many infeasible individuals, 

and is certainly longer than a more compact sequence of integers. [Michalewicz, 1996] 
argues similarly. 



20 Network-Based Distributed Planning using Coevolutionary Algorithms 

ble of finding very good and consistent approximate solutions. Moreover, 
they are guaranteed to asymptotically converge under mild assumptions. 

2.3.1 Principal Techniques 

Evolution strategies, evolutionary programming, and genetic algorithms are 
generally considered the three principal evolutionary techniques in wide use, 
and are discussed below. 

2.3.1.1 Evolution Strategies 

Evolution Strategies (ESs) are suitable for optimization in continuous pa­
rameter spaces. ESs were developed to tackle parameter optimization prob­
lems, by Rechenberg and Schwefel in Germany during the 1960s [Back, 
1996; Back and Schwefel, 1996]. ESs were first applied to hydrodynamical 
problems such as shape optimization of pipes, drag minimization of plates, 
and structure optimization of nozzles. The method employs a continuous 
representation and a mutation operator working on a single individual, to 
create a new individual. The better of the parent and offspring is selected 
to survive while the other is discarded. This simple strategy is known as the 
(1 + 1)-ES. Population oriented ESs are presented in detail in [Back, 1996; 
Back and Schwefel, 1996]. In the (/J, + 1)-ES, /z > 1 parents create one 
offspring using recombination and mutation operations, fi best survivors 
from the union of /i parents and 1 offspring are selected to constitute the 
next generation. This is equivalent to replacing the worst parent with the 
offspring if it is better than the worst parent. In the (fi, A)-ES, where 
A > fj, > 1, fi parents create A offspring using recombination and muta­
tion, and the best fi offspring deterministically replace the parents. It is 
possible that the best individual at generation t + 1 is worse than the best 
individual at generation t. This policy of acceptance of temporary dete­
rioration is sometimes useful to prevent convergence to a local optimum. 
In the (/x + A)-ES, fx parents create A offspring using recombination and 
mutation, and the best \i survivors are chosen from the union of /x parents 
and A offspring. This ES guarantees a monotone improvement in quality 
of solutions, (/i, A)-ES and (/i + A)-ES are currently the commonly used 
evolution strategies. In both schemes, each individual in a population is 
a concatenation of a string of real valued object variables and a string of 
strategy variables. From a theoretical perspective, ESs have been shown to 
have asymptotic convergence behavior, and results on convergence rate are 



Background and Related Work 21 

available for simple test functions [Back, 1996]. 

2.3.1.2 Evolutionary Programming 

Evolutionary Programming (EP) was developed by [Fogel et al., 1966] in the 
United States during the 1960s. The original form of EP was designed for 
operation on finite state machines. However, modern application of EP has 
gravitated towards continuous parameter optimization, and currently EP 
competes with ESs for this application domain [Fogel, 1995]. The method 
works with a population /j, > 1 parents that generate ^ offspring using a 
mutation operation, /i best survivors from the union of \i parents and /x 
offspring are selected to constitute members of the next generation. EP 
can be viewed as a special case of a (fi + /i)-ES when the recombination 
operation is disabled. Current EP methods are very similar to ESs, but with 
some differences in selection operations [Fogel, 1995; Back, 1996; Back and 
Schwefel, 1996], and as a result they have convergence results similar to 
that of ESs. 

2.3.1.3 Genetic Algorithms 

Genetic Algorithms (GAs) were developed by [Holland, 1994] in the United 
States during the 1970s, and significantly extended by [De Jong, 1975] 
and [Goldberg, 1989]. The original GA developed by Holland uses a bi­
nary representation of individuals and creates offspring primarily through 
recombination of genetic material from selected parent pairs; mutation is 
utilized with a low probability. Early popularity of a binary representa­
tion for GAs is due to Holland's Schema Theory, which tries to analyze 
GAs in terms of their expected schema sampling behavior. [Holland, 1994; 
Goldberg, 1989] provide detailed descriptions of the theory, but in short, 
the theory claims that short, low-order,6 above average substrings receive 
exponentially increasing trials in subsequent generations. [Rudolph, 1994; 
Rudolph, 1996] has shown that regardless of the operations used, a GA that 
does not transfer the best solution in a given generation to the successive, 
will not converge, and the GA that performs this member transfer (also 
called elitism) will asymptotically converge. However, general results on 
convergence rates for GAs are not yet available. Recently, the signature bi­
nary string representation that distinguishes GAs from other EA methods 
has come under scrutiny. [Back and Schwefel, 1996] argue that a binary 

6 With only a few specified bit positions, and the others being "don't cares." 



22 Network-Based Distributed Planning using Coevolutionary Algorithms 

representation has serious disadvantages due to its propensity to further 
complicate an already nontrivial cost function by introducing multimodal-
ity. Alternate representations that are more apt for a problem domain have 
received considerable attention [Michalewicz, 1996]. 

2.3.2 Theory and Applications 

The form of an EA that is preferred in this book is shown below. 

Algorithm 2.1 (Evolutionary algorithm) 
t = 0; 
i n i t i a l i z e V(t); 
while ( terminat ion condi t ion != t rue ) { 

evaluate V(t); 
V(t)' = s e l ec t V(t)\ 

V{t = t + 1) = recombine and/or mutate V(t)'; 

} 

A discussion of the evolutionary operators follows. 

2.3.2.1 Evolutionary Operators 

Initialization for a EA can be done either randomly or seeding may be used 
to bias the search process. However, the latter initialization strategy may 
lead to poor convergence if the seeding algorithm generates very similar 
solutions for initial consideration [Burke et at, 1998]. 

The evaluation process assigns to each Pi(t) £ V(t) a fitness score in 
the space of reals. In practice, the fitness function computation consists of 
three steps and is given by ij) = ipf oipso ip0, where tp0 : V(t) —• M. assigns 
an objective score (cost) to each Pi(t) £ V(t), ips '• R —• R is a function 
that scales objective scores, and ipf : R —• R is a fitness mapping.7 As 
an EA search proceeds, the average fitness of a population may be almost 
equal to the member with the best fitness, and all members might have an 
equal chance of reproduction leading to a random search using average indi­
viduals [Goldberg, 1989]. Scaling methods such as Linear Scaling can offset 
this problem by maintaining the ability to discriminate between population 
members as the search proceeds. Other popular scaling methods are the 

7Such a functional decomposition allows one to set fitness maximization as the goal 
regardless of the nature (maximization or minimization) of the underlying optimization 
problem. 



Background and Related Work 23 

Sigma Truncation method to deal with negative objective scores, and the 
Power Law Scaling method to manipulate search sensitivity [Michalewicz, 
1996]. 

The role of the selection process is to encourage more fit individuals to 
reproduce and to discourage lesser fit individuals. Various selection schemes 
such as Linear, Proportional, Truncation, Uniform are described by [Blickle 
and Thiele, 1997], and are analyzed by [Chakraborty et a/., 1997]. 

Various recombination and mutation schemes for EAs are reported 
in [Goldberg, 1989; Back, 1996; Michalewicz, 1996]. A recombination op­
eration allows offspring to receive portions of genetic information from var­
ious parents, while a mutation operation introduces new genetic material 
into the population. Formerly, EAs were seen as capable of uniform per­
formance over a wide problem range. However, the more contemporary 
view acknowledges the fact that specific problems require customized setups 
for satisfactory performance. An EA's search performance is also signifi­
cantly influenced by the values of its various parameters such as population 
size and probability of mutation. Parameter setting has received consid­
erable attention in the EA community [De Jong, 1975; Grefenstette, 1986; 
Smith, 1997; Back, 1997; Spears, 1997]. Recently it has been demonstrated 
that parameter adaptation during the search based on the incorporation of 
expert knowledge is superior to static parameter setting and significantly 
improves convergence performance [Subbu and Bonissone, 2003]. 

2.3.2.2 Theory 

Theoretical analyses of evolutionary algorithms have followed diverse 
tracks. The "Schema Theory" [Holland, 1994] approach represents an early 
attempt to explain behavior of GAs. [Srinivas and Patnaik, 1996] report 
the use of this theoretical foundation to derive results on GA behavior, 
and [Wright, 1999] has suggested an extension of the basic results from 
which Holland's result follows as a corollary. However, the theory has come 
under close scrutiny [Miihlenbein, 1997; Back and Schwefel, 1996], and it 
is argued that the theory due to Holland is unable to predict behavior of 
practical GAs. [Stephens and Waelbroeck, 1999] argue that in general there 
is no preference for short low-order schemata as is generally believed due 
to Holland's results. 

The population of an EA depends purely on the state of the previous 
population, so tools from "Markov Chain" theory have found a natural 
application in modeling EA behavior [Davis and Principe, 1993; De Jong 



24 Network-Based Distributed Planning using Coevolutionary Algorithms 

et al, 1994; Spears and De Jong, 1996]. However, this approach suffers 
from the encapsulation of information at a very fine level of granularity 
complicating the derivation of useful predictive results. 

A promising line of theoretical investigation has been the modeling of 
EAs as a class of global random search methods [Peck and Dhawan, 1995; Qi 
and Palmieri, 1994; Vose and Wright, 1995], which allows a more compact 
and elegant modeling of EAs. Some of the other approaches to modeling EA 
behavior are the "Statistical Mechanics" formulations of [Priigel-Bennett 
and Shapiro, 1994; Shapiro et al, 1994], the "Order Statistics" formulation 
of [Back, 1995], and work due to [Grefenstette, 1995] that attempts to 
build predictive models based on the fitness distributions of evolutionary 
operators. 

2.3.2.3 Applications 

In spite of the fact that the last word in EA theory is yet to be writ­
ten, EAs are finding increasing use in problem domains such as the gen­
eralized assignment problem [Wilson, 1997; Chu and Beasley, 1997], 0/1-
knapsack problem [Raidl, 1998], scheduling [Deb and Chakroborty, 1998; 
Hart et al, 1998], in manufacturing optimization [Joines et al, 1996; 
Pierreval and Tautou, 1997], in nuclear reactor refueling planning [Back 
et al., 1996], in DNA sequencing [Cedeho et al., 1995], in engineering de­
sign optimization [Powell, 1990; Tong et al, 1992], robot path planning [Ho-
caoglu, 1997], and many others. 

2.3.3 Techniques for Constrained Optimization 

EAs are finding increasing application in mathematical programming do­
mains, and in order to compete with conventional algorithms and to tackle 
hard practical problems, it is essential for EAs to be able to handle con­
straints introduced by the problem domain. If infeasible individuals can be 
generated, it is necessary to be able to systematically handle these situa­
tions. The major issues are: design of an objective function that can handle 
infeasible individuals, and preservation (or encouragement) of feasibility of 
solutions. In order to preserve solution feasibility it is possible to design spe­
cial operators and data structures (for problem-representation) that only 
generate feasible solutions, as in [Schnecke and Vornberger, 1997] which 
presents a tree-based representation scheme for a VLSI placement prob­
lem. This generally intuitive idea is strongly supported in [Michalewicz, 



Background and Related Work 25 

1996]. Nevertheless, design of special purpose data structures that always 
generate feasible solutions can be quite difficult and is problem dependent, 
but from the perspective of combinatorial optimization problems, it is ef­
ficient to utilize data structures that always generate discrete values for 
parameters, and mostly generate feasible solutions. Another popular and 
simple technique for constraint handling is to eliminate infeasible individu­
als, as in evolution strategies. However, this technique is efficient only when 
the feasible space is a large portion of the entire search space [Michalewicz, 
1996]. If a population consists of mostly infeasible individuals, it becomes 
necessary to improve (repair) individuals instead of rejecting them, oth­
erwise the few feasible individuals would tend to dominate the search in 
later generations leading to premature convergence. For some problems 
such as the traveling salesman problem, it is considered computationally 
easy to repair individuals, while for some others such as the nonlinear 
transportation problem, repairing infeasible individuals might be as com­
plex as solving the original problem [Michalewicz, 1996]. [Orvosh and 
Davis, 1993] propose a 5%-rule, which claims that an EA with a repair 
algorithm provides the best results when only 5% of the infeasible indi­
viduals are repaired. Penalty imposition on infeasible individuals is by 
far the most popular method to handle constraints. [Michalewicz, 1996; 
Michalewicz and Schoenauer, 1996] discuss a variety of penalty functions-
static, dynamic, and adaptive-that can be applied. Design of penalty func­
tions depends heavily on the problem domain and the type of results that 
can be achieved with them. However, some heuristic guidance for this de­
sign is available [Richardson et a/., 1989]. A proposal due to [Fonseca and 
Fleming, 1998a; Fonseca and Fleming, 1998b] is to consider constraints as 
"hard" goals and the cost function as a "soft" goal, and pursue a multicri-
teria optimization of the vector consisting of constraint violation measures 
and the cost function. The first requirement for such an optimization is 
satisfaction of all constraints, which is followed by an optimization of the 
original cost function. When not all goals can be simultaneously satisfied, 
they propose acceptance of the better of the infeasible solutions. [Barnier 
and Brisset, 1998] consider the integration of constraint satisfaction tech­
niques with a GA for optimization of combinatorial problems whose search 
spaces are very large and complex and where many infeasible solutions 
can be generated. The GA is used to search in subspaces that satisfy all 
constraints. Feasible subspaces are identified using constraint satisfaction 
techniques. They demonstrate the method on vehicle routing and assign-



26 Network-Based Distributed Planning using Coevolutionary Algorithms 

ment problems. 

2.3.4 Multi-Node Algorithms 

2.3.4.1 Parallel and Distributed Algorithms 

Parallel and distributed implementations of evolutionary algorithms typ­
ically follow the coarse-grained approach of evolving independent pop­
ulations on multiple nodes and occasionally migrating individuals be­
tween nodes, and the fine-grained approach of distributing individuals 
among multiple nodes and allowing localized interactions [Capcarrere et al., 
1999]. In these methods [Cantu-Paz, 1999; Matsumura et al, 1998; 
Miihlenbein, 1991; Tanese, 1989], each node can potentially directly ma­
nipulate variables in all n dimensions. These models have been primarily 
pursued for speeding up computations in large-scale problems and for si­
multaneously alleviating the problem of premature convergence. 

2.3.4.2 Coevolutionary Algorithms 

Coevolutionary algorithms are distributed and consist of distinct dis­
tributed algorithm components that considered together follow various 
models of cooperation or competition. In this model, different subspaces of 
the feasible space are explored concurrently by the algorithm components. 
If a problem is such that the subproblem solved by each algorithm compo­
nent is independent of the others (the problem is decomposable), then each 
algorithm component can evolve without regard to the other components. 
From an optimization perspective, in this case, each algorithm component 
optimizes in a landscape disjoint from the landscapes corresponding to the 
other algorithm components. However, many problems exhibit complex in-
terdependencies, and from a coevolutionary perspective it is suggested that 
the effect of changing one of the interdependent subcomponents leads to a 
deformation or warping of the landscapes associated with each of the other 
interdependent subcomponents [Kauffman and Johnsen, 1991]. Recently, 
there has been a growing interest in applying coevolutionary systems for 
problem solving. 

A coevolutionary distributed genetic algorithm for integrated manufac­
turing planning and scheduling is proposed by [Husbands et al., 1997]. In 
this scheme, each species concentrates on identifying a feasible set of process 
plans for a single component to be manufactured. The species interact be­
cause they utilize shared manufacturing resources. Their individual fitness 



Background and Related Work 27 

functions take into account the need to utilize shared resources, and are 
based on various manufacturing costs. In order to resolve conflicts between 
species, an arbitrator species is simultaneously evolved. The fitness of the 
arbitrator species depends on its ability to resolve conflicts such that man­
ufacturing delays are minimized. The individuals in each species compete 
internally in order to generate good process plans, and species compete at 
a higher level for shared manufacturing resources. 

A coevolutionary model in which multiple species evolve independently, 
enter into temporary collaborations with certain members of the other 
species, and are rewarded based on the success of the collaboration in solv­
ing a problem is discussed in [Potter, 1997; Potter and De Jong, 2000; 
Ortega et al, 1999]. A collaboration of all species is required to realize a 
coherent and complete problem solution. In this model, typically the best 
individual from each species is chosen as the representative that will collab­
orate with individuals of the other species. Thus, for evaluating the fitness 
of each individual in a given species, the best representatives from each of 
the other species are utilized to form the complete solution, following which 
the solution is evaluated. The fitness is assigned strictly to the individual 
being evaluated and is not shared with the representatives from the other 
species that participated in the collaboration. This "greedy" method of col­
laboration is proposed due to its simplicity. However, this simple pattern 
of interaction between species leads to entrapments in local optima. Other 
collaboration schemes that include random selections of representatives are 
also possible, and lead to better results [Potter, 1997]. 

A competitive coevolutionary model applicable to scheduling problems 
is presented by [Seredynski, 1997], and is based on game-theoretic mod­
els of limited interaction between individuals in competing populations. 
Individuals in a population have limited interaction with individuals in 
neighboring populations, and seek to maximize their fitness based on local 
evaluations. He demonstrates the successful emergence of global behavior 
achieved purely through local cooperation. 

Recently, there has been development in the utilization of principles 
from Game Theory to model coevolutionary systems [Ficici et al, 2000; 
Wiegand et al, 2002]. While novel, their analyses require the key as­
sumption of complete mixing of populations, which implies that during 
the evaluation phase of the algorithm, individuals in any given population 
are assumed to have interacted with all members of the other populations. 
For coevolutionary algorithms that execute over a distributed network envi­
ronment, complete mixing of populations is not a viable option, since such 



28 Network-Based Distributed Planning using Coevolutionary Algorithms 

mixing would necessitate excessive network-based communication deleteri­
ous to the time-performance of the overall search compared to centralized 
evolutionary algorithms. 

Coevolutionary approaches that follow a clearly adversarial model are 
based on the biological belief that an adaptive change of a species introduces 
a new challenge to the competing species, leading to an adaptive change 
on its part, and so on [Rosin, 1997]. In these systems, the fitness of an 
individual in a population is based on a competition with members from 
the other population. Rosin has applied the adversarial coevolutionary 
model to various problems, for instance, to the design of drugs that are 
robust across some drug resistance mutations, and to game playing. 

2.3.5 Techniques for Dynamic Environments 

Most optimization algorithms assume a static objective function, and this 
has generally been true of the research in evolutionary algorithms. How­
ever, many real-world applications are dynamic in nature, where it becomes 
essential to adapt solutions due to changes in the environment. Some exam­
ples of problems corresponding to dynamic environments are near real-time 
factory scheduling, resource allocation problems where resource character­
istics change with time, and control problems where the system charac­
teristics evolve with time. For these types of problems it is desirable to 
have available optimization algorithms that do not require restarts when­
ever environmental changes occur. Recently, evolutionary schemes have 
been explored for their applicability to such problems [Back, 1998; Grefen-
stette, 1999; Liles and De Jong, 1999; Trojanowski and Michalewicz, 1999; 
Weicker and Weicker, 1999]. Applicability analyses of evolutionary tech­
niques to dynamic problems mostly have an experimental flavor, and the no­
tion of adaptation to changes assumes more importance than convergence. 
When environmental changes occur, it is advantageous for the algorithm 
to maintain multiple alternative solutions rather than to have converged to 
a particular solution. Therefore, any technique for diversity maintenance 
in evolutionary algorithms can find useful application in dynamic problem 
contexts. For instance, introducing random solutions in a population or 
equivalently hyper-mutating some existing solutions has been found to be 
very useful [Grefenstette, 1992]. [Liles and De Jong, 1999] report on the use 
of speciation for diversity maintenance, and [Trojanowski and Michalewicz, 
1999] report on the use of redundant genetic material that serves as a mem­
ory. In the latter scheme, an individual has active genetic material and a 



Background and Related Work 29 

limited memory (FIFO queue) that stores genetic material from its pre­
decessors. An individual is first evaluated using its active genetic material 
and then reevaluated using genetic material from its predecessors. The best 
genetic material identified as a result of the evaluation process becomes the 
active genetic material for the next generation. 

2.4 Agents 

An agent [Russell and Norvig, 1995] is any module or system that has 
the ability to perceive its environment, and can select an action or action 
sequence to manipulate the environment. An agent has the ability to con­
struct an internal representation of the environment, and uses reasoning to 
choose an action. Agents can be designed to act independently or collec­
tively [Lesser, 1999]. Agents and agent-based systems have been around 
for a long time, but more recently they have increased in popularity mainly 
due to developments in distributed computation and the mainstream 
adoption of the object-oriented programming paradigm [Booch, 1994; 
Stroustrup, 1991], which provides a convenient and logically natural means 
to structure and construct agent-based systems. 

An agent is considered intelligent if it can choose those actions that 
accomplish some predefined goal and simultaneously increase some perfor­
mance measure. An agent is considered autonomous if it has the ability to 
choose actions based on its perception and experience rather than blindly 
follow a pre-programmed action schedule. Autonomy widens the scope of 
tasks that an agent can perform without any reprogramming. However, 
the task of designing autonomous agents is more challenging than design­
ing non-autonomous agents. An agent is considered mobile if it has the 
ability to move itself in its environment. For certain agent applications, 
such as for a pipe inspection robot, mobility is important, while for oth­
ers such as an electronic mail management system, mobility may not be 
necessary. The structure of an intelligent agent is shown in Figure 2.2. 

Software agents [Nwana and Ndumu, 1997; Jennings et al., 1998] are also 
sometimes known as softbots [Russell and Norvig, 1995]. An environment 
for a software agent essentially consists of information (computer files) and 
other software agents. Files may exist in repositories that are logically and 
physically distributed. Software agents can be located in the local memory 
of a single computer or they can exist in computers that are logically and 
physically distributed. Software agents have the ability to read (perception) 



30 Network-Based Distributed Planning using Coevolutionary Algorithms 

Fig. 2.2 Structure of an intelligent agent. 

information from their environment and write (action) information to their 
environment. Their representation mechanism consists of data structures. 
Their reasoning mechanism consists of algorithms and data. 

Research in the field of software agents and their applications is grow­
ing rapidly, and this includes descriptions of numerous prototype systems 
developed at various universities and research labs. Some have argued that 
given the highly multidisciplinary nature of research in agent-based sys­
tems, there is a tendency to view the literature in this fast growing field 
as chaotic and incoherent [Jennings et al, 1998]. Given this, the aim is 
not to attempt to present a complete list of agent models and applica­
tions described in the literature. Instead, some important contributions 
are highlighted. 

An excellent overview of agent-based systems, their essential character­
istics, and applications is presented in [Hayes, 1999]. [Maes, 1994] describes 
the essential features of autonomous agents, and the common characteristics 
of agent-based solutions that have been proposed. [Jennings and Woolridge, 
1998] describe prototype agent systems in information management, man­
ufacturing, entertainment, process control, telecommunications, air traffic 
control and transportation systems. Recently, [Talukdar and de Souza, 
1995] have proposed A-Teams (Asynchronous Teams) for problem solving. 
A-Teams are collections of autonomous agents that work iteratively and in 
parallel on populations of solutions. The motivation for A-Teams is derived 



Background and Related Work 31 

from collective problem solving observed in nature: for instance, ants in a 
colony cooperatively working towards construction of a nest. Such behavior 
is also seen in human societies: for instance, scientists in disparate fields 
collectively advancing scientific knowledge. Agents in A-Teams collaborate 
by modifying one another's results, which collect in shared memories. An 
A-Team agent consists of five components: an input memory, a scheduler 
for work triggering, a selector that chooses one or more solutions from the 
input memory, an operator that modifies the selected solutions and writes 
the result to the output memory. 

2.5 Distributed Problem Solving 

Distributed Problem Solving (DPS) is the cooperative solution of a problem 
by a group of loosely coupled8 agents following a decentralized computa­
tional model. In this model, there are no centralized data stores, and no 
agent has enough information to make a complete decision; an agent re­
quires assistance from other agents in the decision-making process. Also, 
agents may be physically and logically distributed over a computing en­
vironment. The problem is solved by intelligently combining subproblems 
solved by agents into an overall solution. 

The fundamental areas of interest in DPS are the decomposition and 
coordination of computation among a society of agents so that structural 
demands of the task domain are matched [Chandrasekaran, 1981]. One 
of the earliest projects in DPS is the Contract-Net Protocol developed 
by [Smith, 1980; Smith and Davis, 1981], where computing nodes coor­
dinate their activities through contracts. A "manager" node announces 
a task for which multiple eligible "contractor" nodes respond with bids. 
Contractor nodes receive pieces of the contract after a negotiation process, 
and in case a contractor requires assistance with its part of the problem, 
it assumes the role of a manager and subcontracts its part of the prob­
lem to other nodes. The original problem is solved in a top-down fashion 
by a network of contractor nodes. The method for task decomposition is 
specified a priori, and the Contract-Net framework is best suited to prob­
lems that can be hierarchically decomposed into nearly independent sub-
tasks. [Lesser and Corkill, 1981] have proposed DPS systems that work 
effectively despite inconsistencies. In their "functionally accurate, cooper-

8Loosely coupled agents spend most of their time computing rather than communi­
cating. 



32 Network-Based Distributed Planning using Coevolutionary Algorithms 

ative" approach, nodes cooperatively exchange and integrate partial and 
tentative results to construct a complete solution. Nodes make progress 
in problem solving using whatever information they can find. This work 
is motivated by the argument that consistency maintenance at all times 
is very expensive in practical systems. This model however leads to the 
possibility that agents might propagate and use incorrect partial results 
leading to unpredictable system performance. [Lesser, 1991] revisits the 
issue of functionally accurate, cooperative distributed problem solving and 
presents some techniques that may reduce the unpredictability of systems 
that propagate and use incorrect partial results. He proposes an increase in 
sophistication of local control in each agent so available information about 
a local search is more efficiently utilized, the exchange of meta-level infor­
mation between agents so their local searches can be made while having a 
more global view, and satisficing control, in which less than optimal but 
acceptable levels of coordination between agents are used. [Sycara et at, 
1991] describe an architecture for solving distributed search problems using 
heuristics and constraint satisfaction methods, and apply it to decentralized 
job-shop scheduling. 



Chapter 3 

Problem Formulation and Analysis 

3.1 Introduction 

This chapter considers a class of distributed decision problems arising in 
integrated manufacturing planning. A formal model for this class of dis­
tributed decision problems is developed as a set of coupled nonlinear as­
signment problems. 

Decisions made at the design stage have maximum impact on product 
cost and product realization time. These decisions affect choices of parts 
that are assigned to a design, selection of suppliers who will supply the 
parts, and selection of manufacturing resources that can produce the design. 
Design, supplier, and manufacturing decisions are not independent of each 
other and cannot be considered in isolation. Integrated planning methods 
thus assume importance as powerful means to improve competitiveness of 
products. 

A formal model of integrated design, supplier, and manufacturing plan­
ning for modular products is developed. A decision problem in this class 
consists of three assignment problems (Ai,A2,A3). The assignment prob­
lem A\ is the assignment of parts (from a parts library) to a design that 
satisfies a predetermined functional specification. Multiple designs (with 
dissimilar part assignments) that satisfy the functional specification are 
possible. For modular products, these designs can be generated combina-
torially by combining parts that belong to module groups. The assignment 
problem A2 is the assignment of suppliers (from a list of available suppliers) 
who will supply the parts in a combinatorially generated design, and the 
assignment problem A3 is the assignment of designs to available manufac­
turing facilities. Each of these assignments affects the criteria of interest: 
typically cost and time for producing the product, and cannot be consid-

33 



34 Network-Based Distributed Planning using Coevolutionary Algorithms 

ered independent of one another. Also, the assignments have nonlinear 
(cannot be evaluated as weighted sums) effects on product cost, and prod­
uct realization time. Given this problem structure, the goal then is to find 
optimal or near-optimal part, supplier, and manufacturing assignments at 
the product design stage. 

Section 3.2 first presents a formal model of the integrated plan­
ning problem-the design-supplier-manufacturing planning decision prob­
lem. This formulation is applicable to a variety of assembly-oriented design-
manufacturing domains where integrated design-supplier-manufacturing 
planning decisions are desired. An analysis of the computational complexity 
of this problem class is presented next. Section 3.3 first presents an adap­
tation of the formulation to model design-supplier-manufacturing planning 
for printed circuit assemblies, and then presents an analysis of the com­
putational complexity of this problem. Section 3.4 presents an evaluation 
of the applicability of alternative optimization algorithms to the design— 
supplier-manufacturing planning problem class. This evaluation, based on 
the structure of the problem, supports the application of evolutionary op­
timization techniques. 

This chapter is based in part on material that appears in the published 
literature [Subbu et al., 1999], and earlier in [Subbu et al, 1998a; Subbu 
et al, 1998b; Subbu et al, 1998c]. 

3.2 General Problem Formulation 

V = {Pi,P2,P3, • • • ,Pp] is a non-empty set of parts. C = 
{C\,C2,Cz, • • • ,CC}, (c < p) is a partition of V. Therefore, the follow­
ing properties hold: 

Ci^% Mi 

dQV V* 

anCj = 9 Vi^j 

r = (jci 
i=l 

Each element of a d is functionally equivalent, and each C; is an equiv­
alence class called a part-equivalence-class (module type), and consists of 
functionally equivalent parts. 

M. = {Mi, M.2, M%, • • • , Mm) is a non-empty set of manufacturing re-

(3.1) 



Problem Formulation and Analysis 35 

sources. £ = {Ei,E2,E3, • • • , Ee}, (e < m) is a partition of M. Therefore, 
the following properties hold: 

EiCM Vi 

EinEj=® Vi^j (3.2) 
e 

M = \jEi 
i=l 

Each element of an E{ is functionally equivalent, and each Z2; is an equiva­
lence class called a manufacturing-resource-equivalence-class, and consists 
of functionally equivalent manufacturing resources. 

Let V = {D\,D2,Dz, • • • ,-Dd} be the set of combinatorially gen­
erated designs, each consisting of non-empty subsets of parts, and let 
S = {S\, S2, S3, • • • ,SS} be the set of parts suppliers. 

Parts are classified into equivalence classes, and parts within an equiva­
lence class can functionally replace each other to realize a certain required 
function. Each part can be supplied by one or more suppliers. Satisfac­
tion of a functional specification requires certain quantities of parts from 
one or more equivalence classes in order to realize a design that conforms 
to the specification. Multiple parts from the same equivalence class in 
"mixed and matched" quantities can be used as long as the required part 
quantity from that equivalence class is satisfied. There are also no restric­
tions on the suppliers who can supply these "mixed and matched" parts 
as long as they are available from these suppliers. The decision problem 
is then to determine these parts "mix and matches," the suppliers who 
will supply them, and the assignment of these parts to various manufactur­
ing resources. Manufacturing resources are also classified into equivalence 
classes, and resources within an equivalence class are functionally equiv­
alent. Parts from a part-equivalence-class have prescribed manufacturing 
resource requirements. There are no restrictions on how selected parts 
from a part-equivalence-class are assigned to manufacturing resources from 
a manufacturing-resource-equivalence-class, as long as the manufacturing 
specifications are adhered to. 

Table 3.1 shows the variables used in the general problem formulation. 



36 Network-Based Distributed Planning using Coevolutionary Algorithms 

Table 3.1 Variables used in the problem formulation. 

Variable 
Uj e { o , i } 

uij e {o, 1} 

Vi £ { 0 , 1 } 

Wi € { 0 , 1 } 

xi e i+ 

yij e {o, 1} 

zij e {o, 1} 

<t>ijk £ ^ + 

Descr ipt ion 
t{j = 1 -a- an arc exists between 
Pi and Sj. (i = 1,2,3, ••• ,p), 
(j = 1,2,3,- •• , S ) 
Uij = 1 <=> P; is a member of Cj. 
(i = l , 2 , 3 , - - - , p ) , ( j = l , 2 , 3 , - - - , c ) 
«i = 1 <t> an arc exists between 
d and Z>. (i = 1,2,3,-•• ,c) 
u»i = 1 <S> an arc exists between 
Pi and X>. (i = 1,2,3,--- ,p), and 

Functional specification that specifies 
instances of required elements from 
each C;. (i = 1,2,3, •• • ,c), and 
xi > 0 <S> Vi = 1 

t/jj = l o M; is a member of Ej. 
(i = 1,2,3,--- , m ) , ( j = 1,2,3,-•• ,e) 
Zij = 1 0 a n arc exists between 
d and B j . (z = 1,2,3,- •• ,c), 
0 = 1,2,3,-- • ,e) 
Decis ion variable, (j = 1,2,3, •• • ,p) 
(j = 1,2,3,-•• ,s),(fc = 1,2,3,--- ,m) 

ty = 1 implies P; can be supplied by supplier Sj. Vi = 1 implies one or more part 
representatives from d are necessary for any design in T> to be functionally consistent. 
Zij = 1 implies part representatives selected from C; must be assigned to manufacturing 
resources from Ej. 4>iju > 0 implies that many instances of part P{ are procured from 
supplier Sj and assigned to manufacturing resource Mfc. 

Each Di € V is written as a string 

\V-»21 ' ' 1 2 l A - r 2 2 ' n 2 2 ^ v- r2|C2 | ' 2 | C 2 | ' / 

• • • ( ( ^ . n i ? ) ^ . ^ ) - ^ . " ! ^ ! ) ) 

which is a concatenation of sequences of ordered pairs1 representing ele­
ments of V and their instances. In an ordered pair (Pjk', n^l), the super­
script (') is used to indicate the selection determined by design Di, j refers 
to the equivalence class Cj, k is an internal index of the equivalence class 
Cj, Pjk' € Cj, and nW denotes the number of instances of P-^ in Di. Also, 

\/Dt ev 
1Each sequence of ordered pairs is shown enclosed by the parentheses ( ). |-| represents 

the size of its argument. 



Problem Formulation and Analysis 37 

p(') pW .. . PW c r- „W+„(*) , . . . , „ ( » ) - r , 
r 11 ' ' ' 1 2 J ' l |C i | fc 0 l "11 + "12 + + " l | C i | — X l 

p(0 p(«) . . . p(») p / n - „ (* ) , „ M , . , _ ( « ) _ 
*21 )-r22 i > / 2 | C 2 | fc 2 21 + n 22 + + 2|C2 | — 2 

p(0 p(«) . . . p(») c r- „ ( * ) , „ ( « ) , , (*) _ T 
^ c l 1 ^ 2 > ' c|Cc | fc ° c " c l + n c 2 + + H c | C c | — ^ 

An example relationship structure between the sets C,V,£,M,V, and 
S when applied to model the planning problem for a simple electronics 
assembly, at a certain level of abstraction, is shown in Figure 3.1. C\ 
and Ci are two classes of integrated circuits, and Cc is a power supply 
subassembly. Ex is a class of integrated circuit placement machines, E2 is a 
class of integrated circuit test machines, and Ee is a class of power supply 
test machines, all at a single manufacturing facility. Aggregate sets are 
shown in dotted lines, while arcs between elements are solid lines. Some 
of these relationships are annotated with variables from Table 3.1. For 
instance, i n = 1, tps = 1, i24 = 1, hs = 1, hs = 0, u n = 1, u32 = 0, 
Ulc - 1, Vi = 1, V2 = 1,VC = 1, 2/11 = 1, 2/21 = 1, ym2 = 1, ?/5e = 1, Z n = 1, 

^12 = 1, Zie = 0, Zce = 1. 

3.2.1 Constraints 

At this stage of the formulation, it is useful to list and describe the assign­
ment constraints so the structure of the general problem emerges. (3.3), 
(3.4), (3.5), (3.6), (3.7) are the constraints. 

V s 

$ ] £ ( i i > - l ) & j * = 0 > (fc = l , 2 ,3 , - - - ,m) (3.3) 
i= i j = i 

Constraint (3.3) restricts the decision variable so that a 4>ijk can assume 
a non-zero value only when there exists an arc between Pi and Sj. This 
constraint restricts the utilization of unavailable parts in combinatorially 
generated designs. 



38 Network-Based Distributed Planning using Coevolutionary Algorithms 

Dx D2 D3 • • • Dd 

Ml M2 

""E\"" 

M„ M, Mm-\ 
• • • 
Mi M 5 M m . 2 

~""E~i' 

Fig. 3.1 An example relationship structure between the sets C,V,S,M,V, and 5 when 
applied to model the planning problem for a simple electronics assembly, at a certain 
level of abstraction. 

Constraint (3.4) restricts the decision variable so that a <j>ijk can assume 
a non-zero value only when there exists an arc between Pi and V. This 
constraint prevents the utilization of those parts that belong to equivalence 
classes that contribute no part representatives to any design. 

5Z J2 J2 ^ = xi 
{«l«( i = l ,2 ,3 , - . - ,p)q=l} 3 = l {k\y(k = l,2,3,-~ , m ) t = l } 

(q = 1,2,3,-•• , c ) , L € {Z |z 9 ( z= i ,2 ,3 , - , e )= i} 

(3.5) 

Constraint (3.5) restricts the decision variable such that the requirements 
imposed by the functional specification are adhered to. In this general 
formulation parts in a part-equivalence-class can be assigned to manu­
facturing resources in one or more manufacturing-resource-equivalence— 
classes. It is necessary to ensure that the number of parts (from a particu­
lar part-equivalence-class) assigned to manufacturing resources in a certain 



Problem Formulation and Analysis 39 

manufacturing-resource-equivalence-class is consistent with the number of 
parts (from the same part-equivalence-class) assigned to manufacturing re­
sources in a different manufacturing-resource-equivalence-class. For a given 
part-equivalence-class Cq, the index set {i} of all its part members is iden­
tified via {i|u(i=i,2,3,-,P)9=i}- For this class Cq, {/|^((=i,2,3,-,e)=i} is the 
index set of all manufacturing-resource-equivalence-classes such that there 
exists an arc between them and Cq. L is an element from this index set 
{/}. For any manufacturing-resource-equivalence-class EL, the index set 
{k} of all its elements is identified via {fc|2/(jfc=i,2,3,---,m)L=i}- The values of 
the decision variable fcjk are summed over the appropriate indices i,j, k. 
This sum is constrained to be equal to the functional specification xq for 
part-equivalence-class Cq. 

{*IV(fc = l,2,3,--- , m ) t 1 = l } {fe|j/(* = l,2,3,--- ,m)t2 = l } 

( (q = 1 ,2,3,- •• ,c) ,{t |u ( i = 1 ,2,3 , . . . ,p) ,=i} (3-6) 
< (J = 1,2,3, • • • , a ) J L i ^ L 2 

KLI,L2 £ {/ |^(I=l,2,3,-,e)=l} 

Constraint (3.6) restricts the decision variable such that the assignment of 
parts to manufacturing resources does not violate manufacturing require­
ments. Intuitively, this constraint implies that if one were to select a certain 
quantity of a part (belonging to a particular part-equivalence-class) and as­
sign it to manufacturing resources in a particular manufacturing-resource-
equivalence-class, and if those part instances must also be assigned to manu­
facturing resources in some other manufacturing-resource-equivalence-class, 
then it is necessary that the assignments to manufacturing resources across 
manufacturing-resource-equivalence-classes stay consistent. The notation 
used to express this constraint is similar to that used in Constraint (3.5). 

f (» = 1 , 2 , 3 , ••• ,p) 

<f>ijke {0,1,2,-••} < 0' = l , 2 , 3 , - - - , s ) (3.7) 
[(fc = l , 2 ,3 , - - - ,m) 

Constraint (3.7) is for ensuring non-negativity and integrality of the decision 
variable. 

The constraints in this general formulation provide significant flexibil­
ity in the assignment structure. In specific design-manufacturing situations 
with unique needs, additional constraints that restrict some of the flexibility 
can be added. The printed circuit assembly design, supplier, and manufac-



40 Network-Based Distributed Planning using Coevolutionary Algorithms 

turing planning problem (see Section 3.3) is an example where additional 
constraints are added to the general set. 

3.2.2 Objectives 

The assignment constraints of the general design-supplier-manufacturing 
planning problem are described above. The assignments themselves may be 
evaluated using objective functions that are designed to provide estimates 
of the cost and time for producing a particular design. Global functions are 
intended to be estimates of various cost and time effects, and therefore do 
not represent exact measurements based on knowledge of a finite schedule. 

Parts Cost 

This estimates the total cost of parts in a design, and is given by 

* = £ £ JZiiM,) (3-8) 
9 = 1 { J | « ( i = 1 , 2 , 3 , . - , P ) q = l } 3=1 

where 

<*ij = X ! ^ f c ' L ~ A n y{ 'K( i= l ,2 ,3 , - , e ) = l } 
WV(k = l,2,3,-- ,m)L = l] 

and T(-) = {-fij(-)), (i = 1,2,3, ••• ,p),(j — 1,2,3, ••• , s) is the parts cost 
function matrix. 7y(-) is an arbitrary linear or nonlinear function. Jij{n) 
is the cost of n instances of part Pi when procured from supplier Sj. 

Maximum Parts Lead Time 

This estimates the lead time imposed by the part that incurs the maximum 
delay in procurement, and is given by 

/i = max {dij(Pij)} (3-9) 
{q = 1,2,3,-•• ,c) 

{i|W(»=l,2,3,-,p)g=l} 

0" = l , 2 ,3 , - - - , s ) 

where 

0ij= ^2 4>ijk, L = Any{Z|2,(,=i)2,3,...ie)=i} 
{*l!/(fc = l ,2,3,--- ,m)L = l } 



Problem Formulation and Analysis 41 

and A(-) = (Sij(-)),(i = 1,2,3, • •• ,p),(j = 1,2,3, ••• ,s) is the parts lead 
time function matrix. 5ij(-) is an arbitrary linear or nonlinear function. 
Sij (n) is the lead time of n instances of part P; when procured from supplier 

Overhead Cost 

This estimates any overhead costs associated with design and production, 
and is computed as a global function of the various assignments. 

°o = fociW) (3-10) 

Overhead Lead Time 

This estimates any overhead lead times that delay production, and is com­
puted as a global function of the various assignments. 

To = fot{[<t>]) (3-H) 

Manufacturing Cost 

This estimates the cost of production, and is computed as a global function 
of the various assignments. 

O-m = fmc([4>}) (3-12) 

Manufacturing Time 

This estimates the various delay times for producing a design, which is 
dependent on factors such as transport, setup, and wait times, and is com­
puted as a global function of the various assignments. 

Tm = fmt(W\) (3-13) 

The objectives described above present one model of reality, and in 
practice these would be customized to fit the production objectives of a 
particular company, product, and industry sector. Also, issues such as 
resource capacity are implicitly addressed through these objectives. For 
example, if a manufacturing resource is assigned more parts than its capac­
ity, then rather than making this an infeasible production option, reality 
is better modeled by imposing time and cost penalties through the man­
ufacturing objective functions. Another issue that deserves clarification is 



42 Network-Based Distributed Planning using Coevolutionary Algorithms 

that of manufacturing scheduling. The objective functions represent feed­
back mechanisms for high-level planning that do not explicitly consider 
manufacturing scheduling. However, the manufacturing cost, and delay 
time functions represent cost and time models that help estimate effects of 
scheduling. 

3.2.3 Optimization Problem 

It is desired to optimize the total cost and total delay time for producing a 
design. These are given by: 

Total Cost 

CT = ir + a0 + am (3.14) 

Total Delay Time 

TT = max{/i, T0] + Tm (3.15) 

The optimization problem is written as the minimization of an aggregate 
function of constrained objectives (3.16). 

minV(C T ,T T ) (3.16) 

Subject To: Constraints (3.3), (3.4), (3.5), (3.6), (3.7). 
The function if>(-) in (3.16) represents a tradeoff between cost and time 

for producing a design, and assumes that the decision-maker is aware a pri­
ori of the relative importance of CT and TT. 

3.2.4 Complexity Analysis 

In order to evaluate the computational complexity of the problem class 
discussed in Section 3.2, some combinatorial results are established. 

Result 3.1 Let CR(m,r) be the number of r-combinations of an m-set 
when repetition is allowed. This is also the number of ways to distribute r 
indistinguishable balls into m distinguishable cells, when cells can be empty. 

CR(m,r) = C(m + r - 1,r) = m + r 
r 



Problem Formulation and Analysis 43 

Proof: Proofs of Theorem 2.3 (p. 39), and Theorem 2.4 (p. 42) in [Roberts, 
1984]. • 

Theorem 3.1 Given r balls, ri of type 1, r2 of type 2, • • •, rk of type 
k, with ri + r2 + • • • + rk = r. Suppose that balls of the same type are 
indistinguishable, while balls of different types are distinguishable, and that 
there are m distinguishable cells. The number of ways to distribute the r 
balls into the m cells, when cells can be empty is 

m + r-i —1\ / m 4- r2 - 1\ (m + i-* — 1 
n J \ r2 J \ rk 

Proof: The number of ways to distribute r\ indistinguishable balls into m 
distinguishable cells, when cells can be empty, is (using Result 3.1) given 
by 

m + r\ — 1 

Similarly, the number of ways to distribute r^ indistinguishable balls into 
m distinguishable cells is given by 

m + r2 - 1 

T2 

The number of ways in which these could happen together is 

m + r\ — 1\ (m + r<i — 1 

T\ J\ r2 

Extending this argument, given r balls, the number of ways in which they 
can be distributed into m cells is given by 

rn + r± - 1\ fm + r2 - 1\ fm + rk - 1 
n J\ r2 J \ rk 

• 
The computational complexity of the general design-supplier-

manufacturing planning decision problem is presented below. 
Consider an element Pi € V. If there exists an arc between P; and Sj, 

part Pi can be supplied by supplier Sj, and the arc is called a suppliable-
part option. It is assumed that any number of instances of a suppliable-part 
is possible. The number of arcs between Pi and elements of S is the number 



44 Network-Based Distributed Planning using Coevolutionary Algorithms 

of distinct suppliable-part options for Pj. This is given by 

s 

5 > ; (3-i7) 

Consider an element Cq S C, which consists of some elements of V'. The 
total number of suppliable-part options in Cq, is derived using (3.17), and 
is given by 

s 

nq = J2 £ * « (3'18) 
{*|U(i = l , 2 , 3 , - - , p ) , = l } J = l 

Let x?, the functional specification, specify the required number of parts 
from Cq. In order to satisfy the functional specification, it is possible to 
draw parts from one or more of the suppliable-part options in Cq. The 
number of ways in which parts can be drawn is obtained using Result 3.1. 
A mapping to the notation of Result 3.1 is: nq is the m-set, and xq is the 
r-combination. Thus, the number of ways in which parts can be drawn is 
given by 

c n r 1 ) <"•) 
In a specific choice of xq elements, there can be repetitions of suppliable-
parts. Let there be xq\ repetitions of suppliable-part 1, xq2 repeti­
tions of suppliable-part 2, • • •, xqrlq repetitions of suppliable-part nq, and 
xqi + xq2 + • • • + xqriq = xq. Repetitions of a suppliable-part are consid­
ered indistinguishable, while the same part supplied by dissimilar suppliers 
corresponds to dissimilar suppliable-parts. Consider an element Ei € £ 
consisting of \E{\ distinct manufacturing resources from M. Assume that 
there exists an arc between Cq and Ei. So, xq elements drawn from Cq can 
be assigned to manufacturing resources in £7. The number of ways this 
assignment can be made is obtained using Theorem 3.1. A mapping to the 
notation of Theorem 3.1 is: xq elements correspond to r, xq\ corresponds 
to r\, xq2 corresponds to r2, •••, xqrlq corresponds to r^, and \Ei\ manu­
facturing resources corresponds to m. Thus, the number of ways in which 
a specific choice of xq elements can be assigned to the \Ei\ manufacturing 



Problem Formulation and Analysis 45 

resources is given by 

'\E,\ + xqi - 1\/\Ei\ + xq2 - 1 
Xql J \ Xql 

\Ei\ +xai - 1 

Cql = 

-n 

\Bi\+x, qn„ 

vqi 

vqi 

(3.20) 

If there are multiple arcs between a Cq and elements of £, a specific choice 
of xq elements can be together assigned to the manufacturing resources in 
£q ways. This is derived using (3.20), and is given by 

£, = n ^ 
{'|2,(l = l,2,3,... ,e) = l } 

(3.21) 

The total number of ways in which xq parts can be drawn from Cq and be 
assigned to manufacturing resources is derived using (3.19) and (3.21), and 
is given by 

Tlq ~r Xq 

Xn 
& (3.22) 

Given a complete functional specification [xi,X2,- • • ,xc], the total num­
ber of coupled design-supplier-manufacturing decisions is derived 
using (3.22), and is given by 

sirr'W (3.23) 

which in an expanded form is 

n 
9=1 

Tlq + Xq - 1 n 
k { < | z , ( f = l ,2 ,3 , . - - ,e) = l } 

n 
L f = l 

EA+xai-l 

*>qi 

3.3 Printed Circuit Assembly Problem 

An adaptation of the general formulation is now presented. This adap­
tation models design-supplier-manufacturing planning for printed circuit 
assemblies. 

Figure 3.2 shows a typical printed circuit assembly. Such an assem­
bly consists of multiple types of parts mounted on a circuit board. There 
are three distinct requirements for producing a printed circuit assembly. 



46 Network-Based Distributed Planning using Coevolutionary Algorithms 

Fig. 3.2 Printed circuit assembly (courtesy of Pitney Bowes Inc.). 

First, a string of parts (and their suppliers) needs to be specified along 
with a specification of the layout (and interconnections) of the parts on 
a printed circuit board. Next, a fabricator of the printed circuit board 
needs to be selected. Finally, a manufacturing facility that can assemble 
the product given a part string and circuit board, needs to be selected. Tra­
ditionally, these steps are executed sequentially with little or no interaction 
between the phases, and this results in numerous suboptimal iterations. 
The printed circuit assembly problem developed models the problem of 
integrated design-supplier-manufacturing planning for printed circuit as­
semblies. 

The model presented is a restricted version of the general problem 
treated above. The first additional constraint is 

|£| = 2 (3.24) 

since the set of manufacturing resources consists of an equivalence class of 
printed circuit board fabricators and an equivalence class of printed circuit 
assembly facilities. 



Problem Formulation and Analysis 47 

The second additional constraint is that manufacturing selections con­
sist of a unique board fabricator and a unique assembly facility. For this 
a binary vector A = (a,k),(k — 1,2,3,••• , m) is defined for convenience, 
where 

V s 

a-k = 1, if 5Z53<^yfc > ° 

P s 

ak = 0, if ^2 ^2 ^ijk — 0 
»=i j = i 

This constraint is given by 

£ a* = l, (£ = 1,2) (3.25) 
{*ll/(fc = l ,2,S,- .- ,m)L = l} 

The third additional constraint is that parts can be procured from only 
one suppliable-part option in a part-equivalence-class. 

s 

X! Yl ^2 sgn{(j)ijk) = vq (3.26) 

where 

(JL = l ,2 ) , ( 9 = l ,2 ,3 , - - - , c ) 

and 

( 1 if x > 0 1 
S5«,(zj ~ [0 otherwise J 

The overall objective function that is to be minimized is a heuristic 
weighting of the total cost and an exponential function of the total delay 
time. This follows the model shown in (3.16): 

xl){CT,TT) = CreVT-aye (3.27) 

where the overhead cost and time respectively embedded in CT, TT can be 
used to model printed circuit board fabrication cost and lead time. Also, 
a, (3 above are positive constants. 



48 Network-Based Distributed Planning using Coevolutionary Algorithms 

3.3.1 Complexity Analysis 

The complexity result (3.2.4) is utilized to derive the complexity of the 
printed circuit assembly problem. Since constraints (3.24), (3.25), and 
(3.26) have been imposed on the general problem described in Section 3.2, 
some expressions in (3.2.4) become simpler. 

Constraint (3.26) has the same combinatorial effect as setting xq\ = 
xq = 1, and xqi = 0 Vz = (2,3, • • • , nq). Therefore, (3.20) reduces to Cqi = 
\Ei\. Due to constraints (3.24) and (3.25), (3.21) reduces to £, = |£ i | | £ 2 | , 
and in (3.23) £q is moved outside the parenthesis. The complexity is given 

by 

=n{( B , +
1

1 " 1 ) } i* i i* i <328' 
c 

= 1̂ 11̂ 111", 
9=1 

When nq, the total number of suppliable-part options in a part-equivalence-
class Cq, is at least 2, and |Si|,|J52| > 2, the problem size grows expo­
nentially with the number of part-equivalence-classes and the numbers of 
manufacturing resources. 

3.4 Algorithm Applicability Analysis 

This section presents an evaluation of the applicability of alternative op­
timization algorithms to the design-supplier-manufacturing planning prob­
lem class. Given that the problem class has multiple variables, constraints, 
and nonlinear objectives, the goal is to select optimization algorithms that 
can tackle this broad class of integrated planning decision problems that 
are combinatorial in nature. 

3.4.1 Rationale 

Combinatorial problems incur a heavy penalty due to dimensionality, since 
the number of options grows exponentially with size of the inputs. Most 
combinatorial optimization problems are NP-Hard [Papadimitriou and Stei-



Problem Formulation and Analysis 49 

glitz, 1982], and this in general makes exact solution of their corresponding 
integer programs extremely time consuming. The rapid and exponentially 
growing options space categorically rules out exhaustive search for any 
other than small problems. Size of a search space is an issue only when 
algorithms use enumeration as a strategy. Unfortunately, for most combi­
natorial optimization problems, the known algorithms require some form 
of enumeration [Parker and Rardin, 1988]. Nevertheless, a variety of algo­
rithmic strategies is applicable to optimization of integer programs. The 
algorithms that are capable of exact optimization intelligently exploit the 
structure of the problem, which is desirable. However, there are structural 
limitations to the applicability of exact optimization algorithms. The focus 
of this discussion is to evaluate applicability of these and other algorithms 
for the design-supplier-manufacturing planning decision problem class. 

3.4.2 Problem Structure 

An important first step in an evaluation of the applicability of alternative 
optimization algorithms to a specific problem class is an understanding 
of the characteristics of the problem class. This discussion first identifies 
the characteristics of the general design-supplier-manufacturing planning 
decision problem class, and then identifies the characteristics of the printed 
circuit assembly problem. 

General Problem 

Constraints (3.3), (3.4), (3.5), and (3.6) of the general problem model repre­
sent a set of linear equality constraints restricting assignment of the decision 
variable 4>ijk over the index space (i = 1,2,3, ••• ,p), (j = 1,2,3, ••• , s), 
(k — 1,2,3, •• • , m). This linear equality constraint set can be rewritten in 
the form A<j) = b, where cj> is a vectorization of the decision-variable vector, 
and has length lc = (p • s • m), A is an lr x lc matrix consisting of entries 
from the set { — 1,0,1}, and b is an ^.-dimensional column vector. Including 
constraint (3.7) defines a feasible space given by X = {(j) : A(j) = b,(j) £ 11^}, 
which is convex. 

The fact that the feasible space X is convex is an advantage from the 
perspective of exact optimization algorithms. Also useful is the property 
that elements of the matrix A are from the set { — 1,0,1}, predisposing 
A to be totally unimodular, which is an advantage from the perspective 
of exact optimization algorithms. The objective function ip(<f>) consists of 



50 Network-Based Distributed Planning using Coevolutionary Algorithms 

coupled and nonlinear components. Due to couplings, a functional decom­
position is difficult. Also since computation of this function requires cost 
and time information available from databases, it is difficult to predict a pri­
ori its nature over the search space. Therefore, the general objective is not 
guaranteed to be convex, differentiable, or continuous. The only practical 
method to compute an objective function value is to generate and evalu­
ate an assignment of the decision variables. Due to these restrictions on 
the objective function it is not easy to perform any large-scale functional 
approximations. 

Printed Circuit Assembly Problem 

Since this problem is derived from the general problem model it shares 
the same characteristics described above. In addition, the introduction of 
constraints (3.25) and (3.26) introduces nonlinearities, which is a further 
complication from the perspective of any exact optimization algorithm. 

3.4.3 Evaluation of Alternative Algorithms 

Based on the problem characteristics discussed above, several alternative 
optimization methods are now systematically evaluated. The discussion 
below is based on the use of a single objective function ip((j>). 

Linear Programming 

Linear Programs (LPs) are capable of exact optimization, and can be ap­
plied to solve problems such as min{cT^) : A<p = b,(j> € Z +} under certain 
restrictive conditions. The constraint set requirement for an LP solution 
matches that of the general problem class. However, in order to apply an 
LP it is necessary that the cost vector c be available a priori. Another 
important feature is that a minimization of a linear combination cT4> of 
the decision vector (j> is performed. Though the objective of the general 
problem class is nonlinear, if it can be functionally described a priori, then 
it is conceivable that linear approximations can be generated towards the 
application of LPs. However, in the general problem class, neither the cost 
vector c can be specified a priori nor is it reasonable to obtain a functional 
description of the objective. These hurdles rule out the application of LP 
algorithms to the general problem class. 



Problem Formulation and Analysis 51 

Branch-and-Bound 

Branch-and-bound is general, intuitive, and can be applied to solve prob­
lems such as z = min{ip(4>) : <f> £ X} without the restrictions of LP. 
If the options space X can be decomposed into smaller sets such that 
X = Xx U---UXK, and zk = min{tp(^) : 4> € Xk) for k = 1,2,3, • • • ,K, 
then z = minkzk. Application of branch-and-bound requires an algorithm 
that can generate good upper and lower bounds for a subproblem zk. Tra­
ditionally, LP-based solvers are used for bounds generation, but for the gen­
eral problem class this is not possible. Therefore, alternative algorithms are 
necessary for bounds generation. The second requirement for the applica­
tion of branch-and-bound is an efficient strategy to decompose the feasible 
region X, with the restriction that for moderate to large size problems it 
is computationally unattractive to generate and evaluate a large number of 
subproblems. 

A branch-and-bound style divide and conquer optimization is possible 
for the general problem class, but the scheme cannot be used independent of 
a search algorithm that is capable of generating precise bounds for subprob­
lems. Quality of the bounds is important for deciding which subproblems 
to prune and which to retain, and it is conceivable that an approximate al­
gorithm used for bounds generation can lead to poor pruning choices that 
result in elimination of good subregions. Moreover, in the absence of any 
functional approximations to the objective, it is impossible to derive pre­
cise bounds for any subproblem, and this is an important hurdle faced in a 
consideration of branch-and-bound for the general problem class. 

Deterministic Evaluative Search 

Such a scheme can be compactly written as cpl+1 = D • <j>1, where <j>1 is a 
solution, 0 l + 1 is a successive solution, and D is a deterministic transition 
function that utilizes an evaluation i/j((j)1) of <f>%. A variety of deterministic 
rules can be encoded in D, and this may include problem specific heuristics. 
Tabu search is an example algorithm that may be encoded in the transi­
tion function D. The algorithms in this class will result in approximate 
solutions unless they exploit some problem specific characteristic that is 
guaranteed to result in optimality. However, couplings among the decision 
variables and nonlinearity in the objective function in the general prob­
lem class complicate the identification of such characteristics. Moreover, 
there is no guarantee that a specific characteristic useful for a particular 
type of nonlinear objective will result in optimality for a broader range of 



52 Network-Based Distributed Planning using Coevolutionary Algorithms 

objectives. 

Stochastic Evaluative Search 

Such a scheme can be compactly written as 4>l+1 = S • ft, where ft is 
a solution, ft+1 is a successive solution, and 5 is a stochastic transition 
function that utilizes an evaluation ip(ft) of ft. The algorithms of this 
class generate approximate solutions, and are readily applied to the general 
problem class. Simulated annealing is an example algorithm that fits this 
description exactly. An evolutionary algorithm on the other hand may be 
written as (ft+1) = S • (4>l) since it works with populations of solutions. 
Simulated annealing works with a single solution at any time, while evolu­
tionary algorithms work with a population of solutions, and evolutionary 
algorithms therefore are more resistant to being trapped in local minima. 

3.4.4 Discussion 

Based on the discussion above, it is clear that the general problem class re­
quires evaluative algorithms that by default generate approximate solutions, 
and do not make strong assumptions regarding the nature of the objective 
over the search space. Among the limited algorithm choices evolutionary 
techniques present most promise since they are population based, and are 
easily adaptable to various problems. Since evolutionary optimization is 
population based, there is a higher chance that multiple promising subre-
gions of the space X will be simultaneously considered during the search. 
Their easy adaptability to problems increases their attractiveness as the 
optimization method of choice for this problem class. Deterministic and 
stochastic evaluative search methods can be creatively combined as hybrid 
search algorithms that are capable of good performance under certain con­
ditions. For instance, an evolutionary algorithm could generate solutions 
that are improved by some deterministic heuristics that take advantage of 
certain characteristics of the problem domain, and such techniques can lead 
to improved solution quality and convergence. 



Chapter 4 

Theory and Analysis of Evolutionary 
Optimization 

4.1 Introduction 

The previous chapter focuses on developing a formal model and analyzing 
the computational complexity of the design-supplier-manufacturing plan­
ning decision problem class. This formulation is developed as a set of 
coupled nonlinear assignment problems, and is applicable to a variety of 
assembly-oriented design-manufacturing domains where integrated design-
supplier-manufacturing decisions are desired. As an example, the for­
mulation is adapted to model design-supplier-manufacturing planning for 
printed circuit assemblies. An evaluation of the problem structure supports 
the application of evolutionary techniques for optimization of the problems 
in this class. 

This chapter focuses (in Section 4.2) on developing a theoretical foun­
dation for modeling and convergence analysis of evolutionary algorithms 
applied to solve the general nonlinear problem 

msLxip(x) (4.1) 

where X c W1 is a closed convex space of reals and ip : X —> E+ is in gen­
eral nonlinear and not separable. In general, it is acceptable to efficiently 
approximate the value ip* — max ip(x), and find the corresponding global 

optimizer x* = arg max ip(x), where ip* — %p{x*). Though the end goal is 
X$zX 

application of evolutionary algorithms to combinatorial optimization prob­
lems, the theory is developed in the space of reals to facilitate a tractable 
and compact mathematical analysis. 

The theoretical foundation describes evolutionary algorithms in terms 
of creation and evolution of sampling distributions over the feasible space. 

53 



54 Network-Based Distributed Planning using Coevolutionary Algorithms 

Using this approach, global convergence and convergence rate results are 
derived for certain basic classes of objective functions (in Section 4.3). 

This chapter is based on material that appears in [Subbu and Sanderson, 
2003a], and earlier in [Subbu and Sanderson, 2000]. 

4.2 Theoretical Foundation 

This section reviews the theory of stochastic generational methods pro­
posed by [Zhigljavsky, 1991], which presents a convenient and intuitive 
mathematical foundation for modeling a class of evolutionary algorithms 
in terms of construction and evolution of sampling distributions over the 
feasible space X. The key results in [Zhigljavsky, 1991] are adapted and 
presented without proof. Similar models are formulated and analyzed in the 
mathematical population genetics literature (see for example [Burger, 1988; 
Karlin, 1979; Slatkin, 1970]). These general methods accommodate ex­
tensions to model other evolutionary algorithm variants. For instance, 
[Slatkin, 1970] has used this approach to study the effect of random mat­
ing, and [Peck and Dhawan, 1995] have formulated similar extensions 
to model genetic algorithms. The reader interested in a relative eval­
uation of this theoretical approach and other prevailing theoretical ap­
proaches is referred to [Peck and Dhawan, 1995], and to [Gao, 1998; 
Qi and Palmieri, 1994]. 

4.2.1 Notation 

• [in is the Lebesgue measure on W1 o r o n ^ C i ™ . Less formally, it 
is a general measure of volume in n dimensional real space. 

• dx is compactly the infinitesimal volume element in n dimensional 
real space. 

• B(x,e) = {z € X : \\x - z\\ < e}, and B(e) = B(x*,e). B{x,e) is 
the set of all points in X e-close to a;, and represents an enclosing 
ball of radius e centered at x in the space X. B(x*,e) represents 
the e ball in X centered at the global optimizer x*. 

• A(e) = {z € X : \ip(x*) — ip(z)\ < e} is the set of all points in the 
search space X that are e-close to the global optimizer x* in the 
objective space tp(-). 

• Given a set of events <£., for any event e £ £ the image of the 
indicator function I : (£ —> {0,1} is given by l[e] = 1 if e is true, 



Theory and Analysis of Evolutionary Optimization 55 

and I[e] — 0 if e is false. 

4.2.2 General Algorithm 

A four-step scheme of a generational global stochastic search algorithm 
is presented. An evolutionary algorithm that does not include crossover 
but may include deterministic survival heuristics in combination with fit­
ness proportional selection and mutation-oriented stochastic variation op­
erations is a special case. 

(1) Initialization: Set g = 0. Choose a probability distribution Pg on X, 
and sample N times to obtain points xg , xg , • • • , xg constituting 
the initial population. 

(2) Fitness Proportional Selection: Construct the population dis­
tribution Rg on X by selecting N points based on their fitness. The 
probability of selecting a point with index j is given by 

*> = # £ > - <«) 
y>(4<>) 
2 = 1 

(3) One Step Evolution: Construct the population distribution at the 
next generation Pg+\ on X by varying Rg, and according to 

TV 

pg+1 (dx) = Y, p(p Q9 (4J)>dx) (4-3) 

Qg(z,-) represents a stochastic variational operator and is a generic 
function that can model a variety of mutation operations including 
deterministic survival heuristics. Qg(z,dx) = qg(z,x)iJ,n(dx), and 
max qg(z,x) < oo. qg(z,x) is an n dimensional probability density 

function representing the transition of point z to point x. Require 
that the width of such a function be non-zero, or alternatively, require 
its maximum height to be less than infinity. Qg(z,dx) represents the 
associated probability mass measured over the volume dx. Formally, 
Qg(z, •) is a measurable, nonnegative function with respect to its first 
argument and a probability measure with respect to its second argu­
ment. A desired sample x in the distribution Pg+i is obtained by first 
sampling Rg(dz) to obtain z, and then sampling Qg(z,dx). Stated al-



56 Network-Based Distributed Planning using Coevolutionary Algorithms 

ternatively, a desired sample x in the distribution Pg+i is obtained by 
selection followed by stochastic variation. 

(4) Iteration: Set g <— <7 + 1, and repeat from Step 2 until some termi­
nation criterion is met. 

The construction of the distribution Rg on X via selection takes into 
account the global aspect of the search strategy, whereby a point z from all 
X is chosen, while the distribution Qg(z,-), representing stochastic varia­
tion comprises the local aspect of the search strategy, whereby a point in 
the neighborhood of z is chosen. Importantly, the general form of Qg(z, •) 
permits an encapsulation of deterministic problem-specific heuristics in ad­
dition to randomized heuristics, and may be used to some degree to offset 
the specificity of the assumption of fitness proportional selection above, 
though proportional selection is in and of itself not a restrictive assumption 
and not one that fosters only a narrow appeal or application. The nature 
of Qg(z,-) largely determines the trade-off between search accuracy and 
search efficiency, and for a theoretical study it is convenient to select 

Qg(z,dx) = ?{{X ~ *>/fl>>"" W (4.4) 
/ 4>((y- z)//3g)nn(dy) 

Jx 

where (/>(•) is decreasing for ||a; — z\\ > 0, is symmetrical, continuous, de­
composes into a product of one-dimensional densities, f3g > 0, {/39} is a 
non-increasing sequence, and the denominator is a normalization constant. 
A random realization x 6 X is obtained by repeatedly sampling ${•) until 
an £9 is obtained such that z + £g £ X, and then setting x = z + £g. In 
this mode, the distribution Qg{z, •) serves as a radially symmetric mutation 
operation. The above form is also preferred when there is random noise in 
fitness evaluations. In practice, and when there is no noise in the fitness 
evaluations, an option is to select Qg(z, •) as 

Qg(z,A)=J l[xeA: iP(x) > ^{z)}Q'g{z,dx) + 

A] J I[Mx)<il>(z)]Q'g(z,dx) 

IX 

ilze 
(4.5) 

where Q'g (z, dx) is also of the form of Qg (z, dx) as it appears in (4.4). What 
(4.5) represents is that if the probability mass of Qg(z, •) is considered over 
an arbitrary set A C X, then the contribution by the first integral is due 



Theory and Analysis of Evolutionary Optimization 57 

to the probability of sampling an x £ A : tp(x) > "4>{z), while the second 
integral contributes to the mass only when z £ A and the sample x £ X 
is such that ip(x) < 4>{z). Essentially, expression (4.5) represents a policy 
by which the offspring survives only when its fitness is equal to or better 
than that of its parent. This expression demonstrates the incorporation 
of a deterministic survival heuristic based on parent-offspring competition. 
Other heuristics may be conceived and expressed as well using the above 
technique based on indicator functions. 

4.2.3 Basic Results 

This section presents four results based on the following assumptions: 

(a) 0 < ip(x) < oo for all x £ X. 
(b) Qg(z,dx) = qg(z,x)nn(dx), and max qg(z,x) < oo, as stated earlier. 

(c) The global optimizer x* is unique, and there exists an e > 0 such that 
V'(-) is continuous in the finite region B(e). 

(d) There exists a 6 > 0 such that the sets ^4(e) are connected for all 
e : 0 < e < 6. 

(e) For any z £ X and g —> oo the sequence of probability measures 
Qg(z,dx) weakly converges to the probability measure concentrated at 
the point z. 

(f) For any e > 0 there exists a 5 > 0 and a natural number k such that 
Pg(B(e)) > 6 for all g > k. 

(g) P0(B(x, e)) > 0 for all e > 0, x £ X. 

Result 4.1 Let (a), (b) hold, and let the probability distribution iteration 
follow the scheme in (4-3). Then, as N —» oo, the distribution of the 
samples in the search follows the sequence 

f Pg{dz)^(z)Qg(z,dx) 
Pg+1(dx) = ^ — (4.6) 

/ Pgidz^z) 
Jx 

n 

Result 4.2 Let (a) through (d) hold. Let ijj{-) be evaluated without ran­
dom noise. Let Qg(z,dx) be chosen according to (4-5), Q'(z,dx) = 
q' (z,x)/j,n(dx), and let q' (z,x) be an n-dimensional Gaussian density with 
independent coordinates whose variance is non-increasing with respect to 



58 Network-Based Distributed Planning using Coevolutionary Algorithms 

generations, whereby Q'g(z,dx) weakly converges to the probability measure 
concentrated at the point z. Then, (e), (f), (g) hold. O 

Result 4.3 Let (a) through (d) hold. Let tp(-) be evaluated either with 
finite bounded random noise or without noise. Let Qg(z,dx) be chosen ac­
cording to (4-4)> and Id Qg(ztx) be an n-dimensional Gaussian density with 
independent coordinates whose variance is non-increasing with respect to 
generations, whereby Qg(z,dx) weakly converges to the probability measure 
concentrated at the point z. Then, (e), (f), (g) hold. • 

Result 4.4 Let Result 4-2 or Result 4-3 hold. Then, the distribution se­
quence (4-6) converges to the distribution concentrated at x* as g —>• oo. 
D 

4.3 Convergence Analysis 

This section presents convergence and convergence rate analyses of the evo­
lutionary algorithm from Section 4.2 for unimodal and bimodal objectives 
based on Gaussians. A bimodal (multimodal in general) objective function 
is represented as a linear combination of Gaussians. Gaussian and linear 
combination of Gaussian objectives are used since they are representative 
of the basic function classes of interest in the analysis, they offer significant 
mathematical flexibility, and satisfy assumptions (a), (c), and (d) from 
Section 4.2.3. Moreover, a wide variety of objective functions with multi­
ple modes may be readily constructed via linear combinations of Gaussians 
subject of course to suitable choices of the number of Gaussians, their re­
spective scaling factors, and their respective means and covariances. Also, 
in the utilization of Gaussians for construction of objectives, there are no 
diagonality assumptions related to their covariance matrices. Non-diagonal 
covariance matrices in general introduce a nonlinear coupling between the 
search variables. 

In the following discussion, the norm ||-|| is to be interpreted as the 
2-norm ||-||2-

4.3.1 Convergence for a Unimodal Objective 

The theorem below mathematically describes the nature and evolution of 
the theoretical population distributions for a unimodal Gaussian objective 



Theory and Analysis of Evolutionary Optimization 59 

function given an initial distribution that is Gaussian and a Gaussian mu­
tation operation that introduces stochastic variation. 

Theorem 4.1 Let ip(x) = N[x*,K], where K is positive definite, let the 
initial distribution also be a Gaussian N[xo,Co] with arbitrary mean XQ and 
positive definite covariance Co, and let the stochastic variation consist of an 
n-dimensional, zero-mean, coordinate-wise independent Gaussian mutation 
whose variance Wg = cr^I. Then, 

[a] The population distribution is always Gaussian. 
[b] The mean and covariance of the population distribution follow the re­

spective iterations 

Xg + 1 -Xg = (I + KCg1)^^ ~Xg) 

Cg+1 =Wg + (K-1 + C-1)-1 

[c] Cg is always positive definite. 

Proof: [a] Algebraic manipulation of (4.6) using the assumptions in 
this Theorem leads to the probability distribution iteration Pg+i(dx) = 
N p T - 1 +C-1)-1{K-1x" +C-1xg),Wg + (K-1 + Cg-

1)-1]nn{dx) (see Ap­
pendix A.l), which establishes that the population distribution is always 
Gaussian. 

[b] The expression xg+1 = (K'1 + Cg1)'1 {K~l x* + C^Xg), which 
governs the evolution of the mean of the distribution, can be rewritten as 
xg+i-xg = (I+KC~1)~l(x* -xg). The expression governing the evolution 
of the covariance of the distributions is evident. 

[c] Since K and Co are positive definite, K~1+C0~
1 and {K~l +C0~

1)~1 

are positive definite. By definition, Wg is positive semi-definite, and so 
C\ = Wo + {K~l + C Q - 1 ) - 1 is positive definite. Continuing in this fashion, 
it can be shown by induction that Cg is positive definite. • 

The analysis is not restricted to normally distributed initial popula­
tions. For instance, uniform initial population distributions may be utilized 
as well without any loss of generality. Gaussian initial population distri­
butions are selected since their use highlights in a mathematically elegant 
manner the evolution of the mean of the sampling distribution to the opti­
mum. However, from a practical perspective, a Gaussian distribution with 
large standard deviations may be easily used to approximate a uniform 
distribution. 

The discussion following (4.4) lists the required properties of the mu­
tation operation, and these properties are indeed quite broad. Gaussian 



60 Network-Based Distributed Planning using Coevolutionary Algorithms 

mutation fits quite nicely into this framework, and keeps the mathematics 
elegantly tractable. 

The next theorem describes the rate of convergence to the global opti­
mum of the mean of the theoretical population distribution for a unimodal 
Gaussian objective under the assumption that the initial population dis­
tribution is coordinate-wise independent and has a uniform standard devi­
ation. The second part of the theorem shows that as the variance of the 
mutation vanishes the spread of the population distribution reduces to zero. 

T h e o r e m 4.2 Let Theorem 4-1 hold, and let Co = cl,c> 0. Then, 

[a] The sequence {xg} converges geometrically to x*. 
[b] If Wg = 0 then Cg -t 0 as g -» oo. 

Proof: [a] The iteration xg+i —xg = {I+KC~l)~l (x* —xg) can be rewritten 
as xg+i —x* = [I— (I + KC~1)~1](xg —x*). Since K,C~X are positive def­
inite, KC~l has only positive eigenvalues (Theorem 6.2.3 [Ortega, 1987]). 
Then all eigenvalues of 7 + KC~l are larger than unity, and I + KC~l is 
nonsingular. So, the eigenvalues of (I + KC~l)~l are all in the range (0,1), 
and the eigenvalues of [I — (I + KC~1)~1] are also in the range (0,1). It can 
be shown by induction that if Co = cl, c > 0 then [I — (I + KC~l)~l] is al­
ways positive definite (see Appendix A.2). The computation generating the 
sequence {xg} is viewed as a mapping T : X —> X, where xg+i = T(xg), 
and 

11^+! - x-tl = ||[/ - (/ + lifC-1)-1]^ - a:*)|| 
< | | / - ( 7 + XCs-

1)-1||||a;9-a;*|| 

Let Ag = I-(I + KC-1)-1. \\Ag\\ = p(Ag) € (0,1), where p(Ag) is 
the spectral radius of Ag. Therefore, ||a;9+i — x*\\ < ag \\xg — x*||, where 
ag = p(Ag). Since ag varies with generations, choose a = max {ag}, and 

9 

have ||a;ff+i — x*\\ < a\\xg —x*\\,a € (0,1). Then, the computation T(-) 
is a pseudo-contraction [Bertsekas and Tsitsiklis, 1997] with modulus a in 
the worst case, and converges geometrically to the fixed point x*. 

[b] Let g be the generation from which point on Wg = 0. Then, Cg+\ — 
(K-1 + C-1)-1, and by induction Cg+m = (mR-1 + C" 1 ) " 1 = K{ml + 
C^K)'1. For fixed K,Cg, the diagonals in (ml + C~1K) tend to oo as 
m -> oo, while the off-diagonals are fixed. Therefore (ml + C^K) « ml 
for large m, and Cg+m « K ( m i ) - 1 = ±K. Then, l i m ^ o o Cg+m = 0 . • 



Theory and Analysis of Evolutionary Optimization 61 

4.3.2 Convergence for a Bimodal Objective 

The theorem below mathematically describes the nature and evolution of 
the theoretical population distributions for a bimodal Gaussian-based ob­
jective function given an initial distribution that is Gaussian and a Gaus­
sian mutation operation that introduces stochastic variation. The bimodal 
Gaussian is a linear combination of Gaussians, and once again, the Gaussian 
assumptions for the initial distribution and mutation are not restrictive. 

Theorem 4.3 Let ip{x) — uaU[x^,Ka] + LOt,N[xl,Kb], where Ka,Kt, are 
positive definite, uja,u)b > 0, let the initial distribution also be a Gaussian 
N[xo, Co] with arbitrary mean XQ and positive definite covariance Co, and let 
the stochastic variation consist of an n-dimensional, zero-mean, coordinate-
wise independent Gaussian mutation whose variance Wg = a1!. Then, 

[a] The population distribution is always a linear combination of Gaus­
sians. 

[b] The mean and covariance of two principal population distribution com­
ponents in each generation follow the respective iterations 

X(i,g+i) - x(itg) = (I + KiC^g))-
l{x* - x{ii9)) 

C(i,9+l)=Wg + {K-'+C^g)Y' 

where C(i,o) — Ca,i = (a,b). 
[c] C(i 9) is always positive definite. 

Proof: [a] Algebraic manipulation of (4.6) using the assumptions in this 
Theorem, and the techniques from Theorem 4.1a, directly leads to this 
conclusion. 

[b] This conclusion follows directly from the algebraic expressions in [a], 
which are similar to the expressions in Theorem 4.1b. 

[c] This conclusion is drawn using the techniques from Theorem 4.1c.B 
The next theorem describes the rate of convergence to the global op­

timum of the mean of a principal population distribution component for 
a bimodal Gaussian-based objective under the assumption that the initial 
population distribution is coordinate-wise independent and has a uniform 
standard deviation. The second part of the theorem shows that as the vari­
ance of the mutation vanishes the probability mass in the epsilon region 
around the global optimum approaches one, implying convergence of the 
population distribution. 



62 Network-Based Distributed Planning using Coevolutionary Algorithms 

Theorem 4.4 Let Theorem 4-3 hold, and let C0 = cl,c> 0. Then, 

[a] The sequence {x^^)} converges geometrically to x*. 
[b] / / Wg = 0 then C(;i9) ->• 0 as g -» oo. 
[c] If Wg — 0 and the global optimizer is unique then Pg(B(e)) -> 1 as 

g -> oo. 

Proof: [a], [b] These conclusions are drawn using the respective techniques 
from Theorems 4.2a,and 4.2b. 

[c] Based on the given conditions the requirements for Result 4.3 hold, 
and therefore the conclusion follows from an application of Result 4.3 and 
Result 4.4. • 

In the above results, large sample assumptions are made, and a prac­
tical algorithm with a finite sample size is seen as an approximation to 
the algorithm with a large sample assumption. It is important to note 
that such an assumption facilitates a more tractable mathematical analy­
sis while simultaneously providing a quantitative framework for describing 
average behavior of the algorithm that an algorithm with finite sample size 
approximates. 

In the above results, large sample (infinite population) assumptions are 
made, and a practical algorithm with a finite sample size is seen as an 
approximation to the algorithm with a large sample assumption. It is im­
portant to note that such an assumption facilitates a more tractable math­
ematical analysis while simultaneously providing a quantitative framework 
for describing average behavior of the algorithm that an algorithm with 
finite sample size approximates. Gaussian-based objective functions are 
utilized to derive convergence and convergence rate results, and the linear 
combination of Gaussians method may be utilized to readily construct a 
wide variety of multimodal objectives. The bimodal Gaussian-based ob­
jective function, an instance of a multimodal Gaussian-based function, is 
used to derive convergence and convergence rate results for a function more 
complex than with one mode. The reader would notice that the techniques 
from Theorems 4.3 and 4.4 may be readily extended to Gaussian-based 
objectives with more than two peaks. 



Chapter 5 

Theory and Analysis of Distributed 
Coevolutionary Optimization 

5.1 Introduction 

The previous chapter focuses on developing a theoretical foundation for 
modeling and convergence analysis of centralized evolutionary algorithms 
applied to optimization problems. This theoretical foundation describes 
evolutionary algorithms in terms of creation and evolution of sampling dis­
tributions over the feasible space. Using this approach, global convergence 
and convergence rate results are derived for certain basic classes of objective 
functions. 

This chapter focuses on extending the theoretical foundation from the 
previous chapter to develop a general model of distributed coevolutionary 
algorithms. Section 5.2 develops such a model for algorithms applied to 
optimization problems (5.1) for which the variables are partitioned among 
p nodes. 

max ib(x) (5.1) 

X c W1 is a closed convex space of reals and ip : X —> ffi+ is in gen­
eral nonlinear and not separable. In general, it is acceptable to efficiently 
approximate the value tp* — max ip(x), and find the corresponding global 

x<z.X 

optimizer x* = arg max ip(x), where ip* = ip(x*). The variable vector x is 
x<zX 

partitioned into p blocks (xi,X2,--- , xp), where x, 6 Kni, n = J2^=i n i i a n d 
the p blocks are distributed among p nodes. For a certain problem (5.1), a 
distribution of the variables into p blocks is guided by locality of information 
required for function evaluations at the computational nodes. 

Given a feasible space X and a variable distribution, each node i per­
forms a local evolutionary search in its primary subspace Xt, while the 

63 



64 Network-Based Distributed Planning using Coevolutionary Algorithms 

variables corresponding to the secondary subspaces at a node are clamped 
(see Figure 5.1). An intercommunication operation updates the respective 
secondary variables at all nodes. Following this, the local search proceeds 
using updated information, and in this fashion the local and global opera­
tions of the distributed search alternate, resulting in a cooperative search. 
The search space X in this model of computation is therefore the product 
space of the p subspaces, and is given by X — 11*= 1 %i-

Primary Variable 
Block 

Evolutionary 
Algorithm "--., 

Evolutionary 
Algorithm 

Database 

Evolutionary 
Algorithm 

/Node 

I Nl 
; 

111 x2 

A 

1111 I x3 

Evolutionary 
Algorithm 

Fig. 5.1 Organization of distributed coevolutionary computation. 

In this model of computation, the evolutionary algorithm at any node i 
performs an evolutionary search based on its primary variable block Xi using 
local and rapidly accessible information, and it is assumed that accessing 
the interconnection network for purposes of communication between the 
nodes is delay-prone, and so each node must perform a large number of 
local computations between communication cycles in interest of efficiency. 

Global convergence and convergence rate results similar to those in the 
previous chapter are developed in Section 5.2 for this class of distributed 
coevolutionary algorithms. Section 5.3 presents an analysis of the relative 
computational delays of the centralized and distributed algorithms when 
they are implemented in a network environment. 



Theory and Analysis of Distributed Coevolutionary Optimization 65 

This chapter is based on material that appears in [Subbu and Sanderson, 
2003a], and earlier in [Subbu and Sanderson, 2000]. 

5.2 Theory 

This section develops a general model of distributed coevolutionary algo­
rithms wherein cooperating algorithm components are distributed over a 
network, and each algorithm component works primarily in a subspace of 
the overall problem. This approach to optimization is similar in spirit to the 
block Jacobi [Bertsekas and Tsitsiklis, 1997] and coordinate descent [Luen-
berger, 1984] methods popular in the non-linear programming community. 
However, the fundamental difference is that these non-linear programming 
techniques are deterministic and gradient based while evolutionary algo­
rithms are not. 

5.2.1 Notation 

• Given a node i, Xi is its primary variable set, while x% is its secondary 
variable set. 

• (x*\xi) = arg max if>(xi\xi) is the global optimizer in the restricted 

space (-|XJ). 

• fini is the Lebesgue measure on Rni or on Xi c Wii • 
• dxi is compactly the infinitesimal volume element dx^ • dxi2 • • • dxin. 

in rii dimensional real space. 
• B((xi\xi),e) = {zi e Xi : \\x - z\\ < e}, where x = (xi\xi),z = (zi\xi), 

and B(xi,e) = B((x*\x~i),e). 
• A(xi,e) = {zi € Xi : \4>{x*\xi) - ip(zi\x~i)\ < e}. 

5.2.2 Local Convergence 

The local evolutionary search in the primary subspace of each node is based 
on the evolutionary algorithm described in Section 4.2. In making this 
transition, the assumptions in Section 4.2.3 are mapped so that they are 
applicable to each of the subspaces Xi. 

(a) 0 < ip(xi\xi) < oo for all Xi S Xi,Xi. 
(b) Q(i,g)(zi,dxi) = q(it9)(zi,Xi)iini(dxi), and 

max q,ig)(zi,Xi) < oo. 



66 Network-Based Distributed Planning using Coevolutionary Algorithms 

(c) The global optimizer (x* \~x~i) is unique, and there exists an e > 0 such 
that tp{-) is continuous in the finite region B(xi,e). 

(d) There exists a 6 > 0 such that the sets A(xi,e) are connected for all 
e : 0 < e < 6. 

(e) For any z$ € Xi and g —» oo the sequence of probability measures 
Q(i,g) (zii dxi) weakly converges to the probability measure concentrated 
at the point z$. 

(f) For any e > 0 there exists a S > 0 and a natural number k such that 
P(iig)(B(xi,e)) > 6 for all g > k. 

(g) P(i,o){B((xi\xi),e)) > 0 for all e > O.arj £ **,£*. 

Based on these assumptions Results 4.1, 4.2, 4.3, 4.4 are mapped accord­
ingly so that they hold for the evolutionary search in each subspace Xi. 
Then, as N —> oo the distribution of samples in a local search would follow 
the sequence 

/ P(itg)(dzi)ip{zi\xi)Q(itg)(zi,dxi) 
P(i,g+i)(dxi) = —= j (5.2) 

/ P(itg)(dzi)ip{zi\xi) 
JXi 

and the above distribution sequence converges to the distribution concen­
trated at (x*\xi) as g -> oo. 

It is of interest to consider the convergence and convergence rate of the 
local computations in any subspace Xi for the unimodal and bimodal ob­
jectives based on Gaussians. For this, the fact that the Gaussian (resp. 
linear sum of Gaussians) objective in any subspace Xi given variable as­
signments in the other p—1 subspaces is still a Gaussian (resp. linear sum 
of Gaussians) presents an advantage. If the conditions for the evolutionary 
algorithm that performs local search in any subspace Xi are exactly the 
conditions for the algorithm (discussed in Section 4.3) that performs search 
in space X, then Theorems 4.1, 4.2, 4.3, 4.4 would hold without modifica­
tions except that space X is to be interpreted as subspace Xi, and the local 
population distribution at node i would converge geometrically to (x*\x~i). 
In the event that (x*\xi) is not unique, the theoretical population distri­
bution would converge to multiple points. In practice, it may be assumed 
without loss of generality that the distribution converges to only one such 
point. 

The local searches described above are initialized with a randomly se­
lected consistent vector of variables xg. This vector is broadcast to all 

file:///~x~i


Theory and Analysis of Distributed Coevolutionary Optimization 67 

nodes. The local search at node i starting from this point may be repre­
sented by a mapping Ti : X —> Xi that generates the sequence 

x(i,g+m+l) = •'-i\x(l,g)i ' ' ' > x(i—l,g) i x(i,g+m) i 

x(i+l,g)r-- ,x(P,g)) m > 0 

Then, as m increases 

xg \^{l,g)t' ' ' >x(i—l,g)i x(i,g+m)> x(i+l,g)> ' ' ' ix(p,g)) 

and Xg would converge geometrically to (x*|ii), where Xg is the result 
of m generations of local search at node i, starting from point xg. Prom a 
practical perspective, it is convenient to select X n ^ ELS the best vector (after 
m generations of local search) in the population at node i. 

Given that the process of local convergence at a node for Gaussian-based 
objectives is understood, the focus is now on distributed global convergence 
to the point x*, which is the essentially the overall goal. This is discussed 
next. 

5.2.3 Global Convergence 

Presented first are communication policies that would enable distributed 
global convergence for a unimodal Gaussian objective and for a bimodal 
objective based on a linear combination of Gaussians, whose optima are 
aligned favorably with respect to the search directions. Presented next are 
communication policies that would enable distributed global convergence 
for arbitrarily aligned bimodal objectives. 

5.2.3.1 Convergence for a Unimodal Objective 

Let Zg = < xg, xg , • • • , Xg \, where Xg is the best vector (after m gen­
erations of local search) in the population at node i and let S : X —• X 
represent the computation that selects that vector from Zg — xg which has 
the highest fitness and makes it the new iterate xg+\ only if its fitness is 
greater than that of xg (else xg+\ = xg). The computation xg+i = S(xg) 
represents a global iteration that encapsulates the combined m-step local 
search at each node and the intercommunication operation that facilitates 
selection and update of new iterates. It can be easily seen that the mapping 
S generates a non-decreasing sequence {ip(xg)}, and the theorem below de­
scribes the rate of global convergence for a unimodal objective. 



68 Network-Based Distributed Planning using Coevolutionary Algorithms 

Theorem 5.1 Let ip(x) = Nfo;*,^] with positive definite K. Then, the 
sequence {tp(xg)} generated by the mapping S converges geometrically to 

Proof: Let xg be given. The objective function in each subspace Xt is 
still a Gaussian with a unique optimum. If xg does not correspond to the 
optimum in Xi, a local search must yield a point whose fitness is greater 
than that of xg. If xg does correspond to the optimum in Xi, a local 
search does not change position. Therefore, unless xg is an optimum in 
X, at least one point in the set Zg — xg will have fitness greater than 
that of xg, and ip(xg+i) > ip(xg); which implies that \i^{xg+i) — ijj(x*)\ < 
a\ip{xg) — tp(x*)\,a € [0,1). Since if>(x) is unimodal with a unique optimum, 
this shows that the iteration sequence {ip(xg)} converges geometrically to 
il>(x*). • 

The next theorem describes the rate of global convergence of the dis­
tributed algorithm applied to a bimodal objective function whose optima 
are aligned favorably with respect to the search coordinates. 

5.2.3.2 Convergence for a Coordinate Aligned Bimodal Objective 

Theorem 5.2 Let ip(x) = ujaN[x*a,Ka] + uibN[xl, Kt,} with positive definite 
Ka,Kt, and uia,^b > 0. Also, let x*a be the global optimizer, and let x*a,xl 
be such that 

xa ~ \ x l J ' ' ' i xi — li xi > xi+l J ' ' ' > xp) 

xb V^l i ' " ' i x i — 1 > x i ) xi+l > ' ' ' > xp) 

where x*a, xl differ only in the coordinates in the subspace Xi. Then, the rate 
of convergence to the global optimizer x*a is similar to that in Theorem 5.1. 

Proof: Let xg be given. The objective function in each subspace Xi is 
still a linear combination of Gaussians. However, the optima in Xi need 
not be unique. Based on an earlier assumption, a local search would still 
converge geometrically to one of the two optima in Xi. If xg does not 
correspond to an optimum in Xi, a local search must yield a point whose 
fitness is greater than that of xg. If xg does correspond to an optimum in 
the subspace Xi and the optimum in X, is not unique, it is satisfactory to 
make the mild assumption that a local search does not change position. So, 
a local search must either yield a point whose fitness is greater than that 
of xg, or it does not change position. Therefore, unless xg is an optimum 
in X, at least one point in the set Zg — xg will have fitness greater than 



Theory and Analysis of Distributed Coevolutionary Optimization 69 

that of xg, and tp{xg+i) > tp(xg); which implies that |^>(:r9+i) - ip(xl)\ < 
a\tp(xg) — tp(xl)\, a 6 [0,1). However, if xg is an optimum in X, it is either 
x*a or it is xl and x*a can be found using purely local search in Xi. Therefore, 
the rate of convergence of the search is similar to that in Theorem 5.1. • 

The above result shows that there exists some favorable transformation 
of coordinates such that the complexity of the distributed search over a 
bimodal function may be reduced to that of a search over a unimodal func­
tion, simplifying the search task. In general instances, when a favorable 
transformation of coordinates (or additional problem specific information) 
is unavailable, randomization is introduced in the selection of new iterates. 
Such a class of methods is described next. 

5.2.3.3 Convergence for an Arbitrarily Aligned Multimodal 
Objective 

Three basic stochastic coordination policies are now described and ana­
lyzed. These coordination policies facilitate global convergence for arbi­
trarily aligned bimodal objective functions.1 Consider a bimodal objective 
where x*a is the global optimizer and xl is the other optimum such that 
tp(x*a) > tp{x*b).

2 Let C = {z £ X : tp(z) > ip(x*b)}. Therefore, C is the 
region in the space X that has objective values greater than those in the 
union of the supports of all other modes. Let d C Xi be the projection 
of the region C on each subspace Xi (as an example, consider the two 
dimensional region X shown in Figure 5.2, where X = X\ x AV)- Let 
Ci = C\ x • • • x d-i x Xi x C»+i x • • • x Cp, and let M = C\ U • • • U Cp. 

Coordination Policy-A 

Let Xj' be a randomly generated point that is the result of a joint compu­
tation by the nodes. Let S : X —> X with a small probability 7 set xg' 
as the new iterate xg+i, and with probability (1 — 7) use the deterministic 
scheme (selection from the set Zg). For this it is assumed that there is a 
memory that remembers previously attained points, so that those points 
are not lost. Also, it is assumed that as long as the deterministic selection 
scheme makes sufficient progress, randomization is avoided by temporarily 
setting (7 = 0). This latter assumption allows the distributed search to 
deterministically climb a promising peak. 

1 These results are also applicable to multimodal objectives based on Gaussians. 
2For multimodal objectives xj would be the point corresponding to the second highest 

mode. 



70 Network-Based Distributed Planning using Coevolutionary Algorithms 

V(x*) 

= r - Support 

'1 ^ 1 

Fig. 5.2 Example two-dimensional space that shows the regions C and M. 

Once an iterate enters the region C, the above coordination policy would 
ensure that the global optimizer is attained deterministically. In the context 
of the distributed search there exists the larger region M, C C M such that 
if Xg falls in this region and is selected as the new iterate xg+\, then a local 
search by at least one node would find a point in C. Then, the probability 
that xg' falls in the region M is given by /in(M)//x„(Af). The probability 
that Xg1 falls in the region M and is selected as the new iterate is therefore 
^Hn{M)lnn{X). This is also the probability that a randomly selected point 
xJ would lead to global convergence under this coordination policy. 



Theory and Analysis of Distributed Coevolutionary Optimization 71 

Coordination Policy-B 

Let xg' be a randomly generated point that is the result of a joint computa­

tion by the nodes. Let Zg — I xg, xg' , • • • , xg', xg' \, and let 5 : X —> X 

represent the computation that selects that vector from Zg' — xg which has 

the highest fitness and makes it the new iterate xg+\ only if its fitness is 

greater than that of xg (else xg+i = xg). 
Once a randomly generated point xg enters the region C, and even if no 

other points from the set Zg are in this region, the above coordination pol­
icy would ensure that xg' becomes the new iterate. From this stage on the 
global optimizer will be attained deterministically without any stochastic 
assistance. Therefore, the probability that a randomly selected point xg 

would lead to global convergence under this coordination policy, is given 
by /^(O/M*)-

Coordination Policy-C 

Let {xg'} be a set of randomly generated points whose elements are results 
of joint computations by the nodes. Let Zg" = < xg,xg , • • • , xg, {xg'} >, 
and let S : X —> X represent the computation that selects that vector 
from Zg" — xg which has the highest fitness and makes it the new iterate 
xg+i only if its fitness is greater than that of xg (else xg+i = xg). 

Once a point from the set {xg'} enters the region C, and even if no 
other points from the set Zg" are in this region, the above coordination 
policy ensures that point becomes the new iterate. From this stage on the 
global optimizer will be attained deterministically without any stochastic 
assistance. The probability that a random selection xg' would lead to global 
convergence under this coordination policy, is computed below. 

Assume that each point in the set {xg'} is generated independently, and 
that this set has cardinality c. Then, the probability that at least one point 
from this set falls in the region C is given by 

1 - (1 - — ^ V « 1 - exp (-c^§r) assuming ^(C)/^(X) « 1 

Discussion 

A direct comparison of "Coordination Policy-B" and "Coordination Policy-
C" reveals that the latter policy has a higher chance of global Convergence 



72 Network-Based Distributed Planning using Coevolutionary Algorithms 

when c > 1. From a theoretical perspective, "Coordination Policy-A" ap­
pears to have the potential to do better than "Coordination Policy-B" since 
the space C is subsumed by the space M. However, from a practical per­
spective3, it is impossible to assert that if xg' falls in the region M—C and is 
selected as the new iterate, then with probability 1 a local search by at least 
one node would find a point in C within some fixed number of generations. 
So, for "Coordination Policy-A" the probability jfin(M)/fin(X) serves as 
the upper bound, and the lower bound is 7/xn(C)/^„(A'). Therefore, the 
lower bound probability associated with "Coordination Policy-A" is less 
than or equal to the probability associated with "Coordination Policy-B," 
and by a transitive argument it is less than the probability associated with 
"Coordination Policy-C" when c > 1. 

The important insight on these coordination policies is that for an arbi­
trarily multimodal objective, there is only the guarantee that such policies 
will enable global convergence as time tends to infinity. It is not possi­
ble to predict their convergence rates, unless of course these objectives are 
favorably transformed as discussed in Theorem 5.2. 

5.3 Computational Delay Analysis 

This section analyzes computational delays associated with the central­
ized and distributed algorithms when they are implemented in a network 
environment. Computational delays are modeled as functions of several 
variables including network delays, local database access delays, number of 
nodes, and frequency of intercommunication. Each of the p nodes in the 
network environment is assumed to have a locally resident database (see 
Figure 5.1), information from which is necessary for function evaluations of 
the form ip{x) in (5.1). d is the network access delay for accessing a node 
from any other node. / is the local database access delay for retrieving 
information corresponding to any variable block Xi from the local database 
at node i. In these models, the computational cost of applying the selection 
and stochastic variation operations on a local population to create new in­
dividuals is assumed to be negligible compared to the computational cost of 
evaluating new individuals, which requires both local and network accesses. 

3Given a finite population size. 



Theory and Analysis of Distributed Coevolutionary Optimization 73 

5.3.1 Centralized Computation 

In this model of computation, only one of the p nodes performs the evolu­
tionary search while the other p - 1 nodes provide information on request. 
Evaluation of an individual in the population requires a local information 
request and p — 1 network information requests. m c is the problem de­
pendent population size. Then, the computational delay per generation 
of evolution, tc, is given by tc = t\0C3\ + tcomm , where ii0Cai = lmc, and 
*comm = (2d + l)(p — l)m c . The term 2d in tcomm models a network access 
cycle. 

5.3.2 Distributed Coevolutionary Computation 

In this model of computation, each of the p nodes participates in a co-
evolutionary search, and it is assumed that the computation at each node 
proceeds synchronously. It is assumed that there exists a coordination 
mechanism common to the p nodes (resident at some node), and it takes a 
network access of each of the other nodes to collect partial results, a network 
access of each these nodes to evaluate the result of any joint computation in 
the set {xg'}, and a network access of each of these nodes for transmitting 
updates. / is the problem dependent normalized frequency of coordina-
tion-a number in the range (0,1]. When / = 1 a coordination occurs every 
generation of local search, and as / —• 0 the frequency of coordination 
drops, nid is the problem dependent local population size at each node. It 
is assumed that md < mc, since a local search at a node is over a space 
smaller than the space in the centralized search. Then, the computation 
delay per generation of evolution, td, is given by td = iiocai + *comm, where 
tiocai = l™>d, and icomm = [4d + (2d + l)c](p - 1)/ . The term \d in tconira 

models two network access cycles required to collect and transmit results, 
and the term (2d + l)c models the cost of accessing a node for evaluating c 
joint computations. 

5.3.3 Computational Advantage 

The nature of the ratio —, which is a function of the variables l,d,p, f, c, 
td 

and the population sizes mc,md, is of interest. This ratio represents the 
computational advantage (a large value of the ratio corresponds to a large 
advantage) of the distributed coevolutionary computation and holds under 
the idealized assumption that the centralized and distributed algorithms 



74 Network-Based Distributed Planning using Coevolutionary Algorithms 

are capable of producing similar results in the same number of generations. 
It is of interest to study the relationship of this ratio to the following factors: 

• Frequency of coordination / . 
• Number of computational nodes p. 
• Population sizes mc,md of the algorithms. 

• Limiting cases of the ratio of local access and network access delays - . 

When - C l each node can access its local database much faster than 
a 

it can access another node, and when — > 1 a network access is faster 
a 

that a local database access. 
• Cardinality c of the set {xg'}. 

The ratio — is written as - j —, where 
td d td 

h=l
mc+(2+l-)(p-l)mc (5.3) 

d \ d 

and 

td I _,_ 
-d=dmd + 4 + ( 2 + i ( P - 1 ) / (5-4) 

Figures 5.3, and 5.4 show the nature of the trade-offs between the com­
putational advantage and frequency of coordination for several values of 

the ratio - and number of nodes p, respectively when c = 1 and c = 10. 
a 

For these trade-offs, a constant population size (mc = mj = 100) is used 
for the centralized and distributed algorithms. These trade-offs show that 
in general a higher computational advantage is achievable for a distributed 
algorithm implementation that can tolerate infrequent coordination. Even 
if a coordination operation were to occur every generation of evolution, 
there is a significant advantage to distributed coevolutionary computation 

provided the ratio - is sufficiently smaller than 1. 
d 

When - « 1, a distributed algorithm is highly scalable with respect 
d 

to the number of computational nodes-the trade-off curves have a tighter 
spread over a wider range of number of computational nodes. Even when 
the local access delay dominates the network access delay (for example 

— = 100), there is a significant advantage to distributing the compu-
d 
tation when the number of nodes is large. Figure 5.4 shows that when 



Theory and Analysis of Distributed Coevolutionary Optimization 75 

the cardinality of the set {xg'} increases (resulting in a higher number of 
network-based evaluations during every coordination operation), the ad­
vantage to distributing the implementation decreases. However, from a 
practical perspective, a larger cardinality c may lead to faster convergence 
of the distributed algorithm thereby potentially offsetting any performance 
degradations. 

| i o ! 

S i o 2 

I102 

10 
coordination frequency 

10" 

jnffSe 
P= 10" 

p = 2 

l/d = 0.1 

r> = 1000 

10 
coordination frequency 

p = 

p = 

10 

= 2 

P = 

P = 

TSno 

100 

i/d = = 10 

= 

10 

•510' 

"D 2 

coordination frequency 

rT^m 
p = 10 

p = !> 

l/d= 1 

__j> = 1000 

10 
coordination frequency 

p = 

p = 

= 10 

= 2 

P = 

P = 

"T55D 

100 

l/d = = 100 

10" 
10"' 10"' 10" 10"' 10"' 10" 

coordination frequency coordination frequency 

Fig. 5.3 Nature of the ratio |*- as a function of 2,p,f when m c = im-d = 100, c = 1. 

Bounds for the computational advantage — are now derived under the 
td 

limiting conditions - —> 0 and — —> oo. First, let - —> 0. Then, (5.3) may 
d a a 

be approximated by 

— « 2(p - \)mc a 
(5.5) 

and (5.4) may be approximated by 

^ » ( 4 + 2 c ) ( p - l ) / (5.6) 



76 Network-Based Distributed Planning using Coevolutionary Algorithms 

10* 

=510' 

10 
coordination frequency 

g10< p"=~Ttr 

p = 2 

l/d = 01 

^ p = 1000 

^ ^ ^ 

coordination frequency 

P = IOCLI 

p - 1 0 

p - ? 

l/d = 100 

. p=1000 

. 
10 10 

coordination frequency 

Fig. 5.4 Nature of the ratio | * as a function of j,P,f when mc = ma = 100, c = 10. 

Therefore, the limit of the ratio of (5.3) and (5.4) when — -» 0, may be 

computed using (5.5) and (5.6), and is given by 

1^0 td ~ (c + 2) / 
(5.7) 

Similarly, when — —> 00, (5.3) may be approximated by 
a 

ic / i I 
— « -mc + - ( p - l)mc = 3pmc a a a a 

(5.8) 

and (5.4) may be approximated by 

-^ « - m d + - c ( p - 1) / (5.9) 



Theory and Analysis of Distributed Coevolutionary Optimization 77 

Therefore, the limit of the ratio of (5.3) and (5.4) when - -»• oo, may 

be computed using (5.8) and (5.9), and is given by 

lim 'f = Zp-r- (5.10) 
i-K»*d md + c(p-l)f 



This page is intentionally left blank



Chapter 6 

Performance Evaluation Based on 
Ideal Objectives 

6.1 Introduction 

The two previous chapters respectively focused on developing a theoretical 
foundation for centralized evolutionary algorithms and for distributed co-
evolutionary algorithms. This theoretical foundation describes evolutionary 
and coevolutionary algorithms in terms of creation and evolution of sam­
pling distributions over the feasible space. Using this approach, global con­
vergence and convergence rate results are derived for certain basic classes 
of objective functions. 

This chapter presents simulation results based on several ideal objectives 
function classes. The first test function class is a unimodal Gaussian. The 
second test function class is a bimodal Gaussian, and for functions in this 
class, their optima are aligned according to the description in Theorem 5.2. 
The third test function class is also a bimodal Gaussian, but corresponds to 
a general case objective with no favorable coordinate transformation. The 
fourth test function class is a set of increasingly difficult planar tile layout 
problems. Finally, an evolutionary algorithm is developed and evaluated 
for the general design-supplier-manufacturing decision problem. 

This chapter is based in part on material that appears in [Subbu and 
Sanderson, 2003a]. 

6.2 Gaussian Objectives 

This section presents simulation results using three test function classes 
based on Gaussians and a linear combination of Gaussians. The first test 
function class is unimodal in nature. The second test function class is 
bimodal in nature, and for functions in this class, their optima are aligned 

79 



80 Network-Based Distributed Planning using Coevolutionary Algorithms 

according to the description in Theorem 5.2. The third test function class 
is also bimodal in nature, but corresponds to a general case objective with 
no favorable coordinate transformation. 

Twenty stochastically generated test functions from each of the three 
classes are used for the evaluation, which is based on a total of 60 test 
functions. Each test function consists of four variables, and height contours 
of the corresponding sample two-variable versions are shown in Figure 6.1. 

Test Function A Test Function B 

Fig. 6.1 Two-variable example functions from each of the ideal test function classes. 

Function-A is the unimodal function class 

ip{x) = 3 exp \-\{x - x*)TK-1{x - x*U (6.1) 

where x* = [—1, —1, —1, — 1]T, and twenty instances of the covariance ma­
trix K are randomly constructed using uniform standard deviations in the 
range [0.5,1.0], and uniform correlation coefficients in the range [—0.6,0.6]. 
Each randomly generated K is used to construct a test function in this 
class. 



Performance Evaluation Based on Ideal Objectives 81 

Function-B is the bimodal function class 

rl>{x) =3 exp (-±{x - x*a)
TKa-\x - < ) ) + 

exp ( --{x - xlfK^ix - x*b) 

where x*a — [1,1,-1,—1]T , x% = [ - 1 , - 1 , - 1 , - 1 ] T , twenty instances of the 
covariance matrix Ka are randomly constructed using uniform standard 
deviations in the range [0.2,0.5], and uniform correlation coefficients in 
the range [—0.6,0.6], and twenty instances of the covariance matrix Kb 
are randomly constructed using uniform standard deviations in the range 
[0.5,1.0], and uniform correlation coefficients in the range [—0.6,0.6]. Each 
random combination of Ka and K\, is used to construct a test function in 
this class. 

Function-C is also a bimodal function class, and is similar to test func­
tions in the Function-B class except that x*a = [1,1,1,1]T. Gaussian-based 
test functions are used since they are representative of the basic function 
classes of interest and offer consistency with the theory presented in this 
book. 

The centralized and distributed algorithms are implemented in a two-
node distributed environment. For the case of the distributed algorithm, the 
first two variables form the primary variable set for the first node while the 
last two variables form the primary variable set for the second node. The 
representation is a real encoded four dimensional vector of variables. Gaus­
sian mutation with parent-child competition introduces stochastic variation 
in the samples. The range of each variable is [—2,2], consistent with the 
description in Figure 6.1. The simulation parameters are: Network delay 
d = 10, Local access delay I = 1, Number of nodes p = 2, Coordina­
tion frequency (for the distributed algorithm) / = 0.1, Population sizes: 
mc = 200, md = 50. The distributed communication scheme follows the 
discussion in Coordination Policy-A (Section 5.2.3.3). 

Figure 6.2 shows the average (and standard deviation) convergence per­
formance over 400 trials (20 trials for each of the 20 randomly generated 
test functions in each of the three classes) of the evolution of the mean 
fitness of the population distribution of the centralized algorithm, and the 
evolution of the fitness of the global iterates of the distributed algorithm, 
considered with respect to a system that geometrically seeks with contrac­
tion coefficient a = 0.98, a value of 3 starting from 0. The abscissa in these 
performance plots corresponds to search generations. The above results 



82 Network-Based Distributed Planning using Coevolutionary Algorithms 

Test Function Class A Test Function Class A 

J / . . - • ' ' 

I 

i 

/ • — Cent. alg. 
— Dist. alg. 

Contraction 

50 100 150 200 
Test Function Class B 

3 • 

a 2 

« 
> 
CO 1 

s 

i 

i 
i 

Cent. alg. 
Dist. alg. 

— Contraction 

50 100 150 
Test Function Class C 

•I •' s^~^ 

I 

Cent. alg. 
Dist. alg. 

— Contraction 

400" 600 800 1000 
generations 

/ i 
' I1 

' M 

— Cent. alg. 
— Dist. alg. 

50 100 150 200 
Test Function Class B 

/ N 

/ I 

Cent. alg. 
Dist. alg. 

50 100 150 
Test Function Class C 

I \ 

Cent. alg. 
Dist. alg. 

— , ^ r ^ _ _ -

400 600 
generations 

Fig. 6.2 Convergence performance over 400 trials of the centralized and distributed 
algorithms applied to test functions from each of the three ideal test function classes, and 
considered with respect to a system that geometrically seeks with contraction coefficient 
a = 0.98, a value of 3 starting from 0. 

show that for all the considered test functions the centralized algorithm on 
average clearly converges geometrically as predicted earlier, and the dis­
tributed algorithm on average also clearly converges geometrically for the 
unimodal and coordinate aligned bimodal objectives as predicted earlier. 
For arbitrarily aligned bimodal objectives in function class C, the conver­
gence rate of the distributed algorithm is weaker than geometric, and is 
highly dependent on the coordination scheme incorporated, as stated ear­
lier. Occasionally, for certain randomly generated test functions in the 
classes B and C, both the centralized and distributed algorithms converge 
sub-optimally, resulting in nonzero standard deviations at higher genera­
tion counts. Such behavior is typical in all randomized algorithms including 
evolutionary algorithms. 

Figure 6.3 shows the relative time performance of the centralized and 
distributed algorithms from Figure 6.2 when network and local access de­
lays are considered. In spite of the fact that function-C is more difficult 



Performance Evaluation Based on Ideal Objectives 83 

that the others for the distributed algorithm, its convergence behavior is 
consistently better than that of the centralized algorithm when network 
delays are considered. 

Test Function Class A Test Function Class A 

3 

2.2 

0 
10' 

3r 

S , 2 

s? 
CD > 
* 1 

— Cent. alg. 
— Dist. aig. 

/ 

1 

1 

I 

1 

1 

10' 10" 
Test Function Class B 

10° 

Cent. alg. 
Dist. alg. 

» " - ' — 

/ 

10' 10" 
Test Function Class C 

Cent. alg. 
Dist. alg. / 

J / 
/ 

/ 
/ 

10' 10" 
time units 

10° 

^ 0 . 5 

10' 10" 
Test Function Class B 

Cent, alg, 
Dist. alg. 

r 
L 'v 

I ; 

10 10 
Test Function Class C 

!0.5 

Cent. alg. 
Dist. alg. 

\ / \ 
; 

/ 

10' 10" 
time units 

10° 

Fig. 6.3 Time performance over 400 trials of the centralized and distributed algorithms 
applied to test functions from each of the three ideal test function classes. 

6.3 Planar Tile Layout Problems 

In this section, the centralized and distributed algorithms are evaluated by 
their ability to solve select planar tile layout problems. The problem is an 
arrangement of tiles to cover a unit square area within a larger bounded 
region such that the tiles do not mutually overlap (see Figure 6.4). The tiles 
are arranged using translations in the two-dimensional space; tile rotations 
are not allowed. If the tiles were to mutually overlap the arrangement 
would incur a penalty directly proportional to the area of overlap. Though 
the tiles may not exceed the layout bound, they may overlap the shaded 
region, but then such a layout would incur a penalty directly proportional 



84 Network-Based Distributed Planning using Coevolutionary Algorithms 

to the area of overlap. 

Unit area in which tiles must be laid out 

1.0 

-1.0 1.0 

Layout penalty region Layout bound 

Fig. 6.4 Tile layout problem. 

In the centralized algorithm implementation, the positions of all the 
tiles can be changed simultaneously, while in the distributed algorithm im­
plementation each node controls the position of a unique tile, and it is 
assumed that internode communications are delay-prone. The representa­
tion used is a concatenation of the real encoded Cartesian coordinates of 
an anchor point of each tile, and each search variable has a range of [—1,1]. 
Each complete tile-set arrangement is scored directly proportional to the 
percentage of area covered; the objective being its maximization. 

Figure 6.5 shows three tile layouts (A, B, C) of respectively increasing 
search difficulty, which serve as test cases. For each of the test cases the 
maximum cover is achieved when the tiles do not overlap and fit exactly 
within the unit area shown in Figure 6.4. For layout-A an exact fit cor­
responding to the maximum cover has two alternatives (tile positions can 
be swapped), while for layouts B and C the maximum cover is achieved 



Performance Evaluation Based on Ideal Objectives 85 

only for unique respective tile-set configurations. Due to the nature of the 

tile-l Tile-2 Tile-1 Tile-2 

Layout-A Layout-B 

I lie 1 

i ue-4 

• - — 

— 

Tile-2 

rile-3 

Layout-C 

Fig. 6.5 Exact tile layouts for the three test cases. 

representation used, layouts A and B correspond to four-variable search 
problems, while layout-C corresponds to an eight-variable search problem. 
The search space corresponding to layout-A has optima aligned with the 
search coordinates, so for this problem the distributed algorithm does not 
require any randomization in the selection of new iterates. However, for dis­
tributed searches corresponding to layouts B and C many competing and 
unfavorably aligned optima occur requiring randomization in the selection 
of iterates. 

The simulation parameters for the respective searches corresponding to 
layouts A and B are: Network delay d = 10, Local access delay I = 1, 



86 Network-Based Distributed Planning using Coevolutionary Algorithms 

Number of nodes p = 2, Coordination frequency (for the distributed algo­
rithm) / = 0.1, and Population sizes: mc = 200, rrid = 50. The simulation 
parameters for the search corresponding to layout-C are: Network delay 
d = 10, Local access delay 1 = 1, Number of nodes p = 4, Coordination 
frequency (for the distributed algorithm) / = 0.1, and Population sizes: 
mc = 4000, rrid = 100. Gaussian mutation with parent-child competition 
introduces stochastic variation in the samples. A large population size is 
used for the centralized search corresponding to tile layout-C primarily be­
cause of the presence of many competing local optima, and in the absence 
of problem specific heuristics, a large population size is a means for main­
taining diversity as the search matures. The distributed algorithm on the 
other hand does not require large population sizes because randomization 
in selection of global iterates introduces the necessary search diversity. Fig­
ure 6.6 compares the average (and standard deviation) performance over 
20 trials of the evolution of the mean of the population distribution of the 
centralized algorithm, and the evolution of the global iterates of the dis­
tributed algorithm with respect to search generations. Figure 6.7 shows the 
same comparison with respect to time requirements of the respective algo­
rithms. The distributed search corresponding to this problem consistently 
achieves the global optimum, albeit in more generations (for the harder tile 
layouts-B and C), due to randomization in the selection of global iterates. 
These performance figures reinforce the observation that the distributed 
computation has a better time-performance advantage when network com­
munication delays are considered. 

6.3.1 Discussion 

In each of the three tile layout problems, a node controls the position of a 
unique tile, and relies on information from the other nodes for computing 
the fitness of each of its alternatives. The fitness of any alternative at a 
given node is a conditional fitness, in other words, local fitness computa­
tions are conditioned upon the locations of representative tiles from each 
of the other nodes. Alternatively, the nodes by design have to cooperate to 
solve the global problem. One might argue that if the global fitness space 
is, for purposes of illustration, similar to a quadratic with no correlation 
between search variables, or sets of search variables, and each node con­
trols one such set, then it would be possible to solve the problem with a 
one-step communication following local search at each of the nodes. When 
there is any significant correlation among the partitioned search variables, 



Performance Evaluation Based on Ideal Objectives 87 

1 

r 
"0 .6 

0.4 
10' 

1 

0.8 

I" 
0.4 

0.2 
10' 

1 

0.8 

I" 
0.4 
0.2 

10' 

, r 
/ 

/ . - - • 

n« 
— Cent. alg. 
— Dist. alg. 

A 

0.2 

0.15 

* 0.1 

0.05 

\ , 
_,_.. V 

— Cent. alg. 
— Dist. alg. 

Tile Layout A 

~ t ^ _ 
10" 

Tile Layout B 

Cent. alg. 
Dist. alg. 

0.2 

0.15 

! 0.1 

' 0.05 

-s* I 

/ 

— Cent. alg. 
— Dist. alg. 

I Tile Layout B 

10' 

V 

/ - - ' 

Tile Layout C 

— Cent. alg. 
— Dist. alg. 

0.2 

0.15 

& 
"° 0.1 

™ 0.05 

\ ^ 1 

— Cent. alg. 
— Dist. alg. 

/ ~ 
10' 

generations 
10" 10' 

generations 

Fig. 6.6 Convergence performance over 20 trials of the centralized and distributed al­
gorithms applied to the tile layout test cases. 

communication is integral to the problem solving. 
A selection of the three tile geometries is conditioned upon such an ob­

servation, and the three problems A, B, and C correspond to increasingly 
coupled (epistasis) problems due to the introduction of notches in their tile 
geometries. Tile layout-A with two rectangular tiles has lower epistasis 
than the other problems. In this problem, each of the two tiles can be fixed 
a priori at one of two extreme positions, and the other free tile may move 
independently to the globally optimum position. However, in any other 
non-extreme position, the two tiles have to move in unison (via communi­
cation) to seek the global optimum (optima in this case). Tile layout-B is a 
further complication due to the introduction of a significant notch, and un­
less each tile is placed exactly in its respective extreme position, the other 
tile cannot seek the global optimum without communication. Tile layout-C 
is clearly the most complicated with a puzzle nature to it, and the only 
way for a tile to seek the global optimum on its own is if all other tiles are 
positioned a priori in their respective extreme positions. Therefore, for each 
of the three tile layout problems, a low epistasis situation will arise only 
very remotely based on the a priori starting positions of the tiles. When 



88 Network-Based Distributed Planning using Coevolutionary Algorithms 

0.2 

0.15 

' 0.1 

' 0.05 

— Cent. alg. 
— Dist. alg. 

^ '"\_ 

0.2 

0.15 

> 0.1 
J 
5 0.05 

10' 10* 
time units 

Tile Layout B — Cent. alg. 
— Dist. alg. 

0.2 

0.15 

' 0.1 

1 0.05 

Tile Layout C — Cent. alg. 
— Dist. alg. 

10" 
time units 

Fig. 6.7 Time performance over 20 trials of the centralized and distributed algorithms 
applied to the tile layout test cases. 

the tile positions are randomly initialized, as in this presentation, there will 
be multiple optima encountered (by construction of the problems), and low 
epistasis is not a concern. 

Further, the experimental investigation reveals that especially for Tile 
layouts B and C, the distributed algorithm does not reliably converge to 
the global optimum without explicit randomization in the communication, 
showing that these are not trivial problems for a distributed algorithm. In 
other words, unless there is randomization introduced in the selection of a 
global state, there is a good chance of convergence to a local optimum via 
distributed local hill climbing. 

6.4 Design-Supplier-Manufacturing Problem 

This section develops evolutionary and coevolutionary algorithms for the 
general design-supplier-manufacturing decision problem described in Sec­
tion 3.2, and evaluates it on example problems that have the same assign-



Performance Evaluation Based on Ideal Objectives 89 

ment constraints and structure as the general problem but whose objectives 
are simpler than those of the general problem. Simplifying the objectives 
allows creation of test problems with well known global optima without 
compromising the structure of the general problem.1 Also, from the per­
spective of design of an evolutionary algorithm and operators, the problem's 
assignment constraints and structure are principal factors. 

6.4.1 Representation 

To facilitate a description of the representation for evolutionary optimiza­
tion, it is convenient to use the example structure shown in Figure 3.1 as a 
starting point. Figure 6.8 shows a two dimensional matrix that facilitates 
the generation and evaluation of potential assignments in Figure 3.1. In 
this matrix, each slot is a gene that can assume a real value in the range 
[0,1]. Each column in this matrix corresponds to a unique edge from the 
bipartite graph between parts and their supply sources. The genes in the 
topmost row of the matrix are weights signifying relative preferences of 
combined selection of parts and their respective supply sources, and each 
gene may have a coupling with one or more of its neighboring genes. Con­
sider the set of n supplier-part edges for parts in a class Cc, and let xc 

be the number of desired instances (integer) of available parts from this 
class. Let {p[,P2, ••• ,Pn} be the set of n relative preferences specified by 
the n respective genes. The set of n absolute preferences {Pi,P2, • • • ,Pn} 
is computed through normalization, and is given by 

. 7 = 1 

Using these absolute preferences an additive partition of the integer xc is 
computed as the set {xCl,xC2,- • • ,xCn}, where xCi = round(p?a;c) is the 
number of desired instances of a certain part from its supply source. The 
function round(-) generates an integer closest to its argument such that 

n 

Xc — j j XCj • 

3 = 1 

Each row of the matrix after the topmost row corresponds to a man­
ufacturing resource, and a gene at location (r, c) is a weight that signifies 

lrThe combinatorial complexity of the problem arises from its structure including the 
assignment constraints. 



90 Network-Based Distributed Planning using Coevolutionary Algorithms 

the preference of assignment of the entity of column c to the entity of row 
r. 

, 
1 

H 

Mr, 

M4 

M 3 

M5 

M
m-1 

C 

Si S2 Ss 

1 Pi PA 

" 

c 2 

Si S2 Ss 

I I - - - I 
Pi Pi P5 

c c 

Si S2 Ss 

I I - I 
Pe P6 Ps 

Fig. 6.8 Representation for the general design-supplier-manufacturing decision 
problem. 

Assume the computation of xCi, which specifies a desired number of 
instances of a part from a supply source. The next problem is the deter­
mination of the distribution of these parts across equivalent manufacturing 
resources in some set Ee. The solution to this problem is similar to the 
one described earlier, but now the absolute preferences are computed over 
a fixed column and variable rows. 

For the example shown in Figure 3.1, the part classes Ci,C2 are not 
assignable to manufacturing resource class Ee, and the part class Cc is 
not assignable to manufacturing resource classes Ei,E2- Therefore, the 
genes corresponding to these assignments (shown shaded in Figure 6.8) are 
ignored in any subsequent objective computations. 

The representation, which consists of a two dimensional matrix of real 
numbers in the space [0,1] serves as a very convenient means to specify 
assignments when it is used in combination with the partitioning and as-



Performance Evaluation Based on Ideal Objectives 91 

signment heuristic based on relative preferences. The principal advantage 
of this representation is that all genomes generated using this data structure 
correspond to valid partitions and assignments. 

6.4.2 Evolutionary Operators 

Given a population of sample genomes, the evolutionary algorithm selects a 
parent set using proportional selection. Each parent generates two offspring 
through Gaussian mutation; the first offspring is generated using a large 
standard deviation of 0.5 while the second offspring is generated using a 
tenth of the standard deviation (0.05). The parent and two offspring com­
pete and the fittest survives, and this facilitates a coarse and fine search 
in the same step. The two dimensional matrix representation could eas­
ily support a recombination operation wherein sub-matrices from two or 
more parents are spliced to create offspring. However, the implementation 
uses only the gene mutation operation to introduce variation. Also, a fixed 
population size of 200 is used in the simulations. 

6.4.3 Test Problem Objective 

This is the problem of a "best matched" assignment of parts to machines 
such that the tool head in a machine has minimum difficulty handling a 
part. For this it is desired that parts be well matched to machine tool 
heads in terms of their relative sizes. Let S(Pj) € [0,1] denote the size of 
the part Pj, and let T(Mj) e [0,1] denote the tool head size of machine M». 
The cost of assigning rijj instances of part Pj to machine M; is computed 
as n^AT{Mi) — S(Pj))2. Given m machines and p parts, the total cost 
of assignment to be minimized, assuming each part is assignable to any 
machine, is computed as the coupled nonlinear objective 

m p 

»=i J = I 

In case some parts are not assignable to some machines, the suggested 
assignments are ignored in the objective computations. 

6.4.4 Algorithm Performance 

Three test assignment problems (A, B, C) with progressively increasing 
numbers of search variables are generated. "Assignment Problem" A corre-



92 Network-Based Distributed Planning using Coevolutionary Algorithms 

sponds to a problem with two parts and four machines (10 search variables), 
while "Assignment Problem" B corresponds to a problem with four parts 
and eight machines (36 search variables), and "Assignment Problem" C 
corresponds to a problem with eight parts and eight machines (72 search 
variables). For each of these problems the value at the corresponding global 
optimizer is 0, and this is achieved by setting up each problem such that 
for a part of a certain size, there exists at least one machine with a tool 
head of the same size. 

In the centralized algorithm implementation all search variables can be 
simultaneously manipulated. In a distributed implementation the search 
variables are partitioned among three nodes. For each of the three exam­
ple problems the distributed implementation uses Coordination Policy-C 
(see Section 5.2.3.3) with three random samples generated per coordination 
iteration. 

The simulation parameters for the searches are: Network delay d = 10, 
Local access delay 1 = 1, Number of nodes p = 3, Coordination fre­
quency (for the distributed algorithm) / = 0.1, and Population sizes: 
mc = 200,md = 50. 

Figure 6.9 shows the average (and standard deviation) convergence per­
formance over 20 trials of the evolution of the mean fitness of the population 
distribution of the centralized algorithm, and the evolution of the fitness of 
the global iterates of the distributed algorithm. Figure 6.10 shows the same 
comparison with respect to time requirements of the respective algorithms. 
The distributed search corresponding to this problem consistently achieves 
the global optimum in a time-efficient manner, and this reinforces the ob­
servation that the distributed computation has a better time-performance 
advantage when network communication delays are considered. 



Performance Evaluation Based on Ideal Objectives 93 

200 r 

150 v 
CD 

g 100 

50 

0 
10' 

400 • 

300 -

100 

0 
10' 

600 -

ID 400 ~ 
Cd 

s 
« 200 

\ \ 
s 

— Cent, alg, 
Dist. alg. 

Assign. Problem A 

10 10 
generations 

'~--L 
Cent. alg. 
Dist. alg. 

Assign. Proble mB 

10 10 
generations 

""-L 

— Cent. alg. 
Dist. alg. 

Assign. Prob emC 

10 10 
generations 

10' 

;10° 

> 
> 

i 10"' 

10" 

—A 
Assign. Problem A^ 

— Cent. alg. 
Dist. alg. 

V 

\ 

10 10 
generations 

10° 

— Cent. alg. 
Dist. alg. 

Assign. Problem B 

s. _ 

10" 

;10a 

I 

10" 

0 10 10 K 
generations 

— Cent. alg. 
— Dist. alg. 

Assign. Problem C ^ - * _ 

10 10 
generations 

Fig. 6.9 Convergence performance over 20 trials of the centralized and distributed al­
gorithms applied to the example parts-machines assignment problems. 



94 Network-Based Distributed Planning using Coevolutionary Algorithms 

200 r 

150 
a 
a) 
I 100 
8 

50 

0 • 

10 

400 • 

300 
a 

= 200 
5 

100 

0 
10' 

600 r 

ID 400 
ca 
cu 

8 200 

\ 
\ As 
\ 
\ 
\ 

Cent. alg. 
— Dist. alg. 

sign. Problem A 

f 10 10 
time units 

As 
\ 
\ 

Cent. alg. 
Dist. alg. 

sign. Problem B 

10° 
time units 

\ A S 

Cent. alg. 
— Dist. alg. 

sign. Problem C 

10° 
time units 

10" 

HO" 

Cent. alg. 
Dist. alg. 

10" 
time units 

Cent. alg. 
Dist. alg. 

10= 
time units 

Assign. Problem C A 

Cent. alg. 
— Dist. alg. 

10" 10" 
time units 

Fig. 6.10 Time performance over 20 trials of the centralized and distributed algorithms 
applied to the example parts-machines assignment problems. 



Chapter 7 

Coevolutionary Virtual Design 
Environment 

7.1 Introduction 

A principal focus in Chapter 3 is the formulation and analysis of a class of 
distributed decision problems arising in integrated manufacturing planning, 
the formulation for which is developed as a set of coupled nonlinear assign­
ment problems. Another principal focus of that chapter is the identification 
and evaluation of alternative algorithms suitable for global optimization of 
problems in this class. This evaluation, based on the structure and re­
quirements of the problem class supports the application of evolutionary 
optimization techniques. Chapters 4, 5, 6 respectively develop theoret­
ical foundations and evaluate two competing approaches to evolutionary 
optimization-centralized optimization, and distributed coevolutionary op­
timization. The discussions in these chapters firstly highlight the versa­
tility of evolutionary optimization techniques, and secondly highlight the 
computational attractiveness of the coevolutionary method for distributed 
decision problems such as the design-supplier-manufacturing planning de­
cision problem. In these distributed decision problems, multiple logically 
interrelated decision resources are physically distributed, and information 
for global decision-making using these resources is available from several 
network-distributed databases. Therefore, in this environment, network 
access and database access delays become principal factors that influence 
time requirements for the optimization process, and in turn affect the suit­
ability of an optimization approach. 

The focus of the present chapter is an applications oriented integra­
tion of the developments from earlier chapters. This chapter describes 
the algorithms, architecture and implementation of the coevolutionary 
decision-making framework, the Coevolutionary Virtual Design Environ-

95 



96 Network-Based Distributed Planning using Coevolutionary Algorithms 

ment (CVDE). In this framework, an electronic exchange of design, sup­
plier, and manufacturing information facilitates a concurrent, cooperative, 
network-efficient exploration of complete integrated planning alternatives 
(virtual designs) that are evaluated against an objective function based on 
cost and time models. These models rely on information available from 
network-distributed databases. The principal computational entities in the 
CVDE are distributed evolutionary agents and mobile agents that generate 
and execute queries among distributed applications and databases to sup­
port a global optimization of design, supplier, and manufacturing planning 
decisions for printed circuit assemblies. 

While there are several published articles on the application of agent-
based paradigms to manufacturing planning, scheduling, and control prob­
lems (e.g. [Sikora and Shaw, 1997; Yu and Huang, 2001]), and evolutionary 
computation has been applied to solve various manufacturing problems 
(see a review in [Dimopoulos and Zalzala, 2000]), the combination of evo­
lutionary computation and agent architectures for integrated and optimal 
network-based planning is a recent development (e.g. [Chao et ai, 2002; 
Hsieh, 2002]). 

Section 7.2 describes the printed circuit assembly design-manufacturing 
application domain, and the application-specific assumptions. Section 7.3 
presents evolutionary optimization techniques applicable to design-supp­
lier-manufacturing planning for printed circuit assemblies. This section de­
scribes the representation used, objective function and models, evolutionary 
operations specific to the centralized and distributed coevolutionary opti­
mization techniques, and architectures of the centralized and distributed 
implementations. Section 7.4 first presents two CVDE implementations-
one that physically resides in the memory space of a single processing unit 
but executes over a simulated network layer, and the other that is physically 
distributed over several processing units connected over a campus network. 
While the implementation that executes over a simulated network uses 
event-driven models for computing communication and access delays, and 
is very attractive1 as a testbed for experimental evaluation of algorithm 
performance, the implementation that executes over a real network serves 
both as a realistic prototype and as a testbed for evaluating real network-
based execution. Finally, the method for generating the underlying data 
for design-manufacturing planning is described. 

This chapter is based in part on material that appears in [Subbu and 

From the perspective of execution speed. 



Coevolutionary Virtual Design Environment 97 

Sanderson, 2003b]. Earlier versions have appeared in [Subbu et al, 1998a; 
Subbu et al, 1998b; Subbu et al, 1998c; Subbu et al, 1999; Subbu and 
Sanderson, 2001b; Subbu and Sanderson, 2001a]. 

The following chapter in this book presents a detailed evaluation of 
the centralized and distributed coevolutionary decision-making frameworks, 
identifies principal factors that affect their network-based performance, and 
analyzes the requirements for applicability of the computational models to 
distributed network-enabled design and manufacturing organizations. 

7.2 Application Domain 

Design and manufacturing of printed circuit (PC) assemblies is typically 
realized in three distinct but highly coupled stages. First, a design (string 
of parts) and suppliers for the parts constituting the design are specified 
along with a specification of the layout of the parts on a printed circuit 
board. Next, a fabricator of the printed circuit board is selected. Finally, 
a manufacturing facility that can assemble the product given a part string 
and circuit board, is selected. These stages are highly coupled for decisions 
made at the design stage have maximum impact on product cost, product 
realization time, and manufacturing, and manufacturing choices have max­
imum impact on design, product cost, and product realization time. Design 
and manufacturing decisions affect choices of parts that are assigned to a 
design, selection of suppliers who will supply the parts, and selection of 
manufacturing resources that can produce the design. 

Traditionally, however, design and manufacturing tasks are executed se­
quentially with little or no interaction between the phases, and choices are 
typically made using the experience base in an organization. This results 
in numerous time consuming iterations and design-supplier-manufacturing 
solutions that are not anywhere close to optimal in terms of time, cost, 
or a trade-off function of both time and cost. Moreover, as suppliers and 
manufacturers increase in number, the combinatorial complexity of opti­
mal selection grows rapidly. An integrated planning method thus assumes 
importance in this environment as a powerful means to improve competi­
tiveness of products. Such planning methods respect the inherent coupling 
among the decision stages, and seek to select those plans that result in 
lower overall cost and lead-time to realization. 

Figure 7.1 shows the nature of the integrated design, supplier, manu­
facturing planning problem for printed circuit assemblies, a formal model 



98 Network-Based Distributed Planning using Coevolutionary Algorithms 

for which is presented in Section 3.3. In this domain, parts, suppliers, and 

PC Board Fabricators PC Assemblers 

Parts Library Parts Suppliers 

Fig. 7.1 Nature of the integrated design, supplier, manufacturing planning problem for 
printed circuit assemblies. Lines with arrowheads indicate assignments. Identical parts 
in various designs have solid lines between them. 

manufacturing decision resources are logically interrelated, and information 
for global decision-making using these resources is available from multiple 
network-distributed databases. 

7.2.1 Configuration of the Networked Environment 

Figure 7.2 shows a high-level configuration of the networked environment 
that consists of several logical clusters of network nodes and a product 
design node. Nodes in a logical cluster correspond to a class of functionally 
equivalent entities, and in general are physically distributed over a network. 
In this environment, three logical clusters of network nodes are considered: 

• Parts Distributor Nodes: Each node in this cluster corresponds to a 
parts distributor (parts warehouse) that stocks parts from several man-



Coevolutionary Virtual Design Environment 99 

Logical Cluster of Parts 
Distributor Network Nodes 

Product Design Node 

Logical Cluster of PC Board 
Fabricator Network Nodes 

Logical Cluster of PC 
Assembly Network Nodes 

Fig. 7.2 High-level configuration of the networked environment for integrated printed 
circuit assembly planning. 

ufacturers. 
• Printed Circuit Board Fabricator Nodes: Each node in this cluster cor­

responds to a printed circuit board manufacturer that may have several 
alternative board manufacturing lines, each of which is capable of man­
ufacturing printed circuit boards. 

• Printed Circuit Assembly Nodes: Each node in this cluster corresponds 
to a manufacturing facility with alternative manufacturing lines, each 
of which is capable of manufacturing printed circuit assemblies. 

Each of the nodes in the above three logical clusters has a locally res­
ident database that stores information specific to the node. A parts dis­
tributor node's database stores information on parts and their functionally 
equivalent alternatives, part characteristics, their costs and lead times for 
availability. A printed circuit board fabricator node's database stores infor­
mation that reflects the capabilities of the corresponding fabrication lines, 
and a printed circuit assembly node's database stores information on the 
available manufacturing resources within lines, their capabilities, process 
costs and delays. 



100 Network-Based Distributed Planning using Coevolutionary Algorithms 

In addition, there is a product design node that generates functional 
specifications that serve as partial templates for virtual designs. These 
templates specify the required parts equivalence classes (module types) and 
their respective instances for realizing a specific printed circuit board prod­
uct. 

While the search at a parts distributor node is over the space of func­
tionally equivalent designs that correspond to a functional specification, 
and is achieved by selecting alternative parts and suppliers for those parts, 
the search at a printed circuit fabricator node is over the space of available 
board fabrication resources, and the search at a printed circuit assembly 
node is over the space of available assembly resources. 

7.2.2 Application-Specific Assumptions 

This section lists several assumptions specific to printed circuit assem­
bly planning that influence the organization and implementation of the 
decision-making environment. 

It is assumed that for each module type listed in a functional specifica­
tion, there are multiple part alternatives that can satisfy the requirement. 
Part alternatives may differ not just by their supply sources, costs and lead 
times, but also by their physical characteristics. A commonly occurring 
physical variation is packaging, whereby the same part may be available 
in multiple package variations. This type of variation has a significant im­
pact on manufacturing processes. Another commonly occurring variation is 
through function subsumption, whereby a given function occurring in a cer­
tain part occurs similarly in its part variant along with additional available 
functions. This type of variation has the potential to affect the physical size 
of a part, which in turn has consequences in manufacturing. The important 
issue is that variations in part characteristics and their supply sources have 
coupled and nonlinear affects on manufacturing, product cost, and product 
realization time. 

An important assumption is made regarding the availability of a printed 
circuit layout generator. Ideally, this generator would take as input a parts 
string and a specification of the electrical interconnectivity between the 
parts, and output a layout on a printed circuit board. However, the discus­
sion in this book assumes the existence of a model-based system that can 
identify the principal characteristics of the resulting printed circuit board 
given a design. 

Another important assumption is made regarding the manufacturability 



Coevolutionary Virtual Design Environment 101 

of printed circuit board products. It is assumed that any generated printed 
circuit board is manufacturable at any of the available fabrication lines, and 
printed circuit assemblies can be assembled at any of the available assembly 
lines. The rationale is that rather than generating infeasible production 
options, production options are allowed to incur cost and time penalties 
consistent with the degree of infeasibility, through the objective function. 

A single functional specification is used as a starting point to search over 
the coupled space of equivalent designs, printed circuit board fabricators, 
and printed circuit assemblers. However, in principle, one could implement 
an augmented search that not only searches over equivalent designs cor­
responding to a single functional specification, but also searches over the 
space of functional specifications itself. To realize such a system one would 
require a mechanism (application) that resides at the product design node 
and generates a space of equivalent functional specifications. 

A functional specification is an abstraction at the level of part module 
types. If it is possible to generate equivalences at a higher level of ab­
straction (sub-system level), one could implement a much broader search. 
An example is used to illustrate this point. Assume that a sub-system in a 
printed circuit board requires one instance of a specific integrated circuit to 
perform a function. Let there exist a sub-system level alternative wherein 
the same function can be realized using purely discrete components (resis­
tors, capacitors, transistors, etc.). Then these two sub-system alternatives 
are considered to have equivalent (not identical) functional specifications 
from the perspective of the module types they encompass. 

7.3 Evolutionary Optimization 

This section presents centralized and distributed coevolutionary optimiza­
tion techniques applicable to design-supplier-manufacturing planning for 
printed circuit assemblies. First, an application-specific representation par­
ticularly suited to this problem is presented. Next, the objective function 
and embedded models used for evaluating alternative planning decisions 
are discussed. Finally, the centralized and distributed algorithms and their 
respective architectures are described. 



102 Network-Based Distributed Planning using Coevolutionary Algorithms 

7.3.1 Representation 

The template appropriate for representing a virtual design for printed cir­
cuit assembly planning is an array of n integers, also called a genome. Each 
of the first n — 2 integer slots (genes) encodes a discrete choice from the set 
of available parts in a part-equivalence-class. The gene at position n — 1 
encodes a discrete choice from the set of board fabrication lines, and the 
gene at position n encodes a discrete choice from the set of manufactur­
ing lines. The options space of the entire planning problem is adequately 
represented by the data structure shown in Figure 7.3. In this structure, 

Gene Allele Sets 

Gene 

Board fabrication line choice 
Manufacturing line choice 

Each gene allele set contributes a randomly picked member to its | 
respective gene in the initial population of genomes ! 

Fig. 7.3 Representation for the printed circuit assembly problem. 

each gene allele set is a set of integers representing discrete options along a 
dimension. A genome (array of genes) is constructed by randomly picking 
alleles (values) from corresponding gene allele sets. This representation im­
plicitly resolves all constraints defined in the problem formulation, and so 



Coevolutionary Virtual Design Environment 103 

issues of constraint satisfaction do not arise. This allows one to work with 
an unconstrained problem within the bounds defined by the representation 
data structure. 

7.3.2 Evaluation and Models 

This section describes the decision resources and models including those 
that are probed for evaluating alternative virtual designs. 

7.3.2.1 Evaluation 

The overall objective for the printed circuit assembly optimization problem 
follows the descriptions in Sections 3.2.2, 3.2.3, and 3.3. In the objective 
function to be minimized, ip(CT,TT) = CTe^T ~ a ) / ^ , the values for a and 
/? are set at 10. The constant a acts as a threshold beyond which total 
time is heavily penalized, and the constant /3 serves as a time scaling con­
stant. While several other trade-off functions of total cost and total time 
can be created and used, a threshold-based exponential weighting of the 
total time serves to emphasize the time factor compared to the cost factor 
when total time exceeds the threshold. In design and manufacturing appli­
cations, bringing a product to market faster is often more important than 
its initial cost, and this objective function serves to capture that intuitive 
idea through a mathematical expression. 

7.3.2.2 Models 

Several model-based transformations are utilized in the computation of the 
overall objective function to be minimized. Figure 7.4 is a high-level view 
of the embedded models that are discussed below from a conceptual per­
spective. The internals of the models are described in Appendix B. 

• Part: Part characteristics are described in Appendix B.l. 
• Design: A design is an aggregate entity whose characteristics are de­

rived by a transformation of the characteristics of its constituent parts. 
The Parts Cost and Maximum Parts Lead Time objective function com­
ponents are outputs of this entity. Design characteristics are described 
in Appendix B.2. 

• PCB Gen.: This represents a printed circuit board generator, which is 
a model-based transformer that outputs a set of printed circuit board 
{PC Board) characteristics given a set of design characteristics. This is 



104 Network-Based Distributed Planning using Coevolutionary Algorithms 

Parts 

PC Assembly Cells 

Fig. 7.4 High-level view of models embedded in the objective function. An arrow cluster 
associated with any entity represents a set of characteristics. 

described in Appendix B.3. 
• PC Board Fab Line: The characteristics of the printed circuit board 

fabrication line entity are described in Appendix B.4. A board fabrica­
tion line takes as input the characteristics of a design and an associated 
printed circuit board. The Overhead Cost and Overhead Lead Time 
objective function components are outputs of the printed circuit board 
fabrication line entity. These outputs are respectively the fabrication 
cost and fabrication time of the printed circuit board. The rationale 
is that assembly cannot commence until a printed circuit board is fab­
ricated, and so board fabrication time is treated as an overhead lead 
time. 

• PC Assembly Cell: The characteristics of a printed circuit assembly 
cell are described in Appendix B.5. An assembly cell realizes a specific 
function in the overall assembly process. 

• PC Assembly Line: This entity takes as input the characteristics of a 
design and an associated printed circuit board, and these are processed 
by each of the constituent cells in a manufacturing line. The Manu­
facturing Cost and Manufacturing Time objective function components 



Coevolutionary Virtual Design Environment 105 

are outputs of the printed circuit assembly line entity. 

7.3.3 Centralized Optimization 

In a centralized optimization mode, an evolutionary algorithm is resident 
at one of the network nodes (see Figure 7.2), and the other network nodes 
participate in the search by providing information on request. In this mode, 
a search over the full space of planning decisions takes place at one node, 
while the other nodes merely respond to network-based information re­
quests. The product design node launches the evolutionary search by cre­
ating an evolutionary agent at one of the network nodes, and provides it 
a design functional specification and location information of the other net­
work nodes. 

7.3.3.1 Architecture 

Figure 7.5 shows the architecture of the centralized system wherein the 
evolutionary search is executed by the evolutionary agent resident at one 
of the network nodes. The evolutionary agent implements an evolutionary 
search by initializing with appropriate information that allows for decision­
making, and generating and executing queries among distributed applica­
tions for evaluating virtual designs created during the search process. Each 
network node that supports the evolutionary search has a locally resident 
node-specific application that is accessed by the evolutionary agent dur­
ing the virtual design evaluation process. Each such application is either 
a server for the local database at that node or is a model that executes 
based on the information gleaned from the local database. For instance, 
the application at a parts distributor node serves as a conduit for accessing 
information on parts, while the application at a printed circuit board as­
sembly node is a relevant model that takes as input a design and associated 
printed circuit board, and outputs manufacturing cost and manufacturing 
time corresponding to a selected manufacturing line. 

7.3.3.2 Algorithm 

The evolutionary agent initiates the evolutionary search by searching each 
of the network nodes for available decision resources and encoding references 
to the discrete choices in the appropriate gene allele sets of its represen­
tation data structure. A certain gene allele set corresponding to a certain 
part module type stores an encoded list of equivalent parts available from 



106 Network-Based Distributed Planning using Coevolutionary Algorithms 

Networked 
Computer 

Local 
Database 

Node-specific 
Application 

Networked 
Computer 

Local 
Database 

Node-specific 
Application 

Network 

Search Variables 

Networked 
Computer 

Local 
Database' 

Evolutionary Agent 

Networked 
Computer 

Local 
Database 

Node-specific 
Application 

Fig. 7.5 Architecture of the centralized system. 

all parts distributor nodes, and in a similar fashion the gene allele sets 
corresponding to all other module types store information on their respec­
tive sets of available equivalent parts. The gene allele set corresponding to 
printed circuit board fabrication maintains an encoded list of printed circuit 
board fabrication lines at all printed circuit board fabrication nodes, and 
the gene allele set corresponding to printed circuit assembly maintains an 
encoded list of printed circuit assembly lines at all printed circuit assembly 
nodes. 

Once the template data structure is complete, the evolutionary algo­
rithm embedded in the evolutionary agent creates and evaluates virtual 
designs, using proportional selection and random mutation operations to 
evolve virtual designs. Each newly created virtual design is evaluated based 
on a series of network-based information requests. 

The discussion in Chapter 4 guides the implementation of the evolu­
tionary algorithm embedded in the evolutionary agent. The convergence 
theory in that chapter is developed in the space of reals to facilitate a 



Coevolutionary Virtual Design Environment 107 

tractable and compact mathematical analysis, and serves as a quantita­
tive foundation for describing evolutionary algorithm behavior. From the 
perspective of the representation for the printed circuit assembly planning 
problem, discrete selections from each of the gene allele sets are made in 
order to complete a sample genome, making it an inherently discrete prob­
lem. However, a discrete optimization problem may be posed as a suitably 
encoded real space optimization problem if necessary, and so the theoreti­
cal developments in real space optimization are relevant in the context of 
discrete optimization. For example, discrete problems are often solved by 
solving their corresponding real space relaxations. Also, consider the dis­
cussion in Section 6.4 where the search variables in the representation (for 
the general design-supplier-manufacturing planning problem) are bounded 
real intervals [0,1], but are interpreted in a discrete fashion to solve an 
inherently discrete problem. 

7.3.4 Distributed Coevolutionary Optimization 

In a distributed coevolutionary optimization mode, an evolutionary search 
takes place at each of the network nodes, and the nodes must cooperate 
to jointly search over the full space of planning decisions. In this mode, a 
node participates in network-based communication only during coordina­
tion operations. At other times the evolutionary algorithm at a node works 
with locally available information. The product design node launches the 
evolutionary search at all the network nodes by creating an evolutionary 
agent at each node. 

7.3.4.1 Architecture 

Figure 7.6 shows the computational components of a network node, each 
of which is composed of a networked computer, a local database, and an 
evolutionary agent and several mobile agents that execute on the networked 
computer. 

An evolutionary agent at a network node performs the following func­
tions: 

• Implements a local evolutionary algorithm that searches over the sub-
space corresponding to locally available information. 

• Initializes with appropriate information that allows for local decision­
making. 

• Generates and executes queries on the local database. 



108 Network-Based Distributed Planning using Coevolutionary Algorithms 

Network 
Node 

Fig. 7.6 Components of a network node in distributed coevolutionary computation. 

• Coexists in a pool of evolutionary agents, and participates in coordi­
nating the global computation through interactions with other evolu­
tionary agents and mobile agents. 

An evolutionary agent at a node i is able to solve only the subproblem 
min ib(z\xi), and an intercommunication with the other distributed evo-

lutionary agents updates its secondary variable set Xi. However, for the 
printed circuit assembly planning problem, there is a nonlinear coupling 
between all the variables, and for a local variable assignment z € Xi an eval­
uation ip{z\xi) cannot be completed without network-based information re­
quests from other nodes. This interdependency between subproblems arises 
because it is not possible to neatly decompose the overall evaluation into a 
set of subproblem evaluations such that there is an exact fit between a sub-
problem evaluation and location of information. This problem is important 
in distributed computation and also appears in the context of multiagent 
systems research [Lesser, 1999]. As a novel solution to this problem, and to 
facilitate a network-efficient computation of the objective function at each 
node, mobile agents are introduced in the architecture. These mobile agents 
migrate to nodes during intercommunication operations carrying updated 
information from the nodes they migrate and provide the missing compu­
tational functionality at a node. For instance, an agent that migrates from 
a printed circuit assembly node to a parts distributor node carries with it 
a model of resources and information of a specific assembly line (at the 
printed circuit assembly node), such that when the evolutionary agent at 



Coevolutionary Virtual Design Environment 109 

the parts distributor node selects an alternative set of parts, the associated 
cost and time of assembly at that manufacturing line can be computed. 

The mobile-agent architecture allows a computationally attractive alter­
ation to the computational delay model for the distributed computation. In 
Section 5.3.2, the time delay per generation of evolution of the distributed 
algorithm, td, is given by tj = lm,d + ['id+(2d + l)c}(p—l)f, where the term 
4d models two network access cycles required to collect and transmit re­
sults, and the term (2d+l)c models the cost of accessing a network node for 
evaluating c joint computations. When the cardinality c of the randomly 
created set {xg'} increases (resulting in a higher number of network-based 
evaluations during every coordination operation), the advantage to dis­
tributing the computation decreases. However, an architecture based on 
mobile agents facilitates the elimination of the additional penalty due to 
network-based evaluations under the following condition: 

• The elements of the set {xg'} which represent randomly created virtual 
designs are created (by the node performing the coordination) purely 
by recombination of virtual designs already obtained from the other 
nodes. From an architectural perspective, obtaining a virtual design 
from a node results in obtaining corresponding mobile agents. Then, 
one would already have locally available mobile agents that can assist 
in locally evaluating new virtual designs created by recombination, and 
as a consequence no network-based evaluations are required (c = 0). 

When the node performing the coordination operation updates the other 
nodes, copies of the corresponding mobile agents simultaneously migrate 
to these nodes. Therefore, this update operation is efficiently performed 
using a multi-cast, and the Ad term above reduces to approximately 2d + a, 
where a is the per node overhead for the multi-cast operation. If d is large 
then td ss Irrid + 2d(p — 1) / . 

7.3.4.2 Algorithm 

The evolutionary algorithm embedded in each evolutionary agent is similar 
in function to the evolutionary algorithm of the centralized search. How­
ever, an evolutionary algorithm at a node utilizes a representation that 
encodes only the locally available decision resources in its representation 
data structure. 

The computational model assumes that the p variable blocks are non-
overlapping and that there is a tight nonlinear coupling amongst them with 



110 Network-Based Distributed Planning using Coevolutionary Algorithms 

respect to the nonlinear objective function ip{-). Under this assumption, a 
communication operation involves all p nodes. However, if the problem were 
such that there is no or only a loose coupling between certain search variable 
chunks, then a communication need not involve all p nodes, and only those 
nodes that are coupled to one another need to communicate frequently. 
The network-based communication overhead may be significantly reduced 
by this strategy. This would be especially relevant if the objective function 
is decomposable into constituent parts, each part of which is dependent 
only on a certain variable chunk. 

The computational model also assumes that communication between 
nodes is synchronous, and that if local information at the nodes is varying 
that rate of variation is much slower than the rate of search, effectively 
allowing an evolutionary search to work under the assumption of a static 
global fitness landscape. 

The evolutionary algorithm embedded in each evolutionary agent is sim­
ilar in function to the evolutionary algorithm of the centralized search. 
However, an evolutionary algorithm at a node utilizes a representation that 
encodes only the locally available decision resources in its representation 
data structure. 

In the context of a distributed global search, the coordination operation 
is critical, since a coordination operation essentially provides an updated 
view of the local information from a certain node to another node where 
that information is not available locally. An important feature of a coordi­
nation operation is its ability to allow the coevolutionary search to explore 
the same global space of planning options as the centralized algorithm in 
spite of the fact that each evolutionary agent is only able to search a sub-
space of the global search space. The following chapter presents several 
coordination schemes that help realize this. Presented below is the "splic­
ing" operation, a component of the coordination operation that becomes 
necessary when there is more than one node per logical cluster of network 
nodes (see Figure 7.2). 

Recall that nodes in a logical cluster correspond to a class of functionally 
equivalent resources. As a consequence the subproblems solved at nodes in 
a cluster are different in spite of being functionally similar. The subprob­
lems are different because of differences in local resources at each node, 
so each node in a logical cluster searches over a smaller space of planning 
decisions. The coevolutionary algorithm has no direct means to search the 
full space of planning decisions. A centralized algorithm on the other hand 
compiles a list of all available decision resources at all nodes and is able to 



Coevolutionary Virtual Design Environment 111 

explicitly search the full space of planning decisions. In order to provide a 
coevolutionary algorithm the means to aggressively explore the full space of 
planning decisions, an information splicing operation is introduced whose 
principal function is to stochastically combine information from nodes. This 
stochastic information splicing may be viewed as a "crossover" operation 
that combines information across nodes. 

When there are multiple nodes in each logical cluster of network nodes, 
the evolutionary algorithm components (in the distributed implementation) 
in some of the nodes are unable to achieve convergence to the overall global 
solution. This is an inevitable problem in a distributed algorithm implemen­
tation since there may be some nodes within a logical cluster that simply do 
not have the local resources that are advantageous from a global perspec­
tive. However, this problem is tractable since those nodes within a logical 
cluster that have globally advantageous decision resources will achieve good 
global convergence similar to the centralized algorithm, which has access 
to all decision resources. 

7.4 Simulation Environments 

7.4.1 CVDE Implementations 

This sections describes two implementations of the coevolutionary virtual 
design environment. In these implementations, the underlying network is 
assumed to be a "fully connected" graph G = (N,E), where N is the 
set of network nodes and E is the set of network edges. In other words, 
it is assumed that it is possible to directly access a network node from 
any other network node. Both implementations are highly modular, based 
on the object-oriented programming paradigm [Booch, 1994; Stroustrup, 
1991], and can be executed in either a centralized mode or a distributed 
coevolutionary mode. 

The first implementation is developed using the C++ [Stroustrup, 1991] 
programming language, and executes completely in the memory space of a 
single processing unit, but over a simulated network environment (see Fig­
ure 7.7). This implementation uses event-driven computation of network 
access and local access delays.2 Since this implementation executes com­
pletely on a single processing unit while simulating a distributed system, the 
overall computations are rapid making this an attractive environment for 

2Uniform access delays are assumed over the network environment. 



112 Network-Based Distributed Planning using Coevolutionary Algorithms 

Network Edge 

/ Network Node 

Memory Space of a 
Single Processing Unit 

Fig. 7.7 Simulated network environment CVDE implementation that executes in the 
memory space of a single processing unit. 

evaluation of algorithm performance. Due to the implementation's execu­
tion speed, it is feasible to develop experiments based on multiple trials on 
several stochastically generated printed circuit assembly planning problems. 
Such simulation is a powerful approach that facilitates rapid prototyping 
of various ideas and solutions, and allows better exploration of the space 
of algorithms. An important advantage of this simulation environment 
is that it provides a controlled environment for evaluating and analyzing 
alternatives, and facilitates an understanding of the scope of these alterna­
tives including coordination schemes. The algorithms found promising in a 
simulation phase are implemented to execute over a real network. 

The second implementation is developed using the Java (SUN Microsys­
tems Inc.) programming language and executes over multiple processing 
units distributed over a campus computing network (see Figure 7.8). This 
implementation is based on the use of the Voyager [voy, 2000] object re­
quest broker as the underlying distributed communications environment. 
Voyager serves as a middle-ware layer that provides a location-transparent 
and standardized environment for execution of the Java modules. A sig­
nificant advantage is that Voyager simplifies the task of remote enabling 
applications modules by automatically adding this feature at run-time, and 
supports the inter-node migration of modules. The latter feature is an 
important requirement for realizing the "mobile agents" feature in the dis-



Coevolutionary Virtual Design Environment 113 

Network Edge 

Fig. 7.8 Real network environment CVDE implementation that executes over multiple 
distributed processing units. 

tributed architecture. The principal advantages of this implementation are 
that it serves as a realistic prototype and as a testbed for evaluating real 
network-based execution of the system. 

In this environment, there may be some nodes and network edges that 
are faster or slower than the others, so some nodes may complete their 
local computations faster than others and vice versa. Asynchronous be­
havior among nodes is avoided by synchronizing the steps of the overall 
computation. 

7.4.2 Data Generation 

The underlying data for design and manufacturing planning scenarios are 
created using datagen, a simulation environment data generator. This 
application uses a combination of design and manufacturing data and ran­
domization to generate design functional specifications, and to populate the 
databases resident at the various network nodes. Design functional speci­
fications are patterned on sample designs provided by Pitney Bowes Inc., 
parts information are patterned on information available online from Arrow 
Electronics Inc., and manufacturing data are in part patterned on sample 
manufacturing resources at A vex Electronics Inc., and Allen-Bradley Corp., 
and complemented by process information from [Taylor and Graves, 1990]. 

The inputs to datagen are the number of parts distributor nodes, num­
ber of printed circuit board fabrication nodes, number of printed circuit 
assembly nodes, and the number of module types in a design functional 



114 Network-Based Distributed Planning using Coevolutionary Algorithms 

specification. The outputs are parts information in parts databases, board 
fabrication line specifications in board fabrication node databases, and as­
sembly cell and line specifications in the assembly node databases. From 
the perspective of size of the search spaces that can be generated, datagen 
is able to generate arbitrarily large search spaces. 



Chapter 8 

Evaluation and Analysis 

8.1 Introduction 

A principal focus of this chapter is the performance evaluation of the cen­
tralized and distributed coevolutionary decision-making frameworks and 
developing an understanding of the factors that influence their network-
based performance. Another equally important focus is an analysis of the 
requirements for applying these decision-making frameworks to distributed 
design and manufacturing organizations. 

Section 8.2 observes the nature and evolution of design-supplier— 
manufacturing planning decisions for printed circuit assembly planning. 
This observation helps to develop an applications oriented interpretation of 
the results of the evolutionary planning. Section 8.3 develops a strategy for 
evaluating the performance of the centralized and distributed coevolution­
ary decision-making frameworks. Section 8.4 evaluates the decision-making 
frameworks and identifies the principal factors that influence performance. 
Next, the CVDE implementation that executes over a real network is uti­
lized to develop an understanding of the delay factors, and a combination 
of experimental evaluation and models is used to predict the range of ex­
pected execution times of the decision-making frameworks for large design 
problems when the underlying network is the internet. Section 8.5 presents 
an analysis of the requirements for applicability of the decision-making 
frameworks to distributed design and manufacturing organizations. 

This chapter is based in part on material that appears in [Subbu and 
Sanderson, 2003b], and earlier in [Subbu and Sanderson, 2001b; Subbu and 
Sanderson, 2001a]. 

115 



116 Network-Based Distributed Planning using Coevolutionary Algorithms 

8.2 Nature and Evolution of Planning Decisions 

This section develops an applications oriented interpretation of the nature 
and evolution of design-supplier-manufacturing planning decisions (virtual 
designs) for printed circuit assembly planning. First, the performance of 
sample virtual designs from example design-manufacturing applications is 
discussed. Next, several examples of the convergence behavior of the cen­
tralized and distributed coevolutionary frameworks are presented. 

datagen described in the previous chapter is used to generate an exam­
ple printed circuit design-manufacturing application with 10 module types, 
with a search based over 5 parts distributor nodes, 5 printed circuit board 
fabrication nodes, and 5 printed circuit assembly nodes. The size of the 
search space for this problem is in excess of 2.42 x 1022 options. Table 8.1 
shows the performance of good and poor virtual designs for this design-
manufacturing application. Good virtual designs favor lower cost parts 
with shorter lead times, and lower manufacturing costs and times, while 
poor virtual designs have higher cost parts with longer lead times, and 
higher manufacturing costs and times. 

Table 8.1 Virtual design performance (Exp-1). 

Variable 
Parts Cost 
Max. Parts Lead Time 
Board Fab. Cost 
Board Fab. Time 
Manufacturing Cost 
Manufacturing Time 
CT 

TT 

TI>(CT,TT) 

Good 
80.56 
11.37 
2.25 
1.13 
3.80 
2.60 

86.61 
13.96 
128.69 

Good 
126.23 
13.44 
3.67 
1.98 

19.74 
3.73 

149.64 
17.17 

306.50 

Poor 
244.30 
17.64 
3.51 
1.82 

195.24 
68.48 

443.04 
86.12 

8.96 x 105 

Poor 
202.24 
18.47 
5.67 
3.05 

413.91 
117.38 
621.81 
135.85 

1.82 x 108 

Performance of good and poor virtual designs for a design application with 10 module 
types, 5 parts distributors, 5 printed circuit board fabrication facilities (64 fabrication 
lines), 5 printed circuit assembly facilities (66 assembly lines). 

Another example printed circuit design-manufacturing application with 
10 module types is generated, with a search based over 10 parts distributor 
nodes, 10 printed circuit board fabrication nodes, and 10 printed circuit 
assembly nodes. The size of the search space for this problem is in excess 
of 2.65 x 1025 options. Table 8.2 compares the performance of good virtual 
designs from Table 8.1 to the performance of good virtual designs for the 
current application. All good designs favor lower cost parts with shorter 



Evaluation and Analysis 117 

lead times, and lower manufacturing costs and times. 

Table 8.2 Virtual design performance (Exp-1 and Exp-2). 

Variable 
Parts Cost 
Max. Parts Lead Time 
Board Fab. Cost 
Board Fab. Time 
Manufacturing Cost 
Manufacturing Time 
CT 

TT 

4>(CT,TT) 

Exp-1 
80.56 
11.37 
2.25 
1.13 
3.80 
2.60 
86.61 
13.96 
128.69 

Exp-1 
126.23 
13.44 
3.67 
1.98 
19.74 
3.73 

149.64 
17.17 

306.50 

Exp-2 
94.56 
9.47 
2.27 
1.14 
5.29 
3.00 

102.13 
12.47 
130.80 

Exp-2 
112.65 
9.33 
2.53 
1.28 

39.03 
10.15 

154.21 
19.49 

398.17 

Comparison of the performance of good virtual designs from Table 8.1 (Exp-1) to the 
performance of good virtual designs (Exp-2) for a design application with 10 module 
types, 10 parts distributors, 10 printed circuit board fabrication facilities (107 fabrication 
lines), 10 printed circuit assembly facilities (119 assembly lines). 

Figures 8.1, 8.2, and 8.3 respectively show the time-performance of the 
centralized and distributed algorithms in 3, 15, and 30 network node envi­
ronments. The search space sizes respectively are in excess of 2.75 x 1010, 
5.67 x 1016, and 1.15 x 1019 options. These performance plots show the 
average over 20 trials of the time-performance (of the best member in each 
generation) of the centralized computation and the average over 20 trials 
of the time-performance (of the best member in each generation) of each 
of the distributed algorithm components.1 The network environment for 

these simulations has an — ratio of 0.001, and a coordination operation 
a 

occurs every generation of the distributed search. These figures show that 
a distributed coevolutionary framework has significant time-performance 
advantage compared to a centralized framework when network access and 
local access delays are considered. 

When there are multiple nodes in each logical cluster of network nodes, 
the evolutionary algorithm components (in the distributed implementation) 
in some of the nodes are unable to achieve convergence to the overall global 
solution. This is an inevitable problem in a distributed algorithm imple­
mentation since there may be some nodes within a logical cluster that 
simply do not have the local resources that are advantageous from a global 
perspective. Those nodes within a logical cluster that have globally advan-

xAn average time-performance plot is achieved by plotting the average performance 
of the best member in each generation of evolution with respect to the average time 
delay for the network-based computation until that point. 



118 Network-Based Distributed Planning using Coevolutionary Algorithms 

Network Performance—3 node environment 

10° 10" 10 
time units 

10° 

Fig. 8.1 Average time-performance of the centralized and distributed algorithms in a 3 
node environment (1 parts distributor node, 1 printed circuit board fabrication node, 1 
printed circuit assembly node). ^ = 0.001. 

tageous decision resources will achieve good global convergence similar to 
the centralized algorithm, which has access to all decision resources. 

8.3 Strategy for Performance Evaluation 

This section develops a consistent approach to evaluating the centralized 
and distributed coevolutionary decision-making frameworks. First, per­
formance evaluation metrics are proposed, and next, algorithm factors of 
interest are discussed. 

It is common practice in algorithm design to evaluate algorithms against 
a suite of test problems with known optima. Such an evaluation has already 
been performed in Chapter 6, and while a similar evaluation would be at­
tractive in the current context of design-supplier-manufacturing planning 
for printed circuit assemblies, these search spaces are very large and non­
linear, so approximations to the global optima are satisfactory. Therefore, 
the average performance (of the best member in each generation) over 20 



Evaluation and Analysis 119 

Network Performance—15 node environment 

10 10 
time units 

Fig. 8.2 Average time-performance of the centralized and distributed algorithms in a 15 
node environment (5 parts distributor nodes, 5 printed circuit board fabrication nodes, 
5 printed circuit assembly nodes), j = 0.001. 

trials of a baseline centralized evolutionary algorithm is used as the yard­
stick against which other algorithms are evaluated. The baseline centralized 
evolutionary algorithm has the following characteristics: 

• Population size is fixed at 100. 
• A parent population is generated using proportional selection. 
• Each parent generates two offspring through random mutation: the first 

offspring is generated using a large mutation probability of 0.2, and the 
second offspring is generated using a tenth of the mutation probability 
(0.02). The parent and two offspring compete and the fittest survives. 
The offspring generated in this fashion replace the individuals from the 
earlier generation. 

In order to ensure a fair comparison between algorithms, the average per­
formance (of the best member in each generation) over 20 trials is com­
pared to the performance of the baseline centralized algorithm. Also, each 
comparison is performed over a space of 10 design-manufacturing planning 



120 Network-Based Distributed Planning using Coevolutionary Algorithms 

Network Performance—30 node environment 

S 10' 

10' 
time units 

Fig. 8.3 Average time-performance of the centralized and distributed algorithms in a 
30 node environment (10 parts distributor nodes, 10 printed circuit board fabrication 
nodes, 10 printed circuit assembly nodes). K = 0.001. 

scenarios (generated using datagen) with number of network nodes in the 
range [3,30] (search space sizes are in the range [2.75 x 1010,1.15 x 1019]). 
Therefore, in effect, an algorithm comparison involves 200 trials. 

8.3.1 Performance Metrics 

Network-based performance of algorithms is evaluated based on two met­
rics discussed below. In this discussion, "performance" refers to average 
performance (of the best member in each generation) over 20 trials, and 
"steady-state error" refers to the error between the averaged convergence 
profile of a given algorithm normalized against the performance of the base­
line centralized algorithm at a large-enough generation (generation 500). 

• Percentage Convergence Error (% Err.): This measures the minimum 
percentage steady-state error of the distributed evolutionary algorithm 
components. 



Evaluation and Analysis 121 

• Percentage Computational Advantage (% Adv.): This is the ratio of 
the average time by which the performance of the baseline central­
ized algorithm comes within 10% of its steady-state performance to 
the minimum average time by which the performance of any of the dis­
tributed algorithm components comes within 10% of the steady-state 
performance of the baseline algorithm. 

8.3.2 Factors of Interest 

In general it is of interest to investigate the following issues: 

• The algorithm characteristics that govern convergence quality. 
• The time-performance of an algorithm with a certain characteristic. 
• How delays in the underlying network environment affect performance 

of the algorithms. 
• How the algorithm with a certain characteristic sustains the potential 

benefits of the feature as the problem size increases. 

The discussion in Chapter 5 suggests that for distributed coevolutionary 
algorithms, the coordination operation is critical to global convergence. 
Therefore, it is of interest to investigate the types of coordination schemes 
that lead to convergence with low errors. The discussion in Section 7.3.4 
highlights the importance of information splicing for distributed algorithms 
when there are multiple nodes in each of the logical clusters. Information 
splicing is also the randomization component of the coordination operation, 
so these evaluations are treated together. Next, it is of interest to know 
how these schemes sustain any advantage when there is a moderate amount 
of time-variability in the states of the decision resources. Finally, it is of 
interest to know the effect of coordination frequency on convergence, and 

the effect of the network ratio - on algorithm performance. 
a 

8.4 Performance Evaluation 

This section evaluates network-based performance of the centralized and 
distributed coevolutionary decision-making frameworks, and identifies the 
principal factors that influence performance. For this purpose, the CVDE 
implementation that executes over a simulated network is used. Next, an 
understanding of the nature of real execution delays is developed using the 
CVDE implementation that executes over a campus network. 



122 Network-Based Distributed Planning using Coevolutionary Algorithms 

8.4.1 Evaluation Over a Simulated Network 

8.4.1.1 Coordination and Information Splicing 

Six distributed coordination schemes are evaluated in conjunction with 
three types of information splicing-(i) No Splicing, (ii) Uniform Splicing, 
and (Hi) Single-Point Splicing. In the implementation of uniform splicing, 
p vectors of the same dimension are used to create a vector such that each 
of its coordinates is a random selection from the set of p coordinates along 
the same dimension. In the implementation of single-point splicing, a pair 
of parent vectors is selected at random from the set of p vectors, a splice 
dimension is selected at random, and a new vector is created whose coor­
dinates left of and including the splice dimension come from one parent, 
and whose coordinates right of the splice dimension come from the other 
parent. The following helps describe the coordination schemes: 

• The network environment has p network nodes. 
• Xg is the best vector from node i at generation g. 
• {xg } is a set of vectors from node i at generation g. 
• {xg'} is a set of randomly created vectors at generation g. 
• yg is the vector obtained by combining the best local result portions 

from each node. 

Then, the six coordination schemes are as follows: 

(1) Local: Create the set {xg', ••• ,xg ,{xg'}}, and select the best from 
the set as the new global iterate. When there is no information splicing 
the set {xg'} is empty. Otherwise, the set {xg'} consists of p elements 
created (according to the splicing scheme) from the set {xg ,••• , xf'}. 

(2) Joint: Create the set {xg , • • • ,Xg, {xg'}} U yg, and select the best 
from the set as the new global iterate. The elements of the set {xg'} 
are generated exactly as above depending on the splicing operation 
used. 

(3) Pool: Create the set {{xg },••• ,{xg },{xg'}}, and select the best 
from the set as the new global iterate. Each set {xg

1'} represents t = 
5 top performers from each node i, and the set {xg'} is created as 
described above from a set of size t x p rather than a set of size p. 

(4) Elite Local: Create the set xg U {xg ',••• ,xg , {xg'}}, and select the 
best from the set as the new global iterate. xg is the previous global 
iterate. 



Evaluation and Analysis 123 

(5) Elite Joint: Create the set xg U {xg , • • • ,xg ,{xg'}} U yg, and select 
the best from the set as the new global iterate. 

(6) Elite Pool: Create the set xg U {{xg } , • • • , {xg '}, {xg'}}, and select 
the best from the set as the new global iterate. 

Figure 8.4 shows the average (and standard deviation)2 of the percent­
age convergence error with respect to coordination type (rows top —> bot­
tom : 1 —• 6), information splicing scheme (columns), and the abscissa in 
each plot is the number of generations between nodal intercommunication 
(communication interval in generations). When no information splicing is 

100 

w 50 

0 

1001 

w 50 

0 

1001 

w 50 

0 

100( 

w 50 

0 

100( 

w 50 

0 

100( 

w 50 

0 

No Information Splicing Uniform Splicing 
1001 • 

w 50 

4 0 100° 

w 50 

4 0 100° 

w 50 

40 100° 

0 20 40 
Communication Interval 

w 50 

w 50 

0 

20 

20 

100 

* 50 

Single-Point Splicing 

r-H H 
^° 100° 20 

-^0 1M° 

"J 50 

H-f-

4 0 1M° 

r-H— 

0 20 40 
Communication Interval 

"J 50 

UJ 50 

0 
H -

40 

40 

0 20 40 
Communication Interval 

Fig. 8.4 Average (and standard deviation) of the percentage convergence error with 
respect to coordination type (rows top —> bottom : 1 —> 6), information splicing scheme 
(columns), and communication interval in generations (abscissa). 

used, the percentage convergence error is very high since the distributed 
algorithm is unable to search over the complete space of planning deci­
sions. Single-point splicing has a lower overall error compared to when 
no splicing is used, while uniform splicing has the best error performance. 

2 Averaged over the space of test problems. 



124 Network-Based Distributed Planning using Coevolutionary Algorithms 

These figures show that the type of information splicing (incorporation of 
randomization) has a first-order effect on distributed convergence. 

Figure 8.5 shows in more detail percentage convergence error plots from 
the second column in Figure 8.4. Uniform splicing is used in all coordina­
tion schemes. The type of coordination scheme has a second-order effect on 
distributed convergence, with Pool and Elite Pool being the better perform­
ers. The coordination scheme Pool with uniform splicing gives the lowest 
percentage convergence error over all communication intervals. 

Uniform Splicing Uniform Splicing 

20 

15 

w 10 

5 

0 Y 

Joint 

10 20 30 

10 20 30 
Communication Interval 

40 

10 20 30 
Communication Interval 

Fig. 8.5 Average (and standard deviation) of the percentage convergence error with 
respect to coordination type and communication interval in generations (abscissa). 

Figure 8.6 shows the percentage computational advantage (for a net­

work environment with ratio — = 0.1) with respect to coordination type, 
a 

and the abscissa in each plot is the number of generations between nodal 
intercommunications. Uniform splicing is used for all coordination schemes. 

For a network with ratio — = 0.1 it is more advantageous to communicate 
a 

every generation than it is to communicate less frequently. 



Evaluation and Analysis 125 

10000 

5000 

Uniform Splicing 

Local 

• 

A l ~~~~i • j 

Uniform Splicing 

15000 

| 10000 

< 
5000 

Joint 

1 l X " 1 T 
30 40 

0 10 20 30 
Communication Interval 

0 10 20 30 
Communication Interval 

Fig. 8.6 Average (and standard deviation) of the percentage computational advantage 
with respect to coordination type and communication interval in generations (abscissa). 
± = 0 . 1 . 

Next, the performance of the coordination and information splicing 
schemes is evaluated when there is time-variability in the environment: 
when characteristics of the decision resources change randomly up to 
20%(±10%) as a search proceeds. Part costs and lead times are variable, 
and so are the overheads and efficiencies of printed circuit board fabrication 
lines and printed circuit assembly lines. A centralized algorithm is able to 
access the current state of any decision resource, but in the case of the 
distributed algorithm, current states are available only during coordination 
operations. In between coordination operations the distributed algorithm 
works with stale states of the decision resources. 

Figure 8.7 shows the average (and standard deviation)3 of the percent­
age convergence error (in a dynamic environment) with respect to coordi­
nation type (rows top —• bottom : 1 —• 6), information splicing scheme 
(columns), and the abscissa in each plot is the number of generations be­
tween nodal intercommunication (communication interval in generations). 

3 Averaged over the space of test problems. 



126 Network-Based Distributed Planning using Coevolutionary Algorithms 

The results obtained show consistency with those obtained in a static en-

100 

US 5 0 

0 
100* 

m 50 

0 

1001 

w 50 

0 

1001 

w 50 

0 

1001 

w 50 

0 
100' 

UJ 50 

0 

No Information Splicing Uniform Splicing 
1001 • 

20 

4 0 100° 

w 50 

w 50 

0 20 40 
Communication Interval 

HI 50 

0 

20 

100 

w 50 

Single-Point Splicing 

4 0 ,00° 

l" 50 

H-^—+• 

- 4 0 100° 

++ 
- 4 0 100° 

UJ 50 

0 20 40 
Communication Interval 

tu 50 

0 +-i b 
0 20 40 

Communication Interval 

Fig. 8.7 Average (and standard deviation) of the percentage convergence error (in a 
dynamic environment) with respect to coordination type (rows top —> bottom : 1 -+ 
6), information splicing scheme (columns), and communication interval in generations 
(abscissa). 

vironment, and uniform information splicing still has a first-order effect on 
distributed convergence in a moderately dynamic environment. 

Figure 8.8 shows in more detail percentage convergence error plots from 
the second column in Figure 8.7. Uniform splicing is used in all coordination 
schemes. Though the type of coordination scheme has a second-order effect 
on distributed convergence, the coordination scheme Pool in conjunction 
with uniform splicing gives the lowest percentage convergence error over all 
communication intervals. 

Figure 8.9 shows the percentage computational advantage (in a dynamic 

environment, and with a network ratio — = 0.1) with respect to coordina­
te 

tion type, and the abscissa in each plot is the number of generations between 
nodal intercommunications. Uniform splicing is used for all coordination 
schemes. These results show consistency with those obtained in a static 



Evaluation and Analysis 127 

Uniform Splicing Uniform Splicing 

10 20 30 
Communication Interval 

10 20 30 
Communication Interval 

Fig. 8.8 Average (and standard deviation) of the percentage convergence error (in a 
dynamic environment) with respect to coordination type and communication interval in 
generations (abscissa). 

environment. 

8.4.1.2 Access Delays and Coordination Frequency 

Now, the computational advantage of the distributed coevolutionary frame­
work is evaluated with respect to the communication interval and network 

ratio - . The distributed algorithm in these evaluations uses the Pool coordi-
d 

nation scheme with Uniform Splicing, determined above as the combination 
that results in low percentage convergence errors over all communication 
intervals. These evaluations do not introduce dynamic variations in the 
states of the decision resources. 

Figure 8.10 shows the average (and standard deviation) of the percent-
l 

age computation advantage as a function of the network ratio - and the 

communication interval. A higher intercommunication frequency (lower on 
the communication interval scale) is advantageous in environments with 
higher network ratios (> 0.02), corresponding to the cases when local ac-



128 Network-Based Distributed Planning using Coevolutionary Algorithms 

Uniform Splicing Uniform Splicing 

< 5000 

10 20 30 
Communication Interval 

10 20 30 
Communication Interval 

Fig. 8.9 Average (and standard deviation) of the percentage computational advantage 
(in a dynamic environment) with respect to coordination type and communication in­
terval in generations (abscissa). K = 0.1. 

cess delays are a larger fraction of the network access delays. An impor­
tant observation is that for network environments with small delay ratios 
(< 0.02) it is systematically more advantageous to communicate less fre­
quently. Also, as the network ratio gets very large, the advantage of dis­
tributing the computation reduces. 

8.4.2 Evaluation Over a Real Network 

This section evaluates the centralized and distributed coevolutionary 
decision-making frameworks when they execute over a local-area cluster 
of SUN-Ultra-10 machines situated within a few meters of one another 
(in the same room) and interconnected over a wired 100Mbps network. 
First, several examples of the convergence behavior of the centralized and 
distributed coevolutionary frameworks in this environment are presented. 
Next, an understanding of the factors causing the delays is developed, and 
this information is used to compute expected delays when the decision­
making frameworks are implemented over the general internet. For this, a 



Evaluation and Analysis 129 

l4 

3 

I2 

* 1 

0 
I 

.15000 

> 
< 10000 

*~ 5000 

0 
I 

3000 
> 2000 

< 
S? 1000 

0 

Communication Interval 

A 
W 

0 

0 

1 
'1 

10 

10 

10 

l/d = D.001 

20 

l/d = 0.01 

20 

l/d = 0.05 

20 

i/d = 1 

30 

30 

30 

H 
40 

40 

40 0 10 

1000 

500 

20 

l/d =10 

30 40 

Communication Interval 

Fig. 8.10 Average (and standard deviation) of the percentage computational advantage 
with respect to network ratio ^ and communication interval in generations (abscissa). 

combination of experimental evaluation and models is used. 
An example printed circuit design-manufacturing application is gener­

ated with 10 module types with the search respectively based over 3, 6, 
and 9 node environments, wherein each node corresponds to a unique ma­
chine. Figures 8.11, 8.12, and 8.13 respectively show the time-performance 
of the centralized and distributed algorithms in the 3, 6, and 9 node envi­
ronments. The coordination operation in a distributed search occurs every 
10 generations of evolution, and the search space sizes respectively are in 
excess of 4.95 x 1013, 7.54 x 1017, and 5.23 x 1019 options. These figures 
show the significant computational advantage of a distributed coevolution-
ary framework even in an environment with a very fast underlying network 
connection. 

This preliminary evaluation indicates that there is a significant penalty 
to intercommunication in spite of a fast physical network, and this is be­
cause most of the communications delay in a fast local area network is due 
to the processing time required to send and receive messages. 

To develop a quantitative understanding of the factors contributing to 



130 Network-Based Distributed Planning using Coevolutionary Algorithms 

Network Performance—3 node environment 
10° 

10' 

Centralized 

10" 
time—milliseconds 

Fig. 8.11 Time-performance of the centralized and distributed algorithms in a 3 node 
environment (1 parts distributor node, 1 printed circuit board fabrication node, 1 printed 
circuit assembly node). 

delays, a simplified delay network delay model (8.1) due to [Gray, 1988] is 
used as a foundation. In this model of network communication delay, the 
time required to send and receive a message is computed as 

& —- ls£r ~t~ ^Cpil ~t~ (8.1) 

where ttr is the speed of light delay to transmit one bit, tcpu is the mes­
sage processing time of the sender and receiver nodes, ms is the size of the 
message in bits, and bw is the bandwidth of the communication medium 
in bits per second. This simplified model does not assume more complex 
factors such as queuing delays and transmission delays caused by passage 
through intermediate switching equipment, and in a widely distributed en­
vironment such factors are significant. Nonetheless, this model is applicable 
in widely distributed environments for order of magnitude delay computa­
tions [Gray, 1988], and for the current network environment (small-diameter 
fast 100Mbps) it is acceptable to completely ignore these more complex fac­
tors. 



Evaluation and Analysis 131 

Network Performance—6 node environment 

10' 
10' 10° 

time—milliseconds 
10" 

Fig. 8.12 Time-performance of the centralized and distributed algorithms in a 6 node 
environment (2 parts distributor nodes, 2 printed circuit board fabrication nodes, 2 
printed circuit assembly nodes). 

In this small-diameter fast network environment, the factor ttr is a very 
small fraction of a microsecond, and can be ignored. Therefore, 

d = tr 
ms (8.2) 

Three experiments (see Figure 8.14) are now setup to measure the mes­
sage processing overhead, the size of the messages, and the corresponding 
network delay d. In all three experiments a centralized evolutionary al­
gorithm with a population size of 100 executes at Node-1, while Node-2 
and Node-3 respond to information requests. Node-1 is a parts distributor 
node, Node-2 is a printed circuit board fabrication node, and Node-3 is a 
printed circuit assembly node. In this setup, the time per generation of 
evolution is given by the model (8.3), which is a version of the model from 
Section 5.3.1 adapted to reflect an uneven distribution of local variables. 

tc = nlmc + (2d + l)(p— l)mc (8.3) 

In the expression above, n is the number of local variables per member of 



132 Network-Based Distributed Planning using Coevolutionary Algorithms 

Network Performance—9 node environment 

10' 10' 10 10 
time—milliseconds 

Fig. 8.13 Time-performance of the centralized and distributed algorithms in a 9 node 
environment (3 parts distributor nodes, 3 printed circuit board fabrication nodes, 3 
printed circuit assembly nodes). 

the population at Node-1, I is the local access delay, p is the number of 
nodes, and mc is the population size. Since Node-1 is a parts distributor 
node, there are multiple local accesses at that node per member of the 
population. 

In Experiment-1, the three nodes correspond to the same physical ma­
chine and share a single port (network address) on the machine. Therefore, 
the network delay d = 0, and (8.3) is reduced to 

t\ = nlmc + l(p — l)mc 

= 100i(n + 2) 
(8.4) 

In Experiment-2, the three nodes correspond to the same physical ma­
chine but have dissimilar port assignments. In this setup there is no on-
wire transmission of information, but since network addresses are dissimi­
lar, messages must be processed by sender and receiver nodes respectively 
as though they are to be sent over a wire and received from over a wire. 



Evaluation and Analysis 133 

Nodes Share Port Nodes have Unique Ports 

f Node-2 J f Node-3 J \ / f Node-2 j I ( Node-3 j 

Node-1 

Experiment-1 Experiment-2 

Network Distributed Nodes 

Experiment-3 

Fig. 8.14 Experimental setup to measure the message processing overhead, the size of 
the messages, and the corresponding network delay d. 

Therefore, d = tcpu, and (8.3) is reduced to 

t2
c = nlmc + (2tcpu + l)(p - l)mc 

= 100Z(n + 2) + 400tcpu 

= t\+ 400tcpu 

(8.5) 

In Experiment-3, the three nodes correspond to different machines, and 
in this setup there is message processing and transmission over a network. 



134 Network-Based Distributed Planning using Coevolutionary Algorithms 

Therefore, d = tcpu + ?**-, and (8.3) is reduced to 

tr = nlmc + ^ I "cpu "T 7 I "T ' (p - \)mc 

= 100/(n + 2) + 400tcpu + 400-

= t2
r+ 400 ms 

(8.6) 

Figure 8.15 shows the experimental measurements corresponding to 
Experiments-1, 2, and 3. t\, t%, and tz

c have nearly linear growth rates 
with respect to n. Using these experimental measurements and (8.4), (8.5), 
and (8.6), average values (over the range of n) for the factors /, tcpu, and 

I " 

E 
o 102 

— Experiment-1 
+• Experiment-2 
G Experiment-3 

Q..::Q:::Q~"&"9' : ( j ( : , , ( j ) , . . « • • • « • 
. f f l . . . * ' " * ' - * ' 

,(£; : :£p: • •() 

20 30 40 
number bi local accesses at Node-1 (n) 

60 

Fig. 8.15 Average time per generation as a function of local accesses at Node-1, for 
Experiments-1, 2, and 3. 

ms are computed (see Table 8.3). 
These results confirm that most of the communications penalty in a fast 

local area network is due to the processing time required to send and receive 
messages. Also, message sizes are dependent on two principal factors-the 
volume of information exchanged and the per access overhead of the middle-



Evaluation and Analysis 135 

Table 8.3 Network delay factors. 

Variable 
I 
tcpu 
ms 

ms 

Average Value 
0.1094ms 
2.5239ms 
0.0898ms 

« 9196bits 

Average values for the delay factors assuming a network bandwidth bw = 100Mbps. 

ware layer. Therefore, in any distributed communications it is important 
to reduce both the volume of information exchanged and the number of 
accesses. 

The principal benefit of the above results is that it provides a means 
to develop reasonable predictions for the time delays of the centralized and 
distributed algorithms when the underlying network environment is the 
internet and larger-scale problems are solved. 

8.4.2.1 Expected Time Performance in Realistic Settings 

This section uses the delay factor computations above to predict the range 
of expected delay times of the centralized and distributed algorithms in 
realistic settings. 

A problem size range of [300,3000] decisions with an even distribution 
of decisions among 30 network nodes is assumed. Therefore, each node 
performs [10,100] decisions based on locally available information, and the 
range oil (based on Table 8.3) is approximately [1,10] ms. Message sizes are 
assumed to lie in the range [104,105] bits. In local-area network settings, the 
factor tcpu does not grow very significantly with message size as it typically 
takes a certain number of fixed-duration machine instructions to send and 
receive a message. However, in wide-area network settings this factor could 
easily triple [Gray, 1988]. Therefore, it is assumed that tcpu falls in the 
range [5,10] ms. A conservative estimate of the current bandwidths over 
the general wired internet is the range [1,10] Mbps. Also, a distribution 
radius of [500,3000] miles is assumed, which maps to an ideal ttr (8.1) of 
approximately [3,16] ms. However, over public carriers, ttT is approximately 
a millisecond per hundred miles [Gray, 1988], and the range [5,30] ms is 
used instead. The estimate for network delay d is computed using (8.1) 
and multiplying the result by a factor of 4 to account for potential high 
rates of network utilization, which is frequently the case in shared wide-
area networks. The predictions for d in Table 8.4 are similar to the recent 
measurements by [Sikdar et al., 2000] for TCP transfers of files with similar 



136 Network-Based Distributed Planning using Coevolutionary Algorithms 

Table 8.4 Network delay factor ranges. 

Variable 
I 
'cpu 
m3 

bw 

hr 
d 

Best Case 
1ms 
5ms 

104bits 
10Mbps 

5ms 
44ms 

Worst Case 
10ms 
10ms 

105bits 
1Mbps 

30ms 
550ms 

Ranges of the delay factors in realistic settings. 

sizes transmitted over similar distances. 
In the future, as internet bandwidths and available computing power 

improve significantly, the bottleneck factor in network delays will be the 
factor ttr rather than tcpu and j ^ for messages of reasonable size-the lower 
bound of the factor ttr being determined by the laws of physics for the 
distances involved. 

Table 8.5 uses the best case and worst case values of /, d, and tcpu 

from Table 8.4 to compute the best case and worst case execution times 
in seconds per generation of evolution of the centralized and distributed 
algorithms in a 30 node environment. The time per generation of evolution 
of the centralized algorithm, tc, is computed by tc = lmc + (2d+l)(p—l)mc, 
and the time per generation of evolution of the distributed algorithm, td, 
is given by td = Imd + (2d + a)(p — 1)/ (see Section 7.3.4), where / is the 
normalized frequency of coordination, and a is the per node overhead in a 
multi-cast operation. Based on the discussion above, it is satisfactory to 
assume a = -^p-, and so td = Imd + (2d + -afL)(p — 1)/ . 

Table 8.5 Best and worst case execution times. 

Variable 
tc 
td (f = 1) 
td ( / = 0.1) 

Best Case 
258.2s 

2.7s 
0.4s 

Worst Case 
3220s 

33s 
4.2s 

Best case and worst case execution times per generation of evolution for the central­
ized and distributed algorithms (with population sizes mc — rrid = 100) in a 30 node 
environment with an even distribution of decision variables. 

Based on the results in Table 8.5, a centralized algorithm would take 
nearly 36 hours in the best case to complete 500 generations of evolution, 
while the distributed algorithm would take nearly 23 minutes in the best 
case to complete the same number of generations if coordination were to 
take place every generation. In the worst case, a centralized algorithm 
would take well over 18 days to complete 500 generations, while the dis-



Evaluation and Analysis 137 

tributed algorithm that communicates every generation would perform the 
computation in nearly 4.6 hours, and if communication were to take place 
every 10 generations, then the computation would take nearly 35 minutes 
to complete. 

As a test, an example printed circuit design-manufacturing application 
is generated with 100 module types with the search respectively based over 
a 22 node (20 parts distributor nodes, 1 printed circuit board fabrication 
node, 1 printed circuit assembly node) distributed environment (small di­
ameter 100Mbps campus network). It is assumed that the search at any 
parts distributor node occurs over the full set of module types based on 
locally available resources, so the search at a node is over a subspace of the 
global space of nearly 10250 options. While the centralized algorithm takes 

Network Performance—22 node environment 

g 10" 
c 
03 

E 

10" 

Centralized 

10" 10" 
time—milliseconds 

Fig. 8.16 Time-performance of the centralized and distributed algorithms in a 22 node 
environment (20 parts distributor nodes, 1 printed circuit board fabrication node, 1 
printed circuit assembly node). 

nearly 44 seconds per generation, the distributed algorithm communicating 
every 10 generations takes less than 0.7 seconds per generation, and these 
results are consistent with the nature of the predictions. 



138 Network-Based Distributed Planning using Coevolutionary Algorithms 

8.5 Applicability Analysis of the Frameworks 

This section presents an analysis of the centralized and distributed decision­
making frameworks from the perspective of their applicability to network-
enabled design and manufacturing organizations. Principally, the char­
acteristics of these environments and the computational requirements for 
implementing these frameworks are discussed. 

8.5.1 Characteristics of the Computational Environment 

The computational environment in which the decision-making frameworks 
must function is characterized by several large databases distributed over 
the general internet. Such databases contain information on parts, suppli­
ers, and manufacturing resources and processes, which are logically interre­
lated from the perspective of integrated design, supplier, and manufacturing 
planning. The discussion in Section 8.4.2.1 helps develop an appreciation 
for the network delays (d) to be expected in these environments. The lo­
cal access delay factor (I) in this discussion is a smaller fraction of the 
network delay factor since the application modules in the network nodes 
are able to access information from local in-memory databases. Commer­
cial databases however are generally very large, and processing times for 
these systems can easily exceed several seconds per query [Chen, 1996; 
Hohenstein et al, 1997], unless sophisticated caching and parallel processing 
mechanisms are incorporated. As a result, it is important to carefully con­
sider the requirements for implementing the decision-making frameworks 
in a time-efficient manner. 

Another important issue that arises in the design of such decision­
making frameworks is proprietary information security. The success of 
these frameworks depends on the unhindered availability of information 
on decision resources, and processes. Often, the perceived potential danger 
of exposing proprietary information, even when such information sharing is 
mutually beneficial, poses serious hurdles to the implementation of cooper­
ative information sharing ventures. 

8.5.2 Implementation Strategies 

This section considers proposals for implementing the decision-making 
frameworks, and the computational requirements for these proposals. In 
this discussion, the fundamental assumption is that increasing the process-



Evaluation and Analysis 139 

ing power and local response time characteristics at a network node is vastly 
inexpensive compared to realizing an equivalent improvement in wide-area 
network performance. 

8.5.2.1 Proposal-A 

Assumptions 

Each network node that supports the evolutionary search has a locally 
resident application that is accessed by the evolutionary agent during the 
virtual design evaluation process. An application is either a server for the 
local database at that node or is a node-specific model that executes at 
a higher level of abstraction based on information gleaned from the local 
database. For instance, in the context of the printed circuit board problem 
the model at a printed circuit assembly node would take as input a design 
and associated printed circuit board, and would return manufacturing cost 
and time. Node-specific models are immobile agents that encapsulate pro­
prietary information that would otherwise be unavailable for general access 
(see Figure 7.5). The distributed databases and models support informa­
tion requests, but the network nodes do not permit external agents to reside 
locally. 

Evaluation 

Under the constraint that network nodes do not allow external applications 
to execute locally, it would not be possible to implement the distributed 
decision framework. Therefore, only the centralized framework would work 
in this environment. The principal issue that arises then is regarding the 
local access delays, since network access delays cannot be avoided. Unless 
local database access delays can be brought down to the order of a few 
milliseconds per access, this computational environment would not be able 
to support reasonably efficient evolutionary decision-making. A strategy 
to improve the local access response time is through database caches that 
are able to handle complex queries without having to refer to the mas­
ter database, caches that automatically receive updates from the master 
database when changes occur, and database servers that exploit parallel 
processing hardware.4 

4These features are already available in Oracle's Oracle8i [ora, 2000a]. 



140 Network-Based Distributed Planning using Coevolutionary Algorithms 

8.5.2.2 Proposal-B 

Assumptions 

Each network node has large back-end master database tables but most 
of the information processing is performed at the level of a sophisticated 
front-end communicating parallel cache (see Figure 8.17) that executes over 
a server farm.5 A server farm allows multiple users to simultaneously and 
rapidly access the information at a network node without frequent access of 
the master database tables, which requires slow disk operations. Also, the 
cache is programmed to receive automatic updates on any relevant state 
changes to the master database, and it is assumed that the average response 
times for queries are of the order of a few milliseconds. Importantly, the 

Fig. 8.17 Computational components of a network node that supports fast front-end 
parallel processing of database accesses. 

front-end server farm allows external and local agents to coexist and execute 
locally. 

5 These features are already supported in Oracle's Oracle Parallel Server [ora, 2000b]. 



Evaluation and Analysis 141 

Evaluation 

The principal advantages of this environment are speed of local compu­
tation and database access, and support of local execution of local and 
external agents. Database access is rapid on average since the front-end 
cache simulates a fast local database, and agents are able to benefit from 
locality of information. Therefore, such a computational environment is 
highly supportive of efficient network-distributed coevolutionary computa­
tion. 

In distributed coevolutionary computation, agents migrate between 
nodes, and when they do they carry with them a small portion of the 
available local information at a network node to support computations at 
another network node. While this concept is computationally attractive, 
and computationally justified since it facilitates the high computational ef­
ficiency of the distributed scheme, it does raise issues regarding information 
confidentiality. A simple solution to this problem is for the organizational 
entities representing the various network nodes to have prior agreements 
that support cooperative information sharing. Alternatively, effort could 
be put in to ensure that the agents that migrate between nodes are en­
gineered to not divulge proprietary information while at the same time 
supporting cooperative computation across the network nodes. 

8.5.2.3 Discussion 

Both proposals above require investments in speeding-up local computa­
tions by means of parallel processing and sophisticated caching of informa­
tion in large back-end master tables. Therefore, there is no work-around 
to speeding up local computations at a network node, and this is vital to 
efficient implementation of the evolutionary decision-making schemes. An 
interesting observation is that many widely accessed electronic commerce 
sites today have no choice but to invest in response time enhancement mea­
sures in order to be competitive. 

The principal difference between the proposals is in their support of lo­
cal residence of external agents. In Proposal-A, it is assumed that such a 
feature is not supported, and in this case there is not much of a choice but 
to use a centralized mode of decision-making. In Proposal-B, it is assumed 
that the environment supports local residence of external agents, and when 
such a feature is available, it is computationally very advantageous to con­
sider a distributed mode of decision-making. 



This page is intentionally left blank



Chapter 9 

Conclusions 

This final chapter presents a summary of contributions, potential applica­
tions, and directions for future research and development. 

9.1 S u m m a r y 

The fundamental theme of this book is "a systematic development of scal­
able and efficient evolutionary techniques for network-distributed decision­
making." This theme links ideas and contributions that span the following 
areas: 

• Posing the determination of efficient enterprise-level collaborative part­
nerships as distributed decision problems, and highlighting the im­
portance of software systems that can automate significant portions 
of these decision tasks. Such decision problems and their solutions 
methodologies are fundamental in linking to the scientific principles 
that underlie operations of collaborative enterprise systems. 

• Formal modeling and analysis of a class of distributed decision prob­
lems arising in integrated design, supplier, and manufacturing planning 
for modular products, developed as a set of coupled nonlinear assign­
ment problems. This formulation is applicable to a variety of assembly-
oriented design-manufacturing domains where integrated design-supp­
lier-manufacturing planning decisions are desired. 

• An analysis of the optimization algorithms that work well for this class 
of nonlinear assignment problems, selection of evolutionary techniques 
for this problem class, and development of a theoretical foundation to 
explain evolutionary algorithm behavior through proofs of convergence 
and convergence rates. 

143 



144 Network-Based Distributed Planning using Coevolutionary Algorithms 

• Development of a novel coevolutionary algorithm based on distributed 
evolutionary algorithm components and software agents that facili­
tate network-efficient cooperative exploration of highly coupled discrete 
spaces arising in distributed decision problems. 

• Development of a theoretical foundation to explain coevolutionary algo­
rithm behavior through proofs of convergence and convergence rates. 
Importantly, this work helps clarify the conditions for global conver­
gence of coevolutionary algorithms. 

• Development and analysis of techniques for achieving low convergence 
error and high computational efficiency with distributed coevolutionary 
algorithms, and an investigation of the factors that influence distributed 
convergence. 

• Development of prototype CVDE implementations that utilize dis­
tributed evolutionary agents and mobile agents as principal entities 
that generate and execute queries and transactions among distributed 
applications and databases to support a global optimization of design, 
supplier, and manufacturing planning for printed circuit assemblies. 

• An evaluation of expected performance of the decision-making frame­
works over the general internet for realistic problem sizes, and an anal­
ysis of the computational requirements for implementing these frame­
works to support network-enabled design and manufacturing organiza­
tions. 

9.2 Future Work 

There are several interesting opportunities for further research and devel­
opment based on the work in this book. While some of these are immediate 
extensions to this work, others are motivated by a broad vision for the future 
on the diverse applicability of efficient network-distributed decision-making 
systems. 

9.2.1 Multi-Criteria Optimization 

For the design-supplier-manufacturing planning problem class developed 
in Chapter 3, the objective is an aggregate trade-off function of cost and 
time factors, which themselves are global functions of the various assign­
ments. In several situations there is an advantage to treating the cost and 
time factors without aggregation. In these cases, evolutionary multi-criteria 



Conclusions 145 

optimization methods assume importance, and continuing work (see for ex­
ample [Bonissone and Subbu, 2002; Graves et al, 2003]) focuses on these 
aspects. 

Methods for multi-criteria optimization and decision-making constitute 
a critical focus area for ongoing research and development activities at 
General Electric Research and is showing significant promise across several 
complex business decision-making and engineering design problems [Tap-
peta et al, 2002]. Evolutionary multi-criteria optimization algorithms re­
cently developed by the first author are being utilized by General Electric's 
financial systems business for making multi-billion dollar investment de­
cisions. This research is soon to be published. In this decision-making 
problem the evolutionary search is based on multiple linear and nonlinear 
measures of return and risk, and it is particularly valuable to identify the 
space of Pareto-optimal or efficient investment decisions. 

9.2.2 Domain Heuristics 

Recent insight due to the No Free Lunch theorem suggests that any 
given algorithm cannot be expected to produce consistently superior re­
sults over the space of optimization problems [Wolpert and MacReady, 
1997]. One interpretation of this theoretical result discourages the search 
for the best algorithm since all algorithms on average behave the same 
across the space of all problems. However, the alternative positive and 
more useful interpretation of this result is that it is impossible to find 
a unique best algorithm for all problems, therefore, it is important to 
enhance the search performance of a given algorithm with whatever do­
main knowledge is available to solve that problem. This latter inter­
pretation via the use of domain heuristics and evolutionary computa­
tion has proved highly successful for several complex business and en­
gineering problems at General Electric Research [Bonissone et al, 2002; 
Bush and Kulkarni, 2002]. Leveraging domain knowledge is a critical com­
ponent of the problem solving process and has the power to equip evolution­
ary and coevolutionary search methods with the power to tackle complex 
optimization problems. 

9.2.3 Distributed Convergence 

This book develops a theoretical foundation for modeling and convergence 
analysis of centralized and distributed coevolutionary algorithms, and con-



146 Network-Based Distributed Planning using Coevolutionary Algorithms 

vergence and convergence rate results are derived for basic objective func­
tion classes based on Gaussians. While the method of "Sum of Gaussians" 
is fairly general and can be used to represent a variety of objective func­
tions, it is attractive to investigate the scope of derivation of convergence 
rate results for more complex landscapes. 

In large heterogeneous information networks there is the real possibility 
that there will be significant disparities in computational resources at vari­
ous network nodes, and the edges interconnecting these widely distributed 
nodes may also have significant disparities in access delays. The distributed 
coevolutionary algorithms developed in this book function synchronously, 
and there is the potential that the slowest node/edge may significantly af­
fect the network-based performance of the entire system. Thus, there is a 
need to develop more extensive methods based on simulation and analysis 
to evaluate the combined performance and reliability of these algorithms in 
large, highly heterogeneous information networks. Discrete-event systems 
modeling tools such as the Petri-Net model are advantageous for this level 
of modeling and analysis [Desrochers et al, 2003]. 

9.2.4 Robust Optimization 

Traditionally, much emphasis is placed on identifying a globally optimal 
solution. However, a solution that is globally optimal but is highly sensitive 
to small changes in decision variables would in practice be less attractive 
than a solution that is good and is stable over small changes in decision 
variables. There is an advantage therefore to develop techniques that are 
able to identify solutions that are less sensitive to uncertainties in decision 
variables. 

Robustness is a concept that is well developed in the control systems 
literature, and is used in the context of design of controllers that are rela­
tively insensitive to variations in parameters that determine plant perfor­
mance [Ackermann, 1991]. In these systems the plant model is assumed 
to be not known exactly and the main concern is to design a control 
scheme that satisfies performance specifications for all plants in the uncer­
tainty set [Milanese et al, 1991]. Recently, robustness has been discussed 
in the context of mathematical optimization (e.g. [Mulvey et al., 1995; 
Bai et al, 1997]). The fundamental goal of robust optimization is to identify 
an optimal or near-optimal solution that is not very sensitive to uncertainty 
in decision-variables. Robust optimization explicitly incorporates robust­
ness measures in the problem formulation in order to identify solutions that 



Conclusions 147 

are less sensitive to uncertainties in decision-variables. 

9.2.5 Prototype and Model Development 

There is a strong need to adapt the prototype CVDE described in this book 
to function in commercial applications settings that require access to com­
mercial databases. Linked to this is a need for development or acquisition 
of more realistic and complete domain-specific models. Such advanced im­
plementations would require a significant emphasis on developing graphical 
user interfaces and displays that help users participate in the decision­
making process, and multi-criteria decision-making methods that include 
human decision makers [Josephson et a/., 1998] will especially be critical to 
the success of such systems. Ongoing work at General Electric Research fo­
cuses on the development of such interactive multi-criteria decision-making 
tools for complex problems [Cheetham, 2003]. 

9.2.6 Applications 

The methodology presented in this book can have a fundamental impact 
on the principles and practice of engineering in industrial product develop­
ment in the network-based distributed environment that is emerging within 
and among corporate enterprise systems. In addition, the conceptual frame­
work of the approach to distributed decision systems presented in this book 
may have much wider implications for network-based systems ranging from 
intelligent agent-based browser systems, to enhanced consumer and busi­
ness services, and intelligent search techniques in scientific and commercial 
databases. 

The following discussion presents two application examples; one from 
integrated circuit design and manufacturing planning, and the second from 
decentralized air traffic management. 

9.2.6.1 IC Design and Manufacturing 

Integrated circuit (IC) design and manufacturing, is an area deemed critical 
to the sustained growth of an economy driven by advances in information 
technology and one consuming considerable resources. 

The largest delay in bringing new ICs to market has been, and will con­
tinue to be for the foreseeable future, the design and verification process. 
This is particularly true of mixed-signal designs, Systems on a Chip (SOC) 
implementations and densely packed Application Specific Integrated Cir-



148 Network-Based Distributed Planning using Coevolutionary Algorithms 

cuits (ASIC). Design reuse of complex macro-cells, also called Intellectual 
Property (IP) cores, is a growing response to the design and verification pro­
cess in which previously developed and proven sub-chip modules are reused 
in new ICs. This concept extends the well-developed use of in-house design 
libraries to include complex macro-cells as basic building blocks, similar to 
the use of integrated circuits as basic building blocks for electronics prod­
ucts. This is a significant advantage both for the IC designer, and with 
widespread implementation, the industry as well [Gutmann et at, 1999; 
Gutmann, 1999]. 

In support of this trend, several commercial IC foundries have helped 
reduce the technological gap enjoyed by vertically integrated industrial lead­
ers, and as a consequence, most IC designers have access to near state-of-
the-art fabrication facilities. Licensing of fully verified complex macro-cells 
can thus reduce the time-to-market appreciably, and simultaneously re­
duce new product risk. The advantage of such a design approach will lead 
to more standardized design and manufacturing processes among design 
groups and leading-edge IC foundries, and offset the IC designer mind-set 
of designing from scratch, which is a principal factor causing design de­
lays. The time-to-market advantage of reusing IP cores will therefore be 
overwhelming. 

In the anticipated design and manufacturing environment, IC virtual 
design becomes analogous to virtual design in the printed circuit assembly 
domain, where selection of IP cores is analogous to selection of packaged 
ICs, and selection of foundries is analogous to selection of assembly facili­
ties. In this environment, most of the IC design effort would focus on the 
development of interconnects and "glue" circuits, while benefiting signifi­
cantly from the reuse of complicated but fully verified basic building blocks. 
A common unifying theme in these applications domains is that multi­
ple logically interrelated decision resources (IP cores, their suppliers, and 
foundries) are physically distributed, and information for global decision­
making using these resources is available from several network-distributed 
databases. 

9.2.6.2 Decentralized Air Traffic Management 

The current air traffic control system in place in the United States, Europe 
and other countries is based on a network of geographically contiguous 
sectors, one or more of which are intersected by en-route flights between 
any two points. Each sector may be further decomposed into a set of 



Conclusions 149 

smaller control air-spaces. Each such airspace is typically managed by an 
expert air traffic controller who monitors the numbers and trajectories of 
the various flights in their given airspace and coordinates the flights in their 
airspace in collaboration with neighboring controllers. Since controllers 
wish to retain as much control over flight paths as possible, aircraft are 
currently disallowed to pick arbitrary routes and are assigned to one of a 
few standard routes between an origin and destination. While this system 
has been in place for decades and is considered reliable and robust, the 
increasing demand for air travel is frequently causing the system to reach 
an overloaded congested state at several sectors. Congestion occurs when 
the number of active flights in a controller's airspace exceeds the number 
of flights that they can safely manage. 

Current efforts at General Electric Research to alleviate this congestion 
problem include the development of methods to better predict congestion 
using temporal reasoning tools, and global optimization to realize optimal 
flight routes. Since a flight between an origin and destination is typically 
restricted to a few standard routes, the assignment of flights to routes such 
that the expected congestion is minimized is a discrete planning problem 
not unlike the class of problems discussed in this book. In fact, a suitable 
representation for solving this problem is similar to the representation for 
the printed circuit assembly planning problem discussed in this book. From 
a practical perspective it would be impossible to simultaneously optimize 
the trajectories of all flights in a given time window over the entire national 
airspace. In addition, since a given sector is tightly coupled to only a few 
other sectors in a time window due to shared intersecting flights, flight 
planning and optimization for the entire national airspace for given time 
window horizons is more efficiently performed in a decentralized manner. 
The algorithms and architectures presented in this book may be readily 
applicable in this environment. 



This page is intentionally left blank



Appendix A 

Evolutionary Algorithm Theory 

This chapter presents two key derivations that support the development of 
evolutionary algorithm theory. 

A . l Population Distribution Evolution 

The objective function is ip(x) = N[x*,K], and the initial distribution 
Po(dx) = N[xo,C0]nn(dx). The product P0(dx)il)(x) is given by the scaled 
Gaussian 

r exp --(a;* - x0y (K + C0y
L(x* - x0) 

(2Tr)%\KC0K-i+K\i \ 2K 7 (A.l) 

N[(X-X +Cv1)-1(K-1x* +CQ1X0),(K-1 +C^)-l)iin{dx) 

The first term from above, 

1 

(2n)2\KC0K-1 + K\* 

is a scalar. Therefore the integral 

j - exp (-~(x* - x0f(K + Co)'1 (i* - xo)\ (A.2) 

/ P0(dx)iP(x) (A.3) 
Jx 

is simply the above scalar since the Gaussian over the space X integrates 
to unity. Since the stochastic variation at any generation consists of an 
n-dimensional, zero-mean, coordinate-wise independent Gaussian, the inte­
gral 

f P0(dz)i>{z)Qo(z,dx) (A.4) 
Jx 

151 



152 Network-Based Distributed Planning using Coevolutionary Algorithms 

is a simply a convolution of the scaled Gaussian P0(dz)tjj(z) and Qo(z, •), 
which results in a Gaussian with no change in its mean and whose covariance 
is the sum of the covariances of Po(dz)ip(z) and Qo(z, •)• Therefore 

f P0(dz)iP(z)Q0(z,dx) 
Pi(dx) = ^ — j (A.5) 

/ P0(dz)il>(z) 
J X 

is simply N p T " 1 + 0 " 1 (K^x*-hC^xo), W0 + (K~l +C^l)-l]^n{dx). 
By induction, Pg+1 (dx) = N[(K-1+Cg-

1)-1(K-1x* + Cg~
1xg),Wg + (K-1 + 

C^r^fXnidx). 

A.2 Proof of Positive Definiteness 

[I — (I + KC'1)"1] can be rewritten as (/ 4- CgK~l)~l. For convenience, 
Ag is written as Ag = (I + CgK'1)-1. Then AQ = (I + C o i f - 1 ) - 1 , and 
since Co = cl,c> 0, A0 = (I + cK~1)~1. Since K is positive definite, A0 

is positive definite. Ai = (I + dR-1)'1, and d = c^I + (K'1 + CQ1)'1 . 
Substituting d in Ax gives Ai = [I + (cr%I + {K~l + i l ) - 1 ) / * " - 1 ] - 1 , that 
reduces to A\ = [I + a\K~x + (I + ^ J f ) - 1 ] - 1 , which is clearly positive 
definite. Continuing in this fashion, and by induction, Ag is always positive 
definite. 



Appendix B 

Models for the Printed Circuit 
Assembly Problem 

This chapter presents internals of several heuristically-based models used 
in the printed circuit assembly planning problem. 

B. l Part 

Table B.l shows the principal characteristics of each available part from 
a parts distributor. The package type identifiers used are: surface-mount 
(SM), through-hole (TH). The package size identifiers used are: very small 
(VS), small (S), medium (M), large (L), very large (VL). 

Table B.l Principal characteristics of an available part. 

Characteristic 
i d e n t i t y 
moduleType 

cost 
leadTime 
packageType 
packageSize 

Description 
A unique identifier for a part. 
An identifier for the type of module the 
part belongs to. 
A non-negative real number. 
A non-negative real number. 
An identifier from the set [SM, TH]. 
An identifier from the set [VS, S, M, L, VL]. 

B.2 Design 

Table B.2 shows the principal characteristics of a design entity, which 
is an aggregate of its parts. All design characteristics above except 
componentArea are explained therein, and now the computation of 
componentArea is described. Package sizes of parts are coded as follows: 
VS = 1,S = 5,M = 10,L = 20, VL = 50. The normalized component area 

153 



154 Network-Based Distributed Planning using Coevolutionary Algorithms 

Table B.2 Principal characteristics of a design. 

Characteristic 
numParts 
netCost 
maxLeadTime 
componentArea 
percentSM 
numSM 
numFineSM 

numRegularSM 

numTH 
numRegularTH 

nmnLargeTH 

Description 
Number of parts in the design. 
Net cost of parts in the design. 
Maximum lead time of parts in the design. 
Normalized area occupied by parts in the design. 
Percentage of surface-mount components in the design. 
Number of surface-mount components in the design. 
Number of surface-mount components with package 
size VS. 
Number of surface-mount components with package 
sizes [S, M, L, VL]. 
Number of through-hole components in the design. 
Number of through-hole components with package 
sizes [S, M]. 
Number of through-hole components with package 
sizes [L, VL]. 

of a part is the ratio of its package size and the largest package size, so the 
component area of parts in a design is the sum of the individual normalized 
component areas. 

B.3 Printed Circuit Board 

A printed circuit board is generated by a heuristically-based printed circuit 
board generator that takes as input a design, and outputs printed circuit 
board characteristics. The annotated internals of the printed circuit board 
generator are shown below. 

/ / Assume t h a t the l a r g e s t board des i r ab le i s one whose 
/ / componentArea = 20 
maxBoardArea = 20; 

/ / Compute the board a rea . Assume t h a t the area of the 
/ / board i s 1.5 the area occupied by the components. However, 
/ / assume t h a t as the percentage of surface mounts increases 
/ / the board area decreases by upto two t h i r d s . 
boardArea = (1.5-design.percentSM)*design.componentArea; 

/ / Compute the s i ze r a t i o of the board. If the generated 
/ / board i s l a rge r than the l a r g e s t board d e s i r a b l e , and 
/ / if the percentage of SM components i s beyond a th reshold 



Models for the Printed Circuit Assembly Problem 155 

// make a two-sided board of half the size. 

sizeFactor = boardArea/maxBoardArea; 

numSides = 1; 

if((sizeFactor > 1.0) && (design.percentSM >= 0.3)) { 

sizeFactor /= 2; 

numSides = 2; 

} 

// Compute the layer density of the board. Assume that as 

// the percentage of SM components increases, the layer 

// density increases. Also, as the board grows in size there 

// is less of a need for multiple layers. 

layerDensity = (numSides-l)*pow(design.percentSM,2)/exp(sizeFactor); 

// Compute the SM pad density. Assume that as the percentage 

// of surface mount components increases, the pad density 

// increases quickly. Simultaneously, as the board size 

// increases the SM pad density decreases. 

SMPadDensity = (l-exp(-design.percentSM*4)+exp(-4))/exp(sizeFactor); 

// Compute the hole density. Assume that the number of holes 

// increases when the percentage of through hole components 

// increases. Simultaneously, as the board size increases the 

// hole density decreases. 

holeDensity = (l-exp(-(l-design.percentSM)*9)+exp(-9))/ 

exp(sizeFactor); 

B.4 Printed Circuit Board Fabrication Line 

Table B.3 shows the principal characteristics of a printed circuit board 

fabrication line. For printed circuit board fabrication lines, it is assumed 

Table B.3 Principal characteristics of a printed circuit board fabrication line. 

Characteristic 
i d e n t i t y 
lineOverhead 
l ineEff ic iency 

Description 
A unique identifier for a fabrication line. 
A real number index in the range [0,1]. 
A real number index in the range [0,1]. 

that the principal differentiators between lines are overhead and efficiency. 



156 Network-Based Distributed Planning using Coevolutionary Algorithms 

While overhead is directly proportional to cost of fabrication, efficiency is 
inversely proportional to fabrication time. 

A printed circuit board fabrication line takes a design and its associated 
printed circuit board as inputs, and outputs heuristically computed cost and 
time for fabrication. 

Fabrication Cost 

fabr ica t ionCost = pcboard.s izeFactor + 
exp(pcboard.layerDensity) + 
design.percentSM * pcboard.SMPadDensity * 
pcboard.numSides + pcboard.holeDensity; 

fabr ica t ionCost *= (1+lineOverhead); 

Fabrication Time 

fabricationTime = pcboard.s izeFactor + 
exp(pcboard.layerDensity) + 
design.percentSM * pcboard.SMPadDensity * 
pcboard.numSides + pcboard.holeDensity; 

fabricationTime /= (1+l ineEff ic iency) ; 

B.5 P r in t ed Circuit Assembly Line 

Table B.4 shows the principal characteristics of the printed circuit assembly 
line. At the abstraction level of a printed circuit assembly line the principal 

Table B.4 Principal characteristics of a printed circuit assembly line. 

Characteristic 
i den t i t y 
lineOverhead 
l ineEff ic iency 
c e l l L i s t 

Description 
A unique identifier for an assembly line. 
A real number index in the range [0,1]. 
A real number index in the range [0,1]. 
A list of manufacturing cells that 
constitute the line. 

differentiators between lines are overhead, efficiency, and characteristics of 
the manufacturing cells that constitute a line. 

Each manufacturing line is a sequence of several manufacturing cells, 
and each cell realizes a subtask in the overall printed circuit assembly pro­
cess. Table B.5 shows the principal characteristics of a printed circuit as-



Models for the Printed Circuit Assembly Problem 157 

sembly cell. A cell of the surface-mount (SM) type handles assembly of 
all surface-mount components with package sizes [S, M, L, VL], a cell of 
the fine surface-mount (FSM) type handles assembly of very small surface-
mount components, a cell of the through-hole (TH) type performs place­
ment of through-hole components with package sizes [S, M] (it is assumed 
that through-hole components cannot have a package size of VS), a cell 
of the large through-hole (LTH) type performs placement of through-hole 
components with package sizes [L, VL], a cell of the wave solder (WS) type 
solders all through-hole components, and a cell of the final assembly (FIN) 
type performs cleaning and inspection of the assembled product. 

Table B.5 Principal characteristics of a printed circuit assembly cell. 

Characteristic 
i d e n t i t y 
type 

avgTimePerPart 

avgTimePerBoard 

costPerUnitTime 

Description 
A unique identifier for an assembly cell. 
An identifier from the set 
[SM, FSM, TH, LTH, WS, FIN]. 
A non-negative real number that represents 
the average time required to handle a part. 
A non-negative real number that represents 
the average time required to handle a board. 
A non-negative real number that represents 
the cost per unit time of cell use. 

A printed circuit assembly line takes a design and its associated printed 
circuit board as inputs, and outputs heuristically computed cost and time 
for manufacturing. The inputs are processed by each of the constituent 
cells in a manufacturing line. 

Manufacturing Cost 

For assembly cells of type [SM, FSM, TH, LTH, WS], the manufacturing 
cost incurred by a cell, cellMamif acturingCost, is computed as 

cellManufacturingCost = n * avgTimePerPart * costPerUnitTime; 
cellManufacturingCost += avgTimePerBoard * costPerUnitTime; 

where n is the number of the parts with the specific types and sizes 
that the cell is equipped to handle. For assembly cell of type FIN, the 
cellManufacturingCost is computed as 

cellManufacturingCost = avgTimePerBoard * costPerUnitTime; 



158 Network-Based Distributed Planning using Coevolutionary Algorithms 

manufacturingCost = 2 . cellManufacturingCost 
cellList 

manufacturingCost *= (1+pcboard.s izeFactor) ; 
manufacturingCost *= (1+lineOverhead); 

Manufacturing Time 

For assembly cells of type [SM, FSM, TH, LTH, WS], the manufacturing 
time incurred by a cell, cellManuf acturingTime, is computed as 

cellManufacturingTime = n * avgTimePerPart; 
cellManufacturingTime += avgTimePerBoard; 

where n is the number of the parts with the specific types and sizes 
that the cell is equipped to handle. For assembly cell of type FIN, the 
cellManuf acturingTime is computed as 

cellManufacturingTime = avgTimePerBoard; 

manufacturingTime = \ . cellManufacturingTime 
cellList 

manufacturingTime *= (1+pcboard.sizeFactor); 

manufacturingTime /= (1+lineEfficiency); 



Bibliography 

(1991a). 21st Century Manufacturing Enterprise Strategy: An Industry-Led View. 
Iacocca Institute, Lehigh University. Volume 1. 

(1991b). 21st Century Manufacturing Enterprise Strategy: Infrastructure. Iacocca 
Institute, Lehigh University. Volume 2. 

(2000a). Oracle8i. Oracle Corp., http://www.oracle.com. 
(2000b). Oracle8i Parallel Server. Oracle Corp., http://www.oracle.com. 
(2000). Voyager. ObjectSpace Inc., http://www.objectspace.com. 
Aarts, E. H. L., Korst, J. H. M., and van Laarhoven, P. J. M. (1997). Simu­

lated annealing. In Aarts, E. and Lenstra, J. K., editors, Local Search in 
Combinatorial Optimization. John Wiley. 

Ackermann, J. (1991). Robust car steering by yaw rate feedback. In Bhat-
tacharyya, S. P. and Keel, L. H., editors, Control of Uncertain Dynamic 
Systems. CRC Press. 

Back, T. (1995). Order statistics for convergence velocity analysis of simplified 
evolutionary algorithms. In Proceedings of the Foundations of Genetic Al­
gorithms. Morgan Kaufman. 

Back, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford Uni­
versity Press, New York. 

Back, T. (1997). Heuristics for parameter-setting issues: Mutation parameters. In 
Back, T., Fogel, D., and Michalewicz, Z., editors, Handbook of Evolutionary 
Computation. Oxford University Press. 

Back, T. (1998). On the behavior of evolutionary algorithms in dynamic en­
vironments. In Proceedings of the World Conference on Computational 
Intelligence, Anchorage, Alaska. 

Back, T., Heistermann, J., Kappler, C , and Zamparelli, M. (1996). Evolutionary 
algorithms support refueling of pressurized water reactors. In Proceedings of 
the IEEE International Conference on Evolutionary Computation, Nagoya, 
Japan. 

Back, T. and Schwefel, H.-P. (1996). Evolutionary computation: An overview. In 
Proceedings of the IEEE International Conference on Evolutionary Compu­
tation, Nagoya, Japan. 

Bai, D., Carpenter, T., and Mulvey, J. (1997). Making a case for robust opti-

159 

http://www.oracle.com
http://www.oracle.com
http://www.objectspace.com


160 Network-Based Distributed Planning using Coevolutionary Algorithms 

mization models. Management Science, 43(7). 
Barnier, N. and Brisset, P. (1998). Optimization by hybridization of a genetic 

algorithm with constraint satisfaction techniques. In Proceedings of the 
World Conference on Computational Intelligence, Anchorage, Alaska. 

Bellman, R. and Dreyfus, S. (1962). Applied Dynamic Programming. Princeton 
University Press, New Jersey. 

Bertsekas, D. P. and Tsitsiklis, J. N. (1997). Parallel and Distributed Computa­
tion: Numerical Methods. Athena Scientific, Belmont, Massachusetts. 

Blickle, T. and Thiele, L. (1997). A comparison of selection schemes used in 
evolutionary algorithms. Evolutionary Computation, 4(4). 

Bonissone, P. P., Subbu, R., and Aggour, K. (2002). Evolutionary optimization 
of fuzzy decision systems for automated insurance underwriting. In Pro­
ceedings of the World Conference on Computational Intelligence, Honolulu, 
Hawaii. 

Bonissone, S. and Subbu, R. (2002). Exploring the pareto frontier using multi-
sexual evolutionary algorithms: an application to a flexible manufacturing 
problem. In Proceedings of the SPIE Annual Meeting-Program on Algo­
rithms and Architectures, Seattle, Washington. 

Booch, G. (1994). Object-Oriented Analysis and Design. Benjamin Cummings, 
California. 

Boothroyd, G. (1994). Product design for manufacture and assembly. Computer-
Aided Design, 26(7). 

Boothroyd, G. and Dewhurst, P. (1983). Product Design for Assembly. Boothroyd 
Dewhurst, Inc., Wakefield, Rhode Island. 

Burger, R. (1988). Mutation-selection balance and continuum-of-alleles models. 
Mathematical Biosciences, 91. 

Burke, E. K., Newall, J. P., and Weare, R. F. (1998). Initialization strategies and 
diversity in evolutionary timetabling. Evolutionary Computation, 6(1). 

Bush, S. F. and Kulkarni, A. B. (2002). Genetically induced communication 
network fault tolerance. In Proceedings of the Santa Fe Institute Workshop: 
Resilient and Adaptive Defence of Computing Networks, Santa Fe, New 
Mexico. 

Cantu-Paz, E. (1999). Designing Efficient and Accurate Parallel Genetic Algo­
rithms. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, 
Illinois. 

Capcarrere, M., Tomassini, M., Tettamanzi, A., and Sipper, M. (1999). A sta­
tistical study of a class of cellular evolutionary algorithms. Evolutionary 
Computation, 7(3). 

Cedeno, W., Vemuri, V. R., and Slezak, T. (1995). Multiniche crowding in ge­
netic algorithms and its application to the assembly of DNA restriction-
fragments. Evolutionary Computation, 2(4). 

Chakraborty, U. K., Deb, K., and Chakraborty, M. (1997). Analysis of selection 
algorithms: A markov chain approach. Evolutionary Computation, 4(2). 

Chandrasekaran, B. (1981). Natural and social system metaphors for distributed 
problem solving: Introduction to the issue. IEEE Transactions on Systems, 
Man, and Cybernetics, SMC-ll( l ) . 



Bibliography 161 

Chao, K.-M., Anane, R., Norman, P., Tasi, C.-F., and Reeves, C. (2002). Multi­
ple evolution and concurrent engineering design. In The 1th International 
Conference on Computer Supported Cooperative Work in Design. 

Cheetham, W. (2003). Global grade selector: A recommender system for sup­
porting the sale of plastic resin. In Proceedings of the 5th International 
Conference on Case-Based Reasoning, Trondheim, Norway. 

Chen, R. (1996). A benchmark comparing Unix and Windows NT for decision 
support with Oracle RDBMS. In CMG Proceedings, volume 1. 

Cheng, T. C. E. and Sin, C. C. S. (1990). A state-of-the-art review of parallel-
machine scheduling research. European Journal of Operational Research, 
47(3). 

Chu, P. C. and Beasley, J. E. (1997). A genetic algorithm for the generalized 
assignment problem. Computers and Operations Research, 24(1). 

Davis, T. E. and Principe, J. C. (1993). A markov chain framework for the simple 
genetic algorithm. Evolutionary Computation, 1(3). 

De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive 
Systems. PhD thesis, University of Michigan, Ann Arbor, Michigan. 

De Jong, K. A., Spears, W. M., and Gordon, D. F. (1994). Using markov chains to 
analyze GAFOs. In Proceedings of the Foundations of Genetic Algorithms. 

Deb, K. and Chakroborty, P. (1998). Time scheduling of transit systems with 
transfer considerations using genetic algorithms. Evolutionary Computa­
tion, 6(1). 

Desrochers, A., Graves, R. J., Sanderson, A. C , Goel, A., Scales, R., Xu, T., Xue, 
F., Bonissone, S., and Subbu, R. (2003). Advanced research in scalable en­
terprise systems: Network-based distributed relational decision framework 
for scalable enterprise systems-phase II. In Proceedings of the 2003 NSF 
Design, Service and Manufacturing Grantee's Conference, Birminghan, Al­
abama. 

Dimopoulos, C. and Zalzala, A. M. S. (2000). Recent developments in evolution­
ary computation for manufacturing optimization: Problems, solutions, and 
comparisons. IEEE Transactions on Evolutionary Computation, 4(2). 

Dowlatshahi, S. (1992). Product design in a concurrent engineering environment: 
an optimization approach. International Journal of Production Research, 
30(8). 

Ficici, S. G., Melnick, O., and Pollack, J. B. (2000). A game-theoretic investiga­
tion of selection methods used in evolutionary algorithms. In Proceedings of 
the IEEE Congress on Evolutionary Computation, San Diego, California. 

Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philosophy of 
Machine Intelligence. IEEE Press, New Jersey. 

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence Through 
Simulated Evolution. John Wiley, New York. 

Fonseca, C. M. and Fleming, P. J. (1998a). Multiobjective optimization and 
multiple constraint handling with evolutionary algorithms-Part I: A unified 
formulation. IEEE Transactions on Systems, Man, and Cybernetics-Part 
A, 28(1). Systems and Humans. 

Fonseca, C. M. and Fleming, P. J. (1998b). Multiobjective optimization and mul-



162 Network-Based Distributed Planning using Coevolutionary Algorithms 

tiple constraint handling with evolutionary algorithms-Part II: Application 
example. IEEE Transactions on Systems, Man, and Cybernetics-Part A, 
28(1). Systems and Humans. 

Gao, Y. (1998). Comments on theoretical analysis of evolutionary algorithms with 
an infinite population size in continuous space, Part-I: Basic properties of 
selection and mutation. IEEE Transactions on Neural Networks, 9(2). 

Glover, F. (1986). Future paths for integer programming and links to artificial 
intelligence. Computers and Operations Research, 13(5). 

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Ma­
chine Learning. Addison-Wesley, Massachusetts. 

Goldfarb, D. and Todd, M. J. (1989). Linear programming. In Nemhauser, 
G. L., Kan, A. H. G. R., and Todd, M. J., editors, Optimization, volume 1. 
North-Holland. 

Gondran, M. and Minoux, M. (1984). Graphs and Algorithms. John Wiley, New 
York. 

Graves, R. J., Sanderson, A. C., Xue, F., Bonissone, S., and Subbu, R. (2003). 
Advanced research in scalable enterprise systems: Multi-objective optimiza­
tion. In Proceedings of the 2003 International Conference on Industrial 
Engineering and Production Management, Porto, Portugal. 

Gray, J. (1988). The cost of messages. In Proceedings of the Seventh Annual ACM 
Symposium on Principles of Distributed Computing, Toronto, Canada. 

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algo­
rithms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1). 

Grefenstette, J. J. (1992). Genetic algorithms for changing environments. In 
Proceedings of Parallel Problem Solving From Nature-2. North-Holland. 

Grefenstette, J. J. (1995). Predictive models using fitness distributions of genetic 
operators. In Proceedings of the Foundations of Genetic Algorithms. Morgan 
Kaufman. 

Grefenstette, J. J. (1999). Evolvability in dynamic fitness landscapes: A genetic 
algorithm approach. In Proceedings of the IEEE Congress on Evolutionary 
Computation, Washington D. C. 

Gutmann, R. J. (1999). Advanced silicon IC interconnect technology and de­
sign: Present trends and RF wireless implications. IEEE Transactions on 
Microwave Theory and Techniques, 47(6). 

Gutmann, R. J., Chan, K., and Graves, R. J. (1999). Interconnect technology and 
design implications for future ASIC and System-on-a-Chip (SOC) imple­
mentations. In Proceedings of the Advanced Semiconductor Manufacturing 
Conference and Workshop, Boston, Massachusetts. 

Hart, E., Ross, P., and Nelson, J. (1998). Solving a real-world problem using an 
evolving heuristically driven schedule builder. Evolutionary Computation, 
6(1). 

Hayes, C. C. (1999). Agents in a nutshell-a very brief introduction. IEEE Trans­
actions on Knowledge and Data Engineering, 11(1). 

He, D. W. and Kusiak, A. (1997). Design of assembly systems for modular 
products. IEEE Transactions on Robotics and Automation, 13(5). 

Hertz, A., Taillard, E., and de Werra, D. (1997). Tabu search. In Aarts, E. and 



Bibliography 163 

Lenstra, J. K., editors, Local Search in Combinatorial Optimization. John 
Wiley. 

Hocaoglu, C. (1997). Multipath Planning using Evolutionary Computation with 
Speciation. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY. 

Hocaoglu, C. and Sanderson, A. C. (1996). Implementation and assesment of a 
distributed, object-oriented information infrastructure for agile electronics 
manufacturing. In Proceedings of the Third ISPE International Conference 
on Concurrent Engineering, Toronto, Canada. 

Hohenstein, U., Plefier, V., and Heller, R. (1997). Evaluating the performance 
of object-oriented database systems by means of a concrete application. In 
Database and Expert Systems Applications Proceedings. 

Holland, J. H. (1994). Adaptation in Natural and Artificial Systems: an introduc­
tory analysis with applications to biology, control, and artificial intelligence. 
The MIT Press, Cambridge, Massachusetts, third edition. First Edition: 
1975 The University of Michigan. 

Hsieh, F.-S. (2002). Design of evolvable manufacturing processes. In Proceedings 
of the IEEE Congress on Evolutionary Computation, Honolulu, Hawaii. 

Husbands, P., Mcllhagga, M., and Ives, R. (1997). Experiments with an ecosys­
tems model for integrated production planning. In Back, T., Fogel, D., and 
Michalewicz, Z., editors, Handbook of Evolutionary Computation. Oxford 
University Press. 

Jennings, N. R., Sycara, K., and Woolridge, M. (1998). A roadmap of agent 
research and development. Autonomous Agents and Multi-Agent Systems, 
1(1). 

Jennings, N. R. and Woolridge, M. (1998). Applications of intelligent agents. In 
Jennings, N. R. and Woolridge, M., editors, Agent Technology: Founda­
tions, Applications, and Markets. Springer-Verlag. 

Joines, J. A., Culbreth, C. T., and King, R. E. (1996). Manufacturing cell de­
sign: an integer programming model employing genetic algorithms. HE 
Transactions, 28(1). 

Josephson, J. R., Chandrasekaran, B., Carroll, M., Iyer, N., Wasacz, B., Rizzoni, 
G., Li, Q., and Erb, D. A. (1998). An architecture for exploring large 
design spaces. In Proceedings of the American Association for Artificial 
Intelligence (AAAI). 

Karlin, S. (1979). Models of multifactorial inheritance: I, multivariate formula­
tions and basic convergence results. Theoretical Population Biology, 15. 

Kauffman, S. A. and Johnsen, S. (1991). Co-evolution to the edge of chaos: 
Coupled fitness landscapes, poised states, and co-evolutionary avalanches. 
Journal of Theoretical Biology, 149. 

Kernighan, B. W. and Lin, S. (February, 1970). An efficient heuristic procedure 
for partitioning graphs. The Bell System Technical Journal, 49. 

Kirkpatrick, S., Jr., C. D. G., and Vecchi, M. P. (1983). Optimization by simulated 
annealing. Science, 220(4598). 

Koza, J. (1992). Genetic programming: On the programming of computers by 
means of natural selection. The MIT Press, Cambridge, Massachusetts. 

Lee, E. K. and Mitchell, J. E. (1999). Branch-and-bound methods for integer 



164 Network-Based Distributed Planning using Coevolutionary Algorithms 

programming. In Encyclopedia of Optimization. Kluwer Academic. 
Lesser, V. R. (1991). A retrospective view of FA/C distributed problem solving. 

IEEE Transactions on Systems, Man, and Cybernetics, 21(6). 
Lesser, V. R. (1999). Cooperative multiagent systems: A personal view of the 

state of the art. IEEE Transactions on Knowledge and Data Engineering, 
11(1). 

Lesser, V. R. and Corkill, D. D. (1981). Functionally accurate, cooperative dis­
tributed systems. IEEE Transactions on Systems, Man, and Cybernetics, 
SMC-l l ( l ) . 

Liles, W. and De Jong, K. (1999). The usefulness of tag bits in changing environ­
ments. In Proceedings of the IEEE Congress on Evolutionary Computation, 
Washington D. C. 

Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the 
traveling salesman problem. Operations Research, 21(2). 

Luenberger, D. G. (1984). Linear and Nonlinear Programming. Addison-Wesley, 
Massachusetts. 

Maes, P. (1994). Modeling adaptive autonomous agents. Artificial Life, 1(2). 
Matsumura, T., Nakamura, M., Okech, J., and Onaga, K. (1998). A parallel and 

distributed genetic algorithm on loosely-coupled multiprocessor systems. 
IEICE Transactions on Fundamentals of Electronics, Communications, and 
Computer Sciences, E81-A(4). 

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Pro­
grams. Springer-Verlag, New York, Berlin, third edition. 

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for con­
strained parameter optimization problems. Evolutionary Computation, 
4(1). 

Milanese, M., Fiorio, G., Malan, S., and Vicino, A. (1991). Robust performance 
design of nonlinearily peturbed control systems. In Bhattacharyya, S. P. and 
Keel, L. H., editors, Control of Uncertain Dynamic Systems. CRC Press. 

Mitchell, J. E. (1999a). Branch-and-cut algorithms for integer programming. In 
Encyclopedia of Optimization. Kluwer Academic. 

Mitchell, J. E. (1999b). Cutting plane algorithms for integer programming. In 
Encyclopedia of Optimization. Kluwer Academic. 

Miihlenbein, H. (1991). Evolution in time and space-the parallel genetic algo­
rithm. In Rawlins, G. J. E., editor, Foundations of Genetic Algorithms. 
Morgan Kaufmann. 

Miihlenbein, H. (1997). Genetic algorithms. In Aarts, E. and Lenstra, J. K., 
editors, Local Search in Combinatorial Optimization. John Wiley. 

Mulvey, J. M., Vanderbei, R. J., and Zenios, S. A. (1995). Robust optimization 
of large-scale systems. Operations Research, 43(2). 

Nemhauser, G. L. and Wolsey, L. A. (1989). Integer programming. In Nemhauser, 
G. L., Kan, A. H. G. R., and Todd, M. J., editors, Optimization, volume 1. 
North-Holland. 

Nevins, J. L., Whitney, D. E., De Fazio, T. L., Edsall, A. C , Gustavson, R. E., 
Metzinger, R. W., and Dvorak, W. A. (1989). Concurrent Design of Prod­
ucts and Processes: A Strategy for the Next Generation in Manufacturing. 



Bibliography 165 

McGraw-Hill Publishing Company, New York. 
Nwana, H. S. and Ndumu, D. T. (1997). An introduction to agent technology. In 

Nwana, H. S. and Azarmi, N., editors, Software Agents and Soft Computing, 
Lecture Notes in Artificial Intelligence, volume 1198. Springer. 

Ortega, J., Bernier, J. L., Diaz, A. F., Rojas, I., Salmeron, M., and Prieto, A. 
(1999). Parallel combinatorial optimization with evolutionary cooperation 
between processors. In Proceedings of the IEEE Congress on Evolutionary 
Computation, Washington D. C. 

Ortega, J. M. (1987). Matrix Theory: A Second Course. Plenum Press, New 
York. 

Orvosh, D. and Davis, L. (1993). Shall we repair? genetic algorithms, com­
binatorial optimization and feasibility constraints. In Forrest, S., editor, 
Proceedings of the Fifth International Conference on Genetic Algorithms. 
Morgan Kaufmann. 

Papadimitriou, C. H. and Steiglitz, K. (1982). Combinatorial Optimization: Al­
gorithms and Complexity. Prentice-Hall, New Jersey. 

Parker, R. G. and Rardin, R. L. (1988). Discrete Optimization. Academic Press, 
San Diego. 

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem 
Solving. Addison-Wesley, Massachusetts. 

Peck, C. C. and Dhawan, A. P. (1995). Genetic algorithms as global random 
search methods: An alternative perspective. Evolutionary Computation, 
3(1). 

Pierreval, H. and Tautou, L. (1997). Using evolutionary algorithms and simulation 
for the optimization of manufacturing systems. HE Transactions, 29(3). 

Poli, C., Dastidar, P., and Graves, R. J. (1992). Design knowledge acquisition for 
DFM methodologies. Research in Engineering Design, 4. 

Potter, M. A. (1997). The Design and Analysis of a Computational Model of 
Cooperative Coevolution. PhD thesis, George Mason University, Fairfax, 
Virginia. 

Potter, M. A. and De Jong, K. A. (2000). Cooperative coevolution: An archi­
tecture for evolving coadapted subcomponents. Evolutionary Computation, 
8(1). 

Powell, D. J. (1990). Inter-GEN: A Hybrid Approach to Engineering Design 
Optimization. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY. 

Priigel-Bennett, A. and Shapiro, J. L. (1994). An analysis of genetic algorithms 
using statistical mechanics. Physics Review Letters, 72. 

Qi, X. and Palmieri, F. (1994). Theoretical analysis of evolutionary algorithms 
with an infinite population size in continuous space, Part-I: Basic properties 
of selection and mutation. IEEE Transactions on Neural Networks, 5(1). 

Raidl, G. R. (1998). An improved genetic algorithm for the multiconstrained 0-1 
knapsack problem. In Proceedings of the World Conference on Computa­
tional Intelligence, Anchorage, Alaska. 

Richardson, J. T., Palmer, M. R., Liepins, G., and Hilliard, M. (1989). Some 
guidelines for genetic algorithms with penalty functions. In Schaffer, J., 
editor, Proceedings of the Third International Conference on Genetic Algo-



166 Network-Based Distributed Planning using Coevolutionary Algorithms 

rithms. Morgan Kaufmann. 
Roberts, F. S. (1984). Applied Combinatorics. Prentice-Hall, New Jersey. 
Rosin, C. D. (1997). Coevolutionary Search Among Adversaries. PhD thesis, 

University of California, San Diego, San Diego, California. 
Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE 

Transactions on Neural Networks, 5(1). 
Rudolph, G. (1996). Convergence of evolutionary algorithms in general search 

spaces. In Proceedings of the IEEE International Conference on Evolution­
ary Computation, Nagoya, Japan. 

Russell, S. J. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. 
Prentice Hall, New Jersey. 

Sanderson, A. C , Graves, R. J., and Millard, D. L. (1994). Multipath agility 
in electronics manufacturing. In Proceedings of the IEEE International 
Conference on Systems, Man, and Cybernetics. 

Schnecke, V. and Vornberger, O. (1997). Hybrid genetic algorithms for con­
strained placement problems. IEEE Transactions on Evolutionary Compu­
tation, 1(4). 

Seredynski, F. (1997). Competitive coevolutionary multi-agent systems: The 
application to mapping and scheduling problems. Journal of Parallel and 
Distributed Computing, 47(1). 

Shapiro, J., Priigel-Bennett, A., and Rattray, M. (1994). A statistical mechanical 
formulation of the dynamics of genetic algorithms. In Lecture Notes in 
Computer Science, volume 865. Springer, Berlin. 

Sikdar, B., Kalyanaraman, S., and Vastola, K. S. (2000). An integrated model for 
the latency and steady state throughput of TCP connections. In Proceed­
ings of the IFIP Symposium on Advanced Performance Modeling, Orlando, 
Florida. 

Sikora, R. and Shaw, M. J. (1997). Coordination mechanisms for multi-agent 
manufacturing systems: Applications to integrated manufacturing schedul­
ing. IEEE Transactions on Engineering Management, 44(2). 

Slatkin, M. (1970). Selection and polygenic characters. Proceedings of the Na­
tional Academy of Sciences, 66(1). 

Smith, R. E. (1997). Heuristics for parameter-setting issues: Population size. In 
Back, T., Fogel, D., and Michalewicz, Z., editors, Handbook of Evolutionary 
Computation. Oxford University Press. 

Smith, R. G. (1980). The contract net protocol: High-level communication and 
control in a distributed problem solver. IEEE Transactions on Computers, 
C-29(12). 

Smith, R. G. and Davis, R. (1981). Frameworks for cooperation in distributed 
problem solving. IEEE Transactions on Systems, Man, and Cybernetics, 
SMC-ll( l ) . 

Sobolewski, M. W. and Erkes, J. W. (1995). Camnet: Architecture and applica­
tions. In Proceedings of Concurrent Engineering 1995 Conference, McLean, 
Virginia. 

Song, L. and Nagi, R. (1997). Design and implementation of a virtual information 
system for agile manufacturing. HE Transactions, 29(10). 



Bibliography 167 

Spears, W. M. (1997). Heuristics for parameter-setting issues: Recombination 
parameters. In Back, T., Fogel, D., and Michalewicz, Z., editors, Handbook 
of Evolutionary Computation. Oxford University Press. 

Spears, W. M. and De Jong, K. A. (1996). Analyzing GAs using markov models 
with sematically ordered and lumped states. In Proceedings of the Founda­
tions of Genetic Algorithms. 

Srinivas, M. and Patnaik, L. M. (1996). Genetic search: Analysis using fitness 
moments. IEEE Transactions on Knowledge and Data Engineering, 8(1). 

Stephens, C. and Waelbroeck, H. (1999). Schemata evolution and building blocks. 
Evolutionary Computation, 7(2). 

Stroustrup, B. (1991). The C++ Programming Language. Addison-Wesley, Mas­
sachusetts. 

Subbu, R. and Bonissone, P. P. (2003). A retrospective view of fuzzy control of 
evolutionary algorithm behavior. In Proceedings of the 2003 IEEE Inter­
national Conference on Fuzzy Systems, St. Louis, Missouri. 

Subbu, R., Hocaoglu, C., and Sanderson, A. C. (1998a). A virtual design environ­
ment using evolutionary agents. In Proceedings of the IEEE International 
Conference on Robotics and Automation, Leuven, Belgium. 

Subbu, R. and Sanderson, A. C. (2000). Modeling and convergence analysis of 
distributed coevolutionary algorithms. In Proceedings of the IEEE Congress 
on Evolutionary Computation, San Diego, California. 

Subbu, R. and Sanderson, A. C. (2001a). Network-based distributed planning 
for design and manufacturing. In Proceedings of the IEEE International 
Symposium on Assembly and Task Planning, Fukuoka, Japan. 

Subbu, R. and Sanderson, A. C. (2001b). Network distributed virtual design using 
coevolutionary agents. In Proceedings of the IEEE International Conference 
on Robotics and Automation, Seoul, Korea. 

Subbu, R. and Sanderson, A. C. (2003a). Modeling and convergence analysis 
of distributed coevolutionary algorithms. IEEE Transactions on Systems, 
Man, and Cybernetics, Part B: Cybernetics. In Press. 

Subbu, R. and Sanderson, A. C. (2003b). Network-based distributed planning 
using coevolutionary agents: Architecture and evaluation. IEEE Transac­
tions on Systems, Man, and Cybernetics, Part A: Systems and Humans. In 
Press. 

Subbu, R., Sanderson, A. C , Hocaoglu, C , and Graves, R. J. (1998b). Dis­
tributed virtual design environment using intelligent agent architecture. 
In Proceedings of the Industrial Engineering Research Conference, Banff, 
Canada. 

Subbu, R., Sanderson, A. C., Hocaoglu, C , and Graves, R. J. (1998c). Evolu­
tionary intelligent agents for distributed virtual design. In Proceedings of 
Rensselaer's International Conference on Agile, Intelligent, and Computer 
Integrated Manufacturing, Troy, New York. 

Subbu, R., Sanderson, A. C , Hocaoglu, C , and Graves, R. J. (1999). Evolu­
tionary decision support for distributed virtual design in modular product 
manufacturing. Production Planning and Control, 10(7). Special Issue on 
Agile, Intelligent, and Computer Integrated Manufacturing. 



168 Network-Based Distributed Planning using Coevolutionary Algorithms 

Sycara, K., Roth, S., Sadeh, N., and Fox, M. (1991). Distributed constrained 
heuristic search. IEEE Transactions on Systems, Man, and Cybernetics, 
21(6). 

Talukdar, S. N. and de Souza, P. (1995). Insects, fish, and computer-based 
super-agents. In Chow, J. H., Kokotovic, P. V., and Thomas, R. J., ed­
itors, Systems and Control Theory for Power Systems, The IMA Volumes 
in Mathematics and its Applications, volume 64. Springer-Verlag. 

Tanese, R. (1989). Distributed Genetic Algorithms for Function Optimization. 
PhD thesis, University of Michigan, Ann Arbor, Michigan. 

Tappeta, R. V., Renaud, J. E., and Rodriguez, J. F. (2002). An interactive multi-
objective optimization design strategy for decision based multidisciplinary 
design. Engineering Optimization, 34(5). 

Taylor, D. and Graves, R. J. (1990). An examination of routeing flexibility for 
small batch assembly of printed circuit boards. International Journal of 
Production Research, 28(11). 

Taylor, G. D. (1997). Design for global manufacturing and assembly. HE Trans­
actions, 29(7). 

Tong, S. S., Powell, D., and Cornett, D. (1992). Engineous: A unified method 
for design automation, optimization, and integration. In Tong, C. and 
Sriram, D., editors, Artificial Intelligence in Engineering Design, volume 3. 
Academic Press. 

Trojanowski, K. and Michalewicz, Z. (1999). Searching for optima in non-
stationary environments. In Proceedings of the IEEE Congress on Evo­
lutionary Computation, Washington D. C. 

Vose, M. D. and Wright, A. H. (1995). Simple genetic algorithms with linear 
fitness. Evolutionary Computation, 2(4). 

Weicker, K. and Weicker, N. (1999). On evolution strategy optimization in dy­
namic environments. In Proceedings of the IEEE Congress on Evolutionary 
Computation, Washington D. C. 

Wiegand, R. P., Liles, W. C., and De Jong, K. A. (2002). Analyzing cooperative 
coevolution with evolutionary game theory. In Proceedings of the World 
Conference on Computational Intelligence, Honolulu, Hawaii. 

Wilson, J. M. (1997). A genetic algorithm for the generalized assignment problem. 
Journal of the Operational Research Society, 48(8). 

Wolpert, D. H. and MacReady, W. G. (1997). No free lunch theorems for opti­
mization. IEEE Transactions on Evolutionary Computation, 1(1). 

Wright, A. H. (1999). The exact schema theorem. Web published at: 
http: /'/www.cs.umt.edu/u/wright/wright.htm. 

Yu, C.-Y. and Huang, H.-P. (2001). Development of the order fulfillment pro­
cess in the foundry fab by applying distributed multi-agents on a generic 
message-passing platform. IEEE/ASME Transactions on Mechatronics, 
6(4). 

Zhigljavsky, A. A. (1991). Theory of Global Random Search. Kluwer Academic 
Publishers, Dordrecht, Netherlands. 

http://www.cs.umt.edu/u/wright/wright.htm


Index 

agent 
evolutionary, xii, 5, 7, 8, 96, 

105-110, 139, 144 
mobile, xii, 5, 7, 8, 96, 107-109, 

112, 144 
software, xii, 4, 29, 30, 144 

agile manufacturing, xii, 11 
air traffic management, 147, 148 
algorithm 

approximate, 3, 14, 16, 51 
branch-and-bound, 15, 16, 51 
coevolutionary, xi, xii, 4, 6, 8, 26, 

27, 63-65, 79, 88, 110, 111, 
121, 144-146 

competitive coevolutionary, 27 
coordinate descent, 65 
cutting-planes, 15, 16 
deterministic, 13, 14, 18 
deterministic evaluative search, 51 
dynamic programming, 16 
evolution strategy, 19, 20, 25 
evolutionary, xi, xii, 4, 6-9, 18, 19, 

22, 23, 26, 28, 52-55, 58, 
63-66, 79, 82, 89, 91, 
105-107, 109-111, 117, 119, 
120, 131, 143, 144, 151 

evolutionary programming, 18, 20, 
21 

exact, 14 
genetic, 10, 18, 20, 21, 26, 54 
heuristic, 10, 16, 17, 25, 32, 47, 51, 

52, 55-57, 86, 91, 145 

integer programming, 13-16, 18, 49 
linear programming, 10, 11, 13-16, 

50, 65 
linear programming relaxation, 14, 

15 
simulated annealing, 18, 52 
stochastic, 7, 9, 13, 14, 18 
stochastic evaluative search, 52 
tabu search, 17, 51 

allele set, 102, 105, 106 
assignment problem, 24 

nonlinear, xi, 3, 6, 33, 53, 95, 143 

Coevolutionary Virtual Design 
Environment, xii, 5, 95, 96, 111 

collaborative manufacturing, 7, 9 
complexity 

exponential, 3, 13, 16, 21, 48, 49 
polynomial, 17 

computation 
asynchronous, 30, 113 
synchronous, 73, 110, 146 

computational advantage, 73-75, 121, 
124-129 

computational efficiency, 4, 141, 144 
computational environment 

C + + , 111 
caching, 138, 139, 141 
event-driven, 96, 111 
Java, 112 
network port, 132 
Oracle, 139, 140 

169 



170 Network-Based Distributed Planning using Coevolutionary Algorithms 

server farm, 140 
Voyager, 112 

computational time delay, 64, 72, 73, 
109 
database access, 95 
local access, 74, 81, 82, 85, 86, 92, 

111, 117, 128, 132, 138, 139 
message processing overhead, 130, 

131, 133 
network access, 72, 74, 81, 83, 85, 

86, 92, 128, 130-133, 135, 
136, 138, 139 

concurrent engineering, 9, 10 
constraint 

function, 2, 13, 14 
matrix, 15 

convergence 
analysis, 53, 58, 63, 145 
analysis of rate, xii, 4, 7, 58 
asymptotic, 18, 20 
contraction coefficient, 81, 82 
error, 120, 123-127, 144 
first-order effect, 124, 126 
geometric, 60, 62, 66-68, 81, 82 
global, 8, 54, 63, 64, 67-72, 79, 

111, 118, 121, 144 
global iterate, 67, 69-72, 81, 85, 86, 

92, 122, 123 
global iteration, 67 
local, 65, 67 
population distribution, 55, 58-61, 

66, 81, 86, 92, 151 
pseudo-contraction, 60 
quality, 121 
second-order effect, 124, 126 
steady-state error, 120 
weak, 57, 58, 66 

coordinate-wise independent, 59-61, 
151 

coordination, 74, 75, 107, 109, 110, 
117, 121, 125, 129 
communication interval, 123-129 
frequency, 73, 74, 81, 86, 92, 121, 

127, 136 
scheme, 69-72, 81, 82, 92, 110, 112, 

121-128 

correlation coefficient, 80, 81 
covariance matrix, 58, 59, 61, 80, 81, 

152 
crossover, 55, 111 
CVDE 

see Coevolutionary Virtual Design 
Environment, xii, 5, 7, 8, 
96, 111-113, 115, 121, 144, 
147 

database, local, 4, 72, 74, 105, 107, 
139, 141 

decision vector, 2, 50 
decision-making 

distributed, xi, 2, 6, 138, 143, 144 
global, 95, 98, 148 
multi-criteria, 147 

design 
functional specification, 3, 33, 35, 

36, 38, 39, 44, 45, 100, 101, 
105, 113, 114 

product, 10, 34, 98, 100, 101, 105, 
107 

virtual, 5, 6, 96, 100, 103, 105, 106, 
109, 116, 117 

distributed problem solving, 7, 9, 31, 
32 
Contract-Net protocol, 31 

elitism, 21 
epistasis, 87, 88 
equivalence class, 34-36, 38, 39, 

46-48, 100-102 
evolutionary optimization 

coarse-grained parallelism, 26 
fine-grained parallelism, 26 
Markov Chain theory, 23 
mathematical population genetics, 

54 
parameter adaptation, 23 
schema theory, 21, 23 
statistical mechanics theory, 24 
stochastic generational method, 54 
theoretical basis, xii, 4, 6-8, 20, 23, 

24, 53, 54, 56, 58, 60, 61, 
63, 66, 72, 79, 95, 107, 



Index 171 

143-145 
expert systems, 10 

fitness function, 19, 22, 27 

Gaussian function, 57-62, 66-69, 79, 
81, 86, 91, 146, 151, 152 

General Electric, xiii, 145, 147, 149 
genome, 91, 102, 107 
global 

optimization, xii, 5, 7, 8, 95, 96, 
144, 149 

optimizer, 53, 54, 57, 62, 63, 65, 
66, 68-71, 92 

information splicing, 110, 111, 
121-127 
none, 122, 123 
single-point, 122, 123 
uniform, 122-124, 126, 127 

intercommunication, 4, 64, 67, 72, 
108, 123-127, 129 
internode, xi, 2, 4, 84 

internet, 115, 128, 135, 136, 138, 144 

Lebesgue measure, 54, 65 

manufacturing resource, xi, 2, 3, 26, 
27, 33, 35, 36, 38, 39, 41, 44-46, 48, 
89, 90, 97, 99, 113, 138 

mathematical analysis, xii, 4, 6, 53, 
62, 107 

model-based, 100, 103 
mutation, 18-21, 23, 55, 56, 59-61, 

81, 86, 91, 106, 119 

National Science Foundation, xiii 
network bandwidth, 130, 135, 136 
network ratio, 121, 126-129 
network-based performance, xii, 8, 

97, 115, 120, 121, 146 
metrics, 118, 120 

No Free Lunch Theorem, 145 
NP-Hard, 12, 48 

object-oriented programming, 10, 29, 

111 
objective 

bimodal, 58, 61, 62, 66-69, 79-82 
function, xi, xii, 1,4, 5, 7, 8, 24, 28, 

40-42, 47, 49-51, 54, 58, 59, 
61-63, 68, 69, 79, 96, 101, 
103, 104, 108, 110, 146, 151 

multimodal, 58, 62, 69, 72 
nonlinear, 2, 48, 51, 91, 110 
unimodal, 58, 60, 66-69, 79, 80, 82 

offspring, 19-21, 23, 57, 91, 119 
optimal, 14-17, 19, 32, 34, 82, 96, 97, 

145, 146, 149 
optimization 

by enumeration, 13, 16, 49 
by hybrid search, 16, 52 
combinatorial, 7, 9, 12, 13, 15, 17, 

18, 25, 48, 49, 53 
constrained, 24 
constraint satisfaction, 25, 32, 103 
discrete, xi, 3, 4, 107 
exact, xi, 3, 4, 16, 49, 50 
multi-criteria, 144, 145 
neighborhood, 12, 13, 17, 56 
numerical, 10 
penalty function, 25 
robust, 146 

optimum 
global, 12, 14 
local, 12, 13, 52 

parent-child competition, 81, 86 
parts distributor, 98-100, 105, 106, 

108, 109, 113, 116-120, 130-132, 
137, 153 

Petri-net model, 146 
planar tile layout problem, 79, 83 
planning 

design, supplier, and 
manufacturing, xi, xii, 2, 3, 
5, 33, 40, 96, 138, 143, 144 

network-based, xi, 96 
population 

finite sample size, 62 
initial, 55, 59-61 
large sample size, 62 



172 Network-Based Distributed Planning using Coevolutionary Algorithms 

parent, 119 
size, 23, 72-74, 86, 91, 119, 131, 

132 
printed circuit assembly, 5, 7, 8, 34, 

39, 45-50, 53, 96-108, 112, 113, 
115-120, 125, 129-132, 137, 139, 
144, 148, 149, 153-157 

probability 
density, 55 
distribution, 55, 57, 59 
mass, 55, 56, 61 
measure, 55, 57, 58, 66 

problem characteristics 
continuity, 20, 21, 50, 56, 57, 66 
convexity, 49, 50, 53, 63 
coupling, xi, 16, 50, 51, 58, 89, 97, 

108-110 
differentiability, 50 
nonlinearity, xi, 3, 14, 18, 50, 51 

proportional selection, 55, 56, 91, 
106, 119 

randomization, 69, 85, 86, 88, 113, 
121, 124 

Rensselaer Polytechnic Institute, xiii 

sampling distribution, xii, 4, 8, 53, 
54, 59, 63, 79 

scalability, xi, xiii, 1, 2, 6, 74, 143 
search space 

feasible, xii, 4, 8, 15, 16, 25, 26, 49, 
53, 54, 63, 79 

primary subspace, 63, 65 
secondary subspace, 64 

search variable, 4, 58, 84, 86, 91, 92, 
107, 110 

standard deviation, 59-61, 80-82, 86, 
91, 92, 123-129 

stochastic 
process, xii, 4, 6 
variation, 55, 56, 59, 61, 72, 81, 86, 

151 
suboptimal, 46, 82, 91, 101, 148 
subproblem, 15, 26, 51, 108 
supplier, xi, 1-3, 33, 35, 44, 46, 97, 

98, 100, 138, 148 

Systems On a Chip, 147 

transportation problem, 25 
traveling salesman problem, 17, 25 

unimodular matrix, 14, 15, 49 

VLSI placement problem, 24 

widely distributed, 130, 146 



In this book, efficient and scalable 
coevolut ionary alsorithms for 
distributed, network-based decision-
making, which utilize objective functions 
are developed in a networked 
environment where internode 
communications are a primary 
factor in system performance. 

A theoretical foundation for 
this class of coevolutionary 
algorithms is introduced 
techniques from stochastic process 
theory and mathematical analysis. 

using 

A case study in distributed, network-
based decision-making presents an 
implementation and detailed evaluation 
of the coevolutionary decision-making 
framework that incorporates distributed 
evolutionary agents and mobile agents. 

Network-Based 
Distributed Planning 

Coevolutionary 
Algorithms 

The methodology discussed in this book 
can have a fundamental impact on the 
principles and practice of engineering 
in the distributed, network-based 
environment that is emerging within and 
among corporate enterprise systems. In 
addition, the conceptual framework of 
the approach to distributed decision 
systems described may have much 
wider implications for network-based 
systems and applications. 

' 

World Scientific 
www.worldscientific.com 
5470 he 

ISBN 981-238-754-4 

http://www.worldscientific.com

